WorldWideScience

Sample records for coastal upwelling event

  1. Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress

    Directory of Open Access Journals (Sweden)

    Bogdan Ołdakowski

    2008-03-01

    Full Text Available The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions.

  2. Fish larvae retention linked to abrupt bathymetry at Mejillones Bay (northern Chile during coastal upwelling events

    Directory of Open Access Journals (Sweden)

    Pablo M Rojas

    2014-11-01

    Full Text Available The influence of oceanic circulation and bathymetry on the fish larvae retention inside Mejillones Bay, northern Chile, was examined. Fish larvae were collected during two coastal upwelling events in November 1999 and January 2000. An elevated fish larvae accumulation was found near an oceanic front and a zone of low-speed currents. Three groups of fish larvae were identified: the coastal species (Engraulis ringens and Sardinops sagax, associated with high chlorophyll-a levels; larvae from the families Phosichthyidae (Vinciguerria lucetia and Myctophidae (Diogenichthys laternatus and Triphoturus oculeus, associated with the thermocline (12°C, and finally, larvae of the families Myctophidae (Diogenichthys atlanticus and Bathylagidae (Bathylagus nigrigenys, associated with high values of temperature and salinity. The presence of a seamount and submarine canyon inside Mejillones Bay appears to play an important role in the circulation during seasonal upwelling events. We propose a conceptual model of circulation and particles retention into Mejillones Bay. The assumption is that during strong upwelling conditions the flows that move along the canyon emerge in the centre of Mejillones Bay, producing a fish larvae retention zone. Understanding the biophysical interactions responsible to trap and/or concentrate particles is essential to protect these fragile upwelling ecosystems.

  3. REGIONAL AIR-SEA INTERACTION (RASI) GAP WIND AND COASTAL UPWELLING EVENTS CLIMATOLOGY GULF OF PAPAGAYO, COSTA RICA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology datasets were created using an automated intelligent algorithm which...

  4. REGIONAL AIR-SEA INTERACTION (RASI) GAP WIND AND COASTAL UPWELLING EVENTS CLIMATOLOGY GULF OF PAPAGAYO, COSTA RICA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology Gulf of Papagayo, Costa Rica dataset was created using an automated...

  5. REGIONAL AIR-SEA INTERACTION (RASI) GAP WIND AND COASTAL UPWELLING EVENTS CLIMATOLOGY GULF OF PANAMA, PANAMA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology datasets were created using an automated intelligent algorithm which...

  6. REGIONAL AIR-SEA INTERACTION (RASI) GAP WIND AND COASTAL UPWELLING EVENTS CLIMATOLOGY GULF OF TEHUANTEPEC, MEXICO V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology Gulf of Tehuantepec, Mexico dataset was created using an automated...

  7. REGIONAL AIR-SEA INTERACTION (RASI) GAP WIND AND COASTAL UPWELLING EVENTS CLIMATOLOGY GULF OF TEHUANTEPEC, MEXICO V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Regional Air-Sea Interactions (RASI) Gap Wind and Coastal Upwelling Events Climatology datasets were created using an automated intelligent algorithm which...

  8. Variability of coastal water hydrodynamics in the southern Baltic - hindcast modelling of an upwelling event along the Polish coast

    Directory of Open Access Journals (Sweden)

    Andrzej Jankowski

    2002-12-01

    Full Text Available This paper presents the results of an attempt to reproduce, with theaid of a numerical circulation model, the hydrological conditions observedin the coastal area of the southern Baltic in September 1989.A large fall in surface layer seawater temperature was recordedin September 1989 at two coastal stations in the vicinity ofKolobrzeg and Wladyslawowo. This upwelling-like phenomenon was assumed tobe related to the specific anemobaric situation in September 1989,however typical of this phenomenon to occur along the Polish Baltic coast(Malicki & Mietus 1994. A three-dimensional (3-D sigma-coordinatebaroclinic model of the Baltic Sea, with a horizontal resolution of~5 km and 24 sigma-levels in the vertical, was applied to investigatewater circulation and thermohaline variability. Hindcastnumerical simulation showed that the model provided a good reproductionof the temporal history of the surface seawater temperature and theduration of the upwelling-like fall, but that the model results wereunderestimated. The maxima of this large fall in the surface layertemperature at both coastal stations are closely related to the phase ofchange of the upwelling-favourable wind direction to the opposite one.The results of simulation runs showed details of upwelling developmentdue to wind field fluctuations in time and differences in shaping thetemperature and current patterns in conjunction with the variations intopography and coastline features in some areas along the Polish coast.Two different hydrodynamic regimes of water movements along the coastresulting from topographical features (the Slupsk Bank can be distinguished.From the model simulation the specific conditions for the occurrence anddevelopment of upwelling at the eastern end of the Polish coast(in the vicinity of Wladyslawowo can be deduced.

  9. Coastal upwelling ecosystems are often identified as regions ...

    African Journals Online (AJOL)

    spamer

    upwelled water from aged upwelled water, and the coastal transition zone front, which defines the boundary between the coastal upwelling region and the adjacent ocean (Smith 1992, 1995). The strong density gradient across the coastal transition zone front sets up an equatorward jet that is most intense in summer (Smith.

  10. Coastal upwelling ecosystems are often identified as regions ...

    African Journals Online (AJOL)

    spamer

    The coastal upwelling front forms soon after the onset of upwelling and is advected offshore as upwelling proceeds. During periods of sustained upwelling, the ... mixed, shallow zone where surface and bottom .... 3: Interannual mussel toxicity at a mussel farm in Saldanha Bay showing measured levels of (a) saxitoxin.

  11. Coastal upwelling in the Gelendzhik area of the Black Sea: Effect of wind and dynamics

    Science.gov (United States)

    Silvestrova, K. P.; Zatsepin, A. G.; Myslenkov, S. A.

    2017-07-01

    Long series data of a thermistor chain in the Black Sea coastal zone near Gelendzhik were analyzed. A thermistor chain installed 1 km offshore and at a depth of 22 m. There are full and incomplete upwelling events observed. The study of upwelling genesis based on: wind speed data from the NCEP/CFSR reanalysis and Gelendzhik weather station, velocity and direction of coastal currents measured by ADCP profiler moored on the bottom near the thermistor chain. Over the whole observation period (warm seasons of 2013-2015), more than 40 events of upwelling were registered four of them were full upwellings, when presence of under-thermocline water was observed near the sea surface. For every upwelling event, conditions prior to the changes in thermic structure, were analyzed. It is found that full upwelling generally occur under synergistic wind and current forcing. Fairly strong forcing of one of these factors is sufficient for partial upwelling to occur.

  12. Coastal upwelling south of Madagascar: Temporal and spatial variability

    Science.gov (United States)

    Ramanantsoa, Juliano D.; Krug, M.; Penven, P.; Rouault, M.; Gula, J.

    2018-02-01

    Madagascar's southern coastal marine zone is a region of high biological productivity which supports a wide range of marine ecosystems, including fisheries. This high biological productivity is attributed to coastal upwelling. This paper provides new insights on the structure, variability and drivers of the coastal upwelling south of Madagascar. Satellite remote sensing is used to characterize the spatial extent and strength of the coastal upwelling. A front detection algorithm is applied to thirteen years of Multi-scale Ultra-high Resolution (MUR) Sea Surface Temperatures (SST) and an upwelling index is calculated. The influence of winds and ocean currents as drivers of the upwelling is investigated using satellite, in-situ observations, and a numerical model. Results reveal the presence of two well-defined upwelling cells. The first cell (Core 1) is located in the southeastern corner of Madagascar, and the second cell (Core 2) is west of the southern tip of Madagascar. These two cores are characterized by different seasonal variability, different intensities, different upwelled water mass origins, and distinct forcing mechanisms. Core 1 is associated with a dynamical upwelling forced by the detachment of the East Madagascar Current (EMC), which is reinforced by upwelling favourable winds. Core 2 appears to be primarily forced by upwelling favourable winds, but is also influenced by a poleward eastern boundary flow coming from the Mozambique Channel. The intrusion of Mozambique Channel warm waters could result in an asynchronicity in seasonality between upwelling surface signature and upwelling favourables winds.

  13. Modeling coastal upwelling around a small-scale coastline promontory

    Science.gov (United States)

    Haas, K. A.; Cai, D.; Freismuth, T. M.; MacMahan, J.; Di Lorenzo, E.; Suanda, S. H.; Kumar, N.; Miller, A. J.; Edwards, C. A.

    2016-12-01

    On the US west coast, northerly winds drive coastal ocean upwelling, an important process which brings cold nutrient rich water to the nearshore. The coastline geometry has been shown to be a significant factor in the strength of the upwelling process. In particular, the upwelling in the lee of major headlands have been shown to be enhanced. Recent observations from the Pt. Sal region on the coast of southern California have shown the presence of cooler water south of a small (350 m) rocky promontory (Mussel Pt.) during upwelling events. The hypothesis is that the small scale promontory is creating a lee side enhancement to the upwelling. To shed some light on this process, numerical simulations of the inner shelf region centered about Pt. Sal are conducted with the ROMS module of the COAWST model system. The model system is configured with four nested grids with resolutions ranging from approximately 600 m to the outer shelf ( 200 m) to the inner shelf ( 66 m) and finally to the surf zone ( 22 m). A solution from a 1 km grid encompassing our domain provides the boundary conditions for the 600 m grid. Barotropic tidal forcing is incorporated at the 600 m grid to provide tidal variability. This model system with realistic topography and bathymetry, winds and tides, is able to isolate the forcing mechanisms that explain the emergence of the cold water mass. The simulations focus on the time period of June - July, 2015 corresponding to the pilot study in which observational experiment data was collected. The experiment data in part consists of in situ measurement, which includes mooring with conductivity, temperature, depth, and flow velocity. The model simulations are able to reproduce the important flow features including the cooler water mass south of Mussel Pt. As hypothesized, the strength of the upwelling is enhanced on the side of Mussel Pt. In addition, periods of wind relaxation where the upwelling ceases and even begins to transform towards downwelling is

  14. Dominant plankton sizes in response to various upwelling events.

    Science.gov (United States)

    Shin, J.; Jo, Y. H.

    2016-02-01

    Off the east coast of Korean Peninsula is known as regions of high primary production. One of the most important processes for the high primary productivity in coastal areas is, strong upwelling events. In this research, we investigated long-term changes of upwelling intensity and furthermore, examined corresponding Chlorophyll-a concentration (CHL). For the study area, off the east coast of Korea is divided into 9 areas along the coastal lines at 0.25° of intervals from 35.25°N to 37.25°N. Specifically, research is conducted for long-term tendency of CHL off the east coast of Korea with focus on upwelling events using `Upwelling Age (UA)'. For obtaining UA, we used wind-vector from The European Centre for Medium-Range Weather Forecasts (ECMWF), ocean temperature and salinity profile data from Hybrid Coordinate Ocean Model (HYCOM), and bathymetry data from a 1 arc-minute global relief model of Earth's surface that integrates land topography and ocean bathymetry (ETOPO1). The UA values are different along the regions of interests due to wind duration time, wind stress and continental shelf slopes, so do the dominant plankton size. In order to compare spatial changes of CHL, we used Moderate Resolution Imaging Spectroradiometer (MODIS) data. When UA is high, CHL is relatively higher and inversely sea surface temperature lower.

  15. Coastal upwelling in Gelendzhik area of the Black sea: wind and dynamics influence.

    Science.gov (United States)

    Silvestrova, Ksenia

    2017-04-01

    This work presents the results of upwelling observations at the coastal zone of the Black Sea near Gelendzhik city. The long series of water temperature (thermochain from 6 to 18 m) were analyzed. The events of full and incomplete upwelling were selected. 5 events from 45 referred to the full upwelling. Under termocline water with a temperature of less than 10° C was observed near the surface. In order to analyze upwelling causes the wind speed from NCEP/CFSR reanalysis and data of the Acoustic Doppler Current Profiler (ADCP) over the period 2013-2015 (mostly warm season) were used. Special upwelling cryteria that consideres wind stress, local baroclinic Rossby radius and thickness of upper mixed layer was calculated. This cryteria allow to estimate role of the wind forcing. Conditions precedent change of the thermal structure are analyzed for each of the upwelling events. It is found that full upwelling preceded by a steady long (more than 2 days) northwest wind. Most of all fixed upwelling events (40%) happened with the synergetic effect of wind and currents. There is also a possibility of local rise of cold waters in submesoscale eddies and advection of these waters with current - such event of full upwelling was recorded in June 2015. This work was supported by Russian Science Founding, grant № 14-17-00382.

  16. Towards a management perspective for coastal upwelling ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Howe, S.O.; Walsh, J.J.

    1976-01-01

    Data are reviewed from studies on the general distribution of upwelling of coastal waters, associated current patterns, and first order biological effects. Field observations and theory are discussed. Recent research has shown that variability and dynamism are the predominant characteristic features of these regions. Populations related by nonlinear interactions occur in constantly moving patches and swirls subjected to variability in the winds, currents, water chemistry, and solar insolation. Gross stationary features of upwelling communities have been described, but the responses of critical components and their relationships to human or natural perturbations remain poorly defined in this and other types of coastal ecosystems. Large scale research programs recognize that the continental shelf ecosystems are complex event-oriented phenomena. It is postulated that assessment of living resources in an environmental vacuum may lead to mismanagement and hindcasting rather than prescient management. A growing data base encourages the development of computer simulation models of ecosystem relationships and responses will lead to better understanding and management of these and other marine ecosystems in the future. 80 references.

  17. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Delpeche-Ellmann, Nicole; Mingelaitė, Toma; Soomere, Tarmo

    2017-07-01

    We employ in-situ surface drifters and satellite derived sea surface temperature data to examine the impact that an upwelling event may have on mixing and Lagrangian transport of surrounding surface waters. The test area is located near the southern coast of the Gulf of Finland where easterly winds are known to trigger intense coastal upwellings. The analysis is based on the comparison of motions of three drifters that follow the currents in the uppermost layer with a thickness of 2 m with MODIS-based sea surface temperature data and high-quality open sea wind time series. The presence of an upwelling event superseded the classic Ekman-type drift of the surface layer and considerably slowed down the average speed of surface currents in the region affected by the upwelled cold water jet and its filaments. The drifters tended to stay amidst the surrounding surface waters. The properties of mixing were evaluated using the daily rate of temperature change along several transects. The upwelled cooler water largely kept its identity during almost the entire duration of the upwelling event. Intense mixing started at a later stage of the upwelling and continued after the end of the event when the winds that have driven the entire process began to subside.

  18. Coastal upwelling fluxes of O2, N2O, and CO2 assessed from continuous atmospheric observations at Trinidad, California

    Directory of Open Access Journals (Sweden)

    T. J. Lueker

    2004-01-01

    Full Text Available Continuous atmospheric records of O2/N2, CO2 and N2O obtained at Trinidad, California document the effects of air-sea exchange during coastal upwelling and plankton bloom events. The atmospheric records provide continuous observations of air-sea fluxes related to synoptic scale upwelling events over several upwelling seasons. Combined with satellite, buoy and local meteorology data, calculated anomalies in O2/N2 and N2O were utilized in a simple atmospheric transport model to compute air-sea fluxes during coastal upwelling. CO2 fluxes were linked to the oceanic component of the O2 fluxes through local hydrographic data and estimated as a function of upwelling intensity (surface ocean temperature and wind speed. Regional air-sea fluxes of O2/N2, N2O, and CO2 during coastal upwelling were estimated with the aid of satellite wind and SST data. Upwelling CO2 fluxes were found to represent ~10% of export production along the northwest coast of North America. Synoptic scale upwelling events impact the net exchange of atmospheric CO2 along the coastal margin, and will vary in response to the frequency and duration of alongshore winds that are subject to climate change.

  19. Coastal upwelling along the southwest coast of India – ENSO modulation

    Directory of Open Access Journals (Sweden)

    K. Muni Krishna

    2008-06-01

    Full Text Available An index of El Niño Southern Oscillation (ENSO in the Pacific during pre monsoon season is shown to account for a significant part of the variability of coastal Sea Surface Temperature (SST anomalies measured a few months later within the wind driven southwest coast of India coastal upwelling region 7° N–14° N. This teleconnection is thought to result from an atmospheric bridge between the Pacific and north Indian Oceans, leading to warm (cold ENSO events being associated with relaxation (intensification of the Indian trade winds and of the wind-induced coastal upwelling. This ENSO related modulation of the wind-driven coastal upwelling appears to contribute to the connection observed at the basin-scale between ENSO and SST in the Arabian Sea. The ability to use this teleconnection to give warning of large changes in the southwest coast of India coastal upwelling few months in advance is successfully tested using data from 1998 and 1999 ENSO events.

  20. Dynamic features of successive upwelling events in the Baltic Sea - a numerical case study

    Directory of Open Access Journals (Sweden)

    Kai Myrberg

    2010-03-01

    Full Text Available Coastal upwelling often reveals itself during the thermal stratification season as an abrupt sea surface temperature (SST drop. Its intensity depends not only on the magnitude of an upwelling-favourablewind impulse but also on the temperature stratification of the water column during the initial stage of the event. When a "chain" of upwelling events is taking place, one event may play a part in forming the initial stratification for the next one; consequently, SST may drop significantly even with a reduced wind impulse.    Two upwelling events were simulated on the Polish coast in August 1996 using a three-dimensional, baroclinic prognostic model. The model results proved to be in good agreement with in situobservations and satellite data. Comparison of the simulated upwelling events show that the first one required a wind impulse of 28000 kg m-1 s-1 to reach its mature, full form, whereasan impulse of only 7500 kg m-1 s-1 was sufficient to bring about a significant drop in SST at the end of the second event. In practical applications like operational modelling, the initial stratification conditions prior to an upwelling event should be described with care in order to be able to simulate the coming event with very good accuracy.

  1. Seasonality of coastal upwelling trends under future warming scenarios along the southern limit of the canary upwelling system

    Science.gov (United States)

    Sousa, Magda Catarina; Alvarez, Ines; deCastro, Maite; Gomez-Gesteira, Moncho; Dias, João Miguel

    2017-04-01

    The Canary Upwelling Ecosystem (CUE) is one of the four most important upwelling sites around the world in terms of primary production, with coastal upwelling mostly a year-round phenomenon south of 30°N. Based on annual future projections, several previous studies indicated that global warming will intensify coastal upwelling in the northern region and will induce its weakening at the southernmost latitudes. However, analysis of historical data, showed that coastal upwelling depends on the length of the time series, the season, and even the database used. Thus, despite previous efforts, an overall detailed description of seasonal upwelling trends and their effects on sea surface temperature (SST) along the Canary coast over the 21st century remains unclear. To address this issue, several regional and global wind and SST climate models from CORDEX and CMIP5 projects for the period 1976-2099 were analyzed. This research provides new insights about coastal upwelling trends under future warming scenarios for the CUE, with results showing opposite patterns for upwelling index (UI) trends depending on the season. A weakening of the UI occurs from May to August all along the coast, whereas it increases from October to April. Analysis of SST trends reveals a general warming throughout the area, although the warming rate is considerably lower near the shore than at open ocean locations due to coastal upwelling effects. In addition, SST projections show higher warming rates from May to August than from October to April in response to the future decreasing trend in the UI during the summer months.

  2. Coastal upwelling and downwelling forcing of circulation in a semi-enclosed bay: Ria de Vigo

    Science.gov (United States)

    Barton, E. D.; Largier, J. L.; Torres, R.; Sheridan, M.; Trasviña, A.; Souza, A.; Pazos, Y.; Valle-Levinson, A.

    2015-05-01

    Semi-enclosed bays in upwelling regions are exposed to forcing related to winds, currents and buoyancy over the shelf. The influence of this external forcing is moderated by factors such as connectivity to the open ocean, shelter by surrounding topography, dimensions of the bay, and freshwater outflows. Such bays, preferred locations for ports, mariculture, marine industry, recreational activities and coastal settlement, present a range of characteristics, understanding of which is necessary to their rational management. Observations in such a semi-enclosed bay, the Ria de Vigo in Spain, are used to characterize the influence of upwelling and downwelling pulses on its circulation. In this location, near the northern limit of the Iberian upwelling system, upwelling events dominate during a short summer season and downwelling events the rest of the year. The ria response to the external forcing is central to nutrient supply and resultant plankton productivity that supports its high level of cultured mussel production. Intensive field studies in September 2006 and June 2007 captured a downwelling event and an upwelling event, respectively. Data from eight current profiler moorings and boat-based MiniBat/ADCP surveys provided an unprecedented quasi-synoptic view of the distribution of water masses and circulation patterns in any ria. In the outer ria, circulation was dominated by the introduction of wind-driven alongshore flow from the external continental shelf through the ria entrances and its interaction with the topography. In the middle ria, circulation was primarily related to the upwelling/downwelling cycle, with a cool, salty and dense lower layer penetrating to the inner ria during upwelling over the shelf. A warmer, lower salinity and less dense surface layer of coastal waters flowed inward during downwelling. Without external forcing, the inner ria responded primarily to tides and buoyancy changes related to land runoff. Under both upwelling and downwelling

  3. On the presence of coastal upwelling along the northeastern Tyrrhenian coast

    Science.gov (United States)

    Martellucci, Riccardo; Melchiorri, Cristiano; Costanzo, Lorenzo; Marcelli, Marco

    2017-04-01

    The Mediterranean region shows a high climate variability due to the interactions between mid-latitude and tropical processes. This variability makes the Mediterranean a potentially vulnerable region to climatic changes. The present research aims to investigate the hydrographical response to Northerly wind in the northeastern Tyrrhenian coast, to identify the relations between upwelling events and teleconnection patterns. In the Tyrrhenian basin northerly winds flow between North-East and North-West and could be considered upwelling favorable winds. This atmospheric circulation can causes a divergent flow near the coast that generates a subsurface water flows inshore toward the coast up to the surface layer that is upwelling. This phenomenon strongly influence the marine ecosystems, contributing to the supply of nutrients and affecting the primary producers. In this context multi-platform observing system is an important tool to follow the evolution of these phenomena. Sea temperature and wind field acquired by the C-CEMS Observing system were used to identify upwelling phenomena between 2012 and 2016, in the coastal area of Civitavecchia, Northern Tyrrhenian sea, Italy. Moreover a thirty years' wind-driven upwelling conditions have been studied in the area. ERA-Interim (ECMWF) wind data for the period 1982-2012 have been used to compute the distribution of upwelling favorable wind events. These have been compared to "Copernicus Marine Environment Monitoring Service" Sea Surface Temperature (SST) to compute upwelling events. Upwelling favorable wind has been defined in the sector between Northwest and Northeast (Wd >330°N & Wd < 30°N). Wind speed has been divided into three classes: between 4 m/s and 6 m/s, between 6 m/s and 8 m/s and greater than 8 m/s. Sea Surface Temperature have been analyzed to define SST field for wind-driven coastal upwelling assessment. SST minima along the coast was used to identify upwelling from satellite imagery. The two datasets were

  4. Coastal upwelling linked to toxic Pseudo-nitzschia australis blooms in Los Angeles coastal waters, 2005-2007

    KAUST Repository

    Schnetzer, Astrid

    2013-06-10

    Harmful algal blooms dominated by the diatom Pseudo-nitzschia spp. have become a perennial but variable event within surface waters near the greater Los Angeles area. Toxic blooms during spring seasons from 2005 to 2007 varied strongly in their overall toxicity and duration. Differences in bloom dynamics were linked to differences in storm-induced river discharge following episodic rain events and coastal upwelling, both major coastal processes that led to the injection of nutrients into coastal surface waters. Heavy river runoff during early 2005, a record-rainfall year, favored a phytoplankton community mainly comprised of algal taxa other than Pseudo-nitzschia. The spring bloom during 2005 was associated with low domoic acid surface concentrations and minor contributions of (mainly) P. delicatissima to the diatom assemblage. In contrast, highly toxic P. australis-dominated blooms during spring seasons of 2006 and 2007 were linked to strong upwelling events. River discharge quotas in 2006 and 2007, in contrast to 2005, fell well below annual averages for the region. Surface toxin levels were linked to colder, more saline (i.e. upwelled) water over the 3-year study, but no such consistent relationship between domoic acid levels and other physiochemical parameters, such as macronutrient concentrations or nutrient ratios, was observed. © The Author 2013. Published by Oxford University Press. All rights reserved.

  5. Examining coastal upwellings from a Lagrangian perspective in the Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Delpeche-Ellmann, Nicole; Mingelaitė, Toma; Soomere, Tarmo

    2017-04-01

    This study examines from a Lagrangian perspective the impact that an upwelling event may have on mixing and the Lagrangian transport of surrounding surface waters. To accomplish this we employ in-situ surface drifters (that follow the currents in the uppermost layer with a thickness of 2 m), satellite derived sea surface temperature data (obtained from the MODIS Aqua satellite), and high-quality open sea wind time series. The study area is located near the southern coast of the Gulf of Finland where easterly winds are known to trigger intense coastal upwellings. The properties of mixing were evaluated using the daily rate of temperature change along several transects. Results show that unlike classical upwelling events that normally show cooler water hugging the coastline in a longitudinal direction, this upwelling event instead took the form of transverse jets that protruded as much as 40-45 km from the coastline at distinct locations. Interestingly, the surface drifters show that the presence of the upwelling event superseded classic Ekman-type drift of the surface layer and in effect slowed down the average speed of surface currents in the surrounding waters. It was discovered that intense and long-lasting upwelling events may contain three distinct stages, which was clearly influenced by the wind intensity: During the first stage (strong winds) the cooler water is brought to the surface. The second stage (strong winds) is characterized by the presence of coherent cooler water transverse jets that protrude some distance from the coast at two distinct locations and that lasted 5 days, during this stage very little mixing took place it was mainly the advection of colder water to the open sea. Whilst the third stage encompasses the presence of filaments/squirts and eventually the disintegration of these structures and intense mixing of upwelled and surrounding waters under weaker winds. Thus the upwelled cooler water largely kept its identity during almost the

  6. Distribution of 226Ra Radionuclide in Upwelling Event Off Ulsan, Gampo and Pohang, Korea

    Directory of Open Access Journals (Sweden)

    Muslim

    2009-07-01

    Full Text Available Upwelling is an important event in the sea for it makes the area to become more productive. The objective of this study is to determine the distribution of radium-226 as radiotoxic in the upwelling area in the summer season. Measurements of the horizontal and vertical activities of 226Ra in the Ulsan, Gampo and Pohang waters were conducted in June, August 1999 and June 2000 when the upwelling event was expected to occur. Water temperature, salinity and dissolved oxygen (DO were also measured concurrently. The thermocline layer or the layer where the temperature decreased drastically occurred at a depth between 30 m to 100 m for samples dated June 1999 and 30 m to more than 100 m for samples dated August 1999 and June 2000. The salinity decreased with depth but the DO concentration increased in this layer. The condition affected the vertical distribution of 226Ra in the study area, where the 226Ra activities showed to be relatively homogeneous vertically in each station. This indicates that the upwelling which occurred in the study area was capable to distribute the 226Ra activities from the bottom to the surface. Thus, the 226Ra distribution at that time did not increase with depth, opposite to what usually occurs in the ocean at normal condition. The 226Ra activities also did not decrease after elapsed time of one year, in fact, it increased. However, horizontally the 226Ra activities decreased with increasing distance from the coastal zone. Based on these results, it can be concluded that the upwelling event in the Ulsan, Gampo and Pohang was effective for increasing the 226Ra activities and was capable to create homogeneous 226Ra activities from the bottom to the surface in the water column, and the source of 226Ra was likely to originate from outside area (i.e. coastal zone and bottom area.

  7. Wind-driven coastal upwelling and westward circulation in the Yucatan shelf

    Science.gov (United States)

    Ruiz-Castillo, Eugenio; Gomez-Valdes, Jose; Sheinbaum, Julio; Rioja-Nieto, Rodolfo

    2016-04-01

    The wind-driven circulation and wind-induced coastal upwelling in a large shelf sea with a zonally oriented coast are examined. The Yucatan shelf is located to the north of the Yucatan peninsula in the eastern Gulf of Mexico. This area is a tropical shallow body of water with a smooth sloping bottom and is one of the largest shelves in the world. This study describes the wind-driven circulation and wind-induced coastal upwelling in the Yucatan shelf, which is forced by easterly winds throughout the year. Data obtained from hydrographic surveys, acoustic current profilers and environmental satellites are used in the analysis. Hydrographic data was analyzed and geostrophic currents were calculated in each survey. In addition an analytical model was applied to reproduce the currents. The results of a general circulation model were used with an empirical orthogonal function analysis to study the variability of the currents. The study area is divided in two regions: from the 40 m to the 200 m isobaths (outer shelf) and from the coast to the 40 m isobath (inner shelf). At the outer shelf, observations revealed upwelling events throughout the year, and a westward current with velocities of approximately 0.2 m s-1 was calculated from the numerical model output and hydrographic data. In addition, the theory developed by Pedlosky (2007) for a stratified fluid along a sloping bottom adequately explains the current's primary characteristics. The momentum of the current comes from the wind, and the stratification is an important factor in its dynamics. At the inner shelf, observations and numerical model output show a wind-driven westward current with maximum velocities of 0.20 m s-1. The momentum balance in this region is between local acceleration and friction. A cold-water band is developed during the period of maximum upwelling.

  8. Nutrient supply, surface currents, and plankton dynamics predict zooplankton hotspots in coastal upwelling systems

    Science.gov (United States)

    Messié, Monique; Chavez, Francisco P.

    2017-09-01

    A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.

  9. Coastal upwelling supplies oxygen-depleted water to the Columbia River estuary.

    Directory of Open Access Journals (Sweden)

    G Curtis Roegner

    Full Text Available Low dissolved oxygen (DO is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey or anchor station (temporal survey deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L(-1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality.

  10. Near-surface temperature gradient in a coastal upwelling regime

    Science.gov (United States)

    Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.

    2014-08-01

    In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.

  11. Ecological features of harmful algal blooms in coastal upwelling ...

    African Journals Online (AJOL)

    The mass mortalities that accompany anoxia, common to the Benguela and Peru upwelling systems, may be a trophic control mechanism to maintain biogeochemical balance and regional homeostasis, which are vital to upwelling ecosystem dynamics. Some traditional concepts of phytoplankton ecology may not completely

  12. Modelling shelf-ocean exchange and its biogeochemical consequences in coastal upwelling systems

    DEFF Research Database (Denmark)

    Muchamad, Al Azhar

    The biogeochemical cycles of organic carbon, nutrients, oxygen, and sulfur in the oceans have been suggested to dominantly occur across the shelf–ocean transition over the continental margin, although this zone represents only a small percentage of the global ocean area. Coastal upwelling zones...... in eastern boundary upwelling systems is an example of the most productive ocean waters over continental margins where intense supply of nutrients occur from deeper ocean waters. Interesting questions arise related to the biogeochemical cycles in such upwelling systems; such as 1) how the recently observed...... these questions centering on shelf–ocean exchange and biogeochemical cycle in the coastal upwelling systems under oxic and anoxic conditions. Firstly, I developed a new biogeochemical model which resolves coupling between cycles of the elements nitrogen, oxygen, phosphate, and sulfur by considering several key...

  13. Iron, nutrient and phytoplankton biomass relationships in upwelled waters of the California coastal system

    Science.gov (United States)

    Fitzwater, Steve E.; Johnson, Kenneth S.; Elrod, Virginia A.; Ryan, John P.; Coletti, Luke J.; Tanner, Sara J.; Gordon, R. Michael; Chavez, Francisco P.

    2003-10-01

    We report measurements of dissolvable and particulate iron, particulate Al, nutrients and phytoplankton biomass in surface waters during the termination of one upwelling event and the initiation of a second event in August 2000. These events occurred in the area of the Año Nuevo upwelling center off the coast of central California. The first event was observed after ˜8 days of continuous upwelling favorable winds, while the second event was observed through the onset of upwelling favorable winds to wind reversals ˜3 days later. Coincident with the upwelling signatures of low temperature and high salinity were significantly elevated concentrations of nitrate and silicate with average concentrations greater than 15 and 20 μM, respectively, during both upwelling events. Dissolvable Fe concentrations (TD-Fe) were significantly higher in the second event, 6.5 versus 1.2 nM Fe found in the first event. Nitrate was reduced by ˜5 μM day -1 within this second upwelled plume as compared to a drawdown of ˜2 μM day -1 within the first plume. Silicate was reduced in a ratio of 1.2 mol Si:mol NO 3 in the high Fe waters of the second plume as compared to a ratio of 2.2 in the lower Fe waters of the first plume. The observed differences in nutrient utilization are consistent with some degree of iron limitation. The area of increased dissolvable Fe in the second upwelling event was coincident with elevated particulate Fe concentrations, indicating the particulate pool as a possible source of the observed increase in TD-Fe. The elevated particulate Fe in surface waters was a result of resuspended sediments in the bottom boundary layer (BBL) of the shallow shelf being transported to the surface during upwelling. Particulate (and dissolvable) iron concentrations were significantly reduced as upwelling continued. This was most probably due to a decoupling of the BBL from upwelled source waters as the upwelling front moved offshore and/or reduced turbulence in the BBL as

  14. Coastal upwelling off Peru and Mauritania inferred from helium isotope disequilibrium

    Science.gov (United States)

    Steinfeldt, R.; Sültenfuß, J.; Dengler, M.; Fischer, T.; Rhein, M.

    2015-07-01

    Oceanic upwelling velocities are too small to be measured directly. The surface disequilibrium of the 3He/4He ratio provides an indirect method to infer vertical velocities at the base of the mixed layer. Samples of helium isotopes were taken from two coastal upwelling regions, off Peru on cruise M91, and off Mauritania on 3 cruises. The helium-3 flux into the mixed layer also depends on the diapycnal mixing. Direct observations of the vertical diffusivity have been performed on all 4 cruises and are also used in this study. The resulting upwelling velocities in the coastal regions vary between 1.1 × 10-5 and 2.8 × 10-5 m s-1 for all cruises. Vertical velocities off the equator can also be inferred from the divergence of the wind driven Ekman transport. In the coastal regimes, the agreement between wind and helium derived upwelling is fairly good at least for the mean values. Further offshore, the helium derived upwelling still reaches 1 × 10-5 m s-1, whereas the wind driven upwelling from Ekman suction is smaller by at least one order of magnitude. One reason for this difference might be eddy induced upwelling. Both advective and diffusive nutrient fluxes into the mixed layer are calculated based on the helium derived vertical velocities and the measured vertical diffusivities. The advective part of these fluxes makes up at least 50 % of the total. The nutrient flux into the mixed layer in the coastal upwelling regimes is equivalent to a net community production (NCP) of 1.3 g C m2 d-1 off Peru and 1.6-1.9 g C m2 d-1 off Mauritania.

  15. Evidence of upwelling events at the northern Patagonian shelf break

    Science.gov (United States)

    Valla, Daniel; Piola, Alberto R.

    2015-11-01

    The Patagonian shelf break marks a transition between relative warm-fresh shelf waters and relative cold-salty Subantarctic Water advected northward by the Malvinas Current. From early spring to late autumn, the outer shelf region is characterized by a band of high chlorophyll concentration that sustains higher trophic levels, including significant fisheries. We analyze time series of current and water mass property observations collected at two moorings deployed at the shelf edge at 41°S and 43.8°S to investigate what mechanisms lead to temperature variability at the shelf break, and their role on the nutrient supply to the upper layer. The in situ data are combined with satellite-derived observations of sea surface temperature and chlorophyll a to analyze a sharp cooling event at the outer shelf that lasted 10 days and extended ˜500 km along the outer shelf. The event is consistent with upwelling of cold waters through the base of the mixed layer. The vertical velocity required to explain the observed cooling is 13-29 m d-1. Satellite-derived sea surface temperature reveals additional cooling events of similar characteristics. Seventy-five percent of these events are concurrent with surface chlorophyll increase over a 5 day period suggesting that cooling events observed at the shelf break are associated with nutrient fluxes that promote the growth of phytoplankton.

  16. Four large coastal upwelling areas are created by eastern boundary ...

    African Journals Online (AJOL)

    spamer

    1991, Christensen and Pauly 1993, Jarre-Teichmann 1998). Such trophic flow models were developed for four ecosystems in upwelling areas, namely off northern and central. Peru in the Humboldt Current (4–14°S), off California and Oregon in the California Current (28–42°N), south of Cape Blanc in the Canary Current.

  17. Offshore expansion of the Brazilian coastal upwelling zones during Marine Isotope Stage 5

    Science.gov (United States)

    Lessa, Douglas V. O.; Santos, Thiago P.; Venancio, Igor M.; Albuquerque, Ana Luiza S.

    2017-11-01

    Paleoceanographic reconstructions in upwelling regions can provide relevant information about changes in primary productivity, ocean-atmosphere interactions and the carbon budget. Here, we assessed new data on planktonic foraminifera from a sediment core located near to coastal upwelling zones along the Brazilian coast. Our new data was combined with previous records to reveal the state of upwelling systems along the western South Atlantic margin throughout the last two deglacial and interglacial periods sensu lato. Despite the contemporary oligotrophic scenario of the Santos Basin, a remarkably high relative abundance of Globigerina bulloides and low temperatures at a depth of 100 m indicated upwelling conditions similar to current shelf upwelling zones from 130 to 90 kyr BP. Comparing these results with previous studies, we argue that Brazilian shelf upwelling zones expanded offshore between 20 and 28°S. We develop two conceptual scenarios to characterize the system: (1) during Marine Isotopic Stage (MIS 5), the system expanded along the continental margin between 20 and 28°S following the eccentricity maximum; and (2) after 20 kyr BP, the system retracted to current continental shelf zones. We propose a new mechanism whereby variation of the Earth's eccentricity, which drives seasonality, is the main factor controlling expansion or retraction of the Brazilian upwelling system. Absence of such conditions in more recent periods supports our model and indicates that current upwelling zones are the remnants of a larger upwelling system. However, more studies are required to better define the latitudinal boundaries of the Brazilian upwelling system in the past and its possible influences over the regional carbon budget.

  18. Coastal upwelling ecosystems are known to be parts of the most ...

    African Journals Online (AJOL)

    spamer

    Spawning of the Peruvian anchoveta Engraulis ringens ... mixed layer off Peru in winter is taken into account, the speed of surface offshore drift is ..... LITERATURE CITED. BAKUN, A. 1973 — Coastal upwelling indices, west coast of. North America, 1946–71. NOAA tech. Rep. NMFS SSRF-. 671: 103 pp. BAKUN, A. 1978 ...

  19. Separation of a coastal upwelling jet at Cape Blanco, Oregon, USA ...

    African Journals Online (AJOL)

    Current Profiler, satellite sea surface temperature maps and satellite-tracked surface drifters during three cruises: August 1994, May and August 1995. Results demonstrate that the baroclinic coastal upwelling jet (and associated front), which was over the shelf poleward of Cape Blanco in all three cruises, separates from the ...

  20. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean

    Science.gov (United States)

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-01-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d−1 (∼10 nmol l−1 d−1). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (⩽20 m), contain a microbial population that uses a relatively high amount of carbon (0.3–10 nmol l−1 d−1), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04–0.68 nmol l−1 d−1. Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air–sea exchange scientists. PMID:23178665

  1. Microplankton biomass and diversity in the Vietnamese upwelling area during SW monsoon under normal conditions and after an ENSO event

    Science.gov (United States)

    Loick-Wilde, Natalie; Bombar, Deniz; Doan, Hai Nhu; Nguyen, Lam Ngoc; Nguyen-Thi, Anh Mai; Voss, Maren; Dippner, Joachim W.

    2017-04-01

    Investigating microplankton biomass and diversity under different climatological conditions is key to the understanding of cascading effects of climate change on nutrient cycles and biological productivity. Here we have used data collected during two contrasting summers along the coast of Viet Nam to show how climatological-driven changes can have a significant influence on the distribution of microplankton communities and their biomass via its impact on nutrient concentrations in the water column. The first summer in July 2003 followed a weak El-Nino Southern Oscillation (ENSO) event and was characterized by weak coastal upwelling, in the second summer during July 2004, upwelling was normal. Very low silicate (SiO4) concentrations and SiO4:DIN ratios characterized the source water mass for upwelling in July 2004, and dynamic SiO4 to dissolved inorganic nitrogen ratios (SiO4:DIN) mainly below the Redfield-Brzezinski ratio and DIN to phosphate ratios (DIN:PO43-) below the Redfield ratio were a common feature off Viet Nam. Much higher particle concentrations and PSi/PC ratios during normal upwelling revealed major changes in the microplankton community structure among summers. Small dinoflagellates (10-20 μm) prevailed ubiquitously during reduced upwelling. During normal upwelling, the diatom Rhizosolenia sp. dominated the cell-carbon biomass in the silicate poor upwelling waters. Trichodesmium erythraeum dominated in the Mekong-influenced and nutrient depleted offshore waters, where it co-occurred with Rhizosolenia sp. Both species were directly associated with the much higher primary production (PP) and N2 fixation rates that were quantified in earlier studies, as well as with much higher diversities at these offshore sites. Along the coast, the correlation between Rhizosolenia sp. and PP rates was less clear and the factors regulating the biomass of Rhizosolenia sp. in the upwelling waters are discussed. The very low silicate concentrations in the source water

  2. Submesoscale structures related to upwelling events in the Gulf of Finland, Baltic Sea (numerical experiments)

    Science.gov (United States)

    Väli, Germo; Zhurbas, Victor; Lips, Urmas; Laanemets, Jaan

    2017-07-01

    The appearance of submesoscale structures in the Gulf of Finland was investigated using model simulations for series of coastal upwelling events in July-September 2006. We applied the Princeton Ocean Model. The horizontal step of the model grid was refined to 0.5, 0.25 and 0.125 nautical miles in the gulf and reached 4 times the resolution in the rest of the Baltic Sea; there were 60 σ-levels in the vertical direction for all simulations. The contribution of salinity to the strength of baroclinic front of upwelling along the northern and southern coasts and thereby to the submesoscale dynamics of the gulf's surface layer was analyzed. Model results with refinement of the grid size to 0.125 nautical miles revealed different forms of submesoscale structures in the gulf's surface layer such as the high Rossby number (Ro) threads (elongated spots of Ro > 1 with typical width and length of 2-3 km and 10-50 km, respectively), cyclonic vortices with Ro > 1 core of 4-6 km diameter, and spiral cyclonic eddies (spirally wrapped high Rossby number threads) of 10-15 km diameter. The high potential vorticity threads presumably formed during the development phase, while the cyclonic vortices and spiral cyclonic eddies during the relaxation phase of upwelling. One of the simulated submesoscale cyclonic eddies, at the beginning with the Ro > 1 core extension as deep as 31-66 m was traced for the period of 33 days. The power spectral density of temperature and velocity fluctuations in the surface layer pointed at some increase of spectral levels and shallowing of spectral slopes towards - 2 on the shorter (submesoscale) wavelengths with the refinement of model grid.

  3. Variability of Phytoplankton Size Structure in Response to Changes in Coastal Upwelling Intensity in the Southwestern East Sea

    Science.gov (United States)

    Shin, Jung-Wook; Park, Jinku; Choi, Jang-Geun; Jo, Young-Heon; Kang, Jae Joong; Joo, HuiTae; Lee, Sang Heon

    2017-12-01

    The aim of this study was to examine the size structure of phytoplankton under varying coastal upwelling intensities and to determine the resulting primary productivity in the southwestern East Sea. Samples of phytoplankton assemblages were collected on five occasions from the Hupo Bank, off the east coast of Korea, during 2012-2013. Because two major surface currents have a large effect on water mass transport in this region, we first performed a Backward Particle Tracking Experiment (BPTE) to determine the coastal sea from which the collected samples originated according to advection time of BPTE particles, following which we used upwelling age (UA) to determine the intensity of coastal upwelling in the region of origin for each sample. Only samples that were affected by coastal upwelling in the region of origin were included in subsequent analyses. We found that as UA increased, there was a decreasing trend in the concentration of picophytoplankton, and increasing trends in the concentration of nanophytoplankton and microphytoplankton. We also examined the relationship between the size structure of phytoplankton and primary productivity in the Ulleung Basin (UB), which has experienced significant variation over the past decade. We found that primary productivity in UB was closely related to the strength of the southerly wind, which is the most important mechanism for coastal upwelling in the southwestern East Sea. Thus, the size structure of phytoplankton is determined by the intensity of coastal upwelling, which is regulated by the southerly wind, and makes an important contribution to primary productivity.

  4. Effects of coastal upwelling on the structure of macrofaunal communities in SE Brazil

    Science.gov (United States)

    Quintana, Cintia O.; Bernardino, Angelo F.; de Moraes, Paula C.; Valdemarsen, Thomas; Sumida, Paulo Y. G.

    2015-03-01

    The effects of coastal upwelling on the structure of macrofaunal communities were investigated in two shallow bays in SE Brazil. Water, sediment and fauna samples were collected at four time-points corresponding to austral summer, fall, winter and spring, respectively. Water column temperature and salinity profiles indicated that upwelling occurred in summer-spring (December and November), but not in fall-winter (April and August). The structure of macrofaunal communities differed consistently between these periods. The sediment content of labile organic matter did not vary as a function of upwelling and could not explain the changes in macrofaunal communities. Rather it appeared that macrofaunal community structure was determined by organic matter quality (i.e. phytoplankton composition), physical disturbance regimes and bottom-water temperature. Physical disturbance caused by S-SE winds, warm water temperatures (up to 26 °C) and resuspension-driven phytoflagellate blooms during non-upwelling were associated to higher density (2511-2525 ind m- 2) and dominance of small opportunistic species such as spionid, paraonid and capitellid polychaetes. In contrast, stable hydrodynamic conditions, diatom blooms and lower water temperatures (down to 18 °C) during upwelling resulted in lower density of macrofauna (796-1387 ind m- 2) and a shift in species composition to relatively large-sized magelonids and carnivorous polychaetes. Therefore, organic matter quality, physical disturbance regimes, and bottom-water temperature were the major factors regulating the life-cycles, composition and density of macrofaunal communities in these less productive subtropical upwelling systems.

  5. Influences of riverine and upwelling waters on the coastal carbonate system off Central Chile and their ocean acidification implications

    Science.gov (United States)

    Vargas, Cristian A.; Contreras, Paulina Y.; Pérez, Claudia A.; Sobarzo, Marcus; Saldías, Gonzalo S.; Salisbury, Joe

    2016-06-01

    A combined data set, combining data from field campaigns and oceanographic cruises, was used to ascertain the influence of both river discharges and upwelling processes, covering spatial and temporal variation in dissolved inorganic carbon (DIC) and aragonite saturation state. This work was conducted in one of the most productive river-influenced upwelling areas in the South Pacific coasts (36°S). Additionally, further work was also conducted to ascertain the contribution of different DIC sources, influencing the dynamics of DIC along the land-ocean range. Six sampling campaigns were conducted across seven stations at the Biobío River basin, covering approximately 200 km. Three research cruises were undertaken simultaneously, covering the adjacent continental shelf, including 12 sampling stations for hydrographic measurements. Additionally, six stations were also sampled for chemical analyses, covering summer, winter, and spring conditions over 2010 and 2011. Our results evidenced that seaward extent of the river plume was more evident during the winter field campaign, when highest riverine DIC fluxes were observed. The carbonate system along the river-ocean continuum was very heterogeneous varying over spatial and temporal scales. High DIC and pCO2 were observed in river areas with larger anthropogenic effects. CO2 supersaturation at the river plume was observed during all campaigns due to the influence of low pH river waters in winter/spring and high-pCO2 upwelling waters in summer. δ13CDIC evidenced that main DIC sources along the river and river plume corresponded to the respiration of terrestrial organic matter. We have linked this natural process to the carbonate saturation on the adjacent river-influenced coastal area, suggesting that Ωaragonite undersaturation in surface/subsurface waters is largely modulated by the influence of both river discharge and coastal upwelling events in this productive coastal area. Conditions of low Ωaragonite might impact

  6. The role of wind-forced coastal upwelling on the thermohaline functioning of the North Aegean Sea

    Science.gov (United States)

    Mamoutos, Ioannis; Zervakis, Vassilis; Tragou, Elina; Karydis, Michael; Frangoulis, Constantin; Kolovoyiannis, Vassilis; Georgopoulos, Dimitris; Psarra, Stella

    2017-10-01

    This work examines the impact of coastal upwelling on the exchanges of a semi-enclosed basin with the open sea. Five oceanographic transects were performed with a cross-shore direction relative to the western coast of Lesvos island of the eastern Aegean Sea, a region where coastal upwelling is regularly observed during the summer Etesian northerly winds. Filaments of highly saline water were observed during upwelling incidents, and were attributed to the enhanced transport of Levantine water from the south due to the baroclinic response to upwelling. All our observations, as well as a 9-year hindcast of the phenomenon revealed that the origin of the upwelled isopycnals usually remained above 40 m depth, and never exceeded the depth of 60 m. On the contrary, the isopycnals hosting the nutricline appear to downwell during upwelling incidents. Our hindcast showed that the secondary geostrophic circulation is comprised both by surface and subsurface longshore currents, which affect the meridional exchanges at the surface and intermediate layers and reduce the residence time of the water in the basin. We conclude that coastal upwelling in a region with longshore temperature and salinity gradients can modify the transport of salt and heat along the coast, possibly affecting the thermohaline functioning of a basin.

  7. Combined impact of ocean acidification and corrosive waters in a river-influenced coastal upwelling area off Central Chile

    Science.gov (United States)

    Vargas, C.; De La Hoz, M.; San Martin, V.; Contreras, P.; Navarro, J. M.; Lagos, N. A.; Lardies, M.; Manríquez, P. H.; Torres, R.

    2012-12-01

    Elevated CO2 in the atmosphere promotes a cascade of physical and chemical changes affecting all levels of biological organization, and the evidence from local to global scales has shown that such anthropogenic climate change has triggered significant responses in the Earth's biota. The increased concentration of CO2 is likely to cause a corresponding increase in ocean acidification (OA). In addition, economically valuable shellfish species predominantly inhabit coastal regions both in natural stocks and/or in managed stocks and farming areas. Many coastal ecosystems may experience seawater pCO2 levels significantly higher than expected from equilibrium with the atmosphere, which in this case are strongly linked to biological processes and/or the impact of two important processes; river plumes and coastal upwelling events, which indeed interplay in a very dynamic way on continental shelves, resulting in both source or sink of CO2 to the atmosphere. Coastal ecosystems receive persistent acid inputs as a result of freshwater discharges from river basins into the coastal domain. In this context, since shellfish resources and shellfish aquaculture activities predominantly occur in nearshore areas, it is expected that shellfish species inhabiting river-influenced benthic ecosystems will be exposed persistently to acidic conditions that are suboptimal for its development. In a wider ecological context, little is also known about the potential impacts of acid waters on the performance of larvae and juveniles of almost all the marine species inhabiting this benthic ecosystem in Eastern Southern Pacific Ocean. We present here the main results of a research study aimed to investigate the environmental conditions to which economically valuable calcifiers shellfish species are exposed in a river-influenced continental shelf off Central Chile. By using isotopic measurements in the dissolved inorganic carbon (DIC) pool (d13C-DIC) we showed the effect of the remineralization of

  8. Development of a marsh-based upwelling injection system to treat domestic wastewater from coastal dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Rusch, K.A.; Jones, S.C.

    1999-07-01

    The objective of this study was the design, construction and evaluation of a natural, marsh-based system using a sand/soil bed in a shallow upwelling field to remove fecal coliforms from coastal dwelling wastewater. Wastewater was injected at a 15 foot depth and movement of the wastewater was monitored with wells at 5, 10, and 15 foot depths. Monitoring salinity showed development of an extensive fresh water plume at the 5 foot depth, less at the 10 foot and none at the 15 foot depth; the system effectively reduced the fecal coliform concentrations to <1 colony per 100 mL as the wastewater traveled through the soil.

  9. Modelling of upwelling in the coastal area of Cabo Frio (Rio de Janeiro - Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Carbonel

    1998-01-01

    Full Text Available A 1 1/2 reduced-gravity model is proposed to study the hydrodynamic and thermodynamic features of the coastal upwelling area of Cabo Frio (Rio de Janeiro-Brazil. The vertical structure of the model is described by an active layer overlaying a deep inert layer where the pressure gradient is set to zero. For the upper layer, the model includes the turbulent version of the momentum. continuity and heat equations. The conservation of heat is represented by a transport equation to describe the thermodynamic changes of the sea surface temperature (SST. The solution domain includes open boundaries in which weakly-retlective conditions are prescribed. Solutions are found numerically on a uniform grid and the fundamental equations are approximated by the finite difference method. Numerical experiments are performed to evaluate the dynamic response of the coastal area of Cabo Frio forced by uniform and non-uniform wind fields. The solutions differ considerably depending on the orientation of the winds. East and northeast winds correlate with colder waters in the zonal coastline of this area and the presence of tlows toward Cabo Frio correlates with north wind components. The proposed model is validated with the numerical simulation of an observed event of upwelling, where a time­-dependent and non-uniform wind ficld develops a SST pattern similar as the observations, particularly the extension of the cool water plume in south-west direction and the rapid time variation of the SST.Um modelo de gravidade reduzida de 1 1/2 camada é proposto para estudar as características hidrodinmicas e termodinmicas da área costeira de Cabo Frio (Rio de Janeiro ­Brasil. A estrutura vertical do modelo é descrita por uma camada ativa sobre uma camada profunda sem movimento onde o gradicnte de pressão é zero. Para a camada superior. o modelo incluí a versão turbulenta das equações de momentum, continuidade e calor. A conservação do calor é representada por uma

  10. Discriminating the biophysical impacts of coastal upwelling and mud banks along the southwest coast of India

    Science.gov (United States)

    Karnan, C.; Jyothibabu, R.; Arunpandi, N.; Jagadeesan, L.; Muraleedharan, K. R.; Pratihari, A. K.; Balachandran, K. K.; Naqvi, S. W. A.

    2017-08-01

    Coastal upwelling and mud banks are two oceanographic processes concurrently operating along certain stretches of the southwest (Kerala) coast of India during the Southwest Monsoon period (June-September), facilitating significant enhancement in plankton biomass. Mud banks have scientific and societal attention from time immemorial, predominantly due to the large fisheries associated with them. In this paper, for the first time, the specific biophysical roles of these oceanographic processes have been discriminated, based on a focused 18 weekly/fortnightly time-series study (April to September 2014) in a mud bank-upwelling area (off Alappuzha, southwest coast of India). In conjunction with standard hydrographical and satellite remote sensing data, we utilised a FlowCAM to track the biophysical linkage in terms of plankton composition abundance and size structure at three locations (M1, M2 and M3) in the study area. During the Pre-Southwest Monsoon (April-May), the entire study area was warmer with low nitrate concentration in the surface waters, which caused lower biomass of autotrophs compared to the Southwest Monsoon (June-September). By the onset of the Southwest Monsoon (June), drastic hydrographical transformations took place in the study domain due to the Coastal upwelling, reflected as the surfacing of significantly cool, high nutrient and hypoxic waters. Concurrently, mud bank formed at location M2 due to the presence of relatively high-suspended sediments in the region, creating a localised calm environment conducive for fishing activities. In response to the hydrographical transformations in the entire study area during the Southwest Monsoon, the autotrophic plankton biomass and size structure experienced significant change. The micro-autotrophs biomass that was low during the Pre-Southwest Monsoon (av. 0.33 ± 0.2 mgC L- 1 at surface and av. 0.07 ± 0.04 mgC L- 1 at subsurface) noticeably increased during the Southwest Monsoon (av. 1.6 ± 0.4 mgC L- 1 at

  11. Transport of terrigenous polycyclic aromatic hydrocarbons affected by the coastal upwelling in the northwestern coast of South China Sea.

    Science.gov (United States)

    Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong

    2017-10-01

    Coastal upwelling prevails in the coast of Hainan Island, the northern South China Sea (SCS) during summer. We studied the influences of the upwelling on the horizontal and vertical transport of terrigenous polycyclic aromatic hydrocarbons (PAHs). PAHs in dissolved and suspended particulate phase of water samples were determined in the upper (depth  10 m). PAH levels decreased sharply from inshore to offshore to open sea. The results showed that terrestrial input was the main source of coastal PAHs. Perylene, an important indicator of land plant-derived PAH, showed the significant correlation with PAHs (p sea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Observations of pCO2 in the coastal upwelling off Chile: Spatial and temporal extrapolation using satellite data

    Science.gov (United States)

    Lefèvre, Nathalie; Aiken, Jim; Rutllant, Jose; Daneri, Giovanni; Lavender, Samantha; Smyth, Tim

    2002-06-01

    Atmospheric and oceanic partial pressures of carbon dioxide and fluorescence were measured underway off the coast of northern Chile in January 1997. Seawater samples were taken for the analysis of nutrient and chlorophyll concentrations at 31 stations. The objectives were to improve the understanding of the biologically induced responses of upwelling processes off the coast of Chile and to assess the air-sea exchange of CO2 during the austral summer. The cruise sampled within a grid from 22°40S to 24°S extending offshore to 71°52'W during 10-16 January 1997 (survey 1) and 22-27 January 1997 (survey 2). Survey 1 measurements showed relatively uniform hydrographic and chemical properties, except south of the Mejillones peninsula, where colder and fresher water was observed. During the second survey, concurrent satellite imagery showed colder water in a narrow coastal band. The relatively cold and fresh water recorded there suggested that upwelled water originated mainly from subantarctic water rather than from the nutrient-rich equatorial subsurface water. Onshore-offshore variability dominated over longshore variability. The offshore subtropical water was characterized by a temperature of 23°C, a salinity of 34.9, and relatively uniform pCO2 around 400 μatm that was mainly temperature driven. Although strong CO2 drawdowns (pCO2 as low as 200 μatm) were located close to the coast following the upwelling events, overall, the region was a source of CO2 to the atmosphere. A pCO2 algorithm was constructed using the cruise data of sea surface temperature (SST) and salinity (S). Synthetic salinity was calculated from S-SST relationships determined for survey 2 and used with advanced very high resolution radiometer SST to calculate pCO2 over the cruise area, weekly, from January to March. European Centre for Medium-Range Weather Forecasts wind speeds were used to calculate the CO2 flux in the upwelling off Chile (22°S-29°S, 68°W-73°W). The region was a source of

  13. Propagation of Upwelling on Western-Coast Sumatera During MJO Event

    Directory of Open Access Journals (Sweden)

    Yosafat Donni Haryanto

    2018-01-01

    Full Text Available Madden-Julian oscillation (MJO is an atmospheric oscillation due to atmospheric phenomenon that occurs due to the uniformity of solar energy received at the surface of the earth, MJO is a natural occurrence in the sea-atmosphere system. When the MJO is active, in general there will be a disturbance in the upper air which is then followed by an anomaly at sea surface pressure causing the changes in the wind on the surface. The changes in the surface wind affectthe sea surface currents which then cause the occurrence of coastal upwelling downwelling. The upwelling process itself is a process whereby a sea mass is pushed upward along the continent, when the beach is to the left of the wind direction, the ecological transport leads to the mass of water away from the coast. As a result, there is a mass vacuum (divergence in the coastal area. This mass void will be filledby the mass of water from the inner layer that moves to the surface. Indonesian territory itself is passed by MJO in phases 3, 4 and 5, while for Sumatra region is passed by MJO phase 3 and 4. This research aims to identify the propagation of coastal upwelling during MJO on the west coast of Sumatera, therefore the data of geopotential height, surface pressure sea (MSLP, zonal and meridional components and sea surface temperature are used to analyze how the MJO effecton the coastal upwelling occurs in the research area. The analysis was conducted in June, July and August by comparing the atmospheric conditions at the time of strong MJO in phases 3 and 4 with normal viewing of anomaly geopotential height and MSLP and then seeing the anomaly surface wind changes from zonal wind (u and meridional wind (v and changes in SST in Sumatra region. The result shows that there is a change of GH and MSLP when MJO passes the west coast of Sumatra and then follows the change in the value of u and v and SST to identify the upwelling, while the anomaly change negative SST does not occur when MJO is

  14. Thin phytoplankton layer formation at eddies, filaments, and fronts in a coastal upwelling zone

    Science.gov (United States)

    Johnston, T. M. Shaun; Cheriton, Olivia M.; Pennington, J. Timothy; Chavez, Francisco P.

    2009-02-01

    On two cruises in August and September 2003 (hereafter cruises 2 and 3) during wind relaxations and transitions to upwelling conditions, thin layers of phytoplankton were observed in or a few meters below the stratified transition layer at the mixed layer base and in regions of sheared flow on the flanks of eddies, filaments, and fronts near Monterey Bay, California. On an earlier cruise in August (cruise 1), no thin layers were found after a prolonged wind relaxation. Chlorophyll concentrations and shear were both an order of magnitude less than on cruises 2 and 3. Our vertical profiles were made using a fluorometer mounted on a conductivity-temperature-depth package, which was lowered from the ship as slowly as 0.25ms-1 every 10 km on five ˜80-km cross-shore transects. Remotely sensed sea-surface temperature, chlorophyll, and currents are required to understand the temporal and spatial evolution of the circulation and to interpret the quasi-synoptic in situ data. Decorrelation scales are ˜20km from lagged temperature and salinity covariances. Objectively mapped sections of the in situ data indicate the waters containing thin layers were recently upwelled at either the Point Sur or Point Año Nuevo upwelling centers. Spatially limited distributions of phytoplankton at the coastal upwelling centers ( ˜40km alongshore, 20 km cross-shore, and 30 m thick) were transformed into thin layers by current shear and isolated from wind-driven vertical mixing by the stratification maximum of the transition layer. Vertically sheared horizontal currents on the flanks of the eddies, filaments, and fronts horizontally stretched and vertically thinned phytoplankton distributions. These thin, elongated structures were then observed as thin layers of phytoplankton in vertical fluorescence profiles at four stations on cruise 2 and eight stations on cruise 3. Light winds during relaxations did not mix away these thin layers. On cruise 2, thin layers were found at eddies at the

  15. The effect of changes in surface winds and ocean stratification on coastal upwelling and sea surface temperatures in the Pliocene

    Science.gov (United States)

    Miller, Madeline D.; Tziperman, Eli

    2017-04-01

    Sea surface temperature (SST) in subtropical eastern boundary upwelling zones is shown to be affected by three main factors: large-scale ocean stratification, upwelling-favorable sea surface wind stress, and the surface concentration (baroclinicity) of the alongshore pressure gradient driving the incoming geostrophic flow which balances the Ekman surface outflow. Pliocene-aged SST proxies suggest that some combination of differences in upwelling forcing enable the sea surface temperatures in these zones to increase by up to 11°C. We find that large warming in SST in response to the three factors, of up to about 10°C in addition to a mean Pliocene ocean warming of 2-3°C, is concentrated in the direct upwelling zone. In the location of proxy sea surface temperatures, about 120 km away from the coast, and outside the coastal upwelling zone, the SST response to changes in wind and stratification is weaker, only accounting for up to 3.4°C above the mean Pliocene warming. Increased baroclinicity of the alongshore pressure gradient has a smaller effect, accounting for less than 2°C increases at both the coast and proxy site. The SST seaward (westward) of the upwelling zone is primarily determined by ocean-atmosphere heat exchange and basin-scale ocean forcing, rather than by changes in upwelling. The spatial pattern of SST change with each of the three forcing factors is similar, and therefore, all could contribute to the Pliocene-modern difference in coastal SST.

  16. Variability of temperature and chlorophyll of the Iberian Peninsula near costal ecosystem during an upwelling event for the present climate and a future climate scenario

    Science.gov (United States)

    Lopes, José Fortes; Ferreira, Juan A.; Cardoso, Ana Cristina; Rocha, Alfredo C.

    2014-01-01

    Understanding the importance and the implication of the climate changes on coastal areas may be one of the major issues for this and next centuries. Climate changes may, indeed, impact the nearshore marine ecosystem, as coastal areas are very sensitive to the strength and the variability of the meteorological forcings. The main purpose of this work is to study temperature and phytoplankton distributions along the Portuguese near coastal zone during upwelling events in the present climate conditions and in a future climate scenario. The SRES-A2 IPCC scenario has been considered. We have used a three-dimensional model for coastal and shelf seas, including the following sub-models: hydrodynamical/physical, biological, sediment and contaminant. The forcings are provided by the interactions at the air-sea, considering the wind intensity and direction with the help of the WRF model (Weather Research and Forecast Model) and the coupled atmosphere-ocean model ECHAM5/MPI-OM. Results show that, for the future climate scenario, there is a reinforcement of the southward wind. The responses of the coastal ecosystem corresponds to the reinforcement of both, the southward (up to 10 cm/s) and the westward (up to 6 cm/s) induced upwelling currents. This, in turn generates an enlargement of the near coast upwelled cold layer, extending up to 60 km, as well as the rise of the warm layer temperature (up to 2.0 °C) and the spreading of the phytoplankton offshore. Significant changes in both the Chl-a vertical and the horizontal distribution patterns have been observed, as the nutrient supply to the upper layers depends on the strength of the upwelling, the bottom topography and orography of the coastal. These results confirm that changes in the strength and eventually the frequency of the upwelling favourable wind impact the phytoplankton distribution, which can have significant effect in the distribution and population of the upper level of the trophic chain of the coastal ecosystem.

  17. Observed impact of upwelling events on water properties and biological activity off the southwest coast of New Caledonia.

    Science.gov (United States)

    Ganachaud, Alexandre; Vega, Andrés; Rodier, Martine; Dupouy, Cécile; Maes, Christophe; Marchesiello, Patrick; Eldin, Gerard; Ridgway, Ken; Le Borgne, Robert

    2010-01-01

    The upwelling events that follow strong trade wind episodes have been described in terms of their remarkable signature in the sea surface temperature southwest off New Caledonia. Upwelling brings deeper, and colder waters to the surface, causing 2-4 degrees C drops in temperature in a few hours, followed by a slower relaxation over several days. Upwelling may sporadically bring nutrients to the surface under certain conditions, and increase the biological productivity. Two multidisciplinary hydrographic cruises allow the impact of upwelling on the chemical and biological properties of the water to be documented. Both cruises took place in austral summer (December 2004 and December 2005), but the first cruise occurred during a strong upwelling event, while the second cruise occurred in calm conditions. The water properties and planktonic composition show important contrasts, with a strong southeastward current (the "ALIS current of New Caledonia") competing with the upwelling system. Our analysis suggests that, while observed productivities are far less than those of typical upwelling systems, some wind events in New Caledonia may contribute to biological activity. A currentmeter mooring, deployed during the second cruise, documents the ocean response to a changing wind field and the local impact of upwelling on currents and temperatures on the water column. The results are discussed, with the help of climatology, Argo float profiler data, satellite data and of a high-resolution numerical simulation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Arabian Sea upwelling - A comparison between coastal and open ocean regions

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.

    Flux Studies (JGOFS) programme. Analysis of wind measurements indicated active upwelling along the southwest coast of India, which gradually propagates towards north. While the dominant long-shore component of the wind induces upwelling in the south...

  19. Mesoscale advection of Upogebia pusilla larvae through an upwelling filament in the Canaries Coastal Transition Zone (CTZ)

    Science.gov (United States)

    Landeira, José María; Lozano-Soldevilla, Fernando; Barton, Eric Desmond

    2012-12-01

    Larval transport has a strong influence on marine populations and ecosystem function. Traditional hypotheses establish that larvae of coastal species are swept offshore during strong upwelling periods producing low recruitment rates; however, recent studies have demonstrated that this hypothesis is not supported by larval distribution data. The present study examines the influence of upwelling filaments on larval advection and wastage. During August 1993, the transport of Upogebia pusilla was analysed in relation to an offshore filament off Northwest Africa. This mesoscale structure was generated by a trapped, quasi-permanent cyclonic eddy located between the Canary Islands and the African shelf and extended 150 km westward into the oligotrophic open ocean waters. The horizontal distribution depicted by U. pusilla larvae was strongly influenced by the oceanographic features of the Canaries Coastal Transition Zone (CTZ). Specifically, the larvae were closely associated with upwelling front and filament position, showing that these neritic larvae can be advected 10-100s of kilometres offshore through the filament. However, the low larval densities observed in the samples suggest that many larvae might remain close to the coast, thus avoiding seaward transport. This implies that filaments probably do not significantly affect the recruitment success of intertidal invertebrates such us U. pusilla in upwelling systems.

  20. Oceanographical patterns during a summer upwelling-downwelling event in the Northern Galician Rias: Comparison with the whole Ria system (NW of Iberian Peninsula)

    Science.gov (United States)

    Ospina-Alvarez, N.; Prego, R.; Álvarez, I.; deCastro, M.; Álvarez-Ossorio, M. T.; Pazos, Y.; Campos, M. J.; Bernárdez, P.; Garcia-Soto, C.; Gómez-Gesteira, M.; Varela, M.

    2010-07-01

    Summer upwelling and downwelling processes were characterized in the Northern Galician Rias during July and August 2008 by means of sampling carried out onboard R/V Mytilus (CSIC) and R/V Lura (IEO). Thermohaline variables, dissolved oxygen, nutrients, chlorophyll, phytoplankton, ciliates and zooplankton abundances were measured at sections located in the Rias of Viveiro, Barqueiro and Ortigueira and their adjacent shelves. Ekman transport was calculated from QuikSCAT satellite, upwelling intensity estimated with upwelling index from the average daily geostrophic winds, and SST maps obtained from NASA GHRSST satellite. Ekman transport and SST behaviour showed two different patterns: (i) offshore and upwelling favourable conditions on 13-22nd of July; (ii) onshore and downwelling favourable conditions from 23rd July to 19th August. During upwelling, TS diagram showed an intrusion of Eastern North Atlantic Central Water affecting the continental shelf but not the rias. Nutrient salt concentrations increased with depth, reaching their maximum values near the mouth of Ortigueira Ria. During downwelling, coastal water increased its temperature (18.5-19.8 °C) and was retained inside rias; nutrients were nearly depleted, except for the innermost ria (estuarine zone) due to fluvial nutrient inputs. In this inner area, the maximum of chlorophyll- a (Barqueiro Ria) was observed. Low phytoplankton abundances were measured in both cases, even though a short increase in the plankton biomass was observed inside rias during upwelling, while under downwelling a small red tide of Lingulodinium polyedrum was detected. During the upwelling period Northern Rias tend to be mesotrophic systems as revealed by nutrient concentrations, chlorophyll levels and plankton abundances. On the contrary, in similar situations, the Western Rias behaves as eutrophics. In the Northern Galician shelf, the average of upwelling (downwelling) was 1.9±0.8 (2.1±1.0) events yr -1 from May to September

  1. Impact of tropical cyclones on the evolution of the monsoon-driven upwelling system in the coastal waters of the northern South China Sea

    Science.gov (United States)

    Zheng, Binxin; Li, Yunhai; Li, Jiufa; Shu, Fangfang; He, Jia

    2017-12-01

    An upwelling system exists in the coastal waters of the northern South China Sea (NSCS), a region that is frequently affected by tropical cyclones in summer. This study investigates the evolution of the NSCS monsoon-driven upwelling system and the effects of the Talim and Doksuri tropical cyclones on the system using in situ observational data obtained at three mooring stations, one land-based meteorological station, and concurrent satellite remote sensing data for the NSCS coastal waters from May to July 2012. The results show that the occurrence and evolution of the upwelling system were mainly controlled by the Asian southwest monsoon, while the eastward current also made important contributions to the upwelling intensity. A decrease in the bottom water temperature and shifts in the along-shore and cross-shore currents were direct evidence of the establishment, existence, and recovery of this upwelling. Tropical cyclones have significant impacts on hydrodynamics and can thus influence the evolution of the NSCS upwelling system by changing the local wind and current fields. Variations in water level and local current systems impeded the development of upwelling during tropical cyclones Talim and Doksuri in the study area, which have low-frequency fluctuations of approximately 2-10 days. These variations were the results of the coupled interactions between local wind fields, coastal trapped waves, and other factors. The hydrodynamic environment of the marine water (including coastal upwelling system) rapidly recovered to normal sea conditions after each cyclone passed due to the relatively short duration of the impact of a tropical cyclone on the dynamic environment of the waters.

  2. The coastal mosaic of ocean acidification: The influence of upwelling, riverine input, and geography along the US West Coast

    Science.gov (United States)

    Hill, T. M.; Gaylord, B.; Miller, S. H.; Russell, A. D.; Sanford, E.

    2011-12-01

    Ocean acidification shows clear potential to decrease calcification in a wide range of marine organisms. However, many questions remain about the natural temporal and spatial variability of the carbonate system, particularly in coastal systems. To understand the natural variability of the carbonate system in the California Current, we have developed a broad scale coastal transect (47 sites) from the US-Canada border to San Diego. These sites are sampled from the shore, where waters are interacting with rocky intertidal and sandy beach ecosystems. Our "coast wide" transect is sampled twice per year for a suite of water chemistry parameters (T, S, O2, pH, DIC, TA, oxygen isotopes). We observe seasonal differences in water chemistry, for example an overall decrease in pH during upwelling (May) vs. non-upwelling conditions (September). Additionally, the influence of riverine input is very apparent at the coast, with plumes of fresh, high pH, low alkalinity water observed at the San Francisco Bay and Columbia River mouths. We also observed a wide range of pH (7.6-8.6), with the most acidic waters found in the Northern California-Southern Oregon upwelling region (38N-45N). At individual sites along this transect, we are collecting carbonate system data at higher resolution. For example, an oceanographic mooring located 1 km offshore of BML has been monitoring pH and pCO2 on an hourly basis since November 2010. This mooring is coupled with intertidal pH and water chemistry measurements at the shore on Bodega Head. These linked mooring and shore-based investigations allow for direct comparisons of offshore water to intertidal conditions.

  3. Impacts of coastal upwelling off east Vietnam on the regional winds system: An air-sea-land interaction

    Science.gov (United States)

    Zheng, Zhe-Wen; Zheng, Quanan; Kuo, Yi-Chun; Gopalakrishnan, Ganesh; Lee, Chia-Ying; Ho, Chung-Ru; Kuo, Nan-Jung; Huang, Shih-Jen

    2016-12-01

    In this study, we analyze the influence of coastal upwelling off southeast Vietnam (CUEV) on local wind field using numerical simulations based on atmospheric model of Weather Research and Forecasting (WRF). Several scenarios are simulated by forcing identical model configurations with different SST fields. Based on simulation results, the relationship between CUEV and reduction of wind forcing is numerically evidenced. With the influence of a typical cold patch with a temperature drop of 3-5 °C, the local wind speeds can drop to less than 70% of original level. We find that the mechanism of response of the wind reduction to CUEV is enhancement of sea-breeze induced wind modulation. Onshore sea-breeze will enhance, while the contrast between land and sea is even more striking due to the contribution of a distinct coastal upwelling. This implies that air-sea-land interaction dominates the process of local wind system modulation in response to transient CUEV. This result sheds a new light on the air-sea interaction process within the SCS basin.

  4. Microbial diversity of a Brazilian coastal region influenced by an upwelling system and anthropogenic activity.

    Directory of Open Access Journals (Sweden)

    Juliano C Cury

    Full Text Available BACKGROUND: Upwelling systems are characterised by an intense primary biomass production in the surface (warmest water after the outcrop of the bottom (coldest water, which is rich in nutrients. Although it is known that the microbial assemblage plays an important role in the food chain of marine systems and that the upwelling systems that occur in southwest Brazil drive the complex dynamics of the food chain, little is known about the microbial composition present in this region. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a molecular survey based on SSU rRNA gene from the three domains of the phylogenetic tree of life present in a tropical upwelling region (Arraial do Cabo, Rio de Janeiro, Brazil. The aim was to analyse the horizontal and vertical variations of the microbial composition in two geographically close areas influenced by anthropogenic activity (sewage disposal/port activity and upwelling phenomena, respectively. A lower estimated diversity of microorganisms of the three domains of the phylogenetic tree of life was found in the water of the area influenced by anthropogenic activity compared to the area influenced by upwelling phenomena. We observed a heterogenic distribution of the relative abundance of taxonomic groups, especially in the Archaea and Eukarya domains. The bacterial community was dominated by Proteobacteria, Cyanobacteria and Bacteroidetes phyla, whereas the microeukaryotic community was dominated by Metazoa, Fungi, Alveolata and Stramenopile. The estimated archaeal diversity was the lowest of the three domains and was dominated by uncharacterised marine Crenarchaeota that were most closely related to Marine Group I. CONCLUSIONS/SIGNIFICANCE: The variety of conditions and the presence of different microbial assemblages indicated that the area of Arraial do Cabo can be used as a model for detailed studies that contemplate the correlation between pollution-indicating parameters and the depletion of microbial

  5. Role of physical forcings and nutrient availability on the control of satellite-based chlorophyll a concentration in the coastal upwelling area of the Sicilian Channel

    Directory of Open Access Journals (Sweden)

    Bernardo Patti

    2010-08-01

    Full Text Available The northern sector of the Sicilian Channel is an area of favourable upwelling winds, which ought to support primary production. However, the values for primary production are low when compared with other Mediterranean areas and very low compared with the most biologically productive regions of the world’s oceans: California, the Canary Islands, Humboldt and Benguela. The aim of this study was to identify the main factors that limit phytoplankton biomass in the Sicilian Channel and modulate its monthly changes. We compared satellite-based estimates of chlorophyll a concentration in the Strait of Sicily with those observed in the four Eastern Boundary Upwelling Systems mentioned above and in other Mediterranean wind-induced coastal upwelling systems (the Alboran Sea, the Gulf of Lions and the Aegean Sea. Our results show that this low level of chlorophyll is mainly due to the low nutrient level in surface and sub-surface waters, independently of wind-induced upwelling intensity. Further, monthly changes in chlorophyll are mainly driven by the mixing of water column and wind-induced and/or circulation-related upwelling processes. Finally, primary production limitation due to the enhanced stratification processes resulting from the general warming trend of Mediterranean waters is not active over most of the coastal upwelling area off the southern Sicilian coast.

  6. Particle fluxes in the Almeria-Oran Front: control by coastal upwelling and sea surface circulation

    Science.gov (United States)

    Sanchez-Vidal, A.; Calafat, A.; Canals, M.; Fabres, J.

    2004-12-01

    Particle flux data were obtained from one instrumented array moored under the direct influence of the Almeria-Oran Front (AOF) in the Eastern Alboran Sea, Western Mediterranean Sea, within the frame of the "Mediterranean Targeted Project II-MAss Transfer and Ecosystem Response" (MTPII-MATER) EU-funded research project. The mooring line was deployed from July 1997 to May 1998, and was equipped with three sequential sampling sediment trap-current meter pairs at 645, 1170 and 2210 m (30 m above the seafloor). The settling material was analysed to obtain total mass, organic carbon, opal, calcium carbonate and lithogenic fluxes. Qualitative analyses of SST and SeaWiFS images allowed monitoring the location and development of the Western and Eastern Alboran Sea gyres and associated frontal systems to determine their influence on particle fluxes. Particle flux time series obtained at the three depths showed a downward decrease of the time-weighed total mass flux annual means, thus illustrating the role of pelagic particle settling. The total mass flux was dominated by the lithogenic fraction followed by calcium carbonate, opal and organic carbon. The time series at the various depths were rather similar, with two strong synchronous biogenic peaks (up to 98 mg m -2 day -1 of organic carbon and 156 mg m -2 day -1 of opal) recorded in July 1997 and May 1998. Through comparing the fluctuations of the lithogenic and calcium carbonate-rich fluxes with the biogenic flux, we observed that the non-biogenic fluxes remained roughly constant, while the biogenic flux responded strongly to seasonal variations throughout the water column. Overall, the temporal variability of particle fluxes appeared to be linked to the evolution of several tens of kilometres in length sea surface hydrological structures and circulation of the Alboran Sea. Periodic southeastward advective displacements of waters from upwelling events off the southern Spanish coast were observed on SST and SeaWiFS images

  7. Changes of coastal upwelling systems in the Atlantic, Indian and Pacific oceans recorded from alkenone-derived sea surface temperatures and other multiproxy information

    Science.gov (United States)

    El Ouahabi, Anuar; Martrat, Belen; Lopez, Jordi F.; Grimalt, Joan O.

    2014-05-01

    Upwelling regions have received limited attention in paleoceanography, particularly for what concerns their changes at high temporal resolution. Furthermore, they have generally been considered independently. The lack of integrated studies of the evolution of the main coastal upwelling systems has limited the present degree of understanding of the links between global ocean dynamics and intensity and geographic distribution of these highly productive sites. In the present study, an integrated assessment of sea surface temperature (SST) records based on literature available alkenone-data on the upwelling regions of North-West Africa, North-West Arabian Sea, Namibia and Peru encompassing the last 25 kyr is reported. Additionally, in order to consider the complex effects of regional processes literature-available multiproxy data (marine, ice cores and speleothems records; PIG2LIG-4FUTURE database; Geophysical Research Abstracts Vol. 14, EGU2012-13825) has also been used to constrain upwelling features. This approach has allowed the description of high resolution temporal and spatial upwelling patterns and the interdependences between ocean dynamics and upwelling shifts. The spatio-temporal SST-upwelling patterns during the deglaciation-Holocene stage have been discussed. Suitable proxies for the upwelling and advection processes, such as CaCO3, TOC and Opal, Nd and carbon isotopes, respectively have been studied. Temporal snapshots at approximately at 22 ka, 15 ka, 12 ka, 8 ka, and 5 ka BP have been identified. These transitions illustrate flips between contrasting states. Major environmental and climatic changes have been observed before and after this type of transition, e.g. the one at 5 ka BP. These observations provide interesting clues on mechanisms, location of forcings and sustainers. The high temporal resolution records examined provide good constraints on the timing and magnitude of oceanic processes related with upwelling change and therefore an assessment

  8. What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?

    Science.gov (United States)

    Belmadani, Ali; Echevin, Vincent; Codron, Francis; Takahashi, Ken; Junquas, Clémentine

    2014-10-01

    The dynamics of the Peru-Chile upwelling system (PCUS) are primarily driven by alongshore wind stress and curl, like in other eastern boundary upwelling systems. Previous studies have suggested that upwelling-favorable winds would increase under climate change, due to an enhancement of the thermally-driven cross-shore pressure gradient. Using an atmospheric model on a stretched grid with increased horizontal resolution in the PCUS, a dynamical downscaling of climate scenarios from a global coupled general circulation model (CGCM) is performed to investigate the processes leading to sea-surface wind changes. Downscaled winds associated with present climate show reasonably good agreement with climatological observations. Downscaled winds under climate change show a strengthening off central Chile south of 35°S (at 30°S-35°S) in austral summer (winter) and a weakening elsewhere. An alongshore momentum balance shows that the wind slowdown (strengthening) off Peru and northern Chile (off central Chile) is associated with a decrease (an increase) in the alongshore pressure gradient. Whereas the strengthening off Chile is likely due to the poleward displacement and intensification of the South Pacific Anticyclone, the slowdown off Peru may be associated with increased precipitation over the tropics and associated convective anomalies, as suggested by a vorticity budget analysis. On the other hand, an increase in the land-sea temperature difference is not found to drive similar changes in the cross-shore pressure gradient. Results from another atmospheric model with distinct CGCM forcing and climate scenarios suggest that projected wind changes off Peru are sensitive to concurrent changes in sea surface temperature and rainfall.

  9. Can Vertical Migrations of Dinoflagellates Explain Observed Bioluminescence Patterns During an Upwelling Event in Monterey Bay, California?

    Science.gov (United States)

    2012-01-25

    of actual dinoflagellates swimming during the 2003 upwelling event represents a very challenging task and requires knowledge of their initial...Solid vertical lines indicate location of the Ml mooring. profiles derived from the Modular Ocean Data Assimilation System ( MODAS ) [Fox et al, 2002...to avoid strong advection by southward flow along the entrance to the Bay. [28] We want to stress here that the actual dinoflagellates swimming

  10. Acidification mediated by a river plume and coastal upwelling on a fringing reef at the east coast of Hainan Island, Northern South China Sea

    Science.gov (United States)

    Dong, Xu; Huang, Haining; Zheng, Nan; Pan, Aijun; Wang, Sumin; Huo, Cheng; Zhou, Kaiwen; Lin, Hui; Ji, Weidong

    2017-09-01

    We investigated the dynamics of carbonate system which was greatly modulated by a river plume and coastal upwelling in July 2014 and July 2015 at the east coast of Hainan Island where a fringing reef distributes inshore. By using a three end-member mixing model, we semiquantitatively estimated the removal of dissolved inorganic carbon (DIC) mediated by biological production in the river plume and upwelled water to be 13 ± 17 and 15 ± 16 μmol kg-1, respectively. The enhanced organic production was mainly responsible for these DIC consumptions in both two regimes, however, nearly a half of DIC removal was attributed to biocalcification in the plume system while it was negligible in the upwelling system. Furthermore, the modeled results over reefs revealed that river plume and coastal upwelling were two major threats of acidification to coral communities at the east coast of Hainan Island during cruises. In comparison, the biological contribution to acidification was limited for balancing between organic production and biocalcification during July 2014 cruise, whereas the acidification was greatly intensified by organic degradation during July 2015 cruise. It was verified that naturally local acidification (physical and biological processes) played a major role in great pH decreases on a short-term scale, leading to coastal waters more vulnerable to anthropogenic "ocean acidification" (uptake of atmospheric CO2) by reducing buffering capacity of waters. Finally, effects of acidification associated with other local threats on a fringing reef were further depicted with a conceptual model.

  11. Development of coastal upwelling edge detection algorithms associated with harmful algal blooms off the Washington coast using sea surface temperature imagery.

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nathan R.; Woodruff, Dana L.; Trainer, Vera L.

    2005-01-01

    Satellite remote sensing imagery is being used to identify and characterize upwelling conditions on the coast of Washington State, with an emphasis on detecting ocean features associated with harmful algal bloom events. Blooms of phytoplankton, including the domoic acid-producing diatom Pseudo-nitzschia, appear to be associated with a semi-permanent eddy bordering Washington and British Columbia that is observed in satellite imagery during extended upwelling events. Strong upwelling conditions may act as a barrier to movement of these blooms onshore. Using NOAA AVHRR temperature imagery, edge detection algorithms are being developed to define the strength, location and extent of the surface temperature expression of upwelling along the coast of Washington. The edge detection technique uses a simple kernel-based gradient method that compares temperatures of pixels at a user-specified distance. This allows identification of larger features with subtle edges. The resulting maximum-gradient map is then converted to a binary format with a user-specified temperature threshold. Skeletonization and edge-linking algorithms are then employed to develop final map products. The upwelling edge detection maps are being examined in relation to harmful algal bloom events that have occurred along the coast.

  12. Shift in the species composition of the diatom community in the eutrophic Mauritanian coastal upwelling: Results from a multi-year sediment trap experiment (2003-2010)

    Science.gov (United States)

    Romero, Oscar E.; Fischer, Gerhard

    2017-12-01

    A multiannual, continuous sediment trap experiment was conducted at the mooring site CBeu (Cape Blanc eutrophic, ca. 20 °N, ca. 18 °W; trap depth = 1256-1296 m) in the high-productive Mauritanian coastal upwelling. Here we present fluxes and the species-specific composition of the diatom assemblage, and fluxes of biogenic silica (BSi, opal) and total organic carbon (TOC) for the time interval June 2003-Feb 2010. Flux ranges of studied parameters are (i) total diatoms = 1.2 ∗ 108-4.7 ∗ 104 valves m-2 d-1 (average = 5.9 × 106 valves ± 1.4 × 107); (ii) BSi = 296-0.5 mg m-2 d-1 (average = 41.1 ± 53.5 mg m-2 d-1), and (iii) TOC = 97-1 mg m-2 d-1 (average = 20.5 ± 17.8 mg m-2 d-1). Throughout the experiment, the overall good match of total diatom, BSi and TOC fluxes is reasonably consistent and reflects well the temporal occurrence of the main Mauritanian upwelling season. Spring and summer are the most favorable seasons for diatom production and sedimentation: out of the recorded 14 diatom maxima of different magnitude, six occurred in spring and four in summer. The diverse diatom community at site CBeu is composed of four main assemblages: benthic, coastal upwelling, coastal planktonic and open-ocean diatoms, reflecting different productivity conditions and water masses. A striking feature of the temporal variability of the diatom populations is the persistent pattern of seasonal groups' contribution: benthic and coastal upwelling taxa dominated during the main upwelling season in spring, while open-ocean diatoms were more abundant in fall and winter, when the upper water column becomes stratified, upwelling relaxes and productivity decreases. The relative abundance of benthic diatoms strongly increased after 2006, yet their spring-summer contribution remained high until the end of the trap experiment. The occurrence of large populations of benthic diatoms at the hemipelagic CBeu site is interpreted to indicate transport from shallow waters via nepheloid

  13. Export of pre-aged, labile DOM from a central California coastal upwelling system: Insights from D/L amino acids and Δ14C signatures

    Science.gov (United States)

    Walker, B. D.; Shen, Y.; Benner, R. H.; Druffel, E. R. M.

    2014-12-01

    Coastal upwelling zones are among the most productive regions in the world and play a major role in global carbon and nitrogen cycles. Recent research suggests that a substantial fraction of newly fixed organic matter is exported offshore in the form of dissolved organic matter (DOM). However, to date only a few studies have examined DOM composition in the context of production and export from upwelling systems. The ultimate fate and geochemical impact of coastal DOM exported to offshore and mesopelagic ecosystems also remains largely unknown. Between 2007-2009 we conducted a high-resolution biogeochemical time series at the Granite Canyon Marine Pollution Studies Lab in part to evaluate the seasonal production and export of DOM from the Central CA coast. Our previous work demonstrated substantial, albeit disparate, seasonal production of dissolved organic carbon and nitrogen (DOC, DON) - with high DON (and low C:N ratios) produced during upwelling and high DOC produced during summer/fall water column stratification (Walker and McCarthy, 2012). Here we present new total dissolved D/L amino acid (TDAA) and UV-oxidizable DOC radiocarbon (Δ14C) data with the goal of determining the relative sources (heterotrophic vs. autotrophic), bioavailability, microbial processing and 14C-ages of C-rich vs. N-rich DOM exported from this upwelling system. Our results suggest that C-rich DOM produced during water column stratification carries a large microbial signature (i.e. high D/L AA ratios and non-protein AA abundance), whereas N-rich DOM produced during upwelling appears to be fresh, autotrophic DOM (i.e. lowest D/L AA ratios and highest TDAA abundance). DOM Δ14C signatures also did not approximate in situ dissolved inorganic carbon (DIC), and instead were far more negative and highly correlated to water mass density. Together our results indicate a previously unrecognized source of highly labile yet pre-aged DOM potentially impacting offshore and mesopelagic ecosystems.

  14. A numerical investigation of the atmosphere-ocean thermal contrast over the coastal upwelling region of Cabo Frio, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, M. [Departamento de Meteorologia, Universidade Federal de Pelotas, Pelotas RS (Brazil)]. E-mail: marcelo_dourado@ufpel.edu.br; Pereira de Oliveira, A. [Departamento de Ciencias Atmosfericas, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, (Brazil)

    2008-01-15

    An one-dimensional atmospheric second order closure model, coupled to an oceanic mixed layer model, is used to investigate the short term variation of the atmospheric and oceanic boundary layers in the coastal upwelling area of Cabo Frio, Brazil (23 degrees Celsius S, 42 degrees Celsius 08' W). The numerical simulations were carried out to evaluate the impact caused by the thermal contrast between atmosphere and ocean on the vertical extent and other properties of both atmospheric and oceanic boundary layers. The numerical simulations were designed taking as reference the observations carried out during the passage of a cold front that disrupted the upwelling regime in Cabo Frio in July of 1992. The simulations indicated that in 10 hours the mechanical mixing, sustained by a constant background flow of 10 m s-1, increases the atmospheric boundary layer in 214 m when the atmosphere is initially 2 K warmer than the ocean (positive thermal contrast observed during upwelling regime). For an atmosphere initially -2 K colder than the ocean (negative thermal contrast observed during passage of the cold front), the incipient thermal convection intensifies the mechanical mixing increasing the vertical extent of the atmospheric boundary layer in 360 m. The vertical evolution of the atmospheric boundary layer is consistent with the observations carried out in Cabo Frio during upwelling condition. When the upwelling is disrupted, the discrepancy between the simulated and observed atmospheric boundary layer heights in Cabo Frio during July of 1992 increases considerably. During the period of 10 hours, the simulated oceanic mixed layer deepens 2 m and 5.4 m for positive and negative thermal contrasts of 2 K and -2 K, respectively. In the latter case, the larger vertical extent of the oceanic mixed layer is due to the presence of thermal convection in the atmospheric boundary layer, which in turn is associated to the absence of upwelling caused by the passage of cold fronts

  15. Characterization of the structure and cross-shore transport properties of a coastal upwelling filament using three-dimensional finite-size Lyapunov exponents

    Science.gov (United States)

    Bettencourt, João. H.; Rossi, Vincent; Hernández-García, Emilio; Marta-Almeida, Martinho; López, Cristóbal

    2017-09-01

    The three-dimensional structure, dynamics, and dispersion characteristics of a simulated upwelling filament in the Iberian upwelling system are analyzed using Lagrangian tools. We used a realistic regional simulation of the western Iberian shelf which is concomitant with an in situ oceanographic campaign that surveyed the area. We compute 3-D fields of finite-size Lyapunov exponents (FSLE) from 3-D velocity fields and extract the field's ridges to study the spatial distribution and temporal evolution of the Lagrangian Coherent Structures (LCSs) evolving around the filament. We find that the most intense curtain-like LCSs delimit the boundaries of the whole filamentary structure whose general properties match well the observations. The filament interior is characterized by small dispersion of fluid elements. Furthermore, we identify a weak LCS separating the filament into a warmer vein and a colder filament associated with the interaction of a mesoscale eddy with the upwelling front. The cold upwelled water parcels move along the filament conserving their density. The filament itself is characterized by small dispersion of fluid elements in its interior. The comparison of LCSs with potential temperature and salinity gradient fields shows that the outer limits of the filament coincide with regions of large hydrographic gradients, similar to those observed, explaining the isolation of the interior of the filament with the surrounding waters. We conclude that the Lagrangian analysis used in this work is useful in explaining the dynamics of cross-shore exchanges of materials between coastal regions and the open ocean due to mesoscale processes.

  16. Understanding Extreme Spanish Coastal Flood Events

    Science.gov (United States)

    Diez, J. Javier; Esteban, M. Dolores; Silvestre, J. Manuel

    2013-04-01

    The Santa Irene flood event, at the end of October 1982, is one of the most dramatically widely reported flood events in Spain. Its renown is mainly due to the collapse of the Tous dam, but its main message is to be the paradigm of the incidence of the maritime/littoral weather and its temporal sea level rise by storm surge accompanying rain process on the coastal plains inland floods. Looking at damages the presentation analyzes the adapted measures from the point of view of the aims of the FP7 SMARTeST Project related to the Flood Resilience improvement in urban areas through looking for Technologies, Systems and Tools an appropriate "road to de market". The event was due to the meteorological phenomenon known as "gota fría" (cold drop), a relatively frequent and intense rainy phenomenon affecting one or more basins on the Iberian Peninsula, particularly on the Spanish east to southeast inlands and coasts. There are some circumstances that can easily come together to unleash the cold drop there: cold and dry polar air masses coming onto the whole Iberian Peninsula and the north of Africa, high sea water temperatures, and low atmospheric pressure (cyclone) areas in the western Mediterranean basin; these circumstances are quite common during the autumn season there, and, as it happens, in other places around the world (East/Southeast Africa). Their occurrence, however shows a great space-temporal variability (in a similar way to hurricanes, on Caribbean and western North-Atlantic areas, or to typhoons do). As a matter of fact, all of these equivalent though different phenomena may have different magnitude each time. An overview of the very main events since 11th century in the East to Southeast areas in Spain is shown in the presentation, looking for relation with climatic conditions and Climate changes on one hand, and with geomorphologic and geotechnical conditions on the other It also describes the results of a detailed analysis and reflection about this cold

  17. N2O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system

    Science.gov (United States)

    Bourbonnais, Annie; Letscher, Robert T.; Bange, Hermann W.; Échevin, Vincent; Larkum, Jennifer; Mohn, Joachim; Yoshida, Naohiro; Altabet, Mark A.

    2017-04-01

    The ocean is an important source of nitrous oxide (N2O) to the atmosphere, yet the factors controlling N2O production and consumption in oceanic environments are still not understood nor constrained. We measured N2O concentrations and isotopomer ratios, as well as O2, nutrient and biogenic N2 concentrations, and the isotopic compositions of nitrate and nitrite at several coastal stations during two cruises off the Peru coast ( 5-16°S, 75-81°W) in December 2012 and January 2013. N2O concentrations varied from below equilibrium values in the oxygen deficient zone (ODZ) to up to 190 nmol L-1 in surface waters. We used a 3-D-reaction-advection-diffusion model to evaluate the rates and modes of N2O production in oxic waters and rates of N2O consumption versus production by denitrification in the ODZ. Intramolecular site preference in N2O isotopomer was relatively low in surface waters (generally -3 to 14‰) and together with modeling results, confirmed the dominance of nitrifier-denitrification or incomplete denitrifier-denitrification, corresponding to an efflux of up to 0.6 Tg N yr-1 off the Peru coast. Other evidence, e.g., the absence of a relationship between ΔN2O and apparent O2 utilization and significant relationships between nitrate, a substrate during denitrification, and N2O isotopes, suggest that N2O production by incomplete denitrification or nitrifier-denitrification decoupled from aerobic organic matter remineralization are likely pathways for extreme N2O accumulation in newly upwelled surface waters. We observed imbalances between N2O production and consumption in the ODZ, with the modeled proportion of N2O consumption relative to production generally increasing with biogenic N2. However, N2O production appeared to occur even where there was high N loss at the shallowest stations.

  18. The influence of summer upwelling at the western boundary of the Cantabrian coast

    Science.gov (United States)

    Prego, R.; Varela, M.; deCastro, M.; Ospina-Alvarez, N.; Garcia-Soto, C.; Gómez-Gesteira, M.

    2012-02-01

    Recent characterizations of atmospheric conditions favorable to upwelling events in the Western Cantabrian Sea have stressed the need to analyze the significance of the orientation of the coast on the phenomenon of upwelling. Surface-wind fields for the northwestern Galician marine area were provided by the QuikSCAT satellite and an SST map was elaborated using the NASA GHRSST satellite data. A cruise was conducted aboard the RV Lura in June 2009 during northern prevailing winds. Data of thermohaline variables, concentration of dissolved oxygen, dissolved inorganic nitrogen, chlorophyll, dissolved and particulate organic carbon and nitrogen and phytoplankton abundances were obtained. When the upwelling developed west of the Cape Ortegal was strong, the Eastern North Atlantic Central Water mixed with coastal water eastward of the Cape and the upwelled seawater reached the westernmost of the Northern Galician Rias, the Ria of Ortigueira. Incoming seawater was poor in nitrate and chlorophyll concentrations when compared to that of the upwelling events in the Western Galician Rias. The phytoplankton assemblages were typical of summer upwelling blooms in the latter Rias but phytoplankton biomass was lower in the Ria of Ortigueira and the species were indicatives of initial (inner ria under continental influence) and advanced (outer ria under upwelling inputs) stages of phytoplankton succession. The observed process arose when the upwelling edge-zone reaches a change of coastal orientation as may also occur in other upwelling regions.

  19. Extreme sea-level events in coastal regions

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    Simulation, Belur Campus, Bangalore 560 037, India e-mail: uns@cmmacs.ernet.in Extreme sea-level events in coastal regions A recently published report1 by the Intergovernmental Panel on Climate Change (IPCC) has made an assessment... of climate change and WG II, dealing with impacts, vulnera- bility and adaptation. Extreme climate events such as cyclones, floods, heat waves and extreme rainfall, etc. were assessed. In coastal regions, extreme sea-level occur in the form of storm...

  20. Dynamics of oxygen depletion in the nearshore of a coastal embayment of the southern Benguela upwelling system

    CSIR Research Space (South Africa)

    Pitcher, GC

    2014-04-01

    Full Text Available Acquisition of high resolution time series of water column and bottom dissolved oxygen (DO) concentrations inform the dynamics of oxygen depletion in St Helena Bay in the southern Benguela upwelling system at several scales of variability. The bay...

  1. A model-based insight into the coupling of nitrogen and sulfur cycles in a coastal upwelling system

    DEFF Research Database (Denmark)

    Muchamad, Al Azhar; Canfield, Donald Eugene; Fennel, Katja

    2014-01-01

    The biogeochemical cycling in oxygen-minimum zones (OMZs) is dominated by the interactions of microbial nitrogen transformations and, as recently observed in the Chilean upwelling system, also through the energetically less favorable remineralization of sulfate reduction. The latter process is ma...

  2. Short-term variability of surface carbon dioxide and sea-air CO2 fluxes in the shelf waters of the Galician coastal upwelling system

    Directory of Open Access Journals (Sweden)

    Alba Marina Cobo-Viveros

    2013-01-01

    Full Text Available Using data collected during the DYBAGA and ECO cruises, remote sensing chlorophyll-a estimations and the averaged upwelling index of the previous fortnight (Iw’, we studied the variability of the sea surface CO2 fugacity (fCO2 over the Galician continental shelf during three seasonal cycles. Sea surface salinity (SSS distribution controlled fCO2 mainly in spring, while sea surface temperature (SST did so during periods of intense cooling in November and warming in June. The uptake of carbon by photosynthetic activity, which was more intense during spring and autumn, masked the surface increase in the dissolved inorganic carbon concentration during upwelling events, especially during spring. A significant low correlation between fCO2 and Iw’ was found during spring and summer when upwelling events were observed, whereas no relationship was observed during the downwelling period. High fCO2 exceeding atmospheric values was only found during the summer stratification breakdown. Although sea-air CO2 fluxes showed a marked inter-annual variability, surface waters off the Galician coast were net sinks for atmospheric CO2 in every seasonal cycle, showing a lower CO2 uptake (~65% compared to previously published values. Marked inter-annual changes in the sea-air CO2 fluxes seem to be influenced by fresh water inputs on the continental shelf under different meteorological scenarios.

  3. Space Oceanography for the Monitoring of Moroccan Upwelling Dynamic

    Science.gov (United States)

    Atillah, Abderrahman; Orbi, Abdellatif; Hilmi, Karim; Mangin, Antoine

    2005-03-01

    The Moroccan coastal upwelling is a complex physical and biological phenomenon which requires a regular and permanent monitoring to apprehend its dynamic in time and space. In order to meet this need and considering the influence of the upwelling events on the Moroccan marine resources fluctuations, the Royal Center for Remote Sensing (CRTS) in collaboration with the National Institute for Fisheries Research (INRH), has carried out GERMA (Management of Marines Resources) project to develop useful tools and applications to generate routine operational upwelling products for supporting fisheries. The characterizing and the monitoring of the upwelling fluctuations aim at exploiting Sea Surface Temperature (SST), ocean colour data and derived products combined with in situ data. The main objective is to provide users with operational products representing some environmental parameters and likely to help understanding the fish stock fluctuations. Indeed, methodologies and tools were set up to produce a derived upwelling index (CUI) from SST data. This synthetic product based on the thermal difference between Open Ocean and coastal cold water, is particularly adapted to monitor the upwelling phenomenon along Moroccan coast and to characterize the spatial and temporal variation of the cold water ascent, taking into account the local geographical specificities. In addition, another application is developed integrating several geophysical parameters, obtained both from satellites and in situ data, which allow the analysis of this phenomenon. This application permits the time series extraction of each parameter, separated or combined with others parameters, for a selected point along the coast thus allowing easy validation of satellite-derived products and analysis of long time series. The availability of the upwelling geophysical indicators time series supplies important information for the assessment of the upwelling evolution and fluctuations.

  4. Zonation of bacterioplankton communities along aging upwelled water in the northern Benguela upwelling

    Directory of Open Access Journals (Sweden)

    Benjamin eBergen

    2015-06-01

    Full Text Available Upwelling areas are shaped by enhanced primary production in surface waters, accompanied by a well-investigated planktonic succession. Although bacteria play an important role in biogeochemical cycles of upwelling systems, little is known about bacterial community composition and its development during upwelling events. The aim of this study was to investigate the succession of bacterial assemblages in aging upwelled water of the Benguela upwelling from coastal to offshore sites. Water from the upper mixed layer at 12 stations was sampled along two transects from the origin of the upwelling to a distance of 220 km. 16S rRNA gene amplicon sequencing was then used in a bacterial diversity analysis and major bacterial taxa were quantified by catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH. Additionally, bacterial cell numbers and bacterial production were assessed . Community statistical analysis revealed a reproducible zonation along the two transects, with four clusters of significantly different microbial assemblages. Clustering was mainly driven by phytoplankton composition and abundance. Similar to the temporal succession that occurs during phytoplankton blooms in temperate coastal waters, operational taxonomic units (OTUs affiliated with Bacteroidetes and Gammaproteobacteria were dominant during algal blooming whereas Pelagibacterales were highly abundant in regions with low algal abundance. The most dominant heterotrophic OTU (9% of all reads was affiliated with Pelagibacterales and showed a strong negative correlation with phytoplankton. By contrast, the second most abundant heterotrophic OTU (6% of all reads was affiliated with the phylum Verrucomicrobia and correlated positively with phytoplankton. Together with the close relation of bacterial production and phytoplankton abundance, our results showed that bacterial community dynamics is strongly driven by the development and composition of the phytoplankton

  5. Seasonality in autotrophic mesoplankton in a coastal upwelling-mud bank environment along the southwest coast of India and its ecological implications

    Science.gov (United States)

    Karnan, C.; Jyothibabu, R.; Manoj Kumar, T. M.; Balachandran, K. K.; Arunpandi, N.; Jagadeesan, L.

    2017-08-01

    Mesoplankton refers to both autotrophic and heterotrophic plankton with a body size between 200 - 20,000 μm. Here, we applied a FlowCAM to identify the autotrophs present in the mesoplankton size class in a coastal environment along the southwest coast of India (off Alappuzha, Kerala), which is characterized by intense coastal upwelling and mud bank formation during the Southwest Monsoon. 18 time series sampling (weekly/biweekly) sessions were carried out spanning over the Pre-Southwest Monsoon (April) to the Late-Southwest Monsoon (September) period in 2014. The study showed that during the Pre-Southwest Monsoon when nitrate level was relatively low in the study area, the mesoplankton community was entirely contributed by zooplankton, mostly consisting of copepods. During this time, the only autotrophic mesoplankton found in the water column, that too inconsistently, was Trichodesmium erythraeum. However, the entire scenario changed with the onset of the Southwest Monsoon due to hydrographical transformation and nutrient enrichment caused by the coastal upwelling. Especially during the Peak (July) and Late-Southwest Monsoon (August), the mesoplankton composition changed with a significant dominance of larger diatoms such as Fragilaria and Coscinodiscus. The autotrophic mesoplankton abundance was noticeably low during the Pre-Southwest Monsoon (av. 3145 ± 2396 individual m-3 and av. 2045 ± 1907 individual m-3 in M1 and M2, respectively), as compared to the Southwest Monsoon (av. 30436 ± 5983 individual m-3 and av. 32346 ± 11664 individual m-3 in M1 and M2, respectively). Similar was the seasonal trend in the autotrophic mesoplankton biomass, which increased from a low Pre-Southwest Monsoon value (av. 8.45 ± 7.1 mgC m-3and av. 4 ± 3.7 mgC m-3 in M1 and M2, respectively) to a significantly high value during the Southwest Monsoon (av. 117.04 ± 40.2mgC m-3 and av. 136.9 ± 68.1 mgC m-3 in M1 and M2, respectively). The FlowCAM analysis results also showed that

  6. Modeling of Upwelling/Relaxation Events with the Navy Coastal Ocean Model

    Science.gov (United States)

    2007-06-26

    cyclonic with very warm water observed in the northeast number of modifications were made to the physical param- comer of the bay. During the wind...Plots of daily averaged, photosynthetically available comer of each subfigure of Figures 3a and 4a. radiation (PAR) observed at M l and M2 and...1151. Fox, D. N., C. N. Barron, M. R. Carnes , M. Booda, G. Peggion, and J. Van Shulman, I., J. Kindle, S. Derada, S. Anderson, B. Penta, and P. Martin

  7. Metagenomic Analysis of Upwelling-Affected Brazilian Coastal Seawater Reveals Sequence Domains of Type I PKS and Modular NRPS

    Directory of Open Access Journals (Sweden)

    Rafael R. C. Cuadrat

    2015-11-01

    Full Text Available Marine environments harbor a wide range of microorganisms from the three domains of life. These microorganisms have great potential to enable discovery of new enzymes and bioactive compounds for industrial use. However, only ~1% of microorganisms from the environment can currently be identified through cultured isolates, limiting the discovery of new compounds. To overcome this limitation, a metagenomics approach has been widely adopted for biodiversity studies on samples from marine environments. In this study, we screened metagenomes in order to estimate the potential for new natural compound synthesis mediated by diversity in the Polyketide Synthase (PKS and Nonribosomal Peptide Synthetase (NRPS genes. The samples were collected from the Praia dos Anjos (Angel’s Beach surface water—Arraial do Cabo (Rio de Janeiro state, Brazil, an environment affected by upwelling. In order to evaluate the potential for screening natural products in Arraial do Cabo samples, we used KS (keto-synthase and C (condensation domains (from PKS and NRPS, respectively to build Hidden Markov Models (HMM models. From both samples, a total of 84 KS and 46 C novel domain sequences were obtained, showing the potential of this environment for the discovery of new genes of biotechnological interest. These domains were classified by phylogenetic analysis and this was the first study conducted to screen PKS and NRPS genes in an upwelling affected sample

  8. Microplankton biomass and diversity in the Vietnamese upwelling area during SW monsoon under normal conditions and after an ENSO event

    DEFF Research Database (Denmark)

    Loick-Wilde, Natalie; Bombar, Deniz; Doan, Hai Nhu

    2017-01-01

    Investigating microplankton biomass and diversity under different climatological conditions is key to the understanding of cascading effects of climate change on nutrient cycles and biological productivity. Here we have used data collected during two contrasting summers along the coast of Viet Nam...... the Redfield-Brzezinski ratio and DIN to phosphate ratios (DIN:PO4 3−) below the Redfield ratio were a common feature off Viet Nam. Much higher particle concentrations and PSi/PC ratios during normal upwelling revealed major changes in the microplankton community structure among summers. Small dinoflagellates...... clear and the factors regulating the biomass of Rhizosolenia sp. in the upwelling waters are discussed. The very low silicate concentrations in the source water mass for upwelling and the offshore deflection of the Mekong river plume likely triggered the observed ecological differences...

  9. Biogeochemical cycling in the ocean. Part 1: Introduction to the effects of upwelling along the west coast of North America

    Science.gov (United States)

    Howe, John T.

    1986-01-01

    Coastal upwelling is examined as it relates to the cycling of chemical species in coastal waters along the west coast of North America. The temporal and spatial features of upwelling phenomena in the Eastern boundary regions of the North Pacific Ocean are presented and discussed in terms of upwelling episodes. Climate conditions affecting upwelling include: thermal effects, wind-induced shear stress which moves surface layers, and the curl of the wind stress vector which is thought to affect the extent and nature of upwelling and the formation of offshore convergent downwelling fronts. These effects and the interaction of sunlight and upwelled nutrients which result in a biological bloom in surface waters is modeled analytically. The roles of biological and chemical species, including the effects of predation, are discussed in that context, and relevant remote sensing and in situ observations are presented. Climatological, oceanographic, biological, physical, chemical events, and processes that pertain to biogeochemical cycling are presented and described by a set of partial differential equations. Simple preliminary results are obtained and are compared with data. Thus a fairly general framework has been laid where the many facets of biogeochemical cycling in coastal upwelled waters can be examined in their relationship to one another, and to the whole, to whatever level of detail or approximation is warranted or desired.

  10. Influence of Seasonal Food Availability on the Dynamics of Seabird Feeding Flocks at a Coastal Upwelling Area

    Science.gov (United States)

    Anguita, Cristóbal; Simeone, Alejandro

    2015-01-01

    The formation of multi-species feeding flocks (MSFFs) through visual recruitment is considered an important strategy for obtaining food in seabirds and its functionality has been ascribed to enhanced foraging efficiency. Its use has been demonstrated in much of the world's oceans and includes numerous species. However, there is scant information on the temporal stability of the composition and abundance of MSFFs as well as the effect of seasonal food availability on their dynamics. Between July 2006 and September 2014, we conducted monthly at-sea seabird counts at Valparaiso Bay (32°56′ to 33°01′S, 71°36′ to 71°46′W) within the area of influence of the Humboldt Current in central Chile. This area is characterized by a marked seasonality in primary and secondary production associated with upwelling, mainly during austral spring-summer. Based on studies that provide evidence that flocking is most frequent when food is both scarce and patchy, we hypothesized that seabird MSFF attributes (i.e. frequency of occurrence, abundance and composition) will be modified according to the seasonal availability of food. Using generalized linear models (GLMs), our results show that the contrasting seasonality in food availability of the study area (using chlorophyll-a concentration as a proxy) had no significant influence on MSFF attributes, sparsely explaining their variations (P>0.05). Rather than seasonal food availability, the observed pattern for MSFF attributes at Valparaiso Bay suggests a substantial influence of reproductive and migratory (boreal and austral migrants) habits of birds that modulates MSFF dynamics consistently throughout the whole year in this highly variable and patchy environment. We highlight the importance of visual recruitment as a mechanism by which migratory and resident birds interact. This would allow them to reduce resource unpredictability, which in turn has a major impact on structuring seabird’s MSFF dynamics. PMID:26125630

  11. Population parameters and the relationships between environmental factors and abundance of the Acetes americanus shrimp (Dendrobranchiata: Sergestidae near a coastal upwelling region of Brazil

    Directory of Open Access Journals (Sweden)

    Ana Paula Freitas dos Santos

    2015-09-01

    Full Text Available AbstractThe population dynamics of Acetes americanus was investigated, focusing on the sex ratio, individual growth, longevity, recruitment and relationship between abundance and environmental factors in the region of Macaé, strongly influenced by coastal upwelling. Otter trawl net samplings were performed from July 2010 to June 2011 at two points (5 m and 15 m. Nearly 19,500 specimens, predominantly females (77.15%, were captured. Their sizes, larger than that of males, indicated sexual dimorphism. Shrimps at lower latitudes present larger sizes and longer longevity than those from higher latitudes. This difference is probably due to low temperatures and high primary productivity. Though no statistical correlation was found between abundance and environmental factors, the species was more abundant in temperatures closer to 20.0º C and in months with high chlorophyll-a levels. Due to the peculiar characteristics of this region, A. americanusshowed greater differences in size and longevity than individuals sampled in other studies undertaken in the continental shelf of Southeast Brazil.

  12. Response of zooplankton to physical changes in the environment: coastal upwelling along central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Madhupratap, M.; Nair, S.R.S.; Haridas, P.; Padmavati, G.

    auBerhalb cler Kiistengewasser mid Auftriebsgebiete. AuBerdem ist es in einer flacben Oberflachenschichtdichter ala in tieferen Lagen, und eine kurzfristig starke Schwankung in cler Zusammensetzung tritt auf. Muster cler Wanderung uind Verbreitung des... stream_size 43822 stream_content_type text/plain stream_name J_Coast_Res_6_413.pdf.txt stream_source_info J_Coast_Res_6_413.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Journal of Coastal...

  13. Under pressure: Climate change, upwelling and eastern boundary upwelling ecosystems

    Directory of Open Access Journals (Sweden)

    Marisol eGarcía-Reyes

    2015-12-01

    Full Text Available The IPCC AR5 provided an overview of the likely effects of climate change on Eastern Boundary Upwelling Systems (EBUS, stimulating increased interest in research examining the issue. We use these recent studies to develop a new synthesis describing climate change impacts on EBUS. We find that model and observational data suggest coastal upwelling-favorable winds in poleward portions of EBUS have intensified and will continue to do so in the future. Although evidence is weak in data that are presently available, future projections show that this pattern might be driven by changes in the positioning of the oceanic high-pressure systems rather than by deepening of the continental low-pressure systems, as previously proposed. There is low confidence regarding the future effects of climate change on coastal temperatures and biogeochemistry due to uncertainty in the countervailing responses to increasing upwelling and coastal warming, the latter of which could increase thermal stratification and render upwelling less effective in lifting nutrient-rich deep waters into the photic zone. Although predictions of ecosystem responses are uncertain, EBUS experience considerable natural variability and may be inherently resilient. However, multi-trophic level, end-to-end (i.e., winds to whales studies are needed to resolve the resilience of EBUS to climate change, especially their response to long-term trends or extremes that exceed pre-industrial ranges.

  14. Impact of a coastal-trapped wave on the near-coastal circulation of the Peru upwelling system from glider data

    Science.gov (United States)

    Pietri, Alice; Echevin, Vincent; Testor, Pierre; Chaigneau, Alexis; Mortier, Laurent; Grados, Carmen; Albert, Aurélie

    2014-03-01

    Geostrophic alongshore velocity data from a glider repetitive section off the coast of Peru (14°S) are used to study the cross-shore structure and temporal variability of the Peru current system during a 5 week period in April-May 2010. Besides providing substantial information on the surface frontal jet associated with the Peru Coastal Current and the surfacing Peru-Chile Undercurrent that flows poleward trapped on the continental shelf and slope, the glider data reveal the presence of an intense deep equatorward current, which transports up to ˜2.5 Sv. The dynamics of this current are investigated using an eddy-resolving regional model. The variability of the vertically sheared alongshore flow is shown to be related to the passage of a poleward propagating coastal-trapped wave likely of equatorial origin. Solutions from a two-dimensional, linear, coastal wave model suggest that the alongshore current observed vertical structure is associated with the second and third baroclinic modes of the coastal-trapped wave.

  15. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009

    Directory of Open Access Journals (Sweden)

    Andreas Lehmann

    2012-06-01

    Full Text Available A statistical analysis of Baltic Sea upwelling has been carried out to cover, for the first time, the entire sea area for the period 1990-2009. Weekly composite SST maps based on NOAA/AVHRR satellite data were used to evaluate the location and frequency of upwelling. The results obtained were analysed and compared with earlier studies with excellent agreement. Our study enables the most intense upwelling areas in the entire Baltic Sea to be evaluated. According to the analysis of 443 SST maps, the most common upwelling regions are found off the Swedish south and east coasts (frequency 10-25%, the Swedish coast of the Bothnian Bay (16%, the southern tip of Gotland (up to 15%, and the Finnish coast of the Gulf of Finland (up to 15%. Pronounced upwelling also occurs off the Estonian coast and the Baltic east coast (up to 15%, the Polish coast and the west coast of Rügen (10-15%; otherwise the upwelling frequency was between 5 and 10%. Additionally, simulated SST distributions derived from a Baltic Sea numerical model were analysed for the same period. Furthermore, at specific positions close to the coastline, surface winds based on the SMHI meteorological data base were analysed for the same 20-year period. Wind components parallel to the coast were discriminated into favourable and unfavourable winds forcing upwelling. The obtained frequencies of upwelling-favourable winds fit very well the observed upwelling frequencies derived from satellite SST maps. A positive trend of upwelling frequencies along the Swedish east coast and the Finnish coast of the Gulf of Finland was calculated for the period 1990-2009.

  16. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Malik, A; Fernandes, C; Gonsalves, M.J.B.D.; Subina, N.S.; Mamatha, S.S.; Krishna, K.S.; Varik, S.; RituKumari; Gauns, M.; Cejoice, R.P.; Pandey, S.S.; Jineesh, V.K.; Kamaleson, A; Vijayan, V.; Mukherjee, I.; Subramanyan, S.; Nair, S.; Ingole, B.S; LokaBharathi, P.A

    Coastal upwelling is a regular phenomenon occurring along the southwest coast of India during summer monsoon (May–September). We hypothesize that there could be a shift in environmental parameters along with changes in the network of interactions...

  17. On the upwelling dynamics off northwest Africa in 2009-2012

    Science.gov (United States)

    Menna, Milena; Poulain, Pierre-Marie; Faye, Saliou; Diaw, Basirou; Centurioni, Luca; Lazar, Alban; Gaye, Amadou; Sow, Bamol Ali; Dragone, Dominique

    2014-05-01

    Drifter data, satellite maps and time series of SST, upwelling index and ocean surface wind products are used to characterise the North Western Africa upwelling system in the period 2009-2012, with particular focus to the region between Cap Blanc (Mauritania) and Cap Vert (Senegal). This region corresponds to the southern part of the seasonal translation of the Trade winds along the western African coast and the relative upwelling has a marked seasonal periodicity. The upwelling season generally starts in late November and persists until early July north of 20°N, whereas it starts in late December until May in the south; in June the upwelling events south of Cap Blanc disappear and gradually the residual cold water mixes with the warm surface tropical Atlantic water. The most intense upwelling episodes are recorded between February and May and the upwelling index reaches its maximum in April-May (values larger than 1000 m3/s). These episodes usually coincide with maximum intensities of upwelling favourable winds (Trade winds) and are characterised by a mean duration of 5-10 days, SST values lower than 20.2°C and upwelling index larger than 700 m3/s. Cold and nutrient-rich coastal near-surface waters are upwelled and transported offshore (westward) by means of energetic filaments rooted at specific locations along the coasts of Mauritania and Senegal. Four recurrent upwelling filaments (SST lower than 20°C), with an offshore extension between 200 km and 400 km, are observed and characterised. These filaments persist for a few weeks, and they subsequently mix with the surrounding waters. The filament formation is generally associated with the topographic features (capes) of the region. Wind vorticity fields show positive values close to the coast between Cape Vert and Cape Blanc during the upwelling seasons; larger values correspond with the location of the main cold water filaments. Cold water upwelled in the Cap Vert region are transported both westward, toward

  18. Temporal variation and trends of inorganic nutrients in the coastal upwelling of the NW Spain (Atlantic Galician rías)

    Science.gov (United States)

    Doval, M. D.; López, A.; Madriñán, M.

    2016-02-01

    The temporal variability of inorganic nutrients (nitrate, nitrite, ammonium, phosphate and silicate) in five coastal upwelling Galician rías (Ría de Vigo, Ría de Pontevedra, Ría de Arousa, Ría de Muros and Ría de Ares-Betanzos) was assessed by considering biweekly values at 10 oceanographic stations for the decade 2002-2011. The long trends (1993-2011) of biweekly and annual average series for one station (mouth of Ría de Arousa, A0) were compared with decadal trends. A marked seasonal variability in all surface inorganic nutrients was observed. The average of the ten annual cycles (2002-2011) of each variable was calculated in order to obtain the average seasonal cycles. Maximum surface values occurred from the end of October to the end of February (8-24 μmol L- 1 dissolved inorganic nitrogen, 5-22 μmol L- 1 silicate and 0.5-1.8 μmol L- 1 phosphate). Minimum surface values (0.9-3.0 μmol L- 1 dissolved inorganic nitrogen, 0.6-2.5 μmol L- 1 silicate and 0.15-0.6 μmol L- 1 phosphate) detected from the beginning of May to the end of September. The highest nutrient concentrations (> 35%) recorded in the inner stations (V3, P3, A3, M2 and L3), as compared to the outer stations (V5, P4, A0, M5 and L1), indicated a more estuarine behaviour of these areas. Trends of the deseasonalised nutrient data were highly dependent on factors as length of the series, the initial year and the time integration period considered. The results found for these trends should be taken with caution due to the change in the sign of the slopes and the moderate accuracy of the models. Considering the variables whose trends did not change sign, ammonium and silicate showed a slightly positive trend for the biweekly-averaged series in A0 station during the periods 2002-2011 and 1993-2011.

  19. Role of nutrient recycling in upwelling ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T E

    1979-01-01

    The regeneration of nitrogen is an important process that increases the efficiency of the upwelling ecosystem by enlarging their spatial scales. Ammonium regeneration was considered to contribute 42 to 72 percent of phytoplankton nitrogen requirements in the northwest Africa, Peru, and Baja California upwelling systems. Zooplankton are responsible for the largest portion of regenerated nitrogen; however, fish and benthic sediments may be nearly as large. Comparisons of the importance of ammonium regeneration in upwelling areas with coastal and open ocean regions indicate that the percentage contributions are similar. Future nutrient regeneration studies are needed to assess the recycling of benthic sediments, microzooplankton, gelatinous zooplankton, demersal fish, bacterioplankton, and mollusks.

  20. Modeling of the upwelling hydrodynamics in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    Y.G. SAVVIDIS

    2004-06-01

    Full Text Available The special features of the hydrodynamic circulation in the Aegean Sea referring to the development of regional upwelling coastal zones are studied by means of a mathematical model. The modeling effort is focused on the tracing of coastal areas, where upwelling events are frequently observed during the summer meteorological conditions. These areas are characterized by the enrichment of surface waters with nutrients and, consequently, increased fish production. The phenomenon is studied by the use of a two-layer mathematical model comprising the surface heated zone and the rest of the water column. The numerical solution of the model is based on the finite differences method. The wind shear applied over the stratified basin, with predefined density stratification and initial water-layers thickness, and the gravity and Coriolis forces taken into account, constitute the basic external factors for the generation of the hydrodynamic circulation in the area of the Aegean Sea. The calibration and the validation of the model are performed by the comparison of the model output to the data and observations reported in valid scientific sources. The aim of the paper is to demonstrate the significant contribution of numerical models to the better understanding of the hydrodynamics governing the Aegean water circulation as well as the tracing of upwelling zones.

  1. Upwelling and associated hydrography along the west coast of india during southwest monsoon, 1999

    Digital Repository Service at National Institute of Oceanography (India)

    Maheswaran, P.A.; Rajesh, G.; Revichandran, C.; Nair, K.K.C.

    . Signatures of coastal under current were prominent which deepens, as moving towards north. Analysis of hydrographic characteristics reveals the presence of cool upwelled water by May itself. Strong signals of upwelling were observed off Kanyakumari...

  2. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    Science.gov (United States)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  3. Upwelling filaments are cold, typically narrow features in surface ...

    African Journals Online (AJOL)

    spamer

    Where eddies draw recently upwelled water away from the coast, they create a surface temperature structure similar to a squirt. The last conceptual model consisted of a continuous equatorward jet, meandering offshore and onshore. During onshore excursions, the jet entrains coastally upwelled water and creates fila-.

  4. Effects of Seasonal Upwelling on Inorganic and Organic Matter Dynamics in the Water Column of Eastern Pacific Coral Reefs.

    Directory of Open Access Journals (Sweden)

    Ines Stuhldreier

    Full Text Available The Gulf of Papagayo at the northern Pacific coast of Costa Rica experiences pronounced seasonal changes in water parameters caused by wind-driven coastal upwelling. While remote sensing and open water sampling already described the physical nature of this upwelling, the spatial and temporal effects on key parameters and processes in the water column have not been investigated yet, although being highly relevant for coral reef functioning. The present study investigated a range of water parameters on two coral reefs with different exposure to upwelling (Matapalo and Bajo Rojo in a weekly to monthly resolution over one year (May 2013 to April 2014. Based on air temperature, wind speed and water temperature, three time clusters were defined: a May to November 2013 without upwelling, b December 2013 to April 2014 with moderate upwelling, punctuated by c extreme upwelling events in February, March and April 2014. During upwelling peaks, water temperatures decreased by 7°C (Matapalo and 9°C (Bajo Rojo to minima of 20.1 and 15.3°C respectively, while phosphate, ammonia and nitrate concentrations increased 3 to 15-fold to maxima of 1.3 μmol PO43- L-1, 3.0 μmol NH4+ L-1 and 9.7 μmol NO3- L-1. This increased availability of nutrients triggered several successive phytoplankton blooms as indicated by 3- (Matapalo and 6-fold (Bajo Rojo increases in chlorophyll a concentrations. Particulate organic carbon and nitrogen (POC and PON increased by 40 and 70% respectively from February to April 2014. Dissolved organic carbon (DOC increased by 70% in December and stayed elevated for at least 4 months, indicating high organic matter release by primary producers. Such strong cascading effects of upwelling on organic matter dynamics on coral reefs have not been reported previously, although likely impacting many reefs in comparable upwelling systems.

  5. Effects of Seasonal Upwelling on Inorganic and Organic Matter Dynamics in the Water Column of Eastern Pacific Coral Reefs.

    Science.gov (United States)

    Stuhldreier, Ines; Sánchez-Noguera, Celeste; Rixen, Tim; Cortés, Jorge; Morales, Alvaro; Wild, Christian

    2015-01-01

    The Gulf of Papagayo at the northern Pacific coast of Costa Rica experiences pronounced seasonal changes in water parameters caused by wind-driven coastal upwelling. While remote sensing and open water sampling already described the physical nature of this upwelling, the spatial and temporal effects on key parameters and processes in the water column have not been investigated yet, although being highly relevant for coral reef functioning. The present study investigated a range of water parameters on two coral reefs with different exposure to upwelling (Matapalo and Bajo Rojo) in a weekly to monthly resolution over one year (May 2013 to April 2014). Based on air temperature, wind speed and water temperature, three time clusters were defined: a) May to November 2013 without upwelling, b) December 2013 to April 2014 with moderate upwelling, punctuated by c) extreme upwelling events in February, March and April 2014. During upwelling peaks, water temperatures decreased by 7°C (Matapalo) and 9°C (Bajo Rojo) to minima of 20.1 and 15.3°C respectively, while phosphate, ammonia and nitrate concentrations increased 3 to 15-fold to maxima of 1.3 μmol PO43- L-1, 3.0 μmol NH4+ L-1 and 9.7 μmol NO3- L-1. This increased availability of nutrients triggered several successive phytoplankton blooms as indicated by 3- (Matapalo) and 6-fold (Bajo Rojo) increases in chlorophyll a concentrations. Particulate organic carbon and nitrogen (POC and PON) increased by 40 and 70% respectively from February to April 2014. Dissolved organic carbon (DOC) increased by 70% in December and stayed elevated for at least 4 months, indicating high organic matter release by primary producers. Such strong cascading effects of upwelling on organic matter dynamics on coral reefs have not been reported previously, although likely impacting many reefs in comparable upwelling systems.

  6. Relation between Upwelling Intensity and the Variability of Physical and Chemical Parameters in the Southern Benguela Upwelling System

    Directory of Open Access Journals (Sweden)

    Hassan Ebrahiem Ismail

    2015-01-01

    Full Text Available The extent to which wind-driven seasonal upwelling cycles manifest in surface ocean temperature and nutrient variability along a monitoring line in the Southern Benguela upwelling system was investigated. Monitoring conducted monthly over a six-year period shows that surface temperature and nutrient concentrations exhibit very poor seasonality and weak correlation with the upwelling index. This is, despite clear evidence for spatial inshore-offshore gradients in temperature, nutrients, and chlorophyll, consistent with an upwelling regime. The upper ocean temperature gradient shows a much better correspondence to the upwelling index but at the same time demonstrates that surface heating, and not vertical mixing related to upwelling, controls the upper ocean temperature gradient. The results suggest that remote sensing techniques would be inadequate tools to monitor upwelling events in the Southern Benguela. Also, the incidence of phytoplankton blooms is more likely triggered by stratified conditions associated with surface heating than relaxation of upwelling winds.

  7. KwaZulu-Natal coastal erosion events of 2006/2007 and 2011: A predictive tool?

    OpenAIRE

    Alan Smith; Lisa A. Guastella; Andrew A. Mather; Simon C. Bundy; Haigh, Ivan D.

    2013-01-01

    Severe coastal erosion occurred along the KwaZulu-Natal coastline between mid-May and November 2011. Analysis of this erosion event and comparison with previous coastal erosion events in 2006/2007 offered the opportunity to extend the understanding of the time and place of coastal erosion strikes. The swells that drove the erosion hotspots of the 2011 erosion season were relatively low (significant wave heights were between 2 m and 4.5 m) but of long duration. Although swell height was import...

  8. KwaZulu-Natal coastal erosion events of 2006/2007 and 2011: A predictive tool?

    Directory of Open Access Journals (Sweden)

    Alan Smith

    2013-03-01

    Full Text Available Severe coastal erosion occurred along the KwaZulu-Natal coastline between mid-May and November 2011. Analysis of this erosion event and comparison with previous coastal erosion events in 2006/2007 offered the opportunity to extend the understanding of the time and place of coastal erosion strikes. The swells that drove the erosion hotspots of the 2011 erosion season were relatively low (significant wave heights were between 2 m and 4.5 m but of long duration. Although swell height was important, swell-propagation direction and particularly swell duration played a dominant role in driving the 2011 erosion event. Two erosion hotspot types were noted: sandy beaches underlain by shallow bedrock and thick sandy beaches. The former are triggered by high swells (as in March 2007 and austral winter erosion events (such as in 2006, 2007 and 2011. The latter become evident later in the austral winter erosion cycle. Both types were associated with subtidal shore-normal channels seaward of megacusps, themselves linked to megarip current heads. This 2011 coastal erosion event occurred during a year in which the lunar perigee sub-harmonic cycle (a 4.4-year cycle peaked, a pattern which appears to have recurred on the KwaZulu-Natal coast. If this pattern proves true, severe coastal erosion may be expected in 2015. Evidence indicates that coastal erosion is driven by the lunar nodal cycle peak but that adjacent lunar perigee sub-harmonic peaks can also cause severe coastal erosion. Knowing where and when coastal erosion may occur is vital for coastal managers and planners.

  9. NATIONAL COASTAL CONDITION REPORT III

    Science.gov (United States)

    Coastal waers in the US include estuaries, coastal wetlands, coral reefs, ,mangrove and kelp forests, seagrass meadows, and upwelling areas. Critical coastal habitats provide spawning grounds, nurseries, shelter, and food for finfish, shellfish, birds, and other wildlife. The n...

  10. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Natasha L Vokhshoori

    Full Text Available We explored δ(15N compound-specific amino acid isotope data (CSI-AA in filter-feeding intertidal mussels (Mytilus californianus as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15N gradients in the California Upwelling Ecosystem (CUE, determining bulk δ(15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2 = 0.759. In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15N trend is therefore most consistent with a baseline δ(15N gradient, likely due to the mixing of two source waters: low δ(15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC, with (15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15N values of phenylalanine (δ(15NPhe, the best AA proxy for baseline δ(15N values. We hypothesize δ(15N(Phe values in intertidal mussels can approximate annual integrated δ(15N values of coastal phytoplankton primary production. We therefore used δ(15N(Phe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15N values. We propose that δ(15N(Phe isoscapes derived from filter feeders can directly characterize baseline δ(15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  11. Comment on "Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea" by Chen et al.

    Science.gov (United States)

    Dippner, Joachim W.; Bombar, Deniz; Loick-Wilde, Natalie; Voss, Maren; Subramaniam, Ajit

    2013-03-01

    In a recent paper, Chen et al. (2012) showed that the offshore current in front of the Vietnamese upwelling area in the South China Sea (SCS) is caused by an encounter of southward buoyancy-driven coastal current and tidal rectified currents from the southwest. These findings seem not in agreement with in-situ observations. The mechanism for the formation of the offshore current has its origin in the inter-annual variability of atmospheric forcing. El Niño Southern Oscillation events modulate the northern position of Inter-Tropical Convergence Zone and the intensity of both, SW monsoon and upwelling. Strong upwelling influences the spatial distribution of characteristic water masses which results in a blocking of the near coastal northward propagation of the plume of River Mekong and the formation of an offshore current.

  12. Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability.

    Science.gov (United States)

    Jiang, Chengsheng; Shaw, Kristi S; Upperman, Crystal R; Blythe, David; Mitchell, Clifford; Murtugudde, Raghu; Sapkota, Amy R; Sapkota, Amir

    2015-10-01

    Salmonella is a leading cause of acute gastroenteritis worldwide. Patterns of salmonellosis have been linked to weather events. However, there is a dearth of data regarding the association between extreme events and risk of salmonellosis, and how this risk may disproportionately impact coastal communities. We obtained Salmonella case data from the Maryland Foodborne Diseases Active Surveillance Network (2002-2012), and weather data from the National Climatic Data Center (1960-2012). We developed exposure metrics related to extreme temperature and precipitation events using a 30 year baseline (1960-1989) and linked them with county-level salmonellosis data. Data were analyzed using negative binomial Generalized Estimating Equations. We observed a 4.1% increase in salmonellosis risk associated with a 1 unit increase in extreme temperature events (incidence rate ratio (IRR):1.041; 95% confidence interval (CI):1.013-1.069). This increase in risk was more pronounced in coastal versus non-coastal areas (5.1% vs 1.5%). Likewise, we observed a 5.6% increase in salmonellosis risk (IRR:1.056; CI:1.035-1.078) associated with a 1 unit increase in extreme precipitation events, with the impact disproportionately felt in coastal areas (7.1% vs 3.6%). To our knowledge, this is the first empirical evidence showing that extreme temperature/precipitation events-that are expected to be more frequent and intense in coming decades-are disproportionately impacting coastal communities with regard to salmonellosis. Adaptation strategies need to account for this differential burden, particularly in light of ever increasing coastal populations. Copyright © 2015. Published by Elsevier Ltd.

  13. Benthic primary production in an upwelling-influenced coral reef, Colombian Caribbean

    Science.gov (United States)

    Bayraktarov, Elisa; Hauffe, Torsten; Pizarro, Valeria; Wilke, Thomas; Wild, Christian

    2014-01-01

    In Tayrona National Natural Park (Colombian Caribbean), abiotic factors such as light intensity, water temperature, and nutrient availability are subjected to high temporal variability due to seasonal coastal upwelling. These factors are the major drivers controlling coral reef primary production as one of the key ecosystem services. This offers the opportunity to assess the effects of abiotic factors on reef productivity. We therefore quantified primary net (Pn) and gross production (Pg) of the dominant local primary producers (scleractinian corals, macroalgae, algal turfs, crustose coralline algae, and microphytobenthos) at a water current/wave-exposed and-sheltered site in an exemplary bay of Tayrona National Natural Park. A series of short-term incubations was conducted to quantify O2 fluxes of the different primary producers during non-upwelling and the upwelling event 2011/2012, and generalized linear models were used to analyze group-specific O2 production, their contribution to benthic O2 fluxes, and total daily benthic O2 production. At the organism level, scleractinian corals showed highest Pn and Pg rates during non-upwelling (16 and 19 mmol O2 m−2 specimen area h−1), and corals and algal turfs dominated the primary production during upwelling (12 and 19 mmol O2 m−2 specimen area h−1, respectively). At the ecosystem level, corals contributed most to total Pn and Pg during non-upwelling, while during upwelling, corals contributed most to Pn and Pg only at the exposed site and macroalgae at the sheltered site, respectively. Despite the significant spatial and temporal differences in individual productivity of the investigated groups and their different contribution to reef productivity, differences for daily ecosystem productivity were only present for Pg at exposed with higher O2 fluxes during non-upwelling compared to upwelling. Our findings therefore indicate that total benthic primary productivity of local autotrophic reef communities is

  14. Benthic primary production in an upwelling-influenced coral reef, Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Corvin Eidens

    2014-09-01

    Full Text Available In Tayrona National Natural Park (Colombian Caribbean, abiotic factors such as light intensity, water temperature, and nutrient availability are subjected to high temporal variability due to seasonal coastal upwelling. These factors are the major drivers controlling coral reef primary production as one of the key ecosystem services. This offers the opportunity to assess the effects of abiotic factors on reef productivity. We therefore quantified primary net (Pn and gross production (Pg of the dominant local primary producers (scleractinian corals, macroalgae, algal turfs, crustose coralline algae, and microphytobenthos at a water current/wave-exposed and-sheltered site in an exemplary bay of Tayrona National Natural Park. A series of short-term incubations was conducted to quantify O2 fluxes of the different primary producers during non-upwelling and the upwelling event 2011/2012, and generalized linear models were used to analyze group-specific O2 production, their contribution to benthic O2 fluxes, and total daily benthic O2 production. At the organism level, scleractinian corals showed highest Pn and Pg rates during non-upwelling (16 and 19 mmol O2 m−2 specimen area h−1, and corals and algal turfs dominated the primary production during upwelling (12 and 19 mmol O2 m−2 specimen area h−1, respectively. At the ecosystem level, corals contributed most to total Pn and Pg during non-upwelling, while during upwelling, corals contributed most to Pn and Pg only at the exposed site and macroalgae at the sheltered site, respectively. Despite the significant spatial and temporal differences in individual productivity of the investigated groups and their different contribution to reef productivity, differences for daily ecosystem productivity were only present for Pg at exposed with higher O2 fluxes during non-upwelling compared to upwelling. Our findings therefore indicate that total benthic primary productivity of local autotrophic reef

  15. 'Santa Ana' winds and upwelling filaments off Northern Baja California

    Science.gov (United States)

    Trasviña, A.; Ortiz-Figueroa, M.; Herrera, H.; Cosío, M. A.; González, E.

    2003-08-01

    An atmospheric condition known as a 'Santa Ana' wind occurred from 9 to 11 February 2002. Its effect was felt over a large portion of southern California and the northern half of the Baja California Peninsula. Santa Ana winds are dry, strong northwesterly through easterly mountain downslope winds, most common in winter. Satellite data from Quickscat show two large wind jets crossing the mountains of the peninsula and extending 300 km offshore. Data from a coastal station reveal that the event lasted over 52 h with average speeds of 11 m s -1 and gusts of 25 m s -1. The southernmost jet crosses the mountains at the San Matias mountain pass and generates a cold filament off Point Colonet. Satellite imagery shows this feature lasting at least two inertial periods ( Ti=22 h) and extending 100 km offshore during the observation period. Estimates of the stationary Ekman pumping produced vertical speeds of 20 m per day, consistent in time and location with the observed structures. The ocean off Point Colonet is well known for the existence of upwelling episodes. They occur mostly in the spring or early summer when persistent winds blow towards the equator and parallel to the coast. The events described here present a different phenomenon: upwelling filaments induced by short-lived, offshore winter winds.

  16. Anthropogenic organochlorine compounds as potential tracers for regional water masses: A case study of estuarine plume, coastal eddy, wind-driven upwelling and long-range warm current.

    Science.gov (United States)

    Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong

    2017-03-01

    Water masses are the crucial factor driving the terrigenous anthropogenic organochlorine compounds (OCs) migration from the coast to open sea. Therefore, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Northern South China Sea (NSCS), where different types of water masses are generated by the East Asian summer monsoon: Pearl River estuary plume (PREP), Guangdong offshore eddy (GDEC), South China Sea warm current (SCSWC) and wind-driven upwelling current (WDUC). No discrepant distributions of OC concentrations were found in these water masses (p > 0.05). However, compositions and diagnostic ratios of HCHs, DDTs, trans- or cis-chlordane and PCBs could reflect the discrepancies in the input, transport and transformation of OCs caused by the hydrological characteristics of water masses, therefore, this allowing them to serve as potential tracers of regional water masses. In detail, α/γ-HCH and β-HCH percentages could indicate the weathered residue in the GDEC, long-range transport in the SCSWC, rapid photodegradation in the surface WDUC and biodegradation in the deep WDUC, respectively. The predominance of o, p'-DDT and p, p'-DDT could indicate fresh input in the PREP, GDEC and WDUC. DDT/DDTs of ratios erosion in the PREP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Vertical segregation among pathways mediating nitrogen loss (N2 and N2O production) across the oxygen gradient in a coastal upwelling ecosystem

    Science.gov (United States)

    Galán, Alexander; Thamdrup, Bo; Saldías, Gonzalo S.; Farías, Laura

    2017-10-01

    The upwelling system off central Chile (36.5° S) is seasonally subjected to oxygen (O2)-deficient waters, with a strong vertical gradient in O2 (from oxic to anoxic conditions) that spans a few metres (30-50 m interval) over the shelf. This condition inhibits and/or stimulates processes involved in nitrogen (N) removal (e.g. anammox, denitrification, and nitrification). During austral spring (September 2013) and summer (January 2014), the main pathways involved in N loss and its speciation, in the form of N2 and/or N2O, were studied using 15N-tracer incubations, inhibitor assays, and the natural abundance of nitrate isotopes along with hydrographic information. Incubations were developed using water retrieved from the oxycline (25 m depth) and bottom waters (85 m depth) over the continental shelf off Concepción, Chile. Results of 15N-labelled incubations revealed higher N removal activity during the austral summer, with denitrification as the dominant N2-producing pathway, which occurred together with anammox at all times. Interestingly, in both spring and summer maximum potential N removal rates were observed in the oxycline, where a greater availability of oxygen was observed (maximum O2 fluctuation between 270 and 40 µmol L-1) relative to the hypoxic bottom waters ( global warming where intensification and/or expansion of the oceanic OMZs is projected.

  18. Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers

    Science.gov (United States)

    Goslin, Jérôme; Clemmensen, Lars B.

    2017-10-01

    Extreme storm events in the coastal zone are one of the main forcing agents of short-term coastal system behavior. As such, storms represent a major threat to human activities concentrated along the coasts worldwide. In order to better understand the frequency of extreme events like storms, climate science must rely on longer-time records than the century-scale records of instrumental weather data. Proxy records of storm-wave or storm-wind induced activity in coastal barrier systems deposits have been widely used worldwide in recent years to document past storm events during the last millennia. This review provides a detailed state-of-the-art compilation of the proxies available from coastal barrier systems to reconstruct Holocene storm chronologies (paleotempestology). The present paper aims (I) to describe the erosional and depositional processes caused by storm-wave action in barrier and back-barrier systems (i.e. beach ridges, storm scarps and washover deposits), (ii) to understand how storm records can be extracted from barrier and back-barrier sedimentary bodies using stratigraphical, sedimentological, micro-paleontological and geochemical proxies and (iii) to show how to obtain chronological control on past storm events recorded in the sedimentary successions. The challenges that paleotempestology studies still face in the reconstruction of representative and reliable storm-chronologies using these various proxies are discussed, and future research prospects are outlined.

  19. Coccolithophores in the upwelling waters of Portugal: Four years of weekly distribution in Lisbon bay

    Science.gov (United States)

    Silva, A.; Palma, S.; Moita, M. T.

    2008-10-01

    From July 2001 to May 2005, seawater samples were collected once a week at a fixed station in Lisbon bay (38°41'N, 09°24'W) in order to describe the ecological dynamics of the coccolithophore community. The seasonal and interannual distribution patterns of the different species and their relationships with environmental parameters are addressed. The present work aimed to identify potential proxies for different local water bodies and environmental conditions. Throughout the period of study, the upwelling events were weak and progressively more persistent. High sea surface temperatures (SST) were observed earlier in the year; summers and winters were gradually warmer and colder, respectively. Salinity variations reflected the different weather conditions as they are strongly influenced by rainfall and thus by the Tagus river flow. The extended periods of weak upwelling and the overall increase in SST resulted in the development of phytoplankton populations as measured by chlorophyll a. However, the persistence of the upwelling, and thus shorter convergence periods, favoured other phytoplankton groups than coccolithophore populations as these decreased towards the end of the sampling period. The annual structure of the coccolithophore assemblage showed a pronounced and recurrent seasonal variability, mainly related with the intensity and persistence of upwelling. The highest cell densities were recorded from spring to autumn. An overall preference by most species for mature upwelled waters and low turbulent conditions was observed associated with high temperatures and salinities, although the species develop in different windows with mismatching maxima. The coccolithophores observed were capable of withstanding coastal processes such as turbulence and were well adapted to an environment rich in nutrients provided by both continental runoff and upwelling. The consistency of the results enabled local oceanographic tracers to be defined. Emiliania huxleyi and

  20. On the Past, Present, and Future of Eastern Boundary Upwelling Systems

    Science.gov (United States)

    Bograd, S. J.; Black, B.; Garcia-Reyes, M.; Rykaczewski, R. R.; Thompson, S. A.; Turley, B. D.; van der Sleen, P.; Sydeman, W. J.

    2016-12-01

    Coastal upwelling in Eastern Boundary Upwelling Systems (EBUS) drives high productivity and marine biodiversity and supports lucrative commercial fishing operations. Thus there is significant interest in understanding the mechanisms underlying variations in the upwelling process, its drivers, and potential changes relative to global warming. Here we review recent results from a combination of regional and global observations, reanalysis products, and climate model projections that describe variability in coastal upwelling in EBUS. Key findings include: (1) interannual variability in California Current upwelling occurs in two orthogonal seasonal modes: a winter/early spring mode dominated by interannual variability and a summer mode dominated by long-term increasing trend; (2) there is substantial coherence in year-to-year variability between this winter/spring upwelling mode and upper trophic level demographic processes, including fish growth rates (rockfish and salmon) and seabird phenology, breeding success and survival; (3) a meta-analysis of existing literature suggests consistency with the Bakun (1990) hypothesis that rising global greenhouse-gas concentrations would result in upwelling-favorable wind intensification; however, (4) an ensemble of coupled, global ocean-atmosphere models finds limited evidence for intensification of upwelling-favorable winds over the 21st century, although summertime winds near the poleward boundaries of climatalogical upwelling zones are projected to intensify. We will also review a new comparative research program between the California and Benguela Upwelling Systems, including efforts to understand patterns of change and variation between climate, upwelling, fish, and seabirds.

  1. Potential Impacts of Climate Change on Extreme Rainfall Events over Three Coastal Cities in Africa

    Science.gov (United States)

    Abiodun, Babatunde J.; Adegoke, Jimmy; Abatan, Abayomi

    2016-04-01

    This study examines the potential impacts of climate change on the characteristics extreme events over three coastal cities in Africa (Lagos, Cape Town and Cairo), with a focus on widespread extreme events (WERE) over the cities. An ensemble of regional climate model (RCA4) simulations, forced with CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5) models under two climate scenarios (RCP 4.5 and RCP 8.5), were analyzed for the study. All the simulations were obtained from CORDEX (www.cordex.org). In this study, we used 95th percentile of daily rainfall as the threshold of extreme events and the simultaneous occurrence of extreme events over 50 % of the city area as widespread extreme events (WERE). The RCA ensemble gives a realistic simulation of seasonal and intra-seasonal variability of extreme rainfall events over the cities. The model ensemble projects an increase in the intensity and frequency of grid-point extreme rainfall events, but a decrease in the frequency of the WEREs over the cities in the future (2031 - 2065). The magnitudes of the changes are higher for RCP 8.5 than for RCP 4.5. The associated changes in the atmospheric circulations will be discussed at the conference. The result of this study has application in minimizing the vulnerabilities of these coastal cities to climate change impacts.

  2. Investigating extreme event loading on coastal bridges using wireless sensor technology

    Science.gov (United States)

    Gelineau, Douglas A.; Davis, Justin R.; Rice, Jennifer A.

    2017-04-01

    Coastal infrastructure, such as bridges, are susceptible to many forms of coastal hazards: particularly hurricane surge and wave loading. These two forms of loading can cause catastrophic damage to aging highway infrastructure. It is estimated that storm damage costs the United States about $50 Billion per year. In light of this, it is crucial that we understand the damaging forces placed on infrastructure during storm events so that we can develop safer and more resilient coastal structures. This paper presents the ongoing research to enable the efficient collection of extreme event loads acting on both the substructure and superstructure of low clearance, simple span, reinforced concrete bridges. Bridges of this type were commonly constructed during the 1950's and 60's and are particularly susceptible to deck unseating caused by hurricane surge and wave loading. The sensing technology used to capture this data must be ruggedized to survive in an extremely challenging environment, be designed to allow for redundancy in the event of sensors or other network components being lost in the storm, and be relatively low cost to allow for more bridges to be instrumented per storm event. The prototype system described in this paper includes wireless technology, rapid data transmission, and, for the sensors, self-contained power. While this specific application focuses on hurricane hazards, the framework can be extended to include other natural hazards.

  3. NATIONAL COASTAL CONDITION REPORT II

    Science.gov (United States)

    Coastal waters in the US include estuaries, coastalwetlands, coral reefs, mangrove and kep forests, seagrass meadows, and upwelling areas. Critical coastal habitats provide spawning grounds, nurseries, shelter, and food for finfish, shellfish, birds, and other wildlife. the nat...

  4. A Madden-Julian Oscillation event remotely accelerates ocean upwelling to abruptly terminate the 1997/1998 super El Niño

    Science.gov (United States)

    Miyakawa, T.; Yashiro, H.; Suzuki, T.; Tatebe, H.; Satoh, M.

    2017-09-01

    The termination of the superintense 1997/1998 El Niño was extraordinarily abrupt. The May 1998 Madden-Julian Oscillation (MJO), a massive complex of stormy tropical clouds, is among possible contributors to the abrupt termination. Despite having been sensationally proposed 18 years ago, the role of the MJO remained controversial and speculative because of the difficulty of sufficiently simulating the El Niño and MJO simultaneously. An ensemble simulation series using a newly developed, fully ocean-coupled version of a global cloud system resolving numerical model replicated the specific atmosphere and ocean conditions of May 1998 in unprecedented detail, extending the prediction skill of the MJO to 46 days. Simulation ensemble members with stronger MJO activities over the Maritime Continent experienced quicker sea surface temperature drop in the eastern Pacific, confirming that the easterly winds associated with the remote MJO accelerated ocean upwelling to abruptly terminate the El Niño.

  5. Western boundary upwelling dynamics off Oman

    Science.gov (United States)

    Vic, Clément; Capet, Xavier; Roullet, Guillaume; Carton, Xavier

    2017-05-01

    Despite its climatic and ecosystemic significance, the coastal upwelling that takes place off Oman is not well understood. A primitive-equation, regional model forced by climatological wind stress is used to investigate its dynamics and to compare it with the better-known Eastern Boundary Upwellings (EBUs). The solution compares favorably with existing observations, simulating well the seasonal cycles of thermal structure, surface circulation (mean and turbulent), and sea-surface temperature (SST). There is a 1.5-month lag between the maximum of the upwelling-favorable wind-stress-curl forcing and the oceanic response (minima in sea-surface height and SST), which we attribute to onshore-propagating Rossby waves. A southwestward-flowing undercurrent (opposite to the direction of the near-surface flow) is also simulated with a core depth of 1000 m, much deeper than found in EBUs (150-200 m). An EKE budget reveals that, in contrast to EBUs, the upwelling jet is more prone to barotropic than baroclinic instability and the contribution of locally-generated instabilities to EKE is higher by an order of magnitude. Advection and redistribution of EKE by standing mesoscale features also play a significant role in EKE budget.

  6. Machine learning algorithms for meteorological event classification in the coastal area using in-situ data

    Science.gov (United States)

    Sokolov, Anton; Gengembre, Cyril; Dmitriev, Egor; Delbarre, Hervé

    2017-04-01

    The problem is considered of classification of local atmospheric meteorological events in the coastal area such as sea breezes, fogs and storms. The in-situ meteorological data as wind speed and direction, temperature, humidity and turbulence are used as predictors. Local atmospheric events of 2013-2014 were analysed manually to train classification algorithms in the coastal area of English Channel in Dunkirk (France). Then, ultrasonic anemometer data and LIDAR wind profiler data were used as predictors. A few algorithms were applied to determine meteorological events by local data such as a decision tree, the nearest neighbour classifier, a support vector machine. The comparison of classification algorithms was carried out, the most important predictors for each event type were determined. It was shown that in more than 80 percent of the cases machine learning algorithms detect the meteorological class correctly. We expect that this methodology could be applied also to classify events by climatological in-situ data or by modelling data. It allows estimating frequencies of each event in perspective of climate change.

  7. The Lefkada barrier and beachrock system (NW Greece) — Controls on coastal evolution and the significance of extreme wave events

    Science.gov (United States)

    May, Simon Matthias; Vött, Andreas; Brückner, Helmut; Grapmayer, Ralf; Handl, Mathias; Wennrich, Volker

    2012-02-01

    The Lefkada-Preveza coastal zone, NW Greece, is characterised by an active barrier system and related extensive beachrock sequences. Besides the gradual coastal processes of longshore drift and spit evolution, the presence of active tectonics and the occurrence of tsunamis have been documented in previous studies and are part of the coastal geomorphological system. In this paper, we present the results of detailed multi-proxy sedimentological and geomorphological investigations carried out along the northern part of the barrier system and in back-beach positions. Our findings suggest that extreme wave events contributed to coastal and environmental changes and involved temporary breakdown of the barrier system. Sedimentary findings suggest that one generation of event deposits may be related to the 365 AD Crete earthquake and associated tsunami. According to our results, the Lefkada coastal system formed by the interaction of both long-term, gradual and sudden, impulsive littoral geomorphodynamics. Extreme wave events are assumed to have played a significant role in the evolution of the present coastline, acting as recurrent impulsive disturbances of the coastal system. Subsequently, the onset of long-term gradual coastal processes, such as longshore drift, re-established a state of natural coastal balance by re-arranging the coastal sediments.

  8. Impact of upwelling events on the sea water carbonate chemistry and dissolved oxygen concentration in the Gulf of Papagayo (Culebra Bay, Costa Rica: Implications for coral reefs

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2012-04-01

    Full Text Available The Gulf of Papagayo, Pacific coast of Costa Rica, is one of the three seasonal upwelling areas of Mesoamerica. In April 2009, a 29-hour experiment was carried out at the pier of the Marina Papagayo, Culebra Bay. We determined sea surface temperature (SST, dissolved oxygen concentration, salinity, pH, and the partial pressure of CO2 (pCO2. The aragonite saturation state (Ωa as well as the other parameters of the marine carbonate system such as the total dissolved inorganic carbon (DIC and the total alkalinity (TA were calculated based on the measured pH and the pCO2. The entrainment of subsurface waters raised the pCO2 up to 645 µatm. SSTs, dissolved oxygen concentrations decreased form 26.4 to 23.7°C and from 228 to 144 µmol l-1. Ωa dropped down to values of 2.1. Although these changes are assumed to reduce the coral growth, the main reef building coral species within the region (Pocillopora spp. and Pavona clavus reveal growth rates exceeding those measured at other sites in the eastern tropical Pacific. This implies that the negative impact of upwelling on coral growth might be overcompensated by an enhanced energy supply caused by the high density of food and nutrients and more favorable condition for coral growth during the non-upwelling season.El Golfo de Papagayo, costa Pacífica de Costa Rica, es una de las tres regiones de afloramiento estacional de Mesoamérica. Las características físicas y químicas del agua que aflora no habían sido estudiadas. Durante 29 horas en Abril 2009, se estudiaron la temperatura superficial del mar (TSM, la concentración de oxígeno disuelto, salinidad, pH y la presión parcial de CO2 (pCO2, en la Marina Papagayo, Bahía Culebra. Con base en las mediciones de pH y pCO2 se calculó el estado de saturación de la aragonita (Ω y otros parámetros del sistema de carbonatos como lo es el carbono orgánico disuelto (COD y la alcalinidad total (AT. Los resultados indican que el arrastre por convecci

  9. Trends in the number of extreme hot SST days along the Canary Upwelling System due to the influence of upwelling

    Directory of Open Access Journals (Sweden)

    Xurxo Costoya

    2014-07-01

    Full Text Available Trends in the number of extreme hot days (days with SST anomalies higher than the 95% percentile were analyzed along the Canary Upwelling Ecosystem (CUE over the period 1982- 2012 by means of SST data retrieved from NOAA OI1/4 Degree. The analysis will focus on the Atlantic Iberian sector and the Moroccan sub- region where upwelling is seasonal (spring and summer are permanent, respectively. Trends were analyzed both near coast and at the adjacent ocean where the increase in the number of extreme hot days is higher. Changes are clear at annual scale with an increment of 9.8±0.3 (9.7±0.1 days dec-1 near coast and 11.6±0.2 (13.5±0.1 days dec-1 at the ocean in the Atlantic Iberian sector (Moroccan sub-region. The differences between near shore and ocean trends are especially patent for the months under intense upwelling conditions. During that upwelling season the highest differences in the excess of extreme hot days between coastal and ocean locations (Δn(#days dec-1 occur at those regions where coastal upwelling increase is high. Actually, Δn and upwelling trends have shown to be significantly correlated in both areas, R=0.88 (p<0.01 at the Atlantic Iberian sector and R=0.67 (p<0.01 at the Moroccan sub-region.

  10. Seasonal sources of carbon to the Brazilian upwelling system

    Science.gov (United States)

    Coelho-Souza, Sergio A.; Pereira, Gilberto C.; Lopez, Maria S.; Guimaraes, Jean R. D.; Coutinho, Ricardo

    2017-07-01

    Environmental heterogeneity on coastal areas is an outcome of several hydrodynamic forces. Particularly, wind-driven upwelling is usually associated with alternating periods of water mixing and stratification. In addition, the effects of near shore oceanographic conditions may vary with coastline topography and anthropogenic impacts. Herein we evaluated the seasonal differences in the hydrodynamics of the Cabo Frio upwelling system (Brazil) in function of its local bay. Surface and deep water from 5 contrasting coastal areas were sampled 13 times during the spring/summer and in the fall/winter periods to use two-way Analysis of Variance comparing the measured variables in function of season and depth. Northeastern wind was predominant during both seasons but it was more intense during the spring/summer period when water temperature was colder and concentration of nutrients peaked. Southwestern wind was more common during the fall/winter period and was associated with cold fronts that decreased water salinity inner the bay. Consequently, the concentrations of nutrients, chlorophylls, prokaryotic secondary production (PSP) as well as fluorescent and non-fluorescent particles were significantly higher during the upwelling season while the concentration of particulate organic matter (POM) was highest during the non-upwelling season. Respectively, mean nitrate concentration varied from 2.2 to 0.9 μM, ammonium from 2.7 to 1.0 μM, chlorophyll a from 2.4 to 1.4 mg m-3, PSP from 1.8 to 1.0 μgC.L-1 h-1 and POM from 2.6 to 6.4 mg L-1. Contrasting surface and deep waters, mean nitrate concentration ranged from 0.9 to 2.2 μM, POM from 4.2 to 5.2 mg L-1 and PSP from 1.9 to 0.8 μgC.L-1 h-1. Three scenarios were identified: water stratification, upwelling and water homogenization. The first two scenarios were more common outside the bay during the upwelling season. When upwelling was intense, deep water temperature in the bay dropped to less than 20 °C resulting in the

  11. Carbon Cycling in the Coastal Ocean off California

    Science.gov (United States)

    Dugdale, R.; Parker, A.; Marchi, A.; Fuller, J.; Wilkerson, F.; Largier, J.

    2008-12-01

    Wind driven coastal upwelling events along the California coast result in advection of high nutrient and pCO2 to the euphotic zone. Relaxation of the upwelling favorable winds results in rapid uptake of nutrients by the phytoplankton, with accompanying drawdown of pCO2 levels below on a time scale of several days. However, this normal sequence of nutrient uptake and pCO2 drawdown may be disrupted by anthropogenic inputs from coastal cities. The Gulf of the Farallones receives water from San Francisco estuary through the Golden Gate that contains anthropogenic ammonium. Along the Marin coast, from the Golden Gate to Point Reyes, both intensive upwelling with pCO2 up to 1000 ppm, and high ammonium concentrations sufficient to suppress phytoplankton nitrate uptake occur. The ammonium from the San Francisco Bay outflow can be traced along the Marin coast up to the Bodega Bay upwelling center where it influences the pattern of nitrate uptake, driving phytoplankton productivity offshore and delaying the new production process. These results suggest that human activities and the huge increases in nitrogen input to coastal waters may have influenced and may be influencing the way in which coastal regions contribute to the ocean-atmosphere carbon cycle.

  12. Upwelling regions, the most fertile of the seas' habitats, are also ...

    African Journals Online (AJOL)

    spamer

    Two classical views need to be unified in assessing the dynamics of red ... The classical. (narrow) physical view is that coastal upwelling systems are generated by an onshore, wind-induced inflow of deeper, colder, nutrient-rich water, which upwells to maintain the ...... for conditioning is variable, influenced by the degree to.

  13. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014

    Science.gov (United States)

    Wang, Xiaoli; Hou, Xiyong; Wang, Yuandong

    2017-11-01

    Coastal area of China (CAC) is of high ecological vulnerability and extremely sensitive to global climate change. Based on daily precipitation dataset of 156 station records, spatial and temporal variations of extreme precipitation events from 1961 to 2014 in the coastal area of China were investigated using a set of mathematical and statistical methods including trend analysis, R/S analysis, wavelet analysis, Mann-Kendall test, accumulative anomaly analysis and Pettitt test. Results revealed that there was a generally insignificant upward and downward tendency of extreme precipitation events in the southern and northern coastal area, respectively. Persistent of tendency suggested that trends of extreme precipitation events in Huabei, Huanghuai, Jiangnan and Huanan coastal areas would continue but trends in Dongbei and Jianghuai coastal areas would mostly present contrary to the past in the future. Multi-year averages of all extreme precipitation indices except consecutive dry days (CDD) varied largely in the coastal area of China, generally highest in Huanan coastal area and lowest in Huabei coastal area. The primary period of extreme precipitation indices varied from 2- to 7-year in the sub-regions. The abrupt change of extreme precipitation indices occurred mainly in the 1990s and the 1970s in the CAC.

  14. On an upwelling front along the west coast of India during later part of southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Antony, M.K.

    A coastal front, associated with upwelling, is identified from the observed thermal field along the west coast of India during September, 1987. The front, which is seen very clearly upto a depth of about 75 m, has a horizontal gradient...

  15. Medusas (Cnidaria: Hydrozoa de una zona de afloramiento costero, Bahía Culebra, Pacífico, Costa Rica Medusae (Cnidaria: Hydrozoa from a coastal upwelling zone, Culebra Bay, Pacific, Costa Rica

    Directory of Open Access Journals (Sweden)

    Karina Rodríguez-Sáenz

    2012-12-01

    Full Text Available Las hidromedusas tienen un papel importante en redes tróficas marinas debido a sus hábitos alimenticios depredadores. Este es el primer estudio de este grupo del zooplancton gelatinoso en un area de afloramiento costero en América Central. Durante seis meses de 1999, se estudió la abundancia de hidromedusas en cuatro estaciones en Bahía Culebra, Golfo de Papagayo, costa Pacífica de Costa Rica (10º 37’N-85º40’W. Se identificó un total de 53 especies de las que 26 son registros nuevos para Costa Rica, 21 son registros nuevos para América Central y 8 son nuevos registros para el Pacífico Oriental Tropical. Las especies más abundantes durante el estudio (con más de 30% de la abundancia total fueron Liriope tetraphylla, Solmundella bitentaculata y Aglaura hemistoma. Seis especies se presentaron en todos los muestreos, 10 especies se presentaron únicamente durante la época seca y 17 se presentaron únicamente durante la época lluviosa. Se mostraron diferencias significativas entre las épocas lluviosa y seca. La máxima abundancia promedio de hidromedusas (2.1±4.3 ind./m³ fue encontrada durante las fechas que se espera el afloramiento costero, indicado por alta concentración de oxígeno y baja temperatura. La rica composición de especies encontrada en Bahía Culebra puede ser el resultado de varios factores, incluyendo la condición prístina de la bahía, el transporte de especies por la Contra Corriente Nor-Ecuatorial (NECC y los aportes de origen terrestre. Se incluyen ilustraciones de las 15 especies más importantes para facilitar su identificación y promover estudios futuros en la región.The hydromedusae have an important role in marine trophic webs due to their predatory feeding habits. This is the first study of this group of gelatinous marine zooplankton in a coastal upwelling area of Central America. The composition and abundance variability of hydromedusae were studied during six months in 1999 at four stations in

  16. On an upwelling front, propagation of upwelling and vertical velocity in the eastern Arabian sea during monsoon, 1987

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Unnikrishnan, A.S.

    A coastal upwelling front parallel to the coast and identifiable upto a depth of 75 m was observed between 12.5 and 16 degrees N along the eastern Arabian Sea in September, 1987 from closely spaced digital BT data. With a north-south slope...

  17. WRF simulation of downslope wind events in coastal Santa Barbara County

    Science.gov (United States)

    Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Hall, Todd; Gomberg, David; Dumas, John; Jackson, Mark

    2017-07-01

    The National Weather Service (NWS) considers frequent gusty downslope winds, accompanied by rapid warming and decreased relative humidity, among the most significant weather events affecting southern California coastal areas in the vicinity of Santa Barbara (SB). These extreme conditions, commonly known as ;sundowners;, have affected the evolution of all major wildfires that impacted SB in recent years. Sundowners greatly increase fire, aviation and maritime navigation hazards and are thus a priority for regional forecasting. Currently, the NWS employs the Weather Research Forecasting (WRF) model at 2 km resolution to complement forecasts at regional-to-local scales. However, no systematic study has been performed to evaluate the skill of WRF in simulating sundowners. This research presents a case study of an 11-day period in spring 2004 during which sundowner events were observed on multiple nights. We perform sensitivity experiments for WRF using available observations for validation and demonstrate that WRF is skillful in representing the general mesoscale structure of these events, though important shortcomings exist. Furthermore, we discuss the generation and evolution of sundowners during the case study using the best performing configuration, and compare these results to hindcasts for two major SB fires. Unique, but similar, profiles of wind and stability are observed over SB between case studies despite considerable differences in large-scale circulation, indicating that common conditions may exist across all events. These findings aid in understanding the evolution of sundowner events and are potentially valuable for event prediction.

  18. Seasonal patterns of wind-induced upwelling/downwelling in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Andrew Bakun

    2001-09-01

    Full Text Available The historical file of wind observations from maritime weather reports is summarized to identify the characteristic seasonal distributions of wind-induced Ekman upwelling and downwelling in the Mediterranean Sea. Both coastal upwelling/downwelling and wind-stress curl-driven open ocean upwelling/downwelling are treated in a unified description. Vigorous upwelling zones are found in the eastern Aegean Sea, off the west coast of Greece, and in the Gulf of Lyons. The southern coast of the Mediterranean is found to be primarily a downwelling area, although significant coastal upwelling does appear in the Gulf of Sidra during the spring and summer seasons, and along the Algerian coast during summer.

  19. Linking ENSO and heavy rainfall events over coastal British Columbia through a weather pattern classification

    Directory of Open Access Journals (Sweden)

    P. Brigode

    2013-04-01

    Full Text Available Classifications of atmospheric weather patterns (WPs are widely used for the description of the climate of a given region and are employed for many applications, such as weather forecasting, downscaling of global circulation model outputs and reconstruction of past climates. WP classifications were recently used to improve the statistical characterisation of heavy rainfall. In this context, bottom-up approaches, combining spatial distribution of heavy rainfall observations and geopotential height fields have been used to define WP classifications relevant for heavy rainfall statistical analysis. The definition of WPs at the synoptic scale creates an interesting variable which could be used as a link between the global scale of climate signals and the local scale of precipitation station measurements. We introduce here a new WP classification centred on the British Columbia (BC coastal region (Canada and based on a bottom-up approach. Five contrasted WPs composed this classification, four rainy WPs and one non-rainy WP, the anticyclonic pattern. The four rainy WPs are mainly observed in the winter months (October to March, which is the period of heavy precipitation events in coastal BC and is thus consistent with the local climatology. The combination of this WP classification with the seasonal description of rainfall is shown to be useful for splitting observed precipitation series into more homogeneous sub-samples (i.e. sub-samples constituted by days having similar atmospheric circulation patterns and thus identifying, for each station, the synoptic situations that generate the highest hazard in terms of heavy rainfall events. El Niño-Southern Oscillations (ENSO significantly influence the frequency of occurrence of two coastal BC WPs. Within each WP, ENSO seem to influence only the frequency of rainy events and not the magnitudes of heavy rainfall events. Consequently, heavy rainfall estimations do not show significant evolution of heavy

  20. Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin over a four-year period.

    Directory of Open Access Journals (Sweden)

    Tânia Vidal

    Full Text Available From June 2004 to December 2007, samples were weekly collected at a fixed station located at the mouth of Ria de Aveiro (West Iberian Margin. We examined the seasonal and inter-annual fluctuations in composition and community structure of the phytoplankton in relation to the main environmental drivers and assessed the influence of the oceanographic regime, namely changes in frequency and intensity of upwelling events, over the dynamics of the phytoplankton assemblage. The samples were consistently handled and a final subset of 136 OTUs (taxa with relative abundance > 0.01% was subsequently submitted to various multivariate analyses. The phytoplankton assemblage showed significant changes at all temporal scales but with an overriding importance of seasonality over longer- (inter-annual or shorter-term fluctuations (upwelling-related. Sea-surface temperature, salinity and maximum upwelling index were retrieved as the main driver of seasonal change. Seasonal signal was most evident in the fluctuations of chlorophyll a concentration and in the high turnover from the winter to spring phytoplankton assemblage. The seasonal cycle of production and succession was disturbed by upwelling events known to disrupt thermal stratification and induce changes in the phytoplankton assemblage. Our results indicate that both the frequency and intensity of physical forcing were important drivers of such variability, but the outcome in terms of species composition was highly dependent on the available local pool of species and the timing of those events in relation to the seasonal cycle. We conclude that duration, frequency and intensity of upwelling events, which vary seasonally and inter-annually, are paramount for maintaining long-term phytoplankton diversity likely by allowing unstable coexistence and incorporating species turnover at different scales. Our results contribute to the understanding of the complex mechanisms of coastal phytoplankton dynamics in

  1. Morphological response of a large-scale coastal blowout to a strong magnitude transport event

    Science.gov (United States)

    Delgado-Fernandez, Irene; Jackson, Derek; Smith, Alexander; Smyth, Thomas

    2017-04-01

    Large-scale blowouts are fundamental features of many coastal dune fields in temperate areas around the world. These distinctive erosional (mostly unvegetated) landform features are often characterised by a significant depression area and a connected depositional lobe at their downwind edges. These areas also provide important transport corridors to inland parts of the dune system and can provide ideal habitats for specialist flora and fauna as well as helping to enhance landscape diversity. The actual morphology and shape/size of blowouts can significantly modify the overlying atmospheric boundary layer of the wind, influencing wind flow steering and intensity within the blowout, and ultimately aeolian sediment transport. While investigations of morphological changes within blowouts have largely focused on the medium (months) to long (annual/decadal) temporal scale, studies of aeolian transport dynamics within blowouts have predominantly focused on the short-term (event) scale. Work on wind-transport processes in blowouts is still relatively rare, with ad-hoc studies providing only limited information on airflow and aeolian transport. Large-scale blowouts are characterised by elongated basins that can reach hundreds of meters, potentially resulting in airflow and transport dynamics that are very different from their smaller scale counterparts. This research focuses on a short-term, strong wind event measured at the Devil's Hole blowout (Sefton dunes, NW England), a large-scale blowout feature approximately 300 m in length and 100 m in width. In situ measurements of airflow and aeolian transport were collected during a short-term experiment on the 22nd October 2015. A total of twenty three, 3D ultrasonic anemometers, sand traps, and wenglor sensors were deployed in a spatial grid covering the distal end of the basin, walls, and depositional lobe. Terrestrial laser scanning (TLS) was used to quantify morphological changes within the blowout before and after the

  2. Evidence for coseismic subsidence events in a southern California coastal saltmarsh

    Science.gov (United States)

    Leeper, Robert; Rhodes, Brady; Kirby, Matthew; Scharer, Katherine; Carlin, Joseph; Hemphill-Haley, Eileen; Avnaim-Katav, Simona; MacDonald, Glen; Starratt, Scott; Aranda, Angela

    2017-03-01

    Paleoenvironmental records from a southern California coastal saltmarsh reveal evidence for repeated late Holocene coseismic subsidence events. Field analysis of sediment gouge cores established discrete lithostratigraphic units extend across the wetland. Detailed sediment analyses reveal abrupt changes in lithology, percent total organic matter, grain size, and magnetic susceptibility. Microfossil analyses indicate that predominantly freshwater deposits bury relic intertidal deposits at three distinct depths. Radiocarbon dating indicates that the three burial events occurred in the last 2000 calendar years. Two of the three events are contemporaneous with large-magnitude paleoearthquakes along the Newport-Inglewood/Rose Canyon fault system. From these data, we infer that during large magnitude earthquakes a step-over along the fault zone results in the vertical displacement of an approximately 5-km2 area that is consistent with the footprint of an estuary identified in pre-development maps. These findings provide insight on the evolution of the saltmarsh, coseismic deformation and earthquake recurrence in a wide area of southern California, and sensitive habitat already threatened by eustatic sea level rise.

  3. Evidence for coseismic subsidence events in a southern California coastal saltmarsh

    Science.gov (United States)

    Leeper, Robert; Rhodes, Brady P.; Kirby, Matthew E.; Scharer, Katherine M.; Carlin, Joseph A.; Hemphill-Haley, Eileen; Avnaim-Katav, Simona; MacDonald, Glen M.; Starratt, Scott W.; Aranda, Angela

    2017-01-01

    Paleoenvironmental records from a southern California coastal saltmarsh reveal evidence for repeated late Holocene coseismic subsidence events. Field analysis of sediment gouge cores established discrete lithostratigraphic units extend across the wetland. Detailed sediment analyses reveal abrupt changes in lithology, percent total organic matter, grain size, and magnetic susceptibility. Microfossil analyses indicate that predominantly freshwater deposits bury relic intertidal deposits at three distinct depths. Radiocarbon dating indicates that the three burial events occurred in the last 2000 calendar years. Two of the three events are contemporaneous with large-magnitude paleoearthquakes along the Newport-Inglewood/Rose Canyon fault system. From these data, we infer that during large magnitude earthquakes a step-over along the fault zone results in the vertical displacement of an approximately 5-km2 area that is consistent with the footprint of an estuary identified in pre-development maps. These findings provide insight on the evolution of the saltmarsh, coseismic deformation and earthquake recurrence in a wide area of southern California, and sensitive habitat already threatened by eustatic sea level rise.

  4. Influence of risk factors and past events on flood resilience in coastal megacities: Comparative analysis of NYC and Shanghai.

    Science.gov (United States)

    Xian, Siyuan; Yin, Jie; Lin, Ning; Oppenheimer, Michael

    2018-01-01

    Coastal flood protection measures have been widely implemented to improve flood resilience. However, protection levels vary among coastal megacities globally. This study compares the distinct flood protection standards for two coastal megacities, New York City and Shanghai, and investigates potential influences such as risk factors and past flood events. Extreme value analysis reveals that, compared to NYC, Shanghai faces a significantly higher flood hazard. Flood inundation analysis indicates that Shanghai has a higher exposure to extreme flooding. Meanwhile, Shanghai's urban development, population, and economy have increased much faster than NYC's over the last three decades. These risk factors provide part of the explanation for the implementation of a relatively high level of protection (e.g. reinforced concrete sea-wall designed for a 200-year flood return level) in Shanghai and low protection (e.g. vertical brick and stone walls and sand dunes) in NYC. However, individual extreme flood events (typhoons in 1962, 1974, and 1981) seem to have had a greater impact on flood protection decision-making in Shanghai, while NYC responded significantly less to past events (with the exception of Hurricane Sandy). Climate change, sea level rise, and ongoing coastal development are rapidly changing the hazard and risk calculus for both cities and both would benefit from a more systematic and dynamic approach to coastal protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities.

    Directory of Open Access Journals (Sweden)

    Thomas Prime

    Full Text Available Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.

  6. Termination of a continent-margin upwelling system at the Permian-Triassic boundary (Opal Creek, Alberta, Canada)

    Science.gov (United States)

    Schoepfer, Shane D.; Henderson, Charles M.; Garrison, Geoffrey H.; Foriel, Julien; Ward, Peter D.; Selby, David; Hower, James C.; Algeo, Thomas J.; Shen, Yanan

    2013-06-01

    Models of mass extinctions caused by greenhouse warming depend on the ability of warming to affect the oxygenation of the ocean, either through slowing circulation or changes in biological productivity and the organic carbon budget. Opal Creek, Alberta, Canada is a biostratigraphically continuous Permian-Triassic Boundary (PTB) section deposited in deep water on an outer shelf setting in the vast and understudied Panthalassic Ocean, along the western margin of Pangaea. The latest-Permian extinction is here represented as the disappearance of the previously dominant benthic fauna (siliceous sponges). On the basis of nitrogen and reduced sulfur isotopes as well as productivity-sensitive trace elements, the Middle Permian at Opal Creek is interpreted as a highly productive coastal upwelling zone where vigorous denitrification and sulfate reduction occurred in a mid-water oxygen minimum. Similar conditions appear to have continued into the latest Permian until the onset of a euxinic episode represented by a discrete pyrite bed and several trace element indicators of high productivity. This euxinic pulse is followed by the extinction of benthic fauna and a shift in nitrogen and sulfur isotopes to more normal marine values, suggesting the cessation of coastal upwelling and the consequent weakening of the mid-water oxygen minimum. The Lower Triassic appears to be a dysoxic, relatively unproductive environment with a bottom water oxygen minimum. Rhenium-osmium isotope systematics show a minimum of radiogenic Os near the main extinction event, which may be due to volcanic input, and increasingly radiogenic values approaching the PTB, possibly due to increased continental erosion. The Opal Creek system demonstrates that, while the biogeochemical crisis in the latest Permian was capable of impacting the coastal upwelling modality of ocean circulation, a transient increase in productivity likely drove the system toward euxinia and, ultimately, extinction.

  7. Influence of upwelling induced near shore hypoxia on the Alappuzha mud banks, South West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    GireeshKumar, T.R; Mathew, D.; Pratihary, A; Naik, H.; Narvekar, K.U.; Araujo, J.; Balachandran, K.K.; Muraleedharan, K.R.; Thorat, B.R.; Nair, M.; Naqvi, S.W.A

    The results of the first time-series measurements spanning 18-weeks (22 April to 20 September 2014) from a coastal environment (Alappuzha, southwest India), where two process of upwelling and mud banks are concurrent during summer monsoon...

  8. Pliocene-Pleistocene coastal events and history along the western margin of Australia

    Science.gov (United States)

    Kendrick, G.W.; Wyrwoll, K.-H.; Szabo, B. J.

    1991-01-01

    Coastal deposits along the western coastal margin of Australia, a region of relative tectonic stability, record Plio-Pleistocene events and processes affecting the inner shelf and adjacent hinterland. Tectonic deformation of these deposits is more apparent in the Carnarvon Basin, and rather less so in the Perth Basin. The most complete record comes from the Perth Basin, where units of Pliocene and Pleistocene ages are well represented. In the Perth Basin, the predominantly siliciclastic Yoganup Formation, Ascot Formation and Bassendean Sand represent a complex of shoreline, inner shelf and regressive-dune facies equivalents, the deposition of which began at an undetermined stage of the Pliocene, through to the Early Pleistocene. The deposition of this sequence closed with a major regression and significant faunal extinction. Bioclastic carbonates characterize the Middle and Late Pleistocene of the Perth and Carnarvon basins. Fossil assemblages include a distinct subtropical element, unknown from the Ascot Formation and suggesting a strengthening of the Leeuwin Current. The estuarine arcoid bivalve Anadara trapezia characterizes assemblages of Oxygen Isotope Stages 5 and 7 in the Perth and Carnarvon basins, where it is now extinct. Deposits of Substage 5e (Perth Basin) also record a southerly expansion of warm-water corals and other fauna consistent with shelf temperatures warmer than present. New uranium-series ages on corals from marine sequences of the Tantabiddi Member, of the Bundera Calcarenite of the western Cape Range are consistent with the 'double peak' hypothesis for levels of Substage 5e but the evidence remains less than conclusive. Initial uranium-series dates from the Bibra and Dampier formations of Shark Bay indicate that both derive from the Late Pleistocene. These numerical ages contradict previous interpretations of relative ages obtained from field studies. The age relationship of the units requires further investigation. ?? 1991.

  9. Dispersion in the Yucatan coastal zone: Implications for red tide events

    Science.gov (United States)

    Enriquez, Cecilia; Mariño-Tapia, Ismael J.; Herrera-Silveira, Jorge A.

    2010-02-01

    The mechanisms governing dispersion processes in the northern Yucatan coast are investigated using a barotropic numerical model of coastal circulation, which includes wind-generated and large scale currents (i.e. Yucatan Current). This work provides the foundations for studying the dispersion of harmful algal blooms (HABs) in the area. Modelling experiments include effects of climatic wind (from long term monthly mean NCEP reanalysis), short term wind events (from in situ point measurements), and Yucatan Current (YC) characteristics. Its magnitude was approximated from published reports, and its trajectory from geostrophic current fields derived from altimeter data. These provided a range of real and climatic conditions to study the routes in which phytoplankton blooms may travel. The 2-D model results show that a synthetic and conservative bloom seeded in the Cabo Catoche (CC) region (where it usually grows), moves along the coast to the west up to San Felipe (SF), where it can either move offshore, or carry on travelling westwards. The transport to the west up to SF is greatly influenced by the trajectory, intensity and proximity of the YC jet to the peninsula, which enhances the westward circulation in the Yucatan Shelf. Numerical experiments show that patch dispersion is consistently to the west even under the influence of northerly winds. When the YC flows westward towards the Campeche Bank, momentum transfer caused by the YC jet dominates the dispersion processes over wind stress. On the other hand, when it flows closer to Cuba, the local processes (i.e. wind and bathymetry) become dominant. Coastal orientation and the Coriolis force may be responsible for driving the patch offshore at SF if external forcing decreases.

  10. Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses

    Directory of Open Access Journals (Sweden)

    José M. R. Alves

    2013-05-01

    Full Text Available The Regional Ocean Modeling System ocean model is used to simulate the decadal evolution of the regional waters in offshore Iberia in response to atmospheric fields given by ECMWF ERA-40 (1961–2001 and ERA-Interim (1989–2008 reanalyses. The simulated sea surface temperature (SST fields are verified against satellite AVHRR SST, and they are analysed to characterise the variability and trends of coastal upwelling in the region. Opposing trends in upwelling frequency are found at the northern limit, where upwelling has been decreasing in recent decades, and at its southern edge, where there is some evidence of increased upwelling. These results confirm previous observational studies and, more importantly, indicate that observed SST trends are not only due to changes in radiative or atmospheric heat fluxes alone but also due to changes in upwelling dynamics, suggesting that such a process may be relevant in climate change scenarios.

  11. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    Science.gov (United States)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; hide

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  12. Spatial distribution of upwelling off the central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.V.N.

    ), Stommel and Wooster (1965), Panikkar and Jayaraman (1966) and Hsueh and Coastal upwelling along the east coast of India has received considerable attention over the past three decades both in theoretical and observational studies (LaFond, 1954, 1957... coast has been reported by LaFond (1954). The lowering of sea surface tempera- ture in August along the east coast prompted LaFond (1958) to infer the possibility of a secondary period of upwelling. A theoretical study by Varadachari (1961) indicates...

  13. Sources of short-lived bromocarbons in the Iberian upwelling system

    Directory of Open Access Journals (Sweden)

    S. Raimund

    2011-06-01

    Full Text Available Seawater concentrations of the four brominated trace gases, dibromomethane (CH2Br2, bromodichloromethane (CHBrCl2, dibromochloromethane (CHBr2Cl and bromoform (CHBr3 were measured at different depths of the water column in the Iberian upwelling off Portugal during summer 2007. Statistical analysis of the data set revealed three distinct clusters, caused by different sea surface temperature. Bromocarbon concentrations were elevated in recently upwelled and aged upwelled waters (mean values of 30 pmol l−1 for CHBr3, while concentrations in the open ocean were significantly lower (7.4 pmol l−1 for CHBr3. Comparison with other productive marine areas revealed that the Iberian upwelling had higher halocarbon concentrations than the Mauritanian upwelling. However, the concentrations off the Iberian Peninsula were still much lower than those of coastal macroalgal-influenced waters or those of Polar regions dominated by cold water adapted diatoms. Correlations with biological variables and marker pigments indicated that phytoplankton was a source of bromocarbon in the open ocean. By contrast, in upwelled water masses along the coast, halocarbons showed weaker correlations to marker pigments but were significantly influenced by the tidal frequency. Our results indicate a strong intertidal coastal source of bromocarbon and transport by surface currents of these enriched waters towards the upwelling region.

  14. Geostationary Coastal and Air Pollution Events (GEO-CAPE) Sensitivity Analysis Experiment

    Science.gov (United States)

    Lee, Meemong; Bowman, Kevin

    2014-01-01

    Geostationary Coastal and Air pollution Events (GEO-CAPE) is a NASA decadal survey mission to be designed to provide surface reflectance at high spectral, spatial, and temporal resolutions from a geostationary orbit necessary for studying regional-scale air quality issues and their impact on global atmospheric composition processes. GEO-CAPE's Atmospheric Science Questions explore the influence of both gases and particles on air quality, atmospheric composition, and climate. The objective of the GEO-CAPE Observing System Simulation Experiment (OSSE) is to analyze the sensitivity of ozone to the global and regional NOx emissions and improve the science impact of GEO-CAPE with respect to the global air quality. The GEO-CAPE OSSE team at Jet propulsion Laboratory has developed a comprehensive OSSE framework that can perform adjoint-sensitivity analysis for a wide range of observation scenarios and measurement qualities. This report discusses the OSSE framework and presents the sensitivity analysis results obtained from the GEO-CAPE OSSE framework for seven observation scenarios and three instrument systems.

  15. Spatio-temporal variability of upwelling along the southwest coast of India based on satellite observations

    Science.gov (United States)

    Jayaram, Chiranjivi; Kumar, P. K. Dinesh

    2018-03-01

    Upwelling phenomenon along the eastern boundaries of global ocean has received greater attention in the recent times due to its environmental and economic significance in the global warming and the scenario of changing climate as opined by IPCC AR5. In this context, the availabile satellite data on sea surface winds, sea surface temperature (SST), sea level anomaly (SLA) and chlorophyll-a concentration (Chl-a), for the period 1981-2016 were analyzed to identify the coastal upwelling pattern in the Southeastern Arabian Sea (SEAS). Synergistic approach, using winds, SST, SLA and Chl-a revealed that strong upwelling was prevailing between 8°N and 12°N. During the study period, geographical differences existed in the peak values of upwelling favorable conditions considered for study. Analysis of the alongshore winds which are conducive for upwelling were observed to be curtailed towards the northern part of the study region between 2005 and 2010. Also, the strength of upwelling reduced during the strong ENSO years of 1997 and 2015. Linear regression based trend analysis of upwelling indices like Ekman transport, SST and chlorophyll along the coast, during the upwelling period, revealed slight increase in the strength towards the southern region while it decreased to the north during the study period.

  16. A long record of extreme wave events in coastal Lake Hamana, Japan

    Science.gov (United States)

    Boes, Evelien; Yokoyama, Yusuke; Schmidt, Sabine; Riedesel, Svenja; Fujiwara, Osamu; Nakamura, Atsunori; Garrett, Ed; Heyvaert, Vanessa; Brückner, Helmut; De Batist, Marc

    2017-04-01

    Coastal Lake Hamana is located near the convergent tectonic boundary of the Nankai-Suruga Trough, along which the Philippine Sea slab is subducted underneath the Eurasian Plate, giving rise to repeated tsunamigenic megathrust earthquakes (Mw ≥ 8). A good understanding of the earthquake- and tsunami-triggering mechanisms is crucial in order to better estimate the complexity of seismic risks. Thanks to its accommodation space, Lake Hamana may represent a good archive for past events, such as tsunamis and tropical storms (typhoons), also referred to as "extreme wave" events. Characteristic event layers, consisting of sediment entrained by these extreme waves and their backwash, are witnesses of past marine incursions. By applying a broad range of surveying methods (reflection-seismic profiling, gravity coring, piston coring), sedimentological analyses (CT-scanning, XRF-scanning, multi-sensor core logging, grain size, microfossils etc.) and dating techniques (210Pb/137Cs, 14C, OSL, tephrochronology), we attempt to trace extreme wave event deposits in a multiproxy approach. Seismic imagery shows a vertical stacking of stronger reflectors, interpreted to be coarser-grained sheets deposited by highly energetic waves. Systematic sampling of lake bottom sediments along a transect from ocean-proximal to ocean-distal sites enables us to evaluate vertical and lateral changes in stratigraphy. Ocean-proximal, we observe a sequence of eight sandy units separated by silty background sediments, up to a depth of 8 m into the lake bottom. These sand layers quickly thin out and become finer-grained land-inward. Seismic-to-core correlations show a good fit between the occurrence of strong reflectors and sandy deposits, hence confirming presumptions based on acoustic imagery alone. Sand-rich intervals typically display a higher magnetic susceptibility, density and stronger X-ray attenuation. However, based on textural and structural differences, we can make the distinction between

  17. The investigation of form and processes in the coastal zone under extreme storm events - the case study of Rethymno, Greece

    Science.gov (United States)

    Afentoulis, Vasileios; Mohammadi, Bijan; Tsoukala, Vasiliki

    2017-04-01

    Coastal zone is a significant geographical and particular region, since it gathers a wide range of social-human's activities and appears to be a complex as well as fragile system of natural variables. Coastal communities are increasingly at risk from serious coastal hazards, such as shoreline erosion and flooding related to extreme hydro-meteorological events: storm surges, heavy precipitation, tsunamis and tides. In order to investigate the impact of these extreme events on the coastal zone, it is necessary to describe the driving mechanisms which contribute to its destabilization and more precisely the interaction between the wave forces and the transport of sediment. The aim of the present study is to examine the capability of coastal zone processes simulation under extreme wave events, using numerical models, in the coastal area of Rethymno, Greece. Rethymno city is one of the eleven case study areas of PEARL (Preparing for Extreme And Rare events in coastal regions) project, an EU funded research project, which aims at developing adaptive risk management strategies for coastal communities focusing on extreme hydro-meteorological events, with a multidisciplinary approach integrating social, environmental and technical research and innovation so as to increase the resilience of coastal regions all over the world. Within this framework, three different numerical models have been used: the MIKE 21 - DHI, the XBeach model and a numerical formulation for sea bed evolution, developed by Afaf Bouharguane and Bijan Mohammadi (2013). For the determination of the wave and hydrodynamic conditions, as well as the assessment of the sediment transport components, the MIKE 21 SW and the MIKE 21 FM modules have been applied and the bathymetry of Rethymno is arranged into a 2D unstructured mesh. This method of digitalization was selected because of its ability to easily represent the complex geometry of the coastal zone. It allows smaller scale wave characteristics to be

  18. Expression of the Middle-Late Miocene "Carbonate Crash" and "Biogenic Bloom" in the Benguela Current Upwelling Area of the South Atlantic Ocean

    Science.gov (United States)

    Diester-Haass, L.; Meyers, P. A.; Bauman, S. C.

    2001-05-01

    The middle-late Miocene "carbonate crash" - several episodes with significant drops in concentrations and accumulation rates of CaCO3 - occurred between 13 and 9 Ma in the equatorial Pacific and Indian Oceans and the Carribean Sea (Lyle et al., 1995; Roth et al., 2000). This event is followed by a "biogenic bloom" - a strong increase in biogenous production that has been described in the equatorial Pacific and Indian Oceans. In order to explain these two events, the questions of whether they are confined to tropical upwelling areas, whether they also occur in coastal upwelling areas, or whether they are global phenomena must be answered. We have explored the expression of these events during the evolution of the Benguela Current upwelling system. Sediment sequences from ODP Sites 1085 and 1087 record several drops in carbonate concentrations in the middle and early late Miocene that culminate in a major depression at 9.5-9.0 Ma and that are synchronous with the "carbonate crash" in the equatorial Pacific (Lyle et al., 1995). Climatic changes in SW Africa, reflected by an increase in delivery terrigenous sediment components and by a larger proportion of kaolinite, and oceanic changes, indicated by an expansion of the oxygen minimum zone, accompany this event. Oxygen depletion starts during early carbonate depressions and has a maximum during the major CaCO3 depression. Marine biological productivity, as reconstructed from concentrations of organic carbon and benthic foraminiferal accumulation rates, is at a minimum in the middle-early late Miocene. However, it increases 3-6 fold at 6.5 Ma, a shift that is synchronous with the "biogenic bloom" in the equatorial Pacific Ocean (Farrell et al., 1995). We attribute this important paleoceanographic change to a strengthening of latitudinal temperature gradients and corresponding vertical mixing by zonal winds during the onset of North Atlantic Deep Water flow, which led to more vigorous deep ventilation and emergence of

  19. Dynamics of a "low-enrichment high-retention" upwelling center over the southern Senegal shelf

    Science.gov (United States)

    Ndoye, Siny; Capet, Xavier; Estrade, Philippe; Sow, Bamol; Machu, Eric; Brochier, Timothée.; Döring, Julian; Brehmer, Patrice

    2017-05-01

    Senegal is the southern tip of the Canary upwelling system. Its coastal ocean hosts an upwelling center which shapes sea surface temperatures between latitudes 12° and 15°N. Near this latter latitude, the Cape Verde headland and a sudden change in shelf cross-shore profile are major sources of heterogeneity in the southern Senegal upwelling sector (SSUS). SSUS dynamics is investigated by means of Regional Ocean Modeling System simulations. Configuration realism and resolution (Δx≈ 2 km) are sufficient to reproduce the SSUS frontal system. Our main focus is on the 3-D upwelling circulation which turns out to be profoundly different from 2-D theory: cold water injection onto the shelf and upwelling are strongly concentrated within a few tens of kilometers south of Cape Verde and largely arise from flow divergence in the alongshore direction; a significant fraction of the upwelled waters are retained nearshore over long distances while travelling southward under the influence of northerly winds. Another source of complexity, regional-scale alongshore pressure gradients, also contributes to the overall retention of upwelled waters over the shelf. Varying the degree of realism of atmospheric and oceanic forcings does not appreciably change these conclusions. This study sheds light on the dynamics and circulation underlying the recurrent sea surface temperature pattern observed during the upwelling season and offers new perspectives on the connections between the SSUS physical environment and its ecosystems. It also casts doubt on the validity of upwelling intensity estimations based on simple Ekman upwelling indices at such local scales.

  20. Trends of the Galician upwelling in the context of climate change

    Science.gov (United States)

    Casabella, N.; Lorenzo, M. N.; Taboada, J. J.

    2014-10-01

    Coastal upwelling is a phenomenon of great importance both for the study of ocean dynamics and for the development of fish production in some coastal regions. Our study region, the Galician coast, lies at the northern end of the Canary-Iberian Peninsula upwelling system. Knowing the changes provoked by climate change on this upwelling system is particularly relevant for the future of this area taking into account the social and economic importance of fishing activities in this region. In this paper we study the trends in the intensity and frequency of upwelling in the Galician coast and the expected changes in this phenomenon for the next decades using three regional models implemented within the European project ENSEMBLES. As a main result, we observe that the models show a positive trend in both the intensity and frequency of upwelling phenomenon for the future, particularly significant in spring and summer which are the seasons favorable for upwelling. In autumn and winter there are no significant changes.

  1. Impacts of severe wave event to the coastal environment, east Taiwan: a case study of 2015 Typhoon Soudelor

    Science.gov (United States)

    Huang, Shao-Yi; Yen, Jiun-Yee; Wu, Bo-Lin; Kao, Yu-Hsuan; Chang, Ting-Yi

    2017-04-01

    As an island surrounded by open water bodies, Taiwan faces associated challenges of oceanic events such as tidal, current and seasonsal wave cycles. In addition to the secular variations of the adjacent oceans, researchers have raised public awareness toward extreme wave events such as tsunamis and storm surges that may cause great damage to coastal infrastructures and loss of valuable lives. The east coast of Taiwan is prone to suffer from typhoons every year and records have shown that more than 30% of the low-pressure centers took the east coastline as their landing point. In year 2015, Typhoon Soudelor attacked the east coast of Taiwan and resulted in a great number of casualties and severe damage to the infrastructures all over the island. Soudelor is not the greatest typhoon of the year yet still brought in significant influences to the coastal topography due to its path and robust structure. In order to understand the impacts of typhoons like Soudelor, we investigated the coastal areas of Hualien, east Taiwan, to document how sediments and debris are transported along the shoreline under the extreme wave condition. Four coastal areas were surveyed to extract applicable information such as local relief profiles, grain size distribution of drifted sediments/debris, maximum inundation limit and so forth. Field observation suggests that the waves displayed great capability of transporting the sediments and redistributing the beach morphology. For instance, the beach of Qixing Lake (Chishingtan) has astonishing records like maximum volume of transported boulder around 3,000,000 cm3, maximum long axis of transported boulder around 144 cm, maximum distance of boulder transportation of 70 m, and maximum inundation distance of ca. 180 m. The composition and distribution of the drifted sediments in every areas vary with local geological conditions but in general all suggest similar characteristics: 1. the transported materials size down toward inland; 2. The sediments

  2. Seasonal upwelling on the Western and Southern Shelves of the Gulf of Mexico

    Science.gov (United States)

    Zavala-Hidalgo, Jorge; Gallegos-García, Artemio; Martínez-López, Benjamín; Morey, Steven L.; O'Brien, James J.

    2006-07-01

    An 8-year database of sea surface temperature (SST), 7 years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color images, wind fields, and numerical model results are analyzed to identify regions and periods of coastal upwelling on the western and southern shelves of the Gulf of Mexico. On the seasonal scale, it is found that on the Tamaulipas, Veracruz, and southwestern Texas Louisiana shelves there are upwelling favorable winds from April to August, when southeasterly winds are dominant and cold SST anomalies associated with upwelling are observed along their coasts. However, during summer, values of chlorophyll-a concentration are lower than those in autumn and winter, which are high due to advection of old bloom biological material from upstream. During winter, there is a cold front on the Tamaulipas shelf produced by advection of cold water from the Texas Louisiana shelf and not due to upwelling. On the eastern Campeche Bank, persistent upwelling is observed due to favorable winds throughout the year with cold SST and large chlorophyll-a content along the inner shelf from May to September. On the Tamaulipas shelf, the summer upwelling delays the annual SST peak until September, while in most of the Gulf SST peaks in August. This difference is due to the end of the upwelling favorable wind conditions and the September seasonal current reversal.

  3. A Panchromatic Imaging Fourier Transform Spectrometer for the NASA Geostationary Coastal and Air Pollution Events Mission

    Science.gov (United States)

    Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David

    2011-01-01

    This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the ultraviolet-visible and infrared spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and infrared. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson

  4. Carbon dioxide in European coastal waters

    NARCIS (Netherlands)

    Borges, A.V.; Schiettecatte, L.-S.; Abril, G.; Delille, B.; Gazeau, F.P.H.

    2006-01-01

    We compiled from literature annually integrated air–water fluxes of carbon dioxide (CO2) computed from field measurements, in 20 coastal European environments that were gathered into 3 main ecosystems: inner estuaries, upwelling continental shelves and non-upwelling continental shelves. The

  5. The Influence of Somalia and Oman Upwellings on the Indian Summer Monsoon

    Science.gov (United States)

    Izumo, T.; de Boyer Montégut, C.; Luo, J.; Behera, S. K.; Masson, S.; Yamagata, T.

    2006-12-01

    What controls the strength of the Indian summer monsoon is not well known yet. The Somalia and Oman upwellings peak during the summer monsoon and strongly cool the Sea Surface Temperature (SST) in the Western Arabian Sea. A slight change in their strength can thus have strong impacts on the SST and extent of the Indian ocean warm pool, which is the main source of moisture for the monsoon. Here the role of Somalia and Oman upwellings on the strength of the Indian monsoon is evidenced using both observations and the high resolution SINTEX-F Coupled Global Circulation Model (CGCM), which accurately simulates the monsoon. Within the CGCM, the spring increase and summer maximum of the Western Arabian Sea coastal upwellings are removed in a sensitivity experiment (SENS) by imposing over the Indian Ocean the mean windstress, instead of the temporally varying one of the control experiment (CTL). The ocean circulation becomes nearly stationnary. In summer, the main change in SST in SENS is a strong warming (up to 2°C) along the East African coast where coastal upwelling and off-shore horizontal advection of upwelled waters usually cool SST. This SST warming leads to a strong increase in the monsoon extent and strength along the West coast of India up to 5 mm/day (about 25% of CTL). The mechanism is as follow: in SENS, summer SST warming in the upwelling region causes anomalous evaporation, which increases specific humidity of the air masses going over the upwelling region. The humidity transport thus increases all over the Arabian sea towards the coastal Ghats mountains of India. This finally leads to enhanced moisture convergence and precipitations along the West coast of India. This role of coastal upwelling and associated SST variations on the Indian monsoon is confirmed by observations since 1980. Correlation analysis shows that enhanced summer precipitations on the West Indian coast are usually associated with warmer SST in summer East of Somalia-Oman and North

  6. Infuence of Averaging Method on the Evaluation of a Coastal Ocean Color Event on the U.S. Northeast Coast

    Science.gov (United States)

    Acker, James G.; Uz, Stephanie Schollaert; Shen, Suhung; Leptoukh, Gregory G.

    2010-01-01

    Application of appropriate spatial averaging techniques is crucial to correct evaluation of ocean color radiometric data, due to the common log-normal or mixed log-normal distribution of these data. Averaging method is particularly crucial for data acquired in coastal regions. The effect of averaging method was markedly demonstrated for a precipitation-driven event on the U.S. Northeast coast in October-November 2005, which resulted in export of high concentrations of riverine colored dissolved organic matter (CDOM) to New York and New Jersey coastal waters over a period of several days. Use of the arithmetic mean averaging method created an inaccurate representation of the magnitude of this event in SeaWiFS global mapped chl a data, causing it to be visualized as a very large chl a anomaly. The apparent chl a anomaly was enhanced by the known incomplete discrimination of CDOM and phytoplankton chlorophyll in SeaWiFS data; other data sources enable an improved characterization. Analysis using the geometric mean averaging method did not indicate this event to be statistically anomalous. Our results predicate the necessity of providing the geometric mean averaging method for ocean color radiometric data in the Goddard Earth Sciences DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni).

  7. An Extreme Event as a Game Changer in Coastal Erosion Management

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Drønen, Nils K.; Knudsen, Per

    2016-01-01

    of cyclone Xaver in December 2013 with severe coastal erosion led to collaboration between the involved municipalities to work on a coherent solution for the entire coastline that involves sand nourishments, renovation and optimization of hard protection structures, and the restoration of recreational values...

  8. Mitigation of Disasters Due to Severe Climate Events: from Policy to Practice,the West African Coastal Region Experience

    Science.gov (United States)

    Ediang, Okuku

    2016-07-01

    The distributive pattern of disaster due to severe climate events over the coast of West Africa especially Nigeria was examined using yearly mean disaster due to severe climatic events for the period of 30 years (1981-2010) from the marine stations in the coastal region of Nigeria. Graphical and isohyetal analyses were used to look into the patter of severe weather events over the area considered and to see if the severe weather events is increasing or not in the coast of West Africa especially the Nigerian coast and how to mitigate ,were policy relating to severe weather events are discussed. The paper conclude that due to the nature of coast of West Africa and Nigeria in particular, it enjoys longer severe weather events season than dry during the wet season, it is common to observe periods of enhanced or suppressed convective activity to persist over the wide areas for somedays. This paper also contributes to the wealth of knowledge already existing on Indigenous people play major roles in preserving the ecosystem especially during severe weather events . This has resulted in the recent calls for the integration of indigenous knowledge systems into global knowledge system strategies. Until now, integrating local knowledge systems into severe weather events and climate change concerns is not a completely new idea. A comprehensive review of literature using electronic and non-electronic databases formed the methodology. The paper conclude also by drawing the attention that by targeting Promoting indigenous people's participation in severe weather events and climate change issues is an important initiative towards adaptation and sustainable development in Africa and around the world. It is increasingly realized that the global knowledge system has dominated research, policies and programmes that address current severe weather events and climate change's challenges,mitigation and adaptation strategies.

  9. A Holocene record of ocean productivity and upwelling from the northern California continental slope

    Science.gov (United States)

    Addison, J. A.; Barron, J. A.; Finney, B.; Kusler, J. E.; Bukry, D.; Heusser, L. E.; Alexander, C. R., Jr.

    2016-12-01

    The Holocene upwelling history of the northern California continental slope is examined using a 7-m-long marine sediment core (TN062-O550; 40.9°N, 124.6°W, 550 m water depth) collected offshore from Eureka, CA, that spans the last 7,400 calibrated years before present (cal yrs BP). A combination of biogenic sediment concentrations (opal, total organic C, and total N), stable isotopes (organic matter δ13C and bulk sedimentary δ15N), and key microfossil indicators of upwelling were used to test the hypothesis that marine productivity in the California Current System (CCS) driven by coastal upwelling has co-varied with global Holocene millennial-scale warm intervals. Results show biogenic sediment accumulation in TN062-O550 varied considerably during the Holocene, despite being located within 50 km of the mouth of the Eel River, one of the largest sources of terrigenous sediment to the Northeast Pacific Ocean margin. A key time interval beginning at 2900 cal yr BP indicates the onset of modern upwelling in the CCS, and that this period also corresponds to the most intense period of upwelling in the last 7,400 years. When these results are placed into a regional CCS context during the Holocene, it was found that the timing of upwelling intensification as recorded in TN062-O550 corresponds closely to that seen at nearby ODP Site 1019 as well as in the Santa Barbara Basin of southern California. Other CCS records with less high-quality age control show similar results, which suggest late Holocene upwelling intensification may be synchronous throughout the CCS. Based on the strong correspondence between the alkenone-derived sea surface temperature record at ODP Site 1019 and the onset of late Holocene upwelling in northern California, we tentatively suggest that regional CCS warming may be conducive to upwelling intensification in the future.

  10. A Holocene record of ocean productivity and upwelling from the northern California continental slope

    Science.gov (United States)

    Addison, Jason A.; Barron, John A.; Finney, Bruce P.; Kusler, Jennifer E.; Bukry, David; Heusser, Linda E.; Alexander, Clark R.

    2017-01-01

    The Holocene upwelling history of the northern California continental slope is examined using the high-resolution record of TN062-O550 (40.9°N, 124.6°W, 550 m water depth). This 7-m-long marine sediment core spans the last ∼7500 years, and we use it to test the hypothesis that marine productivity in the California Current System (CCS) driven by coastal upwelling has co-varied with Holocene millennial-scale warm intervals. A combination of biogenic sediment concentrations (opal, total organic C, and total N), stable isotopes (organic matter δ13C and bulk sedimentary δ15N), and key microfossil indicators of upwelling were used to test this hypothesis. The record of biogenic accumulation in TN062-O550 shows considerable Holocene variability despite being located within 50 km of the mouth of the Eel River, which is one of the largest sources of terrigenous sediment to the Northeast Pacific Ocean margin. A key time interval beginning at ∼2900 calibrated years before present (cal yr BP) indicates the onset of modern upwelling in the CCS, and this period also corresponds to the most intense period of upwelling in the last 7500 years. When these results are placed into a regional CCS context during the Holocene, it was found that the timing of upwelling intensification at TN062-O550 corresponds closely to that seen at nearby ODP Site 1019, as well as in the Santa Barbara Basin of southern California. Other CCS records with less refined age control show similar results, which suggest late Holocene upwelling intensification may be synchronous throughout the CCS. Based on the strong correspondence between the alkenone sea surface temperature record at ODP Site 1019 and the onset of late Holocene upwelling in northern California, we suggest that CCS warming may be conducive to upwelling intensification, though future changes are unclear as the mechanisms forcing SST variability may differ.

  11. On the upwelling off the Southern Tip and along the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Smitha, B.R.; Sanjeevan, V.N.; VimalKumar, K.G.; Revichandran, C.

    ; the latter is forced by the longshore wind stress. Moderate to relatively intense upwelling occurs along the Kollam to Mangalore coast (9 degrees N to 13 degrees N) due to the combined action of the longshore wind stress, the coastally trapped Kelvin waves...

  12. Challenges in Downscaling Surge and Flooding Predictions Associated with Major Coastal Storm Events

    Science.gov (United States)

    Bowman, M. J.

    2015-12-01

    Coastal zone managers, elected officials and emergency planning personnel are continually seeking more reliable estimates of storm surge and inundation for better land use planning, the design, construction and operation of coastal defense systems, resilience evaluation and evacuation planning. Customers of modern regional weather and storm surge prediction models demand high resolution, speed, accuracy, with informative, interactive graphics and easy evaluation of potentially dangerous threats to life and property. These challenges continue to get more difficult as the demand for street-scale and even building-scale predictions increase. Fluctuations in sub-grid-scale wind and water velocities can lead to unsuspected, unanticipated and dangerous flooding in local communities. But how reliable and believable are these models given the inherent natural uncertainty and chaotic behavior in the underlying dynamics, which can lead to rapid and unexpected perturbations in the wind and pressure fields and hence coastal flooding? Traditionally this uncertainty has been quantified by the use of the ensemble method, where a suite of model runs are made with varying physics and initial conditions, presenting the mean and variance of the ensemble as the best metrics possible. But this assumes that each component is equally possible and is statistically independent of the others. But this is rarely true, although the "safety in numbers" approach is comforting to those faced with life and death decisions. An example of the ensemble method is presented for the trajectory of superstorm Sandy's storm center as it approached coastal New Jersey. If one were to ask the question "was Sandy a worst case scenario", the answer would be "no: small variations in the timing (vis-à-vis tide phase) and location of landfall could easily have led to an additional surge of +50 cm at The Battery NY with even more catastrophic consequences to those experienced".

  13. Increasing a Community's Knowledge about Drought, Watershed Ecosystems, and Water Quality Through Educational Activities Added to Coastal Cleanup Day Events

    Science.gov (United States)

    Brinker, R.; Allen, L.; Cole, P.; Rho, C.

    2016-12-01

    International Coastal Cleanup Day, held each September, is an effective campaign to bring volunteers together to clean trash from beaches and waterways and document results. Over 500,000 participants cleared over 9 million pounds of trash in 2015. To build on the enthusiasm for this event, the city of Livermore, California's Water Resource Department, the Livermore Valley Joint Unified School District, Livermore Area Recreation and Parks Department created a water education program to embed within the city's Coastal Cleanup Day events. Goals of the education program are to increase awareness of the local watershed and its geographic reach, impacts of climate change and drought on local water supplies, pollution sources and impacts of local pollution on the ocean, positive impacts of a recent plastic bag ban, water quality assessment, and action steps citizens can take to support a healthy watershed. Volunteers collect and test water samples (when water is in the creek) using modified GLOBE and World Water Monitoring Day protocols. Test results are uploaded to the World Water Monitoring Day site and documented on the program web site. Volunteers report that they did not know about watersheds, impacts of local pollution, and water quality components before the education program. Volunteers are encouraged to adopt a creek spot for one year, and continue to collect and document trash. High school and middle school science classes added the water quality testing into curriculum, and regularly visit creek sites to clean the spots and monitor habitats. Each year for the past five years, about 300 volunteers have worked on creek clean-up events, 20 have adopted creek sites, and collected over 4,000 gallons of trash annually. As a result of these efforts, sites have been downgraded from a trash hot spot of concern. Strategies will be shared to expand an established (or start a new) Coastal Cleanup Day event into a successful watershed and climate awareness citizen science

  14. Spatiotemporal trends in the southwest monsoon wind-driven upwelling in the southwestern part of the South China Sea.

    Science.gov (United States)

    Kok, Poh Heng; Mohd Akhir, Mohd Fadzil; Tangang, Fredolin; Husain, Mohd Lokman

    2017-01-01

    This study analyzes two wind-induced upwelling mechanisms, namely, Ekman transport and Ekman pumping that occur during the southwest monsoon. The results suggest that the coastline of the east coast of Peninsular Malaysia (ECPM) is affected by upwelling with spatiotemporal variations. Characterization of upwelling by using wind-induced upwelling indexes (UIW) indicate the existence of favorable upwelling conditions from May to September. Upwelling intensity increased in May and peaked in August before declining in September, decreasing intensity from the southern tip towards the northern tip along the coastline of the ECPM. The existence of upwelling along the ECPM has resulted in an important difference between the SSTs of the inshore and the oceanic regions. Nonetheless, the use of the SST gradient between the inshore and the oceanic SSTs to characterize upwelling (UISST) was found to be unsuitable because the SST along the ECPM was affected by water advection from the Java Sea and incessant changes in the SST. In order to indicate the major contributor of wind-induced upwelling along the ECPM in terms of the spatiotemporal scale, a comparison between Ekman transport and Ekman pumping was drawn by integrating Ekman pumping with respect to the distance where the positive wind stress curl existed. The estimation of Ekman transport and Ekman pumping indicated that Ekman pumping played a major role in contributing towards upwelling in any particular month during the southwest monsoon along the entire coastline of the ECPM as compared to Ekman transport, which contributed towards more than half of the total upwelling transport. By dividing the ECPM into three coastal sections, we observed that Ekman pumping was relatively predominant in the middle and northern coasts, whereas both Ekman transport and Ekman pumping were equally prevalent in the southern coast.

  15. Spatiotemporal trends in the southwest monsoon wind-driven upwelling in the southwestern part of the South China Sea.

    Directory of Open Access Journals (Sweden)

    Poh Heng Kok

    Full Text Available This study analyzes two wind-induced upwelling mechanisms, namely, Ekman transport and Ekman pumping that occur during the southwest monsoon. The results suggest that the coastline of the east coast of Peninsular Malaysia (ECPM is affected by upwelling with spatiotemporal variations. Characterization of upwelling by using wind-induced upwelling indexes (UIW indicate the existence of favorable upwelling conditions from May to September. Upwelling intensity increased in May and peaked in August before declining in September, decreasing intensity from the southern tip towards the northern tip along the coastline of the ECPM. The existence of upwelling along the ECPM has resulted in an important difference between the SSTs of the inshore and the oceanic regions. Nonetheless, the use of the SST gradient between the inshore and the oceanic SSTs to characterize upwelling (UISST was found to be unsuitable because the SST along the ECPM was affected by water advection from the Java Sea and incessant changes in the SST. In order to indicate the major contributor of wind-induced upwelling along the ECPM in terms of the spatiotemporal scale, a comparison between Ekman transport and Ekman pumping was drawn by integrating Ekman pumping with respect to the distance where the positive wind stress curl existed. The estimation of Ekman transport and Ekman pumping indicated that Ekman pumping played a major role in contributing towards upwelling in any particular month during the southwest monsoon along the entire coastline of the ECPM as compared to Ekman transport, which contributed towards more than half of the total upwelling transport. By dividing the ECPM into three coastal sections, we observed that Ekman pumping was relatively predominant in the middle and northern coasts, whereas both Ekman transport and Ekman pumping were equally prevalent in the southern coast.

  16. Spatiotemporal trends in the southwest monsoon wind-driven upwelling in the southwestern part of the South China Sea

    Science.gov (United States)

    Mohd Akhir, Mohd Fadzil; Tangang, Fredolin; Husain, Mohd Lokman

    2017-01-01

    This study analyzes two wind-induced upwelling mechanisms, namely, Ekman transport and Ekman pumping that occur during the southwest monsoon. The results suggest that the coastline of the east coast of Peninsular Malaysia (ECPM) is affected by upwelling with spatiotemporal variations. Characterization of upwelling by using wind-induced upwelling indexes (UIW) indicate the existence of favorable upwelling conditions from May to September. Upwelling intensity increased in May and peaked in August before declining in September, decreasing intensity from the southern tip towards the northern tip along the coastline of the ECPM. The existence of upwelling along the ECPM has resulted in an important difference between the SSTs of the inshore and the oceanic regions. Nonetheless, the use of the SST gradient between the inshore and the oceanic SSTs to characterize upwelling (UISST) was found to be unsuitable because the SST along the ECPM was affected by water advection from the Java Sea and incessant changes in the SST. In order to indicate the major contributor of wind-induced upwelling along the ECPM in terms of the spatiotemporal scale, a comparison between Ekman transport and Ekman pumping was drawn by integrating Ekman pumping with respect to the distance where the positive wind stress curl existed. The estimation of Ekman transport and Ekman pumping indicated that Ekman pumping played a major role in contributing towards upwelling in any particular month during the southwest monsoon along the entire coastline of the ECPM as compared to Ekman transport, which contributed towards more than half of the total upwelling transport. By dividing the ECPM into three coastal sections, we observed that Ekman pumping was relatively predominant in the middle and northern coasts, whereas both Ekman transport and Ekman pumping were equally prevalent in the southern coast. PMID:28187215

  17. Faecal bacterial loads during flood events in Northwestern Mediterranean coastal rivers

    Science.gov (United States)

    Chu, Yin; Salles, Christian; Tournoud, Marie-George; Got, Patrice; Troussellier, Marc; Rodier, Claire; Caro, Audrey

    2011-08-01

    SummaryIn Mediterranean coastal rivers, floods last often less than a few hours but supply large amounts of contaminants to transitional and coastal waters. Estimating flood loads requires appropriate sampling strategies. We applied flood-scale sampling for the survey of two rivers flowing into the Thau lagoon (France). Two bacterial indicators were considered, thermotolerant coliforms (TTC) and faecal streptococci (FC). During floods, concentrations of indicator bacteria associated with non-mineral suspended solids increased quickly with the rising flow, their decrease during the recession period was slow and erratic. Statistical analysis was performed on total bacterial flood loads measured during 20 floods, versus hydrological variables and land-use characteristics. The analysis highlighted the significant impacts of human pollution sources together with the magnitude of the flood. Regarding the results, the best linear regression models linked total bacterial flood loads to peak discharge for both TTC and FS, reinforcing the assumption that in-stream bacterial stores play an important role in the level of bacterial flood loads in Mediterranean coastal rivers. At an annual scale, between 13.9 and 16.6 log 10cfu of TTC could be supplied depending on the hydrological conditions during the year. Over the 12 year period, from 1994 to 2006 it was shown that the flood loads were responsible for at least 98% of the TTC total annual load and in 8 of 12 years the floods contributed to at least 99.9% of the annual loads. Over the same period on average the single major flood represents 74% of the total annual load. The contribution of in-stream bacterial stores was demonstrated but spatial variations in total flood loads showed that this contribution is difficult to evaluate. Bacteria from land stores appeared to be negligible in both catchments.

  18. Analysis of wind events in a coastal area: a tool for assessing turbulence variability for studies on plankton

    Directory of Open Access Journals (Sweden)

    Òscar Guadayol

    2006-03-01

    Full Text Available Turbulence at different scales, from generation to dissipation, influences planktonic communities. Many experimental studies have recently been done to determine the effects of small-scale turbulence on plankton, but it is difficult to state the relevance of the findings since there is little unbiased information on turbulence variability in the sea. In this study, we use wind velocity data series from several meteorological stations located along the Catalan coast to estimate the spatial and temporal variability of small-scale turbulence in the upper ocean. Using a peaks-over-threshold approach, we develop a statistical model to assess the frequency of wind events as a function of their persistence and intensity. Finally, the wind speed data series are converted into turbulent energy dissipation rate estimates at 1 m depth to determine the general distribution of turbulence on the Catalan coast. Geographical variability is larger than seasonal variability in frequency and persistence of wind events, owing to differences in local relief. These statistical models developed for wind events combined with empirical relationships between wind and turbulence, are tools for estimating the occurrence and persistence of turbulent events at a given location and season. They serve to put into context the past, present and future studies of the effects of turbulence on coastal planktonic organisms and processes.

  19. The effects of a winter upwelling on biogeochemical and planktonic components in an area close to the Galician Upwelling Core: The Sound of Corcubión (NW Spain)

    Science.gov (United States)

    Varela, Manuel; Álvarez-Ossorio, Ma Teresa; Bode, Antonio; Prego, Ricardo; Bernárdez, Patricia; Garcia-Soto, Carlos

    2010-10-01

    To study the biogeochemical response and the coupling plankton-benthos to an unusual winter upwelling event a cruise was carried out in February 2005 in the Sound of Corcubión, near Cape Finisterre (NW Iberian Peninsula), the Galician upwelling core. This area represents the northern boundary of the Eastern North Atlantic Upwelling System (ENAUS). The spatial distribution of plankton assemblages (phytoplankton and zooplankton), chlorophyll, physical and chemical parameters as well as diatom distribution in surface sediments, were studied in a total of 17 stations in the Sound. The upwelling processes caused an important accumulation of water in the inner Sound and near the Cape. This accumulation zone must be persistent through the upwelling events in the area, including those of summer, as indicated by the diatoms' distribution in the sediment. Unlike the summer upwelling events, the main effect of winter upwelling in the area is the increase in solar radiation due to the persistent clear skies. In this season nutrient supply is not critical due to water column mixing. The meteorological conditions were equivalent to those of early spring. As a result, both phyto- and zooplankton species assemblages were typical of spring blooms in Galician coasts. The bloom lasted for up to 6 days, as estimated from the availability and uptake of nitrogen forms. Winter blooms represented ca. 20% of total annual phytoplankton biomass, and 30% of the average biomass during summer upwelling, in the period 1997-2007, as estimated from the analysis of both, in situ and satellite derived chlorophyll.

  20. Cross shelf hydrographic and hydrochemical conditions and their short term variability at the northern Benguela during a normal upwelling season

    Science.gov (United States)

    Mohrholz, Volker; Eggert, Anja; Junker, Tim; Nausch, Günther; Ohde, Thomas; Schmidt, Martin

    2014-11-01

    Cross shelf hydrographic and hydrochemical conditions were investigated during the seasonal maximum of upwelling in the northern Benguela upwelling system. The study combines in situ observations, remotely sensed data and results of a regional 3-dimensional numerical model. In situ observations were recorded along a cross shelf transect off Namibia starting at 20°S 13°E, repeated five times during 16 August 2011 until 19 September 2011. Comparison of wind forcing and sea surface temperatures during the time of the expedition with long-term climatological data as well as the index of intensity of the Benguela upwelling indicates "normal" upwelling conditions in austral winter 2011 in the northern Benguela. Small scale temporal (days) and spatial (km) variability is high during the upwelling season, primarily caused by highly variable wind forcing and dynamics of mesoscale structures like eddies and filaments as found in remotely sensed data. This mesoscale dynamics impact the applicability of a conceptual 2-dimensional circulation model, i.e. a linear succession along the cross-shelf transect. Therefore, an age proxy for surface water was constructed based on oxygen and heat fluxes during the first aging period and on salinity and heat fluxes during the second phase. The application of an age proxy instead of distance to shore successfully validates the succession concept. Furthermore, the investigation of the upwelling strengths by analytical and circulation models verified their dependence on coastal- and curl driven upwelling processes with the onshore dominance of coastal upwelling. In the investigated time period, offshore, curl driven upwelling dominated with a maximum located on the shelf.

  1. Outside the paradigm of upwelling rias in NW Iberian Peninsula: Biogeochemical and phytoplankton patterns of a non-upwelling ria

    Science.gov (United States)

    Ospina-Alvarez, Natalia; Varela, Manuel; Doval, María Dolores; Gómez-Gesteira, Moncho; Cervantes-Duarte, Rafael; Prego, Ricardo

    2014-02-01

    The Atlantic Galician rias show the effect of natural eutrophication during ENACW upwelling episodes when large amounts of nutrients are injected. However, the Cantabrian Galician rias do not appear to be disturbed by upwelling events and it can be hypothesized that eutrophy is not inherent to the Galician rias. This question was tackled regarding the biogeochemical and phytoplankton characteristic in the Ria of Barqueiro, located on the western boundary of the Cantabrian Sea, from January 2008 to January 2009. Thermohaline, PAR and fluorescence profiles, dissolved oxygen, nutrient salts, DOC, DON and chlorophyll concentrations, phytoplankton abundances and primary production were monthly determined in a monitoring station (43°45.509‧N-07°39.493‧W); moreover, the daily upwelling index information and fluvial contributions from Sor River were considered. Throughout the year only four annual oceanographic periods were observed: spring, summer stratification, autumn and winter, unlike the Atlantic rias, where a long upwelling period occurs with usually outstanding upwelling processes. Nutrient concentrations (a maximum of 6.2 μM of nitrate, 0.5 μM of nitrite, 2.8 μM of ammonium, 0.4 μM of phosphate and 5.7 μM of silicate), organic matter (98 μM of DOC, 14 μM of DON, 16.4 μM of POC and 2.0 μM of PON), Chl-a (1.1 μg L-1), primary production (280 gC m-2 yr-1) and phytoplankton abundance were clearly lower (about half) when compared to those reported for the other rias during upwelling. Diatoms dominated the phytoplankton assemblages especially during spring and autumn blooms. In summer, although the wind conditions were favorable, upwelling was not observed in the Ria and a mixing of diatoms and dinoflagellates co-dominated the phytoplankton community with a lower contribution of diatoms in comparison to the Atlantic rias. The paradigm of natural eutrophication reported for the Galician rias was not observed in the Ria of Barqueiro, which may be

  2. Stratigraphic modeling of organic matter distribution and preservation in deep marine environment. Case of a margin with pelagic sedimentation: the coastal upwelling system of Benguela (Namibia, Western South Africa); Modelisation stratigraphique de la distribution et de la preservation de la matiere organique en milieu marin profond. Cas d'une marge a sedimentation pelagique: systeme d'upwelling cotier du Benguela (Namibie, Afrique du Sud Ouest)

    Energy Technology Data Exchange (ETDEWEB)

    Tranier, J.

    2006-06-15

    In order to develop stratigraphic modelling of organic matter distribution and preservation in marine environment, the methodology established, uses three modelling softwares. We make use of a 3D stratigraphic model, DIONISOS, which allows to build margin thanks to sediment input and transport and thanks to basin deformation. Biogenic sediments are introduced in DIONISOS after their production modelling by two coupled models, ROMS and NPZD. ROMS is a physical model which allows to simulate upwelling dynamics thanks to wind strength exerted on ocean surface and to margin morphology. NPZD models relationships (photosynthesis, grazing, excretion, mortality, re-mineralization, etc.) between four boxes: nutrients, phytoplankton, zooplankton and detritus. Nutrients availability (model inputs) and flux intensity between boxes are controlled by upwelling dynamics, i-e ROMS. Thanks to these three softwares, organic matter can be modelled from its production to its fossilization considering the influence of various factors as upwelling intensity, nutrients availability, chemical compounds of water mass and oxygenation of water column, species competition (diatoms and coccolithophoridae), margin morphology and eustatism. After testing sensibility of the various parameters of the three models, we study their capacity for reproduce biogenic sedimentation and simulate climatic cycle effect on organic matter distribution on a passive continental margin: the Namibian margin (Southwest Africa). They are validated comparing results with core data from this margin. (author)

  3. Measurements of hygroscopicity and volatility of atmospheric ultrafine particles during ultrafine particle formation events at urban, industrial, and coastal sites.

    Science.gov (United States)

    Park, Kihong; Kim, Jae-Seok; Park, Seung Ho

    2009-09-01

    The tandem differential mobility analyzer (TDMA) technique was applied to determine the hygroscopicity and volatility of atmospheric ultrafine particles in three sites of urban Gwangju, industrial Yeosu, and coastal Taean in South Korea. A database for the hygroscopicity and volatility of the known compositions and sizes of the laboratory-generated particles wasfirst constructed for comparison with the measured properties of atmospheric ultrafine particles. Distinct differences in hygroscopicity and volatility of atmospheric ultrafine particles werefound between a "photochemical event" and a "combustion event" as well as among different sites. At the Gwangju site, ultrafine particles in the "photochemical event" were determined to be more hygroscopic (growth factor (GF) = 1.05-1.33) than those in the "combustion event" (GF = 1.02-1.12), but their hygroscopicity was not as high as pure ammonium sulfate or sulfuric acid particles in the laboratory-generated database, suggesting they were internally mixed with less soluble species. Ultrafine particles in the "photochemical event" at the Yeosu site, having a variety of SO2, CO, and VOC emission sources, were more hygroscopic (GF = 1.34-1.60) and had a higher amount of volatile species (47-75%)than those observed at the Gwangju site. Ultrafine particle concentration at the Taean site increased during daylight hours with low tide, having a higher GF (1.34-1.80) than the Gwangju site and a lower amount of volatile species (17-34%) than the Yeosu site. Occasionally ultrafine particles were externally mixed according to their hygroscopicity and volatility, and TEM/EDS data showed that each type of particle had a distinct morphology and elemental composition.

  4. Flood events in the southwestern Netherlands and coastal Belgium, 1400-1953.

    NARCIS (Netherlands)

    de Kraker, A.M.J.

    2006-01-01

    This paper focuses on the causes and impacts of flood events between 1400 and 1953 in the estuaries of the rivers Meuse, Rhine and Schelde, and further south along the Belgian coast. Floods in this delta area have been caused by natural mechanisms. In particular, weather extremes such as storm

  5. Sensitivity to low-temperature events: Implications for CO2 dynamics in subtropical coastal ecosystems

    Science.gov (United States)

    Sparkle L. Malone; Jordan Barr; Jose D. Fuentes; Steven F. Oberbauer; Christina L. Staudhammer; Evelyn E. Gaiser; Gregory Starr

    2016-01-01

    We analyzed the ecosystem effects of low-temperature events (<5 °C) over 4 years (2009-2012) in subtropical short and long hydroperiod freshwater marsh and mangrove forests within Everglades National Park. To evaluate changes in ecosystem productivity, we measured temporal patterns of CO2 and the normalized difference vegetation index over the study period. Both...

  6. SAR observation and model tracking of an oil spill event in coastal waters.

    Science.gov (United States)

    Cheng, Yongcun; Li, Xiaofeng; Xu, Qing; Garcia-Pineda, Oscar; Andersen, Ole Baltazar; Pichel, William G

    2011-02-01

    Oil spills are a major contributor to marine pollution. The objective of this work is to simulate the oil spill trajectory of oil released from a pipeline leaking in the Gulf of Mexico with the GNOME (General NOAA Operational Modeling Environment) model. The model was developed by NOAA (National Oceanic and Atmospheric Administration) to investigate the effects of different pollutants and environmental conditions on trajectory results. Also, a Texture-Classifying Neural Network Algorithm (TCNNA) was used to delineate ocean oil slicks from synthetic aperture radar (SAR) observations. During the simulation, ocean currents from NCOM (Navy Coastal Ocean Model) outputs and surface wind data measured by an NDBC (National Data Buoy Center) buoy are used to drive the GNOME model. The results show good agreement between the simulated trajectory of the oil spill and synchronous observations from the European ENVISAT ASAR (Advanced Synthetic Aperture Radar) and the Japanese ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array L-band Synthetic Aperture Radar) images. Based on experience with past marine oil spills, about 63.0% of the oil will float and 18.5% of the oil will evaporate and disperse. In addition, the effects from uncertainty of ocean currents and the diffusion coefficient on the trajectory results are also studied. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Surface circulation and upwelling patterns around Sri Lanka

    Science.gov (United States)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2013-09-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side. The region is characterised by bi-annually reversing monsoon winds resulting from seasonal differential heating and cooling of the continental land mass and the ocean. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and the Regional Ocean Modelling System (ROMS) configured to the study region and forced with ECMWF interim data. The model was run for 2 yr to examine the seasonal and shorter term (∼10 days) variability. The results confirmed the presence of the reversing current system in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the Southwest (SW) monsoon transporting 11.5 Sv and the westward flowing Northeast Monsoon Current (NMC) transporting 9.5 Sv during the Northeast (NE) monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the Island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the south coast. During the SW monsoon the Island deflects the eastward flowing SMC southward whilst along the east coast the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the south coast and is shown to be due to flow convergence and divergence associated with offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the upwelling centre was dependent on the relative strengths of wind driven flow along the east and west coasts: during the SW (NE) monsoon the flow along the

  8. Eosinophilia and biotoxin exposure in bottlenose dolphins (Tursiops truncatus) from a coastal area impacted by repeated mortality events

    Energy Technology Data Exchange (ETDEWEB)

    Schwacke, Lori H., E-mail: Lori.Schwacke@noaa.gov [National Oceanic and Atmospheric Administration, National Ocean Service, Center for Human Health Risks, 331 Fort Johnson Road, Charleston, SC 29412 (United States); Twiner, Michael J. [National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412 (United States); De Guise, Sylvain [University of Connecticut, Department of Pathobiology and Veterinary Science, 61 North Eagleville Road, U-89, Storrs, CT 06269 (United States); Balmer, Brian C.; Wells, Randall S. [Chicago Zoological Society, c/o Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236 (United States); Townsend, Forrest I. [Bayside Hospital for Animals, 251 N.E. Racetrack Road, Fort Walton Beach, FL 32547 (United States); Rotstein, David C. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East West Highway, Silver Spring, MD 20910 (United States); Varela, Rene A. [Ocean Embassy Inc, 6433 Pinecastle Blvd, Ste 2, Orlando, FL 32809 (United States); Hansen, Larry J. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service Southeast Fisheries Science Center,101 Pivers Island Road, Beaufort, NC 28516 (United States); Zolman, Eric S. [National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412 (United States); Spradlin, Trevor R. [National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, Marine Mammal Health and Stranding Response Program, 1315 East West Highway, Silver Spring, MD 20910 (United States); and others

    2010-08-15

    Bottlenose dolphins (Tursiops truncatus) inhabiting coastal waters in the northern Gulf of Mexico have been impacted by recurrent unusual mortality events over the past few decades. Several of these mortality events along the Florida panhandle have been tentatively attributed to poisoning from brevetoxin produced by the dinoflagellate Karenia brevis. While dolphins in other regions of the Florida coast are often exposed to K. brevis blooms, large-scale dolphin mortality events are relatively rare and the frequency and magnitude of die-offs along the Panhandle raise concern for the apparent vulnerability of dolphins in this region. We report results from dolphin health assessments conducted near St. Joseph Bay, Florida, an area impacted by 3 unusual die-offs within a 7-year time span. An eosinophilia syndrome, manifested as an elevated blood eosinophil count without obvious cause, was observed in 23% of sampled dolphins. Elevated eosinophil counts were associated with decreased T-lymphocyte proliferation and increased neutrophil phagocytosis. In addition, indication of chronic low-level exposure to another algal toxin, domoic acid produced by the diatom Pseudo-nitzschia spp., was determined. Previous studies of other marine mammal populations exposed recurrently to Pseudo-nitzschia blooms have suggested a possible link between the eosinophilia and domoic acid exposure. While the chronic eosinophilia syndrome could over the long-term produce organ damage and alter immunological status and thereby increase vulnerability to other challenges, the significance of the high prevalence of the syndrome to the observed mortality events in the St. Joseph Bay area is unclear. Nonetheless, the unusual immunological findings and concurrent evidence of domoic acid exposure in this sentinel marine species suggest a need for further investigation to elucidate potential links between chronic, low-level exposure to algal toxins and immune health.

  9. Influence of upwelling on distribution of chaetognath (zooplankton) in the oxygen deficient zone of the eastern Arabian Sea.

    Digital Repository Service at National Institute of Oceanography (India)

    Kusum, K.K.; Vineetha, G.; Raveendran, T.V.; Muraleedharan, K.R.; Biju, A.; Achuthankutty, C.T.

    process. Our observation suggests that the temporal physical event (upwelling) plays a decisive role in the heterogeneity of the spatial abundance, community composition and diversity of chaetognaths in this least studied eastern boundary current system....

  10. Physical, chemical, and other data from bottle casts from the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 11 July 1973 to 21 July 1973 (NODC Accession 7601145)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, chemical, and other data were collected from bottle casts in the Coastal Waters of Washington/Oregon from the THOMAS G. THOMPSON from 11 July 1973 to 21...

  11. Current, CTD, and other data from the YAQUINA and other platforms from the coastal waters of Washington/Oregon as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 28 January 1975 to 01 September 1975 (NODC Accession 7800403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current, CTD, and other data were collected from the YAQUINA and other platforms from the coastal waters of Washington/Oregon from 28 January 1975 to 01 September...

  12. Climate response to the 8.2 ka event in coastal California.

    Science.gov (United States)

    Oster, Jessica L; Sharp, Warren D; Covey, Aaron K; Gibson, Jansen; Rogers, Bruce; Mix, Hari

    2017-06-20

    A fast-growing stalagmite from the central California coast provides a high-resolution record of climatic changes synchronous with global perturbations resulting from the catastrophic drainage of proglacial Lake Agassiz at ca. 8.2 ka. High frequency, large amplitude variations in carbon isotopes during the 8.2 ka event, coupled with pulsed increases in phosphorus concentrations, indicate more frequent or intense winter storms on the California coast. Decreased magnesium-calcium ratios point toward a sustained increase in effective moisture during the event, however the magnitude of change in Mg/Ca suggests this event was not as pronounced on the western North American coast as anomalies seen in the high northern latitudes and monsoon-influenced areas. Nevertheless, shifts in the White Moon Cave record that are synchronous within age uncertainties with cooling of Greenland, and changes in global monsoon systems, suggest rapid changes in atmospheric circulation occurred in response to freshwater input and associated cooling in the North Atlantic region. Our record is consistent with intensification of the Pacific winter storm track in response to North Atlantic freshwater forcing, a mechanism suggested by simulations of the last deglaciation, and indicates this intensification led to increases in precipitation and infiltration along the California coast during the Holocene.

  13. A Lagrangian study tracing water parcel origins in the Canary Upwelling System

    Directory of Open Access Journals (Sweden)

    Evan Mason

    2012-08-01

    Full Text Available The regional ocean circulation within the Canary Upwelling System between 31°N and 35°N is studied using numerical tools. Seasonal mean and near-instantaneous velocity fields from a previously-generated climatological Regional Ocean Modelling System (ROMS solution of the Canary Basin are used to force a series of offline Lagrangian particle-tracking experiments. The primary objective is to identify the pathways through which water parcels arrive at the upwelling region north of Cape Ghir. Examining year-long pathways, the Azores Current contributes over 80% of particles annually, of which a large proportion arrive directly from offshore (from the northwest, while others travel along the shelf and slope from the Gulf of Cadiz. The remaining ~20% originate within the Gulf of Cadiz or come from the south, although the southern contribution is only significant in autumn and winter. When season-long pathways are considered, the alongshore contributions become increasingly important: northern contributions reach 40% in spring and summer, while southern values exceed 35% in winter. This study also shows that coastal upwelling changes both spatially and temporally. Upwelling becomes intensified near Cape Beddouza, with most upwelling occurring within ~40 km from shore although significant values may reach as far as 120 km offshore north of Cape Beddouza; at these locations the offshore integrated upwelling reaches as much as 4 times the offshore Ekman transport. In the Cape Beddouza area (32°N to 33°N, upwelling is negligible in February but intensifies in autumn, reaching as much as 3 times the offshore Ekman transport.

  14. The effect of salinization and freshening events in coastal aquifers on nutrient characteristics as deduced from field data

    Science.gov (United States)

    Russak, A.; Yechieli, Y.; Herut, B.; Lazar, B.; Sivan, O.

    2015-10-01

    The effect of seawater intrusion and freshening events in coastal aquifers on nutrient (dissolved inorganic nitrogen species, phosphate and silica) dynamics across the fresh-saline groundwater interface (FSI) were quantified using field data. Seasonal vertical profiles revealed a clear transition between nutrient species across the FSI, which is also an oxycline. In view of the results of our experimental simulations, it is clear that the major process controlling the nutrient dynamics at the FSI, besides the mixing that takes place between the two different water bodies, is the seasonal variation between seawater intrusion (salinization) in summer and flushing of the aquifer (freshening) in winter. Aquifer salinization during the summer shifts the FSI and the anaerobic depth-location upwards and leads to the enrichment of NH4+, PO43- and DSi (dissolved silica) in the saline groundwater. NH4+ and PO43- are enriched due to ion exchange, and DSi is enriched either by ion exchange (as PO43-) or as a result of dissolution of biogenic silica. Denitrification occurs at the base of the FSI, as indicated by the slight NO3- depletion and the enrichment in δ15N of NO3-. Aquifer freshening during the winter shifts the FSI downward and the water becomes suboxic with the influence of the oxic fresh groundwater. This leads to nitrification of the NH4+, enrichment of NO2- and depletion of 15N in the residual NO3- in the FSI. These cyclic processes generate a certain depletion of N and enrichment of P in the saline groundwater. Circulation of the saline groundwater below the FSI back to the sea can serve as a partial counterbalance to the high anthropogenic load of N impacting the coastal groundwater system.

  15. Observations and mechanisms of upwelling in the northern KwaZulu ...

    African Journals Online (AJOL)

    The 11-month inshore bottom-temperature record revealed five substantial upwelling events lasting 5–10 days each where temperatures decreased by about 7 °C to 17–18 °C. Satellite sea surface temperature data showed these events to coincide with cold-water plumes occupying the northern wedge of the ...

  16. Microbial and biogeochemical responses to projected future nitrate enrichment in the California upwelling system

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2014-11-01

    Full Text Available Coastal California is a dynamic upwelling region where nitrogen (N and iron (Fe can both limit productivity and influence biogeochemistry over different spatial and temporal scales. With global change, the flux of nitrate from upwelling is expected to increase over the next century, potentially driving additional oceanic regions toward Fe limitation. In this study we explored the effect of changes in Fe/N ratio on native phytoplankton from five currently Fe-replete sites near the major California upwelling centers at Bodega Bay and Monterey Bay using nutrient addition incubation experiments. Despite the high nitrate levels (13-30 M in the upwelled water, phytoplankton at three of the five sites showed increased growth when 10 M nitrate was added. None of the sites showed enhanced growth following addition of 10 nM Fe. Nitrate additions favored slow sinking single-celled diatoms over faster sinking chain-forming diatoms, suggesting that future increases in nitrate flux could affect carbon and silicate export and alter grazer populations. In particular, solitary cells of Cylindrotheca were more abundant than the toxin-producing genus Pseudonitzschia following nitrate addition. These responses suggest the biogeochemistry of coastal California could change in response to future increases in nitrate, and multiple stressors like ocean acidification and hypoxia may further result in ecosystem shifts.

  17. Solid precipitation estimation during summer snowfall events at a coastal site of the Terra Nova bay area, Antarctica

    Science.gov (United States)

    Scarchilli, Claudio; Grigioni, Paolo; Maahn, Maximilian; Negusini, Monia; Argentini, Stefania; Pace, Giandomenico; Frezzotti, Massimo; De Silvestri, Lorenzo; Ciardini, Virginia; Galeandro, Angelo; Iaccarino, Antonio; Dolci, Stefano; Proposito, Marco; Camporeale, Giuseppe

    2017-04-01

    Knowledge of the spatial and temporal variability of snowfall in Antarctica and its impact on the Antarctic Ice sheet mass balance is essential to define the impact of the ice sheet on sea level rise. State of the art model projections assess an increase in snowfalls in the next century, but large uncertainties in current estimates prevent a reliable long term forecasts. Moreover, in situ continuous observations of precipitation are rare and sparse over Antarctica due to experimental difficulties and harsh climatic conditions. In order to increase the understandings of snowfall on surface mass balance, a project using a multidisciplinary methodology has been carried out over the Antarctic coastal area of Terra Nova Bay (TNB) the Italian summer Antarctic campaigns of 2015-2016 and 2016-2017. Several summer snowfall events were observed at the Mario Zucchelli station (MZS, 74°41'42″ S, 164°07'23″ E) using a comprehensive set of instruments including: meteorological observations from preexisting automatic weather station (AWS), a celiometer, a laser pluviometer, daily radiosonde profiles (provided by Meteo-Climatological Observatory), a GPS system for columnar water vapor measurements (provided by Geodetic Observatory), two small radar sensors, an infrared pyrometer, a net radiometer. Other instrumentations (AWSs and stake farms), spread over the area, provide observations of snow accumulation and meteorological conditions over the region. During the 2015-2016 summer the precipitation events were concentrated between the end of December and first days of January, while during 2016-2017 snowfalls arise also during November and December. Each event lasted on average from about 12 to 48 hours and was related mainly to large low pressure systems off shore Ross Sea, which established a local instability and/or cyclonic circulation over TNB area. First estimations of total precipitation for the period range between 40 and 60 mm water equivalent depending on

  18. Upwelling along the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, C.S.; Varadachari, V.V.R.

    An examination of the physical characteristics of the shelf waters off Karaikal in the premonsoon period and off Madras and Waltair in the premonsoon and monsoon periods reveals the presence of upwelling along the East Coast of India...

  19. Downscaling to study wave-current interactions in coastal areas: Unstructured grid model simulations in the North and Baltic Seas during a storm surge event

    Science.gov (United States)

    Grashorn, Sebastian; Stanev, Emil V.; Koch, Wolfgang; Zhang, Y. Joseph

    2015-04-01

    Unstructured grid models provide a seamless framework from the global to the coastal scale and thus fully account for the large-scale influence of coastal ocean processes. A two-way coupled model system based on the unstructured grid model SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) and the surface wave model WWM-III (Wind Wave Model) is used to investigate a storm surge event that happened in the North and Baltic Seas in December 2013. SCHISM is an open-source community-supported code based on unstructured triangular grids and is designed for the effective simulation of 3D baroclinic circulation. The model system is forced by data originating from MyOcean products. The results show that the highest effects of the wave-current interactions can be observed along the Dutch, German and Danish coastline. Strong longshore currents and a pronounced surface elevation setup are generated in the Wadden Sea during the storm surge event due to effects of the waves on the current system. The analysis of numerical simulations demonstrated that the significant wave height in coastal areas is substantially affected by the tidal signal and wave-current interaction. The validation against observations justifies the superiority of using a coupled model system when investigating geophysical processes in the coastal areas, especially during storm surge events.

  20. Projected changes in upwelling-favorable winds at the ocean's eastern boundaries systems: large scale and synoptic scale

    Science.gov (United States)

    Aguirre, Catalina; Rojas, Maisa; Garreaud, René

    2017-04-01

    The Eastern Boundary Upwelling Systems (EBUS) maintains high productive fisheries and marine ecosystems. A comprehensive understanding of coastal air-sea interaction, the biogeochemical responses, and mechanisms of climate variability and change at the EBUS has gained importance. The CMIP5 simulations under the rcp85 scenario have showed a poleward displacement of the coastal upwelling-favorable winds in the ocean's eastern boundaries, -associated with a poleward migration of the subtropical atmospheric high-pressure cells. In this work we analyze historical and future simulations (rcp85) of 17 CMIP5 models to investigate the relationship between the large-scale response of the upwelling-favorable winds (through a geostrophic adjustment), with the synoptic scale variability associated to the coastal atmospheric low-level jets during the upwelling season in the Humboldt, Beguela, California and Canarias upwelling systems. Results show that the spatial pattern of the alongshore winds trends is highly consistent with that obtained from geostrophic alongshore winds (calculated from the surface pressure field), indicating the importance of the large-scale signal related to the poleward relocation of the subtropical anticyclones. On the other hand, Kolmogorov-Smirnov tests were applied to assess the statistical significance of the differences in the empirical cumulative distributions between the present and future alongshore winds at different latitudes. At higher latitudes most of the models show a significant different cumulative distribution. In particular, the alongshore wind speed values that in the present day data are in the upper quartile, which are typically associated to mid-latitude synoptic perturbations, increases (decreases) its probability 10%-15% (0%-10%) at higher (lower) latitudes to the end of the century. These results suggest that the poleward migration of the subtropical anticyclones is related with a poleward displacement of the mid

  1. Monitoring the Condition of the Estuaries of the United States: The National Coastal Assessment Experience

    Science.gov (United States)

    Coastal waters in the United States include estuaries, bays, sounds, coastal wetlands, coral reefs, intertidal zones, mangrove and kelp forests, seagrass meadows, and coastal ocean and upwelling areas (i.e. deep water rising to surface). These coastal areas encompass a wide diver...

  2. Surface circulation and upwelling patterns around Sri Lanka

    Science.gov (United States)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2014-10-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean, with the Arabian Sea on its western side and the Bay of Bengal on its eastern side, and experiences bi-annually reversing monsoon winds. Aggregations of blue whale (Balaenoptera musculus) have been observed along the southern coast of Sri Lanka during the northeast (NE) monsoon, when satellite imagery indicates lower productivity in the surface waters. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and numerical simulations using the Regional Ocean Modelling System (ROMS). The model was run for 3 years to examine the seasonal and shorter-term (~10 days) variability. The results reproduced correctly the reversing current system, between the Equator and Sri Lanka, in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the southwest (SW) monsoon transporting 11.5 Sv (mean over 2010-2012) and the westward flowing Northeast Monsoon Current (NMC) transporting 9.6 Sv during the NE monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the southern coast. During the SW monsoon, the island deflects the eastward flowing SMC southward, whilst along the eastern coast, the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the southern coast, resulting from southward flow converging along the southern coast and subsequent divergence associated with the offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the

  3. Does upwelling intensity influence feeding habits and trophic position of planktivorous fish?

    Science.gov (United States)

    Lopez-Lopez, Lucia; Preciado, Izaskun; Muñoz, Isabel; Decima, Moira; Molinero, Juan Carlos; Tel, Elena

    2017-04-01

    Food web configuration is shaped by many factors, including primary production patterns and oceanographic features, such as upwelling events. In this study, we investigate variability in the trophic position, food web interlinks and energy pathways of four planktivorous demersal fish in the Southern Bay of Biscay- NE Atlantic. The study area is exposed to upwelling events of varying intensity and shows a significant spatial gradient along the coast. The two sampling years were characterized by markedly different conditions, with weak summer upwelling in 2012 and an intense upwelling season in 2013. We used a complementary approach based on stomach content analysis (SCA) and stable isotope analysis (SIA) to test the effects of upwelling intensity and persistence on the food-web. In particular we investigated whether different intensities shift the main flow of energy between the pelagic and benthic energy pathways. We found conspicuous interannual changes in the isotopic POM, whose δ15N was 2.5‰ lower during the productive 2013 season. Interannual changes in the isotopic signature of the fish species were also detected, although their values did not mirror variability at the basal level. The SCA results did not match the isotopic changes, which likely reflected dietary adjustments of the species during summer. The upwelling intensity gradient along the coast did not affect the nitrogen isotopic ratio of any group, however there was a significant effect of such gradient on the carbon isotopic ratio of the fish and euphausiid species. This effect was likely related to the higher primary production associated with intense upwelling conditions.

  4. Particle Fluxes and Bulk Geochemical Characterization of the Cabo Frio Upwelling System in Southeastern Brazil: Sediment Trap Experiments between Spring 2010 and Summer 2012

    Directory of Open Access Journals (Sweden)

    ANA LUIZA S. ALBUQUERQUE

    2014-06-01

    Full Text Available Physical and biogeochemical processes in continental shelves act synergistically in both transporting and transforming suspended material, and ocean dynamics control the dispersion of particles by the coastal zone and their subsequent mixing and dilution within the shelf area constrained by oceanic boundary currents, followed by their gradual settling in a complex sedimentary scenario. One of these regions is the Cabo Frio Upwelling System located in a significantly productive area of Southeastern Brazil, under the control of the nutrient-poor western boundary Brazil Current but also with a wind-driven coastal upwelling zone, inducing cold-water intrusions of South Atlantic Central Water on the shelf. To understand these synergic interactions among physical and biogeochemical processes in the Cabo Frio shelf, a series of four experiments with a total of 98 discrete samples using sediment traps was performed from November 2010 to March 2012, located on the 145 m isobath on the edge of the continental shelf. The results showed that lateral transport might be relevant in some cases, especially in deep layers, although no clear seasonal cycle was detected. Two main physical-geochemical coupling scenarios were identified: singular downwelling events that can enhance particles fluxes and are potentially related to the Brazil Current oscillations; and events of significant fluxes related to the intrusion of the 18°C isotherm in the euphotic zone. The particulate matter settling in the Cabo Frio shelf area seems to belong to multiple marine and terrestrial sources, in which both Paraiba do Sul River and Guanabara Bay could be potential land-sources, although the particulate material might subject intense transformation (diagenesis during its trajectory to the shelf edge.

  5. The use of circulation weather types to predict upwelling activity along the Western Iberian Peninsula coast

    Science.gov (United States)

    Ramos, Alexandre M.; Cordeiro Pires, Ana; Sousa, Pedro M.; Trigo, Ricardo M.

    2013-04-01

    Coastal upwelling is a phenomenon that occurs in most western oceanic coasts due to the presence of mid-latitude high-pressure systems that generate equatorward winds along the coast and consequent offshore displacement of surface waters that in turn cause deeper, colder, nutrient-rich waters to arise. In western Iberian Peninsula (IP) the high-pressure system associated to northerly winds occurs mainly during spring and summer. Upwelling systems are economically relevant, being the most productive regions of the world ocean and crucial for fisheries. In this work, we evaluate the intra- and inter-annual variability of the Upwelling Index (UI) off the western coast of the IP considering four locations at various latitudes: Rias Baixas, Aveiro, Figueira da Foz and Cabo da Roca. In addition, the relationship between the variability of the occurrence of several circulation weather types (Ramos et al., 2011) and the UI variability along this coast was assessed in detail, allowing to discriminate which types are frequently associated with strong and weak upwelling activity. It is shown that upwelling activity is mostly driven by wind flow from the northern quadrant, for which the obtained correlation coefficients (for the N and NE types) are higher than 0.5 for the four considered test locations. Taking into account these significant relationships, we then developed statistical multi-linear regression models to hindcast upwelling series (April to September) at the four referred locations, using monthly frequencies of circulation weather types as predictors. Modelled monthly series reproduce quite accurately observational data, with correlation coefficients above 0.7 for all locations, and relatively small absolute errors. Ramos AM, Ramos R, Sousa P, Trigo RM, Janeira M, Prior V (2011) Cloud to ground lightning activity over Portugal and its association with Circulation Weather Types. Atmospheric Research 101:84-101. doi: 10.1016/j.atmosres.2011.01

  6. Changes in the partial pressure of carbon dioxide in the Mauritanian–Cap Vert upwelling region between 2005 and 2012

    Directory of Open Access Journals (Sweden)

    M. González-Dávila

    2017-08-01

    Full Text Available Coastal upwellings along the eastern margins of major ocean basins represent regions of large ecological and economic importance due to the high biological productivity. The role of these regions for the global carbon cycle makes them essential in addressing climate change. The physical forcing of upwelling processes that favor production in these areas are already being affected by global warming, which will modify the intensity of upwelling and, consequently, the carbon dioxide cycle. Here, we present monthly high-resolution surface experimental data for temperature and partial pressure of carbon dioxide in one of the four most important upwelling regions of the planet, the Mauritanian–Cap Vert upwelling region, from 2005 to 2012. This data set provides direct evidence of seasonal and interannual changes in the physical and biochemical processes. Specifically, we show an upwelling intensification and an increase of 0.6 Tg yr−1 in CO2 outgassing due to increased wind speed, despite increased primary productivity. This increase in CO2 outgassing together with the observed decrease in sea surface temperature at the location of the Mauritanian Cap Blanc, 21° N, produced a pH rate decrease of −0.003 ± 0.001 yr−1.

  7. Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling.

    Science.gov (United States)

    Auger, P A; Machu, E; Gorgues, T; Grima, N; Waeles, M

    2015-02-01

    A Lagrangian approach based on a physical-biogeochemical modeling was used to compare the potential transfer of cadmium (Cd) from natural and anthropogenic sources to plankton communities (Cd-uptake) in the North-West African upwelling. In this region, coastal upwelling was estimated to be the main natural source of Cd while the most significant anthropogenic source for marine ecosystem is provided by phosphate industry. In our model experiment, Cd-uptake (natural or anthropogenic) in the North-West African upwelling is the result of an interplay between the Cd dispersion (by advection processes) and the simulated biological productivity. In the Moroccan waters, advection processes limit the residence time of water masses resulting in a low natural Cd-uptake by plankton communities while anthropogenic Cd-uptake is high. As expected, the situation is reversed in the Senegalo-Mauritanian upwelling where natural Cd-uptake is higher than anthropogenic Cd-uptake. Based upon an estimate of Cd sources, our modeling study shows, unexpectedly, that the anthropogenic signal of potential Cd-bioaccumulation in the Moroccan upwelling is of the same order of magnitude as the natural signal mainly present in the Senegalo-Mauritanian upwelling region. A comparison with observed Cd levels in mollusk and fishes, which shows overall agreement with our simulations, is confirming our estimates. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Comparative study of potential transfer of natural and anthropogenic cadmium to plankton communities in the North-West African upwelling

    Energy Technology Data Exchange (ETDEWEB)

    Auger, P.A., E-mail: pierreamael.auger@gmail.com [Laboratoire de Physique des Océans (LPO), UMR-CNRS 6523/IFREMER/IRD/UBO, BP70, 29280 Plouzané (France); Machu, E.; Gorgues, T.; Grima, N. [Laboratoire de Physique des Océans (LPO), UMR-CNRS 6523/IFREMER/IRD/UBO, BP70, 29280 Plouzané (France); Waeles, M. [Université de Bretagne Occidentale (UBO), Laboratoire de l' Environnement Marin (LEMAR), UMR-CNRS 6539/IRD/UBO, place N. Copernic, 29280 Plouzané (France)

    2015-02-01

    A Lagrangian approach based on a physical–biogeochemical modeling was used to compare the potential transfer of cadmium (Cd) from natural and anthropogenic sources to plankton communities (Cd-uptake) in the North-West African upwelling. In this region, coastal upwelling was estimated to be the main natural source of Cd while the most significant anthropogenic source for marine ecosystem is provided by phosphate industry. In our model experiment, Cd-uptake (natural or anthropogenic) in the North-West African upwelling is the result of an interplay between the Cd dispersion (by advection processes) and the simulated biological productivity. In the Moroccan waters, advection processes limit the residence time of water masses resulting in a low natural Cd-uptake by plankton communities while anthropogenic Cd-uptake is high. As expected, the situation is reversed in the Senegalo-Mauritanian upwelling where natural Cd-uptake is higher than anthropogenic Cd-uptake. Based upon an estimate of Cd sources, our modeling study shows, unexpectedly, that the anthropogenic signal of potential Cd-bioaccumulation in the Moroccan upwelling is of the same order of magnitude as the natural signal mainly present in the Senegalo-Mauritanian upwelling region. A comparison with observed Cd levels in mollusk and fishes, which shows overall agreement with our simulations, is confirming our estimates. - Highlights: • We model the physical–biogeochemical dynamics in the North-West African upwelling. • We model the transport of cadmium from natural and anthropogenic sources. • We derive proxies of potential cadmium absorption and bioaccumulation in the plankton food chain. • The anthropogenic signal off Morocco at least equals the natural upwelling signal off Mauritania. • We compare our results with observed cadmium levels in mollusks and fishes.

  9. Spatial variability of Spanish sardine (Sardinella aurita) abundance as related to the upwelling cycle off the southeastern Caribbean Sea

    Science.gov (United States)

    Cárdenas, Juan José; Achury, Alina; Astor, Yrene

    2017-01-01

    The Sardinella aurita fishery off northeastern Venezuela, region of seasonal wind-driven coastal-upwelling, accounts for 90% of the Caribbean Sea small pelagic catch. This law-protected artisanal fishery takes place up to ~10 km offshore. The spatial distribution, number of schools, and biomass of S. aurita were studied using eight hydro-acoustic surveys (1995–1998). The study included the analysis of satellite-derived sea surface temperature and chlorophyll-a. Surveys were grouped by strong, weak, and transitional upwelling seasons. Relationships between these observations were analyzed using Generalized Additive Models. Results show that during the primary upwelling season (January-May) sardines were widely distributed in upwelling plumes that extended up to 70 km offshore. In the other hand, during the weak upwelling season (September-October) higher sardine densities were found within 10 Km off the coastal upwelling foci. The number of small pelagic schools was directly correlated with small pelagic densities; however, regardless of the season, higher numbers of small pelagic schools were always closer to the shoreline, especially during warm conditions. These two behaviors increase the availability and catchability of sardines for the artisanal fishery during the warm season, regardless of the total stock size. Using this evidence, we pose the hypothesis that the collapse of the regional S. aurita fishery in 2005 was due to a combination of stressful habitat conditions sustained since 2004. These included bottom-up factors due to food scarcity caused by weak upwelling, combined with top-down stress due to overfishing, as sardines accumulated in narrow diminished upwelling plumes located close to the coast. The increased catchability within easily accessible upwelling foci led to the demise of this biological resource, which as of 2014 had not yet recovered. Environmental conditions affecting the sardine habitat needs to be taken into account for the

  10. Dynamics of plankton populations in upwelling areas

    Science.gov (United States)

    Szekielda, K. H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Spectral properties of the upwelled waters off the NW coast of Africa were studied with observations derived from aircraft and Skylab. Results indicate that the two-channel, ratio approach is ineffective in determining surface chlorophyll concentrations. Ocean color boundaries and temperature gradients were found to be directly correlated with each other and also with fishing effort in the upwelling region. Photographic and scanner data derived from Skylab were effective in locating ocean boundaries and mapping temperature distributions.

  11. Climate change and ocean deoxygenation within intensified surface-driven upwelling circulations

    Science.gov (United States)

    Bakun, Andrew

    2017-08-01

    Ocean deoxygenation often takes place in proximity to zones of intense upwelling. Associated concerns about amplified ocean deoxygenation arise from an arguable likelihood that coastal upwelling systems in the world's oceans may further intensify as anthropogenic climate change proceeds. Comparative examples discussed include the uniquely intense seasonal Somali Current upwelling, the massive upwelling that occurs quasi-continuously off Namibia and the recently appearing and now annually recurring `dead zone' off the US State of Oregon. The evident `transience' in causal dynamics off Oregon is somewhat mirrored in an interannual-scale intermittence in eruptions of anaerobically formed noxious gases off Namibia. A mechanistic scheme draws the three examples towards a common context in which, in addition to the obvious but politically problematic remedy of actually reducing `greenhouse' gas emissions, the potentially manageable abundance of strongly swimming, finely gill raker-meshed small pelagic fish emerges as a plausible regulating factor. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  12. Climate change and ocean deoxygenation within intensified surface-driven upwelling circulations.

    Science.gov (United States)

    Bakun, Andrew

    2017-09-13

    Ocean deoxygenation often takes place in proximity to zones of intense upwelling. Associated concerns about amplified ocean deoxygenation arise from an arguable likelihood that coastal upwelling systems in the world's oceans may further intensify as anthropogenic climate change proceeds. Comparative examples discussed include the uniquely intense seasonal Somali Current upwelling, the massive upwelling that occurs quasi-continuously off Namibia and the recently appearing and now annually recurring 'dead zone' off the US State of Oregon. The evident 'transience' in causal dynamics off Oregon is somewhat mirrored in an interannual-scale intermittence in eruptions of anaerobically formed noxious gases off Namibia. A mechanistic scheme draws the three examples towards a common context in which, in addition to the obvious but politically problematic remedy of actually reducing 'greenhouse' gas emissions, the potentially manageable abundance of strongly swimming, finely gill raker-meshed small pelagic fish emerges as a plausible regulating factor.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  13. Impact of flash flood events on the distribution of organic pollutants in surface sediments from a Mediterranean coastal lagoon (Mar Menor, SE Spain).

    Science.gov (United States)

    León, V M; Moreno-González, R; García, V; Campillo, J A

    2017-02-01

    The influence of flash flood events on the input and distribution of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorinated pesticides (OCPs) in surface sediments from the Mar Menor lagoon were characterized in this study. These contaminants were analyzed in surface water samples collected during two flash flood events in the main surface watercourse which flow into the Mar Menor lagoon. Surface sediments were sampled semiannually before and after flash flood events. The total input of PAHs, OCPs, and PCBs (sorbed + dissolved) during two flash flood events was estimated at 0.98, 1.32, and 0.34 kg, respectively, the main input corresponding to p,p'-DDE (1.00 kg). The distribution of organic contaminants in surface sediments was not homogeneous as a consequence of the presence of many simultaneous sources and different meteorological, hydrodynamic, and physicochemical conditions. As a consequence of flash flood events, p,p'-DDE concentrations in surface sediments increased significantly in the central and south zones of the lagoon. However, in the case of PCBs, a dilution effect was observed in the south zone after such events, reducing the environmental risk. These changes in the pollutant distribution persisted at least 1 year later (autumn 2010), showing that the impact of flood events in the distribution of persistent organic contaminants in Mediterranean coastal lagoons is of relevance according to the ecological risk assessment carried out. The impact of these events should be also considered in other coastal systems, especially in semiarid and semiconfined areas.

  14. Although most of the phytoplankton of the Benguela upwelling ...

    African Journals Online (AJOL)

    spamer

    the vicinity of the upwelling front, which is displaced from the coast during the active phase of upwelling. There, increased ... warm, near-surface water corresponds to the onshore movement of the upwelling front and will often be .... picked up from dark-red water after being found swimming with their heads above the water, ...

  15. Characteristics of the Norwegian Coastal Current during Years with High Recruitment of Norwegian Spring Spawning Herring (Clupea harengus L..

    Directory of Open Access Journals (Sweden)

    Øystein Skagseth

    Full Text Available Norwegian Spring Spawning herring (NSSH Clupea harengus L. spawn on coastal banks along the west coast of Norway. The larvae are generally transported northward in the Norwegian Coastal Current (NCC with many individuals utilizing nursery grounds in the Barents Sea. The recruitment to this stock is highly variable with a few years having exceptionally good recruitment. The principal causes of recruitment variability of this herring population have been elusive. Here we undertake an event analysis using data between 1948 and 2010 to gain insight into the physical conditions in the NCC that coincide with years of high recruitment. In contrast to a typical year when northerly upwelling winds are prominent during spring, the years with high recruitment coincide with predominantly southwesterly winds and weak upwelling in spring and summer, which lead to an enhanced northward coastal current during the larval drift period. Also in most peak recruitment years, low-salinity anomalies are observed to propagate northward during the spring and summer. It is suggested that consistent southwesterly (downwelling winds and propagating low-salinity anomalies, both leading to an enhanced northward transport of larvae, are important factors for elevated recruitment. At the same time, these conditions stabilize the coastal waters, possibly leading to enhanced production and improved feeding potential along the drift route to Barents Sea. Further studies on the drivers of early life history mortality can now be undertaken with a better understanding of the physical conditions that prevail during years when elevated recruitment occurs in this herring stock.

  16. Long and Short Term Variability of the Main Physical Parameters in the Coastal Area of the SE Baltic Proper

    Science.gov (United States)

    Mingelaite, Toma; Rukseniene, Viktorija; Dailidiene, Inga

    2015-04-01

    Keywords: SE Baltic Sea, coastal upwelling, IR Remote Sensing The memory of the ocean and seas of atmospheric forcing events contributes to the long-term climate change. Intensifying climate change processes in the North Atlantic region including Baltic Sea has drawn widespread interest, as a changing water temperature has ecological, economic and social impact in coastal areas of the Europe seas. In this work we analyse long and short term variability of the main physical parameters in the coastal area of the South Eastern Baltic Sea Proper. The analysis of long term variability is based on monitoring data measured in the South Eastern Baltic Sea for the last 50 years. The main focus of the long term variability is changes of hydro meteorological parameters relevant to the observed changes in the climate.The water salinity variations in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon, a shallow and enclosed sub-basin of the Baltic Sea, were analysed along with the time series of some related hydroclimatic factors. The short term water temperature and salinity variations were analysed with a strong focus on coastal upwelling events. Combining both remote sensing and in situ monitoring data physical parameters such as vertical salinity variations during upwelling events was analysed. The coastal upwelling in the SE Baltic Sea coast, depending on its scale and intensity, may lead to an intrusion of colder and saltier marine waters to the Curonian Lagoon resulting in hydrodynamic changes and pronounced temperature drop extending for 30-40 km further down the Lagoon. The study results show that increasing trends of water level, air and water temperature, and decreasing ice cover duration are related to the changes in meso-scale atmospheric circulation, and more specifically, to the changes in regional and local wind regime climate. That is in a good agreement with the increasing trends in local higher intensity of westerly winds, and with the winter

  17. Mesoscale variability and nutrient-phytoplankton distributions off central-southern Chile during the upwelling season: The influence of mesoscale eddies

    Science.gov (United States)

    Morales, Carmen E.; Hormazabal, Samuel; Correa-Ramirez, Marco; Pizarro, Oscar; Silva, Nelson; Fernandez, Camila; Anabalón, Valeria; Torreblanca, M. Loreto

    2012-10-01

    Mesoscale features are recurrently found in the Coastal Transition Zone (CTZ) off central-southern Chile (∼35-40°S), a region characterized by seasonal wind-driven coastal upwelling. In this study, oceanographic data from two consecutive cruises carried out during the upwelling season (January 2009) were combined with satellite time series data in order to characterize the structure and evolution of mesoscale eddies and to explore their influence on phytoplankton structure and nutrient distribution, in the context of organic carbon exchanges between the coastal upwelling zone and the CTZ. Two coastally-generated, contiguous mesoscale eddies (∼2 months old) were characterized: a surface cyclonic eddy (CC1) and a subsurface anticyclonic eddy (AA1). The distributions of salinity and dissolved oxygen, together with nutrients, suggested that both eddies were sites of vertical injection of high nutrient concentrations from the Equatorial Subsurface Water mass (ESSW) into the upper layer in the CTZ. In addition, eddy AA1, in combination with an upwelling plume, was involved in the offshore advection of nutrients from the core of the ESSW located in the coastal zone. At shallow depths (CTZ.

  18. Investigation of vegetation-induced drag parameterizations for natural and nature-based extreme events coastal protection in the Chesapeake Bay

    Science.gov (United States)

    Maldonado, S.; Suckale, J.; Ferreira, C.; Arkema, K.

    2016-12-01

    Increasing intensity and frequency of extreme meteorological events around the world highlight the need for resilient coastal defenses. For more than a century, it has been recognized that coastal ecosystems such as marshes and mangroves may mitigate the damage caused by natural hazards such as storms. Aquatic vegetation can potentially attenuate waves and currents through drag forces, with strong implications for sediment transport processes and hence morphological evolution. However, although observations exist that support such a theory, an accurate quantification of the protective role of coastal ecosystems remains a standing challenge for the scientific community, which manifests itself in the large, diverse set of available empirical expressions for parameterizing the fluid-vegetation interaction. We propose a comparison of different state-of-the-art parameterizations for the effect of vegetation on hydrodynamics (particularly, the drag coefficient), with varying degrees of complexity and number of required input variables. The inter-comparison of such alternatives, when validated against field data, can lead to a modeling framework that optimizes the trade-offs between complexity, input requirements and uncertainty in the results. We focus our numerical study on storm events in the marshes and wetlands of Chesapeake Bay. We simulate the hydrodynamics via the Non-Linear Shallow Water Equations, which are in turn solved numerically through a Finite Volume scheme. The simulations are complemented by an ongoing 2-years field campaign, where we continuously collect hydrodynamic measurements such as free surface elevation and vertical velocity profiles, biophysical characteristics of the vegetation and high-resolution topo-bathymetric data of the site. Field measurements are used for calibration and validation purposes. We also investigate some implications on sediment transport processes. We expect that results from our study can support policy makers and

  19. Effects of structural factors on upwelling fouling community, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    Bruno Pereira Masi

    Full Text Available Abstract To assess the successional pattern of fouling organisms three hypotheses were tested: 1 a thermocline is caused by seasonal upwelling events, and therefore, depth influences the successional trajectory of the fouling community; 2 a reduction in the intensity of natural light of the substrate influences the fouling composition and the successional trajectory; 3 fish predation influences the community composition and its successional trajectory. During one year, up-facing and down-facing PVC panels on open, partially caged or fully caged, and placed at depths of 1.5 and 3.5 meters were monthly sampled by digital photograph to determine the community composition and by contact point to estimate the percent coverage of organisms. The upwelling impact provided different water masses, and light intensity was also a determining factor of the overall successional trajectory of the fouling community. After the installation of full and partial cages, differences were identified in the respective successional trajectories. The results of this study suggest that each physical factor or biological process can change the successional trajectory of the community, and the successional model (e.g., convergent, divergent, parallel, or cyclic depends on the magnitudes of the determinants that act on the community at each stage of its trajectory.

  20. Regional Risk Assessment for the analysis of the risks related to storm surge extreme events in the coastal area of the North Adriatic Sea.

    Science.gov (United States)

    Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge

  1. Human-mediated drivers of change — impacts on coastal ...

    African Journals Online (AJOL)

    A growing body of evidence indicates that local air and sea temperatures, wind patterns, ocean current speed and upwelling regimes are all being affected by human-mediated climate change. In addition, anthropogenic activities, such as shipping (introducing coastal bioinvasives), exploitation of coastal marine resources, ...

  2. Holocene Evolution of two Upwelling Systems - Offshore Northern California and the Central Gulf of California

    Science.gov (United States)

    Barron, J. A.; Bischoff, J. L.; Bukry, D.; Heusser, L.; Herbert, T. D.; Lyle, M.

    2002-12-01

    High resolution records from offshore northern California \\(ODP 1019\\) and the central Gulf of California \\(DSDP 480 and BAM80 E17\\) reveal both similarities and differences in the Holocene evolution of these upwelling systems. Common themes include: 1\\ ) an earlier Holocene period \\(11.6-8.2 ka\\) with relatively high calcium carbonate deposition, probably reflecting a maximum in summer insolation; 2\\ ) increasing diatom deposition during the middle and late Holocene, likely signaling an intensification of seasonal northwest winds; and 3\\ ) the onset of modern oceanic conditions between 3.5 and 3.2 ka, possibly associated with the expression of increasing ENSO variability. At ODP 1019 off northern California, cooler alkenone-based SST's and the rarity of the subtropical-diatom Pseudoeunotia doliolus suggest that the California Current was rather broad during the middle part of the Holocene \\(ca. 8.2-3.2 ka\\), perhaps similar to the conditions that exist during a modern La Niña. Decreasing wt. % CaCO3 relatively low, but increasing wt. % organic C, and low to moderate estimated opal content typify this middle Holocene interval. Beginning at 5.2 ka, increasing coastal redwood pollen is evidence that coastal fog and coastal upwelling were becoming more important. Subsequently, at ca. 3.5 ka, a doubling of estimated opal coupled with increased coastal redwood pollen suggests a further enhancement of seasonal coastal upwelling. At about the same time \\(ca. 3.2 ka\\), a sustained ca. 1 deg. C increase in alkenone SST and 3-fold increase in P. doliolus imply warming of fall and winter SST's. An enhancement of the interannual variability of surface water conditions at this time is probably associated with an increasing expression of ENSO variability. In the central Gulf of California between ca. 11.0 and 8.2 ka, biosilica production was generally low compared to that of the latest Holocene, suggesting that wintertime NW winds were relatively weak. Stepwise

  3. Initial observation of upwelling along east coast of Peninsular Malaysia musica-gratis.softonic.it/ >musica gratis

    Science.gov (United States)

    Akhir, M.; Tanggang, F.

    2013-12-01

    There is no published evidence of upwelling in coastal area along the east coast of Peninsular Malaysia. However numbers of recent cruise data collected during the southwest monsoon found features of thermocline lifting and isolated cooler temperature water along the coast, These sign was observed along the 104°E from numbers of parallel transects. To confirm the presence of upwelling, satellite remote sensing data was used, and numerical model experiments were conducted. Cooler sea-surface temperature along the coast was observed from both in-situ and satellite data, while upward movement in the vertical profiles agreed with the location of upwelling from both in-situ and satellite data. Moreover, these data also show that the upwelled water band along the 104°E longitude stretch approximately 650 km long. Initially, southwesterly wind during this season is believed to be the important mechanism that contributed to this wind-induced Ekman upwelling. musica-gratis.softonic.it/ >musica gratis

  4. A study on the seasonal variability of upwelling and its effects on physical parameters in Arabian Sea

    Science.gov (United States)

    Shukla, Rohit Kumar; Shaji, Chithra; Ojha, Satya P.; Kumar, Pankaj

    2017-04-01

    The upwelling in Arabian Sea is an important phenomenon, mainly occurring along the southwest coast of India during summer monsoon, which increases the biological productivity in the region. The south west coast of Arabian sea region accounts for about 53% of fish yield of the total fish production in Arabian Sea, thus it is imperative to study and understand the process of upwelling in this region. To study the upwelling features in southwest coast of India, monthly Ekman mass transport is estimated using analyzed wind and derived products from Oceansat-II scatterometer data. Seasonal variability of Ekman mass transport has been analyzed to study the occurrences of coastal upwelling in this region. Results show prominent region of upwelling along southwest coast of India is between 7° and 15° N. Transport estimate demonstrate that the strong offshore Ekman mass transport, as high as -2000 kg/m/s, was observed during summer monsoon months due to favorable wind conditions. Very weak offshore transport, as low as -200 kg/m/s, was observed during pre-monsoon months as winds were weak and spatially variable. Moderate offshore transport, up to -750 kg/m/s, was observed during winter monsoon months. The upwelling associated ocean surface features such as Sea-surface temperature (SST, from AVHRR), chlorophyll concentration (AQUA-MODIS), wind stress curl derived from Oceansat-II and sea surface salinity (SSS, from Aquarius) were examined to demonstrate the spatial and temporal evolution of upwelling in this region. With the advancement of the summer monsoon and upwelling, the monthly mean SST range reaches up to 26-27°C (August - September) from about 29-30°C (April - May). The monthly mean Chlorophyll concentration reaches up to 25-30 mg/m3 (August-September) from 0.1-0.2 mg/m3 (January-February). The monthly SSS which was observed to be about 34 psu (December 2102- January 2013) reaches to 36.5 psu (August-September). Analysis of SST from different sources suggests

  5. Biogenic vanadium in total suspended particulate matter from Cabo Frio upwelling region, Southeast, Brazil

    Science.gov (United States)

    Sella, Silvia M.; Neves, Alessandra F.; Moreira, Josino Costa; Silva-Filho, Emmanoel V.

    In this work total suspended particulate (TSP) was collected during a year, in two municipalities located in a coastal region of Rio de Janeiro State, Southeast, Brazil, from February 2004 to January 2005. Two sites were chosen: site 1 located in front of the sea and representative of sea salt spray influence; site 2 in a tall booth of a highway representing vehicle exhaust influence. Samples were collected in glass fibre filters using Hi-Vol samplers and stored. 1/8 of those loaded filters were cut and digested in a microwave oven. The extract obtained was used to determine metal Ca, Cu, Mo, Mn, Ti, V, Zn and K concentration in the atmosphere. The results showed that TSP levels in site 1 (23.1-659 μg m -3) was higher than in site 2 (24.5-55.6 μg m -3) due to marine aerosol which is responsible for particle emissions with higher diameter. Vanadium was the only element studied whose concentration were higher in site 1 (0.840-20.9 ng m -3) compared to site 2 (0.655-7.07 ng m -3). The highest vanadium concentrations in site 1 were obtained during upwelling events, with NE winds predominance at high speed, which indicates the influence of this phenomena in V presence in the atmosphere. Principal components analysis was able to identify atmospheric particulate sources distributed in four factors. In site 1, those factors explain 86.5% of total data variance and indicate two sources: continental and marine. In site 2, those factors explain 89.2% of total data variance and indicate that vehicle exhaust is the main metals source in the atmosphere.

  6. Increased SST and Frequent Occurrence of Rough Sea Events in the Bay of Bengal: Implications for livelihoods of Coastal Populace in Bangladesh (Invited)

    Science.gov (United States)

    Ahmed, A. U.

    2010-12-01

    safe cultivation’ opportunities since the 1960s. With the increased frequency of rough sea events and high energy wave interactions, combined with poor management of embankments, there have been repeated incidences of embankment failure, erosion and subsequent saline inundation. Such events generally wreck havoc in the affected areas, while crop lands suddenly become unsuitable for cropping, thereby devastating farming-based livelihoods. Climate change and sea level rise have already posed significant risks to coastal livelihoods in Bangladesh. Farming and capture fisheries are the two most dominant forms of livelihoods along the coastal zone. Both forms of livelihoods are now facing tremendous challenges. Due to successive crop loss and losses incurred from abandoned fishing trips, not only that people has become significantly indebted to local money-lenders, a social survey revealed that the poor in general are contemplating out migration to find alternative livelihoods in urban areas. Meanwhile the government has been investing large amounts to run social safety net programs. The economic and social toll of adapting to climate change is becoming much higher than estimated earlier.

  7. An annually-resolved palaeoenvironmental archive for the Eastern Boundary North Atlantic upwelling system: Sclerochronology of Glycymeris glycymeris (Bivalvia) shells from the Iberian shelf

    Science.gov (United States)

    Freitas, Pedro; Monteiro, Carlos; Butler, Paul; Reynolds, David; Richardson, Christopher; Gaspar, Miguel; Scourse, James

    2015-04-01

    The seasonally variable western Iberia upwelling system, albeit placed at a crucial climatic boundary position to record high frequency climate events, lacks well-dated high-resolution records of environmental variability. Bivalve shells provide robust high-resolution archives of oceanographic and climatic variability on timescales of decades to millennia. In particular, the North Atlantic Ocean region has recently seen several noteworthy sclerochronological and geochemical reconstructions based on bivalve shells (mainly Arctica islandica) of high frequency oceanographic and climatic conditions during the last millennium. However, due to the absence of Arctica islandica and similarly long-lived bivalves, sclerochronological palaeoenvironmental studies of southern European coastal shelf seas are scarce. In particular, none of these studies focus on reconstructing the variability of an eastern boundary upwelling system. The relatively long-lived bivalve (>100 years) Glycymeris glycymeris occurs in European and North West African coastal shelf seas and provides a valid annually resolved archive of environmental conditions during growth. Annual growth increment width series from living G. glycymeris shells, collected in 2014 on the western Iberian continental shelf (ca. 35 m water depth), were used to construct a statistically robust, ca. 70-year long absolutely-dated chronology. Sub-annually resolved (11 to 22 samples per year) oxygen stable isotope (δ18Oshell) data covering three years of shell growth, together with the direct evaluation of the time of growth mark deposition in shells collected during the autumn and winter months, were used to constrain the season of growth and to evaluate the seasonal bias of the sea-surface temperature signal preserved in the δ18Oshelldata. The growth increment width and δ18Oshell series, once robustly calibrated against modelled and instrumental oceanographic and climatic series, potentially provide novel insights into the

  8. UPWELLING EVENT IN THE DRY TORTUGAS DURING MAY 1998

    Science.gov (United States)

    A major macro-algae bloom was observed during a coral disease survey in May 1998 in the Dry Tortugas and New Grounds region. The significant algal growth was found only on the outer slope of reefs in depths greater than 25'; the algal bloom was not present on shallow reefs. The a...

  9. High-resolution reconstruction of extreme storm events over the North Sea during the Late Holocene: inferences from aeolian sand influx in coastal mires, Western Denmark.

    Science.gov (United States)

    Goslin, Jerome; Clemmensen, Lars B.

    2017-04-01

    Possessing long and accurate archives of storm events worldwide is the key for a better understanding of the atmospheric patterns driving these events and of the response of the coastal systems to storms. To be adequately addressed, the ongoing and potential future changes in wind regimes (including in particular the frequency and magnitude of storm events) have to be replaced in the context of long-time records of past storminess, i.e. longer than the century-scale records of instrumental weather data which do not allow the calculation of reliable return periods. During the last decade, several Holocene storminess chronologies have been based on storm-traces left by aeolian processes within coastal lakes, mires and peat bogs, (e.g. Björck and Clemmensen, 2004; De Jong et al., 2006; Clemmensen et al., 2009; Nielsen et al.; 2016; Orme et al., 2016). These data have shown to adequately complement the records which can be derived from the study of records related to wave-induced processes including e.g. washover deposits. Previous works along the west coast of Jutland, Denmark have revealed four main periods of dune building during the last 4200 yrs (Clemmensen et al., 2001; 2009). These were shown to be in phase with periods of climate deterioration (cold periods) recognized elsewhere in Europe and the North Atlantic region and suggest periods of increased aeolian activity. Yet, doubts remain on whether these periods where characterized by several big short-lived storm events or rather by an overall increase in wind energy. This study aims at constructing a high-resolution (centennial to multi-decadal) history of past storminess over the North Sea for the last millenaries. Plurimeter sequences of peat and gyttja have been retrieved from two coastal mires and were analyzed for their sand content. The quartz grains were systematically counted within centimetric slices (Aeolian Sand Influx method, Björck & Clemmensen, 2004), while the palaeo-environmental context and

  10. Larval fish assemblages across an upwelling front: Indication for active and passive retention

    Science.gov (United States)

    Tiedemann, Maik; Brehmer, Patrice

    2017-03-01

    In upwelling areas, enrichment, concentration and retention are physical processes that have major consequences for larval fish survival. While these processes generally increase larval survival, strong upwelling can also increase mortality due to an offshore transport of larvae towards unfavorable habitats. In 2013 a survey was conducted along the Senegalese coast to investigate the upwelling effect with regard to larval fish assemblages and possible larval fish retention. According to water column characteristics two distinct habitats during an upwelling event were discriminated, i.e. the inshore upwelled water and the transition area over the deepest part of the Senegalese shelf. Along the two areas 42,162 fish larvae were collected representing 133 species within 40 families. Highest larval fish abundances were observed in the inshore area and decreasing abundances towards the transition, indicating that certain fish species make use of the retentive function of the inner shelf area as spawning grounds. Two larval fish assemblages overlap both habitats, which are sharply delimited by a strong upwelling front. One assemblage inhabited the inshore/upwelling area characterized by majorly neritic and pelagic species (Sparidae spp., Sardinella aurita), that seem to take the advantage of a passive retention on the shelf. The second assemblage consisted of a mix of pelagic and mesopelagic species (Engraulis encrasicolus, Carangidae spp. and Myctophidae spp.). Some species of the second assemblage, e.g. horse mackerels (Trachurus trachurus and Trachurus trecae), large finned-lantern fish (Hygophum macrochir) and foureyed sole (Microchirus ocellatus), revealed larval peak occurrences at intermediate and deep water layers, where the near-ground upwelling layer is able to transport larvae back to the shelf. This indicates active larval retention for species that are dominant in the transition area. Diel vertical migration patterns of S. aurita, E. encrasicolus and M

  11. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  12. Vertical distribution of fish larvae in the Canaries-African coastal transition zone, in summer

    OpenAIRE

    J. M. Rodríguez; Hernández León, Santiago; Barton, Eric D

    2006-01-01

    This study reports the vertical distribution of fish larvae during the 1999 summer upwelling season in the Canaries-African Coastal Transition Zone (the Canaries-ACTZ). The transition between the African coastal upwelling and the typical subtropical offshore conditions is a region of intense mesoscale activity that supports a larval fish population dominated by African neritic species. During the study, the thermal stratification extended almost to the surface everywhere, and the surface mixe...

  13. Competition between Orography and SST in Creating Mesoscale Wind Anomalies in Subtropical Upwelling Zones

    Science.gov (United States)

    Hall, A. D.; Boe, J.; Colas, F.; Kurian, J.; McWilliams, J. C.; Kapnick, S. B.; Qu, X.

    2009-12-01

    Observational studies have shown that mesoscale variations in sea surface temperature may induce small-scale variations in wind. In eastern subtropical upwelling regions such as the Peru or California coasts, this coupling mechanism is mostly not captured by coupled models. Yet it could be of great importance for the evolution of the upwelling system and the coastal climate state. An additional element of complexity in these regions is the fact that coastal orography is also responsible for small-scale variations in wind, and the orographic effect may extend more than 100 km offshore. The respective roles of SST and coastal orography in shaping mesoscale wind variations in nearshore regions is not clear. This issue is difficult to address from a strictly observational point of view because the impossibility of completely separating the two mechanisms in limited observational data-sets. In this study, we use a high-resolution regional numerical modeling system coupling the WRF atmospheric model to the ROMS oceanic model, as well as additional uncoupled experiments to separate the effects of SST/wind coupling and coastal orography on small-scale wind variations. The experimental design allows the respective roles of SST/wind coupling and coastal orography on small-scale wind variations in the nearshore region to be quantified and compared. Even taking into account potential biases in the representation of the strength of the SST/ wind coupling by the model, our results suggest a dominant role for orography in small-scale wind variations within 100 km of the shore.

  14. Reconstruction of hazard-related geomorphic events from mixed-volcanoclastic sequences in the Campanian coastal area (Eastern Tyrrhenian Sea)

    Science.gov (United States)

    Violante, Crescenzo; Esposito, Eliana; Molisso, Flavia; Porfido, Sabina; Sacchi, Marco

    2010-05-01

    Sudden emplacement of large amount of pyroclastic material from explosive eruptions represents a significant interference with the geomorphic system, both for inland and coastal areas. Large volcanocalstic activity can induce sediment overburden and consequent return to the equilibrium profile by means of land degradation and erosional processes. Volcaniclastic resedimentation and generation of mass flows and floods are common phenomena affecting wide areas near the volcanic vents, occurring either soon after volcanic eruptions and during inter-eruption periods. In volcanic coastal areas volcanic debris can enter the sea in the form of avalanche deposits, hyper-concentrated flows or as the underwater continuation of subaerial flows and surges. Rapid accumulation at sea of tephra deposits from explosive eruptions can led to seafloor failure or act as weak layers for successive gravity deformations. Yet, part of volcaniclastic material can be stored in the catchments and be available for erosion a long time after an eruption. In the study area sediment availability strictly relate to massive and intermittent volcaniclastic delivery, largely responsible for aggradation/progradation of the coastal area during the Quaternary. The discussed hazard-related sedimentary features include large aprons of avalanche deposits off volcanic structures, steep sedimentary progradations at mouth of bedrock streams and small rivers, sediment re-mobilization in pro-delta areas, and shallow slides. Marine geophysical surveys and sea-land correlations led to associate such features with volcanic processes including the Mt. Epomeo uplift at Ischia island, the collapse of the Somma-Vesuvius caldera and the emplacement of pyroclastics from Phlegrean Fields and Somma-Vesuvius.

  15. Oxygen cycling in the northern Benguela Upwelling System: Modelling oxygen sources and sinks

    Science.gov (United States)

    Schmidt, Martin; Eggert, Anja

    2016-12-01

    This paper elucidates the oxygen dynamics in the northern Benguela Upwelling System by means of process oriented, numerical modelling. Owing to the complex physical-biological interaction in this system, a coupled hydrodynamic-biogeochemical model is required to grasp the various aspects of the oxygen dynamics. We used high-resolution atmospheric fields derived from observations to force our model, available since 1999. The model results represent a 15 years, consistent data set of realistic hydrographic and ecosystem variables, including oxygen distribution patterns. After a concise description of the main aspects of the model, we use the model data to analyse the components contributing to the oxygen dynamics, namely, the ocean circulation, the exchange between ocean and atmosphere as well as the local biogeochemical oxygen cycling in the system. We thoroughly validate the model with available field observations and remote sensing data. The strengths of coastal upwelling, which controls the nutrient supply to the euphotic zone, as well as the poleward undercurrent that carries oxygen and nutrients to the shelf in the northern Benguela Upwelling System are well reproduced in the model. Among the biological oxygen sinks, mineralisation in the sediment, respiration of zooplankton and nitrification in the water column are important. We also found that vertical migration of zooplankton in response to the oxygen conditions provides a regulating feedback, which may prevent a complete deoxygenation of suboxic waters. As long as oxygen or nitrate are available in the bottom waters, the activities of chemolithoautotrophic sulphur bacteria on the sediment surface keep the redoxcline within the sediment and prevent the release of hydrogen sulphide into the water column. By horizontal integration of the simulated ocean-atmosphere oxygen flux, it can be shown that the Kunene upwelling cell between 16 ° S and 18 ° S is a boundary between the equatorial ocean, characterise by

  16. Seasonal Variations of Nutrients, Seston and Phytoplankton, and Upwelling Intensity off La Coruña (NW Spain)

    Science.gov (United States)

    Casas, B.; Varela, M.; Canle, M.; González, N.; Bode, A.

    1997-06-01

    This study describes the main seasonal stages in oceanographic conditions and phytoplankton off La Coruña (Galicia, NW Spain), during 1991 and 1992, based mainly on monthly cruises near the coast. Upwelling conditions were studied using an upwelling index calculated from local winds. The Galician coast is affected by a long upwelling season for most of the year. The upwelling pulses interact with the thermal stratification-mixing cycle of surface waters, primarily affecting the dynamics of phytoplankton. In addition, the presence of water masses of different salinity in the subsurface layers changes the stratification of the water column. The less-saline North Atlantic Central Water (NACW) was normally associated with upwelling events during summer. However, on several occasions during the study, the presence of Eastern North Atlantic Water (ENAW) of subtropical origin was observed with salinities up to 36·22 and temperatures between 13 and 14 °C. Observations were grouped into five main stages related to the degree of surface stratification and characteristics of phytoplankton communities. These stages were recognized in both annual cycles, and were termed: winter mixing, spring and autumn blooms, summer upwelling, thermal stratification and special events (red tides and downwelling). A homogeneous water column was the main characteristic of the winter stage, with high nutrient concentrations and low phytoplankton biomass. Eastern North Atlantic Water appeared at the end of this stage, which lasted from November to February. The spring and autumn blooms occurred along with weak thermohaline gradients at the surface, producing high phytoplankton concentrations. Favourable upwelling conditions and the presence of ENAW in a subsurface layer were the factors that most likely induced earlier blooms, while thermal gradients developed at the surface could have been more important for later blooms. Upwelling events during summer were related to a reduction in the depth

  17. Spatio-temporal variation of microphytoplankton in the upwelling system of the south-eastern Arabian Sea during the summer monsoon of 2009

    Directory of Open Access Journals (Sweden)

    Lathika Cicily Thomas

    2013-02-01

    Full Text Available The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS during the different phases of coastal upwelling in 2009. During phase 1 intense upwelling was observed along the southern transects(8°N and 8.5°N. The maximum chlorophyll a concentration (22.7 mg m-3 was observedin the coastal waters off Thiruvananthapuram (8.5°N. Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with thecentric diatom Chaetoceros curvisetus being the dominant species along the 8°N transect. Along the 8.5°N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. Duringphase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9°N transect (25 mg m-3 with Chaetoceros curvisetus as the dominantphytoplankton. Along the 8.5°N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp.were significant in the waters off Kochi. Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll a concentration of 11.2 mg m-3. Along withdiatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9°N and 10°N the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp.

  18. Simulation of coastal floodings during a typhoon event with the consideration of future sea-level rises.

    Science.gov (United States)

    Shu-Huei, Jhang; Chih-Chung, Wen; Dong-Jiing, Doong; Cheng-Han, Tsai

    2017-04-01

    Taiwan is an Island in the western Pacific Ocean and experienced more than 3 typhoons in a year. Typhoons bring intense rainfall, high waves, and storm surges, which often resulted in coastal flooding. The flooding can be aggravated by the sea level rise due to the global warming, which may subject Taiwan's coastal areas to more serious damage in the future than present. The objectives of this study are to investigate the flooding caused by typhoons in the Annan District, Tainan, a city on the southwest coast of Taiwan by numerical simulations, considering the effects of sea-level rises according to the level suggested by the 5th Assessment Report of IPCC (Intergovernmental Panel on Climate Change) for 2050 and 2100, respectively. The simulations were carried out by using MIKE21 HD (a hydrodynamic model) and MIKE21 SW (a spectral wave model). In our simulation, we used an intense typhoon, named Soudelor, as our base typhoon, which made its landfall on the east coast of Taiwan in the summer of 2015, traveled through the width of the island, and exited the island to the north of Tainan. The reasons we pick this typhoon are that it passed near our objective area, wind field data for this typhoon are available, and we have well documented coastal wave and water level measurements during the passage of Typhoon Soudelor. We firstly used ECMWF (European Centre for Medium-Range Weather Forecasts) wind field data to reconstruct typhoon waves and storm surges for this typhoon by using coupled MIKE21 SW and MIKE21 HD in a regional model. The resultant simulated wave height and sea-level height matched satisfactorily with the measured data. The wave height and storm surge calculated by the regional model provided the boundary conditions for our fine-grid domain. Then different sea-level rises suggested by the IPCC were incorporated into the fine-grid model. Since river discharge due to intense rainfall has also to be considered for coastal flooding, our fine-grid models

  19. A novel application of an adaptable modeling approach to the management of toxic microalgal bloom events in coastal areas.

    Science.gov (United States)

    Asnaghi, Valentina; Pecorino, Danilo; Ottaviani, Ennio; Pedroncini, Andrea; Bertolotto, Rosa Maria; Chiantore, Mariachiara

    2017-03-01

    Harmful algal blooms have been increasing in frequency in recent years, and attention has shifted from describing to modeling and trying to predict these phenomena, since in many cases they pose a risk to human health and coastal activities. Predicting ecological phenomena is often time and resource consuming, since a large number of field collected data are required. We propose a novel approach that involves the use of modeled meteorological data as input features to predict the concentration of the toxic benthic dinoflagellate Ostreopsis cf. ovata in seawater. Ten meteorological features were used to train a Quantile Random Forests model, which was then validated using field collected concentration data over the course of a summer sampling season. The proposed model was able to accurately describe Ostreopsis abundance in the water column in response to meteorological variables. Furthermore, the predictive power of this model appears good, as indicated by the validation results, especially when the quantile for predictions is tuned to match management requirements. The Quantile Random Forests method was selected, as it allows for greater flexibility in the generated predictions, thus making this model suitable as a tool for coastal management. The application of this approach is novel, as no other models or tools that are adaptable to this degree are currently available. The model presented here was developed for a single species over a limited geographical extension, but its methodological basis appears flexible enough to be applied to the prediction of HABs in general and it could also be extended to the case of other ecological phenomena that are strongly dependent on meteorological drivers, that can be independently modeled and potentially globally available. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Radiocarbon dating versus volcanic event stratigraphy: Age modelling of Quaternary marine sequences in the coastal region of the Eastern Tyrrhenian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Molisso, F., E-mail: flavia.molisso@iamc.cnr.i [Istituto per l' Ambiente Marino Costiero (IAMC) - CNR, Napoli, Calata P.ta di Massa, Porto di Napoli, 80133 Napoli (Italy); Insinga, D. [Istituto per l' Ambiente Marino Costiero (IAMC) - CNR, Napoli, Calata P.ta di Massa, Porto di Napoli, 80133 Napoli (Italy); Marzaioli, F. [Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, Via Vivaldi, 43-81100 Caserta (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy); Sacchi, M. [Istituto per l' Ambiente Marino Costiero (IAMC) - CNR, Napoli, Calata P.ta di Massa, Porto di Napoli, 80133 Napoli (Italy); Lubritto, C. [Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, Via Vivaldi, 43-81100 Caserta (Italy); CIRCE, INNOVA, Via Campi Flegrei 34, Pozzuoli 80078 (Italy)

    2010-04-15

    We present the results of an integrated stratigraphic study conducted on eight marine sediment cores collected in the Naples and Salerno Bays, Eastern Tyrrhenian Sea. The aim of the study is the understanding of the timing and the impacts on the sedimentary environment of explosive volcanic events that occurred over the coastal zone of the Campania region during the latest Quaternary. Accurate dating and correlation have been essential for the construction of reliable models of the sediment architecture and influx rates in this area, as well as for establishing the links between changes in sedimentation and palaeoenvironmental events. While in case of deep marine sequences distal ash layers usually offer a significant potential for accurate geochronology, in the case of shallow marine sequences (continental shelf to upper slope) radiocarbon dating revealed to be essential in order to refine correlation among clusters of marine tephra layers with the equivalent proximal pyroclastic deposit onland, particularly where depositional rates are high and the chemistry and age of tephra layers display little variability. The integrated use of AMS {sup 14}C dating on marine materials and the tephrostratigraphic approach based on reconstructions of historical volcanic events is fundamental in order to minimize the uncertainties that affect chronologic constraints derived from radiocarbon-based age models.

  1. Assessing and modeling sediment mobility in estuarine and coastal settings due to extreme climate events from natural short-lived isotope distribution

    Science.gov (United States)

    Ghaleb, Bassam; Hillaire-Marcel, Claude; Ruiz Fernandez, Ana-Carolina; Sanchez Cabeza, Joan-Albert

    2016-04-01

    Climatic events (e.g. floods, storminess) and management activities (e.g. dredging) may result in the burial or removal and re-suspension of sediments in estuaries and coastal areas. When such sediments are contaminated, such processes may either help restoring better chemical environments or lead to their long-term contamination. Geochemical signatures in surface sediments may help identifying such sedimentological events. However, short-lived isotope data are generally required to set time-constraints on their occurrence. Whereas 210Pb and radioactive fallout isotope contents can help setting time constraints at ~50 to ~100 yr-time scales, natural disequilibria in the 232Th-228Ra-228Th sequence do provide information on processes which occurred within the last 30 yrs, as illustrated in the present study. Box-cored sediments from the Saguenay Fjord and lower estuary of the St. Lawrence (Canada) as well as from estuaries and lagoons from the Sinaloa Coast (Mexico) are used to document the behavior of these isotopes either under relatively steady conditions (St. Lawrence estuary) or under high-frequency extreme climate events (storms and floods; Saguenay Fjord, Coastal Sinaloa). 228Th/232Th activity ratios were determined by chemical extraction of Th and alpha counting of unspiked samples, rapidly after sampling (228Th/232Th). The activity of the intermediate isotope 228Ra was then estimated based on replicate measurements on aliquot samples made a few years later. Under steady conditions, core-top sediment shows an excess in 228Th vs 232Th (AR ~ 1.6), whereas the intermediate 228Ra depicts a deficit vs its parent 232Th (AR ~0.6). Downcore, radioactive decay carries rapidly 228Th-activities to those of the parent 228Ra within about 10 yrs (i.e., ~ 5 half-lives of 228Th), then both move during the next ~20 yrs (~ i.e., ~ 5 half-lives of 228Ra, when added to the 10 yrs of 228Th-excess) towards secular equilibrium with the parent long-lived 232Th. A few algorithms

  2. WATER TEMPERATURE and Other Data from DRIFTING PLATFORM From Coastal Waters of California from 19810502 to 19830510 (NODC Accession 9100219)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Three files of drifting buoy data, collected as part of the Coastal Ocean Dynamics Experiment (CODE) and Observation of Peristent Upwelling Study (OPUS) experiments....

  3. Ekman estimates of upwelling at cape columbine based on ...

    African Journals Online (AJOL)

    Cape Columbine is a prominent headland on the south-west coast of Africa at approximately 32°50´S, where there is a substantial upwelling tongue, enhancing the ambient upwelling on the shelf, produced by wind-stress curl. From hourly records of wind measured there, the longshore component of wind stress was ...

  4. Explanatory analysis of the relationship between atmospheric circulation and occurrence of flood generating events in a coastal city

    DEFF Research Database (Denmark)

    Åström, Helena Lisa Alexandra; Sunyer Pinya, Maria Antonia; Madsen, H.

    2016-01-01

    , and SE). For concurrent events significantly high occurrence was obtained in LCC W. We assessed the change in LCC occurrence frequency in the future based on two regional climate models (RCMs). The projections indicate that the westerly directions in LCCs are expected to increase in the future....... Consequently, simultaneous occurrence of extreme water level and precipitation events is expected to increase in the future as a result of change in LCC frequencies. The RCM projections for LCC frequencies are uncertain because the representation of current LCCs is poor; a large number of days cannot...

  5. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords

    OpenAIRE

    Torres, Rodrigo; Duarte, Carlos M.; Ruiz-Halpern, Sergio; Fukasawa, Masao

    2011-01-01

    Carbon system parameters measured during several expeditions along the coast of Chile (23°S-56°S) have been used to show the main spatial and temporal trends of air-sea CO2 fluxes in the coastal waters of the eastern South Pacific. Chilean coastal waters are characterized by strong pCO2 gradients between the atmosphere and the surface water, with high spatial and temporal variability. On average, the direction of the carbon flux changes from CO2 outgassing at the coastal upwelling region to C...

  6. Do changes in the frequency, magnitude and timing of extreme climatic events threaten the population viability of coastal birds?

    NARCIS (Netherlands)

    van de Pol, Martijn; Ens, Bruno J.; Heg, Dik; Brouwer, Lyanne; Krol, Johan; Maier, Martin; Exo, Klaus-Michael; Oosterbeek, Kees; Lok, Tamar; Eising, Corine M.; Koffijberg, Kees

    P>1. Climate change encompasses changes in both the means and the extremes of climatic variables, but the population consequences of the latter are intrinsically difficult to study. 2. We investigated whether the frequency, magnitude and timing of rare but catastrophic flooding events have changed

  7. Biological and oceanographic upwelling indicators at Cabo Frio (RJ

    Directory of Open Access Journals (Sweden)

    Gleyci A. O. Moser

    1997-01-01

    Full Text Available Phytoplankton biomass, chemical parameters and hydrology were studied in a transect 101.6 km long off Cabo Frio (RJ, Southeast Brazil, during summer (December 29 to 31, 1991 and winter (June 27 to 30, 1992. Wind induced upwelling events are frequently observed in the area during summer, becoming rare during winter. By the summer cruise a bloom of phytoplankton was observed in surface, close to the coast, with chlorophyll concentrations reaching 25.55 mg Chl-a m-3, uncoupled from the cold, nutrient rich waters of South Atlantic Central Water (SACW, found below 40 m depth. During the winter cruise, the SACW raised at the surface waters in front of Cabo Frio depicting an upwelling event. However, in spite of high surface nitrate concentrations (up to 7.7 f.1M chlorophyll-a were lower than 2 mg Chl-a m-3. The phytoplankton biomass, meteorological and hydrological data suggest a probable upwelling event immediately before the summer cruise, and an ongoing one during winter time. Cluster analyses and principal component analyses (PCA were applied to summer and winter data, pointing out multidimensional fronts in the area during both seasons.A biomassa fitoplanctônica, parâmetros químicos e hidrologia foram estudadas em um transecto de 101,6 Km ao largo de Cabo Frio, (RJ Brasil, durante o verão (Dezembro 29 a 31, 1991 e inverno (Junho 27 a 30, 1992. Nesta área, eventos de ressurgência induzidos pelo vento são comuns durante o verão, tornando-se mais raros durante o inverno. Durante o período de verão uma floração de fitoplâncton foi observada na superfície próximo ao continente, apresentando um máximo de clorofila-a igual a 25,55 mg Cl-a m'3 desacoplado das águas frias e ricas em nutrientes da Água Central do Atlântico Sul (ACAS, presente abaixo de 40 m. Durante o inverno, a ACAS alcançou a superflcie em frente a Cabo Frio, caracterizando um evento de ressurgência. Entretanto, apesar das altas concentrações de nitrato na superf

  8. Characterizing Upwelling and Freshwater Influx in Nearshore Tropical Environments Using Stable Isotopes in Mollusks - Example from Panama

    Science.gov (United States)

    Tao, K.; Grossman, E. L.; O'Dea, A.; Robbins, J. A.

    2011-12-01

    While nutrient concentration can be measured in the modern ocean, proxies for influence of upwelling and freshwater input are required in the determination of ancient nutrient delivery. In this study, high-resolution stable isotopes have been performed on 13 serially-sampled Conus shells collected from both Caribbean and East Pacific coastal waters across the Panama Isthmus to examine their fidelity as proxies for upwelling and freshwater influx signals. The δ13C profiles show three patterns: short-term invariant while long-term decreasing; short-term invariant while long-term increasing; co-variant with δ18O values. Most of the δ18O- δ13C correlations, when occurring, are positive, indicating overwhelming influence of freshwater influx rather than upwelling. Using modern temperature and salinity (converted to seawater δ18O) records from ocean data loggers and Ocean Data View (ODV) database, expected δ18O profiles have been determined to: 1) establish a chronology for each specimen; 2) compare with measured δ18O and 3) provide baseline values for shell δ18O variations. Growth curves based on the shell chronology show: 1) fast growth during spring-summer within each year, suggesting the influence of seasonal upwelling; 2) faster growth in the first one or two years, the turning point of which are generally coincident with their spawning season. Most measured shell δ18O values are 0.6~2.4% lighter than expected ones, especially those from the East Pacific upwelling area (1.4~2.4% lighter), suggesting greater overall influence of freshwater influx than upwelling. The ranges of measured shell δ18O values from Caribbean and East Pacific are 0.2~1.7% lower and 0.1~1.0% higher than the expected δ18O values, respectively. This is related to the different sampling localities (nearshore for the shell specimens and open sea for the loggers and ODV data) and perhaps sampling resolution (weekly to fortnightly for the stable analyses and monthly for the ODV data

  9. Habitat coupling writ large: pelagic-derived materials fuel benthivorous macroalgal reef fishes in an upwelling zone.

    Science.gov (United States)

    Docmac, Felipe; Araya, Miguel; Hinojosa, Ivan A; Dorador, Cristina; Harrod, Chris

    2017-09-01

    Coastal marine upwelling famously supports elevated levels of pelagic biological production, but can also subsidize production in inshore habitats via pelagic-benthic coupling. Consumers inhabiting macroalgae-dominated rocky reef habitats are often considered to be members of a food web fuelled by energy derived from benthic primary production; conversely, they may also be subsidized by materials transported from pelagic habitats. Here, we used stable isotopes (δ 13 C, δ 15 N) to examine the relative contribution of pelagic and benthic materials to an ecologically and economically important benthivorous fish assemblage inhabiting subtidal macroalgae-dominated reefs along ~1,000 km of the northern Chilean coast where coastal upwelling is active. Fish were isotopically most similar to the pelagic pathway and Bayesian mixing models indicated that production of benthivorous fish was dominated (median 98%, range 69-99%) by pelagic-derived C and N. Although the mechanism by which these materials enter the benthic food web remains unknown, our results clearly highlight the importance of pelagic-benthic coupling in the region. The scale of this subsidy has substantial implications for our basic understanding of ecosystem functioning and the management of nearshore habitats in northern Chile and other upwelling zones worldwide. © 2017 by the Ecological Society of America.

  10. The physical oceanography of upwelling systems and the development of harmful algal blooms

    Science.gov (United States)

    Pitcher, G.C.; Figueiras, F.G.; Hickey, B.M.; Moita, M.T.

    2011-01-01

    The upwelling systems of the eastern boundaries of the world’s oceans are susceptible to harmful algal blooms (HABs) because they are highly productive, nutrient-rich environments, prone to high-biomass blooms. This review identifies those aspects of the physical environment important in the development of HABs in upwelling systems through description and comparison of bloom events in the Benguela, California and Iberia systems. HAB development is dictated by the influence of wind stress on the surface boundary layer through a combination of its influence on surface mixed-layer characteristics and shelf circulation patterns. The timing of HABs is controlled by windstress fluctuations and buoyancy inputs at the seasonal, event and interannual scales. Within this temporal framework, various mesoscale features that interrupt typical upwelling circulation patterns, determine the spatial distribution of HABs. The inner shelf in particular provides a mosaic of shifting habitats, some of which favour HABs. Changes in coastline configuration and orientation, and bottom topography are important in determining the distribution of HABs through their influence on water stratification and retention. A spectrum of coastline configurations, including headlands, capes, peninsulas, Rías, bays and estuaries, representing systems of increasing isolation from the open coast and consequent increasing retention times, are assessed in terms of their vulnerability to HABs. PMID:22053120

  11. The physical oceanography of upwelling systems and the development of harmful algal blooms

    Science.gov (United States)

    Pitcher, G. C.; Figueiras, F. G.; Hickey, B. M.; Moita, M. T.

    2010-04-01

    The upwelling systems of the eastern boundaries of the world’s oceans are susceptible to harmful algal blooms (HABs) because they are highly productive, nutrient-rich environments, prone to high-biomass blooms. This review identifies those aspects of the physical environment important in the development of HABs in upwelling systems through description and comparison of bloom events in the Benguela, California and Iberia systems. HAB development is dictated by the influence of wind stress on the surface boundary layer through a combination of its influence on surface mixed-layer characteristics and shelf circulation patterns. The timing of HABs is controlled by windstress fluctuations and buoyancy inputs at the seasonal, event and interannual scales. Within this temporal framework, various mesoscale features that interrupt typical upwelling circulation patterns, determine the spatial distribution of HABs. The inner shelf in particular provides a mosaic of shifting habitats, some of which favour HABs. Changes in coastline configuration and orientation, and bottom topography are important in determining the distribution of HABs through their influence on water stratification and retention. A spectrum of coastline configurations, including headlands, capes, peninsulas, Rías, bays and estuaries, representing systems of increasing isolation from the open coast and consequent increasing retention times, are assessed in terms of their vulnerability to HABs.

  12. Seasonal regulation of primary production in eastern boundary upwelling systems

    Science.gov (United States)

    Messié, Monique; Chavez, Francisco P.

    2015-05-01

    The regulation of seasonal satellite-derived primary production (PP) was investigated within a 150 km coastal box in four eastern boundary upwelling systems (EBUS): California, Peru, Northwest Africa and Benguela. The following regulating factors were considered: (1) wind-driven nitrate supply; (2) iron supply inferred from proxies (shelf mud belt width, modeled atmospheric iron deposition, river discharge); (3) temperature; (4) light and (5) physical export consisting of offshore export, eddy-driven and wind-driven subduction. The ratio of potential new production (carbon-equivalent of nitrate supply) to primary production, termed the N-ratio, is shown to be an indicator of PP limitation by nitrate supply (low N-ratios) vs. inhibition by other factors (high N-ratios). The factors regulating PP were assessed by analyzing the N-ratios and computing spatial correlations between PP and each factor each month. The regulation of primary production was found to vary spatially, seasonally and from one EBUS to another. Macronutrient supply is shown to be the dominant regulating factor off Northwest Africa and during some seasons and locations in other systems. Light regulation within the mixed layer occurs in all EBUS in winter but may only inhibit PP (high N-ratios) off Peru and Benguela. Evidence for iron limitation was found in each EBUS (except Northwest Africa) at varying levels and was greatest off Peru during austral winter when iron demand by phytoplankton increases due to low light levels. Rapid offshore advection combined with wind-driven and/or eddy-driven subduction may inhibit PP off California. A simple generalization regarding the regulation of primary production in EBUS is not forthcoming.

  13. Contrasting biogeochemical responses of ENSO induced upwelling variability in the Humboldt Current System

    Science.gov (United States)

    Franco, Ana C.; Gruber, Nicolas; Münnich, Matthias

    2017-04-01

    The Humboldt Current System (HCS) is one of the most productive ecosystems in the world. This high productivity is supported by a large input of nutrients from the subsurface layers to the surface due to year-round upwelling. However, upwelling also supplies waters with low pH and low aragonite saturation state potentially affecting many organisms, especially those that calcify. The influence, extent and source of upwelled water vary substantially on interannual timescales in association with the El Niño/Southern Oscillation (ENSO) phenomenon, generating natural contrasting responses on the biogeochemistry of this system. Here we analyze these responses using an eddy resolving, basin-scale ocean model that covers the whole Pacific Ocean with high resolution (4 km) on the west coast of South America. We performed a simulation of the last 30 years (hindcast simulation) that allows us to investigate the influence of at least eight El Niño episodes and eight La Niña episodes on productivity variations and changes in oxygen concentration and aragonite saturation state. An absolute change in surface omega aragonite of almost 2 units, as well as an absolute change of the aragonite saturation depth of 200 m result from the change of an El Niño phase to a La Niña phase. This variability is on the same order of magnitude as the projected change in the aragonite saturation state in a centennial timescale. During La Niña events, a lower aragonite saturation state values and reduced oxygen concentration in the surface layer are a direct consequence of enhanced upwelling and increased net primary productivity. The opposite is true during El Niño events, where high values of omega aragonite occur in concordance with extraordinarily low net primary productivity values.

  14. Evidence of an intermittent deep equatorward flow in the Peru upwelling system

    Science.gov (United States)

    Pietri, Alice; Echevin, Vincent; Testor, Pierre; Chaigneau, Alexis; Mortier, Laurent; Grados, Carmen; Albert, Aurelie; Beguery, Laurent; Bhairy, Nagib

    2013-04-01

    In April-May 2010, 6 consecutive repeated cross-shore sections of ~100 km were occupied by a Slocum glider off the coast of Pisco (14°S) in the southernmost Peruvian upwelling region. The collected temperature and salinity data, acquired from the surface to 1000m depth and the depth-integrated velocity, estimated from the glider drift between two dives, are used to estimate absolute geostrophic alongshore velocities and study the spatio-temporal variability of the near-coastal circulation during a 5-week time period. Besides providing interesting information on the surface frontal jet and surfacing poleward undercurrent trapped on the continental shelf and slope, the glider data reveal the presence of a subsurface deep equatorward current. The dynamics and origin of this current, which can transport up to ˜2 Sv northward, are investigated using simulations from an eddy-resolving regional model (ROMS). This relatively strong equatorward subsurface current is associated with a poleward propagating coastal trapped wave of equatorial origin, with a strongly sheared vertical structure. A simple linear coastal wave model which successfully reproduces part of the observed vertical structure of the current, indicates that it corresponds to a third baroclinic mode of coastal wave.

  15. Paleoenvironmental changes affected on the diversity explosion and extinction events of the fossil diatom resting spore assemblage across the E/O boundary

    Science.gov (United States)

    Suto, I.; Jordan, R. W.; Watanabe, M.

    2007-12-01

    The marine diatom genus Chaetoceros is known as a major contributor to primary production in near-shore upwelling regions and coastal areas, where it accounts for 20-25% of the total marine primary production. They produce heavily silicified resting spores which are easily preserved as fossils under nutrient-poor conditions. The diatom resting spores are therefore preserved as significant constituents in fossil marine diatom assemblages providing useful information for reconstructing paleoproductivity and paleoenvironmental changes. However, due to the importance of Chaetoceros in marine primary production, it is crucial to investigate fossil resting spores in upwelling regions. As the result of revising the taxonomy of fossil diatom Chaetoceros resting spores using DSDP 338, 436 and 438, and onland-samples (Newport Beach Section, California) from the late Eocene to the Recent, the Chaetoceros Explosion Event (when there was an increase in diversity and abundance, and a 50% reduction in valve size) across the Eocene/Oligocene (E/O) boundary was clarified. On the other hand, investigation of middle Eocene samples from the Integrated Ocean Drilling Program (IODP) Expedition 302, revealed an Extinction Event across the E/O boundary of diatom resting spores other than Chaetoceros. These two events indicate increased amounts of nutrient supply via upwelling and a change from a stable water column with a constant nutrient supply in the Eocene to an unstable one with sporadic nutrient supply due to increased vertical mixing in the Oligocene.

  16. Lessons derived from two high-frequency sea level events in the Atlantic: implications for coastal risk analysis and tsunami detection

    Directory of Open Access Journals (Sweden)

    Begoña Pérez-Gómez

    2016-11-01

    Full Text Available The upgrade and enhancement of sea level networks worldwide for integration in sea level hazard warning systems have significantly increased the possibilities for measuring and analyzing high frequency sea level oscillations, with typical periods ranging from a few minutes to a few hours. Many tide gauges now afford 1 min or more frequent sampling and have shown such events to be a common occurrence. Their origins and spatial distribution are diverse and must be well understood in order to correctly design and interpret, for example, the automatic detection algorithms used by tsunami warning centers. Two events recorded recently in European Atlantic waters are analyzed here: possible wave-induced seiches that occurred along the North coast of Spain during the storms of January and February of 2014, and oscillations detected after an earthquake in the mid-Atlantic the 13th of February of 2015. The former caused significant flooding in towns and villages and a huge increase in wave-induced coastal damage that was reported in the media for weeks. The second was a smaller signal present in several tide gauges along the Atlantic coast that, that coincided with the occurrence of this earthquake, leading to a debate on the potential detection of a very small tsunami and how it might yield significant information for tsunami wave modelers and for the development of tsunami detection software. These kinds of events inform us about the limitations of automatic algorithms for tsunami warning and help to improve the information provided to tsunami warning centers, whilst also emphasizing the importance of other forcings in generating extreme sea levels and their associated potential for causing damage to infrastructure.

  17. 13000 cal years upwelling variation in southwestern Atlantic (Brazil): continental paleoclima implications

    Science.gov (United States)

    Albuquerque, A.

    2009-12-01

    Ana Luiza ALBUQUERQUE(1); Bruno TURCq(2); Abdel SIFEDDINE(1,2). (1) Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, Brazil. (2) LOCEAN, IRD/UPMC/CNRS/MNHN, Bondy, France. The Cabo Frio region as indicated by its name is a place of low SST due to a local upwelling triggered by the Northeast trade winds, the northward flow of cool South Atlantic Central Water and vortex of the Brazilian current in the upper warm Tropical Water. Paleoceanographic conditions during the last 13000 years have been reconstructed based on two cores collected on the outer shelf. The studied proxies included mineral and heavy metal quantification, bulk organic matter characteristics and planktonic foraminifera. A first phase of sedimentation between 13000 and 7000 cal BP is characterized by high mineral content probably due to the lower sea level. SST reconstruction indicate cool and highly variable temperatures that were probably not related to upwelling events made difficult by the low sea level but to lower regional SSTs. This is in good agreement with observations of continental climate dryer in southwest Brazil with intense events of precipitation. A second phase between 7000 and 3000 cal BP shows higher SST indicating few occurrences of upwelling. Its may be due to the decrease of South Atlantic Convergence Zone (ZCAS) intensity linked to the lower summer insolation and the reduced monsoonal flux at that time. On the adjacent continent the decrease monsoon is evidenced by low lake levels and poorly developed forests. The third and last phase, post 3000 cal BP, is characterized by the onset of upwelling events that may be related to an intensification of the South American Monsoon and of the ZCAS activity leading to an increase of Northeast winds during summer which is typically the upwelling season. On the continent this period was marked by forest development. The transition at 3000 yrs BP is very late compared to other Holocene Record. Paleoclimate model

  18. Understanding the nature of mantle upwelling beneath East-Africa

    Science.gov (United States)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2014-05-01

    The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow

  19. Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment

    Science.gov (United States)

    Mayfield, A. B.; Fan, T.-Y.; Chen, C.-S.

    2013-12-01

    Recent work has found that pocilloporid corals from regions characterized by unstable temperatures, such as those exposed to periodic upwelling, display a remarkable degree of phenotypic plasticity. In order to understand whether important reef builders from these upwelling reefs remain physiologically uncompromised at temperatures they will experience in the coming decades as a result of global climate change, a long-term elevated temperature experiment was conducted with Pocillopora damicornis specimens collected from Houbihu, a small embayment within Nanwan Bay, southern Taiwan that is characterized by 8-9 °C temperature changes during upwelling events. Upon nine months of exposure to nearly 30 °C, all colony (mortality and surface area), polyp ( Symbiodinium density and chlorophyll a content), tissue (total thickness), and molecular (gene expression and molecular composition)-level parameters were documented at similar levels between experimental corals and controls incubated at 26.5 °C, suggesting that this species can readily acclimate to elevated temperatures that cause significant degrees of stress, or even bleaching and mortality, in conspecifics of other regions of the Indo-Pacific. However, the gastrodermal tissue layer was relatively thicker in corals of the high temperature treatment sampled after nine months, possibly as an adaptive response to shade Symbiodinium from the higher photosynthetically active radiation levels that they were experiencing at that sampling time. Such shading may have prevented high light and high temperature-induced photoinhibition, and consequent bleaching, in these samples.

  20. Two Variscan magmatic events in HT/LP g bt sil semipelitic gneisses (Guilleries massif, Catalan Coastal Ranges, NE Iberia)

    Science.gov (United States)

    Reche, Joan; Martinez, Francisco J.; Cirés, Jordi; Aleinikoff, John

    2017-04-01

    The Osor complex in the Guilleries massif (Catalan Coastal Ranges-CCR-,NE. Iberia) is a HT/LP Variscan metamorphic domain, where no evidences are found of previous high P episodes (Durán, H., 1985). Thus, the anomalous Variscan geotherm is thought to be generated during heating of a moderately thickened crust. Peak T of near 700±50°C occurs due to anomalous heat flow at 6±0.5 kbar and are recorded by an alternance of q-rich semi-pelitic gneisses. These rocks are Ca and alkali poor and Fe rich (FM ≈ 0.8) and contain the equilibrium assemblage g-bi-sil-crd-pl-q. Inclusions of st and hercinitic sp are found inside g, pl and bi. Garnets are big cm-sized porphyroblasts with a dominant sieve-like texture. In most samples g has a rotational/helicitic texture and is always found in the q-pl rich part of the matrix. A dominant foliation defined mainly by bi and fibrolitic sil (in places both reacted out to mimetic crd) wraps around the g porphyroblasts. Garnet shows cores that are inclusion rich (ilm, q) and subhedral rims almost devoid of inclusions. The q-pl rich domains are preferentially found located around g and on its pressure shadows but also homogeneously distributed as little matrix lenses or in bigger lenticular domains. In all cases the leucosomes are also wrapped by the dominant foliation (a previous foliation is deduced by opaque-q alignments inside g). The subhedral morphology of pl grains suggest that g-bearing, q-pl rich leucosomatic domains represent more or less modified pl-rich (trondhjemitic like)melt lenses having peritectic g generated during the main deformation episode. Relict st is found inside g at diverse crystal depth levels as well as inside pl and bi in the matrix. A Theriak-Domino (de Capitani & Petrakakis, 2010) model pseudosection suggest that a previous g st bi sil pl assemblage was de-stabilized during T increase (≈ 600 to 750 °C) at around 6 kbar to a g-pl-q-bi-liq giving the pl-rich (ksp-devoid) melts. In addition

  1. Dynamics of upwelling annual cycle in the equatorial Atlantic Ocean

    Science.gov (United States)

    Wang, Li-Chiao; Jin, Fei-Fei; Wu, Chau-Ron; Hsu, Huang-Hsiung

    2017-04-01

    The annual upwelling is an important component of the equatorial Atlantic annual cycle. A simple theory is proposed using the framework of Zebiak-Cane (ZC) ocean model for insights into the dynamics of the upwelling annual cycle. It is demonstrated that in the Atlantic equatorial region this upwelling is dominated by Ekman processing in the west, whereas in the east it is primarily owing to shoaling and deepening of the thermocline resulting from equatorial mass meridional recharge/discharge and zonal redistribution processes associated with wind-driven equatorial ocean waves. This wind-driven wave upwelling plays an important role in the development of the annual cycle in the sea surface temperature of the cold tongue in the eastern equatorial Atlantic.

  2. Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling.

    Science.gov (United States)

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34%) compared to the exposed site (8%). Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs.

  3. Bleaching Susceptibility and Recovery of Colombian Caribbean Corals in Response to Water Current Exposure and Seasonal Upwelling

    Science.gov (United States)

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34%) compared to the exposed site (8%). Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs. PMID:24282551

  4. The effect of salinization and freshening events in coastal aquifers on nutrient characteristics as deduced from column experiments under aerobic and anaerobic conditions

    Science.gov (United States)

    Russak, A.; Sivan, O.; Herut, B.; Lazar, B.; Yechieli, Y.

    2015-10-01

    This study experimentally quantified the effect of seawater intrusion (salinization) and freshening events in coastal aquifers on nutrient (N, P and DSi) dynamics across the fresh-saline groundwater interface. Laboratory column experiments were conducted under aerobic and anaerobic conditions in order to simulate the processes occurring in the fresh-saline interface. They were performed with aquifer sediments, simulating the natural conditions during alterations of natural fresh groundwater to seawater and vice versa. The salinization and freshening experiments showed that NH4+ and PO43- and DSi were affected mainly by ion exchange processes while microbial activity controlled the nitrogen species NO3- and NO2-. Due to the cation exchange, salinization generated enrichment (above the expected conservative behavior) of NH4+, up to 80 μmol L-1 (an order of magnitude higher than in seawater or fresh groundwater). Under anaerobic conditions NO3- was removed by denitrification, as demonstrated by the decrease in NO3- concentrations, the increase in NO2- concentrations, and the increase in δ15N by 15-25‰. Clear evidence was shown for anion exchange of PO43-, which competes with HCO3- and boron on adsorption sites. DSi seems to take part in the exchange process, similar to PO43-.

  5. Is delta sup(15)N of sedimentary organic matter a good proxy for paleodenitrification in coastal waters of the eastern Arabian Sea?

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Naqvi, S.W.A.; Kurian, S.; Altabet, M.A.; Bratton, J.F.

    are compared. The eastern boundary systems of continental shelves off western India and Peru, which appear to be experiencing intensification of bottom-water oxygen depletion, most likely as a consequence of intensification of eastern boundary coastal upwelling...

  6. Source of the Patagonian shelfbreak upwelling derived from a two-way nesting model experiment

    Science.gov (United States)

    Combes, V.; Matano, R. P.; Strub, P. T.

    2012-12-01

    The Southwest Atlantic Circulation (SWAC) is principally governed by the interaction of the Brazil and Malvinas Current originating from the Antarctic Circumpolar Current (ACC). Facing the dilemma between the need to have a high-resolution model grid applied to the SWAC region and to resolve the large-scale ACC, we propose a ROMS ocean experiment at a 1/12° resolution for the SWAC region embedded into a coarser-resolution (1/4°) southern hemisphere grid, which also allows us to identify the interaction between the large-scale and the coastal circulation of the Southwest Atlantic. Confident with the spatial representation of the SWAC, we focused on the dynamical mechanisms producing the outstanding spring bloom of chlorophyll visible from satellite at the interface (Patagonian shelfbreak) between the Malvinas Current and Patagonian shelf circulation. Remarkably, such phenomenon remains still unclear despites hosting one of the largest fishery industry. From our model experiments, we find for example a significant correlation between the Patagonian shelf upwelling and the western side of the Malvinas Current. To identify the contributions of different water masses, we track passive tracers and particles released at different locations over the SWAC region. In addition to those experiments, we also present backward-in-Time-Trajectory simulations to better understand the source of the Patagonian upwelled water.; Austral Summer SeaWIFS Chlorophyll Concentration

  7. Sodar and Lidar Observations and Modelling of the Pollutants Dynamics in a Strongly Industrialized Coastal Area during a Sea-Breeze Event

    Science.gov (United States)

    Talbot, C.; Leroy, C.; Augustin, P.; Willart, V.; Delbarre, H.; Khomenko, G.

    2007-05-01

    The understanding of the atmospheric dynamics under sea breeze is crucial for predicting pollution transport and dispersion in coastal areas. We present here a study of the boundary-layer dynamics and the redistribution of the industrial SO2 emissions in the Dunkerque region (51 N, 2.20 E), in the north of France, at the eastern limit of the English Channel. The French Flanders coastal area is strongly industrialized with many refineries and metallurgic factories. This region is a flat area with small hills (up to 200 meters high) located 30 km away from the coast where sea breezes develop frequently all along the year. Thus, the pollutants transport and pollution episodes are mainly governed by the sea-breeze phenomenon under sunny days. By using optical and acoustic remote-sensing instruments (lidar and sodar), the vertical structure of the atmospheric boundary layer has been observed during a whole sea-breeze event in September 2003. The structure and dynamics of the atmosphere and the pollutants transport within has been simulated with a 3D non hydrostatic model Meso-NHC, developed by the C.R.N.M. and Laboratoire d Aerologie, and was compared with the remote-sensing observations. We present the results of our numerical simulations as well as the data of the remote sensing instruments and stations of the air quality network. The thermal internal boundary layer, the gravity current, the atmospheric boundary layer, the nocturnal boundary layer and the residual layer, were observed by the remote sensing instruments and computed by the model. High values of SO2 concentration were observed at the sea-breeze front passage, and the pollutants emitted were uplifted by updrafts in the front. The acceleration of the sea-breeze flow seems to be responsible of the vertical redistribution of the pollutants emitted inside the sea-breeze system by means of vertical ascents in the sea-breeze front. High values of SO2 concentrations computed in the model were accumulating at the

  8. Indirect consequences of extreme weather and climate events and their associations with physical health in coastal Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Beier, Dominik; Brzoska, Patrick; Khan, Md Mobarak Hossain

    2015-01-01

    Bangladesh is one of the countries in the world which is most prone to natural disasters. The overall situation is expected to worsen, since extreme weather and climate events (EWCE) are likely to increase in both frequency and intensity. Indirect consequences caused in the events' aftermath widen the range of possible adverse health outcomes. To assess the association of indirect consequences of EWCE and physical health. We used recent cross-sectional self-reported data from 16 coastal villages in Bangladesh. A total of 980 households were surveyed using a structured questionnaire. The outcome of physical health was categorized into three groups, reflecting the severity of reported diseases by the respective source of treatment as a proxy variable (hospital/clinic for severe disease, other source/no treatment for moderate disease, and no disease). The final statistical analysis was conducted using multinomial logistic regression. Severe diseases were significantly associated with drinking water from open sources [odds ratio (OR): 4.26, 95% confidence interval (CI): 2.25-8.09] and tube wells (OR: 2.39, 95% CI: 1.43-4.01), moderate harm by river erosion (OR: 6.24, 95% CI: 2.76-14.11), food scarcity (OR: 1.98, 95% CI: 1.16-3.40), and the perception of increased employment problems (OR: 2.19, 95% CI: 1.18-4.07). Moderate diseases were significantly associated with moderate harm by river erosion (OR: 2.65, 95% CI: 1.28-5.48) and fully experienced food scarcity (OR: 1.75, 95% CI: 1.16-2.63). For both categories, women and the elderly had higher chances for diseases. Indirect consequences of EWCE were found to be associated with adverse health outcomes. Basic needs such as drinking water, food production, and employment opportunities are particularly likely to become threatened by EWCE and, thus, may lead to a higher likelihood of ill-health. Intervention strategies should concentrate on protection and provision of basic needs such as safe drinking water and food in the

  9. Are large macroalgal blooms necessarily bad? Nutrient impacts on seagrass in upwelling-influenced estuaries.

    Science.gov (United States)

    Hessing-Lewis, Margot L; Hacker, Sally D; Menge, Bruce A; McConville, Sea-oh; Henderson, Jeremy

    2015-07-01

    Knowledge of nutrient pathways and their resulting ecological interactions can alleviate numerous environmental problems associated with nutrient increases in both natural and managed systems. Although not unique, coastal systems are particularly prone to complex ecological interactions resulting from nutrient inputs from both the land and sea. Nutrient inputs to coastal systems often spur ulvoid macroalgal blooms, with negative consequences for seagrasses, primarily through shading, as well as through changes in local biogeochemistry. We conducted complementary field and mesocosm experiments in an upwelling-influenced estuary, where marine-derived nutrients dominate, to understand the direct and indirect effects of nutrients on the macroalgal-eelgrass (Zostera marina L.) interaction. In the field experiment, we found weak evidence that nutrients and/or macroalgal treatments had a negative effect on eelgrass. However, in the mesocosm experiment, we found that a combination of nutrient and macroalgal treatments led to strongly negative eelgrass responses, primarily via indirect effects associated with macroalgal additions. Together, increased total light attenuation and decreased sediment oxygen levels were associated with larger effects on eelgrass than shading alone, which was evaluated using mimic algae treatments that did not alter sediment redox potential. Nutrient addition in the mesocosms directly affected seagrass density; biomass, and morphology, but not as strongly as macroalgae. We hypothesize that the contrary results from these parallel experiments are a consequence of differences in the hydrodynamics between field and mesocosm settings. We suggest that the high rates of water movement and tidal submersion of our intertidal field experiments alleviated the light reduction and negative biogeochemical changes in the sediment associated with macroalgal canopies, as well as the nutrient effects observed in the mesocosm experiments. Furthermore, adaptation

  10. Southeast Atlantic upwelling intensity changes influencing late Miocene C4 plant expansion?

    Science.gov (United States)

    Rommerskirchen, F.; Condon, T.; Mollenhauer, G.; Schefuß, E.

    2009-04-01

    The Late Miocene epoch (about 15 to 5 Myrs BP) is characterised by fundamental changes in Earth's climate system: turnovers in marine and terrestrial biota, sea-level variability, changes in surface- und deep-water circulations, and increase in upwelling intensities along the coasts [1,2]. During the transition period the Antarctic ice sheets expanded and were permanently established, while additionally ice volumes began to fluctuate [1]. Plants acting with the C4 concentrating mechanism of CO2 fixation for photosynthesis expanded nearly simultaneous at different places in the world, whereas the global CO2 levels exhibit no corresponding change [1,3]. However, C4 plants are also known to have a competitive advantage in habitats of higher temperature, light and fire intensities as well as of limited water supply, compared to the almost ubiquitous C3 plants. This study tries to give insights to Miocene climatic conditions in Southwest Africa and how these conditions may be linked to the C4 plant expansion. We focused on data from a sediment core of the Ocean Drilling Program (Leg 175, ODP 1085A), which span about 10 Myrs of the late Miocene. The core is situated in the Cape basin at the south-western African continental margin in the upwelling zone of the Benguela coastal current. The current brings cold, nutrient-rich waters from South Atlantic and the Antarctic circumpolar current to the surface water along the coast of Southwest Africa. Miocene sea surface temperatures (SST) were reconstructed by two indices, tetraether index (TEX86) and an alkenone based index (U37K'). Both trends exhibit a shift to cooler temperatures from around 27 to 18˚ C, but are different in rate and timing. Especially by TEX86 reconstructed SSTs exhibit a similar trend as found for ice volume changes shown by the δ18O curve [4]. These findings may reflect an intensification of the Benguela upwelling current during the late Miocene, probably in association with the formation of West

  11. Surface circulation and upwelling patterns around Sri Lanka and formation of the Sri Lanka Dome

    Science.gov (United States)

    Pattiaratchi, C. B.; Wijeratne, S.; De Vos, A.

    2014-12-01

    Sri Lanka, a relatively large island (length 440 km; width 225 km), occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side and experiences bi-annually reversing monsoon winds. This allows for the Island to interact with the seasonally reversing monsoon currents leading to the the island mass effect and enhanced primary production. We will present elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and numerical simulations using the Regional Ocean Modelling System (ROMS). The model was run for 4 years to examine the inter-annual, seasonal and shorter term (~10 days) variability. The results confirmed the presence of the reversing current system, between the equator and Sri Lanka, in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the Southwest (SW) monsoon transporting 11.5 Sv and the westward flowing Northeast Monsoon Current (NMC) transporting 9.5 Sv during the Northeast (NE) monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the Island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the south coast (see Figure). During the SW monsoon the Island deflects the eastward flowing SMC southward whilst along the east coast the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the south coast resulting from southward flow converging along the south coast and subsequent divergence associated with the offshore transport of water(see Figure). Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and

  12. Severity of the 1998 and 2005 bleaching events in Venezuela, southern Caribbean

    Directory of Open Access Journals (Sweden)

    Sebastián Rodríguez

    2010-10-01

    Full Text Available This study describes the severity of the 2005 bleaching event at 15 reef sites across Venezuela and compares the 1998 and 2005 bleaching events at one of them. During August and September 2005, bleached corals were first observed on oceanic reefs rather than coastal reefs, affecting 1 to 4% of coral colonies in the community (3 reef sites, n=736 colonies. At that time, however, no bleached corals were recorded along the eastern coast of Venezuela, an area of seasonal upwelling (3 reefs, n=181 colonies. On coastal reefs, bleaching started in October but highest levels were reached in November 2005 and January 2006, when 16% of corals were affected among a wide range of taxa (e.g. scleractinians, octocorals, Millepora and zoanthids. In the Acropora habitats of Los Roques (an oceanic reef, no bleached was recorded in 2005 (four sites, n=643 colonies. At Cayo Sombrero, a coastal reef site, bleaching was less severe in 1998 than in 2005 (9% of the coral colonies involving 2 species vs. 26% involving 23 species, respectively. Our results indicate that bleaching was more severe in 2005 than in 1998 on Venezuelan reefs; however, no mass mortality was observed in either of these two events. Rev. Biol. Trop. 58 (Suppl. 3: 189-196. Epub 2010 October 01.

  13. Coastal Morphology and Coastal Protection

    NARCIS (Netherlands)

    Van de Graaff, J.

    2009-01-01

    Lecture notes ct5309. Tides, currents and water; coastal problems; sediment transport processes; coastal transport modes; longshore transport; cross-shore transport; fundamentals of mud; channels and trenches; coastal protection; application of structures; application of nourishments.

  14. Nutrient fluxes and net metabolism in a coastal lagoon SW peninsula of Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    Cervantes Duarte, R.

    2016-09-01

    Full Text Available Fluxes of nutrients and net metabolism were estimated in coastal lagoon Magdalena Bay using LOICZ biogeochemical model. In situ data were obtained from 14 sites in the lagoon and also from a fixed site in the adjacent ocean area. Intense upwelling (February to July and faint upwelling (August to January were analyzed from monthly time series. The Temperature, nitrite + nitrate, ammonium and phosphate within the lagoon showed significant differences (p<0.05 between the two periods. Salinity (p=0.408 was more homogeneous (no significantly different due to mixing processes. During the intense upwelling period, nutrients increased in and out of the lagoon due to the influence of Transitional Water and Subartic Water transported by the California Current. However, during the faint upwelling, from August to January, the Transition Water and Subtropical Surface Water were predominant. Magdalena Bay showed denitrification processes of throughout the year as it occurred in other semi-arid coastal lagoons. It also showed a net autotrophic metabolism during intense upwelling and heterotrophic metabolism during faint upwelling. Understanding nutrient flows and net metabolism through simple biogeochemical models can provide tools for better management of the coastal zone.

  15. Indirect consequences of extreme weather and climate events and their associations with physical health in coastal Bangladesh: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Dominik Beier

    2015-10-01

    Full Text Available Background: Bangladesh is one of the countries in the world which is most prone to natural disasters. The overall situation is expected to worsen, since extreme weather and climate events (EWCE are likely to increase in both frequency and intensity. Indirect consequences caused in the events’ aftermath widen the range of possible adverse health outcomes. Objective: To assess the association of indirect consequences of EWCE and physical health. Design: We used recent cross-sectional self-reported data from 16 coastal villages in Bangladesh. A total of 980 households were surveyed using a structured questionnaire. The outcome of physical health was categorized into three groups, reflecting the severity of reported diseases by the respective source of treatment as a proxy variable (hospital/clinic for severe disease, other source/no treatment for moderate disease, and no disease. The final statistical analysis was conducted using multinomial logistic regression. Results: Severe diseases were significantly associated with drinking water from open sources [odds ratio (OR: 4.26, 95% confidence interval (CI: 2.25–8.09] and tube wells (OR: 2.39, 95% CI: 1.43–4.01, moderate harm by river erosion (OR: 6.24, 95% CI: 2.76–14.11, food scarcity (OR: 1.98, 95% CI: 1.16–3.40, and the perception of increased employment problems (OR: 2.19, 95% CI: 1.18–4.07. Moderate diseases were significantly associated with moderate harm by river erosion (OR: 2.65, 95% CI: 1.28–5.48 and fully experienced food scarcity (OR: 1.75, 95% CI: 1.16–2.63. For both categories, women and the elderly had higher chances for diseases. Conclusions: Indirect consequences of EWCE were found to be associated with adverse health outcomes. Basic needs such as drinking water, food production, and employment opportunities are particularly likely to become threatened by EWCE and, thus, may lead to a higher likelihood of ill-health. Intervention strategies should concentrate on

  16. Continued CO2 outgassing in an upwelling area off northern Chile during the development phase of El Niño 1997-1998 (July 1997)

    Science.gov (United States)

    Torres, Rodrigo; Turner, David R.; Rutllant, José; LefèVre, Nathalie

    2003-10-01

    Carbonate system parameters were measured in the upper 200 m of the water column during July 1997 in an upwelling area off northern Chile (22.6°-24°S), and the CO2 fluxes were estimated. At this time (during the onset of El Niño 1997-1998), the water column that feeds the coastal upwelling was less dense, warmer, and saltier than in non-El Niño winters. Nevertheless, the major vertical gradients in pH, total inorganic carbon (CT), carbon dioxide fugacity (fCO2), and apparent oxygen utilization (AOU) remained confined to the upper 100 m of the water column, so that the active upwelling forced by southerly winds caused the upwelling of CO2-rich water leading a CO2 flux from the ocean to the atmosphere. However, these fluxes were found to be highly variable. Grid surveys 2 weeks apart show a change in CO2 flux from +3.9 mol C m-2 yr-1 to +0.4 mol C m-2 yr-1: the change is thought to be associated with a pulsed upwelling forcing in combination with an active biological uptake of CO2. This high short-term variability of CO2 fluxes makes it difficult to assess the interannual variability of CO2 outgassing in this area based on low-frequency direct CO2 observations. The fact that the oxycline, whose location usually coincides with the carboncline, also remained within the upper 100 m during the remarkably warm 1972 and 1983 El Niño winters seems to imply that the CO2 outgassing during those warm periods can be as strong as we report for 1997 under similar upwelling favorable winds.

  17. High silicate:nitrate ratios in eastern boundary upwelling waters may produce greater carbon drawdown than predicted from Redfield C:N ratios

    Science.gov (United States)

    Dugdale, R. C.; Fuller, J. R.; Marchi, A.; Parker, A. E.; Wilkerson, F. P.

    2010-12-01

    The Redfield ratio defines the average ratio of changes in major nutrient concentrations during primary production as 106:16:1, C:N:P. This ratio and the phytoplankton uptake or drawdown of nitrate (new production in the ocean) are often used to estimate carbon production and export of carbon to the deep ocean. Elevated nitrate in upwelled water is rapidly drawn down by diatoms, usually within 3-5 days and the assumption is that carbon drawdown ceases at that end of that time. However, in large-volume enclosure experiments using silicate-rich San Francisco Bay water, silicate drawdown continued well after nitrate was exhausted by phytoplankton growth. Enclosure experiments made with water upwelled at Point. Reyes, northern California followed the same pattern of silicate drawdown continuing past nitrate exhaustion. Dissolved inorganic carbon (DIC) drawdown tracked silicate drawdown after nitrate exhaustion; i.e. the DIC drawdown followed more closely the drawdown of silicate than nitrate. The drawdown of DIC calculated from nitrate drawdown using Redfield resulted in an underestimate of the measured DIC disappearance. In upwelling waters with Si:N ratios of greater than l, the uptake of DIC may be substantially underestimated. The implication of these preliminary results is that coastal upwelling in basins rich in silicate, e.g. in the North Pacific, may account for substantially more drawdown of CO2 than would be calculated from upwelled nitrate concentrations. In eastern boundary upwelling areas, a modification of the Redfield ratio to incorporate C:Si is necessary since these areas are dominated by diatoms. Victor Smetacek’s designation of diatoms as the "workhorses of the sea" becomes more appropriate than ever. Their obligate requirement for Si to construct their frustules makes them responsible for this re-interpretation of estimating carbon drawdown using the Redfield ratio. In these circumstances we may better define new production in terms of silicate

  18. CO 2 outgassing off central Chile (31-30°S) and northern Chile (24-23°S) during austral summer 1997: the effect of wind intensity on the upwelling and ventilation of CO 2-rich waters

    Science.gov (United States)

    Torres, Rodrigo; Turner, David; Rutllant, José; Sobarzo, Marcus; Antezana, Tarsicio; Gonzalez, Humberto E.

    2002-08-01

    The distribution of pH and alkalinity has been used to calculate the distribution of total inorganic carbon (TC) and fugacity of carbon dioxide ( fCO 2) in the upper 200 m of the water column in coastal upwelling areas off northern Chile (23-24°S, near Antofagasta) and central Chile (30-31°S, near Coquimbo) during austral summer 1997. In these upwelling areas, colder surface waters were oxygen poor and strongly CO 2 supersaturated (100% near Antofagasta and 200% near Coquimbo), although below the pycnocline the CO 2 supersaturation invariably exceeded 200% in both areas. The larger surface CO 2 supersaturation and outgassing at 30°S were associated with stronger winds that promoted the upwelling of denser water (richer in CO 2) as well as a higher air-sea CO 2 transfer velocity. The consistent decrease in intensity of the southerly winds (as derived from NSCAT scatterometer data) from 30-31°S to 23-24°S suggests a corresponding decline in the intensity of the CO 2 outgassing due to upwelling. Additionally, we suggest here that the intensity of the local upwelling forcing (i.e. alongshore-equatorward winds) plays a role in determining the water mass composition and phytoplankton biomass of the coastal waters. Thus, while deep upwelling of salty and cold water resulted in high fCO 2 (up to 1000 μatm) and very low phytoplankton biomass (chlorophyll a concentration lower than 0.5 mg m -3), the shallow upwelling of less salty (e.g. salinity <34.5) and less CO 2-supersaturated water resulted in a higher phytoplankton biomass, which further reduced surface water fCO 2 by photosynthesis.

  19. Late Quaternary Planktic Foraminifer Fauna andMonsoon Upwelling Records from the Western South China Sea, Near the Vietnam

    Directory of Open Access Journals (Sweden)

    Pai-Sen Yu

    2008-01-01

    Full Text Available Marine sediment core MD012394 from the Vietnam coastal upwelling area in the western South China Sea was investigated in order to reconstruct the last Quaternary monsoon upwelling based on planktic foraminifer fauna assemblages and fauna-based sea surface temperature (SST estimates. The age model of core MD012394 was constructed using oxygen isotope stratigraphy of the planktic foraminifer G. sacculifer, with 10 accelerator mass spectrometry (AMS 14C dating of planktic foraminifers from the sediment samples. Our studies on the relative and absolute abundances of planktic foraminifer assemblages reveal eight dominant species in core MD012394: N. dutertrei + N. pachyderma (right coiling, G. ruber, G. glutinata, G. sacculifer, P. obliquiloculata, G. menardii + G. tumida, G. calida, and G. inflata. In a Q-mode factor analysis of the fauna abundance data, the fauna factors show variations that do not parallel the glacial/interglacial changes throughout the last 135 kyr. The relative abundance patterns of G. inflata and N. dutertrei (including N. pachyderma-R are interpreted as hydrographic proxies for East Asian summer and winter monsoon, respectively, in the current study. We calculated the fluctuations in the SST using the Revised Analog Method (RAM in MD012394 and found that the abundance changes of the summer monsoon upwelling indicator G. inflata were similar and nearly synchronous. This suggests that the summer monsoon-driven upwelling signal was strong near the local summer insolation maximum, which induced low SSTs, particular around ~11, 33, 59, and 83 kya. Our studies support the view that the strengths of both summer insolation and the East Asian summer monsoon have determined the relative abundance of planktic foraminifers and the SSTs in the western SCS during the last 135 kyr.

  20. Dynamics of plankton populations in upwelling areas. [by remote sensors

    Science.gov (United States)

    Szekielda, K.

    1974-01-01

    Recent investigations of the upwelling area along the NW Coast of Africa which include studies with satellites are discussed. The detection of patchiness in temperature and plankton distribution in the upwelling area is of special interest because they can be investigated from space synoptically with repeated coverage. The recent satellite missions provide recordings in the infrared region of the electromagnetic spectrum (EMR) as well as in the visible part. The information from those two parts of the EMR is useful for establishing the sea surface temperature and plankton distribution in upwelling areas. The temperature distribution as observed with infrared sensors and the patchiness in plankton patterns are discussed as observed with the most recent satellites, namely the Earth Resources Technology Satellite (ERTS) and NOAA-2.

  1. An investigation of Ekman upwelling in the North Atlantic

    Science.gov (United States)

    Mcclain, Charles R.; Firestone, James

    1993-01-01

    The spatial and temporal variability of the North Atlantic Ekman upwelling fields on seasonal and interannual time scales is investigated on the basis of surface winds from the Fleet Numerical Oceanography Center for 1979-1986. A pronounced minimum in the basin-wide monthly mean vertical Ekman velocities during 1981-1982 is found. It is shown that the primary source of the interannual signal was the region off NW Africa in the vicinity of the Guinea Dome. Other sectors of the basin experienced no significant interannual trends. Hydrographic data and SST data from the NW Africa sector for 1981-1986 indicate a cooling trend beginning in late 1982, consistent with increased upwelling. The fall and winter seasons' mixed layers at the center of the Guinea Dome were deeper in 1984 and 1985 than in previous years. The potential impact of large interannual variations in Ekman upwelling on basin-wide primary productivity is discussed.

  2. Modelling Upwelling Irradiance using Secchi disk depth in lake ecosystems

    Directory of Open Access Journals (Sweden)

    Claudio ROSSI

    2009-02-01

    Full Text Available A simple model for upwelling irradiance has been developed. The model represents the relationship between Photosynthetically Active Radiation diffuse attenuation coefficients and Secchi disk depth described with a physical-mathematical expression. This physical mathematical expression allows the evaluation of the sub surface upwelling irradiance that was generated by the interaction between downwelling irradiance and the water column. The validation of the relation was performed using experimental data collected from five different aquatic ecosystems at different latitudes, solar elevations and irradiance levels. We found a good linear, positive correlation between the theoretical and measured upwelling irradiance (R2 = 0.96. The residues were well distributed, around the null value, according a Gaussian curve (R2 = 0.92. The results confirm the importance and the versatility of the Secchi disk measurements for aquatic optics.

  3. Wind-driven upwelling effects on cephalopod paralarvae: Octopus vulgaris and Loliginidae off the Galician coast (NE Atlantic)

    Science.gov (United States)

    Otero, Jaime; Álvarez-Salgado, X. Antón; González, Ángel F.; Souto, Carlos; Gilcoto, Miguel; Guerra, Ángel

    2016-02-01

    Circulation patterns of coastal upwelling areas may have central consequences for the abundance and cross-shelf transport of the larval stages of many species. Previous studies have provided evidences that larvae distribution results from a combination of subtidal circulation, species-specific behaviour and larval sources. However, most of these works were conducted on organisms characterised by small-sized and abundant early life phases. Here, we studied the influence of the hydrography and circulation of the Ría de Vigo and adjacent shelf (NW Iberian upwelling system) on the paralarval abundance of two contrasting cephalopods, the benthic common octopus (Octopus vulgaris) and the pelagic squids (Loliginidae). We sampled repeatedly a cross-shore transect during the years 2003-2005 and used zero inflated models to accommodate the scarcity and patchy distribution of cephalopod paralarvae. The probability of catching early stages of both cephalopods was higher at night. Octopus paralarvae were more abundant in the surface layer at night whereas loliginids preferred the bottom layer regardless of the sampling time. Abundance of both cephalopods increased when shelf currents flowed polewards, water temperature was high and water column stability was low. The probability of observing an excess of zero catches decreased during the year for octopus and at high current speed for loliginids. In addition, the circulation pattern conditioned the body size distribution of both paralarvae; while the average size of the captured octopuses increased (decreased) with poleward currents at daylight (nighttime), squids were smaller with poleward currents regardless of the sampling time. These results contribute to the understanding of the effects that the hydrography and subtidal circulation of a coastal upwelling have on the fate of cephalopod early life stages.

  4. Physical trajectory profile data from glider ru22 deployed by Rutgers, the State University of New Jersey in the Coastal Waters of California from 2014-08-25 to 2014-09-23 (NCEI Accession 0138015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project is a comprehensive observational and analytical program to examine the dynamics and source waters of the relaxation flows in a coastal upwelling system...

  5. Physical trajectory profile data from glider ru22 deployed by Rutgers, the State University of New Jersey in the Coastal Waters of California from 2014-08-04 to 2014-08-22 (NCEI Accession 0138014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project is a comprehensive observational and analytical program to examine the dynamics and source waters of the relaxation flows in a coastal upwelling system...

  6. Upwelling Response to Hurricane Isaac in Geostrophic Oceanic Vortices

    Science.gov (United States)

    Jaimes, B.; Shay, L. K.; Brewster, J. K.; Schuster, R.

    2013-05-01

    As a tropical cyclone (TC) moves over the ocean, the cyclonic curl of the wind stress produces a region of upwelling waters under the TC center that is compensated by downwelling waters at regions outside the center. Direct measurements conducted during hurricane Rita and recent numerical studies indicate that this is not necessarily the case when TCs move over geostrophic oceanic features, where its background relative vorticity impacts wind-driven horizontal current divergence and the upwelling velocity. Modulation of the upwelling response in these energetic oceanic regimes impacts vertical mixing across the oceanic mixed layer base, air-sea fluxes into the atmosphere, and ultimately storm intensity. As part of NOAA Intensity Forecasting Experiment, an experiment was conducted during the passage of TC Isaac over the energetic geostrophic eddy field in the Gulf of Mexico in August 2012. Expendable bathythermographs, current profilers, and conductivity-temperature-depth probes were deployed in Isaac from NOAA WP-3D aircraft during four in-storm flights to measure oceanic variability and its impact on TC-driven upwelling and surface fluxes of heat and momentum. During intensification to hurricane, the cyclonic curl of the wind stress of Isaac extended over a region of more than 300 km in diameter (4 to 5 times the radius of maximum winds). Isaac's center moved over a cold cyclonic feature, while its right and left sides moved over warm anticyclones. Contrasting upwelling and downwelling regimes developed inside the region of cyclonic curl of the wind stress. Both positive (upwelling) and negative (downwelling) vertical displacements of 40 and 60 m, respectively, were measured inside the region of cyclonic curl of the wind stress, which are between 3 to 4 times larger than predicted vertical displacements for a quiescent ocean based on scaling arguments. Oceanic mixed layer (OML) currents of 0.2 to 0.7 m s-1 were measured, which are about 50% smaller than the

  7. Manifestations of the 15.11.2006 Kuril Tsunami Consequences on the Central Kuril Islands: the Reconstruction Events of the Destruction of Soil and Coastal Vegetation.

    Science.gov (United States)

    Levin, B.; Kopanina, A.; Ivelskaya, T.; Sasorova, E.

    2007-12-01

    The investigation of the Central Kuril Islands (Simushir, Urup, Ketoy) coast was performance by the field survey for the Institute of Marine Geology and Geophysics FEB RAS (Yuzhno-Sakhalinsk) on the vessel "Iskatel-4" to be able find different deposits of the devastating tsunami waves influence on soil and vegetation. There were average run-up heights and inundation areas (tsunami flooding zones): h=6-9 m and 40-60 m (Ketoy); h=7-19 m and 80-300 m (Simushir). The field observation showed destruction of the soil layer. The estimation of water stream velocity for the hydraulic destruction of rocks enabled to receive velocity average mean for the water stream during tsunami dynamic inundation which may be in interval of velocities near 30 -50 m/sec. Field observations of coastal plants in tsunami inundation zones on Urup, Simushir and Ketoy Islands enabled us to recognize the character of destructive influence of tsunami waves to plant structure and essential signs of micro-phytocenoses for ecotopes at different distances from the coastline. Various plant species and vital morphes were found to indicate different reaction on sea waves. The investigation results showed that selected plant species demonstrate the strong response to tsunami wave inundation. We found that the most sensitive species to mechanical and physical- chemical tsunami impact are: Pinus pumila (Pall.) Regel and Phyllodoce aleutica (Spreng.) A. Heller. The character of plant damage shows in breaking of skeletal axes, infringement of root systems, and leaf dying. These findings allow us to use the species as effective indicators of tsunami flooding zone and estimation of tsunami run-up heights. Fulfilled analyzes let us to reconstruct possible events when tsunami hits to coast with specific shore morphology. The wave front at the slightly sloping coast (from coastline to first terrace) is characterized by uniform growth of water level when water moves away soil material (no more 2-3 cm) and micro

  8. Upwelling along the western Indian continental margin and its geological record - a summary

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Upwelling along the western Indian continental margin is recorded each year from Cape Comorin to Cochin and further north up to Goa from June to September during the southwest monsoon. During this upwelling heavy phytoplankton blooms develop which...

  9. Observational evidence of upwelling off the southwest coast of India during June-July 2006

    Digital Repository Service at National Institute of Oceanography (India)

    Lekshmi, S.; Smitha, B.R.; Revichandran, C.

    upwelling parameters (isotherm slope towards the coast and local cooling) also reveal this contrast between local forcing and observed upwelling. The surface salinity off Koilam is comparatively lower (30.8-33.8 PSG) to that off Thiruvananthapuram (34...

  10. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    Science.gov (United States)

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  11. Microplankton composition, production and upwelling dynamics in Sagres (SW Portugal during summer of 2001

    Directory of Open Access Journals (Sweden)

    Sofia Loureiro

    2005-09-01

    Full Text Available Microplankton community, production, and respiration were studied alongside physical and chemical conditions at Sagres (SW Portugal during the upwelling season, from May to September 2001. The sampling station was 5 km east of the upwelling centre off Cabo S. Vicente, and 2 km west of an offshore installation for bivalve aquaculture. Three major periods were distinguished according to sea surface temperature (SST: period 1 (P1; May and June, characterised by high temperature values (17.0±1.8°C; period 2 (P2; July, characterised by lower temperatures (14.6±0.3°C, identified as an upwelling-blooming stage; and period 3 (P3; August, characterised by a high temperature pattern (16.25±1.14°C. Chaetoceros spp., Thalassiosira spp., Lauderia spp., Detonula spp. and Pseudo-nitzschia spp. were the major taxa contributing to the dissimilarities between P2 (July and the other periods. In July (P2, the average gross production (GP; 52.5±12.3 µM O2 d-1 and net community production (NCP; 46.9±15.3 µM O2 d-1 peaked with the maximal concentrations of diatom-chl a. Dark community respiration (DCR remained low and more constant throughout (4.6±3.6 µM O2 d-1. The plankton assemblage was dominated by diatoms throughout the survey. Physical events were the primary factors determining the microplankton structure and distribution at this location.

  12. Variabilidad estacional de cadmio en un sistema de surgencia costera del norte de Chile (Bahía Mejillones del Sur, 23° S Seasonal variability of cadmium in a coastal upwelling system off northern Chile (Mejillones bay, 23° S

    Directory of Open Access Journals (Sweden)

    JORGE VALDÉS

    2006-12-01

    observada en esta razón pueden ser explicados ya sea por una mayor eficiencia en la remoción de PO4 que de Cadmio en las aguas superficiales o una mayor remineralización de cadmio en las aguas subsuperficialesTotal and dissolved cadmium were measured from surface to 100 m water depth, between June 2002 and April 2003, in Mejillones bay. Total and dissolved cadmium range concentration was 0.41-10.7 and 0.08-1.61 nM, respectively. Cadmium profiles and water structure were used to study seasonal variability patterns of this metal in this upwelling system. Oceanographic conditions during this period correspond to a normal (non-El Niño year. Water masses present in this bay correspond to subantartic superficial water, subtropical superficial water and Equatorial subsuperficial water with different degree of mixture and stratification during sampling period. Cadmium profiles showed a classic nutrient-type distribution. Whereas some differences in this profiles could be attributed to a water masses mixing condition into the bay. Multivariate analysis indicates that temporal cadmium variations were associated with chlorophyll-a concentration and temperature fluctuation, indicating that, at this temporal resolution, phytoplanktonic biomass production is the principal factor controlling cadmium concentration in surface waters of Mejillones bay. By other hand, in spite of cadmium being a redox-sensitive metal, any significant influence of dissolved oxygen on this metal were founded, thus microxic condition of bottom water of Mejillones bay is not the principal factor that promotes cadmium flux to the sediments. Cd/PO4 ratio is in agreement with normal values reported for the Chilean coast, and its low values, compared with the northeast Pacific coast, can be explained either by the fact that PO4 is more efficiently removed than cadmium from the surface layer, or that cadmium remineralization is occurring much faster than in the case of PO4

  13. Upwelling systems in eastern boundary currents have been ...

    African Journals Online (AJOL)

    spamer

    In the Benguela system north of 32°S, winds are upwelling-favourable and currents are equatorward all year, but stronger in summer. The current strengthens in summer, when water parcels with high steric heights move into the region offshore of the jet from the Agulhas Retroflection area at the same time that steric heights ...

  14. Upwelling Index, 24N 113W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  15. Upwelling Index, 51N 131W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  16. Upwelling Index, 21N 107W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  17. Upwelling Index, 39N 125W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  18. Upwelling Index, 45N 125W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  19. Upwelling Index, 27N 116W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  20. Upwelling Index, 57N 137W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  1. Upwelling Index, 42N 125W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  2. Upwelling Index, 30N 119W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  3. The winter St. Helena climate index and extreme Benguela upwelling

    Science.gov (United States)

    Hagen, Eberhard; Agenbag, Jacobus J.; Feistel, Rainer

    2005-09-01

    Climate changes in the subtropical South-east Atlantic turn out to be well described by the St. Helena Island Climate Index (HIX) and observed fluctuations are in good agreement with inter-decadal variability of the entire South Atlantic Ocean. Year-to-year variations of the averaged austral winter HIX (July-September), representative of the main upwelling season, were compared with (i) corresponding averages of the geostrophic alongshore component of the south-east trade wind (SET) between St. Helena Island in the south-west and Luanda/Angola in the north-east, (ii) the meridional distribution of surface waters colder than 13 °C to characterise intense Benguela upwelling (IBU), and (iii) the meridional position of the Angola-Benguela Frontal Zone (ABFZ) determined by means of sea surface temperature images for offshore distances between 50 and 400 km. Temporal changes of these parameters were investigated and showed that the frequency of consecutive years of strong and relaxed Benguela upwelling is characterised by a quasi-cycle of about 11-14 years. It is proposed that the index of the winter HIX may be used as a 'surveyor's rod' to describe interannual changes in the Benguela upwelling regime as well as those of the embedded marine ecosystem.

  4. A biophysical model applied to the Benguela upwelling system ...

    African Journals Online (AJOL)

    A three-dimensional biophysical model for the Benguela upwelling system is described. The model (NORWECOM) has been used in previous works to study model circulation, primary production and dispersion of particles (fish larvae and pollution) in the North Sea. The primary task of this work has been to validate its ...

  5. Upwelling Index, 60N 149W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  6. Upwelling Index, 33N 119W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  7. Upwelling Index, 48N 125W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  8. Air-sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords

    Science.gov (United States)

    Torres, Rodrigo; Pantoja, Silvio; Harada, Naomi; GonzáLez, Humberto E.; Daneri, Giovanni; Frangopulos, MáXimo; Rutllant, José A.; Duarte, Carlos M.; Rúiz-Halpern, Sergio; Mayol, Eva; Fukasawa, Masao

    2011-09-01

    Carbon system parameters measured during several expeditions along the coast of Chile (23°S-56°S) have been used to show the main spatial and temporal trends of air-sea CO2 fluxes in the coastal waters of the eastern South Pacific. Chilean coastal waters are characterized by strong pCO2 gradients between the atmosphere and the surface water, with high spatial and temporal variability. On average, the direction of the carbon flux changes from CO2 outgassing at the coastal upwelling region to CO2 sequestering at the nonupwelling fjord region in Chilean Patagonia. Estimations of surface water pCO2 along the Patagonian fjord region showed that, while minimum pCO2 levels (strong CO2 undersaturation) occurs during the spring and summer period, maximum levels (including CO2 supersaturation) occur during the austral winter. CO2 uptake in the Patagonia fjord region during spring-summer is within the order of -5 mol C m-2 yr-1, indicating a significant regional sink of atmospheric CO2 during that season. We suggest that the CO2 sink at Patagonia most probably exceeds the CO2 source exerted by the coastal upwelling system off central northern Chile.

  9. Successional trajectory of the fouling community on a tropical upwelling ecosystem in southeast Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Bruno Pereira Masi

    2015-06-01

    Full Text Available Abstract The present study describes the successional trajectory of the fouling community in the upwelling region of Cabo Frio in southeastern Rio de Janeiro, Brazil. For 12 months, five PVC panels were sampled monthly by underwater photography to record the percent cover of fouling organisms, which allowed for the evaluation of the successional process through functional groups. The variability in the composition of the fouling community increased throughout the successional trajectory, creating a mosaic pattern. The identification of two associations after a year of observation, with one characterized by filamentous algae, Hydrozoa and Cirripedia and another mainly by articulated calcareous algae, shows that divergent trajectories can be observed even under the same environmental conditions. As an important seasonal factor of the local oceanographic characteristics, the upwelling events allowed for an environmental heterogeneity, and rejecting the classic orderly and directional succession model.

  10. Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic

    DEFF Research Database (Denmark)

    Taucher, Jan; Bach, Lennart T.; Boxhammer, Tim

    2017-01-01

    and successfully simulated a deep water upwelling event that induced a pronounced plankton bloom. Our study revealed significant effects of OA on the entire food web, leading to a restructuring of plankton communities that emerged during the oligotrophic phase, and was further amplified during the bloom......Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. Increasing evidence indicates that these changes-summarized by the term ocean acidification (OA)-can significantly affect marine food webs and biogeochemical......, which regularly occur in response to upwelling of nutrient-rich deep water in the study region. Therefore, we specifically developed a deep water collection system that allowed us to obtain 85 m3 of seawater from 650 m depth. Thereby, we replaced 20% of each mesocosm's volume with deep water...

  11. Upwelling regions, the most fertile of the seas' habitats, are also ...

    African Journals Online (AJOL)

    spamer

    THE UPWELLING FLORA. Components. A distinct upwelling diatom community has not evolved, based on species checklists for the major eastern boundary currents (Benguela, Peru, North-. West Africa and California) and regionally contiguous, minor upwelling centres (Gulf of Panama, Baja. California – De Jager 1955, ...

  12. Multiscale upwelling forcing cycles and biological response off north-central Chile Ciclos multiescala en el forzamiento de la surgencia y respuesta biológica en el centro-norte de Chile

    Directory of Open Access Journals (Sweden)

    JOSÉ RUTLLANT

    2002-03-01

    Full Text Available The physical forcing of the upwelling along the subtropical west coasts of the continents encompasses a broad range of time scales which shape both phytoplankton biomass (Chl-a and primary productivity (carbon fixation changes over any given time interval. The narrow continental shelf and the steep alongshore orography off north-central Chile provide for a unique combination of year-round, upwelling-favorable winds with quasi-weekly upwelling pulses associated with atmospheric coastal-trapped disturbances (coastal lows. This variability is modulated by intraseasonal oscillations in the depth of the thermo/nutricline, produced by coastal-trapped waves in the ocean, upon which annual (seasons and interannual (ENSO cycles are superimposed. During coastal field experiments off Cruz Grande bay (29º S, carried on in November 1987 and 1988 (opposite extremes of the ENSO cycle, mean changes of the phytoplankton-integrated Chl-a (B and carbon fixation rate (PP from the active to the relaxed phases of the local upwelling forcing cycle (phyto-pattern were characterized. Those data were contrasted against similar ones reported off Punta Lengua de Vaca (Coquimbo, 30º S and off Mejillones peninsula (Antofagasta, 23º S, encompassing different seasons and phases of intraseasonal and interannual (ENSO cycles from 1992 to 1997. A "warm" phyto-pattern was schematically characterized by a significant increase in B and a quasi-steady evolution of PP from the active to the relaxed phases of one complete upwelling event. Conversely, relative small changes in B and a significant increase in PP characterized a "cold" phyto-pattern. It is proposed here that the ENSO "cold/warm" signal may be offset by more than one opposite "thermal" condition (seasonal and/or intraseasonal in defining a "warm" or "cold" phyto-pattern associated with a particular cycle of the local upwelling forcingEl forzamiento físico de la surgencia a lo largo de las costas occidentales de los

  13. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  14. Coastal Engineering

    OpenAIRE

    Van der Velden, E.T.J.M.

    1989-01-01

    Introduction, waves, sediment transport, littoral transport, lonshore sediment transport, onshore-offshore sediment transport, coastal changes, dune erosion and storm surges, sedimentation in channels and trenches, coastal engineering in practice.

  15. Geochemistry and magnetic sediment distribution at the western boundary upwelling system of southwest Atlantic

    Science.gov (United States)

    Cruz, Anna P. S.; Barbosa, Catia F.; Ayres-Neto, Arthur; Munayco, Pablo; Scorzelli, Rosa B.; Amorim, Nívea Santos; Albuquerque, Ana L. S.; Seoane, José C. S.

    2018-02-01

    In order to investigate the chemical and magnetic characteristics of sediments of the western boundary upwelling system of Southwest Atlantic we analyzed magnetic susceptibility, grain size distribution, total organic carbon, heavy mineral abundance, Fe associated with Mössbauer spectra, and Fe and Mn of pore water to evaluate the deposition patterns of sediments. Four box-cores were collected along a cross-shelf transect. Brazil Current and coastal plume exert a primary control at the inner and outer shelf cores, which exhibited similar depositional patterns characterized by a high abundance of heavy minerals (mean 0.21% and 0.08%, respectively) and very fine sand, whereas middle shelf cores presented low abundances of heavy minerals (mean 0.03%) and medium silt. The inner shelf was dominated by sub-angular grains, while in middle and outer shelf cores well-rounded grains were found. The increasing Fe3+:Fe2+ ratio from the inner to the outer shelf reflects farther distance to the sediment source. The outer shelf presented well-rounded minerals, indicating abrasive processes as a result of transport by the Brazil Current from the source areas. In the middle shelf, cold-water intrusion of the South Atlantic Central Water contributes to the primary productivity, resulting in higher deposition of fine sediment and organic carbon accumulation. The high input of organic carbon and the decreased grain size are indicative of changes in the hydrodynamics and primary productivity fueled by the western boundary upwelling system, which promotes loss of magnetization due to the induction of diagenesis of iron oxide minerals.

  16. Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems

    Directory of Open Access Journals (Sweden)

    V. Rossi

    2009-08-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. Since they are populated by several physical oceanic structures such as filaments and eddies, which interact with the biological processes, it is a major challenge to study this sub- and mesoscale activity in connection with the chlorophyll distribution. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs, and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs, which allow us to divide each areas in two different subsystems. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. We also proposed a ranking of the four EBUS based on the averaged mixing intensity. When investigating the links with chlorophyll concentration, the previous subsystems reveal distinct biological signatures. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean. This study provides new insights for the understanding of the variable biological productivity in the ocean, which results from both dynamics of the marine ecosystem and of the 3-D turbulent medium.

  17. Coastal sedimentation

    Science.gov (United States)

    Schubel, J. R.

    1980-01-01

    Several important coastal sedimentation problems are identified. Application of existing or anticipated remote sensing techniques to examine these problems is considered. Specifically, coastal fine particle sediment systems, floods and hy hurricanes and sedimentation f of coastal systems, routes and rates of sediment transport on continental shelves, and dredging and dredged material disposal are discussed.

  18. Wind driven upwelling along the African coast of the Strait of Gibraltar

    Science.gov (United States)

    Stanichny, S.; Tigny, V.; Stanichnaya, R.; Djenidi, S.

    2005-02-01

    Regular remote sensing data from various sensors are used here for the study of the wind driven upwelling phenomenon along the African coast of the Strait of Gibraltar. It is shown for an extended summer period (May 15 till September 15, 2003) that sea surface temperature (SST) data in the strait are correlated with NCEP winds, each westward wind increase being followed by a clear surface temperature decrease. Local surface temperature of about 22°C at that time drops down to 15°C, value corresponding to the 80-120 m depth conditions. The analysis of subsequent images indicates that the cold upwelling plume typically moves first to the Atlantic during wind forcing, and then to the Mediterranean after the wind event. The presence of the northern coast of the strait is taken as responsible for a rise of a cross-strait sea level gradient and the enhancement of the associated westward geostrophic current that explains the first stage of the plume deployment. Sea level difference measured between Tarifa (European coast) and Ceuta (African coast), well described by a linear equation in term of the westward wind component, supports this idea as well as the subsequent remotely sensed SST distributions.

  19. Taxocoenosis of epibenthic dinoflagellates in the coastal waters of the northern Yucatan Peninsula before and after the harmful algal bloom event in 2011-2012.

    Science.gov (United States)

    Aguilar-Trujillo, Ana C; Okolodkov, Yuri B; Herrera-Silveira, Jorge A; Merino-Virgilio, Fany Del C; Galicia-García, Citlalli

    2017-06-15

    Eutrophication causes the major impact in the coastal waters of the state of Yucatan. In general, loss of water quality and biological communities and massive development of toxic microorganisms are some of the consequences of this phenomenon. To reveal changes in species composition and cell abundance of the taxocoenosis of epibenthic dinoflagellates before and after a harmful algal bloom event in the water column that lasted about 150days (August-December 2011) in the Dzilam - San Crisanto area (northern Yucatan Peninsula, southeastern Gulf of Mexico) were the main objectives of the present study. In August 2011 and September 2012, sampling along 20 transects perpendicular to the coastline along the entire northern Yucatan coast, starting from 20 sampling sites from El Cuyo in the east to Celestún in the west, at a distance of 50, 150 and 250m from the coast, was carried out. Physicochemical characteristics measured before and after the bloom were within the ranges previously reported in the study area. Salinity was the most stable characteristic, with mean values of 36.25 and 36.42 in 2011 and 2012, respectively. Phosphates were the only parameter that showed a wide range with higher values before the bloom (0.03-0.54μM/l). A total of 168 macrophyte (seaweeds and seagrasses), sponge and sediment samples (105 in 2011 and 63 in 2012) that included associated microphytobenthos were taken by snorkeling from 0.7 to 5m depth. Six substrate types were distinguished: Chlorophyta, Phaeophyceae, Rhodophyta, Angiospermae (seagrasses), Demospongiae (sponges) and sediment. Chlorophytes dominated the collected samples: 38 samples in 2011 and 23 in 2012. Avrainvillea longicaulis f. laxa predominated before the bloom and Udotea flabellum after it. In total, 25 epibenthic dinoflagellate species from 11 genera were found. The genus Prorocentrum was the most representative in terms of the number of species. The highest total dinoflagellate cell abundances were observed in the

  20. Can upwelling signals be detected in intertidal fishes of different trophic levels?

    Science.gov (United States)

    Pulgar, J; Poblete, E; Alvarez, M; Morales, J P; Aranda, B; Aldana, M; Pulgar, V M

    2013-11-01

    For intertidal fishes belonging to three species, the herbivore Scartichthys viridis (Blenniidae), the omnivore Girella laevifrons (Kyphosidae) and the carnivore Graus nigra (Kyphosidae), mass and body size relationships were higher in individuals from an upwelling zone compared with those from a non-upwelling zone. RNA:DNA were higher in the herbivores and omnivores from the upwelling zone. Higher biomass and RNA:DNA in the upwelling intertidal fishes may be a consequence of an increased exposure to higher nutrient availability, suggesting that increased physiological conditioning in vertebrates from upwelling areas can be detected and measured using intertidal fishes of different trophic levels. © 2013 The Fisheries Society of the British Isles.

  1. Gulf of California biogeographic regions based on coastal zone color scanner imagery

    Science.gov (United States)

    SantamaríA-Del-Angel, Eduardo; Alvarez-Borrego, Saúl; Müller-Karger, Frank E.

    1994-04-01

    Topographically, the Gulf of California is divided into a series of basins and trenches that deepen to the south. Maximum depth at the mouth is greater than 3000 m. Most of the northern gulf is less than 200 m deep. The gulf has hydrographic features conducive to high primary productivity. Upwelling events have been described on the basis of temperature distributions at the eastern coast during winter and spring and at the western coast during summer. Tidal amplitude may be as high as 9 m in the upper gulf. On the basis of discrete phytoplankton sampling, the gulf was previously divided into four geographic regions. This division took into consideration only the space distribution, taxonomic composition, and abundance of microphytoplankton. With the availability of the coastal zone color scanner (CZCS) imagery, we were able to include the time variability of pigments to make a more detailed biogeographic division of the gulf. With weekly composites of the imagery, we generated time series of pigment concentrations for 33 locations throughout the gulf and for the whole life span of the CZCS. The time series show a clear seasonal variation, with maxima in winter and spring and minima in summer. The effect of upwelling at the eastern coast is clearly evident, with high pigment concentrations. The effect of the summer upwelling off the Baja California coast is not evident in these time series. Time series from locations on the western side of the gulf also show maxima in winter and spring that are due to the eddy circulation that brings upwelled water from the eastern side. Principal-component analysis was applied to define 14 regions. Ballenas Channel, between Angel de la Guarda and Baja California, and the upper gulf always appeared as very distinct regions. Some of these 14 regions relate to the geographic distributions of important faunal groups, including the benthos, or their life cycles. For example, the upper gulf is a place for reproduction and the nursery of

  2. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from jets characteristic of pulse jet mixers (PJMs) has been analyzed, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell break through? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored.

  3. An integrated wave modelling framework for extreme and rare events for climate change in coastal areas – the case of Rethymno, Crete

    Directory of Open Access Journals (Sweden)

    Vasiliki K. Tsoukala

    2016-04-01

    Full Text Available Coastal floods are regarded as among the most dangerous and harmful of all natural disasters affecting urban areas adjacent to the shorelines. Rapid urbanization combined with climate change and poor governance often results in significant increase of flood risk, especially for coastal communities. Wave overtopping and wave run-up are the key mechanisms for monitoring the results of coastal flooding and as such, significant efforts are currently focusing on their predicting. In this paper, an integrated methodology is proposed, accounting for wave overtopping and wave run-up under extreme wave scenarios caused by storm surges. By taking advantage of past and future climatic projections of wind data, a downscaling approach is proposed, utilizing a number of appropriate numerical models than can simulate the wave propagation from offshore up to the swash zone. The coastal zone of Rethymno in Greece is selected as a case study area and simulations of wave characteristics with the model SWAN for the period 1960–2100 in the offshore region are presented. These data are given as boundary conditions to further numerical models (MIKE21 PMS and HD in order to investigate the spatial evolution of the wave and the hydrodynamic field in intermediate and shallow waters. Finally, the calculated wave height serves as input to empirical formulas and time dependent wave propagation models (MIKE21 BW to estimate the wave run-up and wave overtopping (EurOtop. It is suggested that the proposed procedure is generic enough to be applicable to any similar region.

  4. Nutrient pumping by submesoscale circulations in the mauritanian upwelling system

    Science.gov (United States)

    Hosegood, P. J.; Nightingale, P. D.; Rees, A. P.; Widdicombe, C. E.; Woodward, E. M. S.; Clark, D. R.; Torres, R. J.

    2017-12-01

    Observations made within a cold filament in the Mauritanian upwelling system demonstrate that intense submesoscale circulations at the peripheral edges of the filament are likely responsible for anomalously high levels of observed primary productivity by resupplying nutrients to the euphotic zone. Measurements made on the shelf within the recently upwelled water reveal that primary production (PP) of 8.2 gC/m-2 day-1 was supported by nitrate concentrations (NC) of 8 mmol m-3. Towards the front that defined the edge of the filament containing the upwelled water as it was transported offshore, PP dropped to 1.6 gC m-2 day-1 whilst NC dropped to 5.5 mmol m-3. Thus, whilst the observed nutrients on the shelf accounted for 90% of new production, this value dropped to ∼60% near the filament's front after accounting for vertical turbulent fluxes and Ekman pumping. We demonstrate that the N15 was likely to have been supplied at the front by submesoscale circulations that were directly measured as intense vertical velocities ⩾100 m day-1 by a drifting acoustic Doppler current profiler that crossed a submesoscale surface temperature front. At the same time, a recently released tracer was subducted out of the mixed layer within 24 h of release, providing direct evidence that the frontal circulations were capable of accessing the reservoir of nutrients beneath the pycnocline. The susceptibility of the filament edge to submesoscale instabilities was demonstrated by O(1) Rossby numbers at horizontal scales of 1-10 km. The frontal circulations are consistent with instabilities arising from a wind-driven nonlinear Ekman buoyancy flux generated by the persistent northerly wind stress that has a down-front component at the northern edge of the inshore section of the filament. The prevalence of submesoscale instabilities and their associated vertical circulations are proposed to be a key mechanism operating at sub-grid scales and sustaining new production throughout the upwelling

  5. Artificial upwelling driven by salinity differences in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D H; Decicco, J

    1983-12-01

    A concept for an artificial upwelling driven by salinity differences in the ocean to supply nutrients to a mariculture farm is described and analyzed. A long shell-and-tube counterflow heat exchanger built of inexpensive plastic and concrete is suspended vertically in the ocean. Cold, nutrient rich, but relatively fresh water from deep in the ocean flows up the shell side of the heat exchanger, and warm but relatively saline water from the surface flows down the tube side. The two flows exchange heat across the thin plastic walls of the tubes, maintaining a constant temperature difference along the heat exchanger. The plastic tubes are protected by the concrete outer shell of the heat exchanger. The flow is maintained by the difference in density between the deep and surface water due to their difference in salinity. This phenomenon was first recognized by the oceanographer Stommel, who termed it The Perpetual Salt Fountain. The heat transfer and flow rate as a function of tube number and diameter is analyzed and the size of the heat exchanger optimized for cost is determined for a given flow of nutrients for various locations. Reasonable sizes (outer diameter on the order of 5 m) are obtained. The incremental capital cost of the salinity-driven artificial upwelling is compared to the incremental capital cost and present value of the operating cost of an artificial upwell fueled by liquid hydrocarbons.

  6. Quantifying Physiological, Behavioral and Ecological Consequences of Hypoxic Events in Kelp Forest

    Science.gov (United States)

    Litvin, S. Y.; Beers, J. M.; Woodson, C. B.; Leary, P.; Fringer, O. B.; Goldbogen, J. A.; Micheli, F.; Monismith, S. G.; Somero, G. N.

    2016-02-01

    Rocky reef kelp forests that extend along the coast of central California, like many habitats in upwelling systems, often experience inundations of low dissolved oxygen (DO) or hypoxic waters. These events have the potential to influence the structure and function of coastal ecosystems. The ecological consequences of hypoxia for these systems will be mediated by physiological thresholds and behavioral responses of resident organisms in the context of the spatial and temporal variability of DO, and other potential stressors. Our research focuses on Sebastes (i.e. rockfish) because of their commercial, recreational and ecological importance, high abundance across near shore habitats and the potentially severe impacts of physiological stress due to hypoxia. In the lab, to investigate how hypoxic events physiologically effect rockfish, we exposed young of the year (YOY) of 5 species and two life stages of blue rockfish, S. mystinus (YOY and 1+), to DO concentrations representative of upwelling conditions and measured a suite of whole organisms and tissue level responses including metabolic rate, ventilation, tissue-level metabolism, and blood biochemistry. Results demonstrate species and life stage specific differences in physiological stress under upwelling driven hypoxic conditions and suggest YOY rockfishes may currently be living near their physiological limits. In the laboratory we further explored if physiological impacts result in behavioral consequences by examining the startle response of YOY rockfish, a relative measure of predator avoidance ability, under a range of DO concentrations and exposure durations. To further explore behavioral responses of rockfish to low in DO within the kelp forest we are using two approaches, monitoring the vertical distribution of fish communities across the water column using an acoustic imaging camera (ARIS 3000, Soundmetrics Inc.) and acoustic tagging, with 3-D positioning ability (VPS, VEMCO Inc.), of larger blue rockfish

  7. Modelling an alkenone-like proxy record in the NW African upwelling

    Directory of Open Access Journals (Sweden)

    X. Giraud

    2006-01-01

    Full Text Available A regional biogeochemical model is applied to the NW African coastal upwelling between 19° N and 27° N to investigate how a water temperature proxy, alkenones, are produced at the sea surface and recorded in the slope sediments. The biogeochemical model has two phytoplankton groups: an alkenone producer group, considered to be coccolithophores, and a group comprising other phytoplankton. The Regional Ocean Modelling System (ROMS is used to simulate the ocean circulation and takes advantage of the Adaptive Grid Refinement in Fortran (AGRIF package to set up an embedded griding system. In the simulations the alkenone temperature records in the sediments are between 1.1 and 2.3°C colder than the annual mean SSTs. Despite the seasonality of the coccolithophore production, this temperature difference is not mainly due to a seasonal bias, nor to the lateral advection of phytoplankton and phytodetritus seaward from the cold near-shore waters, but to the production depth of the coccolithophores. If coretop alkenone temperatures are effectively recording the annual mean SSTs, the amount of alkenone produced must vary among the coccolithophores in the water column and depend on physiological factors (e.g. growth rate, nutrient stress.

  8. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted. © 2016 by the Ecological Society of America.

  9. Sources of new nitrogen in the Vietnamese upwelling region of the South China Sea

    DEFF Research Database (Denmark)

    Bombar, Deniz; Dippner, Joachim W.; Doan, Hai Nhu

    2010-01-01

    In the South China Sea, the southwest monsoon between June and September induces upwelling off the southern central Vietnamese coast. During field campaigns in July 2003 and 2004 we evaluated the importance of nitrate and nitrogen fixation as sources of new nitrogen for phytoplankton primary...... productivity, both in the actual upwelling zone and in the oligotrophic area farther offshore. Complementary to rate measurements of primary productivity, nitrate uptake, and nitrogen fixation, we determined vertical nitrate fluxes by Ekman upwelling (upwelling zone) and turbulent diffusion (offshore waters......). Because of the influence of El Nio, upwelling was weaker in July 2003, with an average primary productivity of 28 ± 18 mmol C m-2 d -1, compared to 103 ± 25 mmol C m-2 d-1 in July 2004. Calculated upwelling nitrate fluxes of 17 ± 2 mmol N m -2 d-1 in July 2004 are consistent with N demands of primary...

  10. Stable nitrogen isotopes in coastal macroalgae: Geographic and anthropogenic variability

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: ines.gonzalez@co.ieo.es; Bode, Antonio

    2013-01-15

    Growing human population adds to the natural nitrogen loads to coastal waters. Both anthropogenic and natural nitrogen is readily incorporated in new biomass, and these different nitrogen sources may be traced by the measurement of the ratio of stable nitrogen isotopes (δ{sup 15}N). In this study δ{sup 15}N was determined in two species of macroalgae (Ascophyllum nodosum and Fucus vesiculosus), and in nitrate and ammonium to determine the relative importance of anthropogenic versus natural sources of nitrogen along the coast of NW Spain. Both algal species and nitrogen sources showed similar isotopic enrichment for a given site, but algal δ{sup 15}N was not related to either inorganic nitrogen concentrations or δ{sup 15}N in the water samples. The latter suggests that inorganic nitrogen inputs are variable and do not always leave an isotopic trace in macroalgae. However, a significant linear decrease in macroalgal δ{sup 15}N along the coast is consistent with the differential effect of upwelling. Besides this geographic variability, the influence of anthropogenic nitrogen sources is evidenced by higher δ{sup 15}N in macroalgae from rias and estuaries compared to those from open coastal areas and in areas with more than 15 × 10{sup 3} inhabitants in the watershed. These results indicate that, in contrast with other studies, macroalgal δ{sup 15}N is not simply related to either inorganic nitrogen concentrations or human population size but depends on other factors as the upwelling or the efficiency of local waste treatment systems. - Highlights: ► Anthropogenic versus upwelling nitrogen effect on macroalgal δ{sup 15}N was studied. ► The influence of populations and upwelling has not been made before on macroalgal δ{sup 15}N. ► Natural variability has not been taken into account in most biomonitoring studies. ► Upwelling explains most of the variability in δ{sup 15}N in macroalgae.

  11. Coastal circulation and upwelling index along the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Rao, D.P.

    500 db surface as a reference level. The dynamic topography charts show strong southwesterly flow with a large cyclonic cell during NE monsoon whereas during SW monsoon show a complicated pattern with cyclonic and anti-cyclonic cells along the coast...

  12. Discriminating the biophysical impacts of coastal upwelling and mud banks along the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karnan, C.; Jyothibabu, R.; Arunpandi, N.; Jagadeesan, L.; Muraleedharan, K.R.; Pratihary, A.K.; Balachandran, K.K.; Naqvi, S.W.A.

    > at surface and av. 1.3 ± 0.2 mgC L-1 at subsurface). The seasonal mean bio-volume of micro-autotrophs followed the same pattern in all three locations with the dominance of smaller individuals during the Pre-Southwest Monsoon (av. 55 ± 4.4 × 10

  13. Distribution of living planktonic foraminifera in the coastal upwelling region of Kenya, Africa

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.K.; Paulinose, V.T.; Jayalakshmy, K.V.; Panikkar, B.M.; Kutty, M.K.

    met with in waters near the equator. The faunal characteristics as related to hydrology and the role of some ecological parameters like temperature and salinity have been delineated.The evidence obtained from statistical analysis of the data of most...

  14. Isotopic evidences of past upwelling intensity in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    stream_size 29214 stream_content_type text/plain stream_name Global_Planet_Change_40_285.pdf.txt stream_source_info Global_Planet_Change_40_285.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8..., atmospheric CO 2 levels. In this manner, changes in the intensity of upwelling can exert a significant influence on the CO 2 budget of the atmosphere and consequently on the global climate. In view of welling zones are major sites for the sequestering of high...

  15. Jupiter's belts and zones: Contradictory evidence for upwelling and downwelling

    Science.gov (United States)

    Ingersoll, Andrew P.; Juno Science Team

    2017-10-01

    Early authors (Hess and Panofsky 1951, Ingersoll and Cuzzi 1969, Barcilon and Gierasch 1970) noted that the zonal winds are cyclonic in the belts and anticyclonic in the zones. From the thermal wind equation they concluded that the air below the clouds is colder at the belts and warmer at the zones. Hot air rising and cold air sinking led to the notion of downwelling in the belts and upwelling in the zones, which agreed with observations of clear air and low ammonia vapor in the belts and cloudy air and high ammonia vapor in the zones (Gierasch et al. 1986). However, lightning in the belts seemed to contradict that idea, based on the assumption that lightning and convection require upwelling of moist air from below (Little et al. 1999, Ingersoll et al. 2000). Convergence of the eddy momentum flux on the poleward sides of the zones (Salyk et al. 2006) supports the inference based on lightning by implying convergence of the meridional flow in the zones. Here we argue that lightning in the belts does not require upwelling. Instead, there is a threshold for moist convection that is triggered when the thickness of the weather layer drops below a critical value (Li and Ingersoll 2006, Thomson and McIntyre 2016). We also argue that the convergence of the eddy momentum flux does not require equatorward flow. Instead, the meridional flow is controlled by the sign of the potential vorticity (PV) gradient, which is southward on the equatorward sides of the zones (Ingersoll et al. 2017), implying divergence of the meridional flow in the zones. This is a new idea and is based on the observation that the predicted flat parts of the PV staircase (Dritschel and McIntyre 2008), might actually be sloping inward, since the curvature of the zonal velocity profile U_yy exceeds beta at the centers of the westward jets (Ingersoll and Cuzzi 1969, Ingersoll et al. 1981, Limaye et al. 1986, Li et al. 2004, Read et al. 2006). These arguments agree with observations of upwelling in the zones

  16. Ocean and Coastal Acidification off New England and Nova Scotia

    Science.gov (United States)

    New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acid...

  17. A restoration framework to build coastal wetland resiliency

    Science.gov (United States)

    An increase in the frequency and intensity of storms and flooding events are adversely impacting coastal wetlands. Coastal wetlands provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including spec...

  18. Submesoscale CO2 variability across an upwelling front off Peru

    Science.gov (United States)

    Köhn, Eike E.; Thomsen, Sören; Arévalo-Martínez, Damian L.; Kanzow, Torsten

    2017-12-01

    As a major source for atmospheric CO2, the Peruvian upwelling region exhibits strong variability in surface fCO2 on short spatial and temporal scales. Understanding the physical processes driving the strong variability is of fundamental importance for constraining the effect of marine emissions from upwelling regions on the global CO2 budget. In this study, a frontal decay on length scales of 𝒪(10 km) was observed off the Peruvian coast following a pronounced decrease in down-frontal (equatorward) wind speed with a time lag of 9 h. Simultaneously, the sea-to-air flux of CO2 on the inshore (cold) side of the front dropped from up to 80 to 10 mmol m-2 day-1, while the offshore (warm) side of the front was constantly outgassing at a rate of 10-20 mmol m-2 day-1. Based on repeated ship transects the decay of the front was observed to occur in two phases. The first phase was characterized by a development of coherent surface temperature anomalies which gained in amplitude over 6-9 h. The second phase was characterized by a disappearance of the surface temperature front within 6 h. Submesoscale mixed-layer instabilities were present but seem too slow to completely remove the temperature gradient in this short time period. Dynamics such as a pressure-driven gravity current appear to be a likely mechanism behind the evolution of the front.

  19. Differential responses of calcifying and non-calcifying epibionts of a brown macroalga to present-day and future upwelling pCO2.

    Directory of Open Access Journals (Sweden)

    Vincent Saderne

    Full Text Available Seaweeds are key species of the Baltic Sea benthic ecosystems. They are the substratum of numerous fouling epibionts like bryozoans and tubeworms. Several of these epibionts bear calcified structures and could be impacted by the high pCO2 events of the late summer upwellings in the Baltic nearshores. Those events are expected to increase in strength and duration with global change and ocean acidification. If calcifying epibionts are impacted by transient acidification as driven by upwelling events, their increasing prevalence could cause a shift of the fouling communities toward fleshy species. The aim of the present study was to test the sensitivity of selected seaweed macrofoulers to transient elevation of pCO2 in their natural microenvironment, i.e. the boundary layer covering the thallus surface of brown seaweeds. Fragments of the macroalga Fucus serratus bearing an epibiotic community composed of the calcifiers Spirorbis spirorbis (Annelida and Electra pilosa (Bryozoa and the non-calcifier Alcyonidium hirsutum (Bryozoa were maintained for 30 days under three pCO2 conditions: natural 460 ± 59 µatm, present-day upwelling1193 ± 166 µatm and future upwelling 3150 ± 446 µatm. Only the highest pCO2 caused a significant reduction of growth rates and settlement of S. spirorbis individuals. Additionally, S. spirorbis settled juveniles exhibited enhanced calcification of 40% during daylight hours compared to dark hours, possibly reflecting a day-night alternation of an acidification-modulating effect by algal photosynthesis as opposed to an acidification-enhancing effect of algal respiration. E. pilosa colonies showed significantly increased growth rates at intermediate pCO2 (1193 µatm but no response to higher pCO2. No effect of acidification on A. hirsutum colonies growth rates was observed. The results suggest a remarkable resistance of the algal macro-epibionts to levels of acidification occurring at present day upwellings in the Baltic

  20. Influence of distributary channels on sediment and organic matter supply in event-dominated coastal margins: the Po prodelta as a study case

    Directory of Open Access Journals (Sweden)

    T. Tesi

    2011-02-01

    Full Text Available From November 2008 through May 2009, the Po river (Italy experienced several floods exceeding 5000 m3 s−1. This long series of events ended with a large flood in early May 2009 (~8000 m3 s−1. An event-response sampling was carried out in the Po prodelta in April–May 2009 to characterize the preservation of this series of floods in the sediment record and to describe the event-supply and deposition of riverborne particulate material during the May 2009 flood. The water sampling was carried out early in the event under conditions of moderate river flow (~5000 m3 s−1 and 24 h later during the peak discharge (~8000 m3 s−1. Sediment cores were collected in the prodelta before and after the peak flood. At each station, profiles of conductivity, transmittance, and fluorescence were acquired. Surface and bottom waters were sampled to collect sediments in suspension. In addition, a few days before the May 2009 event, suspended sediments were collected at Pontelagoscuro gauging station, ~90 km upstream from the coast. Biogeochemical compositions and sedimentological characteristics of suspended and sediment samples were investigated using bulk and biomarker analyses. Furthermore, 7Be and radiographs were used to analyze the internal stratigraphy of sediment cores.

    During moderate flow, the water column did not show evidence of plume penetration. Stations re-occupied 24 h later exhibited marked physical and biogeochemical changes during the peak flood. However, the concentration of terrestrially-derived material in surface waters was still less than expected. These results suggested that, since material enters the Adriatic as buoyancy-driven flow with a reduced transport capacity, settling and flocculation processes result in trapping a significant fraction of land-derived material in shallow sediments and/or within distributary channels

  1. Equatorial Pacific peak in biological production regulated by nutrient and upwelling during the late Pliocene/early Pleistocene cooling

    Directory of Open Access Journals (Sweden)

    J. Etourneau

    2013-08-01

    Full Text Available The largest increase in export production in the eastern Pacific of the last 5.3 Myr (million years occurred between 2.2 and 1.6 Myr, a time of major climatic and oceanographic reorganization in the region. Here, we investigate the causes of this event using reconstructions of export production, nutrient supply and oceanic conditions across the Pliocene–Pleistocene in the eastern equatorial Pacific (EEP for the last 3.2 Myr. Our results indicate that the export production peak corresponds to a cold interval marked by high nutrient supply relative to consumption, as revealed by the low bulk sedimentary 15N/14N (δ15N and alkenone-derived sea surface temperature (SST values. This ∼0.6 million year long episode of enhanced delivery of nutrients to the surface of the EEP was predominantly initiated through the upwelling of nutrient-enriched water sourced in high latitudes. In addition, this phenomenon was likely promoted by the regional intensification of upwelling in response to the development of intense Walker and Hadley atmospheric circulations. Increased nutrient consumption in the polar oceans and enhanced denitrification in the equatorial regions restrained nutrient supply and availability and terminated the high export production event.

  2. Self-shading correction for oceanographic upwelling radiometers.

    Science.gov (United States)

    Leathers, Robert; Downes, Trijntje; Mobley, Cutris

    2004-10-04

    We present the derivation of an analytical model for the self-shading error of an oceanographic upwelling radiometer. The radiometer is assumed to be cylindrical and can either be a profiling instrument or include a wider cylindrical buoy for floating at the sea surface. The model treats both optically shallow and optically deep water conditions and can be applied any distance off the seafloor. We evaluate the model by comparing its results to those from Monte Carlo simulations. The analytical model performs well over a large range of environmental conditions and provides a significant improvement to previous analytical models. The model is intended for investigators who need to apply self-shading corrections to radiometer data but who do not have the ability to compute shading corrections with Monte Carlo simulations. The model also can provide guidance for instrument design and cruise planning.

  3. Near-coastal ocean variability off southern Tamaulipas - northern Veracruz, western Gulf of Mexico, during spring-summer 2013

    Science.gov (United States)

    Rivas, David

    2016-04-01

    Six months of observations from a near-coastal mooring deployed off southern Tamaulipas-northern Veracruz coast (western Gulf of Mexico) during spring-summer 2013 provides velocity, temperature, salinity, sea level, and dissolved oxygen series in a region which ocean dynamics is still poorly understood. As shown in a preceding analysis of this region's winter circulation for winter 2012-2013, coastal trapped motions associated with the regional invasion of synoptic cold fronts modulate the local variability; this pattern remains in the spring 2013, when even more intense events of alongshore flow (>50 cm/s) are observed. This intensified flow is associated with a significant decrease in the dissolved oxygen, most probably related to an influence of hypoxic waters coming from the northern Gulf. In late spring-mid summer, the wind pattern corresponds to persistent southeasterly winds that favor the occurrence of a local upwelling, which maintains a local thermal reduction (>3 degrees Celsius) and is associated with a persistent northward flow (>30 cm/s). The late summer was characterized by a significant tropical-cyclone activity, when a depression, a storm, and a hurricane affected the western Gulf. These tropical systems caused an intense precipitation and hence an important intensification of the local riverine discharge, and the winds enhanced the mixing of such riverine waters, via mostly kinetic stirring and Ekman pumping.

  4. Artificial upwelling using offshore wind energy for mariculture applications

    Directory of Open Access Journals (Sweden)

    Álvaro Viúdez

    2016-09-01

    Full Text Available Offshore wind is proposed as an energy source to upwell nutrient-rich deep water to the ocean photic layers. A spar-buoy wind turbine with a rigid tube about 300 m long is proposed as a pipe to drive deep water up to the surface. The minimum energy required to uplift the water is the potential energy difference between surface waters inside and outside the pipe, which depends on the background density profile. The corresponding surface jump or hydraulic head, h, calculated for several analytical and experimental density profiles, is of the order of 10 cm. If the complete turbine power (of the order of several MW is used for raising the water (assuming a 100% pump efficiency, in a frictionless flow, very large water volumes, of the order of thousands of m3 s-1, will be transported to the photic layers. In a more realistic case, taking into account pipe friction in wide pipes, of the order of 10 m radius, and a power delivered to the fluid of 1 MW, the volume transport is still very large, about 500 m3 s-1. However, such a large amount of dense water could sink fast to aphotic layers due to vertical static instability (the fountain effect, ruining the enhancement of primary production. Hence, some ways to increase the turbulent entrainment and avoid the fountain effect are proposed. From the energetic viewpoint, artificial upwelling using offshore wind energy is a promising way to fertilize large open sea regions. This mariculture application is, however, severely subjected to atmosphere and ocean climatology, as well as to ecological dynamics. The general problem is multidisciplinary, and some important physical, engineering and ecological questions need to be seriously addressed to improve our confidence in the approach presented here.

  5. Catch variability and growth of pink shrimp (Farfantepenaeus paulensis in two coastal lagoons of uruguay and their relationship with ENSO events

    Directory of Open Access Journals (Sweden)

    Orlando Santana

    2015-09-01

    Full Text Available AbstractThe pink shrimp Farfantepenaeus paulensis (Pérez Farfante, 1967 is distributed along the Atlantic Coast from Bahia (Brazil to Mar del Plata (Argentina. The larval stages enter the Uruguayan brackish water lagoons during late spring to summer associated with tidal currents of the Brazilian Current. In such environments the growth is accelerated and in early autumn the individuals attain commercial size, supporting important regional artisanal fisheries. The pink shrimp catches from 1988 to 2013 were analyzed and related to phenomena of climate variability in ENSO events and to the growth of the species. The total catch ranges from 0.7 to 162 tons. The variation in catches has a negative relationship with the varied climatic events caused by El Niño. Growth parameters yielding values of L ∞ = 177 mm (total carapace length and K = 1.48 for the period 2009-2013. These values differ slightly from those calculated for natural populations in southern Brazil, suggesting that the population is the same and thus implying the need for coordinated fisheries management between the two countries.

  6. Geomorphometry in coastal morphodynamics

    Science.gov (United States)

    Guisado-Pintado, Emilia; Jackson, Derek

    2017-04-01

    -energy events). Other examples include long-term monitoring of beach dynamics and evolution, examining the impact of natural hazards (surges, storms, sea-level rise) on coastal areas using GPS-linked drones to acquire repeat topographic (point clouds) surveys over inter-tidal and dune edge/back beach zones. Nearshore 3D bathymetric information generated from navigation charts, echo-sonar instruments or more recently from Satellite (LANDSAT) imagery is also highlighted as a key dataset in geomorphometry. The recent technological developments in 3D data acquisition within the coastal and marine environment now offers exciting opportunities in which to reveal how these systems function across multiple time and space scales. Whilst this can offer new insights, it also presents significant analytical challenges due to the sheer volume of data generated, the necessity of specialist personnel and software to process the data. Geomorphometry can help play a key role in this progression and take analysis within coastal science to new levels.

  7. Impact of recently upwelled water on productivity investigated using in situ and incubation-based methods in Monterey Bay

    Science.gov (United States)

    Manning, Cara C.; Stanley, Rachel H. R.; Nicholson, David P.; Smith, Jason M.; Timothy Pennington, J.; Fewings, Melanie R.; Squibb, Michael E.; Chavez, Francisco P.

    2017-03-01

    Photosynthetic conversion of CO2 to organic carbon and the transport of this carbon from the surface to the deep ocean is an important regulator of atmospheric CO2. To understand the controls on carbon fluxes in a productive region impacted by upwelling, we measured biological productivity via multiple methods during a cruise in Monterey Bay, California. We quantified net community production and gross primary production from measurements of O2/Ar and O2 triple isotopes (17Δ), respectively. We simultaneously conducted incubations measuring the uptake of 14C, 15NO3-, and 15NH4+, and nitrification, and deployed sediment traps. At the start of the cruise (Phase 1) the carbon cycle was at steady state and the estimated net community production was 35(10) and 35(8) mmol C m-2 d-1 from O2/Ar and 15N incubations, respectively, a remarkably good agreement. During Phase 1, net primary production was 96(27) mmol C m-2 d-1 from C uptake, and gross primary production was 209(17) mmol C m-2 d-1 from 17Δ. Later in the cruise (Phase 2), recently upwelled water with higher nutrient concentrations entered the study area, causing 14C and 15NO3- uptake to increase substantially. Continuous O2/Ar measurements revealed submesoscale variability in water mass structure and likely productivity in Phase 2 that was not evident from the incubations. These data demonstrate that O2/Ar and 15N incubation-based NCP estimates can give equivalent results in an N-limited, coastal system, when the nonsteady state O2 fluxes are negligible or can be quantified.

  8. Overtopping of coastal structures by tsunami waves

    NARCIS (Netherlands)

    Esteban, Miguel; Glasbergen, Toni; Takabatake, Tomoyuki; Hofland, B.; Nishizaki, Shinsaku; Nishida, Yuta; Stolle, Jacob; Nistor, Ioan; Bricker, J.D.; Takagi, Hiroshi; Shibayama, Tomoya

    2017-01-01

    Following the 2011 Tohoku Earthquake and Tsunami, Japanese tsunami protection guidelines stipulate that coastal defences should ensure that settlements are shielded from the coastal inundation that would result from Level 1 tsunami events (with return periods in the order of about 100 years).

  9. Sr/Ca and Mg/Ca in Glycymeris glycymeris (Bivalvia) shells from the Iberian upwelling system: Ontogeny and environmental control

    Science.gov (United States)

    Freitas, Pedro; Richardson, Christopher; Chenery, Simon; Monteiro, Carlos; Butler, Paul; Reynolds, David; Scourse, James; Gaspar, Miguel

    2017-04-01

    Bivalve shells have a great potential as high-resolution geochemical proxy archives of marine environmental conditions. In addition, sclerochronology of long-lived bivalve species (e.g. Arctica islandica) provides a timeline of absolutely dated shell material for geochemical analysis that can extend into the past beyond the lifetime of single individuals through the use of replicated crossmatched centennial to millennial chronologies. However, the interpretation of such records remains extremely challenging and complex, with multiple environmental and biological processes affecting element incorporation in the shell (e.g. crystal fabrics, organic matrix, biomineralization mechanisms and physiological processes). As a result, the effective use of bivalve shell elemental/Ca ratios as palaeoenvironmental proxies has been limited, often to species-specific applications or applications restricted to particular environmental settings. The dog-cockle, Glycymeris glycymeris, is a relatively long-lived bivalve (up to 200 years) that occurs in coarse-grained subtidal sediments of coastal shelf seas of Europe and North West Africa. Glycymeris glycymeris shells provide a valuable, albeit not fully explored, archive to reconstruct past environmental variability in an area lacking sclerochronological studies due to the rarity of long-lived bivalves and lack of coral reefs. In this study, we evaluate the potential of Sr/Ca and Mg/Ca ratios in G. glycymeris shells as geochemical proxies of upwelling conditions in the Iberian Upwelling System, the northern section of the Canary Current Eastern Boundary Upwelling System. Sr/Ca and Mg/Ca generally co-varied significantly and a clear ontogenetic, non-environmental related change in Sr/Ca and Ba/Ca variability was observed. High Sr/Ca and Mg/Ca ratios in older shells (> 10 years old) were found to be associated with the occurrence of growth lines deposited during the winter reduction in shell growth. Nevertheless, Sr/Ca and Mg

  10. The OMZ and nutrient features as a signature of interannual and low-frequency variability in the Peruvian upwelling system

    Science.gov (United States)

    Graco, Michelle I.; Purca, Sara; Dewitte, Boris; Castro, Carmen G.; Morón, Octavio; Ledesma, Jesús; Flores, Georgina; Gutiérrez, Dimitri

    2017-10-01

    Over the last decades, the Humboldt Current upwelling ecosystem, particularly the northern component off the coast of Peru, has drawn the interest of the scientific community because of its unique characteristics: it is the upwelling system with the biggest catch productivity despite the fact it is embedded in a shallow and intense oxygen minimum zone (OMZ). It is also an area of intense nitrogen loss and anammox activity and experiences large interannual variability associated with the equatorial remote forcing. In this context, we examined the oceanographic and biogeochemical variability associated with the OMZ off central Peru from a monthly time series (1996-2011) recorded off the coast of Callao (12° 02' S, 77° 29' W). The data reveal a rich spectrum of variability in the OMZ that includes frequencies ranging from seasonal to interannual scales. Due to the efficient oceanic teleconnection off Peru, the observed variability is interpreted in the light of an estimate of the equatorial Kelvin wave contribution to sea level anomalies considering the peculiarities of its vertical structure (i.e., the first two baroclinic modes). The span of the data set allows us to contrast two OMZ regimes. The strong regime is associated with the strong 1997-1998 equatorial Pacific El Niño, during which the OMZ adjusted to Kelvin-wave-induced downwelling conditions that switched off the upwelling and drastically reduced nutrient availability. The weak regime corresponds to the post-2000 period associated with the occurrence of moderate central Pacific El Niño events and enhanced equatorial Kelvin wave activity, in which mean upwelling conditions are maintained. It is shown that the characteristics of the coupling between physics and biogeochemistry is distinct between the two regimes with the weak regime being associated with a larger explained variance in biogeochemical properties not linearly related to the ENSO oceanic teleconnection. The data also reveal a long-term trend

  11. The OMZ and nutrient features as a signature of interannual and low-frequency variability in the Peruvian upwelling system

    Directory of Open Access Journals (Sweden)

    M. I. Graco

    2017-10-01

    Full Text Available Over the last decades, the Humboldt Current upwelling ecosystem, particularly the northern component off the coast of Peru, has drawn the interest of the scientific community because of its unique characteristics: it is the upwelling system with the biggest catch productivity despite the fact it is embedded in a shallow and intense oxygen minimum zone (OMZ. It is also an area of intense nitrogen loss and anammox activity and experiences large interannual variability associated with the equatorial remote forcing. In this context, we examined the oceanographic and biogeochemical variability associated with the OMZ off central Peru from a monthly time series (1996–2011 recorded off the coast of Callao (12° 02′ S, 77° 29′ W. The data reveal a rich spectrum of variability in the OMZ that includes frequencies ranging from seasonal to interannual scales. Due to the efficient oceanic teleconnection off Peru, the observed variability is interpreted in the light of an estimate of the equatorial Kelvin wave contribution to sea level anomalies considering the peculiarities of its vertical structure (i.e., the first two baroclinic modes. The span of the data set allows us to contrast two OMZ regimes. The strong regime is associated with the strong 1997–1998 equatorial Pacific El Niño, during which the OMZ adjusted to Kelvin-wave-induced downwelling conditions that switched off the upwelling and drastically reduced nutrient availability. The weak regime corresponds to the post-2000 period associated with the occurrence of moderate central Pacific El Niño events and enhanced equatorial Kelvin wave activity, in which mean upwelling conditions are maintained. It is shown that the characteristics of the coupling between physics and biogeochemistry is distinct between the two regimes with the weak regime being associated with a larger explained variance in biogeochemical properties not linearly related to the ENSO oceanic teleconnection. The

  12. Bioengineers and their associated fauna respond differently to the effects of biogeography and upwelling.

    Science.gov (United States)

    Cole, Victoria J; McQuaid, Christopher D

    2010-12-01

    Temperature and primary production (often linked to nutrient supply) are two of the few factors influencing species diversity and abundances across mesoscale gradients, while at smaller scales the habitat complexity offered by bioengineers is important. Previous studies have illustrated effects of upwelling and biogeography on intertidal bioengineers, but it is not known if these processes influence assemblages associated with those bioengineers in a similar way. We examined the habitat structure offered by two species of mussels and their associated fauna in five regions across 3000 km and three biogeographic provinces of the South African coast, replicating upwelling and non-upwelling areas within each region. Upwelling and region influenced the structure of mussel beds (the density and size of mussels). In contrast, upwelling did not influence mesoscale differences in composition, abundance, and numbers of species of crustaceans, mollusks, or polychaetes in mussel beds. Regardless of trophic level or mode of reproduction, mussel bed fauna were influenced only by region. Regional differences were strongly influenced by biogeography. The associated fauna was, however, also strongly correlated with the structure of the habitats created by mussels. Our results support the importance of upwelling to a critical ecosystem engineer, but show that these effects do not extend directly to the assemblages of associated fauna, which are more influenced by regional-scale effects and biogeography. We suggest that mesoscale patterns in the associated fauna of this bioengineered habitat are driven by the direct effects of biogeography, combined with the influence of biogeography and upwelling on mussel bed structure.

  13. Decadal resolution record of Oman upwelling indicates solar forcing of the Indian summer monsoon (9-6 ka)

    Science.gov (United States)

    Munz, Philipp M.; Steinke, Stephan; Böll, Anna; Lückge, Andreas; Groeneveld, Jeroen; Kucera, Michal; Schulz, Hartmut

    2017-05-01

    The Indian summer monsoon (ISM) is an important conveyor in the ocean-atmosphere coupled system on a trans-regional scale. Here we present a study of a sediment core from the northern Oman margin, revealing early to mid-Holocene ISM conditions on a near-20-year resolution. We assess multiple independent proxies indicative of sea surface temperatures (SSTs) during the upwelling season together with bottom-water conditions. We use geochemical parameters, transfer functions of planktic foraminiferal assemblages and Mg /  Ca palaeothermometry, and find evidence corroborating previous studies showing that upwelling intensity varies significantly in coherence with solar sunspot cycles. The dominant ˜ 80-90-year Gleissberg cycle apparently also affected bottom-water oxygen conditions. Although the interval from 8.4 to 5.8 ka BP is relatively short, the gradually decreasing trend in summer monsoon conditions was interrupted by short events of intensified ISM conditions. Results from both independent SST proxies are linked to phases of weaker oxygen minimum zone (OMZ) conditions and enhanced carbonate preservation. This indicates that atmospheric forcing was intimately linked to bottom-water properties and state of the OMZ on decadal timescales.

  14. Corona Formation and Heat Loss on Venus by Coupled Upwelling and Delamination

    Science.gov (United States)

    Smrekar, Suzanne E.; Stofan, Ellen R.

    1997-01-01

    Coronae are volcanotectonic features that are unique to Venus and are interpreted to be small-scale upwellings. A model in which upwelling causes delamination at the edge of the plume head, along with deformation of a pre-existing depleted mantel Layer, can produce the full range of topographic forms of coronae. If half of the coronae are active, delamination of the lower lithosphere could account for about 10% of venus's heat loss, with another 15% due to upwelling. Delamination may occur in other geologic enviroment and could help account for 'Venus' heat loss 'deficit'.

  15. Artificial upwelling using the energy of surface waves

    Science.gov (United States)

    Soloviev, A.

    2016-02-01

    The ocean is an important component of climate and climate change, since the heat capacity of a few meters of the upper ocean is equivalent to the heat capacity of the entire atmosphere. (Solar radiation and IR balance in the atmosphere are of course major factors as well.) Artificial upwelling devices using the energy of surface waves, similar to those developed by Vershinskiy, Pshenichnyy, and Soloviev (1987), can bring cold water from below the thermocline to the sea surface. Their wave-inertia pump consisted of a vertical tube, a valve, and a buoy to keep the device afloat. The device operated by using energy of surface waves to create an upward flow of water in the tube. An outlet valve at the top of the unit synchronized the operation of the device with surface waves and prevented back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. This type of artificial upwelling can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from the deep layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps has been estimated for different environmental conditions using a computational fluid dynamics model. The cooled near-surface layer of the ocean will be getting more heat from the sun, which is a detrimental consequence. Cloud seeding can help to mitigate this extra warming. A synergistic approach to climate engineering can thus reduce detriments and increase potential benefits of this system to society.

  16. Variability in biological responses influenced by upwelling events in the Eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Habeebrehman, H.; Prabhakaran, M.P.; Jacob, J.; Sabu, P.; Jayalakshmi, K.J.; Achuthankutty, C.T.; Revichandran, C.

    : dominant group, which constitute 59% of the total population having 132 species. Dinoflagellates form 37% with a total of 82 species. Green flagellates contribute 3% and blue green algae,1%. Ceratium forms the dominant genus (23 species). A total of 79... formed 21.5% and 26% respectively. Green flagellates were present only in the inshore stations of southern region. Tricho- desmium erythraeum (blue green algae) was the dominant species at all the stations. The highest cell density (22.8×10 3 cells...

  17. Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling

    Science.gov (United States)

    Zhao, Dapeng; Liu, Xin; Hua, Yuanyuan

    2018-03-01

    We investigate the 3-D seismic structure of source areas of the 6 October 2000 Western Tottori earthquake (M 7.3) and the 21 October 2016 Central Tottori earthquake (M 6.6) which occurred near the Daisen volcano in SW Japan. The two large events took place in a high-velocity zone in the upper crust, whereas low-velocity (low-V) and high Poisson's ratio (high-σ) anomalies are revealed in the lower crust and upper mantle. Low-frequency micro-earthquakes (M 0.0-2.1) occur in or around the low-V and high-σ zones, which reflect upward migration of magmatic fluids from the upper mantle to the crust under the Daisen volcano. The nucleation of the Tottori earthquakes may be affected by the ascending fluids. The flat subducting Philippine Sea (PHS) slab has a younger lithosphere age and so a higher temperature beneath the Daisen and Tottori area, facilitating the PHS slab melting. It is also possible that a PHS slab window has formed along the extinct Shikoku Basin spreading ridge beneath SW Japan, and mantle materials below the PHS slab may ascend to the shallow area through the slab window. These results suggest that the Daisen adakite magma was affected by the PHS slab melting and upwelling flow in the upper mantle above the subducting Pacific slab.

  18. Mantle upwelling beneath Madagascar: evidence from receiver function analysis and shear wave splitting

    Science.gov (United States)

    Paul, Jonathan D.; Eakin, Caroline M.

    2017-07-01

    Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.

  19. Radon hazard in shallow groundwaters II: Dry season fracture drainage and alluvial fan upwelling

    Energy Technology Data Exchange (ETDEWEB)

    Tommasone, F. Pascale [Office of Civil Protection, Meteorology, Climatology and Natural Hazards, Piazza Municipio, 81051 Pietramelara, Caserta (Italy); De Francesco, S., E-mail: stefano.defrancesco@unina2.it [Department of Environmental Sciences, University of Caserta, Via Vivaldi, 43, 81100 Caserta (Italy); Cuoco, E.; Verrengia, G.; Santoro, D. [Department of Environmental Sciences, University of Caserta, Via Vivaldi, 43, 81100 Caserta (Italy); Tedesco, D. [Department of Environmental Sciences, University of Caserta, Via Vivaldi, 43, 81100 Caserta (Italy); C.N.R. (Italian National Council), Institute of Environmental Geology and Geological Engineering, Piazzale Aldo Moro, 00100 Roma (Italy)

    2011-08-15

    {sup 222}Rn concentrations have been measured in a well located on the edge of a large Pleistocene-Holocene fan and belonging to the shallow pyroclastic aquifer of the Pietramelara Plain, southern Italy. The aim of this study has been both to characterise the hydrological inputs that determine the influx of {sup 222}Rn to the shallow aquifer and to understand the correlations between {sup 222}Rn, major ions, physical-chemical parameters and rainfall. Results obtained from the time series indicate that the studied well shows a {sup 222}Rn variability that is inconsistent with a mechanism of pure hydrological amplification, such as described in Radon hazard in shallow groundwaters: Amplification and long term variability induced by rainfall (De Francesco et al., 2010a). On the contrary, in this well hydrological amplification appears to be mainly tied to the upwelling of alluvial fan waters, rich in radon, in response to pistoning from recharge in the carbonate substrate. This upwelling of alluvial fan waters occurs during almost the whole period of the annual recharge and is also responsible of the constant increase in {sup 222}Rn levels during the autumn-spring period, when both the water table level and weekly rainfall totals drop. Furthermore, a rapid delivery mechanism for {sup 222}Rn likely operates through fracture drainage in concomitance with the very first late summer-early autumn rains, when rainfall totals appear largely insufficient to saturate the soil storage capacity. Results obtained from this study appear to be particularly significant in both radon hazard zoning in relation to the shallow aquifer and possibly also for indoor radon, owing to possible shallow aquifer-soil-building exchanges. Moreover, both the spike-like events and the long wave monthly scale background fluctuations detected can also have potential significance in interpreting {sup 222}Rn time series data as seismic and/or volcanic precursors. Finally, {sup 222}Rn has proved to be an

  20. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000

    Science.gov (United States)

    Escribano, Ruben; Hidalgo, Pamela; Krautz, Cristina

    2009-07-01

    Zooplankton in the coastal upwelling region off northern Chile may play a significant biogeochemical role by promoting carbon flux into the subsurface OMZ (oxygen minimum zone). This work identifies the dominant zooplankton species inhabiting the area influenced by the OMZ in March 2000 off Iquique (20°S, northern Chile). Abundance and vertical distribution studies revealed 17 copepod and 9 euphausiid species distributed between the surface and 600 m at four stations sampled both by day and by night. Some abundant species remained in the well-oxygenated upper layer (30 m), with no evidence of diel vertical migration, apparently restricted by a shallow (40-60 m) oxycline. Other species, however, were found closely associated with the OMZ. The large-sized copepod Eucalanus inermis was found below the oxycline and performed diel vertical migrations into the OMZ, whereas the very abundant Euphausia mucronata performed extensive diel vertical migrations between the surface waters and the core of the OMZ (200 m), even crossing it. A complete assessment of copepods and euphausiids revealed that the whole sampled water column (0-600 m) is occupied by distinct species having well-defined habitats, some of them within the OMZ. Ontogenetic migrations were evident in Eucalanidae and E. mucronata. Estimates of species biomass showed a substantial (>75% of total zooplankton biomass) daily exchange of C between the photic layer and the OMZ. Both E. inermis and E. mucronata can actively exchange about 37.8 g C m -2 d -1 between the upper well-oxygenated (0-60 m) layer and the deeper (60-600 m) OMZ layer. This migrant biomass may contribute about 7.2 g C m -2 d -1 to the OMZ system through respiration, mortality, and production of fecal pellets within the OMZ. This movement of zooplankton in and out of the OMZ, mainly as a result of the migratory behavior of E. mucronata, suggests a very efficient mechanism for introducing large amounts of freshly produced carbon into the OMZ

  1. Intra-annual upwelling patterns and its linkage with primary production in the euphotic zone (24.5°N) of Southern Baja California coast

    Science.gov (United States)

    Cervantes-Duarte, Rafael; Prego, Ricardo; Gaxiola-Castro, Gilberto; López-López, Silverio; Aguirre-Bahena, Fernando; Murillo-Murillo, Iban

    2015-05-01

    The continental shelf of Southern Baja California has been scarcely researched south of 25°N despite it being oceanographically necessary to gain a better understanding of the north-eastern Pacific transitional zone between middle and tropical latitudes. Therefore, the intra-annual patterns of the upwelling cycle and primary production were studied in a monitoring station (24.5°N, 112.1°W; 85 m depth) from August 2008 to December 2011. Monthly, thermohaline vertical profiles were recorded and seawater sampled at 100, 33, 10, 3 and 1% irradiance depth levels. Dissolved oxygen, nutrients and chlorophyll-a concentrations and net primary production (NPP, remote sensed and in situ) were determined. Two half-yearly recurrent periods (P < 0.001) were observed: an intense (cold) period from February to July and a faint (warm) period from August to January. In the euphotic layer, nitrate concentrations were inversely related to temperature, showing their dependence on upwelling. NPP was directly related to the upwelling process, with an annual average of 1.21 ± 0.81 gC m-2 d-1 in the triennium 2009-2011. Although the influence of La-Niña event was observed during the warm period of 2010 and the cold period of 2011, this change did not significantly affect NPP (P < 0.05).

  2. Biología poblacional de huirales submareales de Macrocystis integrifolia y Lessonia trabeculata (Laminariales, Phaeophyceae en un ecosistema de surgencia del norte de Chile: variabilidad interanual y El Niño 1997-1998 Population biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales, Phaeophyceae in an upwelling ecosystem of northern Chile: interannual variability and El Niño 1997-1998

    Directory of Open Access Journals (Sweden)

    J.M. ALONSO VEGA

    2005-03-01

    Full Text Available This paper describes the population biology of Lessonia trabeculata and Macrocystis integrifolia during and after the 1997-1998 El Niño in an area of permanent coastal upwelling in northern Chile. Spatial and temporal patterns of distribution were evaluated seasonally for adult and juvenile sporophytes of both species between 1996 and 2003. These two kelp form an assemblage distributed between 2 and 15 m depth, with disjunct patterns along a bathymetric gradient, including two morphs of L. trabeculata, the occurrence of which depends on the presence or absence of M. integrifolia. During the 1997-1998 El Niño the spatial-temporal patterns of abundance of the kelp assemblage were maintained by the continuity of coastal upwelling, which buffered and moderated superficial warming of the sea and depletion of nutrients. In this context, localities associated with coastal upwelling areas could function as "sources" of reproductive propagules after passage of El Niño, thus increasing kelp recolonization rates in "sink" localities, which suffered local kelp extinctions. Intensification of upwelling processes after the 1998-2000 La Niña increased nutrient inputs into subtidal habitats, favoring the productivity of the kelp assemblage. However, an abrupt change in the spatial-temporal patterns of abundance of the black sea urchin Tetrapygus niger, the most conspicuous benthic grazer in northern Chile, produced local extinctions of M. integrifolia and compression of the range of bathymetric distribution of L. trabeculata. Top-down (mortality of benthic carnivores during the 1997-1998 El Niño and bottom-up effects (intensity and frequency of upwelling in this subtidal coastal ecosystem appear to regulate the kelp-herbivore interactions in the study area. The main sources of reproductive propagules for the re-establishment of the assemblage kelp were fertile sporophytes which included isolated, low density patches of M.integrifolia located within the bed

  3. Climatic control of upwelling variability along the western North-American coast

    National Research Council Canada - National Science Library

    Macias, Diego; Landry, Michael R; Gershunov, Alexander; Miller, Arthur J; Franks, Peter J S

    2012-01-01

    .... Here, we use Singular Spectral Analysis (SSA) to reveal, for the first time, low-frequency concordance between the time series of climatic indices and upwelling intensity along the coast of western North America...

  4. Ekman Upwelling, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  5. Ekman Upwelling, METOP ASCAT, 0.25 degrees, Global, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  6. Observed anomalous upwelling in the Lakshadweep Sea during the summer monsoon season of 2005

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Rao, R.R.; Nisha, K.; GirishKumar, M.S.; Pankajakshan, T.; Ravichandran, M.; Johnson, Z.; Girish, K.; Aneeshkumar, N.; Srinath, M.; Rajesh, S.; Rajan, C.K.

    of local and remote forcings are examined to explain the observed anomalous upwelling during SMS of 2005. The equatorward alongshore wind stress (WS) along the KK XBT transect persisted in a transient manner beyond September only during SMS of 2005...

  7. Constraining trace metal paleo-proxies for black shale deposition in upwelling systems: the Benguela upwelling system offshore Namibia

    Science.gov (United States)

    Cofrancesco, J.; Riedinger, N.; Owens, J. D.

    2016-12-01

    Geochemical trace metal paleo-proxies are powerful tools for reconstructing the depositional environment of black shales. However, not all relationships and environmental conditions have been well-studied as discrepancies remain between geochemical and sedimentological proxies. While there are numerous proxies for understanding endmember redox conditions there is still a significant gap in regards to constraining oxygen minimum zones (OMZ) in ancient settings, for instance Devonian epeiric sea black shale deposits. This study aims to explore the application of geochemical and sedimentological proxies on a modern marginal marine setting - the Benguela upwelling system, offshore Namibia. This region is a modern analogue to ancient black shale formation. In this upwelling system the lateral transport of the shelf mudbelt's organic-rich sediments, deposited under anoxic (sulfidic) bottom waters, are being re-deposited under the oxygen-rich water column of the upper slope, resulting in a secondary transported organic carbon depocenter. To assess the geochemical inventory of these two different areas of organic carbon preservation, we obtained a transect of sediment cores along the shelf and slope, via the R/V MIRABILIS as a part of the 2015 Regional Graduate Network in Oceanography (RGNO) program in Namibia. The core sites were strategically sited in areas of differing water depth and redox conditions to capture a range of trace metal enrichments and organic carbon inventory. Sediments were analyzed for major elements, iron phases, and grain-size distribution. Trace metals were analyzed in the bottom water, pore water, and surface sediments. Results showed a large enrichment variation for several redox sensitive trace metals. Overall, the trace metals follow the expected trend for redox proxies, with highest enrichment in the sediments below the anoxic bottom waters. Interestingly though, some redox sensitive metals show higher enrichment in the bioturbated, mildly

  8. Macro-Scale Patterns in Upwelling/Downwelling Activity at North American West Coast

    OpenAIRE

    Sald?var-Lucio, Romeo; Di Lorenzo, Emanuele; Nakamura, Miguel; Villalobos, H?ctor; Lluch-Cota, Daniel; del Monte-Luna, Pablo

    2016-01-01

    The seasonal and interannual variability of vertical transport (upwelling/downwelling) has been relatively well studied, mainly for the California Current System, including low-frequency changes and latitudinal heterogeneity. The aim of this work was to identify potentially predictable patterns in upwelling/downwelling activity along the North American west coast and discuss their plausible mechanisms. To this purpose we applied the min/max Autocorrelation Factor technique and time series ana...

  9. High Resolution Climatic Evolution of Coastal Northern California During the Past 15,000 Years

    Science.gov (United States)

    Barron, J. A.; Herbert, T.; Heusser, L.; Lyle, M.

    2001-12-01

    Holocene (ca. 8000 to 3200 cal. yr. B.P.) was characterized by lower alkenone SST's (> 11\\deg C) and greatly reduced P. doliolus, trends that are found elsewhere off the coasts of central and northern California. Calcium carbonate values dropped below 3% after ca. 8000 cal. yr. B.P. and have remained low for the rest of the Holocene. Increasingly warm and dry continental conditions are suggested for the early part of the middle Holocene by a steady decline in alder pollen and modest increase in oak; but starting at ca. 5000 cal. yr. B.P., coastal redwood (Sequoia sempervirens) and alder pollen begin a steady rise, arguing for increasing effective moisture and the development of the northcoast temperate rain forest. At ca. 3200 cal. yr. B.P. a permanent ca. 1\\deg C increase in alkenone SST and 3-fold increase in P. doliolus signaled a warming of fall and winter SST's. Proxy opal data suggest that diatom productivity may have increased by as much as 50%, while weight-percent organic carbon increased by about 20% at the same time, events that may have resulted from an increase in spring-summer coastal upwelling. The modern maritime climate of the northern California coastal region with cool, coastal upwelling-dominated winters and relatively warm, wet summers was only established during the late Holocene between approximately 5000 and 3200 cal. yr. B.P.

  10. Online operational early warning system prototypes to forecast coastal storm impacts (cews)

    NARCIS (Netherlands)

    Haerens, P.; Ciavola, P.; Ferreira, O.; Van Dongeren, A.; Van Koningsveld, M.; Bolle, A.

    2012-01-01

    Extreme coastal storms have a destructive impact on coastal areas and directly affect people living in the coastal zone, being this emphasized by recent events (e.g. Katrina, Xynthia) which reminded the world of the vulnerability of coastal areas. The economic constraints and the increasing

  11. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from pulse jet mixers (PJMs) has been analyzed in some detail, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell breakthrough? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored. The central upwell must satisfy several criteria to be considered a free jet. First, it must travel for several diameters in a nearly constant direction. Second, its velocity must decay with the inverse of elevation. Third, it should have an approximately Gaussian profile. Fourth, the influence of surface or body forces must be negligible. A combination of historical data in a 12.75 ft test vessel, newly analyzed data from the 8 ft test vessel, and conservation of momentum arguments derived specifically for PJM operating conditions demonstrate that the central upwell satisfies these criteria where vigorous breakthrough is achieved. An essential feature of scaling from one vessel to the next is the requirement that the underlying physics does not change adversely. One may have confidence in scaling if (1) correlations and formulas capture the relevant physics; (2) the underlying physics does not change from the conditions under which it was developed to the conditions of interest; (3) all factors relevant to scaling have been incorporated, including flow, material, and geometric considerations; and (4) the uncertainty in the relationships is sufficiently narrow to meet required specifications. Although the central upwell

  12. Effects of suspended mussel culture on benthic-pelagic coupling in a coastal upwrelling system (Ria de Vigo, NW Iberian Peninsula)

    NARCIS (Netherlands)

    Alonso-Perez, F.; Ysebaert, T.; Castro, C.G.

    2010-01-01

    The influence of suspended mussel culture on the benthic-pelagic coupling was evaluated in the Ria de Vigo, in the coastal upwelling system of the NW Iberian Peninsula, during the month of July 2004. Measurements of water column properties were carried out at three stations in the Ria de Vigo: under

  13. The Study of Upper Ocean Stratification that Controls Propagation of Internal Tidal Bores in Coastal Areas

    Science.gov (United States)

    2012-06-01

    the upper surface layers ( Woodson et al. 2011). A series of the SeaHorse density profile data from YD 285 to YD 290 illustrates the evolving density...beneath shoaling nonlinear internal waves. J.Geophys. Res., 114, doi:10.1029/2007JC004411. Bruland, K. W., E. L. Rue, and G . J. Smith, 2001: Iron and...macronutrients in California coastal upwelling regimes: Implications for diatom blooms. Limnology and Oceanography, 46, 1661–1674. Carter ,G.S

  14. Properties of Red Sea coastal currents

    KAUST Repository

    Churchill, J.H.

    2014-02-14

    Properties of coastal flows of the central Red Sea are examined using 2 years of velocity data acquired off the coast of Saudi Arabia near 22 °N. The tidal flow is found to be very weak. The strongest tidal constituent, the M2 tide, has a magnitude of order 4 cm s−1. Energetic near-inertial and diurnal period motions are observed. These are surface-intensified currents, reaching magnitudes of >10 cm s−1. Although the diurnal currents appear to be principally wind-driven, their relationship with the surface wind stress record is complex. Less than 50% of the diurnal current variance is related to the diurnal wind stress through linear correlation. Correlation analysis reveals a classical upwelling/downwelling response to the alongshore wind stress. However, less than 30% of the overall sub-inertial variance can be accounted for by this response. The action of basin-scale eddies, impinging on the coastal zone, is implicated as a primary mechanism for driving coastal flows.

  15. Ice Cloud Property Retrievals Using Far Infrared Upwelling Radiance Spectra

    Science.gov (United States)

    Merrelli, A. J.; Turner, D. D.

    2012-12-01

    Spectral measurements of the upwelling radiance in the mid-infrared (MIR, 8 - 12 μm wavelength) have proven sensitivity to microphysical and macrophysical parameters of ice clouds. This sensitivity is caused by the spectrally varying index of refraction, as well as the ice crystal shape and particle size parameter. Many methods have been demonstrated that utilize this sensitivity to retrieve bulk ice cloud microphysical properties such as effective ice particle size, and macrophysical properties such as optical depth and height. By extending the spectral observations into the far-infrared (FIR, 17 - 50 μm wavelength), additional information can be retrieved due to the different sensitivities exhibited by cloud ice at these longer wavelengths. Typically, in the far-infrared, ice exhibits stronger scattering across all particle sizes, due to a smaller complex index of refraction, and weaker forward scattering due to the smaller size parameter. In this research, a modeling framework is used to quantify the information content of the FIR spectrum for ice cloud property retrieval. The information content is quantitatively compared to the MIR, to show how ice cloud retrievals could be improved with FIR spectral measurements. For cases where the MIR spectrum contains a high amount of information (e.g., moderate optical depths with small particle size), the FIR spectrum adds only a marginal amount of information. In other cases where the MIR spectrum contains low information (e.g., high optical depth clouds), the FIR spectrum is shown to add significant information. The FIR spectrum can thus be shown to extend the region in state space where passive infrared measurements can effectively constrain ice cloud properties.

  16. Coastal Analysis, Accomack, VA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study as defined in FEMA Guides and Specifications, Appendix D: Guidance for coastal Flooding Analyses and Mapping submitted as a result of a coastal study....

  17. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  18. Coastal zones : shifting shores, sharing adaptation strategies for coastal environments

    Energy Technology Data Exchange (ETDEWEB)

    Hay, J.E. [Waikato Univ. (New Zealand); Morneau, F.; Savard, J.P. [Ouranos, Montreal, PQ (Canada); Madruga, R.P. [Centre of Investigation on the Global Economy (Cuba); Leslie, K.R. [Caribbean Community Climate Change Centre (Belize); Agricole, W. [Ministry of Environment and Natural Resources (Seychelles); Burkett, V. [United States Geological Survey (United States)

    2006-07-01

    A parallel event to the eleventh Conference of Parties (COP) to the United Nations Framework Convention of Climate Change was held to demonstrate examples of adaptation from around the world in the areas of food security, water resources, coastal zones, and communities/infrastructure. Panels on each theme presented examples from developing countries, countries in economic transition, and developed countries. These 4 themes were chosen because both mitigation and adaptation are essential to meeting the challenge of climate change. The objective of the event was to improve the knowledge of Canada's vulnerabilities to climate change, identify ways to minimize the negative effects of future impacts, and explore opportunities that take advantage of any positive impacts. This third session focused on how coastal communities are adapting to climate change in such places as Quebec, the Caribbean, and small Island States. It also presented the example of how a developed country became vulnerable to Hurricane Katrina which hit the coastal zone in the United States Gulf of Mexico. The presentations addressed the challenges facing coastal communities along with progress in risk assessment and adaptation both globally and in the Pacific. Examples of coastal erosion in Quebec resulting from climate change were presented along with climate change and variability impacts over the coastal zones of Seychelles. Cuba's vulnerability and adaptation to climate change was discussed together with an integrated operational approach to climate change, adaptation, biodiversity and land utilization in the Caribbean region. The lessons learned from around the world emphasize that adaptation is needed to reduce unavoidable risks posed by climate change and to better prepare for the changes ahead. refs., tabs., figs.

  19. The ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone: A review

    Science.gov (United States)

    Rodriguez, J. M.; Moyano, M.; Hernandez-Leon, S.

    2009-12-01

    In this paper we review information on the ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone (C-ACTZ). This CTZ shows the singularity that the Canary Archipelago interrupts the main flow of the Canary Current and Trade Winds, introducing large mesoscale variability, in the form of island warm wakes and cyclonic and anticyclonic eddies downstream of the islands. Besides, upwelling filaments stretch towards the archipelago from the African coastal upwelling, transporting phytoplankton, zooplankton and fish larvae. They also interact with eddies shed from the islands to exchange water properties and biogenic material. All these mesoscale features influence the composition, structure, abundance and distribution of the larval fish community (LFC) of the region. The Canary Current (CC) and eddies shed from the islands drag larvae of island neritic fish species into the oceanic region and contribute, along warm wakes, to the horizontal distribution of fish larvae. Upwelling and upwelling filaments transport larvae of African neritic species into the oceanic region. These larvae dominate the LFC and account for the relatively high average larval fish abundance found in the C-ACTZ during the summer upwelling season. Filaments originated in the region of Cape Juby-Cape Bojador are entrained around a quasi-permanent cyclonic eddy, trapped between Gran Canaria Island and the African coast, forming a system through which most of the African neritic larvae may return to the African shelf. However, some larvae reach the eastern islands of the Canary archipelago and they may be spread all over the neritic region of the archipelago by eddies shed from the islands. Also in summer, the distribution of the LFC of the C-ACTZ is vertically stratified and fish larvae seem to carry out little or not diel vertical migration. Overall, this study highlights the strong relationship between mesoscale oceanographic processes and the LFC in the C-ACTZ.

  20. Thermohaline processes in a tropical coastal zone

    Science.gov (United States)

    Enriquez, Cecilia; Mariño-Tapia, Ismael; Jeronimo, Gilberto; Capurro-Filograsso, Luis

    2013-10-01

    The detailed thermohaline structure of the northern Yucatan coastal zone was obtained for the first time in order to gain an insight into the interactions between various processes in this complex tropical environment of extreme evaporation and high precipitation rates. From the continent, it has water exchange with numerous coastal lagoons (ranging from brackish to hypersaline) and receives intense submarine groundwater discharges (SGD). In the summer of 2006 a high-resolution (500 m cross-shore and 5 km along-shore) oceanographic campaign was performed starting at Holbox Island down to the mouth of Celestun Lagoon. CTD profiles were measured at 1020 stations along 69 coastal cross-shore transects. Additionally, CTD data from 2 wider surveys, covering the continental shelf (Campeche Bank) and the southern Gulf of Mexico respectively were used to complement the results. From the thermohaline properties, two main water masses were identified: (a) the Caribbean Subtropical Underwater (CSUW), upwelled from the Caribbean, which was observed at the bottom very close to the coast in more than 260 km (from the upwelling region near Cape Catoche to approximately 89.5 W during the summer of 2006) and (b) the second dominant group was a mass of warm hypersaline water which originates in Yucatan due to the high temperature and evaporation rates. We call this water mass the Yucatan Sea Water (YSW) after finding evidence of its presence in various field campaigns both in the Yucatan Sea and further to the west in the southern Gulf of Mexico. All the water masses present in the Yucatan coastal zone showed pronounced variations with important dilution and salinisation effects. The permeable karstic geology of the region prevents the continental water from discharging into the ocean through surface rivers and instead the rainfall permeates directly to the aquifer and travels through caves and fractures towards the sea. Three main regions showed evidence of continental discharges

  1. The Impact of Coastal Terrain on Offshore Wind and Implications for Wind Energy

    Science.gov (United States)

    Strobach, Edward Justin

    The development of offshore wind energy is moving forward as one of several options for carbon-free energy generation along the populous US east coast. Accurate assessments of the wind resource are essential and can significantly lower financing costs that have been a barrier to development. Wind resource assessment in the Mid-Atlantic region is challenging since there are no long-term measurements of winds across the rotor span. Features of the coastal and inland terrain, such as such as the Appalachian mountains and the Chesapeake Bay, are known to lead to complex mesoscale wind regimes onshore, including low-level jets (LLJs), downslope winds and sea breezes. Little is known, however, about whether or how the inland physiography impacts the winds offshore. This research is based on the first comprehensive set of offshore wind observations in the Maryland Wind Energy Area gathered during a UMBC measurement campaign. The presentation will include a case study of a strong nocturnal LLJ that persisted for several hours before undergoing a rapid breakdown and loss of energy to smaller scales. Measurements from an onshore wind profiler and radiosondes, together with North American Regional Analysis (NARR) and a high resolution Weather Research and Forecast (WRF) model simulation, are used to untangle the forcing mechanisms on synoptic, regional and local scales that led to the jet and its collapse. The results suggest that the evolution of LLJs were impacted by a downslope wind from the Appalachians that propagated offshore riding atop a shallow near-surface boundary layer across the coastal plain. Baroclinic forcing from low sea surface temperatures (SSTs) due to coastal upwelling is also discussed. Smaller scale details of the LLJ breakdown are analyzed using a wave/mean flow/turbulence interaction approach. The case study illustrates several characteristics of low-level winds offshore that are important for wind energy, including LLJs, strong wind shear, turbulence

  2. Distribution of upwelling index planktonic foraminifera in the sediments of the western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    d'UllC zone d'upwelling, marge continentale de I'Indc I Les foraminifcrcs planctoniques. radiolaires. carhonates et Ie carhone organique. ont etc analyses dans vingt et un cchantillons de sediments. La repartition de ces parame tres revcle que les... sediments contienncnt la signature d'un upwelling. L'ahondance relative des foraminitcres planctoniques, des radiolaires et les teneurs en carbonates et en c

  3. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems

    Science.gov (United States)

    Trainer, V. L.; Pitcher, G. C.; Reguera, B.; Smayda, T. J.

    2010-04-01

    Comparison of harmful algal bloom (HAB) species in eastern boundary upwelling systems, specifically species composition, bloom densities, toxin concentrations and impacts are likely to contribute to understanding these phenomena. We identify and describe HABs in the California, Canary, Benguela and Humboldt Current systems, including those that can cause the poisoning syndromes in humans called paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP), as well as yessotoxins, ichthyotoxins, and high-biomass blooms resulting in hypoxia and anoxia. Such comparisons will allow identification of parameters, some unique to upwelling systems and others not, that contribute to the development of these harmful blooms.

  4. Development of upwelling on pathway and freshwater transport of Pearl River plume in northeastern South China Sea

    Science.gov (United States)

    Chen, Zhaoyun; Jiang, Yuwu; Liu, James T.; Gong, Wenping

    2017-08-01

    In situ observations, satellite images, and numerical modeling results have shown that the Pearl River plume axis extends alongshore and passes through two separate upwelling regions—one off the Guangdong and Fujian coasts (the Yuedong upwelling) and the other in the Taiwan Bank during the initial and medium stages of the Yuedong upwelling, while it is directed offshore when the Yuedong upwelling is strong. Model experiments are conducted to examine the effects of wind strength and baroclinicity on the upwelling and the corresponding pathway and freshwater transport of the Pearl River plume. The baroclinic effect is important to intensifying the horizontal velocity at the upwelling front and freshwater transport in the northeastern South China Sea. The freshwater transport flux is further decomposed into advection, vertical shear, and tidal pumping components, and advection is the dominant contributor. As the Yuedong upwelling develops, the zone with a relatively high-pressure gradient moves offshore due to offshore Ekman transport and the shift in the upwelling front, which is responsible for the offshore transport of the river plume. When the river plume is transported to the outer-shelf, sometimes it can be further entrained into eddies, allowing its export to the open sea.

  5. The Benguela upwelling ecosystem lies adjacent to the south ...

    African Journals Online (AJOL)

    denise

    of a 10×10 nautical mile “pelagic fishing block” in which the catch was made] for the southern Benguela). Measurements taken from individual fish included ..... Clark and Shannon 1988), but also suggest stronger occasional events in the north than in the south (e.g.. Benguela Niños; Shannon et al. 1992). These findings.

  6. Intrusive upwelling in the Central Great Barrier Reef

    Science.gov (United States)

    Benthuysen, Jessica A.; Tonin, Hemerson; Brinkman, Richard; Herzfeld, Michael; Steinberg, Craig

    2016-11-01

    In the Central Great Barrier Reef, the outer continental shelf has an open reef matrix that facilitates the exchange of waters with the Coral Sea. During austral summer, cool water intrudes onto the shelf along the seafloor. Temperature observations reveal cool, bottom intrusions during a 6 year period from the Queensland Integrated Marine Observing System's Palm Passage mooring. A metric is used to identify 64 intrusion events. These intrusions predominantly occur from October to March including the wet season. During an event, the outer-shelf's near-bottom temperature decreases by 1-3°C typically over 1 week. The near-bottom salinity tends to increase, while near-surface changes do not reflect these tendencies. Intrusion events occur predominantly with either weakening equatorward winds or poleward wind bursts. A regional hydrodynamic model for the Great Barrier Reef captures the timing and amplitude of these intrusions. During intrusion events, isotherms tend to uplift over the continental slope and onto the shelf and the East Australian Current intensifies poleward. Over the shelf, a bottom-intensified onshore current coincides with bottom cooling. For numerous events, the model diagnostics reveal that the cross-shelf flow is dominated by the geostrophic contribution. A vertical circulation tilts the isopycnals upward on the southern side of the passage, causing an along-shelf density gradient and geostrophic onshore flow with depth. While wind fluctuations play a major role in controlling the along-shelf currents, model results indicate that a concurrent topographically induced circulation can assist the onshore spread of cool water.

  7. Melt-peridotite reactions in upwelling EM1-type eclogite bodies

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin

    2013-01-01

    the Payenia volcanic province (34–38 °S) in Argentina, for which Sr, Nd and double-spike Pb isotope ratios are presented, and from other north Patagonian volcanic fields may provide details of the eclogite melt–peridotite reactions taking place in the melting column of an upwelling OIB-type mantle...

  8. The "Rocket Experiment for Neutral Upwelling 2 (RENU2)" Sounding Rocket

    Science.gov (United States)

    Lessard, M.; Bekkeng, T. A.; Clausen, L. B. N.; Clemmons, J. H.; Crowley, G.; Ellingsen, P. G.; Fritz, B.; Harrington, M. I.; Hatch, S.; Hecht, J. H.; Hysell, D. L.; Kenward, D. R.; Labelle, J. W.; Lynch, K. A.; Moen, J.; Oksavik, K.; Otto, A.; Partamies, N.; Powell, S. P.; Sadler, B.; Sigernes, F.; Syrjäsuo, M.; Yeoman, T. K.

    2016-12-01

    Thermospheric upwelling has been known to exist since the earliestdays of the space program, when observers noted increased satellite dragassociated with solar activity. Scientists quickly attributed the upwelling toJoule heating effects, explaining that increased solar activity results inincreased Joule heating, which can couple energy to the ambient neutral gasesto cause the upwelling. Observations by the CHAMP satellite, however, haveshown that neutral upwelling often occurs on much smaller scales and is highlycorrelated with small-scale field-aligned currents in the vicinity of the cuspregion. Several theories have since been put forward that seek to explain thisphenomenon. Motivated by these competing theories and outfitted with acomprehensive suite of instruments, the RENU2 sounding rocket was launched intoa Poleward Moving Auroral Form (PMAF) in the cusp region on December 13, 2015.In this highly successful mission, instruments on the payload did, in fact,record neutral atomic oxygen above the payload at 350 km as it passed throughthe PMAF. In addition, signatures of N2+ ions also appeared above the PMAF,evidence of so-called "sunlit aurora". In this presentation, initial resultswill be presented from this mission and discussed in the context describedabove.

  9. The significance of nitrogen regeneration for new production within a filament of the Mauritanian upwelling system

    Science.gov (United States)

    Clark, Darren R.; Widdicombe, Claire E.; Rees, Andrew P.; Woodward, E. Malcolm S.

    2016-05-01

    The Lagrangian progression of a biological community was followed in a filament of the Mauritanian upwelling system, north-west Africa, during offshore advection. The inert dual tracers sulfur hexafluoride and helium-3 labelled a freshly upwelled patch of water that was mapped for 8 days. Changes in biological, physical, and chemical characteristics were measured, including phytoplankton productivity, nitrogen assimilation, and regeneration. Freshly upwelled water contained high nutrient concentrations but was depleted in N compared to Redfield stoichiometry. The highest rate of primary productivity was measured on the continental shelf, associated with high rates of nitrogen assimilation and a phytoplankton community dominated by diatoms and flagellates. Indicators of phytoplankton abundance and activity decreased as the labelled water mass transited the continental shelf slope into deeper water, possibly linked to the mixed layer depth exceeding the light penetration depth. By the end of the study, the primary productivity rate decreased and was associated with lower rates of nitrogen assimilation and lower nutrient concentrations. Nitrogen regeneration and assimilation took place simultaneously. Results highlighted the importance of regenerated NH4+ in sustaining phytoplankton productivity and indicate that the upwelled NO3- pool contained an increasing fraction of regenerated NO3- as it advected offshore. By calculating this fraction and incorporating it into an f ratio formulation, we estimated that of the 12.38 Tg C of annual regional production, 4.73 Tg C was exportable.

  10. Climate change in the Iberian Upwelling System: a numerical study using GCM downscaling

    Science.gov (United States)

    Cordeiro Pires, Ana; Nolasco, Rita; Rocha, Alfredo; Ramos, Alexandre M.; Dubert, Jesus

    2016-07-01

    The present work aims at evaluating the impacts of a climate change scenario on the hydrography and dynamics of the Iberian Upwelling System. Using regional ocean model configurations, the study domain is forced with three different sets of surface fields: a climatological dataset to provide the control run; a dataset obtained from averaging several global climate models (GCM) that integrate the Intergovernmental Panel for Climate Change (IPCC) models used in climate scenarios, for the same period as the climatological dataset; and this same dataset but for a future period, retrieved from the IPCC A2 climate scenario. After ascertaining that the ocean run forced with the GCM dataset for the present compared reasonably well with the climatologically forced run, the results for the future run (relative to the respective present run) show a general temperature increase (from +0.5 to +3 °C) and salinity decrease (from -0.1 to -0.3), particularly in the upper 100-200 m, although these differences depend strongly on season and distance to the coast. There is also strengthening of the SST cross-shore gradient associated to upwelling, which causes narrowing and shallowing of the upwelling jet. This effect is contrary to the meridional wind stress intensification that is also observed, which would tend to strengthen the upwelling jet.

  11. Foraminiferal production and monsoonal upwelling in the Arabian sea: evidence from sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Curry, W.B.; Ostermann, D.R.; Guptha, M.V.S.; Ittekkot, V.

    of foraminifera increased in flux shortly after the advent of the southwest monsoon. G. bulloides increased its production rate by three orders of magnitude. The isotopic chemistry of G. ruber recorded the increase in monsoon upwelling by increasing its delta sup...

  12. The physical structure of an upwelling filament off the North-west ...

    African Journals Online (AJOL)

    Recent work in the Canary Current upwelling system highlights the role of previously uninvestigated filament structures. A filament located near 27°N in summer 1993 extended 150 km offshore with a width of ~20 km and surface temperature anomaly up to 2°C. The cool temperature signal was restricted to a shallow ...

  13. On the warm nearshore bias in Pathfinder monthly SST products over Eastern Boundary upwelling systems

    CSIR Research Space (South Africa)

    Dufois, F

    2012-01-01

    Full Text Available Using in situ sea surface temperature (SST) data and MODIS/TERRA SST, the monthly AVHRR Pathfinder (version 5.0 and 5.2) SST product was evaluated within the four main Eastern Boundary Upwelling Systems. A warm bias in the monthly Pathfinder data...

  14. An upwelling-induced retention area off Senegal: A mechanism to ...

    African Journals Online (AJOL)

    However, in areas such as Peru, Senegal and Côte d'Ivoire-Ghana, spawning and upwelling occur simultaneously. What are the mechanisms that allow such reproductive strategies to be successful? To attempt to answer this question, some environmental characteristics of the spawning ground of Sardinella aurita in the ...

  15. Coastal sediment dynamics in Spitsbergen

    Science.gov (United States)

    Deloffre, J.; Lafite, R.; Baltzer, A.; Marlin, C.; Delangle, E.; Dethleff, D.; Petit, F.

    2010-12-01

    In arctic knowledge on coastal sediment dynamics and sedimentary processes is limited. The studied area is located in the microtidal Kongsfjorden glacial fjord on the North-western coast of Spitsbergen in the Artic Ocean (79°N). In this area sediment contributions to the coastal zone is provided by small temporary rivers that flows into the fjord. The objectives of this study are to (i) assess the origin and fate of fine-grained particles (ice cover on sediment dynamics. The sampling strategy is based on characterization of sediment and SPM (grain-size, X-rays diffraction, SEM images, carbonates and organic matter contents) from the glacier to the coastal zone completed by a bottom-sediment map on the nearshore using side-scan sonar validated with Ekman binge sampling. River inputs (i.e. river plumes) to the coastal zone were punctually followed using CTD (conductivity, temperature, depth and turbidity) profiles. OBS (water level, temperature and turbidity) operating at high-frequency and during at least 1 years (including under sea ice cover) was settled at the mouth of rivers at 10m depth. In the coastal zone the fine-grained sediment deposit is limited to mud patches located at river mouths that originate the piedmont glacier. However a significant amount of sediment originates the coastal glacier located in the eastern part of the fjord via two processes: direct transfer and ice-drop. Results from turbidity measurements show that the sediment dynamics is controlled by river inputs in particular during melting period. During winter sediment resuspension can occurs directly linked to significant wind-events. When the sea ice cover is present (January to April) no sediment dynamics is observed. Sediment processes in the coastal zone of arctic fjords is significant however only a small amount of SPM that originates the river plume settles in the coastal zone; only the coarser material settles at the mouth of the river while the finer one is deposited further (in

  16. A change in coral extension rates and stable isotopes after El Niño-induced coral bleaching and regional stress events

    Science.gov (United States)

    Hetzinger, S.; Pfeiffer, M.; Dullo, W.-Chr.; Zinke, J.; Garbe-Schönberg, D.

    2016-09-01

    Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940-2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997-98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997-98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions.

  17. Wind modulation of upwelling at the shelf-break front off Patagonia: Observational evidence

    Science.gov (United States)

    Carranza, M. M.; Gille, S. T.; Piola, A. R.; Charo, M.; Romero, S. I.

    2017-03-01

    The South-Atlantic Patagonian shelf is the largest chlorophyll-a (Chl-a) hot spot in Southern Ocean color images. While a persistent 1500 km long band of high Chl-a along the shelf-break front (SBF) is indicative of upwelling, the mechanisms that drive it are not entirely known. Along-front wind oscillations can enhance upwelling and provide a nutrient pumping mechanism at shelf-break fronts of western boundary currents. Here we assess wind-induced upwelling at the SBF off Patagonia from daily satellite Chl-a and winds, historical hydrographic observations, cross-shelf Chl-a fluorescence transects from two cruises, and in situ winds and water column structure from a mooring site. Satellite Chl-a composites segregated by along-front wind direction indicate that surface Chl-a is enhanced at the SBF with southerly winds and suppressed with northerly winds. Northerly winds also result in enhanced Chl-a further offshore (˜25-50 km). Synoptic transects as well as mean hydrographic sections segregated by along-front winds show isopycnals tilted upward for southerly winds. Spring observations from the mooring also suggest that southerly winds destratify the water column and northerly winds restratify, in agreement with Ekman transport interacting with the front. Moreover, changes in water column temperature lag along-front wind forcing by 2-4 days. Our results suggest that oscillations in along-front winds, on timescales typical of atmospheric storms (2-10 days), can significantly modulate the upwelling and Chl-a concentrations at the SBF off Patagonia, revealing the importance of wind-induced upwelling for shelf-slope exchange at shelf-break fronts of western boundary currents.

  18. Holistic Flood Risk Assessment In Coastal Areas : The PEARL Approach

    NARCIS (Netherlands)

    Vojinovic, Zoran; Abebe, Y.; Sanchez, A.; Medina Pena, N.; Nikolic, I.; Manojlovic, N; Makropoulos, C.; Pelling, M.; Abbott, M.; Piasecki, M.

    2014-01-01

    Coastal floods are one of the most dangerous and harmful natural hazards affecting urban areas adjacent to shorelines. The present paper discusses the FP7-ENV-2013 EU funded PEARL (Preparing for Extreme And Rare events in coastaL regions) project which brings together world leading expertise in both

  19. Nutrient regime and upwelling in the northern Benguela since the middle Holocene in a global context – a multi-proxy approach

    Directory of Open Access Journals (Sweden)

    S. Meisel

    2011-08-01

    Full Text Available The last 5500 years of climate change and environmental response in the northern Benguela Coastal Upwelling are reconstructed by means of three sediment cores from the inner shelf off central Namibia. The study is based on nutrient (δ15N, δ13C and productivity proxies (accumulation rates of total organic carbon; ARTOC. Reconstructed sea surface temperatures (alkenone-derived SST and temperatures at subsurface depths (Tδ18O; based on tests of planktonic foraminifers reflect the physical boundary conditions. The selection of proxy indicators proved a valuable basis for robust palaeo-climatic reconstructions, with the resolution ranging from multi-decadal (NAM1 over centennial (core 178 to millennial scale (core 226620. The northern Benguela experienced pronounced and rapid perturbation during the middle and late Holocene, and apparently, not all are purely local in character. In fact, numerous correlations with records from the adjacent South African subcontinent and the northern hemisphere testify to global climatic teleconnections. The Holocene Hypsithermal, for instance, is just as evident as the Little Ice Age (LIA and the Roman Warm Period. The marked SST-rise associated with the latter is substantiated by other marine and terrestrial data from the South African realm. The LIA (at least its early stages manifests itself in intensified winds and upwelling, which accords with increased rainfall receipts above the continental interior. It appears that climate signals are transferred both via the atmosphere and ocean. The combined analysis of SST and Tδ18O proved a useful tool in order to differentiate between both pathways. SSTs are primarily controlled by the intensity of atmospheric circulation features, reflecting changes of upwelling-favourable winds. Tδ18O records the temperature of the source water and often correlates with global ocean conveyor speed due to varying inputs of warm Agulhas Water. It seems as though conveyor slowdown or

  20. The response of microzooplankton (20-200 mu m) to coastal upwelling and summer stratification in the southeastern

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothibabu, R.; Devi, C.R.A.; Madhu, N.V.; Sabu, P.; Jayalakshmy, K.V.; Jacob, J.; Habeebrehman, H.; Prabhakaran, M.P.; Balasubramanian, T.; Nair, K.K.C.

    down to species level wherever possible, whilst the SRS and CNP were identified down to group level, on the basis of the available literature (Kofoid and Campbell, 1939; Jorgenson, 1924; Marshall, 1969; Steidinger, 1970; Subrahmanyan, 1971; Taylor...

  1. Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Shenoi, S.S.C.; Gouveia, A.D.; Michael, G.S.; Sundar, D.; Nampoothiri, G.

    mechanism that can provide this is the interaction between the lighter, fresher surface waters and the coast. Laboratory experiments by STERN et al. (1982) showed that when light rotating fluid spreads over heavier fluid in the vicinity of a vertical wall..., A. M. ALMEIDA and K. SANTANAM (1990) Hydrography and circulation off the west coast of India during the Southwest monsoon 1987. Journal of Marine Research, 48, 359-378. STERN M. E., J. A. WHITEHEAD and BACH-LIEN HUA (1982) Intrusion of a density...

  2. Influence of Seasonal Food Availability on the Dynamics of Seabird Feeding Flocks at a Coastal Upwelling Area: e0131327

    National Research Council Canada - National Science Library

    Cristóbal Anguita; Alejandro Simeone

    2015-01-01

      The formation of multi-species feeding flocks (MSFFs) through visual recruitment is considered an important strategy for obtaining food in seabirds and its functionality has been ascribed to enhanced foraging efficiency...

  3. Influence of Seasonal Food Availability on the Dynamics of Seabird Feeding Flocks at a Coastal Upwelling Area

    National Research Council Canada - National Science Library

    Anguita, Cristóbal; Simeone, Alejandro

    2015-01-01

    The formation of multi-species feeding flocks (MSFFs) through visual recruitment is considered an important strategy for obtaining food in seabirds and its functionality has been ascribed to enhanced foraging efficiency...

  4. How depositional conditions control input, composition, and degradation of organic matter in sediments from the Chilean coastal upwelling region

    DEFF Research Database (Denmark)

    Niggemann, Jutta; Ferdelman, Timothy G.; Lomstein, Bente Aagaard

    2007-01-01

     m‑2 d‑1), which was partly due to the greater water depth of most of the sediments investigated in the northern region and consistent with a lower quality of the sedimentary OM at 23°S. Reaction rate constants for TOC degradation that were obtained from measured SRR (kSRR; 0.0004‑0.0022 yr‑1) showed...... of a small fraction of labile OM (represented by CI). Our study shows that although rates of organic carbon accumulation were similar in both investigated sites, the extent and kinetics of organic carbon degradation were closely linked to differing depositional conditions....

  5. Heterotrophic bacterial production, respiration, and growth efficiency associated with upwelling intensity in the Ulleung Basin, East Sea

    Science.gov (United States)

    Kim, Bomina; Kim, Sung-Han; Kwak, Jung Hyun; Kang, Chang-Keun; Lee, Sang Heon; Hyun, Jung-Ho

    2017-09-01

    We investigated bacterial production (BP) and respiration (BR), as well as the physico-chemical properties of the water column, to elucidate the effect of upwelling on heterotrophic bacterial metabolic activities and growth efficiency (BGE) in July 2012 and May 2013 in the Ulleung Basin (UB), East/Japan Sea. The upwelled conditions were characterized by higher chlorophyll-a (Chl-a) concentrations resulting from the upward shift of the nitracline compared to that of the non-upwelled condition. Analyses of the size fractions of Chl-a and pigment composition revealed that large size phytoplankton (> 20 μm), mainly consisting of diatoms, appeared to be the major phytoplankton component. BP and BR were significantly correlated with Chl-a (P 0.05). These results suggest that bacterial metabolic activities are stimulated by the availability of organic resources enhanced by upwelling in the UB. Further statistical analysis showed that the difference in BP and BGE with variations in upwelling intensity were significant (P = 0.018 for BP, P = 0.035 for BGE), but the difference in BR was not significant (P = 0.321). These results suggest that metabolic energy is partitioned more for BP under a strong upwelling condition, i.e. high nutrient and Chl-a conditions. In contrast, the energy generated via respiration was partitioned more for maintaining metabolism rather than for biomass production under weakly or non-upwelled conditions, i.e. stratified and low Chl-a conditions. Overall, our results suggest that any changes in upwelling intensity would significantly affect the carbon cycle associated with the fate of primary production, and the role of the microbial loop in the UB where changes in the intensity and frequency of upwelling associated with climatic changes are in progress.

  6. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    Science.gov (United States)

    Tholkapiyan, Muniyandi; Shanmugam, Palanisamy; Suresh, T

    2014-07-01

    The National Aeronautics and Space Administration's (NASA) sensor MODIS-Aqua provides an important tool for reliable observations of the changing ocean surface algal bloom paradigms in coastal and oceanic waters around India. A time series of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years from 2003 to 2011, providing the first large area survey of such phenomena around India. For most of the years, the results show a strong seasonal pattern of surface algal blooms elucidated by certain physical and meteorological conditions. The extent of these blooms reaches a maximum in winter (November-February) and a minimum in summer (June-September), especially in the northern Arabian Sea. Their spatial distribution and retention period are also significantly increased in the recent years. The increased spatial distribution and intensity of these blooms in the northern Arabian Sea in winter are likely caused by enhanced cooling, increased convective mixing, favorable winds, and atmospheric deposition of the mineral aerosols (from surrounding deserts) of the post-southwest monsoon period. The southward Oman coastal current and southwestward winds become apparently responsible for their extension up to the central Arabian Sea. Strong upwelling along this coast further triggers their initiation and growth. Though there is a warming condition associated with increased sea surface height anomalies along the coasts of India and Sri Lanka in winter, surface algal bloom patches are still persistent along these coasts due to northeast monsoonal winds, enhanced precipitation, and subsequent nutrient enrichment in these areas. The occurrence of the surface algal blooms in the northern Bay of Bengal coincides with a region of the well-known Ganges-Brahmaputra Estuarine Frontal

  7. Glider observations of enhanced deep water upwelling at a shelf break canyon: A mechanism for cross-slope carbon and nutrient exchange

    Science.gov (United States)

    Porter, M.; Inall, M. E.; Hopkins, J.; Palmer, M. R.; Dale, A. C.; Aleynik, D.; Barth, J. A.; Mahaffey, C.; Smeed, D. A.

    2016-10-01

    Using underwater gliders we have identified canyon driven upwelling across the Celtic Sea shelf-break, in the vicinity of Whittard Canyon. The presence of this upwelling appears to be tied to the direction and strength of the local slope current, which is in itself highly variable. During typical summer time equatorward flow, an unbalanced pressure gradient force and the resulting disruption of geostrophic flow can lead to upwelling along the main axis of two small shelf break canyons. As the slope current reverts to poleward flow, the upwelling stops and the remnants of the upwelled features are mixed into the local shelf water or advected away from the region. The upwelled features are identified by the presence of sub-pycnocline high salinity water on the shelf, and are upwelled from a depth of 300 m on the slope, thus providing a mechanism for the transport of nutrients across the shelf break onto the shelf.

  8. Dayside observations of thermal-ion upwellings at 800-km altitude - An ionospheric signature of the cleft ion fountain

    Science.gov (United States)

    Tsunoda, R. T.; Livingston, R. C.; Vickrey, J. F.; Heelis, R. A.; Hanson, W. B.

    1989-01-01

    There is a growing body of evidence that energetic heavy ions observed at one or more earth radii over the polar cap originate from the dayside ionosphere in the vicinity of the dayside cleft. The ions, consisting mostly of O(+), are often characterized by conic pitch-angle distributions, suggesting that they have undergone acceleration transverse to geomagnetic field lines. This process of ion injection from a latitudinally localized source region in the dayside auroral oval followed by dispersal throughout the entire polar cap has been called the 'cleft ion fountain'. Here, results are presented of upward thermal-ion flows measured at 800-km altitude in the dayside polar ionosphere by the Hilat satellite. The characteristics of these thermal-ion upwellings (TIU) are described and shown to be closely associated with the cleft ion fountain. It is shown that TIU events are latitudinally confined and spatially collocated with cleft electron precipitation, upward field-aligned currents, and velocity gradients in magnetospheric convection.

  9. Variability in the Benguela Current upwelling system over the past 70,000 years

    Science.gov (United States)

    Summerhayes, C. P.; Kroon, D.; Rosell-Melé, A.; Jordan, R. W.; Schrader, H.-J.; Hearn, R.; Villanueva, J.; Grimalt, J. O.; Eglinton, G.

    This study was designed to see if the intensity and location of upwelling in the Benguela Current Upwelling System off Namibia changed significantly during the last 70,000 years. Most of the analytical work focused on geochemical, micropalaeontological and stable isotopic analyses of a 6.5m long combined pilot and piston core, PGPC12, from 1017m on the continental slope close to Walvis Bay. The slope sediments are rich in organic matter. Most of it is thought to represent deposition beneath a productive shelf edge upwelling system, but some is supplied by downslope nearbottom flow of material probably resuspended on the outer continental shelf. Temporal changes in upwelling intensity as represented by fluctuations in the accumulation of organic matter do not show the simple ‘classical’ pattern of less upwelling and lower productivity in interglacials and more upwelling and higher productivity in glacials, but instead show a pattern of higher frequency fluctuations. The broad changes in organic carbon accumulation reach maxima at times when the earth-sun distance was greatest, indicating that this accumulation responded to changes in the precession index; at these times monsoons would have been weakest and Trade Winds strongest. Maximum accumulation of organic matter on the slope occurred in the last interstadial (isotope stage 3), and coincided with coldest sea surface temperatures as recorded by alkenone data (U k37), and by nannofossil assemblages. It is attributed largely to increased productivity in situ, rather than the lateral supply of material eroded from older organic rich deposits exposed by the lowering of sealevel at that time. The enhanced productivity is attributed to a strengthening of upwelling-favourable winds in this area in response to the minimal solar insolation typical of this period. Diatoms generally are not abundant in these sediments, so appear to be unreliable indicators of productivity over the continental slope. When sealevel was

  10. Inorganic carbon dynamics in the upwelling system off the Oregon coast and implications for commercial shellfish hatcheries

    Science.gov (United States)

    Vance, J. M.; Hales, B. R.

    2010-12-01

    The increasing absorption of anthropogenic CO2 by the global ocean and concomitant decrease in pH will alter seawater carbonate chemistry in ways that may negatively impact calcifying organisms. In particular, the change in saturation state (Ω) of calcium carbonate minerals calcite and aragonite may be energetically unfavorable for shell formation while favoring shell dissolution. Eastern boundary upwelling systems may provide insights into how ecosystems respond to future conditions of ocean acidification when deep water with high dissolved inorganic carbon (DIC), low pH and low Ω is forced toward the surface. Mortality in commercial seed stock and reduced wild set of the oyster Crassostrea gigas in the northeast Pacific during 2005-2009 reinforced the need for understanding biological responses to acidified ocean water. In response, a long-term strategy to understand local carbonate chemistry dynamics, seasonal perturbations and the effects on development of calcifying bivalves was developed. At present, a time-series of pCO2 measurements was implemented in April 2010 in Netarts Bay, Oregon at Whiskey Creek Shellfish Hatchery (WCH). The intake sits at a depth of 0.5-8ft and water is pumped in at 100gpm. A line taken off the intake is run continuously through a thermosalinograph at approximately 1.5gpm into a showerhead style equilibrator in which the headspace is recirculated by aerating the water for enhanced gas exchange. CO2 in equilibrated air is analyzed by NDIR. Additionally two discrete samples of intake seawater were taken across tidal cycles weekly and analyzed for total CO2 (TCO2) according to the methods of Hales et al. (2004) and pCO2 for quality control. The pCO2 in the bay exhibits a diurnal cycle representative of daytime photosynthesis and nighttime respiration. However, the phasing and profiles of these cycles are dominated by tidal mixing and are affected by the introduction of high pCO2 water during upwelling events. Diurnal pCO2 during

  11. Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source

    Science.gov (United States)

    Hepach, Helmke; Quack, Birgit; Tegtmeier, Susann; Engel, Anja; Bracher, Astrid; Fuhlbrügge, Steffen; Galgani, Luisa; Atlas, Elliot L.; Lampel, Johannes; Frieß, Udo; Krüger, Kirstin

    2016-09-01

    Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L-1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L-1 and diiodomethane (CH2I2) of up to 32.4 pmol L-1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part.

  12. Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source

    Directory of Open Access Journals (Sweden)

    H. Hepach

    2016-09-01

    Full Text Available Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3 and dibromomethane (CH2Br2 correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI of up to 58.1 pmol L−1 and diiodomethane (CH2I2 of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt, CH2ClI (up to 2.5 ppt and CH2I2 (3.3 ppt above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part.

  13. Global belt of geoid lows shows evidence for mid mantle upwellings

    Science.gov (United States)

    Spasojevic, S.; Gurnis, M.; Sutherland, R.

    2009-12-01

    The global belt of geoid lows is usually attributed to Mesozoic subduction, while geoid highs are correlated with present-day subduction and hotspots. Although lower mantle slab models based on tomography or history of subduction predict the general trend of the geoid low, they fail in detail. When recent tomographic models are correlated with the geoid, it can be shown that the geoid lows are well correlated with mid-to-upper mantle seismic velocity lows as well as the lower mantle seismic velocity highs. We investigate which tomographic anomalies correctly predict the belt of geoid lows, utilizing global instantaneous geodynamic models based on scaled seismic tomography and RUM slab models. We find that the longer wavelength smaller amplitude component of the geoid low can be reproduced by lower mantle high-density (seismically fast) anomalies corresponding to subducted Mesozoic slabs. Higher amplitude localized geoid minima can be predicted only when low-density (seismically slow) mid-to-upper mantle upwellings are invoked in addition to the lower mantle downwellings. These low-density anomalies potentially represent a new mode of mantle upwellings that could be associated with processes of hydratation above long-lived subduction at depths up to 1000 km. Investigated regionally, these upwellings are especially important in predicting localized geoid lows in the Ross Sea, Indian Ocean, NE Pacific and West Atlantic. Based on models of the Antartica-New Zeland conjugate margin since 80 Ma, we find that observations of high Antarctica topography, Ross Sea geoid minima and anomalous Campbell plateau subsidence can be explained by a mid-mantle mantle upwelling evolving above subducted Gondwana slab. Mismatches in the prediction of geoid lows can be used as indication of inadequate regional tomographic imaging, such in the Indian ocean.

  14. Influence of monsoon upwelling on the planktonic foraminifera off Oman during Late Quaternary

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    Asia, and the strength of the SW monsoon is varied through time in response to solar insolation, albedo of the Tibet Plateau and ocean circulation and chemistry 8 . This communication summarises the influence of upwelling on the planktonic... be due to the fact that if one dominating species increases greatly in relative abundance, the other species can not do so because the sum of relative abundance by definition equals 9 100. Therefore, changes of fluxes on planktonic foraminifer...

  15. Upwelling Dynamics off Monterey Bay: Heat Flux and Temperature Variability, and their Sensitivities

    Science.gov (United States)

    2010-05-01

    WHOI Slocum gliders . The Princeton Glider Coordinated Control System (GCCS) was used for path planning to steer a fleet of underwater gliders to a...energy decayed and led to the development of mesoscale features within a warming upper thermocline. Shulman (2009) researched the impact of glider ...such as undersea gliders to study ocean processes associated with the upwelling of cold, deep water along the Central California Coast  Use the

  16. Resource partitioning within major bottom fish species in a highly productive upwelling ecosystem

    Science.gov (United States)

    Abdellaoui, Souad; El Halouani, Hassan; Tai, Imane; Masski, Hicham

    2017-09-01

    The Saharan Bank (21-26°N) is a wide subtropical continental shelf and a highly productive upwelling ecosystem. The bottom communities are dominated by octopus and sparid fish, which are the main targets of bottom-trawl fishing fleets. To investigate resource partitioning within the bottom fish community, adult fish from 14 of the most abundant species were investigated for stomach content analysis. Samples were collected during two periods: October 2003 and May 2007. The diet of the analysed species showed more variation between periods than between size classes, suggesting that temporal or spatial variability in prey availability appears to play a significant role in their diet. Multivariate analysis and subsequent clustering led to a grouping of the species within five trophic guilds. Two species were fish feeders, and the others mainly fed on benthic invertebrates, where epibenthic crustaceans, lamellibranchs and fish were the most important groups in defining trophic guilds. We found that the studied species had a high rate of overlapping spatial distributions and overlapping trophic niches. In this highly productive upwelling ecosystem, where food resources may not be a limiting factor, inter-specific competition did not appear to be an important factor in structuring bottom fish communities. For the species that showed differences in the proportions of prey categories in comparison with other ecosystems, the rise of the proportion of epibenthic crustaceans in their diet was a common feature; a possible consequence of the benthic productivity of this highly productive upwelling ecosystem.

  17. Influence of upwelling saline groundwater on iron and manganese cycling in the Rio Grande floodplain aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Matthew F. [Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 (United States)], E-mail: matthew.f.kirk@gmail.com; Crossey, Laura J. [Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 (United States); Takacs-Vesbach, Cristina [Department of Biology, University of New Mexico, Albuquerque, NM 87131 (United States); Newell, Dennis L. [Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 (United States); Bowman, Robert S. [Department of Earth and Environmental Science, New Mexico Tech, Socorro, NM 87801 (United States)

    2009-03-15

    Salinity contributions from upwelling groundwater significantly degrade water quality in the Rio Grande, a major source of water for the southwestern USA. This study considers the influence of this upwelling water on the geochemistry and microbiology of the Rio Grande floodplain alluvial aquifer. The composition of surface water, groundwater, and floodplain sediment samples collected from three transects in the Socorro Basin was examined. Terminal-restriction fragment length polymorphism (T-RFLP) was also used to examine microbial biomass samples. The distribution of salinity in the floodplain groundwater largely reflects the configuration of local groundwater flow and mixing of two major water sources, deeply-sourced saline groundwater and river water. Microbial populations in the shallow aquifer consume O{sub 2} and NO{sub 3}{sup -} and serve to redistribute metal oxides from the saturated zone to locations of groundwater discharge at the surface and possibly near the water table. The upwelling saline groundwater affects floodplain microbial processes by transporting reduced metals and organic electron donors to the alluvial aquifer system. This enhances metal reduction in the saturated zone and ultimately metal oxidation at or near the surface. Geochemical modeling suggests that mixing of the saline groundwater with more dilute water in the floodplain creates conditions more favorable for metal oxidation to occur and thereby influences the distribution of metal oxides.

  18. Macro-Scale Patterns in Upwelling/Downwelling Activity at North American West Coast.

    Directory of Open Access Journals (Sweden)

    Romeo Saldívar-Lucio

    Full Text Available The seasonal and interannual variability of vertical transport (upwelling/downwelling has been relatively well studied, mainly for the California Current System, including low-frequency changes and latitudinal heterogeneity. The aim of this work was to identify potentially predictable patterns in upwelling/downwelling activity along the North American west coast and discuss their plausible mechanisms. To this purpose we applied the min/max Autocorrelation Factor technique and time series analysis. We found that spatial co-variation of seawater vertical movements present three dominant low-frequency signals in the range of 33, 19 and 11 years, resembling periodicities of: atmospheric circulation, nodal moon tides and solar activity. Those periodicities might be related to the variability of vertical transport through their influence on dominant wind patterns, the position/intensity of pressure centers and the strength of atmospheric circulation cells (wind stress. The low-frequency signals identified in upwelling/downwelling are coherent with temporal patterns previously reported at the study region: sea surface temperature along the Pacific coast of North America, catch fluctuations of anchovy Engraulis mordax and sardine Sardinops sagax, the Pacific Decadal Oscillation, changes in abundance and distribution of salmon populations, and variations in the position and intensity of the Aleutian low. Since the vertical transport is an oceanographic process with strong biological relevance, the recognition of their spatio-temporal patterns might allow for some reasonable forecasting capacity, potentially useful for marine resources management of the region.

  19. Macro-Scale Patterns in Upwelling/Downwelling Activity at North American West Coast

    Science.gov (United States)

    Saldívar-Lucio, Romeo; Di Lorenzo, Emanuele; Nakamura, Miguel; Villalobos, Héctor; Lluch-Cota, Daniel; Del Monte-Luna, Pablo

    2016-01-01

    The seasonal and interannual variability of vertical transport (upwelling/downwelling) has been relatively well studied, mainly for the California Current System, including low-frequency changes and latitudinal heterogeneity. The aim of this work was to identify potentially predictable patterns in upwelling/downwelling activity along the North American west coast and discuss their plausible mechanisms. To this purpose we applied the min/max Autocorrelation Factor technique and time series analysis. We found that spatial co-variation of seawater vertical movements present three dominant low-frequency signals in the range of 33, 19 and 11 years, resembling periodicities of: atmospheric circulation, nodal moon tides and solar activity. Those periodicities might be related to the variability of vertical transport through their influence on dominant wind patterns, the position/intensity of pressure centers and the strength of atmospheric circulation cells (wind stress). The low-frequency signals identified in upwelling/downwelling are coherent with temporal patterns previously reported at the study region: sea surface temperature along the Pacific coast of North America, catch fluctuations of anchovy Engraulis mordax and sardine Sardinops sagax, the Pacific Decadal Oscillation, changes in abundance and distribution of salmon populations, and variations in the position and intensity of the Aleutian low. Since the vertical transport is an oceanographic process with strong biological relevance, the recognition of their spatio-temporal patterns might allow for some reasonable forecasting capacity, potentially useful for marine resources management of the region. PMID:27893826

  20. Contrasting energy allocation strategies of two sympatric Merluccius species in an upwelling system.

    Science.gov (United States)

    Rey, J; Fernandez-Peralta, L; Quintanilla, L F; Hidalgo, M; Presas, C; Salmeron, F; Puerto, M A

    2015-03-01

    This study investigated the somatic growth and energy allocation strategy of two sympatric hake species (Merluccius polli and Merluccius senegalensis), coexisting under the strong influence of the Mauritanian upwelling. The results revealed that ontogeny, bathymetry, geography and reproduction shaped the differences found between the condition dynamics of the two species. Aside from species-specific differences, individuals were observed in better condition in the northernmost area (more influenced by the permanent upwelling) and in the deepest waters, probably the most favourable habitat for Merluccius spp. Both species also displayed contrasting trade-offs in energy allocation probably due to the dissimilarity of their habitats, which favours the existence of divergent adaptive strategies in response to different ontogenic requirements. It was hypothesized that M. polli invests in mass and energy reserves while sacrificing growth, as larger sizes may not provide an ecological advantage in a deeper and more stable environment. Moreover, M. senegalensis capitalizes on a steady growth without major disruptions, enabling earlier spawning at the expense of a lower somatic mass, which is fitting to a less stable shallower environment. This study sheds new light on differences in the biological traits and life strategies of Merluccius spp., which permit their overlap in a complex upwelling system and may contribute to the long-lasting scientific-based management of these species. © 2015 The Fisheries Society of the British Isles.

  1. Coastal Economic Trends for Coastal Geographies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These market data provide a comprehensive set of measures of changes in economic activity throughout the coastal regions of the United States. In regard to the...

  2. Far-reaching transport of Pearl River plume water by upwelling jet in the northeastern South China Sea

    Science.gov (United States)

    Chen, Zhaoyun; Pan, Jiayi; Jiang, Yuwu; Lin, Hui

    2017-09-01

    Satellite images from the Moderate Resolution Imaging Spectroradiometer (MODIS) show that there was a belt of turbid water appearing along an upwelling front near the Chinese coast of Guangdong, and indicate that the turbid water of the Pearl River plume water could be transported to a far-reaching area east of the Taiwan Bank. Numerical modeling results are consistent with the satellite observations, and reveal that a strong jet exists at the upwelling front with a speed as high as 0.8 m s- 1, which acts as a pathway for transporting the high-turbidity plume water. The dynamical analysis suggests that geostrophic equilibrium dominates in the upwelling front and plume areas, and the baroclinicity of the upwelling front resulting from the horizontal density gradient is responsible for the generation of the strong jet, which enhances the far-reaching transport of the terrigenous nutrient-rich water of the Pearl River plume. Model sensitivity analyses also confirm that this jet persists as long as the upwelling front exists, even when the wind subsides and becomes insignificant. Further idealized numerical model experiments indicate that the formation and persistence of the upwelling front jet depend on the forcing strength of the upwelling-favorable wind. The formation time of the jet varies from 15 to 158 h as the stress of the upwelling-favorable wind changes from 0.2 to 0.01 N m- 2. With the persistent transport of the nutrient-rich plume water, biophysical activities can be promoted significantly in the far-reaching destination area of the oligotrophic water.

  3. Carbon and oxygen isotope time series records of planktonic and benthic foraminifera from the Arabian Sea: Implications on upwelling processes

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Niitsuma, N.

    ; upwelling; TerminationIB; climateshift 1. Introduction ThemonsoonsystemisoneoftheEarth’smost dynamic features, whichinteracts with theglobal atmospheric circulation that controls the heat budget in the Arabian Sea. Hence changes in the monsoon system may... is to infer the monsoon upwelling in£uence on the sur¢cial,subsurfaceanddeepwaterhydrographic variations and vertical chemical cycling in the western Arabian Sea during the Holocene and lastglaciation. 2. Oceanography Circulationinthe...

  4. Influence of upwelling and tropical environments on the breeding development of the intertidal barnacle Tetraclita stalactifera (Lamarck, 1818

    Directory of Open Access Journals (Sweden)

    Luis Felipe Skinner

    2011-12-01

    Full Text Available Cabo Frio, with its unique oceanographic conditions, is an important biogeographical transitional region between tropical and sub-tropical waters. This is due to the presence of upwelling from the Central Water of the South Atlantic (CWSA, and the presence of tropical waters from the Brazilian Current (BC and Coastal Water (CW. The intertidal barnacle, Tetraclita stalactifera, and its brooding stages were analyzed to correlate environmental conditions with reproductive development. Two thermal contrasting sites were chosen: Ponta da Cabeça (PC, which is under the influence of seasonal upwelling, and Ponta da Fortaleza (PF which experiences tropical influences. At each site, T. stalactifera specimens were collected monthly and their egg lamellae conditions classified into stages from 0 (empty to IV (ready to release. Our results show a seasonal effect on brooding at the PC site and a continuous development at the PF site. Nauplii larval availability also followed this trend. Differences between the sites could be due to ecological differences related to water temperature and the ecological-physiological response of the barnacles to these differences.Cabo Frio, devido suas características oceanográficas, causado pela é uma importante região biogeográfica transicional entre águas tropicais e sub-tropicais. Isto é ressurgência da Água Central do Atlântico Sul (ACAS e a presença de águas tropicais da Corrente do Brasil (CB e de Água Costeira (AC. A craca do mediolitoral Tetraclita stalactifera e seus estágios de maturação larval foram analisados a fim de serem correlacionados às condições ambientais. Dois locais com características termais contrastantes foram escolhidos: a Ponta da Cabeça (PC, que está sobre influência sazonal da ressurgência e a Ponta da Fortaleza (PF, sob influência da água tropical. Em cada local, indivíduos de T. stalactifera foram coletados mensalmente e a condição de suas lamellas ovígeras aferida

  5. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-01-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  6. Actively heated high-resolution fiber-optic-distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

    Science.gov (United States)

    Briggs, Martin A.; Buckley, Sean F.; Bagtzoglou, Amvrossios C.; Werkema, Dale D.; Lane, John W.

    2016-07-01

    Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>-1.5 m d-1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ˜0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8-9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.

  7. Coastal Conditions 2000

    Data.gov (United States)

    California Department of Resources — Dataset developed by California Coastal Commission's Melanie Coyne by attaching names to a dynamically segmented coastline using the Department of Navigation and...

  8. Coastal Innovation Imperative

    Directory of Open Access Journals (Sweden)

    Bruce C. Glavovic

    2013-03-01

    Full Text Available This is the second of two articles that explores the coastal innovation paradox and imperative. Paradoxically, innovation is necessary to escape the vulnerability trap created by past innovations that have degraded coastal ecosystems and imperil coastal livelihoods. The innovation imperative is to reframe and underpin business and technology with coherent governance innovations that lead to social transformation for coastal sustainability. How might coastal management help to facilitate this transition? It is argued that coastal management needs to be reconceptualised as a transformative practice of deliberative coastal governance. A foundation comprising four deliberative or process outcomes is posited. The point of departure is to build human and social capital through issue learning and improved democratic attitudes and skills. Attention then shifts to facilitating community-oriented action and improving institutional capacity and decision-making. Together, these endeavours enable improved community problem-solving. The ultimate process goal is to build more collaborative communities. Instituting transformative deliberative coastal governance will help to stimulate innovations that chart new sustainability pathways and help to resolve the coastal problems. This framework could be adapted and applied in other geographical settings.

  9. Coastal Analysis, Virginia Beach, VA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study as defined in FEMA Guides and Specifications, Appendix D: Guidance for coastal Flooding Analyses and Mapping submitted as a result of a coastal study....

  10. Coastal Analysis, Mathews County, VA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study as defined in FEMA Guides and Specifications, Appendix D: Guidance for coastal Flooding Analyses and Mapping submitted as a result of a coastal study....

  11. Simulations of Supercritical Flow around Points and Capes in a Coastal Atmosphere.

    Science.gov (United States)

    Tjernström, Michael; Grisogono, Branko

    2000-01-01

    Fully 3D nonlinear model simulations for supercritical flow along locations at the California coast, at Cape Mendocino, and Point Sur, are presented. The model results are objectively and subjectively verified against measurements from the Coastal Waves 1996 experiment with good results. They are then analyzed in terms of the flow structure, the impact of the local terrain, the atmospheric forcing on the ocean surface, and the momentum budgets. It is verified that the flow is supercritical (Fr > 1) within a Rossby radius of deformation from the coast and that it can be treated as a reduced-gravity, shallow water flow bounded by a sidewall-the coastal mountain barrier. As the supercritical flow impinges on irregularities in the coastline orientation, expansion fans and hydraulic jumps appear. The modeled Froude number summarizes well the current understanding of the dynamics of these events. In contrast to inviscid, irrotational hydraulic flow, the expansion fans appear as curved lines of equal PBL depth and `lens-shaped' maxima in wind speed residing at the PBL slope. This is a consequence of the realistic treatment of turbulent friction. Modeled mean PBL vertical winds in the hydraulic features range ±1-2 cm s1, while larger vertical winds (±5-10 cm s1) are due to the flow impinging directly on the mountain barrier. Local terrain features at points or capes perturb the local flow significantly from the idealized case by emitting buoyancy waves. The momentum budget along straight portions of the coast reveals a semigeostrophic balance modified by surface friction. While being geostrophic in the across-coast direction, the along-coast momentum shows a balance between the pressure gradient force and the turbulent friction. In the expansion fans, the flow is ageostrophic, and the imbalance is distributed between turbulent friction and ageostrophic acceleration according to the magnitude of the former. There is also a good correspondence between the magnitude of the

  12. Hurricane Ike: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  13. Data mining for environmental analysis and diagnostic: a case study of upwelling ecosystem of Arraial do Cabo

    Directory of Open Access Journals (Sweden)

    Gilberto Carvalho Pereira

    2008-03-01

    Full Text Available The Brazilian coastal zone presents a large extension and a variety of environments. Nevertheless, little is known about biological diversity and ecosystem dynamics. Environmental changes always occur; however, it is important to distinguish natural from anthropic variability. Under these scenarios, the aim of this work is to present a Data Mining methodology able to access the quality and health levels of the environmental conditions through the biological integrity concept. A ten-year time series of physical, chemical and biological parameters from an influenced upwelling area of Arraial do Cabo-RJ were used to generate a classification model based on association rules. The model recognizes seven different classes of water based on biological diversity and a new trophic index (PLIX. Artificial neural networks were evolved and optimized by genetic algorithms to forecast these indices, enabling environmental diagnostic to be made taking into account control mechanisms of topology, stability and complex behavioral properties of food web.A zona costeira brasileira apresenta grande extensão e variedade de ambientes. Contudo, pouco se sabe sobre sua diversidade biológica e o funcionamento dos ecossistemas. Como mudanças ambientais são constantes, é muito importante distinguir entre variabilidade natural e antrópica. Nesse cenário, o objetivo deste trabalho é apresentar a metodologia para o desenvolvimento de um Sistema Inteligente de Gerenciamento Integrado do Ecossistema Costeiro (SIGIEC capaz de acessar o nível de qualidade e saúde ambiental através do conceito de Integridade Biológica. Foram usadas séries temporais de dez anos de parâmetros físicos, químicos e biológicos para extrair conhecimento e gerar modelos de regras de associação para classificar sete diferentes tipos de condições ambientais, analisadas através da diversidade biológica e um novo índice trófico (PLIX. Redes neurais artificiais foram otimizadas por

  14. The inorganic carbon distribution in Irish coastal waters

    Science.gov (United States)

    McGrath, Triona; Cave, Rachel; McGovern, Evin; Kivimae, Caroline

    2014-05-01

    Despite their relatively small surface area, coastal and shelf waters play a crucial role in the global climate through their influence on major biogeochemical cycles. Due to growing concern about ocean acidification as a result of increasing atmospheric CO2 concentrations, measurements of inorganic carbon parameters (dissolved inorganic carbon (DIC), total alkalinity (TA), pH and pCO2) have been made with increasing regularity over the past two decades. While it is clear that open ocean surface waters are acidifying at a fairly uniform rate ( -0.02 pH units per decade), less is known about changes in coastal waters due to the high complexity and spatial variability in these regions. Large spatial and temporal variability in coastal CO2 parameters is mainly due to nutrient inputs, biological activity, upwelling and riverine inputs of alkalinity and inorganic and organic carbon. The inorganic carbon system in Irish coastal waters is presented here, gathered from 9 surveys around the Irish coastline between 2009 and 2013. There are striking contrasts in the CO2 system between different areas, largely attributed to the bedrock composition of the nearby rivers. Freshwater end-member concentrations of TA, calculated from TA-salinity relationships in outer estuarine and nearshore coastal water, were supported by riverine TA data from the Irish Environmental Protection Agency. A large portion of Ireland is covered with limestone bedrock and as a result, many of the rivers have extremely high TA (>5000μmol/kg) due to the carbonate mineral content of the underlying bedrock. While such high TA has resulted in elevated pH and calcium carbonate saturation states in some coastal waters, (e.g. Galway Bay and Dublin Bay), the high TA in other areas was accompanied by particularly high DIC (e.g. River Shannon on the west coast), resulting in lower pH and aragonite/calcite saturation states and even CO2 degassing in the Shannon estuary. Due to non-limestone lithology in many parts

  15. Satellite Observations of Coastal Processes from a Geostationary Orbit: Application to estuarine, coastal, and ocean resource management

    Science.gov (United States)

    Tzortziou, M.; Mannino, A.; Schaeffer, B. A.

    2016-12-01

    Coastal areas are among the most vulnerable yet economically valuable ecosystems on Earth. Estuaries and coastal oceans are critically important as essential habitat for marine life, as highly productive ecosystems and a rich source of food for human consumption, as a strong economic driver for coastal communities, and as a highly dynamic interface between land and ocean carbon and nutrient cycles. Still, our present capabilities to remotely observe coastal ocean processes from space are limited in their temporal, spatial, and spectral resolution. These limitations, in turn, constrain our ability to observe and understand biogeochemical processes in highly dynamic coastal ecosystems, or predict their response and resilience to current and future pressures including sea level rise, coastal urbanization, and anthropogenic pollution.On a geostationary orbit, and with high spatial resolution and hyper-spectral capabilities, NASA's Decadal Survey mission GEO-CAPE (GEO-stationary for Coastal and Air Pollution Events) will provide, for the first time, a satellite view of the short-term changes and evolution of processes along the economically invaluable but, simultaneously, particularly vulnerable near-shore waters of the United States. GEO-CAPE will observe U.S. lakes, estuaries, and coastal regions at sufficient temporal and spatial scales to resolve near-shore processes, tides, coastal fronts, and eddies, track sediments and pollutants, capture diurnal biogeochemical processes and rates of transformation, monitor harmful algal blooms and large oil spills, observe episodic events and coastal hazards. Here we discuss the GEO-CAPE applications program and the new capabilities afforded by this future satellite mission, to identify potential user communities, incorporate end-user needs into future mission planning, and allow integration of science and management at the coastal interface.

  16. UAV application in coastal morphological study

    Science.gov (United States)

    Chen, Kuan-Yu

    2017-04-01

    Intensive studies were conducted to observe long term coastal morphological change using satellite imagery. However, long satellite revisit time makes it difficult to capture the daily event. In this study, continuous images were used to analyze the daily coastal morphological variation. Unmanned Flight Vehicle (UAV) equipped with a high resolution camera ( 4000 * 3000 pixel) was used to capture image every one hour. After comparing with different imaginary post-processing method, Simple Linear Iterative Clustering (SLIC) superpixels was used due to its (1) high efficiency in computing time (2) high accurate of segment in different feature of the images. Results show that analyzing image with high time resolution using high accuracy processing tool enable us to capture the detail coastal morphological change which facilitate the interpretation of physical phenomenon.

  17. Overtopping of Coastal Structures by Tsunami Waves

    Directory of Open Access Journals (Sweden)

    Miguel Esteban

    2017-11-01

    Full Text Available Following the 2011 Tohoku Earthquake and Tsunami, Japanese tsunami protection guidelines stipulate that coastal defences should ensure that settlements are shielded from the coastal inundation that would result from Level 1 tsunami events (with return periods in the order of about 100 years. However, the overtopping mechanism and leeward inundation heights of tsunami bores as they hit coastal structures has received little attention in the past. To ascertain this phenomenon, the authors conducted physical experiments using a dam-break mechanism, which could generate bores that overtopped different types of structures. The results indicate that it is necessary to move away from only considering the tsunami inundation height at the beach, and also consider the bore velocity as it approaches the onshore area. The authors also prepared a simple, conservative method of estimating the inundation height after a structure of a given height, provided that the incident bore velocity and height are known.

  18. Modern sedimentation in the Cabo Frio upwelling system, Southeastern Brazilian shelf

    Directory of Open Access Journals (Sweden)

    Michel M. de Mahiques

    2005-09-01

    Full Text Available The analyses of Uk'37 paleotemperatures and sedimentological parameters in box cores from the Cabo Frio upwelling zone, southeastern Brazil, were used to understand the modern sedimentation as well as to evaluate the role played by the upwelling process in the sedimentary patterns. Three box-cores located closer to the upwelling area show a general trend of cooling waters taking place in the last 700 years. Since the present upwelling is dependent on local and remote wind regime, a phase of dominating NE winds favors a more effective upward transport of the cold thermocline level South Atlantic CentralWater towards the coast. The intensification in the upwelling regime for the last ca. 700 years can be associated with the strengthening of the NE winds off the area and a possible increase of the Brazil Current mesoscale activity. Nevertheless, the lack of significant correlation of the paleotemperatures and most of sedimentological parameters indicate that upwelling is not the only sedimentation mechanism in the area. Also, the comparison of sedimentological parameters reveals that eventual temporal changes are superimposed by the geographical variability. Sedimentation rates vary from 0.26 mm.yr-1 to 0.66 mm.yr-1.As análises de Uk'37 paleotemperaturas e de parâmetros sedimentológicos em amostras de box-core da zona de ressurgência de Cabo Frio, sudeste do Brasil, foram usadas para compreender os processos de sedimentação moderna na área, bem como avaliar o papel desempenhado pela ressurgência no estabelecimento dos padrões sedimentológicos principais. Como observado em três box-cores localizados nas proximidades da área de ressurgência, é possível verificar uma tendência geral de resfriamento das águas nos últimos 700 anos (idade calibrada. Uma vez que o processo de ressurgência é dependente do regime de ventos local e remoto, uma fase de ventos predominantes de NE favorece um deslocamento mais efetivo das águas frias da

  19. Seasonal variability of phytoplankton fluorescence in relation to the Straits of Messina (Sicily tidal upwelling

    Directory of Open Access Journals (Sweden)

    F. Azzaro

    2007-10-01

    Full Text Available In the Straits of Messina, large gradients of tidal displacements, as well as the topographic constrictions, determine the upwelling of deeper waters in the surface layer. This work describes the seasonal variability in the surface distribution of phytoplankton biomass depending on the upwelling phenomena. Temperature, salinity, nitrates and phytoplankton fluorescence were measured in 1994 and 1995 by continuous underway surface real-time measurements onboard dedicated research boats. Each survey was performed following the dynamic phases of flooding and ebbing tides. Tidal currents are essentially southward during high tide and northward during low tide.

    During the low water slack tide, large spatial gradients of physical-chemical and biological parameters were found, while at the high water slack tide, a diffused phytoplankton fluorescence was observed only in autumn due to a seasonal thermocline. Salinity, nitrate and chlorophyll-a fluorescence data revealed a significant positive intercorrelation, whereas they were inversely correlated with temperature. Generally, the upwelling distribution was limited to narrow zones during winter, while in summer it was found in the middle of the Straits and in the southern zones. During spring in the southern zone of the Straits, the maximum chlorophyll-a fluorescence was detected (May 1995, 0.32 μg-Chla l−1; in summer, when back and forth tidal movements between the Tyrrhenian and the Ionian seas intensify, decreased values were observed throughout the study area.

    The data set obtained through continuous and repeatable samplings has allowed the study of different time-space scales in the Straits of Messina, a very strong and dynamic environment.

    The Straits system could be compared to an "intermittent pump" which, during the different seasons, initially enriches itself and subsequently provides nutrients to the surrounding basins.

  20. Development of the Central-Afar volcanic margin, mantle upwelling and break-up processes

    Science.gov (United States)

    Pik, Raphaël; Bellahsen, Nicolas; Leroy, Sylvie; Stab, Martin; Ayalew, Dereje; Yirgu, Gezahegn

    2017-04-01

    Whereas the present day mantle dynamics is now well imaged by geophysical investigations, the long-term expression of mantle dynamics below rifted lithosphere is not directly recorded at the surface of the earth. Such information must therefore be extracted from non-direct manifestations of mantle upwelling, which are principally (i) the uplift of the upperlying lithosphere and (ii) the melts produced when the solidus of mantle mineral assemblages is crossed. These first order and unique evidences should therefore represent corner stones output of any geodynamic models used to deduce the interplay between mantle dynamics and surface deformations. For magmatism produced during extension of lithosphere, the dynamics of mantle upwelling can be recognized in the volumes of magmas and also in their geochremistry, which allow tracking the various types of mantle sources and the various types of mantle melting regime (P, T and intensity of partial melting). Volcanism has been closely associated with extension in the East African rift system. It is yet (and logically) heterogeneously distributed along the western, eastern and northern volcanic provinces. We have concentrated the efforts of a multidisciplinary team these last years in the northern Ethiopian volcanic province where the most important volumes of volcanism have been emplaced since 30 Ma, from Continental Flood Basalts episode to active extension along the Central Afar magmatic segment. These structural and geochemical data point out new constraints on the interplay between the upwelling of the Afar mantle plume and the style and mechanisms of extension, and imply to update and revise our understanding of the development of this volcanic margin.

  1. Pelagic nitrogen dynamics in the Vietnamese upwelling area according to stable nitrogen and carbon isotope data

    Science.gov (United States)

    Loick, Natalie; Dippner, Joachim; Doan, Hai Nhu; Liskow, Iris; Voss, Maren

    2007-04-01

    Upwelling and nitrogen (N) fixation provide new N for primary production off southern central Vietnam. Here we evaluate the roles of both N sources for zooplankton nutrition by comparing δ15N and δ13C values in nitrate, particulate organic matter (POM), and six net-plankton size fractions from monsoon and intermonsoon seasons. The δ13C values in POM and the net-plankton size fractions differed by 2-4‰ at any time. We assume that plankton from the POM filters was dominated by nano-and picoplankton as opposed to micro- and mesoplankton in the net-samples. The implications of this are discussed in terms of size differential pathways of C and N in the planktonic food web. We used δ15N to estimate the differences in N nutrition between the actual upwelling region and the oligotrophic area further offshore. The δ15N values of the net-plankton size fractions were depleted in δ15N by ca. 2‰ outside compared to inside the upwelling area during the monsoon season. We attribute these patterns to the additional utilization of N derived from N fixation. The concomitant findings of high N fixation rates reported earlier and low subthermocline nitrate (nitrate sub) values of 2.9-3.6‰ support this conclusion. Net-plankton δ15N values increased with size, pointing to the dominance of higher trophic levels in the larger size fractions. According to a two source mixing model N fixation may have provided up to 13% of the N demand in higher trophic levels.

  2. Phytoplankton stimulation in frontal regions of Benguela upwelling filaments by internal factors

    Directory of Open Access Journals (Sweden)

    Norbert Wasmund

    2016-11-01

    Full Text Available Filaments are intrusions of upwelling water into the sea, separated from the surrounding water by fronts. Current knowledge explains the enhanced primary production and phytoplankton growth found in frontal areas by external factors like nutrient input. The question is whether this enhancement is also caused by intrinsic factors, i.e. simple mixing without external forcing. In order to study the direct effect of frontal mixing on organisms, disturbing external influx has to be excluded. Therefore mixing was simulated by joining waters originating from inside and outside the filament in mesocosms (tanks. These experiments were conducted during two cruises in the northern Benguela upwelling system in September 2013 and January 2014. The mixed waters reached a much higher net primary production and chlorophyll a (chla concentration than the original waters already 2-3 days after their merging. The peak in phytoplankton biomass stays longer than the chla peak. After their maxima, primary production rates decreased quickly due to depletion of the nutrients. The increase in colored dissolved organic matter (CDOM may indicate excretion and degradation. Zooplankton is not quickly reacting on the changed conditions. We conclude that already simple mixing of two water bodies, which occurs generally at fronts between upwelled and ambient water, leads to a short-term stimulation of the phytoplankton growth. However, after the exhaustion of the nutrient stock, external nutrient supply is necessary to maintain the enhanced phytoplankton growth in the frontal area. Based on these data, some generally important ecological factors are discussed as for example nutrient ratios and limitations, silicate requirements and growth rates.

  3. Ocean Data Assimilation: A Coastal Application

    Science.gov (United States)

    2009-01-01

    from satellites have shown th rt t cold-water plumes off northern California are frequentl y anchored (0 cO:Jst:Jlwpography (Kell y 1985). The...8217) " NGOM Upwelling Relaxatioo’~-" Upwelling Fig.4 Area-averaged \\laity mean for su rfa~e (a) wind strcss. (b) tc:mpc:nuun:: . lind (e) current...Monterey Bay. The plume of upwelled cold water extends southward and joins wilh Ihe upwelled cold water fro m Point Sur, resulling in a large. cold

  4. Evolution to decay of upwelling and associated biogeochemistry over the southeastern Arabian sea shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Sudheesh, V.; Sudharma, K.V.; Saravanane, N.; Dhanya, V.; Dhanya, K.R.; Lakshmi, G.; Sudhakar, M.; Naqvi, S.W.A.

    ), southwest India and is the second modern one for the west coast of India after Candolim Time Series (CaTS, since 1997) off Goa (15.5°N). Perennial upwelling is associated with the eastern boundary currents in the Pacific (Humboldt and California currents...; Jayaram et al., 2010], but its biogeochemical effects were not studied in detail. Subsequently, the two other time series measurements being made off Goa since 1997 (Candolim Time Series, CaTS) in the AS [Maya et al., 2011] and off Visakhapatnam (since...

  5. Glacial-interglacial productivity contrasts along the eastern Arabian Sea: Dominance of convective mixing over upwelling

    Directory of Open Access Journals (Sweden)

    Kumar Avinash

    2015-11-01

    The primary productivity along the southwestern continental margin of India seems to have been controlled principally by the upwelling during the southwest monsoon season that was weaker from MIS-4 to MIS-2, as relative to that during the MIS-1. In contrast, increased glacial productivity noticed in sediments deposited below the current oxygen minimum zone (OMZ along the north of the study area that can be linked to entrainment of nutrients through the intensified convective mixing of surface water during the northeast monsoon. The sequestration of greenhouse gases by the western continental margin of India was higher during glacial than interglacial cycles.

  6. Ocean variability over the Agulhas Bank and its dynamical connection with the southern Benguela upwelling system

    CSIR Research Space (South Africa)

    Blanke, B

    2009-12-01

    Full Text Available and interannual variability. We put the stress on wind forcing since the seasonal and interannual variability of the Benguela upwelling system depends significantly on wind variability [Blanke et al., 2002, 2005], with the appearance of subsequent SST...-resolution child model is designed to encompass the Agulhas Bank and its surroundings and has a temporal and spatial resolution three times finer than the parent grid (approximately 15 min and 8 km, respec- tively). The child model has 233 � 185 grid points...

  7. 13C-GC-MS analysis of photosynthetic products of the phytoplankton population in the regional upwelling area around the Izu Island, Japan

    Science.gov (United States)

    Hama, Takeo

    1988-01-01

    Monosaccharide and amino acid composition of the photosynthetic products of the phytoplankton populations were determined by the combined 13C and gas chromatography-mass spectrometry (GC-MS) method inside and outside of regional upwelling waters around the Izu Islands, Japan. The ratio of carbohydrate to protein in photosynthetic products was lower in the "maturing" upwelling waters, where high concentrations of nutrients were measured, than in the non-upwelling and the "aged" upwelling waters. Carbohydrate/protein ratios in photosynthetic products were closely correlated with glucose/carbohydrate ratios. The specific production rate (SPR) of glucose showed the highest value among compounds at almost all stations. The difference between SPR of glucose and those of other compounds was small in the "maturing" upwelling waters, whereas daytime SPR of glucose was over 10 times greater than those in other compounds in the non-upwelling and the "aged" upwelling waters. These results indicate that more "balanced" organic matter production occurred in the "maturing" waters than in the non-upwelling and the "aged" upwelling waters.

  8. The coccolithophore summer-autumn assemblage in the upwelling waters of Portugal: Patterns of mesoscale distribution (1985-2005)

    Science.gov (United States)

    Moita, M. T.; Silva, A.; Palma, S.; Vilarinho, M. G.

    2010-04-01

    A study of the mesoscale distribution of phytoplankton communities observed along the Portuguese upwelling coast in 1985-1986 made it possible to identify an assemblage composed by the coccolithophores Helicosphaera carteri, Syracosphaera pulchra and Coronosphaera mediterranea. The assemblage was consistently present in the coast in the following years (1991, 1992, 1994, 2003 and 2005) and from 1992 onwards, Rhabdosphaera clavigera was recognised as being part of it, although in low concentrations During late summer, this group of species showed higher affinities with upwelling waters of subtropical origin (ENACWst) on the SW coast. At the end of the upwelling season, in autumn, the assemblage was advected to the NW shelf due to the intensification of the poleward surface circulation or meridional seasonal changes of environmental conditions. The species maximum abundances were not coincident in space: H. carteri developed at the central part of the western coast while blooms of S. pulchra and C. mediterranea generally occurred further south, such as at the upwelling centre of cape S. Vicente. Syracosphaera pulchra blooms were characterised by lower concentrations of C. mediterranea and vice-versa. The above patterns were recurrent along the years but the relative abundance of each species appeared related to the interannual variability of physical conditions as the upwelling.

  9. Eutrophication-driven deoxygenation in the coastal ocean

    NARCIS (Netherlands)

    Rabalais, N.N.; Cai, W.-J.; Carstensen, J.; Conley, D.J.; Fry, B.; Hu, X.; Quiñones-Rivera, Z.; Rosenberg, R.; Slomp, C.P.|info:eu-repo/dai/nl/159424003; Turner, R.E.; Voss, M.; Wissel, X.; Zhang, J.

    2014-01-01

    Human activities, especially increased nutrient loads that set in motion a cascading chain of events related to eutrophication, accelerate development of hypoxia (lower oxygen concentration) in many areas of the world's coastal ocean. Climate changes and extreme weather events may modify hypoxia.

  10. Increasing Risk Awareness: The Coastal Community Resilience Index

    Science.gov (United States)

    Thompson, Jody A.; Sempier, Tracie; Swann, LaDon

    2012-01-01

    As the number of people moving to the Gulf Coast increases, so does the risk of exposure to floods, hurricanes, and other storm-related events. In an effort to assist communities in preparing for future storm events, the Coastal Community Resilience Index was created. The end result is for communities to take actions to address the weaknesses they…

  11. Coastal Hazards: Hurricanes, Tsunamis, Coastal Erosion.

    Science.gov (United States)

    Vandas, Steve

    1998-01-01

    Details an ocean-based lesson and provides background information on the designation of 1998 as the "Year of the Ocean" by the United Nations. Contains activities on the poster insert that can help raise student awareness of coastal-zone hazards. (DDR)

  12. Total and mesoscale long-range offshore transport of organic carbon from the Canary Upwelling System to the open North Atlantic

    Science.gov (United States)

    Lovecchio, Elisa; Gruber, Nicolas; Münnich, Matthias; Byrne, David; Lachkar, Zouhair

    2017-04-01

    The ocean's biological pump is often simplified to a purely vertical process. Nevertheless, the horizontal transport of organic carbon can be substantial, especially in coastal regions such as the Canary Upwelling System (CanUS), one of the four major Eastern Boundary Upwelling Systems, characterized by high shelf productivity and an intense lateral exchange of mass and tracers with the adjacent oligotrophic waters. Despite its importance, the magnitude of this lateral flux has not yet been constrained. Here, we quantify the lateral export of organic carbon from the CanUS to the open North Atlantic using the Regional Ocean Modeling System (ROMS) coupled to a biogeochemical ecosystem module. The model is run on an Atlantic telescopic grid with a strong refinement towards the north-western African shelf, to combine an eddy-resolving resolution in the region of study with a full Atlantic basin perspective. Our results reveal that over the whole CanUS more than a third of the Net Community Production (NCP) in the nearshore 100 km is transported offshore, amounting to about 19 Tg C yr-1. The offshore transport dominates the lateral fluxes up to 1500 km into the subtropical North Atlantic, along the way adding organic carbon to the upper 100 m at rates of between 8% and 34% of the alongshore average NCP. The remineralization at depth of this extra organic carbon leads to strongly negative vertically-integrated NCP throughout the whole offshore region of the CanUS, i.e. it makes the offshore region net heterotrophic. Substantial subregional variability shapes the spatial pattern of the fluxes in the CanUS. In particular, the central subregion surrounding Cape Blanc is the most efficient in terms of collecting and laterally exporting the organic carbon, resulting in a sharp peak of watercolumn heterotrophy. A decomposition of the organic carbon fluxes into a time-mean component and a time-variable, i.e., mesoscale component reveals a large contribution of the mesoscale

  13. Climatic variability and trends in the surface waters of coastal British Columbia

    Science.gov (United States)

    Cummins, Patrick F.; Masson, Diane

    2014-01-01

    Multi-decadal records of monthly sea surface temperature (SST) and sea surface salinity (SSS) collected at a set of lighthouse stations are used to examine climatic variability and trends in the coastal waters of British Columbia. Particular attention is given to relations between the water property anomalies and variability in coastal freshwater discharge and alongshore wind stress. Within the Strait of Georgia, SSS anomalies are closely related to Fraser River discharge anomalies. Along the Pacific coast, anomalies in alongshore wind stress and freshwater runoff have the characteristics of white noise processes. A cross-correlation analysis demonstrates that SST and SSS variability along the open west coast is consistent with the response of a first-order autoregressive process driven by anomalous alongshore wind stress and coastal freshwater discharge, respectively. Thus climatic variability of SST and SSS along the Pacific coast of British Columbia occurs, in part, through the integration of noisy atmospheric forcing and coastal precipitation. Seasonal correlations show that SST is strongly related to wind stress during winter and fall. Conversely, SSS is relatively weakly related to the alongshore wind during spring, suggesting that variability in upwelling makes only a modest contribution to variability of SSS in the nearshore environment. Consistent with previous studies, secular trends indicate long-term warming and freshening of the coastal ocean at most stations. It is shown that long-term SST trends can be obscured by the pronounced climatic variability of these waters, requiring that time series extend for several decades to be reliably detected.

  14. Simulation of East India Coastal Features and Validation with Satellite Altimetry and Drifter Climatology

    Directory of Open Access Journals (Sweden)

    Sourav Sil

    2011-12-01

    Full Text Available The circulation features of western coast of the Bay of Bengal (BOB have been analyzed using Regional Ocean Modeling System (ROMS with Comprehensive Ocean-Atmosphere Data Set (COADS wind and thermal forcing. The model simulation shows that the coastal current is not continuous throughout the year similar to the structure seen from the drifter climatology. The western boundary current (WBC is formed in February and persists till May. This boundary current is very strong during March and April due to formation of anticyclonic eddies. From July to September, the coastal current is disorganized because of sequential development of anticyclonic and cyclonic eddies. But in October the coastal current starts to flow southward as the East India Coastal Current (EICC and it prevails till December with the formation of cyclonic eddies along the coast. The simulated sea surface height anomaly (SSHA is competent to detect the upwelling and downwelling zones in the coastal region as supported by TOPEX/POSEIDON climatology.

  15. Sea surface temperature of the coastal zones of France. Heat Capacity Mapping Mission (HCMM)

    Science.gov (United States)

    Deschamps, P. Y.; Frouin, R.; Cassanet, G.; Verger, F. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. HCMM data analysis shows some mesoscale features which were previously expected to occur: summer coastal upwellings in the Gulf of Lions, tidal fronts bordering the English Channel, and cooler surface waters at the continental shelf break. The analysis of the spectral variance density spectra show that the interpretation of the data usually is limited by the HCMM radiometric performance (noise levels) at wavenumbers below 5 km in the oceanic areas; from this analysis it may also be concluded that a decrease of the radiometric noise level down to 0.1 k against an increase of the ground resolution up to 2 km would give a better optimum of the radiometric performances in the oceanic areas. HCMM data appear to be useful for analysis of the sea surface temperature field, particularly in the very coastal area by profiting from the ground resolution of 500 m.

  16. Stability of active mantle upwelling revealed by net characteristics of plate tectonics.

    Science.gov (United States)

    Conrad, Clinton P; Steinberger, Bernhard; Torsvik, Trond H

    2013-06-27

    Viscous convection within the mantle is linked to tectonic plate motions and deforms Earth's surface across wide areas. Such close links between surface geology and deep mantle dynamics presumably operated throughout Earth's history, but are difficult to investigate for past times because the history of mantle flow is poorly known. Here we show that the time dependence of global-scale mantle flow can be deduced from the net behaviour of surface plate motions. In particular, we tracked the geographic locations of net convergence and divergence for harmonic degrees 1 and 2 by computing the dipole and quadrupole moments of plate motions from tectonic reconstructions extended back to the early Mesozoic era. For present-day plate motions, we find dipole convergence in eastern Asia and quadrupole divergence in both central Africa and the central Pacific. These orientations are nearly identical to the dipole and quadrupole orientations of underlying mantle flow, which indicates that these 'net characteristics' of plate motions reveal deeper flow patterns. The positions of quadrupole divergence have not moved significantly during the past 250 million years, which suggests long-term stability of mantle upwelling beneath Africa and the Pacific Ocean. These upwelling locations are positioned above two compositionally and seismologically distinct regions of the lowermost mantle, which may organize global mantle flow as they remain stationary over geologic time.

  17. The relationship between upwelling underwater polarization and attenuation/absorption ratio.

    Science.gov (United States)

    Ibrahim, Amir; Gilerson, Alexander; Harmel, Tristan; Tonizzo, Alberto; Chowdhary, Jacek; Ahmed, Samir

    2012-11-05

    The attenuation coefficient of the water body is not directly retrievable from measurements of unpolarized water-leaving radiance. Based on extensive radiative transfer simulations using the vector radiative transfer code RayXP, it is demonstrated that the underwater degree of linear polarization (DoLP) is closely related to the attenuation-to-absorption ratio (c/a) of the water body, a finding that enables retrieval of the attenuation coefficient from measurements of the Stokes components of the upwelling underwater polarized light field. The relationship between DoLP and the c/a ratio is investigated for the upwelling polarized light field for a complete set of viewing geometries, at several wavelengths in the visible part of the spectrum; for varying compositions of the aquatic environment, whose constituents include phytoplankton, non-algal particles, and color dissolved organic matter (CDOM); and for varying microphysical properties such as the refractive index and the slope of the Junge-type particle size distribution (PSD). Consequently, this study reveals the possibility for retrieval of additional inherent optical properties (IOPs) from air- or space-borne DoLP measurements of the water-leaving radiation.

  18. Secondary production in waters influenced by upwelling off the coast of Somalia

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.L.

    1991-01-01

    During the southwest monsoon of 1979, plankton samples were collected between the equator and 12{degrees}N. Surface samples collected while the research vessel was surveying this area have been analyzed for the abundance of copepod nauplii, primarily the young of the copepod Calanoides carinatus. These samples revealed a sharp rise in the abundance of nauplii in regions where sea-surface temperatures were less than 10{degrees}C. The development state of the gonads of female C. carinatus also showed that reproduction was likely to be most intense nearshore in cold, recently upwelled water. Lipid content of females was inversely related to gonad development, suggesting that lipids sequestered at some earlier point in the life cycle were being used to synthesize eggs. Secondary production is therefore highest in the nearshore areas having cool sea-surface temperatures. Growth of phytoplankton and growth of C. carinatus seem to be closely coupled; daily ingestion rates estimated in nearshore areas where potential secondary production was high were equal to or greater than measured rates of primary production. This study was done of the waters influenced by upwelling off the coast of Somalia.

  19. A Broad-Area Method for the Diurnal Characterisation of Upwelling Medium Wave Infrared Radiation

    Directory of Open Access Journals (Sweden)

    Bryan Hally

    2017-02-01

    Full Text Available Fire detection from satellite sensors relies on an accurate estimation of the unperturbed state of a target pixel, from which an anomaly can be isolated. Methods for estimating the radiation budget of a pixel without fire depend upon training data derived from the location’s recent history of brightness temperature variation over the diurnal cycle, which can be vulnerable to cloud contamination and the effects of weather. This study proposes a new method that utilises the common solar budget found at a given latitude in conjunction with an area’s local solar time to aggregate a broad-area training dataset, which can be used to model the expected diurnal temperature cycle of a location. This training data is then used in a temperature fitting process with the measured brightness temperatures in a pixel, and compared to pixel-derived training data and contextual methods of background temperature determination. Results of this study show similar accuracy between clear-sky medium wave infrared upwelling radiation and the diurnal temperature cycle estimation compared to previous methods, with demonstrable improvements in processing time and training data availability. This method can be used in conjunction with brightness temperature thresholds to provide a baseline for upwelling radiation, from which positive thermal anomalies such as fire can be isolated.

  20. Hydrogeology of a Danish Riparian Lowland: the Importance of Groundwater Upwelling on Nitrate Removal

    Science.gov (United States)

    Steiness, M.; van't Veen, S. G. W.; Jessen, S.; Engesgaard, P. K.

    2016-12-01

    Riparian zones are critical interfaces between streams and uplands with many of the characteristics for being key areas for nitrate removal. The hydrogeology is a controlling factor for the source, flow paths, magnitude of groundwater discharge to the stream, nitrate loading, and therefore the occurrence of "hot spots" with increased denitrification. A riparian lowland was investigated through field studies (geophysics, hydrogeology), water quality assessment, and flow and reactive transport modelling. One of the objectives was to understand the role of the landscape and hydrogeology on diffusive versus focused groundwater discharge and also nitrate removal. The investigated riparian zone is characterized by diffusive flow of groundwater to the stream from the northern bank (from a maize field) and groundwater upwelling in several places with overland flow to the stream from south (wetland area). Nitrate is effectively removed by pyrite oxidation (as shown by the reactive transport model high sulphate concentrations) on the northern side, whereas the groundwater-fed springs carry up to 74 mg/L nitrate. Groundwater flow modeling shows that upwelling may account for almost 25 % of the flow to the stream. Two other riparian zones were subsequently included and, on the catchment scale, the occurrence of diffusive and focused discharge is found to be common suggesting that riparian zones in this area are only partly effective in removing nitrate.

  1. Effects of coastal forcing on turbulence and boundary- layer structure

    Science.gov (United States)

    Strom, Linda Maria Viktoria

    Coastal mountains of significant elevation impose constraints for the surrounding flow. The aim of this study is to describe the modifications of the marine atmospheric boundary layer that occur offshore of the west coast of the United States. Aircraft measurements, up to 1000 km off the coast from two experiments, are used. This boundary layer is capped by a subsidence inversion, which slopes down toward the coast and produces large thermal winds. Low-level wind maxima (i.e. jets) are typical for these conditions, commonly a 40-50% increase relative to the 30 m wind speed. The effects of coastal forcing on low-level winds cancel in average when no regard is taken for position relative a cape or point. The variability of the low-level wind speed increases nevertheless significantly toward the coast, the standard deviation is +/-40% of the offshore value. The scale of the adjustment downstream of a cape or point is specifically addressed. Some measurements support a formulation of the coastal extent based on an inviscid shallow-water concept; mean variables (i.e. 30 m wind speed and boundary-layer depth) and turbulent parameters (i.e. dissipation and shear production of turbulent kinetic energy) vary in a uniform, predicted manner. The effects of coastal forcing on winds result in cold sea surface temperatures at the coast, due to upwelling. Stability becomes a function of offshore distance. Surface-layer turbulence statistics and spectra (and cospectra) of turbulence variables are presented. Across- and along-wind sampled spectra (and cospectra) show that large wind shear and shallow boundary layer affect the scales of the turbulence eddies. The relation between the standard deviations of wind components are affected. The turbulence appears to be non-local in some aspects, entrainment fluxes are proposed to be important due to a shallow boundary layer with a sharp, sloping inversion and a low-level jet.

  2. Average Potential Temperature of the Upper Mantle and Excess Temperatures Beneath Regions of Active Upwelling

    Science.gov (United States)

    Putirka, K. D.

    2006-05-01

    The question as to whether any particular oceanic island is the result of a thermal mantle plume, is a question of whether volcanism is the result of passive upwelling, as at mid-ocean ridges, or active upwelling, driven by thermally buoyant material. When upwelling is passive, mantle temperatures reflect average or ambient upper mantle values. In contrast, sites of thermally driven active upwellings will have elevated (or excess) mantle temperatures, driven by some source of excess heat. Skeptics of the plume hypothesis suggest that the maximum temperatures at ocean islands are similar to maximum temperatures at mid-ocean ridges (Anderson, 2000; Green et al., 2001). Olivine-liquid thermometry, when applied to Hawaii, Iceland, and global MORB, belie this hypothesis. Olivine-liquid equilibria provide the most accurate means of estimating mantle temperatures, which are highly sensitive to the forsterite (Fo) contents of olivines, and the FeO content of coexisting liquids. Their application shows that mantle temperatures in the MORB source region are less than temperatures at both Hawaii and Iceland. The Siqueiros Transform may provide the most precise estimate of TpMORB because high MgO glass compositions there have been affected only by olivine fractionation, so primitive FeOliq is known; olivine thermometry yields TpSiqueiros = 1430 ±59°C. A global database of 22,000 MORB show that most MORB have slightly higher FeOliq than at Siqueiros, which translates to higher calculated mantle potential temperatures. If the values for Fomax (= 91.5) and KD (Fe-Mg)ol-liq (= 0.29) at Siqueiros apply globally, then upper mantle Tp is closer to 1485 ± 59°C. Averaging this global estimate with that recovered at Siqueiros yields TpMORB = 1458 ± 78°C, which is used to calculate plume excess temperatures, Te. The estimate for TpMORB defines the convective mantle geotherm, and is consistent with estimates from sea floor bathymetry and heat flow (Stein and Stein, 1992), and

  3. Distribution of surface carbon dioxide and air-sea exchange in the upwelling system off the Galician coast

    Science.gov (United States)

    Borges, Alberto V.; Frankignoulle, Michel

    2002-05-01

    Data on the distribution of the partial pressure of CO2 (pCO2) were obtained during six cruises off the Galician coast, a region characterized by a seasonal upwelling. The values of pCO2 over the continental shelf are highly variable and range between 265 and 415 μatm during the upwelling season and between 315 and 345 μatm during the downwelling season. Both the continental shelf and off-shelf waters behave as significant net sinks of atmospheric CO2. The computation of the air-sea fluxes of CO2 over the continental shelf yields a net influx in the range of -2.3 (+/-0.6) to -4.7 (+/-1.0) mmol C m-2 d-1 during the upwelling season and -3.5 (+/-0.8) to -7.0 (+/-1.5) mmol C m-2 d-1 on an annual basis. During the upwelling season and on an annual basis, although the observed air-sea gradients of CO2 over the continental shelf are significantly stronger than those in off-shelf waters, the computed air-sea CO2 fluxes are not significantly different because of the important incertitude introduced in the calculations by the estimated error on wind speed measurements. The presence of upwelling filaments increases the influx of atmospheric CO2 in the off-shelf waters. During summer, important short-term variations of pCO2 are observed that are related to both upwelling and temperature variations. During winter the cooling of water causes important undersaturation of CO2 related to the effect of temperature on the dissolved inorganic carbon equilibrium constants.

  4. Upwelling-derived oceanographic conditions impact growth performance and growth-related gene expression in intertidal fish.

    Science.gov (United States)

    Fuentes, Eduardo N; Zuloaga, Rodrigo; Almarza, Oscar; Mendez, Katterinne; Valdés, Juan Antonio; Molina, Alfredo; Pulgar, Jose

    2017-12-01

    Growth is one of the main biological processes in aquatic organisms that is affected by environmental fluctuations such as upwelling (characterized by food-rich waters). In fish, growth is directly related with skeletal muscle increase; which represents the largest tissue of body mass. However, the effects of upwelling on growth, at the physiological and molecular level, are unknown. This study used Girella laevifrons (one of the most abundant intertidal fish in Eastern South Pacific) as a biological model, considering animals from upwelling (U) and non-upwelling (NU) areas. Here, we evaluated the effect of nutritional composition and food availability on growth performance and expression of key growth-related genes (insulin-kike growth factor 1 (igf1) and myosin heavy-chain (myhc)) and atrophy-related genes (muscle ring-finger 1 (murf1), F-box only protein 32 (atrogin-1) and BCL2/adenovirus E1B 19kDa-interacting protein 3 (bnip3)). We reported that, among zones, U fish displayed higher growth performance in response to nutritional composition, specifically between protein- and fiber-rich diets (~1g). We also found in NU fish that atrophy-related genes were upregulated with fiber-rich diet and during fasting (~2-fold at minimum respect U). In conclusion, our results suggest that the growth potential of upwelling fish may be a consequence of differential muscle gene expression. Our data provide a preliminary approach contributing on how upwelling influence fish growth at the physiological and molecular levels. Future studies are required to gain further knowledge about molecular differences between U and NU animals, as well as the possible applications of this knowledge in the aquaculture industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Rapid nitrification of wastewater ammonium near coastal ocean outfalls, Southern California, USA

    Science.gov (United States)

    McLaughlin, Karen; Nezlin, Nikolay P.; Howard, Meredith D. A.; Beck, Carly D. A.; Kudela, Raphael M.; Mengel, Michael J.; Robertson, George L.

    2017-02-01

    In the southern California Bight (SCB), there has been a longstanding hypothesis that anthropogenic nutrient loading is insignificant compared to the nutrient loading from upwelling. However, recent studies have demonstrated that, in the nearshore environment, nitrogen (N) flux from wastewater effluent is equivalent to the N flux from upwelling. The composition of the N pool and N:P ratios of wastewater and upwelled water are very different and the environmental effects of wastewater discharges on coastal systems are not well characterized. Capitalizing on routine maintenance of the Orange County Sanitation District's ocean outfall, wherein a wastewater point source was ;turned off; in one area and ;turned on; in another for 23 days, we were able to document changes in coastal N cycling, specifically nitrification, related to wastewater effluent. A ;hotspot; of ammonium (NH4+) and nitrite (NO2-) occurred over the ocean outfall under normal operations and nitrification rates were significantly higher offshore when the deeper outfall pipe was operating. These rates were sufficiently high to transform all effluent NH4+ to nitrate (NO3-). The dual isotopic composition of dissolved NO3- (δ15NNO3 and δ18ONO3) indicated that N-assimilation and denitrification were low relative to nitrification, consistent with the relatively low chlorophyll and high dissolved oxygen levels in the region during the study. The isotopic composition of suspended particulate organic matter (POM) recorded low δ15NPN and δ13CPN values around the outfall under normal operations suggesting the incorporation of ;nitrified; NO3- and wastewater dissolved organic carbon into POM. Our results demonstrate the critical role of nitrification in nitrogen cycling in the nearshore environment of urban oceans.

  6. Pollution of coastal seas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Pollution of various environments is a consequence of population growth and industrialisation. Coastal seas form part of marine environment and are very rich in minerals, crude oil fishes etc. They are also being used for disposal of wastes from...

  7. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  8. Coastal Temperate Rainforest Symposium

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The North Pacific LCC is helping sponsor the April 2012 science symposium - Coastal Temperate Rainforests: Integrating Communities, Climate Science, and Resource...

  9. Coastal California Digital Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital ortho-imagery dataset is a survey of coastal California. The project area consists of approximately 3774 square miles. The project design of the digital...

  10. Coastal Wetland Restoration Bibliography

    National Research Council Canada - National Science Library

    Yozzo, David

    1997-01-01

    This bibliography was compiled to provide biologists, engineers, and planners at Corps Districts and other agencies/ institutions with a guide to the diverse body of literature on coastal wetland restoration...

  11. Temperature Calculations in the Coastal Modeling System

    <