WorldWideScience

Sample records for coastal oceanographic models

  1. Towards The Operational Oceanographic Model System In Estonian Coastal Sea, Baltic Sea

    Science.gov (United States)

    Kõuts, T.; Elken, J.; Raudsepp, U.

    An integrated system of nested 2D and 3D hydrodynamic models together with real time forcing data asquisition is designed and set up in pre-operational mode in the Gulf of Finland and Gulf of Riga, the Baltic Sea. Along the Estonian coast, implicit time-stepping 3D models are used in the deep bays and 2D models in the shallow bays with ca 200 m horizontal grid step. Specific model setups have been verified by in situ current measurements. Optimum configuration of initial parameters has been found for certain critical locations, usually ports, oil terminals, etc. Operational system in- tegrates also section of historical database of most important hydrologic parameters in the region, allowing use of certain statistical analysis and proper setup of initial conditions for oceanographic models. There is large variety of applications for such model system, ranging from environmental impact assessment at local coastal sea pol- lution problems to forecast of offshore blue algal blooms. Most probable risk factor in the coastal sea engineering is oil pollution, therefore current operational model sys- tem has direct custom oriented output the oil spill forecast for critical locations. Oil spill module of the operational system consist the automatic weather and hydromet- ric station (distributed in real time to internet) and prognostic model of sea surface currents. System is run using last 48 hour wind data and wind forecast and estimates probable oil deposition areas on the shoreline under certain weather conditions. Cal- culated evolution of oil pollution has been compared with some real accidents in the past and there was found good agreement between model and measurements. Graphi- cal user interface of oil spill model is currently installed at location of port authorities (eg. Muuga port), so in case of accidents it could be used in real time supporting the rescue operations. In 2000 current pre-operational oceanographic model system has been sucessfully used to

  2. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  3. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  4. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  5. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  6. Seals as collectors of oceanographic data in the coastal zone

    DEFF Research Database (Denmark)

    Del Villar-Guerra, Diego; Cronin, Michelle; Dabrowski, Tomasz

    2012-01-01

    opportunities for sensor deployment on a variety of marine animals, including marine mammals, sea birds, fish and turtles, to gather data from inaccessible areas. In this study, we explored the use of telemetryderived data from instrumented seals in Kenmare Bay in southwest Irish waters to ascertain if seals...... stratification, up/downwellings and the onset of the thermocline, and provide unique insights into the marine environment in and around the bay, where no previous oceanographic studies have been conducted. Strong correlation between the seal-derived temperature data and in situ temperature recorders and modelled...... data validates the use of seals as oceanographic platforms on different spatial scales...

  7. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  8. A multi-sensor oceanographic measurement system for coastal environments

    Science.gov (United States)

    Martini, Marinna A.; Strahle, William J.

    1993-01-01

    An instrument system has been developed for long-term sediment transport studies that uses a modular design to combine off the shelf components into a complete and flexible package. A common data storage format is used in each instrument system so that the same hardware can be assembled in different ways to address specific scientific studies with minimal engineering support and modification. Three systems have been constructed and successfully deployed to date in two different coastal environments.

  9. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing.

    Science.gov (United States)

    Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J

    2017-07-11

    Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.

  10. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  11. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño

    Science.gov (United States)

    Barnard, Patrick; Hoover, Daniel J.; Hubbard, David M.; Snyder, Alexander; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero,; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.

    2017-01-01

    The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.

  12. Extreme oceanographic forcing and coastal response due to the 2015-2016 El Niño.

    Science.gov (United States)

    Barnard, Patrick L; Hoover, Daniel; Hubbard, David M; Snyder, Alex; Ludka, Bonnie C; Allan, Jonathan; Kaminsky, George M; Ruggiero, Peter; Gallien, Timu W; Gabel, Laura; McCandless, Diana; Weiner, Heather M; Cohn, Nicholas; Anderson, Dylan L; Serafin, Katherine A

    2017-02-14

    The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015-2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.

  13. A Modeling Approach to Enhance Animal-Obtained Oceanographic Data Geo- Position

    Science.gov (United States)

    Tremblay, Y.; Robinson, P.; Weise, M. J.; Costa, D. P.

    2006-12-01

    Diving animals are increasingly being used as platforms to collect oceanographic data such as CTD profiles. Animal borne sensors provide an amazing amount of data that have to be spatially referenced. Because of technical limitations geo-position of these data mostly comes from the interpolation of locations obtained through the ARGOS positioning system. This system lacks spatio-temporal resolution compared to the Global Positioning System (GPS) and therefore, the positions of these oceanographic data are not well defined. A consequence of this is that many data collected in coastal regions are discarded, because many casts' records fell on land. Using modeling techniques, we propose a method to deal with this problem. The method is rather intuitive, and instead of deleting unreasonable or low-quality locations, it uses them by taking into account their lack of precision as a source of information. In a similar way, coastlines are used as sources of information, because marine animals do not travel over land. The method was evaluated using simultaneously obtained tracks with the Argos and GPS system. The tracks obtained from this method are considerably enhanced and allow a more accurate geo-reference of oceanographic data. In addition, the method provides a way to evaluate spatial errors for each cast that is not otherwise possible with classical filtering methods.

  14. Oceanographic model and radiological basis for control of radionuclide releases

    International Nuclear Information System (INIS)

    Hagen, A.A.

    1984-01-01

    Since it first prepared the provisional Definition of high-level radioactive waste unsuitable for dumping at sea and Recommendations for those radioactive wastes dumped under special permit in 1974, the IAEA has kept the Definition and Recommendations under continuing review. The oceanographic basis for the definition is being re-evaluated, based on a 1983 Report from the IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Pollution (GESAMP), and the radiological basis is being updated, based on a Report from an IAEA Advisory Group Meeting held in 1982. The differences in the current radiological and oceanographic bases and the updating of both the GESAMP Report on modelling and the review of the radiological basis are delineated. In addition, a discussion of the future course of the Agency's activities in this area is given. (author)

  15. Coastal Harbors Modeling Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Harbors Modeling Facility is used to aid in the planning of harbor development and in the design and layout of breakwaters, absorbers, etc.. The goal is...

  16. Adaptive Oceanographic Sampling in a Coastal Environment Using Autonomous Gliding Vehicles

    National Research Council Canada - National Science Library

    Fratantoni, David

    2003-01-01

    ... and modular sensor payload. Particular emphasis is placed on the development of adaptive sampling strategies and the intelligent control of large glider fleets operating within the framework of an autonomous oceanographic sampling network...

  17. The Civitavecchia Coastal Environment Monitoring System (C-CEMS): an integrated approach to the study of coastal oceanographic processes

    Science.gov (United States)

    Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Bonamano, Simone; Martellucci, Riccardo; Pierattini, Alberto; Albani, Marta; Borsellino, Chiara; Zappalà, Giuseppe

    2015-04-01

    The study of the physical and biological processes of the coastal environment, characterized by high spatial and time variability, requires the adoption of multidisciplinary strategies of investigation that takes into account, not only the biotic and abiotic components of coastal marine ecosystems, but also the terrestrial, atmospheric and hydrological features linked to them. The understanding of coastal environment is fundamental to face efficiently and effectively the pollution phenomena, as expected by Marine Strategy (2008/56 EC) Directive, which is focused on the achievement of GES by 2020 in all Member States. Following these lines, the Laboratory of Experimental Oceanology and Marine Ecology (University of Tuscia) has developed a multi-platform observing network (the Civitavecchia Coastal Environment Monitoring System, C-CEMS) that operates since 2005 in the coastal marine area of Civitavecchia (northern Tyrrhenian Sea, Italy), where multiple uses (industrial, commercial and tourist activities) and high ecological values (Posidonia oceanica meadows, hard-bottom benthic communities, priority species, etc.) closely coexist. Furthermore, in the last years the Civitavecchia harbour, which is one of the main ports of Europe, has been subjected to a series of expansion works that could impact significantly on the coastal environment. The C-CEMS, implemented in the current configuration, is composed by five main modules (fixed stations, in-situ measurements and samplings, satellite observations, numerical models, GIS) which provide integrated informations to be used in different fields of the environmental research. The fixed stations system controls one weather, two water quality and two wave-buoy stations along the coast. In addition to the long term observations acquired by the fixed stations (L-TER), in situ surveys are periodically carried out for the monitoring of the physical, chemical and biological characteristics of the water column and marine sediments

  18. Hydrological and Oceanographic Considerations for Integrated Coastal Zone Management in Southern Belize.

    Science.gov (United States)

    Heyman; Kjerfve

    1999-09-01

    / The objectives of this study are to: (1) characterize the meteorology and hydrology of the Maya Mountain-Marine Area Transect in southern Belize, (2) employ a simple water balance model to examine the discharge rates of seven watersheds to Port Honduras, (3) test the validity of the hydrological model, (4) explore the implications of potential landscape and hydrological alterations, and (5) examine the value of protected areas. The southern coastal portion of the study area is classified as wet tropical forest and the remainder as moist tropical forest. Rainfall is 3000-4000 mm annually. Resulting annual freshwater discharge directly into Port Honduras is calculated at 2.5 x 10(9) m3, a volume equal to the basin. During the rainy season, June-September, 84% of the annual discharge occurs, which causes the bay to become brackish. Port Honduras serves as an important nursery ground for many species of commercially important fish and shellfish. The removal of forest cover in the uplands, as a result of agriculture, aquaculture, and village development, is likely to significantly accelerate erosion. Increased erosion would reduce soil fertility in the uplands and negatively affect mangrove, seagrass, and coral reef productivity in the receiving coastal embayment. Alternatively, the conservation of an existing protected areas corridor, linking the Maya Mountains to the Caribbean Sea, is likely to enhance regional sustainable economic development. This study aims to support environmental management at the scale of the "ecoscape"-a sensible ecological unit of linked watersheds and coastal and marine environments.KEY WORDS: Ecosystem management; Coastal zone management; Belize; Hydrologyhttp://link.springer-ny.com/link/service/journals/00267/bibs/24n2p229.html

  19. Green sturgeon distribution in the Pacific Ocean estimated from modeled oceanographic features and migration behavior.

    Science.gov (United States)

    Huff, David D; Lindley, Steven T; Wells, Brian K; Chai, Fei

    2012-01-01

    The green sturgeon (Acipenser medirostris), which is found in the eastern Pacific Ocean from Baja California to the Bering Sea, tends to be highly migratory, moving long distances among estuaries, spawning rivers, and distant coastal regions. Factors that determine the oceanic distribution of green sturgeon are unclear, but broad-scale physical conditions interacting with migration behavior may play an important role. We estimated the distribution of green sturgeon by modeling species-environment relationships using oceanographic and migration behavior covariates with maximum entropy modeling (MaxEnt) of species geographic distributions. The primary concentration of green sturgeon was estimated from approximately 41-51.5° N latitude in the coastal waters of Washington, Oregon, and Vancouver Island and in the vicinity of San Francisco and Monterey Bays from 36-37° N latitude. Unsuitably cold water temperatures in the far north and energetic efficiencies associated with prevailing water currents may provide the best explanation for the range-wide marine distribution of green sturgeon. Independent trawl records, fisheries observer records, and tagging studies corroborated our findings. However, our model also delineated patchily distributed habitat south of Monterey Bay, though there are few records of green sturgeon from this region. Green sturgeon are likely influenced by countervailing pressures governing their dispersal. They are behaviorally directed to revisit natal freshwater spawning rivers and persistent overwintering grounds in coastal marine habitats, yet they are likely physiologically bounded by abiotic and biotic environmental features. Impacts of human activities on green sturgeon or their habitat in coastal waters, such as bottom-disturbing trawl fisheries, may be minimized through marine spatial planning that makes use of high-quality species distribution information.

  20. Southern Alaska Coastal Relief Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building coastal-relief models (CRM) for select U.S. coastal regions. Bathymetric, topographic, and shoreline data...

  1. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    Science.gov (United States)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  2. Selection of site coolant intake and discharge of shore based power stations - coastal oceanographic considerations

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.; Krishnakumar, V.

    Many new nuclear power plants, reactors are proposed along coastal area of Indian coastline apart from the existing ones. All these, being ultimately a heat exchange process, necessitate enormous quantity of cooling water drawn from the sea...

  3. Improved oceanographic measurements with cryosat sar altimetry: Application to the coastal zone and arctic

    DEFF Research Database (Denmark)

    Cotton, P. D.; Garcia, P. N.; Cancet, M.

    in the CryoSat Plus for Oceans project (CP4O), each investigating different aspects of the opportunities offered by this new technology. The first two studies address the coastal zone, a critical region for providing a link between open-ocean and shelf sea measurements with those from coastal in......, a thorough analysis was made of the performance of “SAR” altimeter data (delay-Doppler processed) in the coastal zone. This quantified the performance, confirming the significant improvement over “conventional” pulse-limited altimetry. In the second study a processing scheme was developed with CryoSat SARin......-situ measurements, in particular tide gauges. Although much has been achieved in recent years through the Coastal Altimetry community, (http://www.coastalt.eu/community) there is a limit to the capabilities of pulse-limited altimetry which often leaves an un-measured “white strip” right at the coastline. Firstly...

  4. Storm Surge Modeling of Typhoon Haiyan at the Naval Oceanographic Office Using Delft3D

    Science.gov (United States)

    Gilligan, M. J.; Lovering, J. L.

    2016-02-01

    The Naval Oceanographic Office provides estimates of the rise in sea level along the coast due to storm surge associated with tropical cyclones, typhoons, and hurricanes. Storm surge modeling and prediction helps the US Navy by providing a threat assessment tool to help protect Navy assets and provide support for humanitarian assistance/disaster relief efforts. Recent advancements in our modeling capabilities include the use of the Delft3D modeling suite as part of a Naval Research Laboratory (NRL) developed Coastal Surge Inundation Prediction System (CSIPS). Model simulations were performed on Typhoon Haiyan, which made landfall in the Philippines in November 2013. Comparisons of model simulations using forecast and hindcast track data highlight the importance of accurate storm track information for storm surge predictions. Model runs using the forecast track prediction and hindcast track information give maximum storm surge elevations of 4 meters and 6.1 meters, respectively. Model results for the hindcast simulation were compared with data published by the JSCE-PICE Joint survey for locations in San Pedro Bay (SPB) and on the Eastern Samar Peninsula (ESP). In SPB, where wind-induced set-up predominates, the model run using the forecast track predicted surge within 2 meters in 38% of survey locations and within 3 meters in 59% of the locations. When the hindcast track was used, the model predicted within 2 meters in 77% of the locations and within 3 meters in 95% of the locations. The model was unable to predict the high surge reported along the ESP produced by infragravity wave-induced set-up, which is not simulated in the model. Additional modeling capabilities incorporating infragravity waves are required to predict storm surge accurately along open coasts with steep bathymetric slopes, such as those seen in island arcs.

  5. Coastal oceanographic processes associated with blood cockle (Anadara granosa induce spawning season in Kapar, Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    Hadzley Harith

    2016-12-01

    Full Text Available Study on coastal processes in Kapar waters was conducted from 2008–2016. The aim of this study is to identify potential blood cockle (Anadara granosa induce spawning ground based on physical intermittency. A total of 132 sampling stations were recorded. A thermal power station situated 2km away is discharging treated warm water (3m MSL which prevents cockle farmers from harvesting due to their maximum of 3m long hand dredge. Thus, this information could be useful for cockle sustainable management plan in near future.

  6. Application of ecological, geological and oceanographic ERTS-1 imagery to Delaware's coastal resources planning

    Science.gov (United States)

    Klemas, V. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Communities containing five different coastal vegetation species, developed marshlands, and fresh water impoundments have been identified in ERTS-1 images. Suspended sediment and circulation patterns in imagery from five ERTS-1 passes over Delaware Bay have been enhanced and correlated with predicted current patterns. Conclusions reached are: (1) ERTS-1 is suitable platform for observing suspended sediment patterns and water masses synoptically over large areas. (2) Suspended sediment acts as a natural tracer allowing photointerpreters to deduce gross current circulation patterns from ERTS-1 imagery. (3) Under atmospheric conditions encountered along the East Coast of the United States MSS band 5 seems to give the best representation of sediment load in upper one meter of water column. (4) In the ERTS-1 imagery the sediment patterns are delineated by three to four neighboring shades of grey. (5) Negative transparencies of the ERTS-1 images give better contrast whenever the suspended sediment tones fall within the first few steps of the grey scale. (6) Color density slicing helps delineate the suspended sediment patterns more clearly and differentiate turbidity levels.

  7. Larval fish assemblages in coastal waters of central Greece: reflections of topographic and oceanographic heterogeneity

    Directory of Open Access Journals (Sweden)

    Stylianos Somarakis

    2011-04-01

    Full Text Available Patterns in the mesoscale distribution of larval fish in the coastal waters of central Greece, an area of high topographic and bathymetric complexity, were analysed using samples collected during two ichthyoplankton surveys in July 1998 and June 1999. Salinities were lower in the eastern (Aegean part of the study area due to the influence of waters originating from the Black Sea. In this region, larvae of many epipelagic and benthopelagic (typically summer spawning species were less abundant in June 1999, when waters were significantly cooler, compared to July 1998. Multivariate analyses identified ‘neritic’ and ‘pelagic’ groups of stations dominated by larvae of epipelagic/bethopelagic (typically shelf dwelling and mesopelagic species. In the west (Ionian Sea, a prominent third group of stations located in the deep and highly enclosed Korinthiakos Gulf was also defined with very high abundances of mesopelagic fish larvae. However, the genera Cyclothone and Vinciguerria that dominated the neighbouring offshore assemblage of the Ionian Sea were absent from this gulf. In the study area, Korinthiakós Gulf ( > 900 m and North Evoikos ( > 400 m Gulf comprise unique ‘fjord-like’ ecosystems in the Mediterranean with increased productivity and significantly cooler deep waters compared to adjacent open sea basins.

  8. Mesoscale modeling study of the oceanographic conditions off the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    implemented for the first time to study the seasonal circulation and coastal upwelling off the southwest Indian coast during ... Upwelling of cold water, 4◦C lower than offshore temperatures appear in. April. .... wind stress. It interacts with the ...

  9. Developments in Coastal Ocean Modeling

    Science.gov (United States)

    Allen, J. S.

    2001-12-01

    Capabilities in modeling continental shelf flow fields have improved markedly in the last several years. Progress is being made toward the long term scientific goal of utilizing numerical circulation models to interpolate, or extrapolate, necessarily limited field measurements to provide additional full-field information describing the behavior of, and providing dynamical rationalizations for, complex observed coastal flow. The improvement in modeling capabilities has been due to several factors including an increase in computer power and, importantly, an increase in experience of modelers in formulating relevant numerical experiments and in analyzing model results. We demonstrate present modeling capabilities and limitations by discussion of results from recent studies of shelf circulation off Oregon and northern California (joint work with Newberger, Gan, Oke, Pullen, and Wijesekera). Strong interactions between wind-forced coastal currents and continental shelf topography characterize the flow regimes in these cases. Favorable comparisons of model and measured alongshore currents and other variables provide confidence in the model-produced fields. The dependence of the mesoscale circulation, including upwelling and downwelling fronts and flow instabilities, on the submodel used to parameterize the effects of small scale turbulence, is discussed. Analyses of model results to provide explanations for the observed, but previously unexplained, alongshore variability in the intensity of coastal upwelling, which typically results in colder surface water south of capes, and the observed development in some locations of northward currents near the coast in response to the relaxation of southward winds, are presented.

  10. Final Report Collaborative Project: Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Frank [Univ. of Connecticut, Storrs, CT (United States); Dennis, John [Univ. of Connecticut, Storrs, CT (United States); MacCready, Parker [Univ. of Connecticut, Storrs, CT (United States); Whitney, Michael M. [Univ. of Connecticut, Storrs, CT (United States)

    2016-09-30

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  11. Collaborative Project: Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Frank [Univ. of Washington, Seattle, WA (United States); Dennis, John [Univ. of Washington, Seattle, WA (United States); MacCready, Parker [Univ. of Washington, Seattle, WA (United States); Whitney, Michael [Univ. of Washington, Seattle, WA (United States)

    2016-10-20

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  12. U.S. Coastal Relief Model - Hawaii

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  13. U.S. Coastal Relief Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  14. Toward an extended-geostrophic Euler-Poincare model for mesoscale oceanographic flow

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.S.; Newberger, P.A. [Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Holm, D.D. [Los Alamos National Lab., NM (United States)

    1998-07-01

    The authors consider the motion of a rotating, continuously stratified fluid governed by the hydrostatic primitive equations (PE). An approximate Hamiltonian (L1) model for small Rossby number {var_epsilon} is derived for application to mesoscale oceanographic flow problems. Numerical experiments involving a baroclinically unstable oceanic jet are utilized to assess the accuracy of the L1 model compared to the PE and to other approximate models, such as the quasigeostrophic (QG) and the geostrophic momentum (GM) equations. The results of the numerical experiments for moderate Rossby number flow show that the L1 model gives accurate solutions with errors substantially smaller than QG or GM.

  15. Coastal Change Processes Project data report for oceanographic observations near Fire Island, New York, February through May 2014

    Science.gov (United States)

    Armstrong, Brandy N.; Warner, John C.; List, Jeffrey H.; Martini, Marinna A.; Montgomery, Ellyn T.; Traykovski, Peter A.; Voulgaris, George

    2015-01-01

    An oceanographic field study during February through May 2014 investigated processes that control the sediment-transport dynamics along the western part of Fire Island, New York. This report describes the project background, field program, instrumentation configuration, and locations of the sensors deployed. The data collected, including meteorological observations, are presented as time-series plots for data visualization. Additionally, individual links to the database containing digital data files are available as part of this report.

  16. Bottom friction. A practical approach to modelling coastal oceanography

    Science.gov (United States)

    Bolanos, Rodolfo; Jensen, Palle; Kofoed-Hansen, Henrik; Tornsfeldt Sørensen, Jacob

    2017-04-01

    Coastal processes imply the interaction of the atmosphere, the sea, the coastline and the bottom. The spatial gradients in this area are normally large, induced by orographic and bathymetric features. Although nowadays it is possible to obtain high-resolution bathymetry, the details of the seabed, e.g. sediment type, presence of biological material and living organisms are not available. Additionally, these properties as well as bathymetry can also be highly dynamic. These bottom characteristics are very important to describe the boundary layer of currents and waves and control to a large degree the dissipation of flows. The bottom friction is thus typically a calibration parameter in numerical modelling of coastal processes. In this work, we assess this process and put it into context of other physical processes uncertainties influencing wind-waves and currents in the coastal areas. A case study in the North Sea is used, particularly the west coast of Denmark, where water depth of less than 30 m cover a wide fringe along the coast, where several offshore wind farm developments are being carried out. We use the hydrodynamic model MIKE 21 HD and the spectral wave model MIKE 21 SW to simulate atmosphere and tidal induced flows and the wind wave generation and propagation. Both models represent state of the art and have been developed for flexible meshes, ideal for coastal oceanography as they can better represent coastlines and allow a variable spatial resolution within the domain. Sensitivity tests to bottom friction formulations are carried out into context of other processes (e.g. model forcing uncertainties, wind and wave interactions, wind drag coefficient). Additionally, a map of varying bottom properties is generated based on a literature survey to explore the impact of the spatial variability. Assessment of different approaches is made in order to establish a best practice regarding bottom friction and coastal oceanographic modelling. Its contribution is also

  17. Geographical information system analysis for oceanographic parameters in the coastal waters of Goa, India - A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Suryanarayana, A.; Joglekar, V.V.

    A geographical information system (GIS) is used to create oceanography database and to do the spatial analysis of physical, chemical and biological characteristics of the coastal waters of Goa, India. Vector maps depicting distributions of currents...

  18. Influence of Wind Model Performance on Wave Forecasts of the Naval Oceanographic Office

    Science.gov (United States)

    Gay, P. S.; Edwards, K. L.

    2017-12-01

    Significant discrepancies between the Naval Oceanographic Office's significant wave height (SWH) predictions and observations have been noted in some model domains. The goal of this study is to evaluate these discrepancies and identify to what extent inaccuracies in the wind predictions may explain inaccuracies in SWH predictions. A one-year time series of data is evaluated at various locations in Southern California and eastern Florida. Correlations are generally quite good, ranging from 73% at Pendleton to 88% at both Santa Barbara, California, and Cape Canaveral, Florida. Correlations for month-long periods off Southern California drop off significantly in late spring through early autumn - less so off eastern Florida - likely due to weaker local wind seas and generally smaller SWH in addition to the influence of remotely-generated swell, which may not propagate accurately into and through the wave models. The results of this study suggest that it is likely that a change in meteorological and/or oceanographic conditions explains the change in model performance, partially as a result of a seasonal reduction in wind model performance in the summer months.

  19. A revised oceanographic model to calculate the limiting capacity of the ocean to accept radioactive waste

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Grimwood, P.D.

    1976-12-01

    This report describes an oceanographic model which has been developed for the use in calculating the capacity of the oceans to accept radioactive wastes. One component is a relatively short-term diffusion model which is based on that described in an earlier report (Webb et al., NRPB-R14(1973)), but which has been generalised to some extent. Another component is a compartment model which is used to calculate long-term widespread water concentrations. This addition overcomes some of the short comings of the earlier diffusion model. Incorporation of radioactivity into deep ocean sediments is included in this long-term model as a removal mechanism. The combined model is used to provide a conservative (safe) estimate of the maximum concentrations of radioactivity in water as a function of time after the start of a continuous disposal operation. These results can then be used to assess the limiting capacity of an ocean to accept radioactive waste. (author)

  20. Particle Tracking Model (PTM) with Coastal Modeling System (CMS)

    Science.gov (United States)

    2015-11-04

    Coastal Inlets Research Program Particle Tracking Model (PTM) with Coastal Modeling System ( CMS ) The Particle Tracking Model (PTM) is a Lagrangian...currents and waves. The Coastal Inlets Research Program (CIRP) supports the PTM with the Coastal Modeling System ( CMS ), which provides coupled wave...and current forcing for PTM simulations. CMS -PTM is implemented in the Surface-water Modeling System, a GUI environment for input development

  1. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1983-06-01

    The report presents results of IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP joint group of experts on the scientific aspects of marine pollution (GESAMP) to provide advice on the most suitable oceanographic modelling techniques to be applied to the deep-sea dumping of both radioactive and non-radioactive substances. There are four main parts of the work: the present knowledge of oceanic processes that may transfer substances from a deep-sea dump site back to man or his food chain, methods and models presently available for estimating or calculating concentration distributions of contaminants arising from releases from deep-sea dump sites and recommendations as to the presently most appropriate models, the reliability of the concentration distributions obtained using these models and recommended areas for further improvements including research needs

  2. Keauhou, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. Atka, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. King Cove, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. Chenega, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  6. Juneau, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  7. Lahaina, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  8. Kawaihae, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Tatitlek, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  10. Hoonah, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  11. Whittier, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  12. Gustavus, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  13. Taholah, Washington Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Chignik, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Panama City, Florida Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Nikolski, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Monterey, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Garibaldi, Oregon Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Hanalei, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Ocean City, Maryland Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Southeast Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  2. Kachemak Bay, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. New Orleans, Louisiana Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  4. Virginia Beach, Virginia Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. Galveston, Texas Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Savannah, Georgia Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Biloxi, Mississippi Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  8. Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Santa Barbara, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Hilo, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Corpus Christi, Texas Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. Port Alexander Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  13. Arecibo, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Craig, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Midway Atoll Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Guayama, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Fajardo, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Montauk, New York Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Sand Point, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Shemya, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. La Push, Washington Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  2. Portland, Maine Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. Arena Cove, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. Port Orford, Oregon Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. Adak, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Dutch Harbor, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Unalaska, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  8. Ponce, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Cordova, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Nantucket, Massachusetts Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Daytona Beach, Florida Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. Oahu, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Central Oregon Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Intercomparison and validation of operational coastal-scale models, the experience of the project MOMAR.

    Science.gov (United States)

    Brandini, C.; Coudray, S.; Taddei, S.; Fattorini, M.; Costanza, L.; Lapucci, C.; Poulain, P.; Gerin, R.; Ortolani, A.; Gozzini, B.

    2012-04-01

    The need for regional governments to implement operational systems for the sustainable management of coastal waters, in order to meet the requirements imposed by legislation (e.g. EU directives such as WFD, MSFD, BD and relevant national legislation) often lead to the implementation of coastal measurement networks and to the construction of computational models that surround and describe parts of regional seas without falling in the classic definition of regional/coastal models. Although these operational models may be structured to cover parts of different oceanographic basins, they can have considerable advantages and highlight relevant issues, such as the role of narrow channels, straits and islands in coastal circulation, as both in physical and biogeochemical processes such as in the exchanges of water masses among basins. Two models of this type were made in the context of cross-border European project MOMAR: an operational model of the Tuscan Archipelago sea and one around the Corsica coastal waters, which are both located between the Tyrrhenian and the Algerian-Ligurian-Provençal basins. Although these two models were based on different computer codes (MARS3D and ROMS), they have several elements in common, such as a 400 m resolution, boundary conditions from the same "father" model, and an important area of overlap, the Corsica channel, which has a key role in the exchange of water masses between the two oceanographic basins. In this work we present the results of the comparison of these two ocean forecasting systems in response to different weather and oceanographic forcing. In particular, we discuss aspects related to the validation of the two systems, and a systematic comparison between the forecast/hindcast based on such hydrodynamic models, as regards to both operational models available at larger scale, both to in-situ measurements made by fixed or mobile platforms. In this context we will also present the results of two oceanographic cruises in the

  15. Spatial data quality and coastal spill modelling

    International Nuclear Information System (INIS)

    Li, Y.; Brimicombe, A.J.; Ralphs, M.P.

    1998-01-01

    Issues of spatial data quality are central to the whole oil spill modelling process. Both model and data quality performance issues should be considered as indispensable parts of a complete oil spill model specification and testing procedure. This paper presents initial results of research that will emphasise to modeler and manager alike the practical issues of spatial data quality for coastal oil spill modelling. It is centred around a case study of Jiao Zhou Bay in the People's Republic of China. The implications for coastal oil spill modelling are discussed and some strategies for managing the effects of spatial data quality in the outputs of oil spill modelling are explored. (author)

  16. Empirically based models of oceanographic and biological influences on Pacific Herring recruitment in Prince William Sound

    Science.gov (United States)

    Sewall, Fletcher; Norcross, Brenda; Mueter, Franz; Heintz, Ron

    2018-01-01

    Abundances of small pelagic fish can change dramatically over time and are difficult to forecast, partially due to variable numbers of fish that annually mature and recruit to the spawning population. Recruitment strength of age-3 Pacific Herring (Clupea pallasii) in Prince William Sound, Alaska, is estimated in an age-structured model framework as a function of spawning stock biomass via a Ricker stock-recruitment model, and forecasted using the 10-year median recruitment estimates. However, stock size has little influence on subsequent numbers of recruits. This study evaluated the usefulness of herring recruitment models that incorporate oceanographic and biological variables. Results indicated herring recruitment estimates were significantly improved by modifying the standard Ricker model to include an index of young-of-the-year (YOY) Walleye Pollock (Gadus chalcogrammus) abundance. The positive relationship between herring recruits-per-spawner and YOY pollock abundance has persisted through three decades, including the herring stock crash of the early 1990s. Including sea surface temperature, primary productivity, and additional predator or competitor abundances singly or in combination did not improve model performance. We suggest that synchrony of juvenile herring and pollock survival may be caused by increased abundance of their zooplankton prey, or high juvenile pollock abundance may promote prey switching and satiation of predators. Regardless of the mechanism, the relationship has practical application to herring recruitment forecasting, and serves as an example of incorporating ecosystem components into a stock assessment model.

  17. Coastal erosion problem, modelling and protection

    Science.gov (United States)

    Yılmaz, Nihal; Balas, Lale; İnan, Asu

    2015-09-01

    Göksu Delta, located in the south of Silifke County of Mersin on the coastal plain formed by Göksu River, is one of the Specially Protected Areas in Turkey. Along the coastal area of the Delta, coastline changes at significant rates are observed, concentrating especially at four regions; headland of İncekum, coast of Paradeniz Lagoon, river mouth of Göksu and coast of Altınkum. The coast of Paradeniz Lagoon is suffering significantly from erosion and the consequent coastal retreating problem. Therefore, the narrow barrier beach which separates Paradeniz Lagoon from the Mediterranean Sea is getting narrower, creating a risk of uniting with the sea, thus causing the disappearance of the Lagoon. The aim of this study was to understand the coastal transport processes along the coastal area of Göksu Delta to determine the coastal sediment transport rates, and accordingly, to propose solutions to prevent the loss of coastal lands in the Delta. To this end, field measurements of currents and sediment grain sizes were carried out, and wind climate, wave climate, circulation patterns and longshore sediment transport rates were numerically modeled by HYDROTAM-3D, which is a three dimensional hydrodynamic transport model. Finally, considering its special importance as an environmentally protected region, some coastal structures of gabions were proposed as solutions against the coastal erosion problems of the Delta. The effects of proposed structures on future coastline changes were also modeled, and the coastlines predicted for the year 2017 are presented and discussed in the paper.

  18. A Comparison between Oceanographic Parameters and Seafloor Pressures; Measured, Theoretical and Modelled, and Terrestrial Seismic Data

    Science.gov (United States)

    Donne, Sarah; Bean, Christopher; Craig, David; Dias, Frederic; Christodoulides, Paul

    2016-04-01

    Microseisms are continuous seismic vibrations which propagate mainly as surface Rayleigh and Love waves. They are generated by the Earth's oceans and there are two main types; primary and secondary microseisms. Primary microseisms are generated through the interaction of travelling surface gravity ocean waves with the seafloor in shallow waters relative to the wavelength of the ocean wave. Secondary microseisms, on the other hand are generated when two opposing wave trains interact and a non-linear second order effect produces a pressure fluctuation which is depth independent. The conditions necessary to produce secondary microseisms are presented in Longuet-Higgins (1950) through the interaction of two travelling waves with the same wave period and which interact at an angle of 180 degrees. Equivalent surface pressure density (p2l) is modelled using the numerical ocean wave model Wavewatch III and this term is considered as the microseism source term. This work presents an investigation of the theoretical second order pressures generated through the interaction of travelling waves with varying wave amplitude, period and angle of incidence. Predicted seafloor pressures calculated off the Southwest coast of Ireland are compared with terrestrially recorded microseism records, measured seafloor pressures and oceanographic parameters. The work presented in this study suggests that a broad set of sea states can generate second order seafloor pressures that are consistent with seafloor pressure measurements. Local seismic arrays throughout Ireland allow us to investigate the temporal covariance of these seafloor pressures with microseism source locations.

  19. Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio de Janeiro, Brazil

    Science.gov (United States)

    Kjerfve, Björn; Ribeiro, Cesar H. A.; Dias, Gilberto T. M.; Filippo, Alessandro M.; Da Silva Quaresma, Valéria

    1997-11-01

    Baía de Guanabara is a 384 km 2 eutrophic coastal bay in Brazil, impacted by the polluted discharge from the Rio de Janeiro metropolitan area. The structurally controlled bay has a central channel with a depth of 30 m and a sandy bottom near the entrance, reflecting wave and tidal forcing. In contrast, the bay-averaged water depth is 5.7 m and the bottom sediments are mostly muds as a result of the Holocene transgression and rapid fluvial sedimentation, accelerated by channelization of rivers and deforestation. An extensive sand bank is located seaward of the bay entrance and a flood-oriented sand wave system indicates sand transport into the bay. The mean freshwater discharge measures 100±59 m 3 s -1 and is greatest in the rainy austral summer in December and January. Tides are mixed mainly semidiurnal with a range of 0.7 m, and peak spring tidal currents reach 0.5 m s -1 inside the bay and 1.6 m s -1 near the bay entrance. The passage of northward propagating polar fronts results in regular strong southwesterly winds and heavy wave forcing. The bay has mean salinities from 21.0 to 34.5‰ with an average of 29.5±4.8‰. The vertical salinity stratification, Δs/s, varies from 0.06 to 0.21 and is relatively weak and inversely proportional to rms tidal currents. The residual circulation is characterized by both gravitational circulation and transverse residual tidal circulation, measuring 800 and 400 m 3 s -1 respectively. The renewal time of 50% of the bay water volume is 11.4 days. Untreated sewage runoff enters the bay from the west, resulting in locally poor water quality, where the near-bottom mean dissolved oxygen measures only 3.1 mg 1 -1 and results in anoxic bottom muds. The worst water quality is indicated by average fecal coliform of 1140 counts ml -1 and excessive ammonia and phosphate loading. The average chlorophyll concentration in this region responds to the nutrient loading and exceeds 130 μg 1 -1 although 57 μg 1 -1 is the overall mean for

  20. Modeling Coastal Vulnerability through Space and Time.

    Science.gov (United States)

    Hopper, Thomas; Meixler, Marcia S

    2016-01-01

    Coastal ecosystems experience a wide range of stressors including wave forces, storm surge, sea-level rise, and anthropogenic modification and are thus vulnerable to erosion. Urban coastal ecosystems are especially important due to the large populations these limited ecosystems serve. However, few studies have addressed the issue of urban coastal vulnerability at the landscape scale with spatial data that are finely resolved. The purpose of this study was to model and map coastal vulnerability and the role of natural habitats in reducing vulnerability in Jamaica Bay, New York, in terms of nine coastal vulnerability metrics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with no habitat, habitat role, erodible shoreline, and surge) under past (1609), current (2015), and future (2080) scenarios using InVEST 3.2.0. We analyzed vulnerability results both spatially and across all time periods, by stakeholder (ownership) and by distance to damage from Hurricane Sandy. We found significant differences in vulnerability metrics between past, current and future scenarios for all nine metrics except relief and wave exposure. The marsh islands in the center of the bay are currently vulnerable. In the future, these islands will likely be inundated, placing additional areas of the shoreline increasingly at risk. Significant differences in vulnerability exist between stakeholders; the Breezy Point Cooperative and Gateway National Recreation Area had the largest erodible shoreline segments. Significant correlations exist for all vulnerability (exposure/surge) and storm damage combinations except for exposure and distance to artificial debris. Coastal protective features, ranging from storm surge barriers and levees to natural features (e.g. wetlands), have been promoted to decrease future flood risk to communities in coastal areas around the world. Our methods of combining coastal vulnerability results with additional data and across multiple time

  1. Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.

    Science.gov (United States)

    Wolanski, Eric; Kingsford, Michael J

    2014-09-06

    A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Estimating Coastal Digital Elevation Model (DEM) Uncertainty

    Science.gov (United States)

    Amante, C.; Mesick, S.

    2017-12-01

    Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.

  3. Temperature Calculations in the Coastal Modeling System

    Science.gov (United States)

    2017-04-01

    ERDC/CHL CHETN-IV-110 April 2017 Approved for public release; distribution is unlimited . Temperature Calculations in the Coastal Modeling...tide) and river discharge at model boundaries, wave radiation stress, and wind forcing over a model computational domain. Physical processes calculated...calculated in the CMS using the following meteorological parameters: solar radiation, cloud cover, air temperature, wind speed, and surface water temperature

  4. First oceanographic atlas of the Gulf of Mexico. National Award of Oceanographic Research

    International Nuclear Information System (INIS)

    Vidal L., F.; Vidal L., V.M.; Hernandez O., A.

    1991-01-01

    First oceanographic atlas of the Gulf of Mexico National award of oceanographic research. As a result of the research activities applied by Federal Electricity Commission related with oceanographic studies for nuclear stations siting and licensing in coastal areas, doctors Victor Manuel and Francisco Vidal Lorandi and Master in Sciences Abel Hernandez Ochoa got the oceanographic research National award, instituted recently by Mexican Government, by research work published in Oceanographic Atlas of the Gulf of Mexico, Volume II. Atlas presents synthetized oceanographic information about mexican gulf circulation, as well as residence time and water masses distribution. Atlas includes information related with siting and licensing of nuclear stations on shore and has also application, among others, in petroleum, fishery, maritime transportation, and tourism sectors

  5. U.S. Coastal Relief Model - Northwest Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  6. U.S. Coastal Relief Model - Western Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  7. U.S. Coastal Relief Model - Southeast Atlantic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  8. U.S. Coastal Relief Model - Central Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  9. U.S. Coastal Relief Model - Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  10. U.S. Coastal Relief Model - Southern California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  11. U.S. Coastal Relief Model - Northeast Atlantic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  12. U.S. Coastal Relief Model - Puerto Rico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  13. U.S. Coastal Relief Model - Southern California Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides a comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a seamless...

  14. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Frank [National Center for Atmospheric Research, Boulder, CO (United States); Dennis, John [National Center for Atmospheric Research, Boulder, CO (United States); MacCready, Parker [Univ. of Washington, Seattle, WA (United States); Whitney, Michael [Univ. of Connecticut

    2015-11-20

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. To develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.

  15. Coastal Digital Elevation Models (DEMs)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital elevation models (DEMs) of U.S. and other coasts that typically integrate ocean bathymetry and land topography. The DEMs support NOAA's mission to understand...

  16. Wave model downscaling for coastal applications

    Science.gov (United States)

    Valchev, Nikolay; Davidan, Georgi; Trifonova, Ekaterina; Andreeva, Nataliya

    2010-05-01

    Downscaling is a suitable technique for obtaining high-resolution estimates from relatively coarse-resolution global models. Dynamical and statistical downscaling has been applied to the multidecadal simulations of ocean waves. Even as large-scale variability might be plausibly estimated from these simulations, their value for the small scale applications such as design of coastal protection structures and coastal risk assessment is limited due to their relatively coarse spatial and temporal resolutions. Another advantage of the high resolution wave modeling is that it accounts for shallow water effects. Therefore, it can be used for both wave forecasting at specific coastal locations and engineering applications that require knowledge about extreme wave statistics at or near the coastal facilities. In the present study downscaling is applied to both ECMWF and NCEP/NCAR global reanalysis of atmospheric pressure over the Black Sea with 2.5 degrees spatial resolution. A simplified regional atmospheric model is employed for calculation of the surface wind field at 0.5 degrees resolution that serves as forcing for the wave models. Further, a high-resolution nested WAM/SWAN wave model suite of nested wave models is applied for spatial downscaling. It aims at resolving the wave conditions in a limited area at the close proximity to the shore. The pilot site is located in the northern part the Bulgarian Black Sea shore. The system involves the WAM wave model adapted for basin scale simulation at 0.5 degrees spatial resolution. The WAM output for significant wave height, mean wave period and mean angle of wave approach is used in terms of external boundary conditions for the SWAN wave model, which is set up for the western Black Sea shelf at 4km resolution. The same model set up on about 400m resolution is nested to the first SWAN run. In this case the SWAN 2D spectral output provides boundary conditions for the high-resolution model run. The models are implemented for a

  17. Integrating Archival Tag Data and a High-Resolution Oceanographic Model to Estimate Basking Shark (Cetorhinus maximus Movements in the Western Atlantic

    Directory of Open Access Journals (Sweden)

    Camrin D. Braun

    2018-02-01

    Full Text Available Basking shark (Cetorhinus maximus populations are considered “vulnerable” globally and “endangered” in the northeast Atlantic by the International Union for the Conservation of Nature (IUCN. Much of our knowledge of this species comes from surface observations in coastal waters, yet recent evidence suggests the majority of their lives may be spent in the deep ocean. Depth preferences of basking sharks have significantly limited movement studies that used pop-up satellite archival transmitting (PSAT tags as conventional light-based geolocation is impossible for tagged animals that spend significant time below the photic zone. We tagged 57 basking sharks with PSAT tags in the NW Atlantic from 2004 to 2011. Many individuals spent several months at meso- and bathy-pelagic depths where accurate light-level geolocation was impossible during fall, winter and spring. We applied a newly-developed geolocation approach for the PSAT data by comparing three-dimensional depth-temperature profile data recorded by the tags to modeled in situ oceanographic data from the high-resolution HYbrid Coordinate Ocean Model (HYCOM. Observation-based likelihoods were leveraged within a state-space hidden Markov model (HMM. The combined tracks revealed that basking sharks moved from waters around Cape Cod, MA to as far as the SE coast of Brazil (20°S, a total distance of over 17,000 km. Moreover, 59% of tagged individuals with sufficient deployment durations (>250 days demonstrated seasonal fidelity to Cape Cod and the Gulf of Maine, with one individual returning to within 60 km of its tagging location 1 year later. Tagged sharks spent most of their time at epipelagic depths during summer months around Cape Cod and in the Gulf of Maine. During winter months, sharks spent extended periods at depths of at least 600 m while moving south to the Sargasso Sea, the Caribbean Sea, or the western tropical Atlantic. Our work demonstrates the utility of applying advances in

  18. Performance evaluation of Honeywell silicon piezoresistive pressure transducers for oceanographic and limnological measurements

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Prabhudesai, S.; Nagvekar, S.; Damodaran, V.

    results have indicated that a suitably calibrated temperature-compensated Honeywell PPTR provides an alternate cost-effective means for pressure measurements for coastal oceanographic and limnological studies....

  19. Modeling Compound Flood Hazards in Coastal Embayments

    Science.gov (United States)

    Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.

    2017-12-01

    Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the

  20. Boundary Conditions, Data Assimilation, and Predictability in Coastal Ocean Models

    National Research Council Canada - National Science Library

    Samelson, Roger M; Allen, John S; Egbert, Gary D; Kindle, John C; Snyder, Chris

    2007-01-01

    ...: The specific objectives of this research are to determine the impact on coastal ocean circulation models of open ocean boundary conditions from Global Ocean Data Assimilation Experiment (GODAE...

  1. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  2. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Charleston WFO (Georgia)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  3. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: San Diego (CA) WFO

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  4. NOAA Coastal Services Center Coastal Inundation Digital Elevation Model: Philadelphia WFO - Pennsylvania

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Coastal Services Center's Sea Level...

  5. Decision Support Model for Optimal Management of Coastal Gate

    Science.gov (United States)

    Ditthakit, Pakorn; Chittaladakorn, Suwatana

    2010-05-01

    The coastal areas are intensely settled by human beings owing to their fertility of natural resources. However, at present those areas are facing with water scarcity problems: inadequate water and poor water quality as a result of saltwater intrusion and inappropriate land-use management. To solve these problems, several measures have been exploited. The coastal gate construction is a structural measure widely performed in several countries. This manner requires the plan for suitably operating coastal gates. Coastal gate operation is a complicated task and usually concerns with the management of multiple purposes, which are generally conflicted one another. This paper delineates the methodology and used theories for developing decision support modeling for coastal gate operation scheduling. The developed model was based on coupling simulation and optimization model. The weighting optimization technique based on Differential Evolution (DE) was selected herein for solving multiple objective problems. The hydrodynamic and water quality models were repeatedly invoked during searching the optimal gate operations. In addition, two forecasting models:- Auto Regressive model (AR model) and Harmonic Analysis model (HA model) were applied for forecasting water levels and tide levels, respectively. To demonstrate the applicability of the developed model, it was applied to plan the operations for hypothetical system of Pak Phanang coastal gate system, located in Nakhon Si Thammarat province, southern part of Thailand. It was found that the proposed model could satisfyingly assist decision-makers for operating coastal gates under various environmental, ecological and hydraulic conditions.

  6. Modeling of Subsurface Lagrangian Sensor Swarms for Spatially Distributed Current Measurements in High Energy Coastal Environments

    Science.gov (United States)

    Harrison, T. W.; Polagye, B. L.

    2016-02-01

    Coastal ecosystems are characterized by spatially and temporally varying hydrodynamics. In marine renewable energy applications, these variations strongly influence project economics and in oceanographic studies, they impact accuracy of biological transport and pollutant dispersion models. While stationary point or profile measurements are relatively straight forward, spatial representativeness of point measurements can be poor due to strong gradients. Moving platforms, such as AUVs or surface vessels, offer better coverage, but suffer from energetic constraints (AUVs) and resolvable scales (vessels). A system of sub-surface, drifting sensor packages is being developed to provide spatially distributed, synoptic data sets of coastal hydrodynamics with meter-scale resolution over a regional extent of a kilometer. Computational investigation has informed system parameters such as drifter size and shape, necessary position accuracy, number of drifters, and deployment methods. A hydrodynamic domain with complex flow features was created using a computational fluid dynamics code. A simple model of drifter dynamics propagate the drifters through the domain in post-processing. System parameters are evaluated relative to their ability to accurately recreate domain hydrodynamics. Implications of these results for an inexpensive, depth-controlled Lagrangian drifter system is presented.

  7. Optimization and Modeling of Extreme Freshwater Discharge from Japanese First-Class River Basins to Coastal Oceans

    Science.gov (United States)

    Kuroki, R.; Yamashiki, Y. A.; Varlamov, S.; Miyazawa, Y.; Gupta, H. V.; Racault, M.; Troselj, J.

    2017-12-01

    We estimated the effects of extreme fluvial outflow events from river mouths on the salinity distribution in the Japanese coastal zones. Targeted extreme event was a typhoon from 06/09/2015 to 12/09/2015, and we generated a set of hourly simulated river outflow data of all Japanese first-class rivers from these basins to the Pacific Ocean and the Sea of Japan during the period by using our model "Cell Distributed Runoff Model Version 3.1.1 (CDRMV3.1.1)". The model simulated fresh water discharges for the case of the typhoon passage over Japan. We used these data with a coupled hydrological-oceanographic model JCOPE-T, developed by Japan Agency for Marine-earth Science and Technology (JAMSTEC), for estimation of the circulation and salinity distribution in Japanese coastal zones. By using the model, the coastal oceanic circulation was reproduced adequately, which was verified by satellite remote sensing. In addition to this, we have successfully optimized 5 parameters, soil roughness coefficient, river roughness coefficient, effective porosity, saturated hydraulic conductivity, and effective rainfall by using Shuffled Complex Evolution method developed by University of Arizona (SCE-UA method), that is one of the optimization method for hydrological model. Increasing accuracy of peak discharge prediction of extreme typhoon events on river mouths is essential for continental-oceanic mutual interaction.

  8. Statistical validation of the model of diffusion-convection (MDC) of 137Cs for the assessment of recent sedimentation rates in coastal systems

    International Nuclear Information System (INIS)

    Paulo Alves de Lima Ferreira; Eduardo Siegle; Michel Michaelovitch de Mahiques; Rubens Cesar Lopes Figueira; Carlos Augusto Franca Schettini

    2015-01-01

    This study aimed the validation of the model of diffusion-convection (MDC) of 137 Cs for the calculation of recent sedimentation rates in 13 sedimentary cores of two Brazilian coastal systems, the Cananeia-Iguape and Santos-Sao Vicente estuarine systems. The MDC covers key factors responsible for 137 Cs vertical migration in sediments: its diffusion to the interstitial water and the vertical convection of this water through the sediments. This study successfully validated the MDC use to determine sedimentation rates, which was statistically validated not only with 210 Pb xs (unsupported 210 Pb) models, widely used in oceanographic studies, but also by literature values for those regions. (author)

  9. Chignik, Alaska 1 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  10. San Juan Islands, Washington Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Rarotonga 1 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. San Juan, Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Mobile, Alabama 1/3 MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  14. Cape Hatteras, North Carolina Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Sand Point, Alaska MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Port San Luis, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Central Oregon Coastal Digital Elevation Model NAVD 88

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Atlantic City, New Jersey Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Akutan, Alaska 8 Arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  1. Initialization and Setup of the Coastal Model Test Bed: STWAVE

    Science.gov (United States)

    2017-01-01

    STWAVE by A. Spicer Bak, Tyler Hesser, Jane Smith, and Mary Bryant PURPOSE: The purpose of this Coastal and Hydraulics Engineering Technical...weaknesses of numerical hydrodynamic and morphologic models using high-resolution temporal and spatial measurements at the Coastal and Hydraulics ... reduce boundary effects approaching the cross-shore array from the north. The construction of the modeled bathymetry begins by using a portion of

  2. Our evolving conceptual model of the coastal eutrophication problem

    Science.gov (United States)

    Cloern, James E.

    2001-01-01

    A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5

  3. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    Science.gov (United States)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which

  4. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Mayer, D.W.; Argo, R.S.

    1982-02-01

    A hydrodynamic model, CAFE-I, a wave refraction model, LO3D, and a sediment and contaminant transport model, FETRA, were selected as tools for evaluating exposure levels of radionuclides, heavy metals, and other toxic chemicals in coastal waters. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interactions (e.g., adsorption and desorption), and the mechanisms governing the transport, deposition, and resuspension of contaminated sediments

  5. National oceanographic information system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, B.N.; Kunte, P.D.; Bhargava, R.M.S.

    Ocean study is inherently interdisciplinary and therefore calls for a controlled and integrated approach for information generation, processing and decision making. In this context, Indian National Oceanographic Data Centre (INODC) of National...

  6. Oceanographic Monthly Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Monthly Summary contains sea surface temperature (SST) analyses on both regional and ocean basin scales for the Atlantic, Pacific, and Indian Oceans....

  7. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1986-01-01

    This report reviews the present knowledge of oceanic processes by which substances might be transferred from a deep-sea dump site back to man or his food chain and recommends pragmatic ways to calculate such transfers in order that deep-sea dumping of contaminants may be regulated effectively. The recommendations as to the currently most appropriate models are given

  8. Radiative transfer modeling of upwelling light field in coastal waters

    International Nuclear Information System (INIS)

    Sundarabalan, Balasubramanian; Shanmugam, Palanisamy; Manjusha, Sadasivan

    2013-01-01

    Numerical simulations of the radiance distribution in coastal waters are a complex problem, but playing a growingly important role in optical oceanography and remote sensing applications. The present study attempts to modify the Inherent Optical Properties (IOPs) to allow the phase function to vary with depth, and the bottom boundary to take into account a sloping/irregular surface and the effective reflectance of the bottom material. It then uses the Hydrolight numerical model to compute Apparent Optical Properties (AOPs) for modified IOPs and bottom boundary conditions compared to the default values available in the standard Hydrolight model. The comparison of the profiles of upwelling radiance simulated with depth-dependent IOPs as well as modified bottom boundary conditions for realistic cases of coastal waters off Point Calimere of southern India shows a good match between the simulated and measured upwelling radiance profile data, whereas there is a significant drift between the upwelling radiances simulated from the standard Hydrolight model (with default values) and measured data. Further comparison for different solar zenith conditions at a coastal station indicates that the upwelling radiances simulated with the depth-dependent IOPs and modified bottom boundary conditions are in good agreement with the measured radiance profile data. This simulation captures significant changes in the upwelling radiance field influenced by the bottom boundary layer as well. These results clearly emphasize the importance of using realistic depth-dependent IOPs as well as bottom boundary conditions as input to Hydrolight in order to obtain more accurate AOPs in coastal waters. -- Highlights: ► RT model with depth-dependent IOPs and modified bottom boundary conditions provides accurate L u profiles in coastal waters. ► The modified phase function model will be useful for coastal waters. ► An inter-comparison with measured upwelling radiance gives merits of the

  9. A correction on coastal heads for groundwater flow models.

    Science.gov (United States)

    Lu, Chunhui; Werner, Adrian D; Simmons, Craig T; Luo, Jian

    2015-01-01

    We introduce a simple correction to coastal heads for constant-density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant-density flow) if the coastal heads are corrected to ((α + 1)/α)hs  - B/2α, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and α is the density factor. For unconfined aquifers, the coastal head should be assigned the value hs1+α/α. The accuracy of using these corrections is demonstrated by consistency between constant-density Darcy's solution and variable-density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant-density flow relative to variable-density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant-density groundwater flow models. © 2014, National Ground Water Association.

  10. Simulating mesoscale coastal evolution for decadal coastal management: A new framework integrating multiple, complementary modelling approaches

    Science.gov (United States)

    van Maanen, Barend; Nicholls, Robert J.; French, Jon R.; Barkwith, Andrew; Bonaldo, Davide; Burningham, Helene; Brad Murray, A.; Payo, Andres; Sutherland, James; Thornhill, Gillian; Townend, Ian H.; van der Wegen, Mick; Walkden, Mike J. A.

    2016-03-01

    Coastal and shoreline management increasingly needs to consider morphological change occurring at decadal to centennial timescales, especially that related to climate change and sea-level rise. This requires the development of morphological models operating at a mesoscale, defined by time and length scales of the order 101 to 102 years and 101 to 102 km. So-called 'reduced complexity' models that represent critical processes at scales not much smaller than the primary scale of interest, and are regulated by capturing the critical feedbacks that govern landform behaviour, are proving effective as a means of exploring emergent coastal behaviour at a landscape scale. Such models tend to be computationally efficient and are thus easily applied within a probabilistic framework. At the same time, reductionist models, built upon a more detailed description of hydrodynamic and sediment transport processes, are capable of application at increasingly broad spatial and temporal scales. More qualitative modelling approaches are also emerging that can guide the development and deployment of quantitative models, and these can be supplemented by varied data-driven modelling approaches that can achieve new explanatory insights from observational datasets. Such disparate approaches have hitherto been pursued largely in isolation by mutually exclusive modelling communities. Brought together, they have the potential to facilitate a step change in our ability to simulate the evolution of coastal morphology at scales that are most relevant to managing erosion and flood risk. Here, we advocate and outline a new integrated modelling framework that deploys coupled mesoscale reduced complexity models, reductionist coastal area models, data-driven approaches, and qualitative conceptual models. Integration of these heterogeneous approaches gives rise to model compositions that can potentially resolve decadal- to centennial-scale behaviour of diverse coupled open coast, estuary and inner

  11. Oceanographic data collected from station Scripps Pier in the Coastal Waters of California by Southern California Coastal Ocean Observing System (SCCOOS) at Scripps Institution of Oceanography (SIO) and assembled by Southern California Coastal Ocean Observing System (SCCOOS) Regional Association from 2005-06-16 to 2016-12-31 (NCEI Accession 0157035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157035 contains oceanographic and surface meteorological data collected from an automated shore station with a suite of sensors that are attached to...

  12. Oceanographic and surface meteorological data collected from station shp by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118791 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  13. Oceanographic and surface meteorological data collected from station fhp by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2015-01-29 (NODC Accession 0118789)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118789 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  14. Oceanographic and surface meteorological data collected from station tarponbay by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118785)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118785 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  15. Oceanographic and surface meteorological data collected from station c21 by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2014-12-14 (NODC Accession 0118788)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118788 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  16. Oceanographic and surface meteorological data collected from station redfishpass by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118783 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  17. Oceanographic and surface meteorological data collected from station gulfofmexico by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118782)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118782 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  18. Oceanographic and surface meteorological data collected from station shellpoint by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118784)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118784 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  19. Oceanographic and surface meteorological data collected from station fortmyers by Sanibel-Captiva Conservation Foundation River, Estuary and Coastal Observing Network (SCCF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118739)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118739 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  20. Visual plumes coastal dispersion modeling in southwest Sabah ...

    African Journals Online (AJOL)

    In theory, the dilution capacity of open waters, particularly coastal areas, straits and oceans are enormous. This means that for surface and sub-merged ... Prior to the modeling exercise, field data pertaining to ambient water quality, hydraulic characteristics and tide patterns were collected. The modeling results indicated that ...

  1. Control of spatial discretisation in coastal oil spill modelling

    OpenAIRE

    Li, Yang

    2007-01-01

    Spatial discretisation plays an important role in many numerical environmental models. This paper studies the control of spatial discretisation in coastal oil spill modelling with a view to assure the quality of modelling outputs for given spatial data inputs. Spatial data analysis techniques are effective for investigating and improving the spatial discretisation in different phases of the modelling. Proposed methods are implemented and tested with experimental models. A new “Automatic Searc...

  2. Adaptive surrogate model based multiobjective optimization for coastal aquifer management

    Science.gov (United States)

    Song, Jian; Yang, Yun; Wu, Jianfeng; Wu, Jichun; Sun, Xiaomin; Lin, Jin

    2018-06-01

    In this study, a novel surrogate model assisted multiobjective memetic algorithm (SMOMA) is developed for optimal pumping strategies of large-scale coastal groundwater problems. The proposed SMOMA integrates an efficient data-driven surrogate model with an improved non-dominated sorted genetic algorithm-II (NSGAII) that employs a local search operator to accelerate its convergence in optimization. The surrogate model based on Kernel Extreme Learning Machine (KELM) is developed and evaluated as an approximate simulator to generate the patterns of regional groundwater flow and salinity levels in coastal aquifers for reducing huge computational burden. The KELM model is adaptively trained during evolutionary search to satisfy desired fidelity level of surrogate so that it inhibits error accumulation of forecasting and results in correctly converging to true Pareto-optimal front. The proposed methodology is then applied to a large-scale coastal aquifer management in Baldwin County, Alabama. Objectives of minimizing the saltwater mass increase and maximizing the total pumping rate in the coastal aquifers are considered. The optimal solutions achieved by the proposed adaptive surrogate model are compared against those solutions obtained from one-shot surrogate model and original simulation model. The adaptive surrogate model does not only improve the prediction accuracy of Pareto-optimal solutions compared with those by the one-shot surrogate model, but also maintains the equivalent quality of Pareto-optimal solutions compared with those by NSGAII coupled with original simulation model, while retaining the advantage of surrogate models in reducing computational burden up to 94% of time-saving. This study shows that the proposed methodology is a computationally efficient and promising tool for multiobjective optimizations of coastal aquifer managements.

  3. Challenges and potential solutions for European coastal ocean modelling

    Science.gov (United States)

    She, Jun; Stanev, Emil

    2017-04-01

    Coastal operational oceanography is a science and technological platform to integrate and transform the outcomes in marine monitoring, new knowledge generation and innovative technologies into operational information products and services in the coastal ocean. It has been identified as one of the four research priorities by EuroGOOS (She et al. 2016). Coastal modelling plays a central role in such an integration and transformation. A next generation coastal ocean forecasting system should have following features: i) being able to fully exploit benefits from future observations, ii) generate meaningful products in finer scales e.g., sub-mesoscale and in estuary-coast-sea continuum, iii) efficient parallel computing and model grid structure, iv) provide high quality forecasts as forcing to NWP and coastal climate models, v) resolving correctly inter-basin and inter-sub-basin water exchange, vi) resolving synoptic variability and predictability in marine ecosystems, e.g., for algae bloom, vi) being able to address critical and relevant issues in coastal applications, e.g., marine spatial planning, maritime safety, marine pollution protection, disaster prevention, offshore wind energy, climate change adaptation and mitigation, ICZM (integrated coastal zone management), the WFD (Water Framework Directive), and the MSFD (Marine Strategy Framework Directive), especially on habitat, eutrophication, and hydrographic condition descriptors. This presentation will address above challenges, identify limits of current models and propose correspondent research needed. The proposed roadmap will address an integrated monitoring-modelling approach and developing Unified European Coastal Ocean Models. In the coming years, a few new developments in European Sea observations can expected, e.g., more near real time delivering on profile observations made by research vessels, more shallow water Argo floats and bio-Argo floats deployed, much more high resolution sea level data from SWOT

  4. Offshore and coastal dispersion (OCD) model. Users guide

    International Nuclear Information System (INIS)

    Hanna, S.R.; Schulman, L.L.; Paine, R.J.; Pleim, J.E.

    1984-09-01

    The Offshore and Coastal Dispersion (OCD) model was adapted from the EPA guideline model MPTER to simulate the effect of offshore emissions from point sources in coastal regions. Modifications were made to incorporate overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. Hourly meteorological data are needed from overwater and overland locations. Turbulence intensities are used but are not mandatory. For overwater dispersion, the turbulence intensities are parameterized from boundary-layer similarity relationships if they are not measured. Specifications of emission characteristics and receptor locations are the same as for MPTER; 250 point sources and 180 receptors may be used

  5. Multidisciplinary oil spill modeling to protect coastal communities and the environment of the Eastern Mediterranean Sea

    Science.gov (United States)

    Alves, Tiago M.; Kokinou, Eleni; Zodiatis, George; Radhakrishnan, Hari; Panagiotakis, Costas; Lardner, Robin

    2016-11-01

    We present new mathematical and geological models to assist civil protection authorities in the mitigation of potential oil spill accidents in the Eastern Mediterranean Sea. Oil spill simulations for 19 existing offshore wells were carried out based on novel and high resolution bathymetric, meteorological, oceanographic, and geomorphological data. The simulations show a trend for east and northeast movement of oil spills into the Levantine Basin, affecting the coastal areas of Israel, Lebanon and Syria. Oil slicks will reach the coast in 1 to 20 days, driven by the action of the winds, currents and waves. By applying a qualitative analysis, seabed morphology is for the first time related to the direction of the oil slick expansion, as it is able to alter the movement of sea currents. Specifically, the direction of the major axis of the oil spills, in most of the cases examined, is oriented according to the prevailing azimuth of bathymetric features. This work suggests that oil spills in the Eastern Mediterranean Sea should be mitigated in the very few hours after their onset, and before wind and currents disperse them. We explain that protocols should be prioritized between neighboring countries to mitigate any oil spills.

  6. Modeling population dynamics and woody biomass of Alaska coastal forest

    Science.gov (United States)

    Randy L. Peterson; Jingjing Liang; Tara M. Barrett

    2014-01-01

    Alaska coastal forest, 6.2 million ha in size, has been managed in the past mainly through clearcutting. Declining harvest and dwindling commercial forest resources over the past 2 decades have led to increased interest in management of young-growth stands and utilization of woody biomass for bioenergy. However, existing models to support these new management systems...

  7. Modeling the mitigation effect of coastal forests on tsunami

    Science.gov (United States)

    Kh'ng, Xin Yi; Teh, Su Yean; Koh, Hock Lye

    2017-08-01

    As we have learned from the 26 Dec 2004 mega Andaman tsunami that killed 250, 000 lives worldwide, tsunami is a devastating natural disaster that can cause severe impacts including immense loss of human lives and extensive destruction of properties. The wave energy can be dissipated by the presence of coastal mangrove forests, which provide some degree of protection against tsunami waves. On the other hand, costly artificial structures such as reinforced walls can substantially diminish the aesthetic value and may cause environmental problems. To quantify the effectiveness of coastal forests in mitigating tsunami waves, an in-house 2-D model TUNA-RP is developed and used to quantify the reduction in wave heights and velocities due to the presence of coastal forests. The degree of reduction varies significantly depending on forest flow-resistant properties such as vegetation characteristics, forest density and forest width. The ability of coastal forest in reducing tsunami wave heights along the west coast of Penang Island is quantified by means of model simulations. Comparison between measured tsunami wave heights for the 2004 Andaman tsunami and 2-D TUNA-RP model simulated values demonstrated good agreement.

  8. Improving Data Discovery, Access, and Analysis to More Than Three Decades of Oceanographic and Geomorphologic Observations

    Science.gov (United States)

    Forte, M.; Hesser, T.; Knee, K.; Ingram, I.; Hathaway, K. K.; Brodie, K. L.; Spore, N.; Bird, A.; Fratantonio, R.; Dopsovic, R.; Keith, A.; Gadomski, K.

    2016-02-01

    The U.S. Army Engineer Research and Development Center's (USACE ERDC) Coastal and Hydraulics Laboratory (CHL) Coastal Observations and Analysis Branch (COAB) Measurements Program has a 35-year record of coastal observations. These datasets include oceanographic point source measurements, Real-Time Kinematic (RTK) GPS bathymetry surveys, and remote sensing data from both the Field Research Facility (FRF) in Duck, NC and from other project and experiment sites around the nation. The data has been used to support a variety of USACE mission areas, including coastal wave model development, beach and bar response, coastal project design, coastal storm surge, and other coastal hazard investigations. Furthermore these data have been widely used by a number of federal and state agencies, academic institutions, and private industries in hundreds of scientific and engineering investigations, publications, conference presentations and model advancement studies. A limiting factor to the use of FRF data has been rapid, reliable access and publicly available metadata for each data type. The addition of web tools, accessible data files, and well-documented metadata will open the door to much future collaboration. With the help of industry partner RPS ASA and the U.S. Army Corps of Engineers Mobile District Spatial Data Branch, a Data Integration Framework (DIF) was developed. The DIF represents a combination of processes, standards, people, and tools used to transform disconnected enterprise data into useful, easily accessible information for analysis and reporting. A front-end data portal connects the user to the framework that integrates both oceanographic observation and geomorphology measurements using a combination of ESRI and open-source technology while providing a seamless data discovery, access, and analysis experience to the user. The user interface was built with ESRI's JavaScript API and all project metadata is managed using Geoportal. The geomorphology data is made

  9. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Mayer, D.W.; Argo, R.S.

    1982-01-01

    Models are presented to estimate the migration of toxic contaminants in coastal waters. Ocean current is simulated by the vertically-averaged, finite element, two-demensional model known as CAFE-I with the Galerkin weighted residual technique. The refraction of locally generated waves or swells is simulated by the wave refraction model, LO3D. Using computed current, depth, and wave characteristics, the finite element model, FETRA, simulated sediment and contaminant transport in coastal waters, estuaries and rivers. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interaction, and the mechanism governing the transport, deposition, and resuspension of contaminated sediment. Several simple equations such as the unsteady, advection-diffusion equation, the equation for noncohesive-sediment load due to wind-induced waves in offshore and surf zones, and the equation for sediment-radionuclide transport simulation were solved during the preliminary testing of the model. (Kato, T.)

  10. Documentation of the U.S. Geological Survey Oceanographic Time-Series Measurement Database

    Science.gov (United States)

    Montgomery, Ellyn T.; Martini, Marinna A.; Lightsom, Frances L.; Butman, Bradford

    2008-01-02

    The U.S. Geological Survey (USGS) Oceanographic Time-Series Data Collection (previously named the USGS Oceanographic Time-Series Measurement Database) contains oceanographic observations made as part of studies designed to increase understanding of sediment transport processes and associated dynamics. Analysis of these data has contributed to more accurate prediction of the movement and fate of sediments and other suspended materials in the coastal ocean. The measurements were collected primarily by investigators at the USGS Woods Hole Coastal and Marine Science Center (WHCMSC) and colleagues, beginning in 1975. Most of the field experiments were carried out on the U.S. continental shelf and slope.

  11. Analyzing coastal turbidity under complex terrestrial loads characterized by a 'stress connectivity matrix' with an atmosphere-watershed-coastal ocean coupled model

    Science.gov (United States)

    Yamamoto, Takahiro; Nadaoka, Kazuo

    2018-04-01

    Atmospheric, watershed and coastal ocean models were integrated to provide a holistic analysis approach for coastal ocean simulation. The coupled model was applied to coastal ocean in the Philippines where terrestrial sediment loads provided from several adjacent watersheds play a major role in influencing coastal turbidity and are partly responsible for the coastal ecosystem degradation. The coupled model was validated using weather and hydrologic measurement to examine its potential applicability. The results revealed that the coastal water quality may be governed by the loads not only from the adjacent watershed but also from the distant watershed via coastal currents. This important feature of the multiple linkages can be quantitatively characterized by a "stress connectivity matrix", which indicates the complex underlying structure of environmental stresses in coastal ocean. The multiple stress connectivity concept shows the potential advantage of the integrated modelling approach for coastal ocean assessment, which may also serve for compensating the lack of measured data especially in tropical basins.

  12. Using models in Integrated Ecosystem Assessment of coastal areas

    Science.gov (United States)

    Solidoro, Cosimo; Bandelj, Vinko; Cossarini, Gianpiero; Melaku Canu, Donata; Libralato, Simone

    2014-05-01

    Numerical Models can greatly contribute to integrated ecological assessment of coastal and marine systems. Indeed, models can: i) assist in the identification of efficient sampling strategy; ii) provide space interpolation and time extrapolation of experiemtanl data which are based on the knowedge on processes dynamics and causal realtionships which is coded within the model, iii) provide estimates of hardly measurable indicators. Furthermore model can provide indication on potential effects of implementation of alternative management policies. Finally, by providing a synthetic representation of an ideal system, based on its essential dynamic, model return a picture of ideal behaviour of a system in the absence of external perturbation, alteration, noise, which might help in the identification of reference behaivuor. As an important example, model based reanalyses of biogeochemical and ecological properties are an urgent need for the estimate of the environmental status and the assessment of efficacy of conservation and environmental policies, also with reference to the enforcement of the European MSFD. However, the use of numerical models, and particularly of ecological models, in modeling and in environmental management still is far from be the rule, possibly because of a lack in realizing the benefits which a full integration of modeling and montoring systems might provide, possibly because of a lack of trust in modeling results, or because many problems still exists in the development, validation and implementation of models. For istance, assessing the validity of model results is a complex process that requires the definition of appropriate indicators, metrics, methodologies and faces with the scarcity of real-time in-situ biogeochemical data. Furthermore, biogeochemical models typically consider dozens of variables which are heavily undersampled. Here we show how the integration of mathematical model and monitoring data can support integrated ecosystem

  13. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Jacksonville (FL) WFO - St. Johns, Flagler and Putnam Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  14. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Portland (OR) WFO - Tillamook, Lincoln, and Lane Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  15. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Eureka (CA) WFO - Humboldt and Del Norte Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  16. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Melbourne (FL) WFO - Indian River, St. Lucie, and Martin Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  17. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Melbourne (FL) WFO - Brevard and Volusia Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  18. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Tampa (FL) WFO - Manatee, Sarasota, Charlotte, and Lee Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  19. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Tampa (FL) WFO - Citrus, Hernando, Pasco, Pinellas, and Hillsborough Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  20. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Jacksonville (FL) WFO - Duval, Clay, and Nassau Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  1. Modeling sediment transport in Qatar: Application for coastal development planning.

    Science.gov (United States)

    Yousif, Ruqaiya; Warren, Christopher; Ben-Hamadou, Radhouan; Husrevoglu, Sinan

    2018-03-01

    Hydrodynamics and sediment transport are key physical processes contributing to habitat structure within the marine environment. Coastal development that results in the alteration of these processes (e.g., changing water flushing and/or sedimentation rates) can have detrimental impacts on sensitive systems. This is a current, relevant issue in Qatar as its coastal regions continue to be developed, not only around the capital of Doha, but in many areas around this Arabian Gulf peninsula. The northeastern Qatari coast is comprised of diverse and sensitive flora and fauna such as seagrass and macroalgae meadows, coral reefs and patches, turtles, and dugongs that tolerate harsh environmental conditions. In the near future, this area may see a rise in anthropogenic activity in the form of coastal development projects. These projects will add to existing natural stresses, such as high temperature, high salinity, and low rates of precipitation. Consequently, there is a need to characterize this area and assess the potential impacts that these anthropogenic activities may have on the region. In the present study, a novel sediment transport model is described and used to demonstrate the potential impact of altering hydrodynamics and subsequent sediment transport along the northeastern Qatar nearshore marine environment. The developed models will be tested using potential scenarios of future anthropogenic activities forecasted to take place in the area. The results will show the effects on water and sediment behavior and provide a scientific approach for key stakeholders to make decisions with respect to the management of the considered coastal zone. Furthermore, it provides a tool and framework that can be utilized in environmental impact assessment and associated hydrodynamic studies along other areas of the Qatari coastal zone. Integr Environ Assess Manag 2018;14:240-251. © 2017 SETAC. © 2017 SETAC.

  2. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

    Science.gov (United States)

    Barnard, Patrick; Maarten van Ormondt,; Erikson, Li H.; Jodi Eshleman,; Hapke, Cheryl J.; Peter Ruggiero,; Peter Adams,; Foxgrover, Amy C.

    2014-01-01

    The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

  3. U.S. Coastal Relief Model - Florida and East Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's U.S. Coastal Relief Model (CRM) provides the first comprehensive view of the U.S. coastal zone integrating offshore bathymetry with land topography into a...

  4. Development of three dimensional ocean current model for coastal region

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    1999-12-01

    In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)

  5. SOCIB applications for oceanographic data management

    Science.gov (United States)

    Troupin, Charles; Pau Beltran, Joan; Frontera, Biel; Gómara, Sonia; Lora, Sebastian; March, David; Sebastian, Kristian; Tintoré, Joaquin

    2015-04-01

    The Balearic Islands Coastal Ocean Observing and Forecasting System (SOCIB, http://www.socib.es), is a multi-platform Marine Research Infrastructure that provides free, open and quality-controlled data from near-shore to the open sea. To collect the necessary data, the SOCIB system is made up of: a research vessel, a high-frequency (HF) radar system, weather stations, tide gauges, moorings, drifting buoys, ARGO profilers, and gliders (autonomous underwater vehicles). In addition, the system has recently begun incorporating oceanographic sensors attached to sea turtles. High-resolution numerical models provide forecast for hydrodynamics (ROMS) and waves (SAPO). According to SOCIB principles, data have to be: discoverable and accessible; freely available; interoperable, quality-controlled and standardized. The Data Centre (DC) manages the different steps of data processing, including: acquisition using SOCIB platforms (gliders, drifters, HF radar, ...), numerical models (hydrodynamics, waves, ...) or information generated by other data sources, distribution through dedicated web and mobile applications dynamic visualisation. The SOCIB DC constitutes an example of marine information systems within the framework of new coastal ocean observatories. In this work we present some of the applications developed for specific type of users, as well as the technologies used for their implementation: DAPP (Deployments application, http://apps.socib.es/dapp/), a web application to display information related to mobile platform trajectories. LW4NC2 (http://thredds.socib.es/lw4nc2), a web application for multidimensional (grid) data from NetCDF files (numerical models, HF radar). SACOSTA (http://gis.socib.es/sacosta), a viewer for cartographic data such as environmental sensitivity of the coastline. SEABOARD (http://seaboard.socib.es), a tool to disseminate SOCIB real time data to different types of users. Smart-phone apps to access data, platform trajectories and forecasts in real

  6. Predicting coastal cliff erosion using a Bayesian probabilistic model

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  7. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  8. A depth semi-averaged model for coastal dynamics

    Science.gov (United States)

    Antuono, M.; Colicchio, G.; Lugni, C.; Greco, M.; Brocchini, M.

    2017-05-01

    The present work extends the semi-integrated method proposed by Antuono and Brocchini ["Beyond Boussinesq-type equations: Semi-integrated models for coastal dynamics," Phys. Fluids 25(1), 016603 (2013)], which comprises a subset of depth-averaged equations (similar to Boussinesq-like models) and a Poisson equation that accounts for vertical dynamics. Here, the subset of depth-averaged equations has been reshaped in a conservative-like form and both the Poisson equation formulations proposed by Antuono and Brocchini ["Beyond Boussinesq-type equations: Semi-integrated models for coastal dynamics," Phys. Fluids 25(1), 016603 (2013)] are investigated: the former uses the vertical velocity component (formulation A) and the latter a specific depth semi-averaged variable, ϒ (formulation B). Our analyses reveal that formulation A is prone to instabilities as wave nonlinearity increases. On the contrary, formulation B allows an accurate, robust numerical implementation. Test cases derived from the scientific literature on Boussinesq-type models—i.e., solitary and Stokes wave analytical solutions for linear dispersion and nonlinear evolution and experimental data for shoaling properties—are used to assess the proposed solution strategy. It is found that the present method gives reliable predictions of wave propagation in shallow to intermediate waters, in terms of both semi-averaged variables and conservation properties.

  9. LAND SUITABILITY SCENARIOS FOR ARID COASTAL PLAINS USING GIS MODELING: SOUTHWESTERN SINAI COASTAL PLAIN, EGYPT

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Wahid

    2009-12-01

    Full Text Available Site selection analysis was carried out to find the best suitable lands for development activities in an example of promising coastal plains, southwestern Sinai, Egypt. Two GIS models were developed to represent two scenarios of land use suitability in the study area using GIS Multi Criteria Analysis Modeling. The factors contributed in the analysis are the Topography, Land cover, Existing Land use, Flash flood index, Drainage lines and Water points. The first scenario was to classify the area according to various gradual ranges of suitability. According to this scenario, the area is classified into five classes of suitability. The percentage of suitability values are 51.16, 6.13, 22.32, 18.49 and 1.89% for unsuitable, least suitable, low suitable, suitable and high suitable, respectively. The second scenario is developed for a particular kind of land use planning; tourism and recreation projects. The suitability map of this scenario was classified into five values. Unsuitable areas represent 51.18% of the study area, least suitable 16.67%, low suitable 22.85%, suitable 8.61%, and high suitable 0.68%. The best area for locating development projects is the area surrounding El-Tor City and close to the coast. This area could be an urban extension of El-Tor City with more economical and environmental management.

  10. Oceanographic and surface meteorological data collected from station ilm3 by Coastal Ocean Research and Monitoring Program (CORMP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the North Atlantic Ocean from 2014-02-13 to 2016-02-01 (NODC Accession 0118742)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Accession 0118742 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention (CF)...

  11. Oceanographic and surface meteorological data collected from station racypoint by Florida Department of Environmental Protection (FLDEP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-03-07 to 2016-04-28 (NODC Accession 0118777)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118777 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  12. Oceanographic and surface meteorological data collected from station melbourne by Florida Department of Environmental Protection (FLDEP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-04-29 (NODC Accession 0118773)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118773 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  13. Oceanographic and surface meteorological data collected from station redbaypoint by Florida Department of Environmental Protection (FLDEP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-04-28 (NODC Accession 0118778)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118778 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  14. Oceanographic and surface meteorological data collected from station Middle Bay Light, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2008-01-01 to 2017-05-03 (NCEI Accession 0163754)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163754 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  15. Oceanographic and surface meteorological data collected from station Perdido Pass, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2011-11-07 to 2017-04-30 (NCEI Accession 0163767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163767 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  16. Oceanographic and surface meteorological data collected from station Bon Secour, LA by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2011-01-01 to 2017-05-02 (NCEI Accession 0163204)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163204 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  17. Oceanographic and surface meteorological data collected from station c12 by University of South Florida (USF) Coastal Ocean Monitoring and Prediction System (USF) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-11 (NODC Accession 0118787)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118787 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  18. Oceanographic data collected from station Stearns Wharf in the Coastal Waters of California by Marine Science Institute at University of California, Santa Barbara, and assembled by Southern California Coastal Ocean Observing System (SCCOOS) Regional Association from 2005-09-16 to 2016-12-31 (NCEI Accession 0157036)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157036 contains oceanographic and surface meteorological data collected from an automated shore station with a suite of sensors that are attached to...

  19. Oceanographic data collected from station Santa Monica Pier in the Coastal Waters of California by Institute of the Environment at University of California, Los Angeles, and assembled by Southern California Coastal Ocean Observing System (SCCOOS) Regional Association from 2005-06-16 to 2015-07-13 (NCEI Accession 0157016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157016 contains oceanographic and surface meteorological data collected from an automated shore station with a suite of sensors that are attached to...

  20. Oceanographic and surface meteorological data collected from station Katrina Cut, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2011-04-15 to 2017-05-04 (NCEI Accession 0163673)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163673 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  1. Oceanographic and surface meteorological data collected from station gbtf1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118752)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118752 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  2. Oceanographic and surface meteorological data collected from station lobo by Florida Atlantic University (FAU) Land/Ocean Biogeochemical Observatory (LOBO) (FAU) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-21 to 2014-11-04 (NODC Accession 0118768)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118768 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  3. Oceanographic and surface meteorological data collected from station wiwf1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118765 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  4. Oceanographic and surface meteorological data collected from station wwef1 by Everglades National Park (ENP) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the Coastal Waters of Florida, Gulf of Mexico and North Atlantic Ocean from 2014-02-13 to 2016-05-31 (NODC Accession 0118767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0118767 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  5. Oceanographic and surface meteorological data collected from station Dauphin Island, AL by Dauphin Island Sea Laboratory (DISL) and assembled by Gulf of Mexico Coastal Ocean Observing System (GCOOS) in the Coastal waters of Alabama and Gulf of Mexico from 2008-01-01 to 2017-04-30 (NCEI Accession 0163672)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163672 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  6. The exploration of trophic structure modeling using mass balance Ecopath model of Tangerang coastal waters

    Science.gov (United States)

    Dewi, N. N.; Kamal, M.; Wardiatno, Y.; Rozi

    2018-04-01

    Ecopath model approach was used to describe trophic interaction, energy flows and ecosystem condition of Tangerang coastal waters. This model consists of 42 ecological groups, of which 41 are living groups and one is a detritus group. Trophic levels of these groups vary between 1.0 (for primary producers and detritus) to 4.03 (for tetraodontidae). Groups with trophic levels 2≤TLfish, while detritus has a positive impact on the majority of demersal fish. Leiognathidae havea negative impact on phytoplankton, zooplankton and several other groups. System omnivory index for this ecosystem is 0.151. System primary production/respiration (P/R) ratio of Tangerang coastal waters is 1.505. This coastal ecosystem is an immatureecosystem because it hasdegraded. Pedigree index for this model is 0.57. This model describes ecosystem condition affected by overfishing and antropogenic activities. Therefore, through Ecopath model we provide some suggestions about the ecosystem-based fisheries management.

  7. Ocean model system for radionuclides - validation and application to the Rokkasho coastal area

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    2010-01-01

    Coastal areas have complex environmental systems and often a high influence from the atmosphere, rivers and the open sea. A nuclear fuel reprocessing plant in Japan releases liquid radioactive waste from a discharge pipe to such a complex coastal area. Consequently, the development of radionuclide migration forecast system in the ocean plays an important rule for assessing the behavior of radionuclides in the coastal area. The development of ocean model systems will be presented and model application will also be described. (author)

  8. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Virginia, Middle

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New Jersey, Northern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  10. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Virginia, Northern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  11. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  12. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Connecticut

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  13. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Northern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  14. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake St. Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  15. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Maryland, Southeast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  16. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Delaware

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  17. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Erie

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  18. NOAA Office for Coastal Management (OCM) Coastal Inundation Digital Elevation Model: U.S. Virgin Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  19. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  20. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New York, Hudson River

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  1. NOAA Office for Coastal Management Coastal Digital Elevation Model: Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  2. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: South Carolina, Horry County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  3. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: District of Columbia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  4. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Virginia, Southern

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  5. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Middle 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  6. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Middle 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  7. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Channel Islands, CA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  8. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New York, Metro

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: North Carolina, Southern 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  10. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: New Jersey, Middle

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  11. Modelization of highly nonlinear waves in coastal regions

    Science.gov (United States)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2015-04-01

    The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.

  12. Prospects for improving the representation of coastal and shelf seas in global ocean models

    Science.gov (United States)

    Holt, Jason; Hyder, Patrick; Ashworth, Mike; Harle, James; Hewitt, Helene T.; Liu, Hedong; New, Adrian L.; Pickles, Stephen; Porter, Andrew; Popova, Ekaterina; Icarus Allen, J.; Siddorn, John; Wood, Richard

    2017-02-01

    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape.We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1/12°, and still reasonably well resolved at 1/4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1/12° global model resolves the first baroclinic Rossby radius for only ˜ 8 % of regions benefit of improved resolution and process representation using 1/12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ɛ vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones.To explore the balance between the size of a globally refined model and that of

  13. FISHERMEN ALLEVIATION POVERTY MODEL IN THE NORTH COASTAL EAST JAVA

    Directory of Open Access Journals (Sweden)

    Roziana Ainul Hidayati

    2011-12-01

    Full Text Available Poverty is a multidimensional problem that the approach to eradicate poverty must also be multidimensional. The study aims to formulate a model of poverty alleviation in coastal fishing in the North Coast of East Java. Grounded research approach used to determine the causes, impacts and implications of poverty fishermen. The results showed that the main cause of poverty that occurred in the three districts in East Java's north coast is different from one another. In Gresik district, the major cause of poverty is law enforcements that do not support fishermen and overfishing. While Lamongan more due to low fish prices and capital problems. While in Tuban fishermen due to limited infrastructure and lazy and extravagant lifestyle of the fishermen. These differences lead to different coping strategies so that later can form a concept model of poverty alleviation North Coast fishermen in East Java.

  14. Coastal Improvements for Tide Models: The Impact of ALES Retracker

    Directory of Open Access Journals (Sweden)

    Gaia Piccioni

    2018-05-01

    Full Text Available Since the launch of the first altimetry satellites, ocean tide models have been improved dramatically for deep and shallow waters. However, issues are still found for areas of great interest for climate change investigations: the coastal regions. The purpose of this study is to analyze the influence of the ALES coastal retracker on tide modeling in these regions with respect to a standard open ocean retracker. The approach used to compute the tidal constituents is an updated and along-track version of the Empirical Ocean Tide model developed at DGFI-TUM. The major constituents are derived from a least-square harmonic analysis of sea level residuals based on the FES2014 tide model. The results obtained with ALES are compared with the ones estimated with the standard product. A lower fitting error is found for the ALES solution, especially for distances closer than 20 km from the coast. In comparison with in situ data, the root mean squared error computed with ALES can reach an improvement larger than 2 cm at single locations, with an average impact of over 10% for tidal constituents K 2 , O 1 , and P 1 . For Q 1 , the improvement is over 25%. It was observed that improvements to the root-sum squares are larger for distances closer than 10 km to the coast, independently on the sea state. Finally, the performance of the solutions changes according to the satellite’s flight direction: for tracks approaching land from open ocean root mean square differences larger than 1 cm are found in comparison to tracks going from land to ocean.

  15. TZCF Oceanographic Survey (SE1505)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic data were collected along the 159W and Meridional from 26? 30'N-32? 30'N. CTD casts were conducted at predetermined stations. CTDs were equipped with...

  16. Satellite transmission of oceanographic data

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.S.; Desai, R.G.P.; DeSa, E.J.

    Oceanographic data collected on a research vessel has been transmitted to a shore laboratory using the INMARSAT maritime satellite The system configuration used, consisted of Satellite Communication Terminals interfaced to desk top computers...

  17. Building more effective sea level rise models for coastal management

    Science.gov (United States)

    Kidwell, D.; Buckel, C.; Collini, R.; Meckley, T.

    2017-12-01

    For over a decade, increased attention on coastal resilience and adaptation to sea level rise has resulted in a proliferation of predictive models and tools. This proliferation has enhanced our understanding of our vulnerability to sea level rise, but has also led to stakeholder fatigue in trying to realize the value of each advancement. These models vary in type and complexity ranging from GIS-based bathtub viewers to modeling systems that dynamically couple complex biophysical and geomorphic processes. These approaches and capabilities typically have the common purpose using scenarios of global and regional sea level change to inform adaptation and mitigation. In addition, stakeholders are often presented a plethora of options to address sea level rise issues from a variety of agencies, academics, and consulting firms. All of this can result in confusion, misapplication of a specific model/tool, and stakeholder feedback of "no more new science or tools, just help me understand which one to use". Concerns from stakeholders have led to the question; how do we move forward with sea level rise modeling? This presentation will provide a synthesis of the experiences and feedback derived from NOAA's Ecological Effects of Sea level Rise (EESLR) program to discuss the future of predictive sea level rise impact modeling. EESLR is an applied research program focused on the advancement of dynamic modeling capabilities in collaboration with local and regional stakeholders. Key concerns from stakeholder engagement include questions about model uncertainty, approaches for model validation, and a lack of cross-model comparisons. Effective communication of model/tool products, capabilities, and results is paramount to address these concerns. Looking forward, the most effective predictions of sea level rise impacts on our coast will be attained through a focus on coupled modeling systems, particularly those that connect natural processes and human response.

  18. Coastal Foredune Evolution, Part 2: Modeling Approaches for Meso-Scale Morphologic Evolution

    Science.gov (United States)

    2017-03-01

    for Meso-Scale Morphologic Evolution by Margaret L. Palmsten1, Katherine L. Brodie2, and Nicholas J. Spore2 PURPOSE: This Coastal and Hydraulics ...managers because foredunes provide ecosystem services and can reduce storm damages to coastal infrastructure, both of which increase the resiliency...MS 2 U.S. Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Duck, NC ERDC/CHL CHETN-II-57 March 2017 2 models of

  19. Modelling of hydrodynamic mechanisms of pollutant propagation in coastal zones

    International Nuclear Information System (INIS)

    Benque, J.P.

    1982-11-01

    The results of this document have to be distinguished in mathematical models applicable to small-area problems (horizontal scale comparable to depth) and models applicable to large-area phenomena (horizontal scales much greater than depth, quasi-hydrostatic approximation). In the case of the former, progress remains to be made in the simulation of turbulence and in the development of algorithms applicable under often very complex geometrical conditions. Excellent results are obtained by combining mathematical models with reduced-scale models, the former (on larger scales) providing the boundary conditions for the tank of the physical models. Large-area problems can be tackled only by means of mathematical models. These models are extremely efficient for the calculation of mesoscale circulation and transport of pollutants, but they all run into the same difficulty of simulating long-term problems and of determining drift currents. The principal difficulty faced by mesoscale or macroscale models is the determination of atmospheric conditions and of boundary conditions in the open sea. Mathematical models make it possible to determine the situation at every point of a given coastal zone and require only the conditions at the boundaries of the zone for this purpose. However, although these conditions at the boundary correspond to an experimental effort small in relation to total surveillance of the zone, they are essential to the predictions of the mathematical model, and efforts must be made to obtain the best possible boundary conditions. In addition to these experimental surveys at the boundaries, a certain number of observations within the zone are needed for the calibration of the model, i.e. for the determination of certain numerical coefficients appearing in the parametrization

  20. The Oceanographic Multipurpose Software Environment (OMUSE v1.0

    Directory of Open Access Journals (Sweden)

    I. Pelupessy

    2017-08-01

    Full Text Available In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE. OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program. The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.

  1. Perturbations of modeling and forecast of karachi coastal region seawater

    International Nuclear Information System (INIS)

    Hussain, M.A.; Abbas, S.; Ansari, M.R.K.; Zaffar, A.

    2013-01-01

    Global warming is now a stark reality affecting the humanity in many hazardous ways. Continuous floods in Pakistan in past two years are an eye opener in this regard. A great loss of property, agriculture and life as a result of these floods suggests for an intelligent monitoring of the future projections of climate change and global warming. This is necessary because the harmful impacts of natural hazards can be coped and alleviated with a good planning in advance. This monitoring demands for enhanced forecasting capabilities, use of better analytical techniques and a clear determination and study of the controlling factors. Karachi is a coastal city which is also the industrial hub of Pakistan. Moreover, it is among one of the largest metropolitans of the world. So expectedly is most suitable for the study of high level of complex natural and anthropogenic activities. It is peculiar in the sense that it has two summer seasons, a situation scarcely observable on the globe. Here, summer season seawater temperature fluctuations are studied with the help of Seasonal Autoregressive Integrated Moving Average (SARIMA) models and short- and long-term forecasts are made. Our short-term forecasts determine months for the summer wise temperature extremes. It appears that the months of May, June, July and August are the months of extreme temperature for the first summer and October is the month of extreme temperature for the second summer. The long-term forecasts predict that 2014, 2016, 2018, and 2019 will be the years of warm summers. The analysis appearing here would be useful for coastal-urban planners in emphasizing the impact of seawater extreme temperatures on urban industrial activities, etc. (author)

  2. Modelling of 137Cs concentration change in organisms of the Japanese coastal food chains

    International Nuclear Information System (INIS)

    Tateda, Y.; Nakahara, M.; Nakamura, R.

    1999-01-01

    In order to predict 137 CS concentrations in marine organisms of Japanese coastal food chains, a basic compartment model being composed of nuclide transfer both from seawater and food chain was investigated. Food chain structure of typical Japanese coastal water is established to include detritus, food chain, benthic food chain and planktonic food chain

  3. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    Science.gov (United States)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access

  4. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  5. Overview of oceanographic research in JAEA-RGES

    International Nuclear Information System (INIS)

    Otosaka, Shigeyoshi

    2010-01-01

    Oceanographic research activities conducted by JAEA-RGES were described. The activities consist of two parts: a multi-year research project in the Japan Sea and the most recent research in the region Off-Rokkasho, Aomori, Japan. A series of expeditions in the Japan Sea has revealed horizontal and vertical distributions of artificial radionuclides. In addition, radiocarbon measurements of seawater have enabled us to understand general seawater circulation as well as transport processes of dissolved radionuclides in the sea. In the region Off-Rokkasho, where a reprocessing plant of spent nuclear fuel is located, site specific values for radionuclide migration model have been obtained. Special attention was paid to characteristics of particles in water, some of which contribute to the vertical transport of radionuclides via sinking process. It was suggested that concentrations of particulate materials are controlled not only by primary production but also by supplies of terrestrial materials. From this result, we concluded that the land-sea interaction would play an important role in the radionuclide behavior in coastal areas. (author)

  6. Development of moored oceanographic spectroradiometer

    Science.gov (United States)

    Booth, Charles R.; Mitchell, B. Greg; Holm-Hansen, O.

    1987-01-01

    Biospherical Instruments has successfully completed a NASA sponsored SBIR (Small Business Innovational Research Program) project to develop spectroradiometers capable of being deployed in the ocean for long periods of time. The completion of this project adds a valuable tool for the calibration of future spaceborne ocean color sensors and enables oceanographers to extend remote sensing optical techniques beyond the intermittent coverage of spaceborne sensors. Highlights of the project include two moorings totalling 8 months generating extensive sets of optical, biological, and physical data sets in the ocean off La Jolla, California, and a 70 day operational deployment of the resulting commercial product by the ONR and NASA sponsored BIOWATT program. Based on experience gained in these moorings, Biospherical Instruments has developed a new line of spectroradiometers designed to support the oceanographic remote sensing missions of NASA, the Navy, and various oceanographers.

  7. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    Science.gov (United States)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  8. Toward a community coastal sediment transport modeling system: the second workshop

    Science.gov (United States)

    Sherwood, Christopher R.; Harris, Courtney K.; Geyer, W. Rockwell; Butman, Bradford

    2002-01-01

    Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.

  9. Key West, Florida 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Chignik, Alaska 1/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  11. Santa Monica, California 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. Miami 1/3 arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Midway Atoll 3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Cordova, Alaska 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. False Pass, Alaska 8/15 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  16. Yakutat, Alaska 8/15 Arc-second MHHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  17. Akutan, Alaska 8/3 Arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  18. Nikolski, Alaska 1 arc-second MHHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  19. Elfin Cove Alaska 1/3 Arc-second MHHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  20. Elfin Cove Alaska 1/3 Arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  1. Cordova, Alaska 8/15 Arc-second MHHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  2. Yakutat, Alaska 8 Arc-second MHHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  3. King Cove, Alaska 8 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  4. King Cove, Alaska 8/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  5. Akutan, Alaska 8/15 Arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  6. Chiniak, Alaska 8/15 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  7. King Cove, Alaska 8/15 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  8. Nikolski, Alaska 1/3 arc-second MHHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  9. Cold Bay, Alaska 8 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  10. Tutuila, American Samoa 1/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Pago Pago, American Samoa 3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. San Diego, California 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Central Florida 1/3 arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Central Florida 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Crescent City, California 1/3 Arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Bar Harbor, Maine 1/3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Destin, Florida 1/3 arc-second NAVD88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  18. Palm Beach, Florida 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Barkley Sound, Canada 1 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Port Alberni, Canada 1/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Midway Atoll 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  2. Eureka, California 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. Myrtle Beach, South Carolina 1/ Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. Eureka, California 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. New Orleans, Louisiana 1/3 Arc-second MLLW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  6. San Francisco Bay, California 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. St. Croix, U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  8. South Padre Island, Texas 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Wake Island 3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Marquesas Islands, French Polynesia 3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Wake Island 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. San Juan, Puerto Rico 1/9 arc-second PRVD Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information (NCEI) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These...

  13. San Diego, California 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Panama City, Florida 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  15. Mobile, Alabama 1/3 NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  16. Panama City, Florida 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  17. Puget Sound 1/3 arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Port Lions, Alaska 8/15 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  19. Tampa Bay 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Puget Sound 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Santa Monica, California 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  2. Port Townsend, Washington 1/3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. Mayaguez, Puerto Rico 2006 1/3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. Pago Pago, American Samoa 1/3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. Port San Luis, California 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Astoria, Oregon 1/3 arc-second MHW Coastal Digital Elevation Model Vers.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information (NCEI) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These...

  7. New Orleans, Louisiana 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico....

  8. Port Townsend, Washington 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Prince William Sound, Alaska 8 Arc-second MHHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  10. Fort Bragg, California 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Orange County, California 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information (NCEI) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These...

  12. Yakutat, Alaska 8/3 Arc-second MHHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  13. Fort Bragg, California 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Myrtle Beach, South Carolina 1/3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. South Padre Island, Texas 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Crescent City, California 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Miami 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Key West, Florida 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Central California 1 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Pensacola, Florida 1/3 arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Centers for Environmental Information (NCEI) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These...

  1. Cold Bay, Alaska 8/15 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  2. Kodiak, Alaska 1/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. Central California 1 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. Garibaldi, Oregon 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. Prince William Sound, Alaska 8/3 Arc-second MHHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  6. San Francisco Bay, California 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Perryville and Ivanof Bay, Alaska 1/3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the...

  8. Morehead City, North Carolina 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Garibaldi, Oregon 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Mayaguez, Puerto Rico 2007 1/3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. St. Croix, U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1/3 arc-second St. Croix, U.S. Virgin Islands Coastal Digital Elevation Model will be used to support NOAA's tsunami forecast system and for tsunami inundation...

  12. Morehead City, North Carolina 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Port San Luis, California 1/3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Monterey, California 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Sitka, Alaska 3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Monterey, California 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Tampa Bay 1/3 arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Palm Beach, Florida 1/3 Arc-second MWH Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. St. Thomas and St. John, U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Bar Harbor, Maine 1/3 Arc-second NAVD 88 Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Sitka, Alaska 1/3 Arc-second MHW Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  2. Habitat Modeling and Preferences of Marine Mammals as Function of Oceanographic Characteristics: Development of Predictive Tools for Assessing the Risks and the Impacts Due to Sound Emissions

    Science.gov (United States)

    2011-09-30

    evaluate WEC projects in the perspective of the environmental cost-benefit analysis. Proceedings of the ISOPE 2011, Maui, Hawaii, USA 19-24 June, 2011...Function of Oceanographic Characteristics: Development of Predictive Tools for Assessing the Risks and the Impacts Due to Sound Emissions Dr...detections) and the available environmental predictors; - Creating the knowledge-based background about potential mitigation measures appropriate for

  3. An Oceanographic Decision Support System for Scientific Field Experiments

    Science.gov (United States)

    Maughan, T.; Das, J.; McCann, M. P.; Rajan, K.

    2011-12-01

    . The ODSS was used for automated shore-based control of mobile assets and was also used to compute safety bounds for operation of MBARI AUVs and provide projections of drifters advected [1,4] due to surface conditions. Scientist and operations teams use the ODSS during the daily planning meetings for situation awareness and real time access to data to support decisions on sampling strategies and platform logistics. References 1. J.Das, F. Py, T. Maughan, J Ryan , K. Rajan & G. Sukhatme, Simultaneous Tracking and Sampling of Dynamic Oceanographic Features with Autonomous Underwater Vehicles and Lagrangian Drifters, Accepted, Intnl. Symp. on Experimental Robotics (ISER), N. Delhi, India, Dec 2010. 2. S. Jiminez, F. Py & K. Rajan, Learning Identification Models for In-situ Sampling of Ocean features, Working notes of the RSS'10 Workshop on Active Learning for Robotics. Robotics Systems Sciences, Spain. 2010 3. Py, F. , Jiminez, S. , and Rajan, K. "Modeling dynamic coastal ocean features for in-situ identication and adaptive sampling", Journal of Atmospheric and Ocean Technology-Ocean(2010). Submitted, in Review. 4. J. Das, K. Rajan, S. Frolov, J. Ryan, F. Py, D. Caron & G. Sukhatme, Towards Marine Bloom Trajectory Prediction for AUV Mission Planning, ICRA, May 2010, Anchorage

  4. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  5. Marine and Coastal Morphology: medium term and long-term area modelling

    DEFF Research Database (Denmark)

    Kristensen, Sten Esbjørn

    This thesis documents development and application of a modelling concept developed in collaboration between DTU and DHI. The modelling concept is used in morphological modelling in coastal areas where the governing sediment transport processes are due to wave action. The modelling concept...... is defined: Hybrid morphological modelling and it is based on coupling calculated sediment transport fields from a traditional process based coastal area model with a parametrised morphological evolution model. The focus of this study is to explore possible parametric formulations of the morphological...... solution has a two dimensional nature. 1.5D shoreline model A so-called “1.5D” implementation which introduces redistribution of sediment within a coastal profile in response to horizontal 2D currents makes it possible to simulate the morphological development in areas where 2D evolution occurs...

  6. Modelling coastal processes and morphological changes of the UK east coast in support of coastal decision-making

    Science.gov (United States)

    Li, Xiaorong; Leonardi, Nicoletta; Brown, Jennifer; Plater, Andy

    2017-04-01

    The coastline of Eastern England is home to about one quarter of the UK's coastal habitats, including intertidal salt marshes, tidal flats and sand dunes. These geomorphic features are of great importance to the local wildlife, global biodiversity, marine environment and human society and economy. Due to sea-level rise and the occurrence of extreme weather conditions, the coastline of Eastern England is under high risk of erosion and recession, which could lead to tidal inundation of sites such as the RSPB Minsmere Reserve and power generation infrastructure at Sizewell. This research responds to the need for sustainable shoreline management plans of the UK east coast through sensitivity studies at the Dunwich-Sizewell area, Suffolk, UK. Particular interest is on the long-term morphodynamic response of the study area to possible environmental variations associated with global climate change. Key coastal processes, i.e. current, waves and sediment transport, and morphological evolution are studied using a process-based numerical model under the following scenarios: current mean sea level + calm wave conditions, current mean sea level + storms, sea level rise + calm wave conditions, and sea level rise + storms, all with a 'do nothing' management plan which allows the coastal environment to exist and respond dynamically. As a further aspect of this research, rules will be generalized for reduced-complexity, system-based modelling. Alternative management plans, including 'managed realignment' and 'advance the line', are also investigated in this research under the same environmental forcing scenarios, for the purposes of protection of infrastructure of national importance and conservation of wetland habitats. Both 'hard' and 'soft' engineering options, such as groynes and beach nourishment respectively, are considered. A more ecohydrological option which utilizes aquatic plant communities for wave energy dissipation and sediment trapping is also studied. The last

  7. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: San Francisco Bay/Monterey (CA) WFO - Santa Cruz and Monterey Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  8. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: San Francisco Bay/Monterey (CA) WFO - Contra Costa, San Francisco, Alameda, San Mateo, and Santa Clara Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Los Angeles/Oxnard (CA) WFO - Los Angeles and Ventura Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  10. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Seattle (WA) WFO - Whatcom, San Juan, Skagit, Island, Snohomish, and King Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  11. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Miami (FL) WFO - Palm Beach, Broward, Miami-Dade, and Monroe (Keys) Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  12. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Seattle (WA) WFO - Clallam, Jefferson, Kitsap, Mason, Pierce, and Thurston Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  13. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Los Angeles/Oxnard (CA) WFO - Santa Barbara and San Luis Obispo Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  14. 2012 NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Mobile/Tallahassee (AL/FL) WFO - Wakulla (portion), Franklin (portion), Jefferson, Taylor, Dixie, and Levy Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  15. Using Call Detail Records for Modeling Coastal Recreation Behavior

    Science.gov (United States)

    Call data records (CDR) are data from cellular phone networks that can be used to understand human mobility or where people go spatially. They can be used to estimate visitation to an area such as a coastal access point for a given time window, as well as provide information on t...

  16. Field and model investigations of freshwater lenses in coastal aquifers

    NARCIS (Netherlands)

    Pauw, P.S.

    2015-01-01

    A major problem of sustaining freshwater supply from freshwater lens is the invasion of saline groundwater into a fresh groundwater body. In many coastal areas saltwater intrusion has led to well closure and reduced freshwater supply. Furthermore, in the future saltwater intrusion is expected to

  17. Adaptation Decision Support: An Application of System Dynamics Modeling in Coastal Communities

    Institute of Scientific and Technical Information of China (English)

    Daniel Lane; Shima Beigzadeh; Richard Moll

    2017-01-01

    This research develops and applies a system dynamics (SD) model for the strategic evaluation of environmental adaptation options for coastal communities.The article defines and estimates asset-based measures for community vulnerability,resilience,and adaptive capacity with respect to the environmental,economic,social,and cultural pillars of the coastal community under threat.The SD model simulates the annual multidimensional dynamic impacts of severe coastal storms and storm surges on the community pillars under alternative adaptation strategies.The calculation of the quantitative measures provides valuable information for decision makers for evaluating the alternative strategies.The adaptation strategies are designed model results illustrated for the specific context of the coastal community of Charlottetown,Prince Edward Island,Canada.The dynamic trend of the measures and model sensitivity analyses for Charlottetown-facing increased frequency of severe storms,storm surges,and sea-level rise-provide impetus for enhanced community strategic planning for the changing coastal environment.This research is presented as part of the International Community-University Research Alliance C-Change project "Managing Adaptation to Environmental Change in Coastal Communities:Canada and the Caribbean" sponsored by the Social Science and Humanities Research Council of Canada and the International Development Resource Centre.

  18. Southern African Coastal vulnerability assessment

    CSIR Research Space (South Africa)

    Rautenbach, C

    2015-10-01

    Full Text Available or business. The CSIR coastal systems group uses specialist skills in coastal engineering, geographic engineering systems and numerical modelling to assess and map vulnerable coastal ecosystems to develop specific adaptation measures and coastal protection...

  19. Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics

    Science.gov (United States)

    Bellafiore, D.; Bucchignani, E.; Umgiesser, G.

    2010-09-01

    One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more

  20. Ontology Based Vocabulary Matching for Oceanographic Instruments

    Science.gov (United States)

    Chen, Yu; Shepherd, Adam; Chandler, Cyndy; Arko, Robert; Leadbetter, Adam

    2014-05-01

    Data integration act as the preliminary entry point as we enter the era of big data in many scientific domains. However the reusefulness of various dataset has met the hurdle due to different initial of interests of different parties, therefore different vocabularies in describing similar or semantically related concepts. In this scenario it is vital to devise an automatic or semi-supervised algorithm to facilitate the convergence of different vocabularies. The Ocean Data Interoperability Platform (ODIP) seeks to increase data sharing across scientific domains and international boundaries by providing a forum to harmonize diverse regional data systems. ODIP participants from the US include the Rolling Deck to Repository (R2R) program, whose mission is to capture, catalog, and describe the underway/environmental sensor data from US oceanographic research vessels and submit the data to public long-term archives. In an attempt to harmonize these regional data systems, especially vocabularies, R2R recognizes the value of the SeaDataNet vocabularies served by the NERC Vocabulary Server (NVS) hosted at the British Oceanographic Data Centre as a trusted, authoritative source for describing many oceanographic research concepts such as instrumentation. In this work, we make use of the semantic relations in the vocabularies served by NVS to build a Bayesian network and take advantage of the idea of entropy in evaluating the correlation between different concepts and keywords. The performance of the model is evaluated against matching instruments from R2R against the SeaDataNet instrument vocabularies based on calculated confidence scores in the instrument pairings. These pairings with their scores can then be analyzed for assertion growing the interoperability of the R2R vocabulary through its links to the SeaDataNet entities.

  1. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    Science.gov (United States)

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  2. Local scale atmospheric diffusion at a coastal site in the presence of breeze effect (phase III: data elaboration and model development). Volume 1

    International Nuclear Information System (INIS)

    Cagnetti, P.; Ferrara, V.; Pellegrini, A.

    1985-01-01

    The aim of this contract is the characterization, from the thermal and anemological point of view, of the lower layers of the atmosphere at a coastal site, affected by breeze circulation. Data are utilized to set up diffusion models for accidental releases of airborne materials, both of short and prolonged duration. Five inland meteorological campaigns, starting from Jan. 82 (Jan., Apr., Jul., Oct. 1982, Jan. 1983), have been carried out; an appropriate extension of the contract allowed the execution of two more campaigns in the open sea (Apr., Jul. 1983), utilizing the oceanographic ship ''Bannock'' kindly supplied by CNR. The analysis of the data showed the development of a well defined IBL during on-shore flow only in Spring and Summer, while an inversion layer was detectable aloft independently of the season (provided that an anticyclonic situation was present). According to those relevant features a simple diffusion model has been developed for short duration releases at local scale. Finally, the analysis and elaboration of the data, collected on site by a meteorological automatic station, allowed the extension of the model to prolonged releases

  3. Archiving oceanographic data at NOAA's National Oceanographic Data Center: A use-case approach

    Science.gov (United States)

    Biddle, M.; Arzayus, K. M.; Collins, D.; Paver, C. R.; Rutz, S. B.

    2012-12-01

    Current data holdings at the National Oceanographic Data Center (NODC) include physical, biological and chemical measurements of in situ oceanographic variables, satellite data products, and ocean model simulations. NODC acquires data from a wide variety of partners that span academia, government (including state and federal sources), private industry, and non-profit organizations. NODC provides access to these diverse data collections for both current and future use, to ensure that data consumers have the ability to monitor present and past environmental conditions. Using a flexible archival infrastructure enables NODC to archive almost any type of file format. NODC is deploying web services built upon OPeNDAP, THREDDS, Geoportal, and other standard technologies to enable data integration and application-ready data for a broad spectrum of data consumers. To maximize use of these web services, NODC is working with the oceanographic community to utilize standard formats, such as netCDF, for representing data. This poster outlines use cases which describe how a data provider can 1) establish a relationship with NODC, 2) communicate and document requirements for archiving data, 3) fulfill funding agency data management requirements, and 4) implement an automated process for archiving standard recurring data sets, where applicable. As a result of this interaction, NODC can provide valuable feedback to data providers to improve the quality of their metadata and/or data, provide access to archived data via multiple services, and facilitate data use in various data products to inform scientists and the public about the state of the ocean.

  4. Oceanographic applications of laser technology

    Science.gov (United States)

    Hoge, F. E.

    1988-01-01

    Oceanographic activities with the Airborne Oceanographic Lidar (AOL) for the past several years have primarily been focussed on using active (laser induced pigment fluorescence) and concurrent passive ocean color spectra to improve existing ocean color algorithms for estimating primary production in the world's oceans. The most significant results were the development of a technique for selecting optimal passive wavelengths for recovering phytoplankton photopigment concentration and the application of this technique, termed active-passive correlation spectroscopy (APCS), to various forms of passive ocean color algorithms. Included in this activity is use of airborne laser and passive ocean color for development of advanced satellite ocean color sensors. Promising on-wavelength subsurface scattering layer measurements were recently obtained. A partial summary of these results are shown.

  5. A Multi-Process Test Case to Perform Comparative Analysis of Coastal Oceanic Models

    Science.gov (United States)

    Lemarié, F.; Burchard, H.; Knut, K.; Debreu, L.

    2016-12-01

    Due to the wide variety of choices that need to be made during the development of dynamical kernels of oceanic models, there is a strong need for an effective and objective assessment of the various methods and approaches that predominate in the community. We present here an idealized multi-scale scenario for coastal ocean models combining estuarine, coastal and shelf sea scales at midlatitude. The bathymetry, initial conditions and external forcings are defined analytically so that any model developer or user could reproduce the test case with its own numerical code. Thermally stratified conditions are prescribed and a tidal forcing is imposed as a propagating coastal Kelvin wave. The following physical processes can be assessed from the model results: estuarine process driven by tides and buoyancy gradients, the river plume dynamics, tidal fronts, and the interaction between tides and inertial oscillations. We show results obtained using the GETM (General Estuarine Transport Model) and the CROCO (Coastal and Regional Ocean Community model) models. Those two models are representative of the diversity of numerical methods in use in coastal models: GETM is based on a quasi-lagrangian vertical coordinate, a coupled space-time approach for advective terms, a TVD (Total Variation Diminishing) tracer advection scheme while CROCO is discretized with a quasi-eulerian vertical coordinate, a method of lines is used for advective terms, and tracer advection satisfies the TVB (Total Variation Bounded) property. The multiple scales are properly resolved thanks to nesting strategies, 1-way nesting for GETM and 2-way nesting for CROCO. Such test case can be an interesting experiment to continue research in numerical approaches as well as an efficient tool to allow intercomparison between structured-grid and unstructured-grid approaches. Reference : Burchard, H., Debreu, L., Klingbeil, K., Lemarié, F. : The numerics of hydrostatic structured-grid coastal ocean models: state of

  6. Fish larval transport in the coastal waters through ecological modelling

    Digital Repository Service at National Institute of Oceanography (India)

    George, G.

    are as follows: (i) to find out the influence of environmental parameters on the biology of the given ecosystem (ii) to track larval transport and biological abundance in relation to environmental vari- ables (iii) to compare biological abundance and fish larval... include the following investigations: (i) analysis of satellite chlorophyll data along the southwest coastal waters of India to derive a biological calender for sardine (ii) tracking the larval survival and establish a link between food and sardine inter...

  7. Coastal circulation off Ratnagiri, west coast of India during monsoon seasons: a numerical model study.

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Sharif, J.; Vethamony, P.

    Present study is the coastal circulation modelling off Ratnagiri under the influence of winds and tides. A two-dimensional hydrodynamic model MIKE 21HD has been used to simulate tides and currents, and model results are in a good agreement...

  8. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables

    International Nuclear Information System (INIS)

    Haakanson, Lars

    2004-01-01

    This paper presents a general, process-based dynamic model for coastal areas for radionuclides (metals, organics and nutrients) from both single pulse fallout and continuous deposition. The model gives radionuclide concentrations in water (total, dissolved and particulate phases and concentrations in sediments and fish) for entire defined coastal areas. The model gives monthly variations. It accounts for inflow from tributaries, direct fallout to the coastal area, internal fluxes (sedimentation, resuspension, diffusion, burial, mixing and biouptake and retention in fish) and fluxes to and from the sea outside the defined coastal area and/or adjacent coastal areas. The fluxes of water and substances between the sea and the coastal area are differentiated into three categories of coast types: (i) areas where the water exchange is regulated by tidal effects; (ii) open coastal areas where the water exchange is regulated by coastal currents; and (iii) semi-enclosed archipelago coasts. The coastal model gives the fluxes to and from the following four abiotic compartments: surface water, deep water, ET areas (i.e., areas where fine sediment erosion and transport processes dominate the bottom dynamic conditions and resuspension appears) and A-areas (i.e., areas of continuous fine sediment accumulation). Criteria to define the boundaries for the given coastal area towards the sea, and to define whether a coastal area is open or closed are given in operational terms. The model is simple to apply since all driving variables may be readily accessed from maps and standard monitoring programs. The driving variables are: latitude, catchment area, mean annual precipitation, fallout and month of fallout and parameters expressing coastal size and form as determined from, e.g., digitized bathymetric maps using a GIS program. Selected results: the predictions of radionuclide concentrations in water and fish largely depend on two factors, the concentration in the sea outside the given

  9. Assessing biomass of diverse coastal marsh ecosystems using statistical and machine learning models

    Science.gov (United States)

    Mo, Yu; Kearney, Michael S.; Riter, J. C. Alexis; Zhao, Feng; Tilley, David R.

    2018-06-01

    The importance and vulnerability of coastal marshes necessitate effective ways to closely monitor them. Optical remote sensing is a powerful tool for this task, yet its application to diverse coastal marsh ecosystems consisting of different marsh types is limited. This study samples spectral and biophysical data from freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops statistical and machine learning models to assess the marshes' biomass with combined ground, airborne, and spaceborne remote sensing data. It is found that linear models derived from NDVI and EVI are most favorable for assessing Leaf Area Index (LAI) using multispectral data (R2 = 0.7 and 0.67, respectively), and the random forest models are most useful in retrieving LAI and Aboveground Green Biomass (AGB) using hyperspectral data (R2 = 0.91 and 0.84, respectively). It is also found that marsh type and plant species significantly impact the linear model development (P biomass of Louisiana's coastal marshes using various optical remote sensing techniques, and highlights the impacts of the marshes' species composition on the model development and the sensors' spatial resolution on biomass mapping, thereby providing useful tools for monitoring the biomass of coastal marshes in Louisiana and diverse coastal marsh ecosystems elsewhere.

  10. Dynamics of the east India coastal current. 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Mc; Han, W.; Shetye, S.R.

    and Computer Simulation, National Aerospace Laboratories Bangalore, India J.P. McCreary and W. Han Oceanographic Center, Nova Southeastern University, Dania, Florida S. R. Shetye National Institute of Oceanography, Dona Paula, Goa, India Abstract. A... that compensates for southward Sverdrup transport in the interior ocean, as in the barotropic models of Stommel [1948] and Munk [1950]. SHANKAR ET AL' DYNAMICS OF THE EAST INDIA COASTAL CURRENT, 1 13,977 McCreary et al. [1993] suggested that forcing by both...

  11. Topobathymetric elevation model development using a new methodology: Coastal National Elevation Database

    Science.gov (United States)

    Danielson, Jeffrey J.; Poppenga, Sandra K.; Brock, John C.; Evans, Gayla A.; Tyler, Dean; Gesch, Dean B.; Thatcher, Cindy A.; Barras, John

    2016-01-01

    During the coming decades, coastlines will respond to widely predicted sea-level rise, storm surge, and coastalinundation flooding from disastrous events. Because physical processes in coastal environments are controlled by the geomorphology of over-the-land topography and underwater bathymetry, many applications of geospatial data in coastal environments require detailed knowledge of the near-shore topography and bathymetry. In this paper, an updated methodology used by the U.S. Geological Survey Coastal National Elevation Database (CoNED) Applications Project is presented for developing coastal topobathymetric elevation models (TBDEMs) from multiple topographic data sources with adjacent intertidal topobathymetric and offshore bathymetric sources to generate seamlessly integrated TBDEMs. This repeatable, updatable, and logically consistent methodology assimilates topographic data (land elevation) and bathymetry (water depth) into a seamless coastal elevation model. Within the overarching framework, vertical datum transformations are standardized in a workflow that interweaves spatially consistent interpolation (gridding) techniques with a land/water boundary mask delineation approach. Output gridded raster TBDEMs are stacked into a file storage system of mosaic datasets within an Esri ArcGIS geodatabase for efficient updating while maintaining current and updated spatially referenced metadata. Topobathymetric data provide a required seamless elevation product for several science application studies, such as shoreline delineation, coastal inundation mapping, sediment-transport, sea-level rise, storm surge models, and tsunami impact assessment. These detailed coastal elevation data are critical to depict regions prone to climate change impacts and are essential to planners and managers responsible for mitigating the associated risks and costs to both human communities and ecosystems. The CoNED methodology approach has been used to construct integrated TBDEM models

  12. Monitoring coastal marshes biomass with CASI: a comparison of parametric and non-parametric models

    Science.gov (United States)

    Mo, Y.; Kearney, M.

    2017-12-01

    Coastal marshes are important carbon sinks that face multiple natural and anthropogenic stresses. Optical remote sensing is a powerful tool for closely monitoring the biomass of coastal marshes. However, application of hyperspectral sensors on assessing the biomass of diverse coastal marsh ecosystems is limited. This study samples spectral and biophysical data from coastal freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops parametric and non-parametric models for using the Compact Airborne Spectrographic Imager (CASI) to retrieve the marshes' biomass. Linear models and random forest models are developed from simulated CASI data (48 bands, 380-1050 nm, bandwidth 14 nm). Linear models are also developed using narrowband vegetation indices computed from all possible band combinations from the blue, red, and near infrared wavelengths. It is found that the linear models derived from the optimal narrowband vegetation indices provide strong predictions for the marshes' Leaf Area Index (LAI; R2 > 0.74 for ARVI), but not for their Aboveground Green Biomass (AGB; R2 > 0.25). The linear models derived from the simulated CASI data strongly predict the marshes' LAI (R2 = 0.93) and AGB (R2 = 0.71) and have 27 and 30 bands/variables in the final models through stepwise regression, respectively. The random forest models derived from the simulated CASI data also strongly predict the marshes' LAI and AGB (R2 = 0.91 and 0.84, respectively), where the most important variables for predicting LAI are near infrared bands at 784 and 756 nm and for predicting ABG are red bands at 684 and 670 nm. In sum, the random forest model is preferable for assessing coastal marsh biomass using CASI data as it offers high R2 for both LAI and AGB. The superior performance of the random forest model is likely to due to that it fully utilizes the full-spectrum data and makes no assumption of the approximate normality of the sampling population. This study offers solutions

  13. Community Participation for Sustainable Tourism Model in Manado Coastal Area

    Science.gov (United States)

    Warouw, F. F.; Langitan, F. W.; Alamsyah, A. T.

    2018-02-01

    Manado city with the potential for coastal tourism which is at the center of the world’s coral triangle is developing a tourism development policy. Tourism that is being developed should certainly be able to adapt to changing conditions of today’s dynamic environment. The extent to which the adaptation process is determined by the communities involved in the development of tourism. Based on data from the population in the city of Manado, there are currently 410 481 thousand inhabitants. This study tried to reveal the extent of community participation in the city of Manado in particular involvement in the development of tourism in coastal Bay of Manado. Level of community participation in the development of tourism in the city of Manado is measured in the form of quantitative research in the form of questionnaires to the community based on the level of community participation developed by Arnstein Sheery by purposive sampling technique. The level of participation was developed by Arnstein Sheery row of low level ketinggi namely: Manipulation, Therapy, informing, Consultation, placation, partnership, Delegaten Power, Citizen Control. Findings community level participation in the development of coastal tourism on Manado bay civilized level of consultation. Consultation rate shows that the government invite the public opinion after the given information to the public and has been a two-way dialogue between government and society. Community has provided input and active discussion by way of the two-way dialogue. Although there has been a two-way dialogue, but the successful rate is low because there is no guarantee that the concerns and ideas of the community will be considered. This requires the development of community-based programs in order to increase the degree of participation so that community participation will increase. To conclude, the program needs to be based on input from the community’s needs and it has to involve the public directly to tourism

  14. The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives

    Science.gov (United States)

    Klingbeil, Knut; Lemarié, Florian; Debreu, Laurent; Burchard, Hans

    2018-05-01

    The state of the art of the numerics of hydrostatic structured-grid coastal ocean models is reviewed here. First, some fundamental differences in the hydrodynamics of the coastal ocean, such as the large surface elevation variation compared to the mean water depth, are contrasted against large scale ocean dynamics. Then the hydrodynamic equations as they are used in coastal ocean models as well as in large scale ocean models are presented, including parameterisations for turbulent transports. As steps towards discretisation, coordinate transformations and spatial discretisations based on a finite-volume approach are discussed with focus on the specific requirements for coastal ocean models. As in large scale ocean models, splitting of internal and external modes is essential also for coastal ocean models, but specific care is needed when drying & flooding of intertidal flats is included. As one obvious characteristic of coastal ocean models, open boundaries occur and need to be treated in a way that correct model forcing from outside is transmitted to the model domain without reflecting waves from the inside. Here, also new developments in two-way nesting are presented. Single processes such as internal inertia-gravity waves, advection and turbulence closure models are discussed with focus on the coastal scales. Some overview on existing hydrostatic structured-grid coastal ocean models is given, including their extensions towards non-hydrostatic models. Finally, an outlook on future perspectives is made.

  15. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    Science.gov (United States)

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  16. A generative Bezier curve model for surf-zone tracking in coastal image sequences

    CSIR Research Space (South Africa)

    Burke, Michael G

    2017-09-01

    Full Text Available This work introduces a generative Bezier curve model suitable for surf-zone curve tracking in coastal image sequences. The model combines an adaptive curve parametrised by control points governed by local random walks with a global sinusoidal motion...

  17. Integration of Tidal Prism Model and HSPF for simulating indicator bacteria in coastal watersheds

    Science.gov (United States)

    Sobel, Rose S.; Rifai, Hanadi S.; Petersen, Christina M.

    2017-09-01

    Coastal water quality is strongly influenced by tidal fluctuations and water chemistry. There is a need for rigorous models that are not computationally or economically prohibitive, but still allow simulation of the hydrodynamics and bacteria sources for coastal, tidally influenced streams and bayous. This paper presents a modeling approach that links a Tidal Prism Model (TPM) implemented in an Excel-based modeling environment with a watershed runoff model (Hydrologic Simulation Program FORTRAN, HSPF) for such watersheds. The TPM is a one-dimensional mass balance approach that accounts for loading from tidal exchange, runoff, point sources and bacteria die-off at an hourly time step resolution. The novel use of equal high-resolution time steps in this study allowed seamless integration of the TPM and HSPF. The linked model was calibrated to flow and E. Coli data (for HSPF), and salinity and enterococci data (for the TPM) for a coastal stream in Texas. Sensitivity analyses showed the TPM to be most influenced by changes in net decay rates followed by tidal and runoff loads, respectively. Management scenarios were evaluated with the developed linked models to assess the impact of runoff load reductions and improved wastewater treatment plant quality and to determine the areas of critical need for such reductions. Achieving water quality standards for bacteria required load reductions that ranged from zero to 90% for the modeled coastal stream.

  18. Calibration and validation of the SWAT model for a forested watershed in coastal South Carolina

    Science.gov (United States)

    Devendra M. Amatya; Elizabeth B. Haley; Norman S. Levine; Timothy J. Callahan; Artur Radecki-Pawlik; Manoj K. Jha

    2008-01-01

    Modeling the hydrology of low-gradient coastal watersheds on shallow, poorly drained soils is a challenging task due to the complexities in watershed delineation, runoff generation processes and pathways, flooding, and submergence caused by tropical storms. The objective of the study is to calibrate and validate a GIS-based spatially-distributed hydrologic model, SWAT...

  19. Assessment of coastal management options by means of multilayered ecosystem models

    Science.gov (United States)

    Nobre, Ana M.; Ferreira, João G.; Nunes, João P.; Yan, Xiaojun; Bricker, Suzanne; Corner, Richard; Groom, Steve; Gu, Haifeng; Hawkins, Anthony J. S.; Hutson, Rory; Lan, Dongzhao; Silva, João D. Lencart e.; Pascoe, Philip; Telfer, Trevor; Zhang, Xuelei; Zhu, Mingyuan

    2010-03-01

    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%-28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of

  20. The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms

    Science.gov (United States)

    Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie

    2009-01-01

    The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with

  1. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    Science.gov (United States)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  2. The tidal hydrodynamics modeling of the Topolobampo coastal lagoon system and the implications for pollutant dispersion

    International Nuclear Information System (INIS)

    Montano-Ley, Y.; Peraza-Vizcarra, R.; Paez-Osuna, F.

    2007-01-01

    The tidal hydrodynamics of the Topolobampo coastal lagoon system (Mexico) has been investigated through a modified two dimensional non-linear hydrodynamic finite difference model. The advective and diffusive process acting over a hypothetical pollutant released into the coastal lagoon have also been simulated. Maxima tidal currents (0.85 m/s) were predicted within the main channel, in agree with direct measurements. The direction of the observed fastest currents (SW), also agree quite well with the direction of the strongest tidal current predicted in this investigation, which occur during the ebb when the water of the coastal lagoon is discharged into the Gulf of California. Residual currents (0.01-0.05 m/s) were also predicted. The hypothetical pollutant released within the Topolobampo Harbor would spread to both Ohuira and Topolobampo sections, reaching the inlet after approximately 12 days. - A model has been developed to simulate the tidal hydrodynamics and the behavior of a pollutant in the Topolobampo lagoon

  3. X-band COSMO-SkyMed wind field retrieval, with application to coastal circulation modeling

    Directory of Open Access Journals (Sweden)

    A. Montuori

    2013-02-01

    Full Text Available In this paper, X-band COSMO-SkyMed© synthetic aperture radar (SAR wind field retrieval is investigated, and the obtained data are used to force a coastal ocean circulation model. The SAR data set consists of 60 X-band Level 1B Multi-Look Ground Detected ScanSAR Huge Region COSMO-SkyMed© SAR data, gathered in the southern Tyrrhenian Sea during the summer and winter seasons of 2010. The SAR-based wind vector field estimation is accomplished by resolving both the SAR-based wind speed and wind direction retrieval problems independently. The sea surface wind speed is retrieved by means of a SAR wind speed algorithm based on the azimuth cut-off procedure, while the sea surface wind direction is provided by means of a SAR wind direction algorithm based on the discrete wavelet transform multi-resolution analysis. The obtained wind fields are compared with ground truth data provided by both ASCAT scatterometer and ECMWF model wind fields. SAR-derived wind vector fields and ECMWF model wind data are used to construct a blended wind product regularly sampled in both space and time, which is then used to force a coastal circulation model of a southern Tyrrhenian coastal area to simulate wind-driven circulation processes. The modeling results show that X-band COSMO-SkyMed© SAR data can be valuable in providing effective wind fields for coastal circulation modeling.

  4. Oceanographic data and information network in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Reddy, G.V.

    National Oceanographic Data Centres (RNODCs) and 3 World Data Centres (WDCs) for oceanographic data /information management and exchange. Regional data/information network in the Indian Ocean is being managed by 9 NODCs and 2 RNODCs and oceanographic...

  5. Two depositional models for Pliocene coastal plain fluvial systems, Goliad Formation, south Texas Gulf Coastal plain

    International Nuclear Information System (INIS)

    Hoel, H.D.; Galloway, W.E.

    1983-01-01

    The Goliad Formation consists of four depositional systems-the Realitos and Mathis bed-load fluvial systems in the southwest and the Cuero and Eagle Lake mixed-load fluvial systems in the northeast. Five facies are recognized in the Realitos and Mathis bed-load fluvial systems: (1) primary channel-fill facies, (2) chaotic flood channel-fill facies, (3) complex splay facies, (4) flood plain facies, and (5) playa facies. A model for Realitos-Mathis depositional environments shows arid-climate braided stream complexes with extremely coarse sediment load, highly variable discharge, and marked channel instability. Broad, shallow, straight to slightly sinuous primary channels were flanked by wide flood channels. Flood channels passed laterally into broad, low-relief flood plains. Small playas occupied topographic lows near large channel axes. Three facies are recognized in the Cuero and Eagle Lake mixed-load fluvial systems: (1) channel-fill facies, (2) crevasse splay facies, and (3) flood plain facies. A model for Cuero-Eagle Lake depositional environments shows coarse-grained meander belts in a semi-arid climate. Slightly to moderately sinuous meandering streams were flanked by low, poorly developed natural levees. Crevasse splays were common, but tended to be broad and ill-defined. Extensive, low-relief flood plains occupied interaxial areas. The model proposed for the Realitos and Mathis fluvial systems may aid in recognition of analogous ancient depositional systems. In addition, since facies characteristics exercise broad controls on Goliad uranium mineralization, the proposed depositional models aid in defining target zones for Goliad uranium exploration

  6. Temperature profiles from STD casts from the Spanish Sahara from NOAA Ship OCEANOGRAPHER as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 1974-03-08 to 1974-05-01 (NODC Accession 9800112)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from STD casts off the Spanish Sahara from NOAA Ship OCEANOGRAPHER from 08 March 1974 to 01 May 1974. Data were collected by the...

  7. Temperature profiles from mechanical bathythermograph (MBT) casts from the USS ENGAGE in the Coastal Waters of California in support of the Fleet Observations of Oceanographic Data (FLOOD) project from 1963-12-01 to 1963-12-03 (NODC Accession 6300449)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MBT data were collected from the USS ENGAGE in support of the Fleet Observations of Oceanographic Data (FLOOD) project. Data were collected by US Navy; Ships of...

  8. Temperature profiles from mechanical bathythermograph (MBT) casts from the USS LOYALTY in the Coastal Waters of Hawaii in support of the Fleet Observations of Oceanographic Data (FLOOD) project from 1962-06-12 to 1962-06-30 (NODC Accession 6200533)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MBT data were collected from the USS LOYALTY in support of the Fleet Observations of Oceanographic Data (FLOOD) project. Data were collected by US Navy; Ships of...

  9. Temperature profiles from mechanical bathythermograph (MBT) casts from the USS LOYALTY in the Coastal Waters of Hawaii in support of the Fleet Observations of Oceanographic Data (FLOOD) project from 1962-07-05 to 1962-07-24 (NODC Accession 6200532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MBT data were collected from the USS LOYALTY in support of the Fleet Observations of Oceanographic Data (FLOOD) project. Data were collected by US Navy; Ships of...

  10. Oceanographic and surface meteorological data collected from station Port of Albany weather/hydro by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2011-01-04 to 2017-07-31 (NCEI Accession 0163364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163364 contains oceanographic and surface meteorological data collected at Port of Albany weather/hydro, a fixed station in the Hudson River. These...

  11. Temperature profiles from mechanical bathythermograph (MBT) casts from the USS SKILL in the Coastal Waters of Florida and Gulf of Mexico in support of the Fleet Observations of Oceanographic Data (FLOOD) project from 1962-04-10 to 1962-04-12 (NODC Accession 6200751)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MBT data were collected from the USS SKILL in support of the Fleet Observations of Oceanographic Data (FLOOD) project. Data were collected by US Navy; Ships of...

  12. Oceanographic and surface meteorological data collected from station apachepier by Long Bay Hypoxia Monitoring Consortium (LBHMC) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the North Atlantic Ocean from 2014-02-13 to 2015-07-09 (NODC Accession 0118794)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Accession 0118794 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention (CF)...

  13. Temperature profiles from mechanical bathythermograph (MBT) casts from the USS GUIDE in the Coastal Waters of Hawaii in support of the Fleet Observations of Oceanographic Data (FLOOD) project from 1961-11-01 to 1961-11-02 (NODC Accession 6100196)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MBT data were collected from the USS GUIDE in support of the Fleet Observations of Oceanographic Data (FLOOD) project. Data were collected by US Navy; Ships of...

  14. Temperature profiles from mechanical bathythermograph (MBT) casts from the USS JACANA in the Caribbean Sea and Coastal Waters of Florida in support of the Fleet Observations of Oceanographic Data (FLOOD) project from 1962-04-28 to 1962-05-03 (NODC Accession 6200512)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MBT data were collected from the USS JACANA in support of the Fleet Observations of Oceanographic Data (FLOOD) project. Data were collected by US Navy; Ships of...

  15. Oceanographic and surface meteorological data collected from station Schodack Island hydro/weather by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2008-04-25 to 2017-05-31 (NCEI Accession 0163416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163416 contains oceanographic and surface meteorological data collected at Schodack Island hydro/weather, a fixed station in the Hudson River. These...

  16. Oceanographic Station and CTD data from the EASTWARD from the SE Pacific (limit-140 W) as part of the International Decade of Ocean Exploration / Coastal Upwelling Ecosystems Analysis (IDOE/CUEA) from 1976-07-23 to 1976-08-16 (NODC Accession 7800803)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic Station and CTD data were collected from the EASTWARD from the SE Pacific (limit-140 W) from 23 July 1976 to 16 August 1976. Data were collected by...

  17. Oceanographic and surface meteorological data collected from station 2ndave by Long Bay Hypoxia Monitoring Consortium (LBHMC) and assembled by Southeast Coastal Ocean Observing Regional Association (SECOORA) in the North Atlantic Ocean from 2014-02-13 to 2015-06-01 (NODC Accession 0118793)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0118793 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  18. Oceanographic and surface meteorological data collected from station PR1: South of Caja de Muertos Island by University of Maine and assembled by the Caribbean Coastal Ocean Observing System (CariCOOS) in the Caribbean Sea from 2009-06-09 to 2011-04-06 (NCEI Accession 0163740)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163740 contains oceanographic and surface meteorological data in netCDF formatted files, which follow the Climate and Forecast metadata convention...

  19. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    Science.gov (United States)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  20. Artificial Intelligence-Based Models for the Optimal and Sustainable Use of Groundwater in Coastal Aquifers

    Science.gov (United States)

    Sreekanth, J.; Datta, Bithin

    2011-07-01

    Overexploitation of the coastal aquifers results in saltwater intrusion. Once saltwater intrusion occurs, it involves huge cost and long-term remediation measures to remediate these contaminated aquifers. Hence, it is important to have strategies for the sustainable use of coastal aquifers. This study develops a methodology for the optimal management of saltwater intrusion prone aquifers. A linked simulation-optimization-based management strategy is developed. The methodology uses genetic-programming-based models for simulating the aquifer processes, which is then linked to a multi-objective genetic algorithm to obtain optimal management strategies in terms of groundwater extraction from potential well locations in the aquifer.

  1. Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters

    DEFF Research Database (Denmark)

    Takeyama, Yuko; Ohsawa, Teruo; Kozai, Katsutoshi

    2013-01-01

    This work discusses the accuracies of geophysical model functions (GMFs) for retrieval of sea surface wind speed from satellite-borne Synthetic Aperture Radar (SAR) images in Japanese coastal waters characterized by short fetches and variable atmospheric stability conditions. In situ observations...

  2. A Non-Equilibrium Sediment Transport Model for Coastal Inlets and Navigation Channels

    Science.gov (United States)

    2011-01-01

    combined, and therefore, there is one less partial differential equation to be solved. The short-term channel infilling and migration in two laboratory...oscillatory sheet flow: Experiments and bed load modeling. Coastal Engineering, 46(1), 61-87. Exner, F. M. 1925. Uber die Wechselwirkung zwischen

  3. Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina

    Science.gov (United States)

    D.M. Amatya; M.K. Jha.

    2011-01-01

    Modeling the hydrology of low�]gradient forested watersheds on shallow, poorly drained soils of the coastal plain is a challenging task due to complexities in watershed delineation, microtopography, evapotranspiration, runoff generation processes and pathways including flooding and submergence caused by tropical storms, and complexity of vegetation species....

  4. St. Thomas and St. John, U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1/3 arc-second St. Thomas and St. John, U.S. Virgin Islands Coastal Digital Elevation Model will be used to support NOAA's tsunami forecast system and for...

  5. Integration of coastal inundation modeling from storm tides to individual waves

    Science.gov (United States)

    Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai

    2014-11-01

    Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-tide model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-tide models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm tide for modeling of phase-resolving surf and swash-zone processes as well as combined tide, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.

  6. A tsunami early warning system for the coastal area modeling

    Science.gov (United States)

    Soebroto, Arief Andy; Sunaryo, Suhartanto, Ery

    2015-04-01

    The tsunami disaster is a potential disaster in the territory of Indonesia. Indonesia is an archipelago country and close to the ocean deep. The tsunami occurred in Aceh province in 2004. Early prevention efforts have been carried out. One of them is making "tsunami buoy" which has been developed by BPPT. The tool puts sensors on the ocean floor near the coast to detect earthquakes on the ocean floor. Detection results are transmitted via satellite by a transmitter placed floating on the sea surface. The tool will cost billions of dollars for each system. Another constraint was the transmitter theft "tsunami buoy" in the absence of guard. In this study of the system has a transmission system using radio frequency and focused on coastal areas where costs are cheaper, so that it can be applied at many beaches in Indonesia are potentially affected by the tsunami. The monitoring system sends the detection results to the warning system using a radio frequency with a capability within 3 Km. Test results on the sub module sensor monitoring system generates an error of 0.63% was taken 10% showed a good quality sensing. The test results of data transmission from the transceiver of monitoring system to the receiver of warning system produces 100% successful delivery and reception of data. The test results on the whole system to function 100% properly.

  7. The Common Oceanographer: Crowdsourcing the Collection of Oceanographic Data

    DEFF Research Database (Denmark)

    M. Lauro, Federico; Senstius, Jacob; Cullen, Jay

    2014-01-01

    We live on a vast, underexplored planet that is largely ocean. Despite modern technology, Global Positioning System (GPS) navigation, and advanced engineering of ocean vessels, the ocean is unforgiving, especially in rough weather. Coastal ocean navigation, with risks of running aground and incon......We live on a vast, underexplored planet that is largely ocean. Despite modern technology, Global Positioning System (GPS) navigation, and advanced engineering of ocean vessels, the ocean is unforgiving, especially in rough weather. Coastal ocean navigation, with risks of running aground...

  8. Coastal circulation and water-column properties in the War in the Pacific National Historical Park, Guam: measurements and modeling of waves, currents, temperature, salinity, and turbidity, April-August 2012

    Science.gov (United States)

    Storlazzi, Curt D.; Cheriton, Olivia M.; Lescinski, Jamie M.R.; Logan, Joshua B.

    2014-01-01

    The U.S. Geological Survey (USGS) Pacific Coastal and Marine Science Center (PCMSC) initiated an investigation in the National Park Service’s (NPS) War in the Pacific National Historical Park (WAPA) to provide baseline scientific information on coastal circulation and water-column properties along west-central Guam, focusing on WAPA’s Agat Unit, as it relates to the transport and settlement of coral larvae, fish, and other marine organisms. The oceanographic data and numerical circulation modeling results from this study demonstrate that circulation in Agat Bay was strongly driven by winds and waves at longer (>1 day) timescales and by the tides at shorter (Turbidity was relatively low in Agat Bay and was similar to levels measured elsewhere along west-central Guam. The numerical circulation modeling results provide insight into the potential paths of buoyant material released from a series of locations along west-central Guam under summer non-trade wind forcing conditions that characterize coral spawning events. This information may be useful in evaluating the potential zones of influence/impact resulting from transport by surface currents of material released from these select locations.

  9. A simulation-optimization model for effective water resources management in the coastal zone

    Science.gov (United States)

    Spanoudaki, Katerina; Kampanis, Nikolaos

    2015-04-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection

  10. The challenges of coastal oceanography. Prediction limits and new applications based on Sentinel data

    Science.gov (United States)

    Sánchez-Arcilla, Agustín; Carniel, Sandro; Badger, Merete; Bidlot, Jean; Boye Hansen, Lars; Bolaños-Sanchez, Rodolfo; Cipollini, Paolo; Espino, Manuel; Marcello Miglietta, Mario; Saulter, Andy; Staneva, Joanna

    2017-04-01

    The increasing quality and quantity (resolution in space, coverage in time, combinations of sensors in the Sentinel family) of information provided by Copernicus offer the possibility to analyse and predict coastal meteo-oceanography at an unprecedented level. This is a unique opportunity to develop the Copernicus coastal dimension to tackle the pressures of increasing population and activities. The combination of ocean/atmosphere/land observations from the Sentinel (S) 1/2/3, aligned with the availability of an increasing number of high-resolution numerical simulations (e.g. wave and current fields) in the Copernicus Marine Environment Monitoring Service (CMEMS) catalogue, should allow users to access proven representations of the coastal environment at a new level of understanding (e.g. wave diffraction at coastal "obstacles"), coupling (e.g. incorporating the land discharge into the coastal sea) and reliability for applications (e.g. hazards for coastal navigation). By adding periodic bathymetric up-dating and incorporating new assimilation routines it will be possible to achieve a new level of analysis for coastal seas. In the paper we shall present the CEASELESS project that addresses the multiple scales coexisting in littoral areas by developing new shallow water parameterizations, introducing them into coupled model suites (wind-wave-surge-current-land discharge) and producing new standards for coastal simulations and analyses. This will demonstrate the technical feasibility of an operational coastal service. The set of derived products will be ingested into the users' work routines, proving the economic feasibility of such a coastal extension. The level of conflicts in squeezed coastal zones, expected to grow in the face of climate change, will, thus, benefit directly from CEASELESS, establishing tangible contributions for a wide range of economic sectors. The mutual validation of satellite data, numerical results and in-situ observations will generate

  11. An Integrated Numerical Model for the Design of Coastal Protection Structures

    Directory of Open Access Journals (Sweden)

    Theophanis V. Karambas

    2017-10-01

    Full Text Available In the present work, an integrated coastal engineering numerical model is presented. The model simulates the linear wave propagation, wave-induced circulation, and sediment transport and bed morphology evolution. It consists of three main modules: WAVE_L, WICIR, and SEDTR. The nearshore wave transformation module WAVE_L (WAVE_Linear is based on the hyperbolic-type mild slope equation and is valid for a compound linear wave field near coastal structures where the waves are subjected to the combined effects of shoaling, refraction, diffraction, reflection (total and partial, and breaking. Radiation stress components (calculated from WAVE_L drive the depth averaged circulation module WICIR (Wave Induced CIRculation for the description of the nearshore wave-induced currents. Sediment transport and bed morphology evolution in the nearshore, surf, and swash zone are simulated by the SEDTR (SEDiment TRansport module. The model is tested against experimental data to study the effect of representative coastal protection structures and is applied to a real case study of a coastal engineering project in North Greece, producing accurate and consistent results for a versatile range of layouts.

  12. Agricultural livelihoods in coastal Bangladesh under climate and environmental change--a model framework.

    Science.gov (United States)

    Lázár, Attila N; Clarke, Derek; Adams, Helen; Akanda, Abdur Razzaque; Szabo, Sylvia; Nicholls, Robert J; Matthews, Zoe; Begum, Dilruba; Saleh, Abul Fazal M; Abedin, Md Anwarul; Payo, Andres; Streatfield, Peter Kim; Hutton, Craig; Mondal, M Shahjahan; Moslehuddin, Abu Zofar Md

    2015-06-01

    Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of

  13. Understanding the Hydrodynamics of a Coastal Wetland with an Integrated Distributed Model

    Science.gov (United States)

    Zhang, Y.; Li, W.; Sun, G.

    2017-12-01

    Coastal wetlands linking ocean and terrestrial landscape provide important ecosystem services including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitats. Wetland hydrology is the major driving force for wetland formation, structure, function, and ecosystem services. The dynamics of wetland hydrology and energy budget are strongly affected by frequent inundation and drying of wetland soil and vegetation due to tide, sea level rise (SLR) and climatic variability (change). However, the quantitative representation of how the energy budget and groundwater variation of coastal wetlands respond to frequent water level fluctuation is limited, especially at regional scales. This study developed a physically based distributed wetland hydrological model by integrating coastal processes and considering the inundation influence on energy budget and ET. Analysis using in situ measurements and satellite data for a coastal wetland in North Carolina confirm that the model sufficiently captures the wetland hydrologic behaviors. The validated model was then applied to examine the wetland hydrodynamics under a 30-year historical climate forcing (1985-2014) for the wetland region. The simulation reveals that 43% of the study area has inundation events, 63% of which has a frequency higher than 50% each year. The canopy evaporation and transpiration decline dramatically when the inundation level exceeds the canopy height. Additionally, inundation causes about 10% increase of the net shortwave radiation. This study also demonstrates that the critical wetland zones highly influenced by the coastal processes spans 300-800 m from the coastline. The model developed in the study offers a new tool for understanding the complex wetland hydrodynamics in response to natural and human-induced disturbances at landscape to regional scales.

  14. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Honolulu Weather Forecast Office (HFO WFO) - Lanai

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  15. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Guam Weather Forecast Office (GUM WFO) - Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  16. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Boston Weather Forecast Office (BOX WFO) - Massachusetts and Rhode Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  17. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Caribou Weather Forecast Office (CAR WFO) - Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  18. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Honolulu Weather Forecast Office (HFO WFO) - Hawaii Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  19. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Honolulu Weather Forecast Office (HFO WFO) - Maui

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  20. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: National Weather Service Forecast Office - Charleston (CHS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer...

  1. Estimating total alkalinity for coastal ocean acidification monitoring at regional to continental scales in Australian coastal waters

    KAUST Repository

    Baldry, Kimberlee; Hardman-Mountford, Nick; Greenwood, Jim

    2017-01-01

    Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity (TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, threatening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate concentration. We find that regionally parameterised models capture local variability better than more general coastal or open ocean parameterised models. The strongest contribution to model improvement came through incorporating temperature as an input variable as well as salinity. Further improvements were achieved through the incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and nitrate constituting the minimum model in most cases. These results provide an approach that can be applied to satellite Earth observation and autonomous in situ platforms to improve synoptic scale estimation of TA in coastal waters.

  2. Estimating total alkalinity for coastal ocean acidification monitoring at regional to continental scales in Australian coastal waters

    KAUST Repository

    Baldry, Kimberlee

    2017-06-01

    Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity (TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, threatening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate concentration. We find that regionally parameterised models capture local variability better than more general coastal or open ocean parameterised models. The strongest contribution to model improvement came through incorporating temperature as an input variable as well as salinity. Further improvements were achieved through the incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and nitrate constituting the minimum model in most cases. These results provide an approach that can be applied to satellite Earth observation and autonomous in situ platforms to improve synoptic scale estimation of TA in coastal waters.

  3. Modelling of sediment transport at Muria peninsula coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman

    2010-01-01

    Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)

  4. Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea: what complexity is required in the coastal zone?

    Directory of Open Access Journals (Sweden)

    Marion Fraysse

    Full Text Available Terrestrial inputs (natural and anthropogenic from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C and nitrogen (N cycles and a second model that also considers the phosphorus (P cycle. Realistic simulations were performed for a period of 5 years (2007-2011. The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

  5. Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea): what complexity is required in the coastal zone?

    Science.gov (United States)

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

  6. Study of coastal line change modelling around the NPP site of Muria Peninsula

    International Nuclear Information System (INIS)

    Tumpal Pahala Tua Sinaga; Henu Susiati

    2007-01-01

    Coastal areas always changing due to two energies coming sea and land congregate. The changes are the forward-backward coastal lines alteration. The coastal lines alteration is caused by coastal sediment transport such as Long shore Sediment Transport and Cross-shore Sediment Transport. This research was aimed to model the sediment transport rate, direction and sediment transport volume and also to investigate the abrasion and accretion areas in Muria Peninsula. The method used in this sampling was purposive sampling method and data processing using NEMOS software. Overall result from the sediment transport model in Semenanjung Muria, the sediment transport rate were Q + =2471331.00 m 3 /year, Q - =-1325456.80 m 3 /year, Q gs =3796792.60 m 3 /year and Q net =1145874.40 m 3 /year; average abrasion and accretion distance were -0.982 m/year and 0.770 m/year, transport volume to right = 13431.15 m 3 /year and to left = -7203.53 m 3 /year. (author)

  7. A model to calculate exposure from radioactive discharges into the coastal waters of Northern Europe

    International Nuclear Information System (INIS)

    Clark, M.J.; Grimwood, P.D.; Camplin, W.C.

    1980-11-01

    A regional marine model is described which can be used to estimate the exposure of populations as a result of the discharge of radioactive effluents into the coastal waters of Northern Europe. The model simulates the dispersion of radionuclides in marine waters, Their interaction with marine sediments and the concentration mechanisms occurring in seafoods. There is a local/regional interface defined in the modelling approach whereby releases are assumed to first enter a local marine compartment prior to widespread dispersion in coastal waters. Depletion mechanisms operate within both the local and regional environments influencing the fraction of radionuclide release which contributes to collective exposure. General results of the regional marine model are presented in a form which can be combined with independent local marine models; collective intakes per unit release of various radionuclides into coastal waters are given for a series of integration times. For caesium-137 and plutonium-239 collective effective dose equivalent commitments have been calculated using a defined local marine model. Some general conclusions have been drawn from the results and there is some discussion of the various features of the modelling approach. (author)

  8. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    Science.gov (United States)

    Wilkin, John L.; Rosenfeld, Leslie; Allen, Arthur; Baltes, Rebecca; Baptista, Antonio; He, Ruoying; Hogan, Patrick; Kurapov, Alexander; Mehra, Avichal; Quintrell, Josie; Schwab, David; Signell, Richard; Smith, Jane

    2017-01-01

    This paper outlines strategies that would advance coastal ocean modelling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the US Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of US-based researchers with a cross-section of coastal oceanography and ocean modelling expertise and community representation drawn from Regional and US Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation, and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modelling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3–8-year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, US Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal–academic partnerships benefiting IOOS stakeholders and end users.

  9. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    Science.gov (United States)

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical

  10. A review on the integration of artificial intelligence into coastal modeling.

    Science.gov (United States)

    Chau, Kwokwing

    2006-07-01

    With the development of computing technology, mechanistic models are often employed to simulate processes in coastal environments. However, these predictive tools are inevitably highly specialized, involving certain assumptions and/or limitations, and can be manipulated only by experienced engineers who have a thorough understanding of the underlying theories. This results in significant constraints on their manipulation as well as large gaps in understanding and expectations between the developers and practitioners of a model. The recent advancements in artificial intelligence (AI) technologies are making it possible to integrate machine learning capabilities into numerical modeling systems in order to bridge the gaps and lessen the demands on human experts. The objective of this paper is to review the state-of-the-art in the integration of different AI technologies into coastal modeling. The algorithms and methods studied include knowledge-based systems, genetic algorithms, artificial neural networks, and fuzzy inference systems. More focus is given to knowledge-based systems, which have apparent advantages over the others in allowing more transparent transfers of knowledge in the use of models and in furnishing the intelligent manipulation of calibration parameters. Of course, the other AI methods also have their individual contributions towards accurate and reliable predictions of coastal processes. The integrated model might be very powerful, since the advantages of each technique can be combined.

  11. Modelling Coastal Cliff Recession Based on the GIM-DDD Method

    Science.gov (United States)

    Gong, Bin; Wang, Shanyong; Sloan, Scott William; Sheng, Daichao; Tang, Chun'an

    2018-04-01

    The unpredictable and instantaneous collapse behaviour of coastal rocky cliffs may cause damage that extends significantly beyond the area of failure. Gravitational movements that occur during coastal cliff recession involve two major stages: the small deformation stage and the large displacement stage. In this paper, a method of simulating the entire progressive failure process of coastal rocky cliffs is developed based on the gravity increase method (GIM), the rock failure process analysis method and the discontinuous deformation analysis method, and it is referred to as the GIM-DDD method. The small deformation stage, which includes crack initiation, propagation and coalescence processes, and the large displacement stage, which includes block translation and rotation processes during the rocky cliff collapse, are modelled using the GIM-DDD method. In addition, acoustic emissions, stress field variations, crack propagation and failure mode characteristics are further analysed to provide insights that can be used to predict, prevent and minimize potential economic losses and casualties. The calculation and analytical results are consistent with previous studies, which indicate that the developed method provides an effective and reliable approach for performing rocky cliff stability evaluations and coastal cliff recession analyses and has considerable potential for improving the safety and protection of seaside cliff areas.

  12. Long-term Morphological Modeling at Coastal Inlets

    Science.gov (United States)

    2015-05-15

    that of Humboldt Bay, CA. The model reproduces reasonably well several geomorphic and hydrodynamic features of the inlet at Humboldt Bay. The...geometries, and model setup (e.g., sediment transport formulas) to investigate the controlling geomorphic parameters and the applicability of the CMS...2015 9 The model reproduces the general geomorphic features of Humboldt Bay. The ebb shoal volume is in the lower range of the estimated amount

  13. Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang

    2010-01-01

    Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolution (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.

  14. Southeast Oahu Coastal Hydrodynamic Modeling with ADCIRC and STWAVE

    Science.gov (United States)

    2008-07-01

    technique, nearshore conditions are extracted from the wave model results for each simulation. A transforma- tion correlation between the offshore and...21 Figure 19. Location of extracted STWAVE model results...Figure 4. Wave roses for ADCP #1 (left) and #2 (right). Figure 5. GPS current drogue (left) with traditional drifter (behind grapefruit ) and

  15. Mooring Line for an Oceanographic Buoy System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A mooring line for an oceanographic buoy system includes four sections. The first section is a protected cable that is connectable to the buoy. The second section is...

  16. Role of LAN in oceanographic information management

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Bhargava, R.M.S.

    A powerful and efficient computer system is needed for rapid exchange of data and information from scientists of different divisions to accelerate information management activities of Indian National Oceanographic Data Centre (INODC) of National...

  17. Japanese Oceanographic Data Center Japan Land Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (4,381 records) were compiled by the Japanese Oceanographic Data Center. This data base was received in July 1988. The data are in the...

  18. Process-based coastal erosion modeling for Drew Point (North Slope, Alaska)

    Science.gov (United States)

    Ravens, Thomas M.; Jones, Benjamin M.; Zhang, Jinlin; Arp, Christopher D.; Schmutz, Joel A.

    2012-01-01

    A predictive, coastal erosion/shoreline change model has been developed for a small coastal segment near Drew Point, Beaufort Sea, Alaska. This coastal setting has experienced a dramatic increase in erosion since the early 2000’s. The bluffs at this site are 3-4 m tall and consist of ice-wedge bounded blocks of fine-grained sediments cemented by ice-rich permafrost and capped with a thin organic layer. The bluffs are typically fronted by a narrow (∼ 5  m wide) beach or none at all. During a storm surge, the sea contacts the base of the bluff and a niche is formed through thermal and mechanical erosion. The niche grows both vertically and laterally and eventually undermines the bluff, leading to block failure or collapse. The fallen block is then eroded both thermally and mechanically by waves and currents, which must occur before a new niche forming episode may begin. The erosion model explicitly accounts for and integrates a number of these processes including: (1) storm surge generation resulting from wind and atmospheric forcing, (2) erosional niche growth resulting from wave-induced turbulent heat transfer and sediment transport (using the Kobayashi niche erosion model), and (3) thermal and mechanical erosion of the fallen block. The model was calibrated with historic shoreline change data for one time period (1979-2002), and validated with a later time period (2002-2007).

  19. Delft Dashboard: a quick setup tool for coastal and estuarine models

    Science.gov (United States)

    Nederhoff, C., III; Van Dongeren, A.; Van Ormondt, M.; Veeramony, J.

    2016-02-01

    We developed easy-to-use Delft DashBoard (DDB) software for the rapid set-up of coastal and estuarine hydrodynamic and basic morphological numerical models. In the "Model Maker" toolbox, users have the capability to set-up Delft3D models, in a minimal amount of time (in the order of a hour), for any location in the world. DDB draws upon public internet data sources of bathymetry and tidesto construct the model. With additional toolboxes, these models can be forced with parameterized hurricane wind fields, uplift of the sea surface due to tsunamis nested in publically available ocean models and forced with meteo data (wind speed, pressure, temperature) In this presentation we will show the skill of a model which is setup with Delft Dashboard and compare it to well-calibrated benchmark models. These latter models have been set-up using detailed input data and boundary conditions. We have tested the functionality of Delft DashBoard and evaluate the performance and robustness of the DDB model system on a variety of cases, ranging from a coastal to basin models. Furthermore, we have performed a sensitivity study to investigate the most critical physical and numerical processes. The software can benefit operational modellers, as well as scientists and consultants.

  20. Complexities in coastal sediment transport studies by numerical modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Ilangovan, D.; ManiMurali, R.

    equations arrived based on scientific principles as all natural phenomena are governed by certain rules which can be explained by scientific principles. Efficiency of numerical modeling greatly depends on quality of input parameters. When input parameters...

  1. Bermuda 3 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 3 arc-second Bermuda DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the islands of Bermuda...

  2. U.S. Virgin Islands Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1 arc-second Virgin Islands DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the Virgin...

  3. Bermuda 1 arc-second Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1 arc-second Bermuda DEM will be used to support NOAA's tsunami forecast system and for tsunami inundation modeling. This DEM encompasses the islands of Bermuda...

  4. Modelling study of sea breezes in a complex coastal environment

    Science.gov (United States)

    Cai, X.-M.; Steyn, D. G.

    This study investigates a mesoscale modelling of sea breezes blowing from a narrow strait into the lower Fraser valley (LFV), British Columbia, Canada, during the period of 17-20 July, 1985. Without a nudging scheme in the inner grid, the CSU-RAMS model produces satisfactory wind and temperature fields during the daytime. In comparison with observation, the agreement indices for surface wind and temperature during daytime reach about 0.6 and 0.95, respectively, while the agreement indices drop to 0.4 at night. In the vertical, profiles of modelled wind and temperature generally agree with tethersonde data collected on 17 and 19 July. The study demonstrates that in late afternoon, the model does not capture the advection of an elevated warm layer which originated from land surfaces outside of the inner grid. Mixed layer depth (MLD) is calculated from model output of turbulent kinetic energy field. Comparison of MLD results with observation shows that the method generates a reliable MLD during the daytime, and that accurate estimates of MLD near the coast require the correct simulation of wind conditions over the sea. The study has shown that for a complex coast environment like the LFV, a reliable modelling study depends not only on local surface fluxes but also on elevated layers transported from remote land surfaces. This dependence is especially important when local forcings are weak, for example, during late afternoon and at night.

  5. Modeling Waves and Coastal Flooding along the Connecticut Coast

    Science.gov (United States)

    Cifuentes-Lorenzen, A.; Howard-Strobel, M. M.; Fake, T.; McCardell, G.; O'Donnell, J.; Asthita, M.

    2015-12-01

    We have used a hydrodynamic- wave coupled numerical model (FVCOM-SWAVE) to simulate flooding at the Connecticut coastline during severe storms. The model employed a one-way nesting scheme and an unstructured grid. The parent domain spanned most of the southern New England shelf and the fine resolution grid covered Long Island Sound (LIS) and extended across the Connecticut coast to the 10m elevation contour. The model results for sea level, current and wave statistics from the parent grid have been tested with data from several field campaigns at different locations spanning the western, central and eastern portions of LIS. Waves are fetch limited and improvements to the model-data comparison required modifications to spectral coefficients in the wave model. Finally, the nested results were validated with two field campaigns in shallow water environments (i.e. New Haven and Old Saybrook). To assess the spatial variability of storm wave characteristics the domain was forced with the hindcast winds obtained from meteorological models (NAM and WRF) for 13 severe weather events that affected LIS in the past 15 years. We have also forced the system with a simulation of Superstorm Sandy in a warmer climate to assess the impact a climate change on the character of flooding. The nested grid is currently being used to map flooding risks under severe weather events including the effects of precipitation on river flow and discharge.

  6. Sensitivity of the coastal tsunami simulation to the complexity of the 2011 Tohoku earthquake source model

    Science.gov (United States)

    Monnier, Angélique; Loevenbruck, Anne; Gailler, Audrey; Hébert, Hélène

    2016-04-01

    The 11 March 2011 Tohoku-Oki event, whether earthquake or tsunami, is exceptionally well documented. A wide range of onshore and offshore data has been recorded from seismic, geodetic, ocean-bottom pressure and sea level sensors. Along with these numerous observations, advance in inversion technique and computing facilities have led to many source studies. Rupture parameters inversion such as slip distribution and rupture history permit to estimate the complex coseismic seafloor deformation. From the numerous published seismic source studies, the most relevant coseismic source models are tested. The comparison of the predicted signals generated using both static and cinematic ruptures to the offshore and coastal measurements help determine which source model should be used to obtain the more consistent coastal tsunami simulations. This work is funded by the TANDEM project, reference ANR-11-RSNR-0023-01 of the French Programme Investissements d'Avenir (PIA 2014-2018).

  7. Discriminating the biophysical impacts of coastal upwelling and mud banks along the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Karnan, C.; Jyothibabu, R.; Arunpandi, N.; Jagadeesan, L.; Muraleedharan, K.R.; Pratihary, A.K.; Balachandran, K.K.; Naqvi, S.W.A.

    Coastal upwelling and mud banks are two oceanographic processes concurrently operating along certain stretches of the southwest (Kerala) coast of India during the Southwest Monsoon period (June-September), facilitating significant enhancement...

  8. Surrogate modeling of joint flood risk across coastal watersheds

    Science.gov (United States)

    Bass, Benjamin; Bedient, Philip

    2018-03-01

    This study discusses the development and performance of a rapid prediction system capable of representing the joint rainfall-runoff and storm surge flood response of tropical cyclones (TCs) for probabilistic risk analysis. Due to the computational demand required for accurately representing storm surge with the high-fidelity ADvanced CIRCulation (ADCIRC) hydrodynamic model and its coupling with additional numerical models to represent rainfall-runoff, a surrogate or statistical model was trained to represent the relationship between hurricane wind- and pressure-field characteristics and their peak joint flood response typically determined from physics based numerical models. This builds upon past studies that have only evaluated surrogate models for predicting peak surge, and provides the first system capable of probabilistically representing joint flood levels from TCs. The utility of this joint flood prediction system is then demonstrated by improving upon probabilistic TC flood risk products, which currently account for storm surge but do not take into account TC associated rainfall-runoff. Results demonstrate the source apportionment of rainfall-runoff versus storm surge and highlight that slight increases in flood risk levels may occur due to the interaction between rainfall-runoff and storm surge as compared to the Federal Emergency Management Association's (FEMAs) current practices.

  9. Nitrogen Cycling in Permeable Sediments: Process-based Models for Streams and the Coastal Ocean

    OpenAIRE

    Azizian, Morvarid

    2017-01-01

    Bioavailable forms of nitrogen, such as nitrate, are necessary for aquatic ecosystem productivity. Excess nitrate in aquatic systems, however, can adversely affect ecosystems and degrade both surface water and groundwater. Some of this excess nitrate can be removed in the sediments that line the bottom of rivers and coastal waters, through the exchange of water between surface water and groundwater (known as hyporheic exchange).Several process-based models have been proposed for estimating ni...

  10. The future of coastal upwelling in the Humboldt current from model projections

    Science.gov (United States)

    Oyarzún, Damián; Brierley, Chris M.

    2018-03-01

    The Humboldt coastal upwelling system in the eastern South Pacific ocean is one of the most productive marine ecosystems in the world. A weakening of the upwelling activity could lead to severe ecological impacts. As coastal upwelling in eastern boundary systems is mainly driven by wind stress, most studies so far have analysed wind patterns change through the 20th and 21st Centuries in order to understand and project the phenomenon under specific forcing scenarios. Mixed results have been reported, and analyses from General Circulation Models have suggested even contradictory trends of wind stress for the Humboldt system. In this study, we analyse the ocean upwelling directly in 13 models contributing to phase 5 of the Coupled Model Intercomparison Project (CMIP5) in both the historical simulations and an extreme climate change scenario (RCP8.5). The upwelling is represented by the upward ocean mass flux, a newly-included variable that represents the vertical water transport. Additionally, wind stress, ocean stratification, Ekman layer depth and thermocline depth were also analysed to explore their interactions with coastal upwelling throughout the period studied. The seasonal cycle of coastal upwelling differs between the Northern and Southern Humboldt areas. At lower latitudes, the upwelling season spans most of the autumn, winter and spring. However, in the Southern Humboldt area the upwelling season takes place in spring and the summertime with downwelling activity in winter. This persists throughout the Historical and RCP8.5 simulations. For both the Northern and Southern Humboldt areas an increasing wind stress is projected. However, different trends of upwelling intensity are observed away from the sea surface. Whereas wind stress will continue controlling the decadal variability of coastal upwelling on the whole ocean column analysed (surface to 300 m depth), an increasing disconnect with upwelling intensity is projected below 100 m depth throughout the 21

  11. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    Science.gov (United States)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  12. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  13. Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-02-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007-Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  14. Variational Boussinesq model for simulation of coastal waves and tsunamis

    NARCIS (Netherlands)

    Adytia, D.; Adytia, Didit; van Groesen, Embrecht W.C.; Tan, Soon Keat; Huang, Zhenhua

    2009-01-01

    In this paper we describe the basic ideas of a so-called Variational Boussinesq Model which is based on the Hamiltonian structure of gravity surface waves. By using a rather simple approach to prescribe the profile of vertical fluid potential in the expression for the kinetic energy, we obtain a set

  15. Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment

    Science.gov (United States)

    Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe

    2018-01-01

    In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.

  16. Step-up multiple regression model to compute Chlorophyll a in the coastal waters off Cochin, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Jayalakshmy, K.V.; Laluraj, C.M.; Nair, M.; Joseph, T.; Sheeba, P.

    The interaction effects of abiotic processes in the production of phytoplankton in a coastal marine region off Cochin are evaluated using multiple regression models. The study shows that chlorophyll production is not limited by nutrients...

  17. Coastal aquifer management under parameter uncertainty: Ensemble surrogate modeling based simulation-optimization

    Science.gov (United States)

    Janardhanan, S.; Datta, B.

    2011-12-01

    Surrogate models are widely used to develop computationally efficient simulation-optimization models to solve complex groundwater management problems. Artificial intelligence based models are most often used for this purpose where they are trained using predictor-predictand data obtained from a numerical simulation model. Most often this is implemented with the assumption that the parameters and boundary conditions used in the numerical simulation model are perfectly known. However, in most practical situations these values are uncertain. Under these circumstances the application of such approximation surrogates becomes limited. In our study we develop a surrogate model based coupled simulation optimization methodology for determining optimal pumping strategies for coastal aquifers considering parameter uncertainty. An ensemble surrogate modeling approach is used along with multiple realization optimization. The methodology is used to solve a multi-objective coastal aquifer management problem considering two conflicting objectives. Hydraulic conductivity and the aquifer recharge are considered as uncertain values. Three dimensional coupled flow and transport simulation model FEMWATER is used to simulate the aquifer responses for a number of scenarios corresponding to Latin hypercube samples of pumping and uncertain parameters to generate input-output patterns for training the surrogate models. Non-parametric bootstrap sampling of this original data set is used to generate multiple data sets which belong to different regions in the multi-dimensional decision and parameter space. These data sets are used to train and test multiple surrogate models based on genetic programming. The ensemble of surrogate models is then linked to a multi-objective genetic algorithm to solve the pumping optimization problem. Two conflicting objectives, viz, maximizing total pumping from beneficial wells and minimizing the total pumping from barrier wells for hydraulic control of

  18. A modeling approach to assess coastal management effects on benthic habitat quality: a case study on coastal defense and navigability

    NARCIS (Netherlands)

    Cozzoli, F.; Smolders, S.; Eelkema, M.; Ysebaert, T.; Escavarage, V.; Temmerman, S.; Meire, P.; Herman, P.; Bouma, T.J.

    2017-01-01

    The natural coastal hydrodynamics and morphology worldwide is altered by human interventions such as embankments, shipping and dredging, which may have consequences for ecosystem functionality. To ensure long-term ecological sustainability, requires capability to predict long-term large-scale

  19. Oceanographic data at your fingertips: the SOCIB App for smartphones

    Science.gov (United States)

    Lora, Sebastian; Sebastian, Kristian; Troupin, Charles; Pau Beltran, Joan; Frontera, Biel; Gómara, Sonia; Tintoré, Joaquín

    2015-04-01

    The Balearic Islands Coastal Ocean Observing and Forecasting System (SOCIB, http://www.socib.es), is a multi-platform Marine Research Infrastructure that generates data from nearshore to the open sea in the Western Mediterranean Sea. In line with SOCIB principles of discoverable, freely available and standardized data, an application (App) for smartphones has been designed, with the objective of providing an easy access to all the data managed by SOCIB in real-time: underwater gliders, drifters, profiling buoys, research vessel, HF Radar and numerical model outputs (hydrodynamics and waves). The Data Centre, responsible for the aquisition, processing and visualisation of all SOCIB data, developed a REpresentational State Transfer (REST) application programming interface (API) called "DataDiscovery" (http://apps.socib.es/DataDiscovery/). This API is made up of RESTful web services that provide information on : platforms, instruments, deployments of instruments. It also provides the data themselves. In this way, it is possible to integrate SOCIB data in third-party applications, developed either by the Data Center or externally. The existence of a single point for the data distribution not only allows for an efficient management but also makes easier the concepts and data access for external developers, who are not necessarily familiar with the concepts and tools related to oceanographic or atmospheric data. The SOCIB App for Android (https://play.google.com/store/apps/details?id=com.socib) uses that API as a "data backend", in such a way that it is straightforward to manage which information is shown by the application, without having to modify and upload it again. The only pieces of information that do not depend on the services are the App "Sections" and "Screens", but the content displayed in each of them is obtained through requests to the web services. The API is not used only for the smartphone app: presently, most of SOCIB applications for data visualisation

  20. Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea

    Science.gov (United States)

    Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.

    2016-02-01

    The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.

  1. A computer model to forecast wetland vegetation changes resulting from restoration and protection in coastal Louisiana

    Science.gov (United States)

    Visser, Jenneke M.; Duke-Sylvester, Scott M.; Carter, Jacoby; Broussard, Whitney P.

    2013-01-01

    The coastal wetlands of Louisiana are a unique ecosystem that supports a diversity of wildlife as well as a diverse community of commercial interests of both local and national importance. The state of Louisiana has established a 5-year cycle of scientific investigation to provide up-to-date information to guide future legislation and regulation aimed at preserving this critical ecosystem. Here we report on a model that projects changes in plant community distribution and composition in response to environmental conditions. This model is linked to a suite of other models and requires input from those that simulate the hydrology and morphology of coastal Louisiana. Collectively, these models are used to assess how alternative management plans may affect the wetland ecosystem through explicit spatial modeling of the physical and biological processes affected by proposed modifications to the ecosystem. We have also taken the opportunity to advance the state-of-the-art in wetland plant community modeling by using a model that is more species-based in its description of plant communities instead of one based on aggregated community types such as brackish marsh and saline marsh. The resulting model provides an increased level of ecological detail about how wetland communities are expected to respond. In addition, the output from this model provides critical inputs for estimating the effects of management on higher trophic level species though a more complete description of the shifts in habitat.

  2. Some simple improvements to an emergency response model for use in complex coastal terrain

    International Nuclear Information System (INIS)

    Miller, N.L.

    1992-06-01

    The MACHWIND model (Meyers 1989) is one of a group of models used to compute regional wind fields from tower wind data and/or vertical wind profiles. The wind fields are in turn used to calculate atmospheric diffusion, to guide emergency responses. MACHWIND has performed acceptably in uniform terrain under steady, well mixed conditions. However, extension of the model to more complex situations is problematic. In coastal, hilly terrain like that near Vandenberg Air Force Base (VAFB) in southern California, calculations of the wind field can be enhanced significantly by several modifications to the original code. This report highlights the structure of MACHWIND and details the enhancements that were implemented

  3. Sea-level rise modeling handbook: Resource guide for coastal land managers, engineers, and scientists

    Science.gov (United States)

    Doyle, Thomas W.; Chivoiu, Bogdan; Enwright, Nicholas M.

    2015-08-24

    Global sea level is rising and may accelerate with continued fossil fuel consumption from industrial and population growth. In 2012, the U.S. Geological Survey conducted more than 30 training and feedback sessions with Federal, State, and nongovernmental organization (NGO) coastal managers and planners across the northern Gulf of Mexico coast to evaluate user needs, potential benefits, current scientific understanding, and utilization of resource aids and modeling tools focused on sea-level rise. In response to the findings from the sessions, this sea-level rise modeling handbook has been designed as a guide to the science and simulation models for understanding the dynamics and impacts of sea-level rise on coastal ecosystems. The review herein of decision-support tools and predictive models was compiled from the training sessions, from online research, and from publications. The purpose of this guide is to describe and categorize the suite of data, methods, and models and their design, structure, and application for hindcasting and forecasting the potential impacts of sea-level rise in coastal ecosystems. The data and models cover a broad spectrum of disciplines involving different designs and scales of spatial and temporal complexity for predicting environmental change and ecosystem response. These data and models have not heretofore been synthesized, nor have appraisals been made of their utility or limitations. Some models are demonstration tools for non-experts, whereas others require more expert capacity to apply for any given park, refuge, or regional application. A simplified tabular context has been developed to list and contrast a host of decision-support tools and models from the ecological, geological, and hydrological perspectives. Criteria were established to distinguish the source, scale, and quality of information input and geographic datasets; physical and biological constraints and relations; datum characteristics of water and land components

  4. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

    Science.gov (United States)

    Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul

    2017-05-01

    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.

  5. Seepage Flow Model and Deformation Properties of Coastal Deep Foundation Pit under Tidal Influence

    Directory of Open Access Journals (Sweden)

    Shu-chen Li

    2018-01-01

    Full Text Available As the coastal region is the most developed region in China, an increasing number of engineering projects are under construction in it in recent years. However, the quality of these projects is significantly affected by groundwater, which is influenced by tidal variations. Therefore, the regional groundwater dynamic characteristics under tidal impact and the spatiotemporal evolution of the seepage field must be considered in the construction of the projects. Then, Boussinesq function was introduced into the research to deduce the seepage equation under tidal influence for the coastal area. To determine the spatiotemporal evolution of the deep foundation pit seepage field and the coastal seepage field evolution model, numerical calculations based on changes in the tidal water level and seepage equation were performed using MATLAB. According to the developed model, the influence of the seepage field on the foundation pit supporting structure in the excavation process was analyzed through numerical simulations. The results of this research could be considered in design and engineering practice.

  6. A web GIS based integrated flood assessment modeling tool for coastal urban watersheds

    Science.gov (United States)

    Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.

    2014-03-01

    Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.

  7. MODELING OF OIL POLLUTION OF ARTIC SEA COASTAL AREAS

    Directory of Open Access Journals (Sweden)

    2017-01-01

    Full Text Available This article studies the elastic filtration oil drive of oil in a layer based on the estimation of risks of environmental oil pollution because of accidental releases. The model of oil spillage and resorption by the precoat is based on continuity equation and Darcy rule as well as on equations of state taking into account fluid compressibility due to pressure. Filtering area is a line between the precoat and air. Oil filtering area is limited by soil surface below and by free surface above, its equation is known beforehand and is to be defined. The case of soil pollution from the point source, which is the point of fracture of pipeline or borehole, is considered. Upper and approximate estimates of the oil pollution radius due to different types of underlying terrains and to oil characteristics as well as to environmental conditions. The dynamics of oil free sur- face depending on spillage radii is calculated and presented. The estimates of temporary duration of oil filtering by the pre- coat in terms of light ends and soil type are made. The thickness of the oil film and the square of the spill upon condition of constant speed of oil spillage, horizontal position of underlying terrain and the proximity of pressure to normal are deter- mined. For the numerical implementation of the model different cases of oil spillage were considered. Under given values of air temperature, soil porosity and filtration speed the pollution radii according to light end, the time from the moment of accident till the leakage suppression and the speed of oil spillage was calculated.

  8. A set of rapid-response models for pollutant dispersion assessments in southern Spain coastal waters

    International Nuclear Information System (INIS)

    Perianez, R.; Caravaca, F.

    2010-01-01

    Three rapid-response Lagrangian particle-tracking dispersion models have been developed for southern Spain coastal waters. The three domains cover the Gulf of Cadiz (Atlantic Ocean), the Alboran Sea (Mediterranean), and the Strait of Gibraltar with higher spatial resolution. The models are based on different hydrodynamic submodels, which are run in advance. Tides are calculated using a 2D barotropic model in the three cases. Models used to obtain the residual circulation depend on the physical oceanography of each region. Thus, two-layer models are applied to Gibraltar Strait and Alboran Sea and a 3D baroclinic model is used in the Gulf of Cadiz. Results from these models have been compared with observations to validate them and are then used by the particle-tracking models to calculate dispersion. Chemical, radioactive and oil spills may be simulated, incorporating specific processes for each kind of pollutant. Several application examples are provided.

  9. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades

    Science.gov (United States)

    Flower, Hilary; Rains, Mark; Fitz, Carl

    2017-11-01

    In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.

  10. Application of a hydrodynamic model to a coastal zone; Aplicacion de un modelo hidrodinamico en una zona costera

    Energy Technology Data Exchange (ETDEWEB)

    Rendon-Villalobos, J. Rodolfo; Vicente-Vidal, Francisco; Vicente-Vidal, Victor M [Centro de Investigaciones en Ciencia Aplicada y Tecnologia Avanzada, Cuernavaca, Morelos, Mexico (Mexico)

    1999-09-01

    This study describes the results of a numerical simulation of the hydrodynamic behavior of cooling water discharged into the sea from the Tuxpan Power Plant under two different meteorological and oceanographic conditions: case 1, southwesterly variable winds with an average velocity of 3 m s{sup -}1 and case II, northwesterly variable winds with an average velocity of 11.1 m s{sup -}1. The numerical simulations were made using a three-dimensional hydrodynamic model of coastal circulation and heat exchange. The southerly winds induce a sea surface circulation towards the north, which moves the discharged warm water away from the intake. The northerly winds, however, drive the hydrothermal effluent towards the intake. Comparisons between the numerical simulation results and field data show that the model correctly predicts the surface diffusion and dispersion of the hydrothermal effluents measured August 18 to 21, 1992 (case I) and November 24 to 27, 1992 (case II). The model predicts the extent of the areas impacted with cooling water with a precision of {+-}11%. For all the cases analyzed, the real size of the impacted areas that might have adverse effects on the marine ecosystems was not greater than 100 m{sup 2}. Thus, these possible adverse effects are considered to be of local significance only. The simulated vertical profiles of temperature show that the discharged cooling water remains mostly on the surface of the receiving water mass and reaches a maximum depth of 3.5 m. [Spanish] Este estudio describe los resultados de la simulacion numerica de comportamiento hidrodinamico de la descarga al mar del agua de enfriamiento de la Central de Potencia Tuxpan, bajo dos distintas condiciones ambientales meteorologicas y oceanograficas: caso I, viento variable de direccion del suroeste con intensidad promedio de 3 m s-1, y caso II, viento variable del noroeste con intensidad promedio de 11.1 m s-1. Las simulaciones numericas se realizaron mediante un modelo

  11. Usefulness of high resolution coastal models for operational oil spill forecast: the "Full City" accident

    Directory of Open Access Journals (Sweden)

    G. Broström

    2011-11-01

    Full Text Available Oil spill modeling is considered to be an important part of a decision support system (DeSS for oil spill combatment and is useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas, implying that low resolution basin scale ocean models are of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the "Full City" accident on the Norwegian south coast and compare operational simulations from three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws, but by applying ocean forcing data of higher resolution (1.5 km resolution, the model system shows results that compare well with observations. The study also shows that an ensemble of results from the three different models is useful when predicting/analyzing oil spill in coastal areas.

  12. Integrated socio-environmental modelling: A test case in coastal Bangladesh

    Science.gov (United States)

    Lazar, Attila

    2013-04-01

    Delta regions are vulnerable with their populations and ecosystems facing multiple threats in the coming decades through extremes of poverty, environmental and ecological stress and land degradation. External and internal processes initiate these threats/changes and results in for example water quality and health risk issues, declining agricultural productivity and sediment starvation all of which directly affecting the local population. The ESPA funded "Assessing Health, Livelihoods, Ecosystem Services and Poverty Alleviation In Populous Deltas" project (2012-16) aims to provide policy makers with the knowledge and tools to enable them to evaluate the effects of policy decisions on people's livelihoods. It considers coastal Bangladesh in the Ganges-Brahmaputra-Meghna Delta: one of the world's most dynamic and significant deltas. This is being done by a multidisciplinary and multinational team of policy analysts, social and natural scientists and engineers using a participatory, holistic approach to formally evaluate ecosystem services and poverty in the context of the wide range of changes that are occurring. An integrated model with relevant feedbacks is being developed to explore options for management strategies and policy formulation for ecosystem services, livelihoods and health in coastal Bangladesh. This requires the continuous engagement with stakeholders through the following steps: (1) system characterisation, (2) research question definition, (3) data and model identification, (4) model validation and (5) model application. This presentation will focus on the first three steps. Field-based social science and governance related research are on the way. The bio-physical models have been selected and some are already set up for the study area. These allow preliminary conceptualisation of the elements and linkages of the deltaic socio-environmental system and thus the preliminary structure of the integrated model. This presentation describes these steps

  13. A two-dimensional model of the passive coastal margin deep sedimentary carbon and methane cycles

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-08-01

    Full Text Available We present a new geologic-time and basin-spatial scale model of the continental margin methane cycle. The model, SpongeBOB, is used to simulate evolution of the carbon cycle in a passive sedimentary continental margin in response to changing oceanographic and geologic forcing over a time scale of 200 million years. The geochemistry of the sediment column is altered by the addition of vertical high-permeability channels intended to mimic the effects of heterogeneity in the real sediment column due to faults, and produces results consistent with measured pore-water tracers SO42− and 129I. Pore water dissolved inorganic carbon (DIC concentrations are consistent with chemical weathering (CaCO3 formation from igneous rocks at depth within the sediment column. The carbon isotopic composition of the DIC is consistent with a methane production efficiency from particulate organic carbon (POC of 50%, which is somewhat lower than redox balance with the H / C of organic matter in the model. The hydrate inventory in the model is somewhat less sensitive to temperature than our previous results with a one-dimensional model, quite sensitive to reasonable changes in POC, and extremely sensitive to the ability of methane bubbles to rise within the sediment column, and how far gas-phase methane can get through the sediment column before it redissolves when it reaches undersaturated conditions. Hydrate formation is also sensitive to deep respiration of migrating petroleum. Other phenomena which we simulated had only a small impact on the hydrate inventory, including thermogenic methane production and production/decomposition of dissolved organic carbon.

  14. Capacity building for tropical coastal ecosystems management using a dynamic teaching model

    DEFF Research Database (Denmark)

    Lindberg, Annika Büchert; Nielsen, Thomas; Macintosh, Donald

    2008-01-01

    This learning opportunity illustrates effective capacity building through a dynamic teaching model that involves you and gives you personal experiences. The teaching model is easy to adapt to local environments and the learning opportunity is relevant to everyone working in coastal natural resource...... in combining knowledge and methods and applying these in a real life situation. Objectives: The participants will apply the acquired knowledge of ecosystems and project management tools when describing ecosystem services and when planning a project The participants will act as different stakeholders during...... the role play and hereby gain experience from a situation mimicking real life project situation.; The participants will experience how dynamic teaching can improve capacity building....

  15. Some analytic diagnostic models for transport processes in estuarine and coastal waters

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-03-01

    Advection and dispersion processes in estuarine and coastal waters are briefly reviewed. Beginning from the basic macroscopic equations of transport for a substance diluted or suspended in the considered body of water,several levels of filtering in time and space are described and applied to obtain suitable diagnostic mathematical models both with scale effects and gaussian.The solutions of the aforementioned models,for initial distributions and boundary conditions with enough symmetry,are discussed, as well as their applications to a parameter characterization of the transport properties of the receiving body of water

  16. Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization

    Science.gov (United States)

    Feng, E. Y.; Koeve, W.; Keller, D. P.; Oschlies, A.

    2017-12-01

    The potential of coastal ocean alkalinization (COA), a carbon dioxide removal (CDR) climate engineering strategy that chemically increases ocean carbon uptake and storage, is investigated with an Earth system model of intermediate complexity. The CDR potential and possible environmental side effects are estimated for various COA deployment scenarios, assuming olivine as the alkalinity source in ice-free coastal waters (about 8.6% of the global ocean's surface area), with dissolution rates being a function of grain size, ambient seawater temperature, and pH. Our results indicate that for a large-enough olivine deployment of small-enough grain sizes (10 µm), atmospheric CO2 could be reduced by more than 800 GtC by the year 2100. However, COA with coarse olivine grains (1000 µm) has little CO2 sequestration potential on this time scale. Ambitious CDR with fine olivine grains would increase coastal aragonite saturation Ω to levels well beyond those that are currently observed. When imposing upper limits for aragonite saturation levels (Ωlim) in the grid boxes subject to COA (Ωlim = 3.4 and 9 chosen as examples), COA still has the potential to reduce atmospheric CO2 by 265 GtC (Ωlim = 3.4) to 790 GtC (Ωlim = 9) and increase ocean carbon storage by 290 Gt (Ωlim = 3.4) to 913 Gt (Ωlim = 9) by year 2100.

  17. A coupled physical and economic model of the response of coastal real estate to climate risk

    Science.gov (United States)

    McNamara, Dylan E.; Keeler, Andrew

    2013-06-01

    Barring an unprecedented large-scale effort to raise island elevation, barrier-island communities common along the US East Coast are likely to eventually face inundation of the existing built environment on a timescale that depends on uncertain climatic forcing. Between the present and when a combination of sea-level rise and erosion renders these areas uninhabitable, communities must choose levels of defensive expenditures to reduce risks and individual residents must assess whether and when risk levels are unacceptably high to justify investment in housing. We model the dynamics of coastal adaptation as the interplay of underlying climatic risks, collective actions to mitigate those risks, and individual risk assessments based on beliefs in model predictions and processing of past climate events. Efforts linking physical and behavioural models to explore shoreline dynamics have not yet brought together this set of essential factors. We couple a barrier-island model with an agent-based model of real-estate markets to show that, relative to people with low belief in model predictions about climate change, informed property owners invest heavily in defensive expenditures in the near term and then abandon coastal real estate at some critical risk threshold that presages a period of significant price volatility.

  18. Modified finite element transport model, FETRA, for sediment and radionuclide migration in open coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Mayer, D.W.

    1979-08-01

    The finite element model, FETRA, simulates transport of sediment and radionuclides (and other contaminants, such as heavy metals, pesticides, and other toxic substances) in surface water bodies. The model is an unsteady, two-dimensional (longitudinal and lateral) model which consists of the following three submodels coupled to include sediment-contaminant interactions: (1) sediment transport submodel, (2) dissolved contaminant transport submodel, and (3) particulate contaminant (contaminant adsorbed by sediment) transport submodel. Under the current phase of the study, FETRA was modified to include sediment-wave interaction in order to extend the applicability of the model to coastal zones and large lakes (e.g., the Great Lakes) where wave actions can be one of the dominant mechanisms to transport sediment and toxic contaminant. FETRA was further modified to handle both linear and quadratic approximations to velocity and depth distributions in order to be compatible with various finite element hydrodynamic models (e.g., RMA II and CAFE) which supply hydrodynamic input data to FETRA. The next step is to apply FETRA to coastal zones to simulate transport of sediment and radionuclides with their interactions in order to test and verify the model under marine and large lacustrine environments

  19. On the evaluation of global sea-salt aerosol models at coastal/orographic sites

    Science.gov (United States)

    Spada, M.; Jorba, O.; Pérez García-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2015-01-01

    Sea-salt aerosol global models are typically evaluated against concentration observations at coastal stations that are unaffected by local surf conditions and thus considered representative of open ocean conditions. Despite recent improvements in sea-salt source functions, studies still show significant model errors in specific regions. Using a multiscale model, we investigated the effect of high model resolution (0.1° × 0.1° vs. 1° × 1.4°) upon sea-salt patterns in four stations from the University of Miami Network: Baring Head, Chatam Island, and Invercargill in New Zealand, and Marion Island in the sub-antarctic Indian Ocean. Normalized biases improved from +63.7% to +3.3% and correlation increased from 0.52 to 0.84. The representation of sea/land interfaces, mesoscale circulations, and precipitation with the higher resolution model played a major role in the simulation of annual concentration trends. Our results recommend caution when comparing or constraining global models using surface concentration observations from coastal stations.

  20. Modeling the Effects of Sea-Level Rise on Groundwater Levels in Coastal New Hampshire

    Science.gov (United States)

    Jacobs, J. M.; Knott, J. F.; Daniel, J.; Kirshen, P. H.

    2017-12-01

    Coastal communities with high population density and low topography are vulnerable from sea-level rise (SLR) caused by climate change. Groundwater in coastal communities will rise with sea level impacting water quality, the structural integrity of infrastructure, and natural ecosystem health. SLR-induced groundwater rise has been studied in areas of high aquifer transmissivity and in low-lying areas immediately along the coast. In this regional study, we investigate SLR-induced groundwater rise in a coastal area characterized by shallow unconsolidated deposits overlying fractured bedrock, typical of the glaciated northeast United States. MODFLOW, a numerical groundwater-flow model, is used with groundwater observations, lidar topography, surface-water hydrology, and groundwater withdrawals to investigate SLR-induced changes in groundwater levels and vadose-zone thickness in New Hampshire's Seacoast. The SLR groundwater signal is detected up to 5 km from the coast, more than 3 times farther inland than projected surface-water flooding associated with SLR. Relative groundwater rise ranges from 38 to 98% of SLR within 1 km of the shoreline and drops below 4% between 4 and 5 km from the coast. The largest magnitude of SLR-induced groundwater rise occurs in the marine and estuarine deposits and land areas with tidal water bodies on three sides. In contrast, groundwater rise is dampened near streams. Groundwater inundation caused by 2 m of SLR is projected to contribute 48% of the total land inundation area in the City of Portsmouth with consequences for built and natural resources. Freshwater wetlands are projected to expand 3% by year 2030 increasing to 25% by year 2100 coupled with water-depth increases. These results imply that underground infrastructure and natural resources in coastal communities will be impacted by rising groundwater much farther inland than previously thought when considering only surface-water flooding from SLR.

  1. Monitoring and ming bio-physical parameters for hypoxia hazard in a coastal sand pit

    DEFF Research Database (Denmark)

    Mariani, Patrizio; Benassai, Guido; Grieco, Luisa

    2018-01-01

    Management of coastal areas requires monitoring and modeling of the anthropogenic drivers and the bio-physical processes affecting water quality. To assess the range of hydrographic conditions controlling oxygen distribution in the bottom layers of sand pits, a multi-year oceanographic survey has...... of the sand pits is associated with higher temperatures and wind speed lower than 5 m/s, which is not infrequent during the summer season. However, the number of consecutive days of oxygen depletion can be considered lower than the danger threshold level assumed in the literature....

  2. Numerical Modeling of Coastal Inundation and Sedimentation by Storm Surge, Tides, and Waves at Norfolk, Virginia, USA

    Science.gov (United States)

    2012-07-01

    hurricanes (tropical) with a 50-year and a 100-year return period, and one winter storm ( extratropical ) occurred in October 1982. There are a total of 15...under the 0-m and 2-m SLR scenarios, respectively. • Tropical and extratropical storms induce extensive coastal inundation around the military...1 NUMERICAL MODELING OF COASTAL INUNDATION AND SEDIMENTATION BY STORM SURGE, TIDES, AND WAVES AT NORFOLK, VIRGINIA, USA Honghai Li 1 , Lihwa Lin 1

  3. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  4. An individual-based growth and competition model for coastal redwood forest restoration

    Science.gov (United States)

    van Mantgem, Phillip J.; Das, Adrian J.

    2014-01-01

    Thinning treatments to accelerate coastal redwood forest stand development are in wide application, but managers have yet to identify prescriptions that might best promote Sequoia sempervirens (Lamb. ex D. Don) Endl. (redwood) growth. The creation of successful thinning prescriptions would be aided by identifying the underlying mechanisms governing how individual tree growth responds to competitive environments in coastal redwood forests. We created a spatially explicit individual-based model of tree competition and growth parameterized using surveys of upland redwood forests at Redwood National Park, California. We modeled competition for overstory trees (stems ≥ 20 cm stem diameter at breast height, 1.37 m (dbh)) as growth reductions arising from sizes, distances, and species identity of competitor trees. Our model explained up to half of the variation in individual tree growth, suggesting that neighborhood crowding is an important determinant of growth in this forest type. We used our model to simulate the effects of novel thinning prescriptions (e.g., 40% stand basal area removal) for redwood forest restoration, concluding that these treatments could lead to substantial growth releases, particularly for S. sempervirens. The results of this study, along with continued improvements to our model, will help to determine spacing and species composition that best encourage growth.

  5. Groundwater Modeling in Coastal Arid Regions Under the Influence of Marine Saltwater Intrusion

    Science.gov (United States)

    Walther, Marc; Kolditz, Olaf; Grundmann, Jens; Liedl, Rudolf

    2010-05-01

    The optimization of an aquifer's "safe yield", especially within agriculturally used regions, is one of the fundamental tasks for nowaday's groundwater management. Due to the limited water ressources in arid regions, conflict of interests arise that need to be evaluated using scenario analysis and multicriterial optimization approaches. In the context of the government-financed research project "International Water Research Alliance Saxony" (IWAS), the groundwater quality for near-coastal, agriculturally used areas is investigated under the influence of marine saltwater intrusion. Within the near-coastal areas of the study region, i.e. the Batinah plains of Northern Oman, an increasing agricultural development could be observed during the recent decades. Simultaneously, a constant lowering of the groundwater table was registered, which is primarily due to the uncontrolled and unsupervised mining of the aquifers for the local agricultural irrigation. Intensively decreased groundwater levels, however, cause an inversion of the hydraulic gradient which is naturally aligned towards the coast. This, in turn,leads to an intrusion of marine saltwater flowing inland, endangering the productivity of farms near the coast. Utilizing the modeling software package OpenGeoSys, which has been developed and constantly enhanced by the Department of Environmental Informatics at the Helmholtz Centre for Environmental Research Leipzig (UFZ; Kolditz et al., 2008), a three-dimensional, density-dependent model including groundwater flow and mass transport is currently being built up. The model, comprehending three selected coastal wadis of interest, shall be used to investigate different management scenarios. The main focus of the groundwater modelling are the optimization of well positions and pumping schemes as well as the coupling with a surface runoff model, which is also used for the determination of the groundwater recharge due to wadi runoff downstream of retention dams. Based on

  6. Generating synthetic wave climates for coastal modelling: a linear mixed modelling approach

    Science.gov (United States)

    Thomas, C.; Lark, R. M.

    2013-12-01

    Numerical coastline morphological evolution models require wave climate properties to drive morphological change through time. Wave climate properties (typically wave height, period and direction) may be temporally fixed, culled from real wave buoy data, or allowed to vary in some way defined by a Gaussian or other pdf. However, to examine sensitivity of coastline morphologies to wave climate change, it seems desirable to be able to modify wave climate time series from a current to some new state along a trajectory, but in a way consistent with, or initially conditioned by, the properties of existing data, or to generate fully synthetic data sets with realistic time series properties. For example, mean or significant wave height time series may have underlying periodicities, as revealed in numerous analyses of wave data. Our motivation is to develop a simple methodology to generate synthetic wave climate time series that can change in some stochastic way through time. We wish to use such time series in a coastline evolution model to test sensitivities of coastal landforms to changes in wave climate over decadal and centennial scales. We have worked initially on time series of significant wave height, based on data from a Waverider III buoy located off the coast of Yorkshire, England. The statistical framework for the simulation is the linear mixed model. The target variable, perhaps after transformation (Box-Cox), is modelled as a multivariate Gaussian, the mean modelled as a function of a fixed effect, and two random components, one of which is independently and identically distributed (iid) and the second of which is temporally correlated. The model was fitted to the data by likelihood methods. We considered the option of a periodic mean, the period either fixed (e.g. at 12 months) or estimated from the data. We considered two possible correlation structures for the second random effect. In one the correlation decays exponentially with time. In the second

  7. Seasonal electrical resistivity surveys of a coastal bluff, Barter Island, North Slope Alaska

    Science.gov (United States)

    Swarzenski, Peter W.; Johnson, Cordell; Lorenson, Thomas; Conaway, Christopher H.; Gibbs, Ann E.; Erikson, Li; Richmond, Bruce M.; Waldrop, Mark P.

    2016-01-01

    Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that can be attributed in part to recent warming trends and associated increased storm intensity and frequency. The upper sediment column of the coastal North Slope of Alaska can be described as continuous permafrost underlying a thin (typically less than 1–2 m) active layer that responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the active layer and underlying permafrost is essential to better constrain how heightened erosion may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired resistivity surveys conducted in early and late summer 2014 provided detailed information on how the active layer and permafrost are impacted during the short Arctic summer. Such results are useful in the development of coastal resilience models that tie together fluvial, terrestrial, climatic, geologic, and oceanographic forcings on shoreline stability.

  8. Validation and Comparison of a Model of the Effect of Sea-Level Rise on Coastal Wetlands.

    Science.gov (United States)

    Mogensen, Laura A; Rogers, Kerrylee

    2018-01-22

    Models are used to project coastal wetland distribution under future sea-level rise scenarios to assist decision-making. Model validation and comparison was used to investigate error and uncertainty in the Sea Level Affecting Marshes Model, a readily available model with minimal validation, particularly for wetlands beyond North America. Accurate parameterisation is required to improve the performance of the model, and indeed any spatial model. Consideration of tidal attenuation further enhances model performance, particularly for coastal wetlands located within estuaries along wave-dominated coastlines. The model does not simulate vegetation changes that are known to occur, particularly when sedimentation exceeds rates of sea-level rise resulting in shoreline progradation. Model performance was reasonable over decadal timescales, decreasing as the time-scale of retrospection increased due to compounding of errors. Comparison with other deterministic models showed reasonable agreement by 2100. However, given the uncertainty of the future and the unpredictable nature of coastal wetlands, it is difficult to ascertain which model could be realistic enough to meet its intended purpose. Model validation and comparison are useful for assessing model efficacy and parameterisation, and should be applied before application of any spatially explicit model of coastal wetland response to sea-level rise.

  9. Development and application of an oil spill model with wave–current interactions in coastal areas

    International Nuclear Information System (INIS)

    Guo, WeiJun; Hao, Yanni; Zhang, Li; Xu, Tiaojian; Ren, Xiaozhong; Cao, Feng; Wang, Shoudong

    2014-01-01

    Highlights: • Numerical oil spill developed by incorporating wave–current interactions and applied to hindcasting the Dalian oil spill. • Numerical model results taking into wave–current coupling shows better conformity with the observed data. • Oil dispersion will be enhanced due to the gradient of surface wave radiation stress in the coastal waters. - Abstract: The present paper focuses on developing a numerical oil spill model that incorporates the full three-dimensional wave–current interactions for a better representation of the spilled oil transport mechanics in complicated coastal environments. The incorporation of surface wave effects is not only imposing a traditional drag coefficient formulation at the free surface, but also the 3D momentum equations are adjusted to include the impact of the vertically dependent radiation stresses on the currents. Based on the current data from SELFE and wave data from SWAN, the oil spill model utilizes oil particle method to predict the trajectory of individual droplets and the oil concentration. Compared with the observations in Dalian New Port oil spill event, the developed model taking into account wave–current coupling administers to giving better conformity than the one without. The comparisons demonstrates that 3D radiation stress impacts the spill dynamics drastically near the sea surface and along the coastline, while having less impact in deeper water

  10. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    Science.gov (United States)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  11. PORFIDO: Oceanographic data for neutrino telescopes

    International Nuclear Information System (INIS)

    Cordelli, Marco; Martini, Agnese; Habel, Roberto; Trasatti, Luciano

    2011-01-01

    PORFIDO (Physical Oceanography by RFID Outreach) is a system designed to be installed in the optical modules of the NEMO experiment and possibly, in future underwater neutrino telescopes to gather oceanographic data with a minimum of disturbance to the main project and a very limited budget. The system gathers oceanographic data (temperature, etc.) from passive RFID tags (WISPs) attached to the outside of the NEMO optical modules with an RF reader situated inside the glass sphere, without the need of connectors or penetrators, which are very expensive and offer low reliability. Ten PORFIDOs will be deployed with the NEMO Phase 2 tower in 2011.

  12. PORFIDO: Oceanographic data for neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Cordelli, Marco; Martini, Agnese; Habel, Roberto [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy); Trasatti, Luciano, E-mail: luciano.trasatti@gmail.co [INFN-Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati (Italy)

    2011-01-21

    PORFIDO (Physical Oceanography by RFID Outreach) is a system designed to be installed in the optical modules of the NEMO experiment and possibly, in future underwater neutrino telescopes to gather oceanographic data with a minimum of disturbance to the main project and a very limited budget. The system gathers oceanographic data (temperature, etc.) from passive RFID tags (WISPs) attached to the outside of the NEMO optical modules with an RF reader situated inside the glass sphere, without the need of connectors or penetrators, which are very expensive and offer low reliability. Ten PORFIDOs will be deployed with the NEMO Phase 2 tower in 2011.

  13. Preliminary analysis of the Jimo coastal ecosystem with the ecopath model

    Science.gov (United States)

    Su, Meng

    2016-12-01

    The Jimo coast encompasses an area of 2157 km2, and the ecosystem is valuable both socially and economically with regional fisheries substantially contributing to the value. A mass-balanced trophic model consisting of 15 functional ecological groups was developed for the coastal ecosystem using the Ecopath model in Ecopath with Ecosim (EwE) software (version 6.4.3). The results of the model simulations indicated that the trophic levels of the functional groups varied between 1.0 and 3.76, and the total production of the system was estimated to be 5112.733 t km-2 yr-1 with a total energy transfer efficiency of 17.6%. The proportion of the total flow originating from detritus was estimated to be 48%, whereas that from primary producers was 52%, indicating that the grazing food chain dominated the energy flow. The ratio of total primary productivity to total respiration in the system was 3.78, and the connectivity index was 0.4. The fin cycling index and the mean path length of the energy flow were 4.92% and 2.57%, respectively, which indicated that the ecosystem exhibits relatively low maturity and stability. The mixed trophic impact (MTI) procedure suggested that the ecological groups at lower trophic levels dominated the feeding dynamics in the Jimo coastal ecosystem. Overfishing is thought to be the primary reason for the degeneration of the Jimo coastal ecosystem, resulting in a decline in the abundance of pelagic and demersal fish species and a subsequent shift to the predominance of lower-trophic-level functional groups. Finally, we offered some recommendations for improving current fishery management practices.

  14. Defining the next generation modeling of coastal ecotone dynamics in response to global change

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Teh, Su-Y; Krauss, Ken W.; Wang, Hongqing; Haidong, Li; Smith, Thomas; Koh, Hock L.

    2016-01-01

    Coastal ecosystems are especially vulnerable to global change; e.g., sea level rise (SLR) and extreme events. Over the past century, global change has resulted in salt-tolerant (halophytic) plant species migrating into upland salt-intolerant (glycophytic) dominated habitats along major rivers and large wetland expanses along the coast. While habitat transitions can be abrupt, modeling the specific drivers of abrupt change between halophytic and glycophytic vegetation is not a simple task. Correlative studies, which dominate the literature, are unlikely to establish ultimate causation for habitat shifts, and do not generate strong predictive capacity for coastal land managers and climate change adaptation exercises. In this paper, we first review possible drivers of ecotone shifts for coastal wetlands, our understanding of which has expanded rapidly in recent years. Any exogenous factor that increases growth or establishment of halophytic species will favor the ecotone boundary moving upslope. However, internal feedbacks between vegetation and the environment, through which vegetation modifies the local microhabitat (e.g., by changing salinity or surface elevation), can either help the system become resilient to future changes or strengthen ecotone migration. Following this idea, we review a succession of models that have provided progressively better insight into the relative importance of internal positive feedbacks versus external environmental factors. We end with developing a theoretical model to show that both abrupt environmental gradients and internal positive feedbacks can generate the sharp ecotonal boundaries that we commonly see, and we demonstrate that the responses to gradual global change (e.g., SLR) can be quite diverse.

  15. ICON - Media Luna Reef 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  16. ICON - Salt River Bay 2010 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  17. ICON - Little Cayman, Cayman Islands 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  18. ICON - Salt River Bay 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  19. ICON - Salt River Bay 2005 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  20. ICON - North Norman's Patch Reef 2004 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...