WorldWideScience

Sample records for coastal indian seawater

  1. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Seawater intrusion; coastal aquifers; density-dependent flow and ... The seawater intrusion mechanism in coastal aquifers generally causes the occurrence of ... (4) The dynamic viscosity of the fluid does not change with respect to salinity and.

  2. Effect of Groundwater Pumping on Seawater Intrusion in Coastal Aquifers

    Directory of Open Access Journals (Sweden)

    M.M. Sherif

    2002-06-01

    Full Text Available Many aquifers around the globe are located in coastal areas and are thus subjected to the seawater intrusion phenomenon. The growth of population in coastal areas and the conjugate increase in human, agricultural, and industrial activities have imposed an increasing demand for freshwater. This increase in water demand is often covered by extensive pumping of fresh groundwater, causing subsequent lowering of the water table (or piezometric head and upsetting the dynamic balance between freshwater and saline water bodies. The classical result of such a development is seawater intrusion. This paper presents a review for the seawater intrusion phenomenon in coastal aquifers. The effect of pumping activities on the seawater intrusion in the Nile Delta aquifer of Egypt is investigated. It was concluded that any additional pumping should be located in the middle Delta and avoided in the eastern and western sides of the Delta.

  3. Determination of trace metals in coastal seawater around Okinawa and its multielement profiling analysis

    International Nuclear Information System (INIS)

    Itoh, Akihide; Ishigaki, Teruyuki; Arakaki, Teruo; Yamada, Ayako; Yamaguchi, Mami; Kabe, Noriko

    2009-01-01

    In the present study, trace metals in coastal surface seawater around Okinawa were determined by inductively coupled plasma mass spectrometry (ICP-MS) with chelating disk preconcentration. As a result, the concentrations of V, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb, and U were obtained in the range from 10 μgL -1 to 0.001 μgL -1 for 6 samples. In addition, multielement profiling analyses were carried out using analytical values obtained in order to elucidate the features of trace metals in each coastal sea area. For coastal surface seawater near an urban area, the analytical values for Zn, Cu, Mn, and Pb were higher by more than 10-fold the literature values for open-surface seawater, and those of Cd were also relatively high. Such a trend concerning the multi-element profile was almost similar to the literature values for coastal seawater of the main island of Japan. On the other hand, the analytical values of most elements for coastal surface seawater near a suburb area were in the range from 0.5 to 5 fold, compared to the literature values for open surface seawater. From multielement profiling analyses for nutrient type elements in marine chemistry, it was suggested that the concentrations of Zn and Cd in a coral sea area normalized to literature values for open surface-seawater were higher than those of Ni and Cu. (author)

  4. Predicting Seawater Intrusion in Coastal Groundwater Boreholes Using Self-Potential Data

    Science.gov (United States)

    Graham, M.; MacAllister, D. J.; Jackson, M.; Vinogradov, J.; Butler, A. P.

    2017-12-01

    Many coastal groundwater abstraction wells are under threat from seawater intrusion: this is exacerbated in summer by low water tables and increased abstraction. Existing hydrochemistry or geophysical techniques often fail to predict the timing of intrusion events. We investigate whether the presence and transport of seawater can influence self-potentials (SPs) measured within groundwater boreholes, with the aim of using SP monitoring to provide early warning of saline intrusion. SP data collection: SP data were collected from a coastal groundwater borehole and an inland borehole (> 60 km from the coast) in the Seaford Chalk of southern England. The SP gradient in the inland borehole was approximately 0.05 mV/m, while that in the coastal borehole varied from 0.16-0.26 mV/m throughout the monitoring period. Spectral analysis showed that semi-diurnal fluctuations in the SP gradient were several orders of magnitude higher at the coast than inland, indicating a strong influence from oceanic tides. A characteristic decrease in the gradient, or precursor, was observed in the coastal borehole several days prior to seawater intrusion. Modelling results: Hydrodynamic transport and geoelectric modelling suggest that observed pressure changes (associated with the streaming potential) are insufficient to explain either the magnitude of the coastal SP gradient or the semi-diurnal SP fluctuations. By contrast, a model of the exclusion-diffusion potential closely matches these observations and produces a precursor similar to that observed in the field. Sensitivity analysis suggests that both a sharp saline front and spatial variations in the exclusion efficiency arising from aquifer heterogeneities are necessary to explain the SP gradient observed in the coastal borehole. The presence of the precursor in the model depends also on the presence and depth of fractures near the base of the borehole. Conclusions: Our results indicate that SP monitoring, combined with hydrodynamic

  5. Responses of an Agricultural Soil Microbiome to Flooding with Seawater after Managed Coastal Realignment

    Directory of Open Access Journals (Sweden)

    Kamilla S. Sjøgaard

    2018-01-01

    Full Text Available Coastal areas have become more prone to flooding with seawater due to climate-change-induced sea-level rise and intensified storm surges. One way to cope with this issue is by “managed coastal realignment”, where low-lying coastal areas are no longer protected and instead flooded with seawater. How flooding with seawater impacts soil microbiomes and the biogeochemical cycling of elements is poorly understood. To address this, we conducted a microcosm experiment using soil cores collected at the nature restoration project site Gyldensteen Strand (Denmark, which were flooded with seawater and monitored over six months. Throughout the experiment, biogeochemical analyses, microbial community fingerprinting and the quantification of marker genes documented clear shifts in microbiome composition and activity. The flooding with seawater initially resulted in accelerated heterotrophic activity that entailed high ammonium production and net removal of nitrogen from the system, also demonstrated by a concurrent increase in the abundances of marker genes for ammonium oxidation and denitrification. Due to the depletion of labile soil organic matter, microbial activity decreased after approximately four months. The event of flooding caused the largest shifts in microbiome composition with the availability of labile organic matter subsequently being the most important driver for the succession in microbiome composition in soils flooded with seawater.

  6. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    Science.gov (United States)

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.

    2017-09-01

    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  7. Application of Geophysical Method for Determining Seawater Intrusion in Coastal Aquifer

    International Nuclear Information System (INIS)

    Mohd Muzamil Mohd Hashim; Kamarudin Samuding; Mohd Hafiz Zawawi; Daung, J.A.D.; Mohd Hafiz Zulkurnain; Kamaruzaman Mohamad

    2016-01-01

    A study of seawater intrusion has been proposed in the coastal area of Pahang. Electrical resistivity tomography (ERT) is a geophysical technique that used in this study. The survey was conducted at UMP, Tanjung Batu and Nenasi using Wenner-Schlumberger protocol. Electrical resistivity profile obtained from the survey indicates an area with low resistivity value (<5Ωm) associated with the resistivity value of seawater. (author)

  8. A Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan

    Directory of Open Access Journals (Sweden)

    Po-Syun Huang

    2018-02-01

    Full Text Available The coastal regions of Pingtung Plain in southern Taiwan rely on groundwater as their main source of fresh water for aquaculture, agriculture, domestic, and industrial sectors. The availability of fresh groundwater is threatened by unsustainable groundwater extraction and the over-pumpage leads to the serious problem of seawater intrusion. It is desired to find appropriate management strategies to control groundwater salinity and mitigate seawater intrusion. In this study, a simulation–optimization model has been presented to solve the problem of seawater intrusion along the coastal aquifers in Pingtung Plain and the objective is using injection well barriers and minimizing the total injection rate based on the pre-determined locations of injection barriers. The SEAWAT code is used to simulate the process of seawater intrusion and the surrogate model of artificial neural networks (ANNs is used to approximate the seawater intrusion (SWI numerical model to increase the computational efficiency during the optimization process. The heuristic optimization scheme of differential evolution (DE algorithm is selected to identify the global optimal management solution. Two different management scenarios, one is the injection barriers located along the coast and the other is the injection barrier located at the inland, are considered and the optimized results show that the deployment of injection barriers at the inland is more effective to reduce total dissolved solids (TDS concentrations and mitigate seawater intrusion than that along the coast. The computational time can be reduced by more than 98% when using ANNs to replace the numerical model and the DE algorithm has been confirmed as a robust optimization scheme to solve groundwater management problems. The proposed framework can identify the most reliable management strategies and provide a reference tool for decision making with regard to seawater intrusion remediation.

  9. A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers.

    Science.gov (United States)

    Kazakis, Nerantzis; Spiliotis, Mike; Voudouris, Konstantinos; Pliakas, Fotios-Konstantinos; Papadopoulos, Basil

    2018-04-15

    Groundwater constitutes the primary source of fresh water for >1.2 billion people living in coastal zones. However, the threat of seawater intrusion is widespread in coastal aquifers mainly due to overexploitation of groundwater. In the present study, a modified fuzzy multicriteria categorization into non-ordered categories method was developed in order to modify the standard GALDIT method and assess seawater intrusion vulnerability in a coastal aquifer of northern Greece. The method is based on six parameters: groundwater occurrence, aquifer hydraulic conductivity, groundwater level, distance from the shore, impact of the existing status of seawater intrusion, and aquifer thickness. Initially, the original method was applied and revealed a zone of high vulnerability running parallel to the coastline and covering an area of 8.6km 2 . The modified GALDIT-F method achieved higher discretization of vulnerability zones which is essential to build a rational management plan to prevent seawater intrusion. The GALDIT-F approach also distinguished an area of the aquifer that is influenced by geothermal fluids. In total, twenty-five categories were produced corresponding to different vulnerability degrees according to the initial method (High, Moderate, Low) as well as the area influenced by geothermal fluids. Finally, a road map was developed in order to adapt management strategies to GALDIT-F categories and prevent and mitigate seawater intrusion. The proposed management strategies of the coastal aquifer include managed aquifer recharge (MAR) implementation, reallocation of existing wells, optimization of pumping rates during the hydrological year, and a detailed monitoring plan. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Temporal annual changes of 210Po concentrations in coastal seawater at Kyushu Island

    International Nuclear Information System (INIS)

    Tolmachyov, S.; Maeda, Y.; Momoshima, N.

    2001-01-01

    Polonium-210 ( 210 Po, T 1/2 =138.4 d) arises from the decay of 210 Pb (T 1/2 =22.3 yr) via intermediary 210 Bi (T 1/2 =5.03 d). Virtually, all of 210 Po in seawater is originated by in situ decay of 210 Pb, which in turn originated due to in situ decay of 226 Ra, and decay of 222 Rn in the sea and in the atmosphere followed by deposition. In seawater, 210 Po is considered an insoluble element, therefore the concentration of dissolved 210 Po is very low. The concentration levels of 210 Po in marine environmental samples are well documented, however, scanty information is available about long-scale 210 Po behavior in open oceans and/or coastal seawater. Few studies have quantified temporal variation of 210 Po concentrations with relation to environmental parameters and seasonality. Nevertheless, seasonal detail allows us to make inferences about what geochemical parameters can effected on 210 Po behavior in the marine environment that will obviously improve our present understanding of the rates and mechanisms of 210 Po scavenging from seawater column. This paper presents the results of annual observation of 210 Po concentration in the coastal seawater at Kyushu Island (Japan). Besides the 210 Po concentrations, concentration of Chlorophyll-a (Chl-a), which is generally used as an indicator of plankton activity, fluctuations of loaded suspended particulate matter (SPM) concentration (C p ) and monthly rainfall collected at the place close to the sampling area were examined to confirm if their behavior mirrors that of 210 Po. (author)

  11. A coastal surface seawater analyzer for nitrogenous nutrient mapping

    Science.gov (United States)

    Masserini, Robert T.; Fanning, Kent A.; Hendrix, Steven A.; Kleiman, Brittany M.

    2017-11-01

    Satellite-data-based modeling of chlorophyll indicates that ocean waters in the mesosphere category are responsible for the majority of oceanic net primary productivity. Coastal waters, which frequently have surface chlorophyll values in the mesosphere range and have strong horizontal chlorophyll gradients and large temporal variations. Thus programs of detailed coastal nutrient surveys are essential to the study of the dynamics of oceanic net primary productivity, along with land use impacts on estuarine and coastal ecosystems. The degree of variability in these regions necessitates flexible instrumentation capable of near real-time analysis to detect and monitor analytes of interest. This work describes the development of a portable coastal surface seawater analyzer for nutrient mapping that can simultaneously elucidate with high resolution the distribution of nitrate, nitrite, and ammonium - the three principal nitrogenous inorganic nutrients in coastal systems. The approach focuses on the use of pulsed xenon flash lamps to construct an analyzer which can be adapted to any automated chemistry with fluorescence detection. The system has two heaters, on-the-fly standardization, on-board data logging, an independent 24 volt direct current power supply, internal local operating network, a 12 channel peristaltic pump, four rotary injection/selection valves, and an intuitive graphical user interface. Using the methodology of Masserini and Fanning (2000) the detection limits for ammonium, nitrite, and nitrate plus nitrite were 11, 10, and 22 nM, respectively. A field test of the analyzer in Gulf of Mexico coastal waters demonstrated its ability to monitor and delineate the complexity of inorganic nitrogen nutrient enrichments within a coastal system.

  12. Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration

    Science.gov (United States)

    Ketabchi, Hamed; Mahmoodzadeh, Davood; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2016-04-01

    Sea-level rise (SLR) influences groundwater hydraulics and in particular seawater intrusion (SWI) in many coastal aquifers. The quantification of the combined and relative impacts of influential factors on SWI has not previously been considered in coastal aquifers. In the present study, a systematic review of the available literature on this topic is first provided. Then, the potential remaining challenges are scrutinized. Open questions on the effects of more realistic complexities such as gradual SLR, parameter uncertainties, and the associated influences in decision-making models are issues requiring further investigation. We assess and quantify the seawater toe location under the impacts of SLR in combination with recharge rate variations, land-surface inundation (LSI) due to SLR, aquifer bed slope variation, and changing landward boundary conditions (LWBCs). This is the first study to include all of these factors in a single analysis framework. Both analytical and numerical models are used for these sensitivity assessments. It is demonstrated that (1) LSI caused by SLR has a significant incremental impact on the seawater toe location, especially in the flatter coasts and the flux-controlled (FC) LWBCs, however this impact is less than the reported orders of magnitude differences which were estimated using only analytical solutions; (2) LWBCs significantly influence the SLR impacts under almost all conditions considered in this study; (3) The main controlling factors of seawater toe location are the magnitudes of fresh groundwater discharge to sea and recharge rate. Regional freshwater flux entering from the landward boundary and the groundwater hydraulic gradient are the major contributors of fresh groundwater discharge to sea for both FC and head-controlled (HC) systems, respectively; (4) A larger response of the aquifer and larger seawater toe location changes are demonstrable for a larger ratio of the aquifer thickness to the aquifer length particularly in

  13. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    Science.gov (United States)

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  14. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kazuhiko, E-mail: takedaq@hiroshima-u.ac.jp [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Nakatani, Nobutake [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Department of Environmental and Symbiotic Sciences, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501 (Japan); Sakugawa, Hiroshi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan)

    2014-09-15

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area.

  15. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    International Nuclear Information System (INIS)

    Takeda, Kazuhiko; Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi; Nakatani, Nobutake; Sakugawa, Hiroshi

    2014-01-01

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area

  16. Herbicides from the Charente river and the estuarine zone (Marennes-Oleron) to the coastal seawater

    International Nuclear Information System (INIS)

    Scribe, P.; Chouakri, S.; Dupas, S.

    1999-01-01

    Spatial distribution of herbicides was investigated in the fluvial section, the estuary of the Charente river and the coastal zone (Marennes-Oleron). Monthly samplings were performed on a fluvial section from Angouleme to Saintes, at Chalonne, Nersac, Sireuil, Bourg and Brives from 1993 onwards. Estuarine and coastal sea-waters were sampled during two cruises in May 1991 and February 1992

  17. Protecting coastal abstraction boreholes from seawater intrusion using self-potential data

    Science.gov (United States)

    Graham, Malcolm; Butler, Adrian; MacAllister, Donald John; Vinogradov, Jan; Ijioma, Amadi; Jackson, Matthew

    2016-04-01

    We investigate whether the presence and transport of seawater can influence self-potentials (SPs) measured within coastal groundwater boreholes, with a view to using SP monitoring as part of an early warning system for saline intrusion. SP data were collected over a period of 18 months from a coastal groundwater borehole in the fractured Chalk of England. Spectral analysis of the results shows semi-diurnal fluctuations that are several orders of magnitude higher than those observed from monitoring of the Chalk more than 60 km inland, indicating a strong influence from oceanic tides. Hydrodynamic and geoelectric modelling of the coastal aquifer suggests that observed pressure changes (giving rise to the streaming potential) are not sufficient to explain the magnitude of the observed SP fluctuations. Simulation of the exclusion-diffusion potential, produced by changes in concentration across the saline front, is required to match the SP data from the borehole, despite the front being located some distance away. In late summer of 2013 and 2014, seawater intrusion occurred in the coastal monitoring borehole. When referenced to the shallowest borehole electrode, there was a characteristic increase in SP within the array, several days before any measurable increase in salinity. The size of this precursor increased steadily with depth, typically reaching values close to 0.3 mV in the deepest electrode. Numerical modelling suggests that the exclusion-diffusion potential can explain the magnitude of the precursor, but that the polarity of the change in SP cannot be replicated assuming a homogeneous aquifer. Small-scale models of idealised Chalk blocks were used to simulate the effects of discrete fractures on the distribution of SP. Initial results suggest that comparatively large reductions in voltage can develop in the matrix ahead of the front, in conjunction with a reduced or absent precursor in the vicinity of a fracture. Geophysical logging indicates the presence of a

  18. Dissolved Platinum Concentrations in Coastal Seawater: Boso to Sanriku Areas, Japan.

    Science.gov (United States)

    Mashio, Asami Suzuki; Obata, Hajime; Gamo, Toshitaka

    2017-08-01

    Platinum, one of the rarest elements in the earth's crust, is now widely used in a range of products, such as catalytic converters in automobiles and anticancer drugs. Increasing use and dispersal of platinum has the potential to affect aquatic environments. Platinum concentrations in open ocean seawater have been found to be very low (approximately 0.2 pmol/L); however, Pt distributions and biogeochemical cycles in coastal areas are unknown. In this study, we investigated Pt concentrations in coastal waters between the Boso and Sanriku areas, Japan, after the 2011 tsunami. We determined sub-picomolar levels of dissolved Pt using isotope-dilution Inductively coupled plasma mass spectrometry after column preconcentration with an anion exchange resin. Dissolved Pt concentrations were found to be in the range 0.20-1.5 pmol/L, with the highest concentration in bottom water of the Boso coastal area, and at stations close to Tokyo Bay. Assuming thermodynamical equilibrium, Pt was determined to be present in the form PtCl 5 (OH) 2- , even in low-oxygen coastal waters. Vertical profiles indicated Pt levels increased toward seafloors near coastal stations and were similar to those of the open ocean at trench stations. High concentrations of dissolved Pt are thought to be derived from coastal sediments.

  19. Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments

    Science.gov (United States)

    2017-01-01

    Enhanced weathering of (ultra)basic silicate rocks such as olivine-rich dunite has been proposed as a large-scale climate engineering approach. When implemented in coastal environments, olivine weathering is expected to increase seawater alkalinity, thus resulting in additional CO2 uptake from the atmosphere. However, the mechanisms of marine olivine weathering and its effect on seawater–carbonate chemistry remain poorly understood. Here, we present results from batch reaction experiments, in which forsteritic olivine was subjected to rotational agitation in different seawater media for periods of days to months. Olivine dissolution caused a significant increase in alkalinity of the seawater with a consequent DIC increase due to CO2 invasion, thus confirming viability of the basic concept of enhanced silicate weathering. However, our experiments also identified several important challenges with respect to the detailed quantification of the CO2 sequestration efficiency under field conditions, which include nonstoichiometric dissolution, potential pore water saturation in the seabed, and the potential occurrence of secondary reactions. Before enhanced weathering of olivine in coastal environments can be considered an option for realizing negative CO2 emissions for climate mitigation purposes, these aspects need further experimental assessment. PMID:28281750

  20. Microbial degradation of pharmaceuticals in estuarine and coastal seawater

    Energy Technology Data Exchange (ETDEWEB)

    Benotti, Mark J. [Marine Sciences Research Center, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Brownawell, Bruce J. [Marine Sciences Research Center, Stony Brook University, Stony Brook, NY 11794-5000 (United States)], E-mail: bruce.brownawell@sunysb.edu

    2009-03-15

    Microbial degradation rates were measured for 19 pharmaceuticals in estuarine and coastal surface water samples. Antipyrine, carbamazepine, cotinine, sulfamethoxazole, and trimethoprim were the most refractory (half-lives, t{sub 1/2} = 35 to >100 days), making them excellent candidates for wastewater tracers. Nicotine, acetaminophen, and fluoxetine were labile across all treatments (t{sub 1/2} = 0.68-11 days). Caffeine, diltiazem, and nifedipine were also and relatively labile in all but one of the treatments (t{sub 1/2} = 3.5-13 days). Microbial degradation of caffeine was further confirmed by production {sup 14}CO{sub 2}. The fastest decay of non-refractory compounds was always observed in more sewage-affected Jamaica Bay waters. Degradation rates for the majority of these pharmaceuticals are much slower than reported rates for small biomolecules, such as glucose and amino acids. Batch sorption experiments indicate that removal of these soluble pharmaceuticals from the water column to sediments is a relatively insignificant removal process in these receiving waters. - Microbial degradation rates were measured for 19 structurally variable pharmaceuticals in wastewater-impacted estuarine and coastal seawater.

  1. Microbial degradation of pharmaceuticals in estuarine and coastal seawater

    International Nuclear Information System (INIS)

    Benotti, Mark J.; Brownawell, Bruce J.

    2009-01-01

    Microbial degradation rates were measured for 19 pharmaceuticals in estuarine and coastal surface water samples. Antipyrine, carbamazepine, cotinine, sulfamethoxazole, and trimethoprim were the most refractory (half-lives, t 1/2 = 35 to >100 days), making them excellent candidates for wastewater tracers. Nicotine, acetaminophen, and fluoxetine were labile across all treatments (t 1/2 = 0.68-11 days). Caffeine, diltiazem, and nifedipine were also and relatively labile in all but one of the treatments (t 1/2 = 3.5-13 days). Microbial degradation of caffeine was further confirmed by production 14 CO 2 . The fastest decay of non-refractory compounds was always observed in more sewage-affected Jamaica Bay waters. Degradation rates for the majority of these pharmaceuticals are much slower than reported rates for small biomolecules, such as glucose and amino acids. Batch sorption experiments indicate that removal of these soluble pharmaceuticals from the water column to sediments is a relatively insignificant removal process in these receiving waters. - Microbial degradation rates were measured for 19 structurally variable pharmaceuticals in wastewater-impacted estuarine and coastal seawater

  2. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2018-01-01

    Full Text Available Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP. A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of

  3. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece.

    Science.gov (United States)

    Kazakis, N; Pavlou, A; Vargemezis, G; Voudouris, K S; Soulios, G; Pliakas, F; Tsokas, G

    2016-02-01

    The aim of this study was to determine the extent and geometrical characteristics of seawater intrusion in the coastal aquifer of the eastern Thermaikos Gulf, Greece. Hydrochemical data and geoelectrical measurements were combined and supplemented to determine the hydrochemical regime of the study site in regard to seawater phenomena. Chemical analysis of groundwater was performed in 126 boreholes and fifteen electrical resistivity tomographies (ERT) were measured, whereas in two sites the ERT measurements were repeated following the wet season. The Cl(-) concentrations recorded reached 2240 mg/L indicating seawater intrusion which was also verified by ionic ratios. The ionic ratios were overlapped and a seawater intrusion map (SWIM) was produced. A significant part of the coastal aquifer (up to 150 km(2)) is influenced by seawater intrusion. The areas with the most intensive salinization are located between Nea Kallikratia-Epanomi and Aggelochori-Peraia. According to the ERTs, in the influenced areas the salinization of the aquifer exceeds 1 km toward the mainland and its depth reaches 200 m. In the area surrounding Thessaloniki airport, the ERTs revealed salinization of the upper aquifer to depths of up to 40 m, whereas the lower aquifer is uninfluenced. This abnormal distribution of seawater intrusion demonstrates the value of geoelectrical methods in the study of seawater intrusion especially in areas with limited available hydrochemical data. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Perturbations of modeling and forecast of karachi coastal region seawater

    International Nuclear Information System (INIS)

    Hussain, M.A.; Abbas, S.; Ansari, M.R.K.; Zaffar, A.

    2013-01-01

    Global warming is now a stark reality affecting the humanity in many hazardous ways. Continuous floods in Pakistan in past two years are an eye opener in this regard. A great loss of property, agriculture and life as a result of these floods suggests for an intelligent monitoring of the future projections of climate change and global warming. This is necessary because the harmful impacts of natural hazards can be coped and alleviated with a good planning in advance. This monitoring demands for enhanced forecasting capabilities, use of better analytical techniques and a clear determination and study of the controlling factors. Karachi is a coastal city which is also the industrial hub of Pakistan. Moreover, it is among one of the largest metropolitans of the world. So expectedly is most suitable for the study of high level of complex natural and anthropogenic activities. It is peculiar in the sense that it has two summer seasons, a situation scarcely observable on the globe. Here, summer season seawater temperature fluctuations are studied with the help of Seasonal Autoregressive Integrated Moving Average (SARIMA) models and short- and long-term forecasts are made. Our short-term forecasts determine months for the summer wise temperature extremes. It appears that the months of May, June, July and August are the months of extreme temperature for the first summer and October is the month of extreme temperature for the second summer. The long-term forecasts predict that 2014, 2016, 2018, and 2019 will be the years of warm summers. The analysis appearing here would be useful for coastal-urban planners in emphasizing the impact of seawater extreme temperatures on urban industrial activities, etc. (author)

  5. Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan

    Science.gov (United States)

    Huang, P. S.; Chiu, Y.

    2015-12-01

    In 1970's, the agriculture and aquaculture were rapidly developed at Pingtung coastal area in southern Taiwan. The groundwater aquifers were over-pumped and caused the seawater intrusion. In order to remedy the contaminated groundwater and find the best strategies of groundwater usage, a management model to search the optimal groundwater operational strategies is developed in this study. The objective function is to minimize the total amount of injection water and a set of constraints are applied to ensure the groundwater levels and concentrations are satisfied. A three-dimension density-dependent flow and transport simulation model, called SEAWAT developed by U.S. Geological Survey, is selected to simulate the phenomenon of seawater intrusion. The simulation model is well calibrated by the field measurements and replaced by the surrogate model of trained artificial neural networks (ANNs) to reduce the computational time. The ANNs are embedded in the management model to link the simulation and optimization models, and the global optimizer of differential evolution (DE) is applied for solving the management model. The optimal results show that the fully trained ANNs could substitute the original simulation model and reduce much computational time. Under appropriate setting of objective function and constraints, DE can find the optimal injection rates at predefined barriers. The concentrations at the target locations could decrease more than 50 percent within the planning horizon of 20 years. Keywords : Seawater intrusion, groundwater management, numerical model, artificial neural networks, differential evolution

  6. Diurnal variations in personal care products in seawater and mussels at three Mediterranean coastal sites.

    Science.gov (United States)

    Picot-Groz, Marina; Fenet, Hélène; Martinez Bueno, Maria Jesus; Rosain, David; Gomez, Elena

    2018-03-01

    The presence of personal care products (PCPs) in the marine environment is of major concern. PCPs, UV filters, and musks can enter the marine environment indirectly through wastewater or directly via recreational activities. We conducted this study to document patterns in the occurrence of seven PCPs at three coastal sites impacted by recreational activities during 1 day. The study focused on diurnal variations in these seven PCPs in seawater and indigenous mussels. In seawater, UV filters showed diurnal variations that mirrored variations in recreational activities at the sites. Ethylhexyl methoxycinnamate (EHMC) and octocrylene (OC) water concentrations increased from under the limit of quantification in the morning to 106 and 369 ng/L, respectively, when recreational activities were the highest. In mussels, diurnal variations in OC were observed, with the lowest concentrations recorded in the morning and then increasing throughout the day. As Mytilus spp. are widely used as sentinels in coastal pollution monitoring programs (mussel watch), our findings on diurnal variations could enhance sampling recommendations for recreational sites impacted by PCPs.

  7. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Kazakis, N., E-mail: kazanera@yahoo.com [Aristotle University of Thessaloniki, Department of Geology, Lab. of Engineering Geology & Hydrogeology, 54124 Thessaloniki (Greece); Pavlou, A. [Aristotle University of Thessaloniki, Department of Geology, Lab. of Engineering Geology & Hydrogeology, 54124 Thessaloniki (Greece); Vargemezis, G. [Aristotle University of Thessaloniki, Department of Geology, Lab. of Applied Geophysics, 54124 Thessaloniki (Greece); Voudouris, K.S.; Soulios, G. [Aristotle University of Thessaloniki, Department of Geology, Lab. of Engineering Geology & Hydrogeology, 54124 Thessaloniki (Greece); Pliakas, F. [Democritus University of Thrace, Department of Civil Engineering, Xanthi 67100 (Greece); Tsokas, G. [Aristotle University of Thessaloniki, Department of Geology, Lab. of Applied Geophysics, 54124 Thessaloniki (Greece)

    2016-02-01

    The aim of this study was to determine the extent and geometrical characteristics of seawater intrusion in the coastal aquifer of the eastern Thermaikos Gulf, Greece. Hydrochemical data and geoelectrical measurements were combined and supplemented to determine the hydrochemical regime of the study site in regard to seawater phenomena. Chemical analysis of groundwater was performed in 126 boreholes and fifteen electrical resistivity tomographies (ERT) were measured, whereas in two sites the ERT measurements were repeated following the wet season. The Cl{sup −} concentrations recorded reached 2240 mg/L indicating seawater intrusion which was also verified by ionic ratios. The ionic ratios were overlapped and a seawater intrusion map (SWIM) was produced. A significant part of the coastal aquifer (up to 150 km{sup 2}) is influenced by seawater intrusion. The areas with the most intensive salinization are located between Nea Kallikratia–Epanomi and Aggelochori–Peraia. According to the ERTs, in the influenced areas the salinization of the aquifer exceeds 1 km toward the mainland and its depth reaches 200 m. In the area surrounding Thessaloniki airport, the ERTs revealed salinization of the upper aquifer to depths of up to 40 m, whereas the lower aquifer is uninfluenced. This abnormal distribution of seawater intrusion demonstrates the value of geoelectrical methods in the study of seawater intrusion especially in areas with limited available hydrochemical data. - Highlights: • ERTs determined the geometrical characteristics of the saline aquifer. • An abnormal distribution of seawater intrusion was recorded. • Four ionic ratios overlapped and a seawater intrusion map was produced. • Cl{sup −} concentrations increased significantly from 2005 to 2010 by up to 1800 mg/L.

  8. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece

    International Nuclear Information System (INIS)

    Kazakis, N.; Pavlou, A.; Vargemezis, G.; Voudouris, K.S.; Soulios, G.; Pliakas, F.; Tsokas, G.

    2016-01-01

    The aim of this study was to determine the extent and geometrical characteristics of seawater intrusion in the coastal aquifer of the eastern Thermaikos Gulf, Greece. Hydrochemical data and geoelectrical measurements were combined and supplemented to determine the hydrochemical regime of the study site in regard to seawater phenomena. Chemical analysis of groundwater was performed in 126 boreholes and fifteen electrical resistivity tomographies (ERT) were measured, whereas in two sites the ERT measurements were repeated following the wet season. The Cl"− concentrations recorded reached 2240 mg/L indicating seawater intrusion which was also verified by ionic ratios. The ionic ratios were overlapped and a seawater intrusion map (SWIM) was produced. A significant part of the coastal aquifer (up to 150 km"2) is influenced by seawater intrusion. The areas with the most intensive salinization are located between Nea Kallikratia–Epanomi and Aggelochori–Peraia. According to the ERTs, in the influenced areas the salinization of the aquifer exceeds 1 km toward the mainland and its depth reaches 200 m. In the area surrounding Thessaloniki airport, the ERTs revealed salinization of the upper aquifer to depths of up to 40 m, whereas the lower aquifer is uninfluenced. This abnormal distribution of seawater intrusion demonstrates the value of geoelectrical methods in the study of seawater intrusion especially in areas with limited available hydrochemical data. - Highlights: • ERTs determined the geometrical characteristics of the saline aquifer. • An abnormal distribution of seawater intrusion was recorded. • Four ionic ratios overlapped and a seawater intrusion map was produced. • Cl"− concentrations increased significantly from 2005 to 2010 by up to 1800 mg/L.

  9. Impacts of seawater rise on seawater intrusion in the Nile Delta Aquifer, Egypt.

    Science.gov (United States)

    Sefelnasr, Ahmed; Sherif, Mohsen

    2014-01-01

    Several investigations have recently considered the possible impacts of climate change and seawater level rise on seawater intrusion in coastal aquifers. All have revealed the severity of the problem and the significance of the landward movement of the dispersion zone under the condition of seawater level rise. Most of the studies did not consider the possible effects of the seawater rise on the inland movement of the shoreline and the associate changes in the boundary conditions at the seaside and the domain geometry. Such effects become more evident in flat, low land, coastal alluvial plans where large areas might be submerged with seawater under a relatively small increase in the seawater level. None of the studies combined the effect of increased groundwater pumping, due to the possible decline in precipitation and shortage in surface water resources, with the expected landward shift of the shore line. In this article, the possible effects of seawater level rise in the Mediterranean Sea on the seawater intrusion problem in the Nile Delta Aquifer are investigated using FEFLOW. The simulations are conducted in horizontal view while considering the effect of the shoreline landward shift using digital elevation models. In addition to the basic run (current conditions), six different scenarios are considered. Scenarios one, two, and three assume a 0.5 m seawater rise while the total pumping is reduced by 50%, maintained as per the current conditions and doubled, respectively. Scenarios four, five, and six assume a 1.0 m seawater rise and the total pumping is changed as in the first three scenarios. The shoreline is moved to account for the seawater rise and hence the study domain and the seaside boundary are modified accordingly. It is concluded that, large areas in the coastal zone of the Nile Delta will be submerged by seawater and the coast line will shift landward by several kilometers in the eastern and western sides of the Delta. Scenario six represents

  10. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    Science.gov (United States)

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  11. Spatial and temporal distribution of tributyltin (TBT) in seawater, sediments and bivalves from coastal areas of Korea during 2001-2005.

    Science.gov (United States)

    Choi, Minkyu; Choi, Hee-Gu; Moon, Hyo-Bang; Kim, Gui-Young

    2009-04-01

    Tributyltin (TBT) concentrations were determined in seawater, sediments and bivalve samples collected from Korean coastal areas during 2001-2005, to investigate the levels and temporal variation in TBT contamination in relation to the timing of the imposition of regulations on TBT use in Korea. TBT concentrations ranged from TBT were found at locations close to intensive shipping traffic and industrial complexes, and the contamination at some hot spot areas was high enough to cause harmful effects on marine organisms. TBT concentrations and their occurrence in Korean coastal waters have been decreasing annually. In particular, TBT concentrations in seawater have dramatically decreased. This result is consistent with regulations and bans on the use of TBT in Korea.

  12. Pu distribution in seawater in the near coastal area off Fukushima after the Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Bu, W.T.; Zheng, J.; Aono, T.; Wu, J.W.; Tagami, K.; Uchida, S.; Guo, Q.J.; Yamada, M.

    2015-01-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident released large amount of radionuclides into the marine environment. Compared with the fission products, data on the distributions of Pu in the marine environment of the western North Pacific after the accident is limited. To better understand the Pu contamination in the marine environment after the accident, for the first time, we determined Pu isotope ratio ( 240 Pu/ 239 Pu) in addition to 239+240 Pu activity in seawater collected in the near coastal area (mostly within the 30 km zone) off the FDNPP site. The 239+240P u activities were 4.16-5.52 mBq/m 3 and the 240 Pu/ 239 Pu atom ratios varied from 0.221 to 0.295. These values were compared with the baseline data for Pu distribution in the near coast seawaters before the FDNPP accident (2008-2010). The results suggested that there is no significant Pu contamination in seawater in the near coastal area off the FDNPP site from the accident two years after the accident. (author)

  13. Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation

    Digital Repository Service at National Institute of Oceanography (India)

    Vialard, J.; Shenoi, S.S.C.; Mc; Shankar, D.; Durand, F.; Fernando, V.; Shetye, S.R.

    Author version: Geophys. Res. Lett.: 36(14); 2009; doi:10.1029/2009GL038450; 5 pp Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation J. Vialard 1 2 , S.S.C Shenoi 2 , J.P. McCreary 3 , D. Shankar 2... involving both equatorial wave dynamics and coastal wave propagation around the perimeter of the northern Indian Ocean [McCreary et al., 1993]. The East India Coastal Current (EICC), for example, is strongly influenced by remote wind forcing from...

  14. Air-sea exchanges of materials in the Indian Ocean: Concerns and strategies

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    biological production is entirely due to leakage of agricultural effluents into coastal waters, as the present knowledge on the seasonal variability of nutrients and biological production in waters along the Indian coast is still limited. If this theory... to gaseous CO2 with minor reduction in pH. The gaseous CO2 in seawater determines the extent of air-sea exchange. But small changes in temperature or pH can modify gaseous CO2 content in seawater. Thus shifts in physico- chemical and biological regimes...

  15. Organic sources in the Egyptian seawater around Alexandria coastal area as integrated from polycyclic aromatic hydrocarbons (PAHs

    Directory of Open Access Journals (Sweden)

    Omayma E. Ahmed

    2017-09-01

    Full Text Available This paper represents the first comprehensive survey and provides important data on PAHs concentration and composition in Alexandria coastal seawater. The compositions of PAHs determined in all samples are to be used as chemical markers for identifying different sources of PAH pollution in the surface seawater of Alexandria coastal area. The quantitative analysis of PAHs showed a concentration ranging from 8970.939 to 1254756.00 ng/L, which exceeds the maximum admissible concentrations of PAHs (200 ng/L for the water standard of European Union. The calculated diagnostic ratios suggested that the sources of PAHs at the majority of the studied area are derived primarily from pyrogenic sources from incomplete fuel combustion of the boats and vehicle engines with lesser amounts of PAHs contributed from petrogenic sources. Some stations displayed mixed sources in comparison to many other studied marine systems, the PAH concentrations detected at Alexandria area were considered to be higher and pose health risks to aquatic bodies.

  16. Assessment of arsenic in coastal sediments, seawaters and molluscs in the Tarut Island, Arabian Gulf, Saudi Arabia

    Science.gov (United States)

    El-Sorogy, Abdelbaset S.; Youssef, Mohamed; Al-Kahtany, Khaled; Al-Otaiby, Naif

    2016-01-01

    In order to assess arsenic on the Tarut coast, Saudi Arabian Gulf, 38 sediment samples, 26 seawater samples and 40 gastropod and bivalve specimens were collected for analyses by Inductively Coupled Plasma-Mass Spectrometer. The Enrichment Factor (EF), the Geoaccumulation Index (Igeo) and the Contamination Factor (CF) indicated that coastal sediments of Tarut Island are severely enriched, strongly polluted and very highly contaminated with arsenic as a result of anthropogenic inputs. Comparison with arsenic in coastal sediments, seawaters and molluscs in the Red Sea, the Arabian Gulf and abroad coasts suggested that the studied samples have higher concentrations of As. The suggested natural sources of arsenic in the study area are the weathering and decomposition of neighboring deserts. The anthropogenic sources include the land reclamation, petrochemical industries, boat exhaust emissions, oil leakage, desalination plants and sewage effluents. These anthropogenic sources are the dominant sources of As in the study area and mostly came from Al Jubail industrial city to the north.

  17. Estimating the impact of seawater on the production of soil water-extractable organic carbon during coastal erosion.

    Science.gov (United States)

    Dou, Fugen; Ping, Chien-Lu; Guo, Laodong; Jorgenson, Torre

    2008-01-01

    The production of water-extractable organic carbon (WEOC) during arctic coastal erosion and permafrost degradation may contribute significantly to C fluxes under warming conditions, but it remains difficult to quantify. A tundra soil collected near Barrow, AK, was selected to evaluate the effects of soil pretreatments (oven drying vs. freeze drying) as well as extraction solutions (pure water vs. seawater) on WEOC yields. Both oven drying and freeze drying significantly increased WEOC release compared with the original moist soil samples; dried samples released, on average, 18% more WEOC than did original moist samples. Similar results were observed for the production of low-molecular-weight dissolved organic C. However, extractable OC released from different soil horizons exhibited differences in specific UV absorption, suggesting differences in WEOC quality. Furthermore, extractable OC yields were significantly less in samples extracted with seawater compared with those extracted with pure water, likely due to the effects of major ions on extractable OC flocculation. Compared with samples from the active horizons, upper permafrost samples released more WEOC, suggesting that continuously frozen samples were more sensitive than samples that had experienced more drying-wetting cycles in nature. Specific UV absorption of seawater-extracted OC was significantly lower than that of OC extracted using pure water, suggesting more aromatic or humic substances were flocculated during seawater extraction. Our results suggest that overestimation of total terrestrial WEOC input to the Arctic Ocean during coastal erosion could occur if estimations were based on WEOC extracted from dried soil samples using pure water.

  18. Coral microbial communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution.

    Science.gov (United States)

    Klaus, James S; Janse, Ingmar; Heikoop, Jeffrey M; Sanford, Robert A; Fouke, Bruce W

    2007-05-01

    The high incidence of coral disease in shallow coastal marine environments suggests seawater depth and coastal pollution have an impact on the microbial communities inhabiting healthy coral tissues. A study was undertaken to determine how bacterial communities inhabiting tissues of the coral Montastraea annularis change at 5 m, 10 m and 20 m water depth in varying proximity to the urban centre and seaport of Willemstad, Curaçao, Netherlands Antilles. Analyses of terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA gene sequences show significant differences in bacterial communities of polluted and control localities only at the shallowest seawater depth. Furthermore, distinct differences in bacterial communities were found with increasing water depth. Comparisons of TRFLP peaks with sequenced clone libraries indicate the black band disease cyanobacterium clone CD1C11 is common and most abundant on healthy corals in less than 10 m water depth. Similarly, sequences belonging to a previously unrecognized group of likely phototrophic bacteria, herein referred to as CAB-I, were also more common in shallow water. To assess the influence of environmental and physiologic factors on bacterial community structure, canonical correspondence analysis was performed using explanatory variables associated with: (i) light availability; (ii) seawater pollution; (iii) coral mucus composition; (iv) the community structure of symbiotic algae; and (v) the photosynthetic activity of symbiotic algae. Eleven per cent of the variation in bacterial communities was accounted for by covariation with these variables; the most important being photosynthetically active radiation (sunlight) and the coral uptake of sewage-derived compounds as recorded by the delta(15)N of coral tissue.

  19. A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers

    Science.gov (United States)

    Koussis, Antonis D.; Mazi, Katerina; Riou, Fabien; Destouni, Georgia

    2015-06-01

    Interface flow models that use the Dupuit-Forchheimer (DF) approximation for assessing the freshwater lens and the seawater intrusion in coastal aquifers lack representation of the gap through which fresh groundwater discharges to the sea. In these models, the interface outcrops unrealistically at the same point as the free surface, is too shallow and intersects the aquifer base too far inland, thus overestimating an intruding seawater front. To correct this shortcoming of DF-type interface solutions for unconfined aquifers, we here adapt the outflow gap estimate of an analytical 2-D interface solution for infinitely thick aquifers to fit the 50%-salinity contour of variable-density solutions for finite-depth aquifers. We further improve the accuracy of the interface toe location predicted with depth-integrated DF interface solutions by ∼20% (relative to the 50%-salinity contour of variable-density solutions) by combining the outflow-gap adjusted aquifer depth at the sea with a transverse-dispersion adjusted density ratio (Pool and Carrera, 2011), appropriately modified for unconfined flow. The effectiveness of the combined correction is exemplified for two regional Mediterranean aquifers, the Israel Coastal and Nile Delta aquifers.

  20. Seawater as Alternative to Freshwater in Pretreatment of Date Palm Residues for Bioethanol Production in Coastal and/or Arid Areas.

    Science.gov (United States)

    Fang, Chuanji; Thomsen, Mette Hedegaard; Brudecki, Grzegorz P; Cybulska, Iwona; Frankaer, Christian Grundahl; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2015-11-01

    The large water consumption (1.9-5.9 m(3) water per m(3) of biofuel) required by biomass processing plants has become an emerging concern, which is particularly critical in arid/semiarid regions. Seawater, as a widely available water source, could be an interesting option. This work was to study the technical feasibility of using seawater to replace freshwater in the pretreatment of date palm leaflets, a lignocellulosic biomass from arid regions, for bioethanol production. It was shown that leaflets pretreated with seawater exhibited lower cellulose crystallinity than those pretreated with freshwater. Pretreatment with seawater produced comparably digestible and fermentable solids to those obtained with freshwater. Moreover, no significant difference of inhibition to Saccharomyces cerevisiae was observed between liquids from pretreatment with seawater and freshwater. The results showed that seawater could be a promising alternative to freshwater for lignocellulose biorefineries in coastal and/or arid/semiarid areas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.

    Science.gov (United States)

    Eashwar, M; Subramanian, G; Palanichamy, S; Rajagopal, G; Madhu, S; Kamaraj, P

    2009-01-01

    Type-316 stainless steel (SS) was investigated as the cathode in galvanic couples in full-strength seawater from the Gulf of Mannar on the southeast coast of India. Tests were devised to examine the impact of SS cathodes on anode materials with or without the accrual of marine biofilms. Biofilmed SS cathodes significantly enhanced the rate of corrosion of nickel, causing noble shifts in the couple potentials. With mild steel and zinc as the anodes, calcareous deposits developed quite rapidly on the SS cathodes and led to a significant reduction of bacterial numbers. The calcareous deposits also caused substantial reduction of galvanic corrosion rates for mild steel, whereas there was no difference for zinc. The deposits were identified by XRD as essentially carbonates, oxides and hydroxides of calcium and magnesium. Potentiodynamic polarization performed on the actual couples after disconnection and equilibration provided reasonable interpretations of the galvanic corrosion trends. Data from this work suggest that a potential of about -0.70 V vs. saturated calomel electrode (SCE) should provide optimum protection of SS in warmer, full-strength seawater that supports the precipitation of calcareous deposits. The criterion commonly recommended for temperate conditions of lower water temperature and estuarine waters of lower alkalinity is -1.0 V (SCE).

  2. Changing Livelihoods in the Coastal Zone of the Western Indian ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science ... of WIO-East African coastal life warrants both single- and ... Perspectives are needed of both natural and ... This work is licensed under a Creative Commons Attribution 3.0 License.

  3. Detection, occurrence and monthly variations of typical lipophilic marine toxins associated with diarrhetic shellfish poisoning in the coastal seawater of Qingdao City, China.

    Science.gov (United States)

    Li, Xin; Li, Zhaoyong; Chen, Junhui; Shi, Qian; Zhang, Rutan; Wang, Shuai; Wang, Xiaoru

    2014-09-01

    In recent years, related research has mainly examined lipophilic marine toxins (LMTs) in contaminated bivalves or toxic algae, whereas the levels of LMTs in seawater remain largely unexplored. Okadaic acid (OA), yessotoxin (YTX), and pectenotoxin-2 (PTX2) are three typical LMTs produced by certain marine algae that are closely linked to diarrhetic shellfish poisoning. In this study, a new method of solid phase extraction combined with liquid chromatography - electrospray ionization ion trap tandem mass spectrometry was developed to determine the presence of OA, YTX, and PTX2 in seawater simultaneously. Satisfactory sensitivity, repeatability (RSDseawater. OA and PTX2 were detected in all the seawater samples collected from eight locations along the coastline of Qingdao City, China on October 23, 2012, with concentration ranges of OA 4.24-9.64ngL(-1) and PTX2 0.42-0.74ngL(-1). Monthly concentrations of OA and PTX2 in the seawater of four locations were determined over the course of a year, with concentration ranges of OA 1.41-89.52ngL(-1) and PTX2 below detectable limit to 1.70ngL(-1). The peak values of OA and PTX2 in coastal seawater were observed in August and July, respectively. Our results suggest that follow-up research on the fate modeling and risk assessment of LMTs in coastal seawater should be implemented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. bioSearch : A glimpse into marine biodiversity of Indian coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Kakodkar, A.P.; Alornekar, A.; DSouza, R.; Thomas, T.R.A.; Divekar, R.; Nath, I.V.A.; Kavlekar, D.P.; Ingole, B.S.; Bharathi, P.A.L.

    bioSearch is a database application developed to digitize marine biodiversity of Indian coastal waters. A user can obtain information on organism’s binomial and common names, synonyms, taxonomy, morphology, ecology, economic importance, geographical...

  6. Spatial variation of PAHs and PCBs in coastal air, seawater, and sediments in a heavily industrialized region.

    Science.gov (United States)

    Odabasi, Mustafa; Dumanoglu, Yetkin; Kara, Melik; Altiok, Hasan; Elbir, Tolga; Bayram, Abdurrahman

    2017-05-01

    Concurrent coastal seawater (n = 22), sediment (n = 22), and atmospheric samples (n = 10) were collected in the Aliaga industrial region, Turkey, to explore the spatial variation, sources, and air-seawater exchange of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Seawater Σ 16 PAH concentrations (particle + dissolved) ranged between 5107 and 294,624 pg L -1 , while Σ 41 PCB concentrations were in the range of 880-50,829 pg L -1 . Levels in sediments were highly variable ranging between 35.5-49,682 and 2.7-2450 μg kg -1 in dry weight for Σ 16 PAHs and Σ 41 PCBs, respectively. Atmospheric concentrations varied between 1791-274,974 and 104-20,083 pg m -3 for Σ 16 PAHs and Σ 41 PCBs, respectively. Sediment organic matter (OM) content and levels of Σ 16 PAHs and Σ 41 PCBs correlated weakly (r 2  = 0.19-0.23, p seawater, and sediment and factor analysis on the sediment levels pointed out that the major sources in the region are steel plants, petroleum refinery, petrochemical complex, ship breaking, loading/unloading activities at the ports, vehicular emissions, and fossil fuel combustion emissions. The direction of the air-seawater exchange was also explored by estimating seawater fugacity fractions of PAHs and PCBs. For PAHs, the number of cases implying deposition (43.0%) and volatilization (39.5%) was similar, while for PCBs, the number of cases implying volatilization (60.4%) was much higher compared to deposition (21.6%). Fugacity fractions were generally seawater and sediment levels were measured, implying that atmospheric deposition is an important mechanism affecting seawater and sediment PAH and PCB levels.

  7. Radionuclides and particles in seawater with the large volume in situ filtration and concentration system in the coastal waters off Japan

    International Nuclear Information System (INIS)

    Aono, Tatsuo; Nakanishi, Takahiro; Okubo, Ayako; Zheng, Jian; Yamada, Masatoshi; Kusakabe, Masashi

    2008-01-01

    It is necessary to determine the radionuclides in dissolved and particulate state in order to clarify the distributions and behavior of these in seawater. Because the concentrations of radionuclides and particles are very low in the ocean, it is difficult to concentrate and fractionate the particulate matters with the filtration systems in seawater. The large volume in situ filtration and concentration system (LV-FiCS) was developed to collect various forms of trace radionuclides and particles in seawater. The LV-FiCS has been operated during several cruises in the coastal waters off Japan, and several m 3 of seawaters were filtered through different kinds of filters and then pass through the adsorbents to concentrate radionuclides simultaneously. This system could be shown the vertical profiles of thorium with the size-fractionated method and the behavior of these nuclides in the ocean. (author)

  8. Speciation and spectrophotometric determination of uranium in seawater

    Directory of Open Access Journals (Sweden)

    M. KONSTANTINOU

    2004-06-01

    Full Text Available A series of ion-exchange and extraction procedures for the separation of uranium from seawater samples and subsequent spectrophotometric determination of uranium in seawater by means of arsenazo(III is described. According to the measurements performed by means of traced samples at every stage of separation, the yield of the pre-analytical procedures is generally over 90% and the separation of uranium very selective. The mean uranium concentration in seawater samples collected from five different coastal areas in Cyprus was found to be 3.2 ± 0.2 & micro; g L-1. Uranium in seawater is stable in its hexavalent oxidation state and UO2 (CO334- is the predominant species under normal coastal conditions (pH ≥ 8, EH ≥ 0.35 mV, 1 atm and 0.03% CO2.

  9. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; Mc; Durand, F.; Muraleedharan, P.M.

    version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1... reversing winds. These wind variations drive seasonal equatorial Kelvin and Rossby wave responses. The seasonal equatorial Kelvin waves propagate into the North Indian Ocean (hereafter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As a result...

  10. Identifying seawater intrusion in coastal areas by means of 1D and quasi-2D joint inversion of TDEM and VES data

    Science.gov (United States)

    Martínez-Moreno, F. J.; Monteiro-Santos, F. A.; Bernardo, I.; Farzamian, M.; Nascimento, C.; Fernandes, J.; Casal, B.; Ribeiro, J. A.

    2017-09-01

    Seawater intrusion is an increasingly widespread problem in coastal aquifers caused by climate changes -sea-level rise, extreme phenomena like flooding and droughts- and groundwater depletion near to the coastline. To evaluate and mitigate the environmental risks of this phenomenon it is necessary to characterize the coastal aquifer and the salt intrusion. Geophysical methods are the most appropriate tool to address these researches. Among all geophysical techniques, electrical methods are able to detect seawater intrusions due to the high resistivity contrast between saltwater, freshwater and geological layers. The combination of two or more geophysical methods is recommended and they are more efficient when both data are inverted jointly because the final model encompasses the physical properties measured for each methods. In this investigation, joint inversion of vertical electric and time domain soundings has been performed to examine seawater intrusion in an area within the Ferragudo-Albufeira aquifer system (Algarve, South of Portugal). For this purpose two profiles combining electrical resistivity tomography (ERT) and time domain electromagnetic (TDEM) methods were measured and the results were compared with the information obtained from exploration drilling. Three different inversions have been carried out: single inversion of the ERT and TDEM data, 1D joint inversion and quasi-2D joint inversion. Single inversion results identify seawater intrusion, although the sedimentary layers detected in exploration drilling were not well differentiated. The models obtained with 1D joint inversion improve the previous inversion due to better detection of sedimentary layer and the seawater intrusion appear to be better defined. Finally, the quasi-2D joint inversion reveals a more realistic shape of the seawater intrusion and it is able to distinguish more sedimentary layers recognised in the exploration drilling. This study demonstrates that the quasi-2D joint

  11. Seawater and Freshwater Circulations through Coastal Forested Wetlands on a Caribbean Island

    Directory of Open Access Journals (Sweden)

    Luc Lambs

    2015-07-01

    Full Text Available Structure and composition of coastal forested wetlands are mainly controlled by local topography and soil salinity. Hydrology plays a major role in relation with tides, seaward, and freshwater inputs, landward. We report here the results of a two-year study undertaken in a coastal plain of the Guadeloupe archipelago (FWI. As elsewhere in the Caribbean islands, the study area is characterized by a micro-tidal regime and a highly seasonal climate. This work aimed at understanding groundwater dynamics and origin (seawater/freshwater both at ecosystems and stand levels. These hydrological processes were assessed through 18O/16O and 2H/1H isotopic analyses, and from monthly monitoring of water level and soil salinity at five study sites located in mangrove (3 and swamp forest (2. Our results highlight the importance of freshwater budget imbalance during low rainfall periods. Sustained and/or delayed dry seasons cause soil salinity to rise at the mangrove/swamp forest ecotone. As current models on climate change project decreasing rainfall amounts over the inner Caribbean region, one may expect for this area an inland progression of the mangrove forest to the expense of the nearby swamp forest.

  12. A field study of physico-chemical states of artificial radionuclides in seawater

    International Nuclear Information System (INIS)

    Nagaya, Yutaka; Nakamura, Kiyoshi

    1974-01-01

    The physico-chemical states of artificial radionuclides, 90 Sr, 137 Cs and 144 Ce in seawater were investigated by radiochemical analysis of filtered and unfiltered seawater. The difference of radionuclide concentrations between unfiltered and filtered seawaters was defined as the ''particulate form'' radioisotope and its ''particle ratio'' was discussed. Practically no particulate 90 Sr, greater than 0.22 μ in size, was observed in both coastal and open seawaters, but some of 137 Cs seemed to be insoluble in some circumstances, especially in coastal waters. A considerable amount of 144 Ce was found to be particulate. An estimation of the radionuclides in particulate form was made for Kashima-nada seawaters collected in 1970 to 1972, and it was shown that the possible occurrence of particulate radionuclides, greater than 0.22 μ in size, were 1% or less for 90 Sr and 6% for 137 Cs. In the coastal water, 80% of 144 Ce were seemed to be in particulate form, but in the open seawater only a few %. The influences of suspended materials to 137 Cs and 144 Ce concentration levels in seawater were not negligible and further investigations are desirable. (auth.)

  13. Intensively exploited Mediterranean aquifers: resilience to seawater intrusion and proximity to critical thresholds

    Science.gov (United States)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2014-05-01

    We investigate seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta, Israel Coastal and Cyprus Akrotiri aquifers. Using a generalized analytical sharp interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future seawater intrusion forcings. We identify two different critical limits of seawater intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete seawater intrusion up to the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that seawater intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that (a) the intruding seawater currently seriously threatens the Nile Delta aquifer, (b) in the Israel Coastal aquifer the sharp interface toe approaches the well location and (c) the Cyprus Akrotiri aquifer is currently somewhat less threatened by increased seawater intrusion.

  14. Pollutant dispersion studies - An update on the problems in Indian coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.

    Pollutant dispersion problems along the Indian coastal waters are characterisEd. by site-specificity, as a result of seasonal and physiographic variabilities. Presence of large rivers, estuaries and backwaters add to the problems of waste disposal...

  15. Macroalgal Morphogenesis Induced by Waterborne Compounds and Bacteria in Coastal Seawater.

    Directory of Open Access Journals (Sweden)

    Jan Grueneberg

    growth factors in a shallow water body separated from the open ocean by barrier islands might have strong implications to, for example, the wide usage of natural coastal seawater in algal (land based aquacultures of Ulva.

  16. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  17. Mercury isotope signatures of seawater discharged from a coal-fired power plant equipped with a seawater flue gas desulfurization system.

    Science.gov (United States)

    Lin, Haiying; Peng, Jingji; Yuan, Dongxing; Lu, Bingyan; Lin, Kunning; Huang, Shuyuan

    2016-07-01

    Seawater flue gas desulfurization (SFGD) systems are commonly used to remove acidic SO2 from the flue gas with alkaline seawater in many coastal coal-fired power plants in China. However, large amount of mercury (Hg) originated from coal is also transferred into seawater during the desulfurization (De-SO2) process. This research investigated Hg isotopes in seawater discharged from a coastal plant equipped with a SFGD system for the first time. Suspended particles of inorganic minerals, carbon residuals and sulfides are enriched in heavy Hg isotopes during the De-SO2 process. δ(202)Hg of particulate mercury (PHg) gradually decreased from -0.30‰ to -1.53‰ in study sea area as the distance from the point of discharge increased. The results revealed that physical mixing of contaminated De-SO2 seawater and uncontaminated fresh seawater caused a change in isotopic composition of PHg isotopes in the discharging area; and suggested that both De-SO2 seawater and local background contributed to PHg. The impacted sea area predicted with isotopic tracing technique was much larger than that resulted from a simple comparison of pollutant concentration. It was the first attempt to apply mercury isotopic composition signatures with two-component mixing model to trace the mercury pollution and its influence in seawater. The results could be beneficial to the coal-fired plants with SFGD systems to assess and control Hg pollution in sea area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Seawater intrusion in the gravelly confined aquifer of the coastal Pisan Plain (Tuscany): hydrogeological and geochemical investigation to assess causes and consequences

    Science.gov (United States)

    Doveri, M.; Giannecchini, R.; Butteri, M.

    2012-12-01

    The gravelly horizon of the Pisa plain multilayered system is a confined aquifer tapped by a large number of wells. It hosts a very important water resource for drinking, industrial and irrigable uses, but may be affected by seawater intrusion coming from the coastal area; most wells is distributed inland, anyway a significant exploitation along the coastal area is also present to supply farms and tourist services. Previous hydrogeological and geochemical investigations carried out in coastal area stated maximum percentage of seawater in gravelly aquifer of about 7-9% and suggested the presence of two different mechanisms (Doveri et alii, 2010): i) a direct seawater intrusion from the zone where the gravelly aquifer is in contact with the sea floor; ii) a mixing process between freshwater and seawater, the latter deriving from the Arno river-shallow sandy aquifer system. Basing on these results, since January 2012 a new two-year project was financed by the MSRM Regional Park. Major aims are a better definition of such phenomena and their distribution on the territory, and an assessing of the seawater intrusion trend in relation to groundwater exploitation. Eleven piezometers were realised during first semester of 2012, thus improving the measurement network, which is now made up by 40 wells/piezometers distributed on about 60 km^2. Comparing new and previous borehole data a general confinement of the gravelly aquifer is confirmed, excepting in the northern part where the aquifer is in contact with the superficial sandy one. Preliminary field measurement was performed in June 2012, during which water level (WL) and electrical conductivity (EC) data were collected. WLs below the sea-level were observed on most of the studied area, with a minimum value of about -5 m a.s.l. in the inner part of the northern zone, where major exploitation is present. Moreover, a relative minimum of WL (about -2 m a.s.l.) is present near the shoreline in the southern zone. In the latter

  19. Coagulation and ultrafiltration in seawater reverse osmosis pretreatment

    NARCIS (Netherlands)

    Tabatabai, S.A.A.

    2014-01-01

    Seawater desalination is a globally expanding coastal industry with an installed capacity of over 80 million m3/day. Algal blooms pose a challenge to the operation of seawater reverse osmosis (SWRO) membranes and pre-treatment systems due to high concentrations of algal cells and algal organic

  20. Biofouling evaluation in the seawater cooling circuit of an operating coastal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, P.S.; Veeramani, P.; Ershath, M.I.M.; Venugopalan, V.P. [BARC Facilities, Water and Steam Chemistry Div., Kalpakkam, Tamil Nadu (India)

    2010-07-01

    Chlorination is the most commonly used method of biofouling control in cooling water systems of coastal power stations. In the present study, we report results of extensive sampling in different sections of the cooling water system of an operating power station undertaken during three consecutive maintenance shutdowns. The power plant employed continuous low level chlorination (0.2 ± 0.1 mg L{sup -1} TRO) with twice-a-week booster dosing (0.4 ± 0.1 mg L-1 TRO for 8 hours). In addition, the process seawater heat exchangers received supplementary dosing of bromide treatment (0.2 ± 0.1 mg L{sup -1} TRO for 1 hour in every 8 h shift). Biofouling samples were collected from the cooling water conduits, heat exchanger water boxes, pipelines, heated discharge conduits and outfall section during the annual maintenance shutdown of the plant in the years 2007, 2008 and 2009. Simultaneous monitoring of biofouling on test coupons in coastal waters enabled direct comparison of fouling situation on test panels and that in the cooling system. The data showed significant reduction in biofouling inside the cooling circuit as compared to the coastal waters. However, significant amount of fouling was still evident at several places, indicating inadequacy of the biocide treatment regime. The maximum load of 31.3 kg m{sup 2} y{sup -1} was observed in the conduits leading to the process seawater heat exchangers (PSW-HX) and the minimum of 1.3 kg m{sup 2} y{sup -1} was observed in the outfall section. Fouling loads of 12.2 - 14.7 kg m{sup 2} y{sup -1} were observed in the concrete conduits feeding the main condensers. Bromide treatment ahead of the PSW-HX could marginally reduce the fouling load in the downstream section of the dosing point; the HX inlets still showed good biofouling. Species diversity across the cooling water system showed the pre-condenser section to be dominated by green mussels (Perna viridis), pearl oysters (Pinctada sp.) and edible oysters (Crassostrea sp

  1. Biofouling evaluation in the seawater cooling circuit of an operating coastal power plant

    International Nuclear Information System (INIS)

    Murthy, P.S.; Veeramani, P.; Ershath, M.I.M.; Venugopalan, V.P.

    2010-01-01

    Chlorination is the most commonly used method of biofouling control in cooling water systems of coastal power stations. In the present study, we report results of extensive sampling in different sections of the cooling water system of an operating power station undertaken during three consecutive maintenance shutdowns. The power plant employed continuous low level chlorination (0.2 ± 0.1 mg L -1 TRO) with twice-a-week booster dosing (0.4 ± 0.1 mg L-1 TRO for 8 hours). In addition, the process seawater heat exchangers received supplementary dosing of bromide treatment (0.2 ± 0.1 mg L -1 TRO for 1 hour in every 8 h shift). Biofouling samples were collected from the cooling water conduits, heat exchanger water boxes, pipelines, heated discharge conduits and outfall section during the annual maintenance shutdown of the plant in the years 2007, 2008 and 2009. Simultaneous monitoring of biofouling on test coupons in coastal waters enabled direct comparison of fouling situation on test panels and that in the cooling system. The data showed significant reduction in biofouling inside the cooling circuit as compared to the coastal waters. However, significant amount of fouling was still evident at several places, indicating inadequacy of the biocide treatment regime. The maximum load of 31.3 kg m 2 y -1 was observed in the conduits leading to the process seawater heat exchangers (PSW-HX) and the minimum of 1.3 kg m 2 y -1 was observed in the outfall section. Fouling loads of 12.2 - 14.7 kg m 2 y -1 were observed in the concrete conduits feeding the main condensers. Bromide treatment ahead of the PSW-HX could marginally reduce the fouling load in the downstream section of the dosing point; the HX inlets still showed good biofouling. Species diversity across the cooling water system showed the pre-condenser section to be dominated by green mussels (Perna viridis), pearl oysters (Pinctada sp.) and edible oysters (Crassostrea sp.), whereas the post-condenser section and heat

  2. Seawater quality assessment and identification of pollution sources along the central coastal area of Gabes Gulf (SE Tunisia): Evidence of industrial impact and implications for marine environment protection.

    Science.gov (United States)

    El Zrelli, Radhouan; Rabaoui, Lotfi; Ben Alaya, Mohsen; Daghbouj, Nabil; Castet, Sylvie; Besson, Philippe; Michel, Sylvain; Bejaoui, Nejla; Courjault-Radé, Pierre

    2018-02-01

    Temperature, pH and trace elements (F, P, Cr, Cu, Zn, Cd, and Pb) contents were determined in 16 stations as well as in 2 industrial and 2 domestic discharge sources, in the central coastal area of the Gulf of Gabes. Compared to the northern and southern areas of the study area, the highest contents of contaminants were reached in the central area which hosts the coastal industrial complex. The seawater in this central area was also found to be acid and of higher temperature. Based on the Water Pollution Index results, an increasing degradation gradient of the seawater quality was revealed from northern and/or southern stations to central ones, categorized as 'strongly to seriously affected'. Phosphogypsum wastes dumped by the Tunisian Chemical Group (GCT) seem to have continuously degraded the seawater quality in the study area. A rapid intervention is needed to stop the effects on the marine environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Numerical Study of Groundwater Flow and Salinity Distribution Cycling Controlled by Seawater/Freshwater Interaction in Karst Aquifer Using SEAWAT

    Science.gov (United States)

    Xu, Z.; Hu, B.

    2017-12-01

    The interest to predict seawater intrusion and salinity distribution in Woodville Karst Plain (WKP) has increased due to the huge challenge on quality of drinkable water and serious environmental problems. Seawater intrudes into the conduit system from submarine karst caves at Spring Creek Spring due to density difference and sea level rising, nowadays the low salinity has been detected at Wakulla Spring which is 18 km from coastal line. The groundwater discharge at two major springs and salinity distribution in this area is controlled by the seawater/freshwater interaction under different rainfall conditions: during low rainfall periods, seawater flow into the submarine spring through karst windows, then the salinity rising at the submarine spring leads to seawater further intrudes into conduit system; during high rainfall periods, seawater is pushed out by fresh water discharge at submarine spring. The previous numerical studies of WKP mainly focused on the density independent transport modeling and seawater/freshwater discharge at major karst springs, in this study, a SEAWAT model has been developed to fully investigate the salinity distribution in the WKP under repeating phases of low rainfall and high rainfall periods, the conduit system was simulated as porous media with high conductivity and porosity. The precipitation, salinity and discharge at springs were used to calibrate the model. The results showed that the salinity distribution in porous media and conduit system is controlled by the rainfall change, in general, the salinity distribution inland under low rainfall conditions is much higher and wider than the high rainfall conditions. The results propose a prediction on the environmental problem caused by seawater intrusion in karst coastal aquifer, in addition, provide a visual and scientific basis for future groundwater remediation.

  4. Determination of rare earth elements in seawater by ICP-MS after preconcentration with a chelating resin-packed minicolumn

    International Nuclear Information System (INIS)

    Zhu Yanbei; Itoh, Akihide; Fujimori, Eiji; Umemura, Tomonari; Haraguchi, Hiroki

    2006-01-01

    Rare earth elements (REEs) in seawater were preconcentrated 20-fold (from 50 to 2.5 ml) by a chelating resin-packed minicolumn device and determined by inductively coupled plasma mass spectrometry (ICP-MS). The recoveries for REEs were in the range from 90% for Eu and Dy to 98% for Yb, and their standard deviations were less than 4%. The lower detection limits for REEs ranged from 0.06 ng l -1 for Lu to 0.5 ng l -1 for Sm. The analytical results for REEs in seawater reference materials (NASS-5, CASS-3, and CASS-4), the Take Island coastal seawater, and the Ise Bay coastal seawater were evaluated as the REE distribution patterns with shale-normalization and deep seawater-normalization. Slight relative enrichments of heavy REEs were observed in the Take Island coastal seawater and the Ise Bay coastal seawater, which might be attributed to the input from the river flows containing more dissolved heavy REEs. In addition, positive anomalies of Sm were found in the normalized REE distribution patterns for NASS-5, CASS-3, and CASS-4, which would be attributed to the contamination in the preparation process of reference materials by NRC

  5. Natural Radionuclides and Heavy Metals Pollution in Seawater at Kuala Langat Coastal Area

    International Nuclear Information System (INIS)

    Sabarina Md Yunus; Zaini Hamzah; Ab Khalik Hj Wood; Ahmad Saat

    2015-01-01

    Rapid industrial developments along the Langat river basin play an important role in contributing to the increases of pollution loading at Kuala Langat coastal area. The major pollutant sources in this area may be originating from human activities such as industrial discharge, domestic sewage, construction, agriculture and pig farming near the tributaries that affects the water quality. In addition, Langat and Semenyih rivers flow through the mining and ex-mining area, which is related to the source of natural radionuclides contamination. Heavy metals in the aquatic environment and more likely to enter the food chain. This study is focusing to the levels of radionuclides and heavy metals in seawater. The samples were collected using appropriate water sampler, which is then acidified until pH 2 and filtered using cellulose acetate 0.45 μm. The concentration of these radionuclides and heavy metals were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution. In general, the radionuclides and heavy metals concentrations are lower than Malaysia Marine Water Quality Standard (MMWQS) except for few locations where the concentration levels above the standards. The higher concentration of pollutant in the seawater may have a toxic effect on sensitive plants and living organisms. The results of pollution levels of these radionuclides and heavy metals were also compared with other studies. (author)

  6. [Simulated study of algal fatty acid degradation in hypoxia seawater-sediment interface along China coastal area].

    Science.gov (United States)

    Sui, Wei-Wei; Ding, Hai-Bing; Yang, Gui-Peng; Lu, Xiao-Lan; Li, Wen-Juan; Sun, Li-Qun

    2013-11-01

    Series of laboratory incubation experiments were conducted to simulate degradation of organic matter in sediment-seawater interface in hypoxia enviroments along China coastal area. Under four different redox conditions (oxygen saturation: 100%, 50%, 25% and 0%), degradations of seveal biomarkers originated from Skeletonema costatum, a typical red tide alage along China coastal area were tracked. By analyzing concentrations of four fatty acid biomarkers [14:0, 16:0, 16:1(7) and 20:5] obtained at various sampling time, results showed that their concentrations decreased significantly after 2-3 weeks' incubation. Then, their concentrations changed very slowly or very little. However, degradation of the four fatty acids varied dramatically in different incubation systems. Fatty acids 14:0, 16:1(7) and 20:5 were degraded completely in all incubation systems after two-month incubation, but 25% to 35% of 16:0 was reserved in the systems. Based on multi-G model, degradations of the four fatty acids were quantively described. The results indicated that all four fatty acids had fast-degraded and slow-degraded fractions. Their degradation rate constants (k(av)) ranged from 0.079 to 0.84 d(-1). The fastest degradation of 14:0 and 16:1 (7) occurred under 25% oxygen concentrations. For these two compounds, in the fastest degradation system, their k(av), values were 2.3 folds and 1.7 folds higher than those in the slowest degradation system [50% oxygen saturation for 14:0 and 100% oxygen saturation for 16:1(7)] respectively. The 16:0 was degraded fastest under the anoxic condition and slowest under the 50% oxygen saturation. The ratio of the two k(av)s was 2.1. The k(av)s of 20:5 had a positive relationship with oxygen saturations. Results of this study suggested that besides oxgen saturations, structure and features of organic compounds, roles of microbe in the envrioments and etc. might affect degradations of fatty acids in S. costatum in hypoxia sediment-seawater interface

  7. Distinguishing seawater from geologic brine in saline coastal groundwater using radium-226; an example from the Sabkha of the UAE

    Science.gov (United States)

    Kraemer, Thomas F.; Wood, Warren W.; Sanford, Ward E.

    2014-01-01

    Sabkhat (Salt flats) are common geographic features of low-lying marine coastal areas that develop under hyper-arid climatic conditions. They are characterized by the presence of highly concentrated saline solutions and evaporitic minerals, and have been cited in the geologic literature as present-day representations of hyper-arid regional paleohydrogeology, paleoclimatology, coastal processes, and sedimentation in the geologic record. It is therefore important that a correct understanding of the origin and development of these features be achieved. Knowledge of the source of solutes is an important first step in understanding these features. Historically, two theories have been advanced as to the main source of solutes in sabkha brines: an early concept entailing seawater as the obvious source, and a more recent and dynamic theory involving ascending geologic brine forced upward into the base of the sabkha by a regional hydraulic gradient in the underlying formations. Ra-226 could uniquely distinguish between these sources under certain circumstances, as it is typically present at elevated activity of hundreds to thousands of Bq/m3 (Becquerels per cubic meter) in subsurface formation brines; at exceedingly low activities in open ocean and coastal water; and not significantly supplied to water from recently formed marine sedimentary framework material. The coastal marine sabkha of the Emirate of Abu Dhabi was used to test this hypothesis. The distribution of Ra-226 in 70 samples of sabkha brine (mean: 700 Bq/m3), 7 samples of underlying deeper formation brine (mean: 3416 Bq/m3), the estimated value of seawater (< 16 Bq/m3) and an estimate of supply from sabkha sedimentary framework grains (<~6 Bq/m3) provide the first direct evidence that ascending geologic brine contributes significantly to the solutes of this sabkha system.

  8. Proteolytic enzymes in seawater: contribution of prokaryotes and protists

    Science.gov (United States)

    Obayashi, Y.; Suzuki, S.

    2016-02-01

    Proteolytic enzyme is one of the major catalysts of microbial processing of organic matter in biogeochemical cycle. Here we summarize some of our studies about proteases in seawater, including 1) distribution of protease activities in coastal and oceanic seawater, 2) responses of microbial community and protease activities in seawater to organic matter amending, and 3) possible contribution of heterotrophic protists besides prokaryotes to proteases in seawater, to clarify cleared facts and remaining questions. Activities of aminopeptidases, trypsin-type and chymotrypsin-type proteases were detected from both coastal and oceanic seawater by using MCA-substrate assay. Significant activities were detected from not only particulate (cell-associated) fraction but also dissolved fraction of seawater, especially for trypsin-type and chymotrypsin-type proteases. Hydrolytic enzymes in seawater have been commonly thought to be mainly derived from heterotrophic prokaryotes; however, it was difficult to determine actual source organisms of dissolved enzymes in natural seawater. Our experiment with addition of dissolved protein to subtropical oligotrophic Pacific water showed drastically enhancement of the protease activities especially aminopeptidases in seawater, and the prokaryotic community structure simultaneously changed to be dominant of Bacteroidetes, indicating that heterotrophic bacteria were actually one of the sources of proteases in seawater. Another microcosm experiment with free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium showed that extracellular trypsin-type activity was mainly attributed to the ciliate. The protist seemed to work in organic matter digestion in addition to be a grazer. From the results, we propose a system of organic matter digestion by prokaryotes and protists in aquatic environments, although their actual contribution in natural environments should be estimated in future studies.

  9. Seawater as Alternative to Freshwater in Pretreatment of Date Palm Residues for Bioethanol Production in Coastal and/or Arid Areas

    DEFF Research Database (Denmark)

    Fang, Chuanji; Thomsen, Mette Hedegaard; Brudecki, Grzegorz P

    2015-01-01

    The large water consumption (1.9-5.9 m3 water per m3 of biofuel) required by biomass processing plants has become an emerging concern, which is particularly critical in arid/semiarid regions. Seawater, as a widely available water source, could be an interesting option. This work was to study the ...... be a promising alternative to freshwater for lignocellulose biorefineries in coastal and/or arid/semiarid areas....

  10. Spatial distribution of fallout 137Cs in coastal marine water of Tamil Nadu coast

    International Nuclear Information System (INIS)

    Hemalatha, P.; Rajaram, S.; Lenka, P.; Jha, S.K.; Puranik, V.D.

    2010-01-01

    Very little information on the fallout 137 Cs activity exists for the Bay of Bengal. Normally the volume of sea water required for detecting fall out level of 137 Cs in coastal marine environment ranges from 100 litres to 1000 litres. The studies on distribution of 137 Cs in surface seawater of Tamil Nadu in Bay of Bengal were carried out in April 2009. On the eastern coastal lines of Bay of Bengal in Tamil Nadu, seven offshore locations were selected namely Chennai, Pondicherry, Karaikal, Rameshwaram, Tuticorin, Nagercoil and Kanyakumari. In situ preconcentration method was adopted and the experiments were carried out using motor boats well equipped to carry the instruments and provide power supply to operate the pump. 1000 litres of seawater was passed each time through CFCN filters at all the locations at a flow rate of 8 litres per minute. The activity concentrations of 137 Cs was in the range of 0.90 to 2.2 Bq/m 3 . These data represents reference values for coastal environment of Tamil Nadu and will be used to estimate radionuclide inventory in Indian marine environment, particularly of East Coast. The 137 Cs activity indicates that there are no new inputs of these radionuclides into the area. (author)

  11. Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater

    Science.gov (United States)

    Brakstad, Odd G; Throne-Holst, Mimmi; Netzer, Roman; Stoeckel, Donald M; Atlas, Ronald M

    2015-01-01

    The Deepwater Horizon (DWH) accident in 2010 created a deepwater plume of small oil droplets from a deepwater well in the Mississippi Canyon lease block 252 (‘Macondo oil’). A novel laboratory system was used in the current study to investigate biodegradation of Macondo oil dispersions (10 μm or 30 μm median droplet sizes) at low oil concentrations (2 mg l−1) in coastal Norwegian seawater at a temperature of 4–5°C. Whole metagenome analyses showed that oil biodegradation was associated with the successive increased abundances of Gammaproteobacteria, while Alphaproteobacteria (Pelagibacter) became dominant at the end of the experiment. Colwellia and Oceanospirillales were related to n-alkane biodegradation, while particularly Cycloclasticus and Marinobacter were associated with degradation of aromatic hydrocarbons (HCs). The larger oil droplet dispersions resulted in delayed sequential changes of Oceanospirillales and Cycloclasticus, related with slower degradation of alkanes and aromatic HCs. The bacterial successions associated with oil biodegradation showed both similarities and differences when compared with the results from DWH field samples and laboratory studies performed with deepwater from the Gulf of Mexico. PMID:26485443

  12. First results on Fe solid-phase extraction from coastal seawater using anatase TiO{sub 2} nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Quetel, Christophe R.; Petrov, Ivan [Joint Research Centre - European Commission, Institute for Reference Materials and Measurements, Geel (Belgium); Vassileva, Emilia [Joint Research Centre - European Commission, Institute for Reference Materials and Measurements, Geel (Belgium); IAEA-Marine Environment Laboratories, Principality of Monaco (Monaco); Chakarova, Kristina; Hadjiivanov, Konstantin I. [Bulgarian Academy of Sciences, Institute of General and Inorganic Chemistry, Sofia (Bulgaria)

    2010-03-15

    This paper describes the application of TiO{sub 2} nano-particles (anatase form) for the solid-phase extraction of iron from coastal seawater samples. We investigated the adsorption processes by infra-red spectroscopy. We compared in batch and on-(mini)column extraction approaches (0.1 and 0.05 g TiO{sub 2} per sample, respectively), combined to external calibration and detection by inductively coupled plasma mass spectrometry at medium mass resolution. Globally, this titania phase was slightly more efficient with seawater than with ultra-pure water, although between pH 2 and pH 7, the Fe retention efficiency progressed more in ultra-pure water than in seawater (6.9 versus 4.8 times improvement). Different reaction schemes are proposed between Fe(III) species and the two main categories of titania sites at pH 2 (adsorption of [FeL{sub x}]{sup (3-x)+} via possibly the mediation of chlorides) and at pH 7 (adsorption of [Fe(OH){sub 2}]{sup +} and precipitation of [Fe(OH){sub 3}]{sup 0}). Under optimised conditions, the inlet system was pre-cleaned by pumping 6% HCl for {proportional_to}2 h, and the column was conditioned by aspirating ultra-pure water (1.7 g min {sup -1}) and 0.05% ammonia (0.6 g min {sup -1}) for 1 min. Then 3 g seawater sample was loaded at the same flow rate while being mixed on-line with 0.05% ammonia at 0.6 g min {sup -1} to adjust the pH to 7. The iron retained on the oxide powder was then eluted with 3 g 6% HCl (<0.002% residual salinity in the separated samples). The overall procedural blank was 220 {+-} 46 (2 s, n = 16) ng Fe kg {sup -1} (the titania was renewed in the column every 20 samples, with 2-min rinsing in between samples with 6% HCl at 1.5 g min {sup -1}). The recovery estimated from the Canadian certified reference material CASS-2 was 69.5 {+-} 7.6% (2 s, n = 4). Typically, the relative combined uncertainty (k = 2) estimated for the measurement of {proportional_to}1 {mu}g Fe kg {sup -1} (0.45 {mu}m filtered and acidified to pH 1

  13. Influence of seawater intrusion on microbial communities in groundwater.

    Science.gov (United States)

    Unno, Tatsuya; Kim, Jungman; Kim, Yumi; Nguyen, Son G; Guevarra, Robin B; Kim, Gee Pyo; Lee, Ji-Hoon; Sadowsky, Michael J

    2015-11-01

    Groundwater is the sole source of potable water on Jeju Island in the Republic of (South) Korea. Groundwater is also used for irrigation and industrial purposes, and it is severely impacted by seawater intrusion in coastal areas. Consequently, monitoring the intrusion of seawater into groundwater on Jeju is very important for health and environmental reasons. A number of studies have used hydrological models to predict the deterioration of groundwater quality caused by seawater intrusion. However, there is conflicting evidence of intrusion due to complicated environmental influences on groundwater quality. Here we investigated the use of next generation sequencing (NGS)-based microbial community analysis as a way to monitor groundwater quality and detect seawater intrusion. Pristine groundwater, groundwater from three coastal areas, and seawater were compared. Analysis of the distribution of bacterial species clearly indicated that the high and low salinity groundwater differed significantly with respect to microbial composition. While members of the family Parvularculaceae were only identified in high salinity water samples, a greater percentage of the phylum Actinobacteria was predominantly observed in pristine groundwater. In addition, we identified 48 shared operational taxonomic units (OTUs) with seawater, among which the high salinity groundwater sample shared a greater number of bacterial species with seawater (6.7%). In contrast, other groundwater samples shared less than 0.5%. Our results suggest that NGS-based microbial community analysis of groundwater may be a useful tool for monitoring groundwater quality and detect seawater intrusion. This technology may also provide additional insights in understanding hydrological dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Monitoring biofouling in the seawater tunnel of a coastal power station

    International Nuclear Information System (INIS)

    Sasikumar, N.

    1994-01-01

    Water level difference (head loss) between the seawater intake and the forebay was used to determine the biofouling growth in the cooling-water tunnel of Madras atomic power station, India. During 1986-87, due to biofouling growth in the tunnel, the head loss dropped beyond the permissible limits required for operation of the power plant. The head loss showed an improvement during 1988 and 1989, after exomotive chlorination was adopted instead of shock chlorination. Fouling biomass estimated from the head loss showed a heavy biomass build-up of 535.52 ± 102 tonnes in the tunnel during 1992. The head loss showed a seasonal pattern, very similar to the settlement pattern of foulants in the coastal waters, with maximum values during summer months. On the basis of head-loss data, a suitable chlorination practice has been recommended to the power station. The experience suggested that a continuous monitoring of head loss is a simple and reliable method of estimating and controlling biofouling in power-plant cooling-water tunnels. (author)

  15. Feasibility Study of Seawater Electrolysis for Photovoltaic/Fuel Cell Hybrid Power System for the Coastal Areas in Thailand

    Science.gov (United States)

    Srisiriwat, A.; Pirom, W.

    2017-10-01

    Solar photovoltaic cell and fuel cell are the practicable options to realize as a possible hybrid power system because the power of the sun cannot be utilized at night or cloudy days but hydrogen has been found as an ideal energy carrier for being transportable, storable, and converting energy though fuel cell. Hydrogen storage is chosen for its ability to obtain a clean energy option. Electrolysis, which is the simplest process to produce hydrogen, can be powered by the dc voltage from the photovoltaic cell instead of using the battery as power supply. This paper concentrates on a feasibility study of seawater electrolysis using photovoltaic power integrated fuel cell system for the coastal cities in Thailand. The proposed system composed of photovoltaic arrays, seawater electrolyzer and fuel cell is presented when the 10-kW of fuel cell electrical power is considered. The feasibility study of hydrogen production and energy analysis of this proposed system is also evaluated.

  16. Extraction of uranium from seawater: evaluation of uranium resources and plant siting

    International Nuclear Information System (INIS)

    Rodman, M.R.; Gordon, L.I.; Chen, A.C.T.

    1979-02-01

    This report deals with the evaluation of U.S. coastal waters as a uranium resource and with the selection of a suitable site for construction of a large-scale plant for uranium extraction. Evaluation of the resource revealed that although the concentration of uranium is quite low, about 3.3 ppB in seawater of average oceanic salinity, the amount present in the total volume of the oceans is very great, some 4.5 billion metric tons. Of this, perhaps only that uranium contained in the upper 100 meters or so of the surface well-mixed layer should be considered accessible for recovery, some 160 million tonnes. The study indicated that open ocean seawater acquired for the purpose of uranium extraction would be a more favorable resource than rivers entering the sea, cooling water of power plants, or the feed or effluent streams of existing plants producing other products such as magnesium, bromine, or potable and/or agricultural water from seawater. Various considerations led to the selection of a site for a pumped seawater coastal plant at a coastal location. Puerto Yabucoa, Puerto Rico was selected. Recommendations are given for further studies. 21 figures, 8 tables

  17. Extraction of uranium from seawater: evaluation of uranium resources and plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Rodman, M.R.; Gordon, L.I.; Chen, A.C.T.

    1979-02-01

    This report deals with the evaluation of U.S. coastal waters as a uranium resource and with the selection of a suitable site for construction of a large-scale plant for uranium extraction. Evaluation of the resource revealed that although the concentration of uranium is quite low, about 3.3 ppB in seawater of average oceanic salinity, the amount present in the total volume of the oceans is very great, some 4.5 billion metric tons. Of this, perhaps only that uranium contained in the upper 100 meters or so of the surface well-mixed layer should be considered accessible for recovery, some 160 million tonnes. The study indicated that open ocean seawater acquired for the purpose of uranium extraction would be a more favorable resource than rivers entering the sea, cooling water of power plants, or the feed or effluent streams of existing plants producing other products such as magnesium, bromine, or potable and/or agricultural water from seawater. Various considerations led to the selection of a site for a pumped seawater coastal plant at a coastal location. Puerto Yabucoa, Puerto Rico was selected. Recommendations are given for further studies. 21 figures, 8 tables.

  18. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Soumya, M.; Vethamony, P.; Vijaykumar, K.; Nair, T.M.B.; Agarvadekar, Y.; Jyoti, K.; Sudheesh, K.; Luis, R.; Lobo, S.; Halmalkar, B.

    –173, 2015 www.ocean-sci.net/11/159/2015/ doi:10.5194/os-11-159-2015 © Author(s) 2015. CC Attribution 3.0 License. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean P. Mehra1, M. Soumya1, P. Vethamony1, K. Vijaykumar1, T.... Note: sea level data at Colombo, Kochi, Karachi, Chabahar, Jask, Masirah, Minocoy and Hanimaadhoo are downloaded from www.gloss-sealevel.org and are shown with red stars. (Time is in Indian standard time (IST).) land locations of India are provided...

  19. Saprobic analysis to Marina coastal, Semarang city

    Science.gov (United States)

    Nuriasih, D. M.; Anggoro, S.; Haeruddin

    2018-02-01

    Semarang city is one of coastal city in Indonesia, that antropogenic activities have impact to coastal of Semarang, including Marina beach. Therefore, it is important to study the quality of seawater related with antropogenic activities. The research purpose was to analyze the saprobic level of Marina beach as an indicator of marine pollution. This case study research used survey method. Purposive method was used for sampling the seawater at five stations at the beach. This research can be concluded that TSI (Tropic Saprobic Index) higher than standard that indicated the Marina Beach Seawaters polution at level of β - Mesosaprobic.

  20. Intensively exploited Mediterranean aquifers: resilience and proximity to critical points of seawater intrusion

    Science.gov (United States)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2013-11-01

    We investigate here seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta Aquifer, the Israel Coastal Aquifer and the Cyprus Akrotiri Aquifer. Using a generalized analytical sharp-interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future sea intrusion forcings. We identify two different critical limits of sea intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete sea intrusion upto the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that sea intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that the advance of seawater currently seriously threatens the Nile Delta Aquifer and the Israel Coastal Aquifer. The Cyprus Akrotiri Aquifer is currently somewhat less threatened by increased seawater intrusion.

  1. Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia)

    Science.gov (United States)

    Zghibi, Adel; Tarhouni, Jamila; Zouhri, Lahcen

    2013-11-01

    In recent years, seawater intrusion and nitrate contamination of groundwater have become a growing concern for people in rural areas in Tunisia where groundwater is always used as drinking water. The coastal plain of Korba (north-east of Tunisia) is a typical area where the contamination of the aquifer in the form of saltwater intrusion and high nitrate concentrations is very developed and represents the major consequence of human activities. The objective of this study is to evaluate groundwater resource level, to determine groundwater quality and to assess the risk of NO3- pollution in groundwater using hydrogeochemical tools. Groundwater were sampled and analyzed for physic-chemical parameters: Ca2+, Mg2+, Na+, K+, Cl-, SO42-, HCO3-, NO3-, Total Dissolved Solid and of the physical parameters (pH, electrical conductivity and the temperature). The interpretation of the analytical results is shown numerically and graphically through the ionic deviations, Piper Diagram, seawater fractions and binary diagrams. Moreover, electrical conductivity investigations have been used to identify the location of the major intrusion plumes in this coastal area and to obtain new information on the spatial scales and dynamics of the fresh water-seawater interface. Those processes can be used as indicators of seawater intrusion progression. First, the hydrogeochemical investigation of this aquifer reveals the major sources of contamination, represented by seawater intrusion. Thus, the intensive extraction of groundwater from aquifer reduces freshwater outflow to the sea, creates several drawdown cones and lowering of the water table to as much as 12 m below mean sea level in the center part of the study area especially between Diarr El Hojjej and Tafelloun villages, causing seawater migration inland and rising toward the wells. Moreover, the results of this study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with

  2. Progress in recovery technology for uranium from seawater

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Saito, Kyoichi.

    1994-01-01

    By the facts that the research group in Japan improved the performance of amidoxime resin which is the adsorbent for collecting seawater uranium, proposed the method of mooring floating bodies utilizing sea current and waves as the adsorption system, and further, verified the results of laboratory basic experiment by marine experiment, the technology of collecting seawater uranium has progressed. After the oil crisis, various countries started the research on seawater uranium, but only Japan has continued the systematic study up to now. In this report, the research on seawater uranium collection carried out so far is summarized, and the characteristics of the adsorbent which was synthesized by radiation graft polymerization and the results of the uranium collection test using coastal seawater are reported. In seawater of 1 m 3 , the uranium of 3.3 mg is dissolved in the form of uranyl tricarbonate complex ions. In the total quantity of seawater, the dissolved uranium amounts to about 4.6 billion tons, about 1000 times of the uranium resources on land. The research on seawater uranium collection and the performance of uranium adsorption of synthesized amidoxime fibers are reported. (K.I.)

  3. Hydraulic conductivity of some bentonites in artificial seawater

    International Nuclear Information System (INIS)

    Komine, Hideo; Murakami, Satoshi; Yasuhara, Kazuya

    2011-01-01

    A high-level radioactive waste disposal facility might be built in a coastal area in Japan from the viewpoint of feasible transportation of waste. Therefore, it is important to investigate the effects of seawater on a bentonite-based buffer. This study investigated the influence of seawater on hydraulic conductivity of three common sodium-types of bentonite and one calcium-type bentonite by the laboratory experiments. >From the results of laboratory experiment, this study discussed the influence of seawater on hydraulic conductivity of bentonites from the viewpoints of kinds of bentonite such as exchangeable-cation type and montmorillonite content and dry density of bentonite-based buffer. (author)

  4. One-dimensional self-sealing ability of bentonites in artificial seawater

    International Nuclear Information System (INIS)

    Komine, Hideo; Yasuhara, Kazuya; Murakami, Satoshi

    2009-01-01

    A high-level radioactive waste disposal facility might be built in a coastal area in Japan from the viewpoint of feasible transportation of waste. Therefore, it is important to investigate the effects of seawater on a bentonite-based buffer. This study investigated the influence of seawater on self-sealing ability of three common sodium-types of bentonite by the laboratory experiment and chemical analysis. From the results of laboratory experiment, suitable specifications were defined for a bentonite-based buffer that can withstand the effects of seawater. Furthermore, mechanism on filtration of seawater components in highly compacted bentonite was discussed by the results of chemical analysis. (author)

  5. Development of an Assessment Procedure for Seawater Intrusion Mitigation

    Science.gov (United States)

    Hsi Ting, F.; Yih Chi, T.

    2017-12-01

    The Pingtung Plain is one of the areas with extremely plentiful groundwater resources in Taiwan. Due to that the application of the water resource is restricted by significant variation of precipitation between wet and dry seasons, groundwater must be used as a recharge source to implement the insufficient surface water resource during dry seasons. In recent years, the coastal aquaculture rises, and the over withdrawn of groundwater by private well results in fast drop of groundwater level. Then it causes imbalance of groundwater supply and leads to serious seawater intrusion in the coastal areas. The purpose of this study is to develop an integrated numerical model of groundwater resources and seawater intrusion. Soil and Water Assessment Tool (SWAT), MODFLOW and MT3D models were applied to analyze the variation of the groundwater levels and salinity concentration to investigate the correlation of parameters, which are used to the model applications in order to disposal saltwater intrusion. The data of groundwater levels, pumping capacity and hydrogeological data to were collected to build an integrated numerical model. Firstly, we will collect the information of layered aquifer and the data of hydrological parameters to build the groundwater numerical model at Pingtung Plain, and identify the amount of the groundwater which flow into the sea. In order to deal with the future climate change conditions or extreme weather conditions, we will consider the recharge with groundwater model to improve the seawater intrusion problem. The integrated numerical model which describes that seawater intrusion to deep confined aquifers and shallow unsaturated aquifers. Secondly, we will use the above model to investigate the weights influenced by different factors to the amount area of seawater intrusion, and predict the salinity concentration distribution of evaluation at coastal area of Pingtung Plain. Finally, we will simulate groundwater recharge/ injection at the coastal

  6. Neodymium isotopic variations in seawater

    International Nuclear Information System (INIS)

    Piepgras, D.J.; Wasserburg, G.J.

    1980-01-01

    New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average epsilonsub(N)sub(d)(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean, epsilonsub(N)sub(d)(0) approx. equal to - 12 +- 2; Indian Ocean, epsilonsub(N)sub(d)(0) approx. equal to - 8 +- 2; Pacific Ocean, epsilonsub(N)sub(d)(0) approx. equal to -3 +- 2. These values are considerably less than epsilonsub(N)sub(d)(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of 143 Nd between the Pacific and Atlantic Oceans corresponds to approx. 10 6 atoms 143 Nd per gram of seawater. The correspondence between the 143 Nd/ 144 Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography. (orig./HAE)

  7. Exploring the Impacts of Anthropogenic Disturbance on Seawater and Sediment Microbial Communities in Korean Coastal Waters Using Metagenomics Analysis

    Directory of Open Access Journals (Sweden)

    Nam-Il Won

    2017-01-01

    Full Text Available The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA. However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene, we analyzed and compared seawater and sediment communities between sand mining and control (natural sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA.

  8. A new approach to evaluate factors controlling elemental sediment–seawater distribution coefficients (K{sub d}) in coastal regions, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takata, Hyoe, E-mail: takata@kaiseiken.or.jp [Marine Ecology Research Institute, Central Laboratory, Onjuku, Chiba (Japan); National Institute of Radiological Sciences, Chiba City, Chiba (Japan); Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo [National Institute of Radiological Sciences, Chiba City, Chiba (Japan)

    2016-02-01

    In numerical models to simulate the dispersion of anthropogenic radionuclides in the marine environment, the sediment–seawater distribution coefficient (K{sub d}) for various elements is an important parameter. In coastal regions, K{sub d} values are largely dependent on hydrographic conditions and physicochemical characteristics of sediment. Here we report K{sub d} values for 36 elements (Na, Mg, Al, K, Ca, V, Mn, Fe, Co, Ni, Cu, Se, Rb, Sr, Y, Mo, Cd, I, Cs, rare earth elements, Pb, {sup 232}Th and {sup 238}U) in seawater and sediment samples from 19 Japanese coastal regions, and we examine the factors controlling the variability of these K{sub d} values by investigating their relationships to hydrographic conditions and sediment characteristics. There was large variability in K{sub d} values for Al, Mn, Fe, Co, Ni, Cu, Se, Cd, I, Pb and Th. Variations of K{sub d} for Al, Mn, Fe, Co, Pb and Th appear to be controlled by hydrographic conditions. Although K{sub d} values for Ni, Cu, Se, Cd and I depend mainly on grain size, organic matter content, and the concentrations of hydrous oxides/oxides of Fe and Mn in sediments, heterogeneity in the surface characteristics of sediment particles appears to hamper evaluation of the relative importance of these factors. Thus, we report a new approach to evaluate the factors contributing to variability in K{sub d} for an element. By this approach, we concluded that the K{sub d} values for Cu, Se, Cd and I are controlled by grain size and organic matter in sediments, and the K{sub d} value for Ni is dependent on grain size and on hydrous oxides/oxides of Fe and Mn. - Highlights: • K{sub d}s for 36 elements were determined in 19 Japanese coastal regions. • K{sub d}s for several elements appeared to be controlled by multiple factors in sediments. • We evaluated these factors based on physico-chemical characteristics of sediments.

  9. Development of a Kelp-Type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    Directory of Open Access Journals (Sweden)

    Taiping Wang

    2014-02-01

    Full Text Available With the rapid growth of global energy demand, interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent technology advances, extracting uranium from seawater could be economically feasible only when the extraction devices are deployed at a large scale (e.g., several hundred km2. There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module based on the classic momentum sink approach was incorporated into a coastal ocean model to simulate the blockage effect of a farm of passive uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles.Model results suggest that the reduction in ambient currents could range from 4% to 10% using adsorbent farm dimensions and mooring densities previously described in the literature and with typical drag coefficients.

  10. Elemental mercury in coastal seawater of Yellow Sea, China: Temporal variation and air-sea exchange

    Science.gov (United States)

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2011-01-01

    Dissolved gaseous mercury (DGM, largely Hg(0)) in coastal seawater and gaseous elemental mercury (GEM or Hg(0)) in the atmosphere were simultaneously measured on the coast of the Yellow Sea, China in four different seasons (2008-09). Mean concentrations (±SD) of DGM and GEM over the study period were 34.0 ± 26.1 pg L -1 and 2.55 ± 0.98 ng m -3, respectively. DGM concentrations and the degree of DGM saturation ( Sa) exhibited distinct seasonal variation with the order of summer (DGM: 69.0 ± 23.3 pg L -1, Sa: 11.00 ± 5.92) > fall (27.0 ± 16.4 pg L -1, 3.50 ± 2.60) > spring (23.0 ± 8.7 pg L -1, 2.00 ± 0.98) > winter (16.0 ± 6.0 pg L -1, 0.96 ± 0.39). Under typical meteorological condition with low wind speed and intensive solar radiation in warm seasons, DGM usually exhibited the clear diurnal variation with elevated levels around noon and low levels in morning and afternoon. The diurnal and seasonal variation of DGM indicated the importance of photochemical DGM formation in the seawater. A consistent low DGM levels in high wind speed condition suggested that the biological activity probably influenced the DGM formation. There was no significant correlation between DGM and total mercury (THg), reactive mercury (RHg), dissolved organic carbon (DOC) in the seawater, indicating that THg/RHg and DOC might be not the controlling factors for the DGM formation in our study region. Based on the data of DGM and GEM and a two-layer gas exchange model, Hg(0) fluxes (in the unit of ng m -2 h -1) at air-sea interface were 0.51 ± 1.29 over the entire study period with 0.89 ± 1.84 in fall, 0.88 ± 1.38 in summer, 0.32 ± 0.71 in spring, and -0.06 ± 0.64, a slightly net Hg(0) deposition rate, in winter, respectively.

  11. Technetium-99 in Fucus and seawater samples in the Finnish coastal area of the Baltic Sea, 1999

    International Nuclear Information System (INIS)

    Ikaeheimonen, T.K.; Vartti, V.P.; Ilus, E.; Mattila, J.

    2002-01-01

    Liquid discharges of 99 Tc from the Sellafield nuclear facilities increased largely in the mid 90's. These releases are transported to the Nordic sea areas by the ocean currents. Results of the 99 Tc activities along the Norwegian coastal areas and in the North Sea have been reported but then again, the spreading of 99 Tc into Baltic Sea has not been studied thoroughly. Fucus vesiculosus and seawater samples were collected in the summer 1999 from the Finnish coastal areas for measuring 99 Tc in the Baltic Sea area. A modified analytical method for measuring 99 Tc in the environmental samples was developed at that time. The method based on extraction chromatography and liquid scintillation measurement of 99 Tc. The 99 Tc concentration in the Fucus vesiculosus in the Finnish coast of the Baltic Sea varied from 1.6 to 11.6 Bq/kg (dry weight) being highest at the most northern sampling sites. These values were considerable lower than those in the Danish and Norwegian coasts. The variation in the concentrations observed are probably due to biological factors. The 99 Tc concentration in the Baltic Sea water studied was below 0.2 Bq/m 3 . (author)

  12. Concentration factors for 137Cs in Japanese coastal fish (1984-1990)

    International Nuclear Information System (INIS)

    Tateda, Yutaka; Koyanagi, Taku.

    1996-01-01

    Concentration factors (CFs; Bq kg -1 wet in fish muscle/Bq kg -1 in filtered seawater) for 137 Cs were determined in Japanese coastal fish collected from 1984 to 1990. 137 Cs/Cs (stable) atom ratios were also examined to clarify the distribution equilibrium of 137 Cs-between marine fish and seawater. The geometric mean of CF in Japanese coastal fish was 52±4 (standard error of the mean), with values ranging from 14 to 133. 137 Cs/Cs atom ratios both in marine fish and seawater indicate that the distribution of 137 Cs was in equilibrium between fish muscle and seawater. Therefore, CF values obtained in the present study can be regarded as equilibrated. Our results show that the CFs for 137 Cs in Japanese coastal fish were within the range of Japanese guidelines, but were below the recommended IAEA value. (author)

  13. Development of an environmental impact assessment and decision support system for seawater desalination plants

    NARCIS (Netherlands)

    Lattemann, S.

    2010-01-01

    Seawater desalination is a rapidly growing coastal-based industry. The combined production capacity of all seawater desalination plants worldwide has increased by 30% over the last two years: from 28 million cubic meters per day in 2007—which is the equivalent of the average discharge of the River

  14. Controlling Biofouling in Seawater Reverse Osmosis Membrane Systems

    NARCIS (Netherlands)

    Dhakal, N.

    2017-01-01

    Seawater desalination is a rapidly growing coastal industry that is increasingly threatened by algal blooms. Depending on the severity of algal blooms, desalination systems may be forced to shut down because of clogging and/or poor feed water quality. To maintain stable operation and provide good

  15. Multi-frequency observations of seawater carbonate chemistry on the central coast of the western Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    Julie B. Schram

    2015-07-01

    Full Text Available Assessments of benthic coastal seawater carbonate chemistry in Antarctica are sparse. The studies have generally been short in duration, during the austral spring/summer, under sea ice, or offshore in ice-free water. Herein we present multi-frequency measurements for seawater collected from the shallow coastal benthos on a weekly schedule over one year (May 2012–May 2013, daily schedule over three months (March–May 2013 and semidiurnal schedule over five weeks (March–April 2013. A notable pH increase (max pH = 8.62 occurred in the late austral spring/summer (November–December 2012, coinciding with sea-ice break-out and subsequent increase in primary productivity. We detected semidiurnal variation in seawater pH with a maximum variation of 0.13 pH units during the day and 0.11 pH units during the night. Daily variation in pH is likely related to biological activity, consistent with previous research. We calculated the variation in dissolved inorganic carbon (DIC over each seawater measurement frequency, focusing on the primary DIC drivers in the Palmer Station region. From this, we estimated net biological activity and found it accounts for the greatest variations in DIC. Our seasonal data suggest that this coastal region tends to act as a carbon dioxide source during austral winter months and as a strong sink during the summer. These data characterize present-day seawater carbonate chemistry and the extent to which these measures vary over multiple time scales. This information will inform future experiments designed to evaluate the vulnerability of coastal benthic Antarctic marine organisms to ocean acidification.

  16. The Smartfin: How Citizen Scientist Surfers Could Help Inform Coastal Ocean Science and Conservation.

    Science.gov (United States)

    Stern, A.

    2016-12-01

    Coastal marine ecosystems only represent a small percentage of the global ocean's surface area. However, these ecosystems are highly productive, rich in biodiversity, and are where the vast majority of human activity occurs. The complex interaction between seawater, land, and atmosphere makes coastal ecosystems some of the most dynamic in terms of seawater chemistry. In order to capture these dynamic changes in seawater chemistry across appropriate spatial and temporal scales requires a large amount of measurements. Unfortunately, it is often challenging to maintain an array of oceanographic sensors in coastal ecosystems, especially in high energy areas like the surf zone. Citizen science has the potential to increase the collection of oceanographic data from coastal systems where traditional methods are more difficult or expensive to implement. This talk will highlight the Smartfin, a surfboard mounted fin that measures seawater chemical parameters, physical wave characteristics, and GPS location during an ordinary surf session. Created by environmental non-profit Lost Bird, the Smartfin is a partnership between non-profits (Lost Bird and Surfrider Foundation), researchers (Scripps Institution of Oceanography), engineers (Board Formula), and the citizen science community. With an estimated 23 million surfers worldwide the Smartfin could greatly enhance vital data collection in coastal regions as well as raise awareness about our changing coastal and ocean ecosystems.

  17. Sulfide Production and Corrosion in Seawater During Exposure to FAME Alternative Fuel

    Science.gov (United States)

    2012-06-01

    transporting fatty acid methyl ester ( FAME ] alternative diesel fuel in contact with natural seawater under anaerobic conditions. Coastal Key West...Glycerol Fatty Acid Methyl Ester Exposure Chamber Anaerobic Chamber - bal. N2,10% H2, 0.1% C02 - maintain pH ~8 Polarization Resistance (Rp...and Corrosion in Seawater During Exposure to FAME Alternative Fuel Jason 5. Lee Richard I. Ray BrendaJ. Little Naval Research Laboratory Stennis

  18. Uranium from sea-water. Possibilities of recovery, exploiting slow coastal currents

    International Nuclear Information System (INIS)

    Bettinali, C.; Pantanetti, F.

    1976-01-01

    The authors analyse the interest in uranium recovery from sea-water within the framework of uranium world supply problems. The most reliable methods proposed for recovery are summarized and discussed, both from the chemical and the plant project points of view. Tides as a source of energy for water movement cannot be used in the Mediterranean and therefore only currents can be taken into account. The acceptable cost of an exchanger, in relation to the uranium price, is considered and related to known exchangers. The characteristics of exchanging elements are examined and the influence of the speed of sea currents discussed. The extractable uranium is a function of the exchange rate and of the speed of the flow inside the exchanging system; therefore it is quite clear that the current speed is not a prerequisite and that coastal currents around Italy are suitable. Exchanging elements built with sheets parallel to the flow, exchanging pans containing granular or fibrous exchangers have been considered. The main characteristics of a 1000 t/a plant are discussed considering different possibilities. The most acceptable seems to be the continuous extraction system. The parameters needed to calculate the dimensions of such a plant are given and the relation between the length and speed of the moving chain discussed. A rough economic evaluation of the plant cost - starting from known technologies - and of the final cost of the uranium oxide produced is made. (author)

  19. Distribution of anti fouling biocides in coastal seawater of Egadi Islands

    International Nuclear Information System (INIS)

    Massanisso, Paolo; Ubaldi, Carla; Chiavarini, Salvatore; Pezza, Massimo; Cannarsa, Sigfrido; Bordone, Andrea

    2015-01-01

    The pollution level due to anti fouling biocides in the Marine Protected Area of Egadi Islands (MPA) has been evaluated by both grab and passive sampling. Analyses of tributyltin (TBT), diuron, irgarol, chlorothalonil and dichlofluanid have been carried out on seawater and sediments. The results indicate a good condition of the coastline, but further studies with passive sampling for TBT are required to help the MPA administrators to control the status of the seawater with a methodology suitable to reach the Environmental Quality Standard values established by the Water Framework Directive [it

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Seawater intrusion is one of the alarming processes that reduces the water quality and imperils the supply of freshwater in coastal aquifers. The region, north of the Chennai city, India is one such site affected by seawater intrusion. The objective of this study is to identify the extent of seawater intruded area by major ...

  1. Variable response of three Trifolium repens ecotypes to soil flooding by seawater.

    Science.gov (United States)

    White, Anissia C; Colmer, Timothy D; Cawthray, Greg R; Hanley, Mick E

    2014-08-01

    Despite concerns about the impact of rising sea levels and storm surge events on coastal ecosystems, there is remarkably little information on the response of terrestrial coastal plant species to seawater inundation. The aim of this study was to elucidate responses of a glycophyte (white clover, Trifolium repens) to short-duration soil flooding by seawater and recovery following leaching of salts. Using plants cultivated from parent ecotypes collected from a natural soil salinity gradient, the impact of short-duration seawater soil flooding (8 or 24 h) on short-term changes in leaf salt ion and organic solute concentrations was examined, together with longer term impacts on plant growth (stolon elongation) and flowering. There was substantial Cl(-) and Na(+) accumulation in leaves, especially for plants subjected to 24 h soil flooding with seawater, but no consistent variation linked to parent plant provenance. Proline and sucrose concentrations also increased in plants following seawater flooding of the soil. Plant growth and flowering were reduced by longer soil immersion times (seawater flooding followed by drainage and freshwater inputs), but plants originating from more saline soil responded less negatively than those from lower salinity soil. The accumulation of proline and sucrose indicates a potential for solute accumulation as a response to the osmotic imbalance caused by salt ions, while variation in growth and flowering responses between ecotypes points to a natural adaptive capacity for tolerance of short-duration seawater soil flooding in T. repens. Consequently, it is suggested that selection for tolerant ecotypes is possible should the predicted increase in frequency of storm surge flooding events occur. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Physico-chemical and biological water quality of karachi coastal water

    International Nuclear Information System (INIS)

    Khalid, A.; Rahman, S.

    2009-01-01

    Physiochemical and biological techniques have been applied to investigate Karachi Coastal water pollution due to Layari and Malir rivers, which mainly carry Karachi Metropolitan domestic and industrial wastewater. In Manora channel, which receives domestic sewage through Layari river, pH and electrical conductivity (E.C.) of seawater were less in low tide conditions as compared to high tide condition, and except for Manora Lighthouse all sampling stations exhibit E.C. below normal values of seawater, indicating fair proportion of Layari river water mixing in seawater. Coliform contamination ranged from 156 - 542 per 100 ml ( high tide) and 132- 974 per 100 ml (low tide) with increased levels observed in sampling sites close to Layari river outfall zone. Along Southeast coast, a decrease in EC was recorded at Ghizri area and Ibrahim Haideri fish harbour in low tide which indicated Malir river water input. Coliform bacterial counts at these locations were also above WHO guidelines for seawater bathing. pH and electrical conductivity values of Northwest coastal water indicated that this coast is marginally polluted. The study revealed that Karachi Metropolitan domestic sewage and industrial effluents are main source of coastal water pollution. (author)

  3. Seawater corrosion tests for low-level radioactive waste drum containers

    International Nuclear Information System (INIS)

    Maeda, Sho; Wadachi, Yoshiki

    1985-11-01

    This report is a part of corrosion tests of drums under various environmental conditions (seawater, river water, coastal sand, inland soil and indoor and outdoor atmosphere) done at Japan Atomic Energy Research Institute sponsored by the Science and Technology Agency. The corrosion tests were started in November, 1977 and complated at March, 1984. This report describes the results of the seawater corrosion tests which are part of the final report, ''Corrosion Safety Demonstration Test'' (Japanese), and it is expected to contribute the safety assessment of sea dumping of low-level radioactive waste packages. (author)

  4. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    Science.gov (United States)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-07-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  5. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    Science.gov (United States)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-05-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  6. Corrosion of barrier materials in seawater environments

    International Nuclear Information System (INIS)

    Heiser, J.H.; Soo, P.

    1995-07-01

    A brief review has been carried out on the performance of barrier materials for low-level radioactive wastes in seawater environments. The environments include those for shallower coastal waters as well as the deep ocean (down to 3800 m). The review is mainly focused on metallic materials since they are the most common for seawater service and they have the largest data base. Information from the literature is usually pertinent to shallower coastal locations, but there is a valuable source of corrosion data obtained from several studies of metallic specimens exposed to ocean-bed conditions. In addition, the corrosion of carbon steel barriers has been evaluated for actual waste containers that were retrieved from previously-used disposal sites in the Atlantic and Pacific Oceans. Of the metallic materials studied, carbon steel showed the least corrosion resistance. Failure by non-uniform attack in a typical waste container could occur in as little as 25 y in some ocean environments ' Penetration by local attack, such as pitting and crevice corrosion resistance was also observed for more expensive materials such as low-alloy steels, stainless steels, titanium alloys, zirconium alloys, copper alloys, nickel alloys, aluminum alloys, and lead alloys

  7. Symbiotic Role of the Viable but Nonculturable State of Vibrio fischeri in Hawaiian Coastal Seawater.

    Science.gov (United States)

    Lee, K; Ruby, E G

    1995-01-01

    To achieve functional bioluminescence, the developing light organ of newly hatched juveniles of the Hawaiian squid Euprymna scolopes must become colonized by luminous, symbiosis-competent Vibrio fischeri present in the ambient seawater. This benign infection occurs rapidly in animals placed in seawater from the host's natural habitat. Therefore, it was surprising that colony hybridization studies with a V. fischeri-specific luxA gene probe indicated the presence of only about 2 CFU of V. fischeri per ml of this infective seawater. To examine this paradox, we estimated the total concentration of V. fischeri cells present in seawater from the host's habitat in two additional ways. In the first approach, the total bacterial assemblage in samples of seawater was collected on polycarbonate membrane filters and used as a source of both a crude cell lysate and purified DNA. These preparations were then assayed by quantitative DNA-DNA hybridization with the luxA gene probe. The results suggested the presence of between 200 and 400 cells of V. fischeri per ml of natural seawater, a concentration more than 100 times that revealed by colony hybridization. In the second approach, we amplified V. fischeri-specific luxA sequences from microliter volumes of natural seawater by PCR. Most-probable-number analyses of the frequency of positive PCR results from cell lysates in these small volumes gave an estimate of the concentration of V. fischeri luxA gene targets of between 130 and 1,680 copies per ml. From these measurements, we conclude that in their natural seawater environment, the majority of V. fischeri cells become nonculturable while remaining viable and symbiotically infective. Experimental studies indicated that V. fischeri cells suspended in natural Hawaiian seawater enter such a state within a few days.

  8. Alterations of gene expression indicating effects on estrogen signaling and lipid homeostasis in seabream hepatocytes exposed to extracts of seawater sampled from a coastal area of the central Adriatic Sea (Italy).

    Science.gov (United States)

    Cocci, Paolo; Capriotti, Martina; Mosconi, Gilberto; Campanelli, Alessandra; Frapiccini, Emanuela; Marini, Mauro; Caprioli, Giovanni; Sagratini, Gianni; Aretusi, Graziano; Palermo, Francesco Alessandro

    2017-02-01

    Recent evidences suggest that the toxicological effects of endocrine disrupting chemicals (EDCs) involve multiple nuclear receptor-mediated pathways, including estrogen receptor (ER) and peroxisome proliferator-activated receptor (PPAR) signaling systems. Thus, our objective in this study was to detect the summated endocrine effects of EDCs with metabolic activity in coastal waters of the central Adriatic Sea by means of a toxicogenomic approach using seabream hepatocytes. Gene expression patterns were also correlated with seawater levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). We found that seawater extracts taken at certain areas induced gene expression profiles of ERα/vitellogenin, PPARα/Stearoyl-CoA desaturase 1A, cytochrome P4501A (CYP1A) and metallothionein. These increased levels of biomarkers responses correlated with spatial distribution of PAHs/PCBs concentrations observed by chemical analysis in the different study areas. Collectively, our data give a snapshot of the presence of complex EDC mixtures that are able to perturb metabolic signaling in coastal marine waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Why do local communities support or oppose seawater desalination?

    Science.gov (United States)

    Mirza Ordshahi, B.; Heck, N.; Faraola, S.; Paytan, A.; Haddad, B.; Potts, D. C.

    2016-12-01

    Freshwater shortages have become a global problem due to increasing water consumption and environmental changes which are reducing the reliability of traditional water resources. One option to address water shortages in coastal areas is the use of seawater desalination. Desalination technology is particularly valued for the production of high quality drinking water and consistent production. However, seawater desalination is controversial due to potential environmental, economic, and societal impacts and lack of public support for this water supply method. Compared to alternative potable water production methods, such as water recycling, little is known about public attitudes towards seawater desalination and factors that shape local support or rejection. Our research addresses this gap and explores variables that influence support for proposed desalination plants in the Monterey Bay region, where multiple facilities have been proposed in recent years. Data was collected via a questionnaire-based survey among a random sample of coastal residents and marine stakeholders between June-July, 2016. Findings of the study identify the influence of socio-demographic variables, knowledge about desalination, engagement in marine activities, perception of the environmental context, and the existence of a National Marine Sanctuary on local support. Research outcome provide novel insights into public attitudes towards desalination and enhances our understanding of why communities might support or reject this water supply technology.

  10. Behaviour of Radium in coastal marine water of India - Behaviour of Radium in coastal marine environment of India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, S.K.; Sartandel, S.; Tripathi, R.M. [Environmental Radioactivity measurement Section, Health Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-07-01

    In the recent years, there has also been an increased recognition of the radiological significance of non-nuclear process of natural radioactivity in particular {sup 226}Ra, {sup 228}Ra, {sup 222}Rn, {sup 210}Po and {sup 210}Pb produced, for example by Phosphate processing plants, offshore oil and gas installations and ceramic industries etc. Keeping this in mind, special distribution of radium was carried out to generate region specific values of Radium. The Indian Ocean differs from the Atlantic and Pacific Oceans in its limited northward extent, to only 25 deg. N. Indian subcontinent divides the Indian ocean in the north into two tropical basin namely Arabian sea and Bay of Bengal both being located within same latitude and being under the direct influence of monsoon. For measurements of {sup 226}Ra and {sup 228}Ra concentration in the coastal marine waters of India, MnO{sub 2} impregnated cartridge based in-situ pre-concentration technique was applied by passing 1000 liters of seawater at thirty locations covering Arabian Sea in the west of India and Bay of Bengal in the east. {sup 226}Ra was estimated using gamma ray peak of its daughter radionuclides {sup 214}Bi and {sup 214}Pb while {sup 228}Ra was estimated from its daughter {sup 228}Ac. {sup 214}Pb emissions occur at 295 and 352 keV; {sup 214}Bi has an emission at 609 keV. For {sup 228}Ac gamma emissions at 911 keV, 968 keV and 338 keV were used. In the coastal waters, {sup 226}Ra and {sup 228}Ra concentration was observed to be in the range of 0.69 to 4.10 mBql{sup -1} and 0.70 to 8 Bq m{sup -3} respectively with an average of 1.52 and 4.53 Bq m{sup -3}. The concentration of {sup 228}Ra was observed to be more than {sup 226}Ra in all the locations. The activity ratio of {sup 228}Ra/{sup 226}Ra in coastal marine water from the Bay of Bengal showed a ratio varying from 0.8 to 2.4 with a mean of 2.1.In the present study, activity ratio varies from 1.9 to 2.4 at Karaikkal. But the regions of Rameswaram and

  11. Radon as an indicator of submarine groundwater discharge in coastal regions

    International Nuclear Information System (INIS)

    Jacob, Noble; Shivanna, K.; Suresh Babu, D.S.

    2009-01-01

    This article reviews the various available methodologies to estimate submarine groundwater discharge (SGD) and demonstrates the utility of radon with a case study. An attempt has been made to identify the existence of submarine groundwater discharge (SGD) and semi-quantitatively estimate its rate in the coastal area of Vizhinjam, Thiruvananthapuram, Kerala. Natural 222 Rn (half-life = 3.8 days) was used as a tracer of SGD because of its conservative nature, short half-life, easiness in measurement and high abundance in groundwater. As in situ radon ( 222 Rn) monitoring study conducted in this region indicated comparatively higher 222 Rn activities (average 14.1±1.7 Bq/m 3 ) in the coastal waters revealing significant submarine groundwater discharge. The SGD may be a combination of fresh groundwater and recirculated seawater that is controlled by the hydraulic gradient in the adjacent aquifer and varying tidal conditions in the coastal waters. Using a transient 222 Rn mass balance model for the coastal waters, SGD rates were computed and the average value was found to be 10.9±6.1 cm/day. These estimates are comparable with those reported in the literature. In general, identification and estimation of submarine groundwater discharge is important in the Indian context because of the possibility of large amounts of groundwater loss through its long coastline, that can be judiciously exploited to cater to the present water requirements for drinking and irrigation purposes. (author)

  12. Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples

    International Nuclear Information System (INIS)

    Jan Kamenik; Henrieta Dulaiova; Ferdinand Sebesta; Kamila St'astna; Czech Technical University, Prague

    2013-01-01

    The method developed for cesium concentration from large freshwater samples was tested and adapted for analysis of cesium radionuclides in seawater. Concentration of dissolved forms of cesium in large seawater samples (about 100 L) was performed using composite absorbers AMP-PAN and KNiFC-PAN with ammonium molybdophosphate and potassium–nickel hexacyanoferrate(II) as active components, respectively, and polyacrylonitrile as a binding polymer. A specially designed chromatography column with bed volume (BV) 25 mL allowed fast flow rates of seawater (up to 1,200 BV h -1 ). The recovery yields were determined by ICP-MS analysis of stable cesium added to seawater sample. Both absorbers proved usability for cesium concentration from large seawater samples. KNiFC-PAN material was slightly more effective in cesium concentration from acidified seawater (recovery yield around 93 % for 700 BV h -1 ). This material showed similar efficiency in cesium concentration also from natural seawater. The activity concentrations of 137 Cs determined in seawater from the central Pacific Ocean were 1.5 ± 0.1 and 1.4 ± 0.1 Bq m -3 for an offshore (January 2012) and a coastal (February 2012) locality, respectively, 134 Cs activities were below detection limit ( -3 ). (author)

  13. Coastal California Wastewater Effluent as a Resource for Seawater Desalination Brine Commingling

    Directory of Open Access Journals (Sweden)

    Kelly E. Rodman

    2018-03-01

    Full Text Available California frequently experiences water scarcity, especially in high population areas. This has generated increased interest in using the Pacific Ocean as a water resource, with seawater desalination becoming a popular solution. To mitigate the environmental impacts of the high salinity brine from seawater desalination, California recommends commingling brine with wastewater effluent before ocean discharge. Results reveal that throughout the California coast, approximately 4872 MLD (1287 MGD of treated wastewater are discharged into the ocean and might be available as dilution water. Most of this dilution water resource is produced in Southern California (3161 MLD or 835 MGD and the San Francisco Bay Area (1503 MLD or 397 MGD, which are also the areas with the highest need for alternative water sources. With this quantity of dilution water, in principle, over 5300 MLD (1400 MGD of potable water could be produced in California through seawater desalination. Furthermore, this study provides a survey of the treatment levels and typical discharge violations of ocean wastewater treatment facilities in California.

  14. The airborne lava-seawater interaction plume at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.

    2006-01-01

    Lava flows into the sea at Kīlauea Volcano, Hawaiʻi, and generates an airborne gas and aerosol plume. Water (H2O), hydrogen chloride (HCl), carbon dioxide (CO2), nitrogen dioxide (NO2) and sulphur dioxide (SO2) gases were quantified in the plume in 2004–2005, using Open Path Fourier Transform infra-red Spectroscopy. The molar abundances of these species and thermodynamic modelling are used to discuss their generation. The range in molar HCl / H2O confirms that HCl is generated when seawater is boiled dry and magnesium salts are hydrolysed (as proposed by [T.M. Gerlach, J.L. Krumhansl, R.O. Fournier, J. Kjargaard, Acid rain from the heating and evaporation of seawater by molten lava: a new volcanic hazard, EOS (Trans. Am. Geophys. Un.) 70 (1989) 1421–1422]), in contrast to models of Na-metasomatism. Airborne droplets of boiled seawater brine form nucleii for subsequent H2O and HCl condensation, which acidifies the droplets and liberates CO2 gas from bicarbonate and carbonate. NO2 is derived from the thermal decomposition of nitrates in coastal seawater, which takes place as the lava heats droplets of boiled seawater brine to 350–400 °C. SO2 is derived from the degassing of subaerial lava flows on the coastal plain. The calculated mass flux of HCl from a moderate-sized ocean entry significantly increases the total HCl emission at Kīlauea (including magmatic sources) and is comparable to industrial HCl emitters in the United States. For larger lava ocean entries, the flux of HCl will cause intense local environmental hazards, such as high localised HCl concentrations and acid rain.

  15. Monitoring of uranium isotopes in seaweeds and seawater

    International Nuclear Information System (INIS)

    Meena, Balram; Mehendarge, S.T.; Baburajan, A.; Rao, D.D.

    2012-01-01

    The paper deals with the concentration of uranium in seawater and different types of seaweed found along the coast line of Tarapur marine environment. The seaweeds are the trend indicators of heavy metals and radionuclides present in the aquatic environment. Seaweeds also serve as a food to the marine organisms and thus can enter the human being through food chain. The higher concentration of uranium in seafood may have radiological impact on human health. The Tarapur Atomic Power Station is adjoined to the sea and has a rocky surface area, which act as a good dwelling for the growth and survival of marine biota. In present study, separation and measurements were made to determine the uranium concentration in seaweed seawater at Tarapur coastal environment

  16. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.; Raoof, A.; Centler, F.; Thullner, M.; Regnier, P.

    2013-01-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work ...

  18. Long-term pumping test to study the impact of an open-loop geothermal system on seawater intrusion in a coastal aquifer: the case study of Bari (Southern Italy)

    Science.gov (United States)

    Clementina Caputo, Maria; Masciale, Rita; Masciopinto, Costantino; De Carlo, Lorenzo

    2016-04-01

    The high cost and scarcity of fossil fuels have promoted the increased use of natural heat for a number of direct applications. Just as for fossil fuels, the exploitation of geothermal energy should consider its environmental impact and sustainability. Particular attention deserves the so-called open loop geothermal groundwater heat pump (GWHP) system, which uses groundwater as geothermal fluid. From an economic point of view, the implementation of this kind of geothermal system is particularly attractive in coastal areas, which have generally shallow aquifers. Anyway the potential problem of seawater intrusion has led to laws that restrict the use of groundwater. The scarcity of freshwater could be a major impediment for the utilization of geothermal resources. In this study a new methodology has been proposed. It was based on an experimental approach to characterize a coastal area in order to exploit the low-enthalpy geothermal resource. The coastal karst and fractured aquifer near Bari, in Southern Italy, was selected for this purpose. For the purpose of investigating the influence of an open-loop GWHP system on the seawater intrusion, a long-term pumping test was performed. The test simulated the effects of a prolonged withdrawal on the chemical-physical groundwater characteristics of the studied aquifer portion. The duration of the test was programmed in 16 days, and it was performed with a constant pumping flowrate of 50 m3/h. The extracted water was outflowed into an adjacent artificial channel, by means of a piping system. Water depth, temperature and electrical conductivity of the pumped water were monitored for 37 days, including also some days before and after the pumping duration. The monitored parameters, collected in the pumping and in five observation wells placed 160 m down-gradient with respect to the groundwater flow direction, have been used to estimate different scenarios of the impact of the GWHP system on the seawater intrusion by mean of a

  19. Guidelines for Measuring Coastal Acidification

    Science.gov (United States)

    The purpose of this presentation is to provide EPA colleagues in region 1 with background information related to, and a description of, the recently published document entitled "Guidelines for Measuring Changes in seawater pH and associated carbonate chemistry in coastal env...

  20. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    International Nuclear Information System (INIS)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-01-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl − concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM (ZS) is used as sampling algorithm. Then, the predictive distribution of Cl - concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl - concentration. The results of model calibration and verification demonstrate that the DREAM (ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl − concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl − concentration

  1. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong, E-mail: wangdong@nju.edu.cn; Zhu, Xiaobin

    2016-07-15

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl{sup −} concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM{sub (ZS)} is used as sampling algorithm. Then, the predictive distribution of Cl{sup -} concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl{sup -} concentration. The results of model calibration and verification demonstrate that the DREAM{sub (ZS)} based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl{sup −} concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl{sup −} concentration.

  2. Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City, China

    Science.gov (United States)

    Zhao, J.; Lin, J.; Wu, J.

    2013-12-01

    A three-dimensional heterogeneous density-dependent numerical model was constructed to simulate the seawater intrusion process in coastal aquifers in Zhoushuizi Region, Dalian City. Model calibration was achieved through a prediction-correction method by adjusting the zonation and values of hydrogeologic parameters until the calculated heads and concentrations matched the observed values. Model validation results also showed that it was reasonable under current data conditions. Then the calibrated and validated model was applied to predict the dynamics and trend of seawater intrusion according to the current groundwater abstraction conditions in this study area 30 years after 2010. Prediction results showed that overall seawater intrusion in the future would be even more severe. Actually, with the growing of the population and development of the economy, the demand for ground water will be increasing continuously so that the problem of seawater intrusion may be more serious than that predicted by the modelin this study. Better strategies for reasonably governing exploitation of groundwater in the study area can be further developed by using this three-dimensional seawater intrusion model.

  3. Nucleation from seawater emissions during mesocosm experiments

    Science.gov (United States)

    Rose, Clémence; Culot, Anais; Pey, Jorge; Schwier, Allison; Mas, Sébastien; Charriere, Bruno; Sempéré, Richard; Marchand, Nicolas; D'Anna, Barbara; Sellegri, Karine

    2015-04-01

    Nucleation and new particle formation in the marine atmosphere is usually associated to the presence of macroalgea emerged at low tides in coastal areas, while these processes were very rarely detected away from coastlines. In the present study, we evidence the formation of new particles from the 1 nm size above the seawater surface in the absence of any macroalgea population. Within the SAM project (Sources of marine Aerosol in the Mediterranean),seawater mesocosms experiments were deployed in May 2013 at the STARESO in western Corsica, with the goal of investigating the relationship between marine aerosol emissions and the seawater biogeochemical properties. Three mesocosms imprisoned 3,3 m3 of seawater each and their emerged part was flushed with aerosol-filtered natural air. One of these mesocosms was left unchanged as control and the two others were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16) in order to create different levels of phytoplanctonic activities. We followed both water and air characteristics of three mesocosms during a period of three weeks by using online water and atmospheric probes as well as seawater daily samples for chemical and biological analysis. Secondary new particle formation was followed on-line in the emerged parts of the mesocosms, using a SMPS for the size distribution above 6 nm and a Particle Size Magnifyer (PSM) for the number of cluster particles between 1 and 6 nm. We will present how the cluster formation rates and early growth rates relate to the gaz-phase emissions from the seawater and to its biogeochemical properties. Aknowledgemnts: The authors want to acknowledge the financial support of the ANR "Source of marine Aerosol in the Mediterranean" (SAM), and the support of MISTRAL CHARMEX and MERMEX programs.

  4. Challenges for present and future estimates of anthropogenic carbon in the Indian Ocean

    Science.gov (United States)

    Goyet, C.; Touratier, F.

    One of the main challenges we face today is to determine the evolution of the penetration of anthropogenic CO2 into the Indian Ocean and its impacts on marine and human life. Anthropogenic CO2 reaches the ocean via air-sea interactions as well as riverine inputs. It is then stored in the ocean and follows the oceanic circulation. As the carbon dioxide from the atmosphere penetrates into the sea, it reacts with water and acidifies the ocean. Consequently, the whole marine ecosystem is perturbed, thus potentially affecting the food web, which has, in turn, a direct impact on seafood supply for humans. Naturally, this will mainly affect the growing number of people living in coastal areas. Although anthropogenic CO2 in the ocean is identical with natural CO2 and therefore cannot be detected alone, many approaches are available today to estimate it. Since most of the results of these methods are globally in agreement, here we chose one of these methods, the tracer using oxygen, total inorganic carbon, and total alkalinity (TrOCA) approach, to compute the 3-D distribution of the anthropogenic CO2 concentrations throughout the Indian Ocean. The results of this distribution clearly illustrate the contrast between the Arabian Sea and the Bay of Bengal. They further show the importance of the southern part of this ocean that carries some anthropogenic CO2 at great depths. In order to determine the future anthropogenic impacts on the Indian Ocean, it is urgent and necessary to understand the present state. As the seawater temperature increases, how and how fast will the ocean circulation change? What will the impacts on seawater properties be? Many people are living on the bordering coasts, how will they be affected?

  5. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion.

    Science.gov (United States)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-07-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl(-) concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM(ZS) is used as sampling algorithm. Then, the predictive distribution of Cl(-) concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl(-) concentration. The results of model calibration and verification demonstrate that the DREAM(ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015-2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl(-) concentration of groundwater source field always vary between 175mg/l and 200mg/l. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effective ecological half-lives of Cs-137 for fishes controlled by their surrounding sea-waters

    International Nuclear Information System (INIS)

    Morita, T.; Yoshida, K.

    2004-01-01

    National Research Institute of Fisheries Science (NRIFS) has carried out the long term monitoring program for radioactive pollution in marine organisms caught around Japan in order to confirm the safety of marine organisms as food source. Main radionuclide in our monitoring program is Cs-137 because it has the relatively high radiotoxicity and the long term physical half-life (about 30.1 y), and tends to accumulate in the muscle. Recently, the effective ecological half-lives have been introduced to estimate the recovery time from radioactive pollution, and been applicable to various ecosystems. In this study, effective ecological half-lives of Cs-137 for some fishes were calculated from our long term monitoring data. It is known that fish species have each effective ecological half-lives. However, it has been unclear what change the effective ecological half-lives of Cs-137 for fishes. Fishes intake Cs-137 through food chain and directly from their surrounding sea-waters. Accordingly, the effective ecological half-lives of Cs-137 for some fishes would be controlled by the effective environment half-lives of Cs-137 for their surrounding sea-waters. There is difference in effective environment half-lives of Cs-137 between the open ocean and the coastal sea-waters because they have the different input sources of Cs-137. Some fishes move between the open ocean and the coastal areas, and therefore their effective ecological half-lives of Cs-137 are influenced by the effective environment half-lives of Cs-137 for sea-waters of both areas. Consequently, the differences in effective ecological half-lives of Cs-137 among fish species would depend the rate of coastal area in their lives. (author)

  7. Distribution characteristics of polychlorinated biphenyls (PCBs) in coastal areas of Okinawa Island, Japan

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface sediment and seawater samples were collected from coastal areas around Okinawa Island from September 2001 to May 2002. The samples were analyzed for total polychlorinated biphenyl (PCB) levels and homolog composition. The results show that total PCB levels ranged from 0.32 to 128.7 ng/g (dry wt.) in sediment and 1.59 to 2.48 ng/L in seawater. The levels exceed the Environmental Quality Standard (EQS) for water pollution of Japan. The distribution of PCB homolog showed different patterns in the sediments and seawaters. Penta-chlorobiphenyls (CBs) comprised the main congener group in seawater, while hexa-CBs were more abundant homologs in the sediments. The heavily contaminated sites featured higher CBs, including penta-CBs, hexa-CBs, and hepta-CBs, than those in less contaminated sites where tri-CBs dominated. This study provides current distribution and geochemical behavior of PCBs in the coastal areas around Okinawa Island.

  8. Assessment of Selected Heavy Metals in Seawater and Sediment at Klang Coastal Area Malaysia

    International Nuclear Information System (INIS)

    Noor Aziatul Aini Hamzan; Farah Fardiana Mohamad Zaini; Mohd Ismail Ibrahim; Nik Azlin Nik Ariffin

    2015-01-01

    Sediments are capable of transporting loads of adsorbed nutrients, pesticides, heavy metals, and other toxins. In this study, the samples of sediment were collected from four sampling points (Kapar, Sungai Puloh, Sementa and North Port) using sediment core sampler. The cores then was sub-sampled by slicing into 1 cm slices and dried at 60 degree Celsius until mass become constant and the weight recorded. The samples were pulverized and sieved through 220 μm stainless steel sieves. Each sub-sample digested using aqua regia acids. For seawater, the samples were evaporated using the hotplate at 60 degree Celsius. The concentration of heavy metals was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The highest concentration of copper, zinc, iron and lead was observed from seawater samples obtained from Sementa while highest concentration of cadmium was found from Kapar samples). Most of the bottom seawater gives high concentration of the heavy metal compare to the surface. For sediment, the overall concentration of heavy metal in each layer was fluctuated. From the analysis, there is a significant correlation for overall selected heavy metals and the samples (seawater and sediment) that study in this area. (author)

  9. Multielement determination of trace elements in seawater by inductively coupled plasma mass spectrometry after tandem preconcentration with cooperation of chelating resin adsorption and lanthanum coprecipitation

    International Nuclear Information System (INIS)

    Yabutani, Tomoki; Chiba, Koichi; Haraguchi, Hiroki

    2001-01-01

    A tandem preconcentration method, in which chelating resin adsorption and La coprecipitation were cooperatively employed for preconcentration, was developed as a pretreatment method for simultaneous multielement determination of trace elements in seawater by ICP-MS. First, the seawater sample (250 ml) was treated with a chelating resin for preconcentration of trace elements, and then trace elements with good recoveries were determined by ICP-MS. Trace elements with the chemical properties of oxoanion- and hydride-formation, which were poorly recovered in the chelating resin preconcentration, were further subjected to preconcentration by La coprecipitation. As a result, more than 30 elements could be determined in the concentration range from 9.6 μg L -1 for Mo to 0.00018 μg L -1 for Tm, when the present tandem method was applied to the analysis of open seawater standard reference material (NASS-4). Furthermore, the analytical results for open seawater reference materials were compared with those for coastal seawater reference material as well as for coastal seawater collected in the Ise Bay. It was found that the multielement data for trace elements in these seawater samples clearly showed different elemental distributions, reflecting the different marine environments. (author)

  10. Hydrochemical and isotopic characteristics of estuarial seawater and river water of Bailanghe in Laizhou Bay, China

    Science.gov (United States)

    Yang, Qiaofeng; Xu, Suning; Wang, Ruijiu; Li, Wenpeng; Wang, Zhiyi; Mei, Junjun; Ding, Zhilei; Yang, Peijie; Yu, Liangju; Lv, Tieying; Bai, Gang; Kang, Wei

    2016-04-01

    In the study of seawater intrusion, seawater is usually taken as an end-member that mixes with other source(s). However, compared to standard seawater, the coastal seawater particularly that near the estuary, can be strongly influenced by the rivers into the sea and by coastal human activities. Their composition can be thus continuously changed and redistributed with space and time. Therefore, before investigating seawater intrusion in a certain area, it is essentially important to determine the features of the estuarine seawater (e.g. the mixture percentage between standard seawater and river water). In this study, we aimed to gain a clear situation of the seawater intrusion in Laizhou Bay, Southern Bohai, China. The issue aforementioned was investigated by comparing the stable isotopic and hydrochemical composition of the marine and river water collected in this area. Samples investigated include 5 surface water samples collected at the downstream of the Bailanghe and 7 seawater samples near the estuary of Laizhou Bay. Inert tracers (δD, δ18O, Cl, Br) and reaction tracers (Na, Mg, SO4, HCO3, Ca, NO3) are particularly analyzed. The major results are as follows: 1) All the river water samples fall below the Global Meteoric Water Line in the δD - δ18O diagram, reflecting evaporation of the upstream reservoir water. The seawater samples fall on the mixing line of standard seawater and the river water in the stable isotopic diagram. 2) The Cl-δ18O diagram indicates widespread dissolution of evaporate into the river, while high concentration of Ca and HCO3-, as well as the SO42- - Cl relation of the river water samples reflect the dissolution of CO2 , carbonate and sulfate in the atmosphere and on the ground. 3) The Br/Cl ratios of seawater samples are closed to the marine ratios. This together with the plots of major ions vs. Cl suggest that the seawater samples are originated from the mixture of standard seawater and river water. Therefore, when referring to the

  11. A methodological framework to assess the environmental and economic effects of injection barriers against seawater intrusion.

    Science.gov (United States)

    Siarkos, Ilias; Latinopoulos, Dionysis; Mallios, Zisis; Latinopoulos, Pericles

    2017-05-15

    Seawater intrusion is responsible for the progressive deterioration of groundwater quality in numerous coastal aquifers worldwide. As a consequence, seawater intrusion may constitute a serious threat to local groundwater resources, as well as to the regional economy of coastal areas. To alleviate these negative effects, a number of well-designed protective measures could be implemented. The implementation of these measures is usually associated with significant benefits for the environment and the local economy. In this perspective, the present study investigates the particular case of constructing injection barriers for controlling seawater intrusion by developing a methodological framework that combines numerical modeling with spatial and cost-benefit analyses. To this task, we introduce a novel approach, which considers the socio-economic aspects of seawater intrusion in the modeling procedure, and at the same time focuses on the spatial and temporal relationships between water salinity and farmers' income. To test the proposed methodology two alternative artificial recharge scenarios - with different volumes of water used for injection - are assessed. According to the results of this analysis, both scenarios are likely to have a positive impact on groundwater quality, as well as, a net economic benefit to local society. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biofouling control of industrial seawater cooling towers

    KAUST Repository

    Albloushi, Mohammed

    2017-11-01

    The use of seawater in cooling towers for industrial applications has much merit in the Gulf Cooperation Council countries due to the scarcity and availability of fresh water. Seawater make-up in cooling towers is deemed the most feasible because of its unlimited supply in coastal areas. Such latent-heat removal with seawater in cooling towers is several folds more efficient than sensible heat extraction via heat exchangers. Operational challenges such as scaling, corrosion, and biofouling are a major challenge in conventional cooling towers, where the latter is also a major issue in seawater cooling towers. Biofouling can significantly hamper the efficiency of cooling towers. The most popular methods used in cooling treatment to control biofouling are disinfection by chlorination. However, the disadvantages of chlorination are formation of harmful disinfection byproducts in the presence of high organic loading and safety concerns in the storage of chlorine gas. In this study, the research focuses on biofouling control in seawater cooling towers by investigating two different approaches. The first strategy addresses the use of alternative oxidants (i.e. ozone micro-bubbles and chlorine dioxide) in treatment of cooling towers. The second strategy investigates removing nutrients in seawater using granular activated carbon filter column and ultrafiltration to prevent the growth of microorganisms. Laboratory bench-scale tests in terms of temperature, cycle of concentration, dosage, etc. indicated that, at lower oxidant dosages (total residual oxidant (TRO) equivalent = 0.1 mg/l Cl2), chlorine dioxide had a better disinfection effect than chlorine and ozone. The performance of oxidizing biocides at pilot scale, operating at assorted conditions, showed that for the disinfectants tested, ozone could remove 95 % bioactivity of total number of bacteria and algae followed by chlorine dioxide at 85%, while conventional chlorine dosing only gave 60% reduction in bioactivities

  13. Seawater desalination plant using nuclear heating reactor coupled with MED process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. This seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. The intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10~200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m3/d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented.

  14. Seawater desalination plant using nuclear heating reactor coupled with MED process

    International Nuclear Information System (INIS)

    Wu Shaorong; Dong Duo; Zhang Dafang; Wang Xiuzhen

    2000-01-01

    A small size plant for seawater desalination using nuclear heating reactor coupled with MED process was developed by the Institute of Nuclear Energy Technology, Tsinghua University, China. this seawater desalination plant was designed to supply potable water demand to some coastal location or island where both fresh water and energy source are severely lacking. It is also recommended as a demonstration and training facility for seawater desalination using nuclear energy. The design of small size of seawater desalination plant couples two proven technologies: Nuclear Heating Reactor (NHR) and Multi-Effect Destination (MED) process. The NHR design possesses intrinsic and passive safety features, which was demonstrated by the experiences of the project NHR-5. the intermediate circuit and steam circuit were designed as the safety barriers between the NHR reactor and MED desalination system. Within 10-200 MWt of the power range of the heating reactor, the desalination plant could provide 8000 to 150,000 m 3 /d of high quality potable water. The design concept and parameters, safety features and coupling scheme are presented

  15. Groundwater sustainability assessment in coastal aquifers

    Indian Academy of Sciences (India)

    The present work investigates the response of shallow, coastal unconfined aquifers to anticipated overdraft conditions and climate change effect using numerical simulation. The groundwater flow model MODFLOW and variable density groundwater model SEAWAT are used for this investigation. The transmissivity and ...

  16. In Situ Detection of Macronutrients and Chloride in Seawater by Submersible Electrochemical Sensors.

    Science.gov (United States)

    Cuartero, Maria; Crespo, Gaston; Cherubini, Thomas; Pankratova, Nadezda; Confalonieri, Fabio; Massa, Francesco; Tercier-Waeber, Mary-Lou; Abdou, Melina; Schäfer, Jörg; Bakker, Eric

    2018-04-03

    A new submersible probe for the in situ detection of nitrate, nitrite, and chloride in seawater is presented. Inline coupling of a desalination unit, an acidification unit, and a sensing flow cell containing all-solid-state membrane electrodes allows for the potentiometric detection of nitrate and nitrite after removal of the key interfering ions in seawater, chloride and hydroxide. Thus, the electrodes exhibited attractive analytical performances for the potentiometric detection of nitrate and nitrite in desalinated and acidified seawater: fast response time ( t 95 macronutrient levels with salinity cycles, which is of special interest in recessed coastal water bodies. The system is capable of autonomous operation during deployment, with routines for repetitive measurements (every 2 h), data storage and management, and computer visualization of the data in real time. In situ temporal profiles observed in the Arcachon Bay (France) showed valuable environmental information concerning tide-dependent cycles of nitrate and chloride levels in the lagoon, which are here observed for the first time using direct in situ measurements. The submersible probe based on membrane electrodes presented herein may facilitate the study of biogeochemical processes occurring in marine ecosystems by the direct monitoring of nitrate and nitrite levels, which are key chemical targets in coastal waters.

  17. Mobility and retention of Co-60 in soils in coastal areas

    International Nuclear Information System (INIS)

    Mahara, Y.; Kudo, A.

    1980-01-01

    The purpose of this study was to determine the mobility of radioactive cobalt ( 60 Co), a typical operating waste, in soils in coastal areas (where all Japanese commercial reactors are located). The results of this investigation may assist in evaluating a degree of safety for the future disposal of radioactive wastes underground. Freshwater and seawater were examined under both aerobic and anaerobic conditions by simulating the environmental conditions of the soils in coastal areas. More than 80% of 60 Co moves freely within soils covered by seawater under anaerobic conditions. Furthermore, the cobalt in the water phase can pass through a dialysis membrane with a pore size of 24 A. This indicates that the cobalt is either in ionic form or associated with materials of low molecular weight. On the other hand, more than 95% of 60 Co was retained by soils covered by freshwater under aerobic conditions. This cobalt, once fixed on soils, was not easily desorbed by seawater under anaerobic conditions. The results suggest that the mobility of cobalt disposed of underground is greatly enced by the initial environmental conditions in the soils in coastal areas. (H.K.)

  18. Acute Illness Among Surfers After Exposure to Seawater in Dry- and Wet-Weather Conditions.

    Science.gov (United States)

    Arnold, Benjamin F; Schiff, Kenneth C; Ercumen, Ayse; Benjamin-Chung, Jade; Steele, Joshua A; Griffith, John F; Steinberg, Steven J; Smith, Paul; McGee, Charles D; Wilson, Richard; Nelsen, Chad; Weisberg, Stephen B; Colford, John M

    2017-10-01

    Rainstorms increase levels of fecal indicator bacteria in urban coastal waters, but it is unknown whether exposure to seawater after rainstorms increases rates of acute illness. Our objective was to provide the first estimates of rates of acute illness after seawater exposure during both dry- and wet-weather periods and to determine the relationship between levels of indicator bacteria and illness among surfers, a population with a high potential for exposure after rain. We enrolled 654 surfers in San Diego, California, and followed them longitudinally during the 2013-2014 and 2014-2015 winters (33,377 days of observation, 10,081 surf sessions). We measured daily surf activities and illness symptoms (gastrointestinal illness, sinus infections, ear infections, infected wounds). Compared with no exposure, exposure to seawater during dry weather increased incidence rates of all outcomes (e.g., for earache or infection, adjusted incidence rate ratio (IRR) = 1.86, 95% confidence interval (CI): 1.27, 2.71; for infected wounds, IRR = 3.04, 95% CI: 1.54, 5.98); exposure during wet weather further increased rates (e.g., for earache or infection, IRR = 3.28, 95% CI: 1.95, 5.51; for infected wounds, IRR = 4.96, 95% CI: 2.18, 11.29). Fecal indicator bacteria measured in seawater (Enterococcus species, fecal coliforms, total coliforms) were strongly associated with incident illness only during wet weather. Urban coastal seawater exposure increases the incidence rates of many acute illnesses among surfers, with higher incidence rates after rainstorms. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  19. Characterization of PBDEs and novel brominated flame retardants in seawater near a coastal mariculture area of the Bohai Sea, China.

    Science.gov (United States)

    Wang, Yan; Wu, Xiaowei; Zhao, Hongxia; Xie, Qing; Hou, Minmin; Zhang, Qiaonan; Du, Juan; Chen, Jingwen

    2017-02-15

    The concentrations and distributions of PBDEs and novel brominated flame retardants (NBFRs) in dissolved phase of surface seawater near a coastal mariculture area of the Bohai Sea were investigated. The total concentrations of PBDE and NBFRs were in the range of 15.4-65.5 and 2.12-13.6ng/L, respectively. The highest concentration was discovered in the water near an anchorage ground, whereas concentrations in water samples from offshore cage-culture area were not elevated. Relatively high concentrations of BDE28, 99, and 100 were discovered in the medium range of distance from shore, where is the path of tidal or coastal current. This suggested that inputs from ships or through tidal current rather than mariculture activities may be the main sources of BFRs in this area. BDE209, BDE47, hexabromobenzene (HBB), and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) were the most abundant BFR congeners. Relatively high proportions of these BFRs may originate from discharge of wastewater nearby or degradation from higher brominated PBDEs. No correlations were found between BFR concentrations and water dissolved organic carbon, suggesting that concentrations and distributions of BFRs in this area were source-dependent. The relatively high concentrations in this study emphasized the importance of monitoring and managing BFR contaminations in mariculture areas of China. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mass cultures of marine algae for energy farming in coastal deserts

    Science.gov (United States)

    Wagener, K.

    1983-09-01

    This paper provides a description of construction and subsequent operation of a seawater based system for biomass farming of micro-algae. Seawater was pumped through shallow artificial ponds located in coastal areas of Calabria, Italy. We describe pond construction, mixing procedure for micro algae mass cultures, optimization of the carbon and mineral nutrient budget, potential algal yields, methods for harvesting micro-algae, a source of energy to run the seawater pumps, and environmental variables of the pond system under subtropical conditions of Calabria, Italy.

  1. Antibiotic resistance of Vibrio parahaemolyticus isolated from coastal seawater and sediment in Malaysia

    Science.gov (United States)

    Drais, Ashraf Abbas; Usup, Gires; Ahmad, Asmat

    2016-11-01

    Vibrio parahaemolyticus is widely recognized pathogenic Vibrio species due to numerous outbreaks and its' wide occurrence in the marine environment. A total of 50 Vibrio parahaemolyticus isolates were isolated from seawater and sediments in Malaysia were tested for sensitivity to 19 antibiotics using disc diffusion method. It was found that all isolates were resistant towards ampicillin (10 μg), penicillin (10 μg), methicillin (5 μg), and novobiocin (5 μg); but exhibit sensitivity to chloramphenicol (30 μg) and gentamicin (100 μg). The low percentage of sensitivity towards antibiotics was observed with the following antibiotics; amoxicillin 10μg (98%), fluconazole 25μg (98%), erythromycin 15 μg (92%), vancomycin 30 μg (92%), bacitracin 10 μg (84%), carbenicillin 100 μg (84%), cephalothin 30 μg (52%), nitrofurantion 200 μg (52%), ciprofloxacin 5 μg (40%), tetracycline 30 μg (20%), kanamycin 30 μg (10%), nalidixic acid 30 μg (10%) and streptomycin 20 μg (6%). Multiple antibiotic resistance (MAR) index was found to be 0.42-0.78. All the isolates were multi-resistant to these antibiotics. This indicates that the isolates originate from high-risk source of contamination where antibiotics are often used. Thus, there is a need for supervised use of antibiotics and frequent surveillance of V. parahaemolyticus strains for antimicrobial resistance. The presence of V. parahaemolyticus in coastal water with a high value of multiple antibiotic resistance indexes (MARI) can increase the risk of exposure to human and regular monitoring program for this potential human pathogenic bacterium is important.

  2. Simulation of sea water intrusion in coastal aquifers

    Indian Academy of Sciences (India)

    dependent miscible flow and transport modelling approach for simulation of seawater intrusion in coastal aquifers. A nonlinear optimization-based simulation methodology was used in this study. Various steady state simulations are performed for a ...

  3. Spatial distribution of fallout 137Cs in the coastal marine environment of India

    International Nuclear Information System (INIS)

    Jha, S.K.; Gothankar, S.S.; Sartandel, S.; Pote, M.B.; Hemalatha, P.; Rajan, M.P.; Vidyasagar, D.; Indumati, S.P.; Shrivastava, R.; Puranik, V.D.

    2012-01-01

    The data on the fallout 137 Cs in the coastal marine environment assume significance in view of massive expansion of nuclear power plants in the Asia-Pacific region and to fulfill the benchmark study required to evaluate the possible impact of the Fukushima radioactive releases in the Asia-Pacific region. Measurements of 137 Cs in sea water, along with salinity and temperature, were carried out at 30 locations covering the coastal area of the Arabian Sea and the Bay of Bengal. For the present study the Indian coastal area is divided in three different regions. The 137 Cs concentration in sea water of the entire Indian coastal region varies from 0.30 to 1.25 Bq m −3 . The data obtained in the present study was compared with the North Indian Ocean data and it was observed that there is a 33% decrease in the Arabian Sea (region I), 50% in the high rainfall coastal area (region II) and 24% in the Bay of Bengal (region III). - Highlights: ► Benchmark value of 137 Cs in coastal environment of Arabian Sea and Bay of Bengal. ► International reference source of 137 Cs in coastal marine environment of India. ► In-situ pre-concentration technique for measurement of 137 Cs. ► Comparison of 137 Cs Indian coastal data with ASPAMARD.

  4. Monitoring and analysis of coastal reclamation from 1995-2015 in Tianjin Binhai New Area, China.

    Science.gov (United States)

    Chen, Wengang; Wang, Dongchuan; Huang, Yong; Chen, Liding; Zhang, Lihui; Wei, Xiangwang; Sang, Mengqin; Wang, Feicui; Liu, Jinya; Hu, Bingxu

    2017-06-20

    Increasing coastal reclamation activities have been undertaken to solve the conflict between people and land resources, creating significant challenges for coordinating coastal reclamation, economic development and environmental protection. This paper analyzes the effects of coast reclamation on Gross Domestic Product growth and the quality of inshore seawater in the Tianjin Binhai New Area. Remote sensing and a Geographic Information System were used to extract the information of coastal reclamation. The correlation between the area of coastal reclamation, GDP growth and the quality of inshore seawater was analyzed and a decoupling elasticity model was used to explore trends in the relationship between economic development and coastal reclamation. Results showed that coastal reclamation activities played an important role in promoting economic development, but greatly damaged the ecological environment. Although the relationship between coastal reclamation and economic development has weakened during the last three periods, the influence on the environment will continue because of the cumulative effects of pollution. To maintain a balance between coastal reclamation, economic development and environmental protection, (1) coastal reclamation planning must address both economic and environmental outcomes; (2) environmental deficiencies from existing coastal reclamation projects must be rectified; and (3) the legal system regulating coastal reclamation needs to be refined and strengthened.

  5. Hysteretic behavior in seawater intrusion in response to discontinuous drought periods

    Science.gov (United States)

    Salandin, P.; Darvini, G.

    2017-12-01

    The seawater intrusion (SWI) represents a relevant problem for communities living in many coastal regions and in small islands, where the amount of fresh water available for human consumption or irrigation purposes depends on the equilibrium between the natural groundwater recharge from precipitations and the surrounding sea. This issue is exacerbated by climate changes, and, as a consequence, the reduction of natural groundwater recharge and the decrease the seaward flows of fresh water rather than sea level rise, as recently demonstrated by Ketabchi et al. (2016), leads to magnify the seawater intrusion into coastal aquifers. The temporal fluctuation of the fresh water table level are a natural consequence of the interaction of the aquifer with a water body or due to the seasonal replenishment of the water table. The severe and prolonged drought phenomena as that observed in last years in some areas of the Mediterranean, as over the central western Mediterranean basin, Italy and Spain, where a decreasing trend in total precipitation was detected (Alpert et al., 2002) in addition to the rise in temperature, enlarges the variation of the freshwater flux and can magnify the progression of the saline wedge. In the present study we demonstrate that the presence of varying boundary constraints or forcing factors may lead to hysteretic behavior in saltwater intrusion, showing dependence of the saline wedge on historic conditions. Therefore, the dynamic behavior of SWI may depend on both the present and past forcing conditions. To this aim different transient simulations supported by evidences deduced from a physical model are carried out to assess the presence of the hysteretic effects in the SWI phenomenon and to evaluate its influence in the management of the coastal aquifers for both the rational exploitation and the corrected management of water resources. About 70% of the world's population dwells in coastal zones. Therefore the optimal exploitation of fresh

  6. Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes.

    Science.gov (United States)

    Alves, Marta S; Pereira, Anabela; Araújo, Susana M; Castro, Bruno B; Correia, António C M; Henriques, Isabel

    2014-01-01

    The aim of this study was to examine antibiotic resistance (AR) dissemination in coastal water, considering the contribution of different sources of fecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of fecal contamination: human-derived sewage and seagull feces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin, and amoxicillin were the most frequent. Higher rates of AR were found among seawater and feces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull feces (29 and 32%) were lower than in isolates from seawater (39%). Seawater AR profiles were similar to those from seagull feces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes bla TEM, sul1, sul2, tet(A), and tet(B), were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (bla CTX-M-1 and bla SHV-12) and seagull feces (bla CMY-2). Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull feces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived fecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.

  7. Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes

    Directory of Open Access Journals (Sweden)

    Marta S. Alves

    2014-08-01

    Full Text Available The aim of this study was to examine antibiotic resistance (AR dissemination in coastal water, considering the contribution of different sources of faecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of faecal contamination: human-derived sewage and seagull faeces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin and amoxicillin were the most frequent. Higher rates of AR were found among seawater and faeces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull faeces (29% and 32% were lower than in isolates from seawater (39%. Seawater AR profiles were similar to those from seagull faeces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes blaTEM, sul1, sul2, tet(A and tet(B, were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (blaCTX-M-1 and blaSHV-12 and seagull faeces (blaCMY-2. Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull faeces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived faecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.

  8. Sulphide production and corrosion in seawaters during exposure to FAME diesel.

    Science.gov (United States)

    Lee, Jason S; Ray, Richard I; Little, Brenda J; Duncan, Kathleen E; Oldham, Athenia L; Davidova, Irene A; Suflita, Joseph M

    2012-01-01

    Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.

  9. Semianalytical solutions for contaminant transport under variable velocity field in a coastal aquifer

    Science.gov (United States)

    Koohbor, Behshad; Fahs, Marwan; Ataie-Ashtiani, Behzad; Simmons, Craig T.; Younes, Anis

    2018-05-01

    Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of the Fourier-Galerkin method is developed to efficiently solve the coupled flow, salt and contaminant transport equations. Various illustrative examples are generated and the semi-analytical solutions are compared against an in-house numerical code. The Fourier series are used to evaluate relevant metrics characterizing contaminant transport such as the discharge flux to the sea, amount of contaminant persisting in the groundwater and solute flux from the source. These metrics represent quantitative data for numerical code validation and are relevant to understand the effect of seawater intrusion on contaminant transport. It is observed that, for the surface contamination scenario, seawater intrusion limits the spread of the contaminant but intensifies the contaminant discharge to the sea. For the landward contamination scenario, moderate seawater intrusion affects only the spatial distribution of the contaminant plume while extreme seawater intrusion can increase the contaminant discharge to the sea. The developed semi-analytical solution presents an efficient tool for the verification of numerical models. It provides a clear interpretation of the contaminant transport processes in coastal aquifers subject to seawater intrusion. For practical usage in further studies, the full

  10. Decomposition of dilute residual active chlorine in sea-water

    International Nuclear Information System (INIS)

    Yoshinaga, Tetsutaro; Kawano, Kentaro; Yanagase, Kenjiro; Shiga, Akira

    1985-01-01

    Coastal industries such as power stations require enormous quantities of sea-water for cooling, but the marine organisms in it often result in fouling and/or blockade of the circulating water condenser and pipeworks. To prevent this, chlorine, or hypochlorite by the direct electrolysis of sea-water have been added. Environmental concerns, however, dictate that the residual chlorine concentration at the outlet should be less than the regulated value (0.02 ppm). Methods for decomposing dilute residual chlorine solutions were therefore studied. It was found that: 1) The addition of (raw) sea-water to the sea-water which passed through the condenser lowered the residual chlorine concentration to an greater extent than could be expected by dilution only. 2) Ozonation of the residual chlorine solution led to degradation of OCl - , but in solutions with a residual chlorine concentrations of less than 3 -- 4 ppm, ozonation had no effect. 3) Irradiation with ultra violet light (254 nm) decomposed the residual chlorine. Under the present work conditions (25 0 C: pH 8; depth 10 mm), nearly first order kinetics were to hold [da/dt = ksub((1)) (1-a)sup(n)]. There is a proportional relationship between the kinetic constant (k) and illuminous intensity (L), i.e., ksub((1))[C 0 sup(Cl 2 ): 10 ppm] = 6.56 x 10 -5 L (L = 0 -- 1000 lx). Thus, the use of both sea-water addition and UV irradiation provides a probable method for decomposing a residual chlorine to the expected concentration. (author)

  11. G R Tripathy | Speakers | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Earth & Climate Sci., Indian Institute of Science ... Re-Os geochronology: Clues for past marine and atmospheric conditions. Changes in the seawater chemistry have influenced the biosphere greatly in the past. These important ...

  12. Numerical simulation of freshwater/seawater interaction in a dual-permeability karst system with conduits: the development of discrete-continuum VDFST-CFP model

    Science.gov (United States)

    Xu, Zexuan; Hu, Bill

    2016-04-01

    Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow

  13. Automated nutrient analyses in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  14. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    article/fulltext/reso/012/05/0037-0040. Keywords. Osmosis; reverse osmosis; desalinatiion; seawater; water purification. Author Affiliations. Sudhakar M Rao1. Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India.

  15. Demarcation of coastal vulnerability line along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Ajai; Baba, M.; Unnikrishnan, A.S.; Rajawat, A.S.; Bhattacharya, S.; Ratheesh, R.; Kurian, N.P.; Hameed, S.; Sundar, D.

    been considered. Changes along the shoreline are considered as net impact of dynamic coastal processes and are mapped using multidate satellite data. Vulnerability due to coastal erosion has been assessed based on rate of coastal erosion. Coastal...

  16. Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts.

    Science.gov (United States)

    Tang, Guowen; Liu, Mengyang; Zhou, Qian; He, Haixia; Chen, Kai; Zhang, Haibo; Hu, Jiahui; Huang, Qinghui; Luo, Yongming; Ke, Hongwei; Chen, Bin; Xu, Xiangrong; Cai, Minggang

    2018-09-01

    Microplastics and polycyclic aromatic hydrocarbons (PAHs) were investigated to study the influence of human activities and to find their possible relationship on the coastal environments, where the coastal areas around Xiamen are undergoing intensive processes of industrialization and urbanization in the southeast China. The abundance of microplastics in Xiamen coastal areas was 103 to 2017particles/m 3 in surface seawater and 76 to 333 particles/kg in sediments. Concentrations of dissolved PAHs varied from 18.1 to 248ng/L in surface seawater. The abundances of microplastics from the Western Harbor in surface seawater and sediments were higher than those from other areas. Foams were dominated in surface seawater samples, however, no foams were found in sediments samples. The microscope selection and FTIR analysis suggested that polyethylene (PE) and polypropylene (PP) were dominant microplastics. The cluster analysis results demonstrated that fibers and granules had the similar sources, and films had considerably correlation with all types of PAHs (3 or 4-ring PAHs and alkylated PAHs). Plastic film mulch from agriculture practice might be a potential source of microplastics in study areas. Results of our study support that river runoff, watershed area, population and urbanization rate influence the distribution of microplastics in estuarine surface water, and the prevalence of microplastic pollution calls for monitoring microplastics at a national scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Studies on rare earth elements in seawater and uptake by marine organisms

    International Nuclear Information System (INIS)

    Suzuki, H.; Koyanagi, T.; Saiki, M.

    1975-01-01

    The contents of rare earth elements in marine environmental samples were determined by neutron activation analysis to examine the existing state in coastal seawater and the concentration by marine organisms of the elements. Seawater was filtered through a Millipore filter GS (pore size 0.22 μm), before the analysis. Some of the seawater was treated with HC1 solution before filtration and some after filtration. Certain marine organisms were also analysed for determination of rare earth elements. These were: flounder (Paralichthys olivaceus); yellowtails (Seriola quinqueradiata); immature anchovy (Engraulis japonica); clams (Meretrix lusoria); green algae (Ulva pertusa); brown algae (Hizikia fusiforme, Sargassum fulvellum, Undaria pinnatifida). In the seawater without HC1 treatment before filtration, considerable amounts of the elements existed in residue on the filter, whereas in the seawater treated with HC1 before filtration, the greater part remained in the dissolved state. Concentration factors calculated from the contents of stable elements, therefore, are affected remarkably by the existing state of the elements in seawater. If only the dissolved state is assumed available for marine organisms, values one order higher are attained compared with the case where total amounts of the elements were used for the calculation. However, the contribution of the insoluble state seems to be not negligible with some organisms. The higher concentration factors for immature anchovy and clams observed in this study were considered to be caused by surface adsorption of elements in particulate form and also ingested sediment with high element concentration. (author)

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    article/fulltext/reso/016/12/1333-1336. Keywords. Osmos is ; reverseos mosis; desalinatiion; seawater; water purification. Author Affiliations. Sudhakar M Rao1. Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India.

  19. Mortality of fecal bacteria in seawater

    International Nuclear Information System (INIS)

    Garcia-Lara, J.; Menon, P.; Servais, P.; Billen, G.

    1991-01-01

    The authors propose a method for determining the mortality rate for allochthonous bacteria released in aquatic environments without interference due to the loss of culturability in specific culture media. This method consists of following the disappearance of radioactivity from the trichloracetic acid-insoluble fraction in water samples to which [ 3 H]thymidine-prelabeled allochthonous bacteria have been added. In coastal seawater, they found that the actual rate of disappearance of fecal bacteria was 1 order of magnitude lower than the rate of loss of culturability on specific media. Minor adaptation of the procedure may facilitate assessment of the effect of protozoan grazing and bacteriophage lysis on the overall bacterial mortality rate

  20. Coastal aquaculture development in eastern Africa and the Western Indian Ocean: prospects and problems for food security and local economies.

    Science.gov (United States)

    Rönnback, Patrik; Bryceson, Ian; Kautsky, Nils

    2002-12-01

    This paper reviews the experience and status of coastal aquaculture of seaweeds, mollusks, fish and crustaceans in eastern Africa and the islands of the western Indian Ocean. In many respects, coastal aquaculture is still in its infancy in the region, and there is a pressing need to formulate development strategies aimed at improving the income and assuring the availability of affordable protein to coastal communities. This paper also draws from positive and negative experiences in other parts of the world. The requirements of feed and fry, and the conversion of mangroves are used to illustrate how some aquaculture activities constitute a net loss to global seafood production. The paper presents both general and specific sustainability guidelines based on the acknowledgement of aquaculture as an ecological process. It is concluded that without clear recognition of its dependence on natural ecosystems, the aquaculture industry is unlikely to develop to its full potential in the region.

  1. Alteration of basaltic glasses from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    Textural, mineralogical and compositional characteristics of basaltic glasses from the Central Indian Ocean show them to be altered to varying extents through their interaction with the seawater, resulting in the formation of palagonite. The major...

  2. Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece

    Science.gov (United States)

    Petalas, C. P.; Diamantis, I. B.

    1999-06-01

    This paper describes the origins and distribution of saline groundwaters in the coastal area of Rhodope, Greece. The aquifer system includes two aquifers within coarse-grained alluvial sediments in the coastal part of the study area. Two major water-quality groups occur in the study area, namely Ca2+-rich saline groundwater and Ca2+-poor, almost fresh groundwater. The main process controlling the groundwater chemistry is the exchange of calcium and sodium between the aquifer matrix and intruding seawater. The natural salt water in the study area is probably residual water that infiltrated the aquifer system during repeated marine transgressions in late Pleistocene time. Seawater intrusion into the coastal aquifer system occurs as a result of overpumping in two seawater wedges separated vertically by a low-permeability layer. The rate of intrusion averages 0.8 m/d and is less than expected due to a decline of the aquifer's permeability at the interface with the seawater. The application of several hydrochemical techniques (Piper and Durov diagrams; Na+/Cl-, Ca2+/Cl-, Mg2+/Cl-, and Br-/Cl- molar ratios; Ca2+/Mg2+ weight ratio; and chloride concentrations), combined with field observations, may lead to a better explanation of the origin of the saline groundwater.

  3. Investigation on the effect of seawater to hydraulic property and wetting process of bentonite

    International Nuclear Information System (INIS)

    Hasegawa, Takuma

    2004-01-01

    On high-level waste disposal, bentonite is one of the most promising material for buffer and backfill material. The hydraulic properties and wetting process of bentonite are important not only for barrier performance assessment but also for prediction of waste disposal environment, such as resaturation time and thermal distribution. In Japan, we should consider the effect of seawater for bentonite, because radioactive waste will be disposed of in coastal area and in marine sediment where seawater remained. However, it is not enough to understand the effect of seawater. Therefore, experimental study was conducted to investigate the effect of seawater on the hydraulic conductivity and wetting process of bentonite. The effect of seawater on hydraulic conductivity is significant for Na-bentonite, the hydraulic conductivity of Na-bentonite in seawater is one order to magnitude higher than that in distilled water. On the other hand, the hydraulic conductivity of Ca-bentonite is not influenced by seawater. The hydraulic conductivity of bentonite decreases as effective montmorillonite density increases. The effective montmorillonite density is ratio between the weight of montmorillonite and volume of porosity and montmorillonite. The hydraulic conductivity of bentonite is close related to swelling property since the hydraulic conductivity decrease as the swelling pressure increase. Wetting process of compacted bentonite could be evaluated by diffusion phenomena since infiltration rate and change of saturation rate and represented by diffusion equation. The effect of seawater on water diffusivity is significant for Na-type bentonite with low effective montmorillonite density. Except for that condition, the water diffusivity of bentonite is almost constant and is not influenced by effective montmorillonite density and seawater. (author)

  4. EFFECTS OF MEDU AND COASTAL TOPOGRAPHY ON THE DAMAGE PATTERN DURING THE RECENT INDIAN OCEAN TSUNAMI ALONG THE COAST OF TAMILNADU

    Directory of Open Access Journals (Sweden)

    J.P. Narayan

    2005-01-01

    Full Text Available Effects of Medu (naturally elevated landmass very close to the seashore and elongated parallel to the coast and coastal topography on the damage pattern during the deadliest Indian Ocean tsunami of December 26, 2004 is reported. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries bordering the Indian Ocean. The damage survey revealed large variation in damage along the coastal region of Tamilnadu (India.The most severe damage was observed in the Nagapattinam district on the east coast and the west coast of Kanyakumari district. Decrease of damage from Nagapattinam to Kanchipuram district was observed. Intense damage again appeared to the north of Adyar River (from Srinivaspuri to Anna Samadhi Park. Almost, no damage was observed along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts in Palk Strait, situated in the shadow zone of Sri Lanka.It was concluded that the width of continental shelf has played a major role in the pattern of tsunami damage. It was inferred that the width of the continental shelf and the interference of reflected waves from Sri Lanka and Maldives Islands with direct waves and receding waves was responsible for intense damage in Nagapattinam and Kanyakumari districts, respectively. During the damage survey authors also noted that there was almost no damage or much lesser damage to houses situated on or behind the Medu. Many people observed the first arrival. The largest tsunami amplitude occurred as the first arrival on the eastern coast and in the second arrival on the western coast.

  5. Analytical analysis of the temporal asymmetry between seawater intrusion and retreat

    Science.gov (United States)

    Rathore, Saubhagya Singh; Zhao, Yue; Lu, Chunhui; Luo, Jian

    2018-01-01

    The quantification of timescales associated with the movement of the seawater-freshwater interface is useful for developing effective management strategies for controlling seawater intrusion (SWI). In this study, for the first time, we derive an explicit analytical solution for the timescales of SWI and seawater retreat (SWR) in a confined, homogeneous coastal aquifer system under the quasi-steady assumption, based on a classical sharp-interface solution for approximating freshwater outflow rates into the sea. The flow continuity and hydrostatic equilibrium across the interface are identified as two primary mechanisms governing timescales of the interface movement driven by an abrupt change in discharge rates or hydraulic heads at the inland boundary. Through theoretical analysis, we quantified the dependence of interface-movement timescales on porosity, hydraulic conductivity, aquifer thickness, aquifer length, density ratio, and boundary conditions. Predictions from the analytical solution closely agreed with those from numerical simulations. In addition, we define a temporal asymmetry index (the ratio of the SWI timescale to the SWR timescale) to represent the resilience of the coastal aquifer in response to SWI. The developed analytical solutions provide a simple tool for the quick assessment of SWI and SWR timescales and reveal that the temporal asymmetry between SWI and SWR mainly relies on the initial and final values of the freshwater flux at the inland boundary, and is weakly affected by aquifer parameters. Furthermore, we theoretically examined the log-linearity relationship between the timescale and the freshwater flux at the inland boundary, and found that the relationship may be approximated by two linear functions with a slope of -2 and -1 for large changes at the boundary flux for SWI and SWR, respectively.

  6. Geochemical and isotopic data for restricting seawater intrusion and groundwater circulation in a series of typical volcanic islands in the South China Sea.

    Science.gov (United States)

    Zhang, Wenjie; Chen, Xi; Tan, Hongbing; Zhang, Yanfei; Cao, Jifu

    2015-04-15

    The decline of groundwater table and deterioration of water quality related to seawater have long been regarded as a crucial problem in coastal regions. In this work, a hydrogeologic investigation using combined hydrochemical and isotopic approaches was conducted in the coastal region of the South China Sea near the Leizhou peninsular to provide primary insight into seawater intrusion and groundwater circulation. Hydrochemical and isotopic data show that local groundwater is subjected to anthropogenic activities and geochemical processes, such as evaporation, water-rock interaction, and ion exchange. However, seawater intrusion driven by the over-exploitation of groundwater and insufficient recharge is the predominant factor controlling groundwater salinization. Systematic and homologic isotopic characteristics of most samples suggest that groundwater in volcanic area is locally recharged and likely caused by modern precipitation. However, very depleted stable isotopes and extremely low tritium of groundwater in some isolated aquifers imply a dominant role of palaeowater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Analysis of seawater flow through optical fiber

    Science.gov (United States)

    Fernández López, Sheila; Carrera Ramírez, Jesús; Rodriguez Sinobar, Leonor; Benitez, Javier; Rossi, Riccardo; Laresse de Tetto, Antonia

    2015-04-01

    The relation between sea and coastal aquifer is very important to the human populations living in coastal areas. The interrelation involves the submarine ground water discharge of relatively fresh water to the sea and the intrusion of sea water into the aquifer, which impairs the quality of ground water. The main process in seawater intrusion is managed by fluid-density effects which control the displacement of saline water. The underlain salinity acts as the restoring force, while hydrodynamic dispersion and convection lead to a mixing and vertical displacement of the brine. Because of this, a good definition of this saltwater-freshwater interface is needed what is intimately joined to the study of the movements (velocity fields) of fresh and salt water. As it is well known, the flow of salt water studied in seawater intrusion in stationary state, is nearly null or very low. However, in the rest of cases, this flux can be very important, so it is necessary its study to a better comprehension of this process. One possible manner of carry out this analysis is through the data from optical fiber. So, to research the distribution and velocity of the fresh and saltwater in the aquifer, a fiber optic system (OF) has been installed in Argentona (Baix Maresme, Catalonia). The main objective is to obtain the distributed temperature measurements (OF-DTS) and made progress in the interpretation of the dynamic processes of water. For some applications, the optical fiber acts as a passive temperature sensor but in our case, the technique Heated Active Fiber Optic will be used. This is based on the thermal response of the ground as a heat emission source is introduced. The thermal properties of the soil, dependent variables of soil water content, will make a specific temperature distribution around the cable. From the analyzed data we will deduce the velocity field, the real objective of our problem. To simulate this phenomenon and the coupled transport and flow problem

  8. Factors affecting outbreaks of Cochlodinium polykrikoides blooms in coastal areas of Korea

    International Nuclear Information System (INIS)

    Lee, Young Sik . E-mail leeyodk@hanmail.net; Lee, Sang Yong

    2006-01-01

    We evaluated the causes of the first outbreak of Cochlodinium polykrikoides blooms in Narodo and the Southern coast of Namhaedo on the South Sea, as well as the outbreak of C. polykrikoides blooms in the East Sea and around Wando. From the results of AGP tests using diverse seawater types, we identified seawaters in which C. polykrikoides grow well and those in which they do not, depending on the sampling time and location. The reason for C. polykrikoides blooms initially occurring in Narodo, Namhaedo, and Gujaedo seems to be because the seawater that promotes the growth of C. polykrikoides is transported to the areas of primary generation, such as these three areas, by the influence of the Tsushima Warm Current. The reason that C. polykrikoides blooms occur in the coastal area of Wando and the East Sea is because after the seawater promoting the growth of C. polykrikoides is transported to these areas, the amount of sun radiation increases, and abundant nutrients flow in from heavy rains, resulting in mass propagation of C. polykrikoides. The origin of the seawater that promotes the growth of C. polykrikoides is assumed to be the southern section of the southern coastal area of Narodo, Namhaedo, and Gujaedo, in which C. polykrikoides blooms were initially discovered. The components of the f/2 medium (N, P, Fe, Mn, Co, Cu, Zn, Mo, B12, biotin, thiamine) do not seem to trigger the occurrence of C. polykrikoides blooms

  9. Modelling of 137Cs concentration change in organisms of the Japanese coastal food chains

    International Nuclear Information System (INIS)

    Tateda, Y.; Nakahara, M.; Nakamura, R.

    1999-01-01

    In order to predict 137 CS concentrations in marine organisms of Japanese coastal food chains, a basic compartment model being composed of nuclide transfer both from seawater and food chain was investigated. Food chain structure of typical Japanese coastal water is established to include detritus, food chain, benthic food chain and planktonic food chain

  10. Fuel Production from Seawater and Fuel Cells Using Seawater.

    Science.gov (United States)

    Fukuzumi, Shunichi; Lee, Yong-Min; Nam, Wonwoo

    2017-11-23

    Seawater is the most abundant resource on our planet and fuel production from seawater has the notable advantage that it would not compete with growing demands for pure water. This Review focuses on the production of fuels from seawater and their direct use in fuel cells. Electrolysis of seawater under appropriate conditions affords hydrogen and dioxygen with 100 % faradaic efficiency without oxidation of chloride. Photoelectrocatalytic production of hydrogen from seawater provides a promising way to produce hydrogen with low cost and high efficiency. Microbial solar cells (MSCs) that use biofilms produced in seawater can generate electricity from sunlight without additional fuel because the products of photosynthesis can be utilized as electrode reactants, whereas the electrode products can be utilized as photosynthetic reactants. Another important source for hydrogen is hydrogen sulfide, which is abundantly found in Black Sea deep water. Hydrogen produced by electrolysis of Black Sea deep water can also be used in hydrogen fuel cells. Production of a fuel and its direct use in a fuel cell has been made possible for the first time by a combination of photocatalytic production of hydrogen peroxide from seawater and dioxygen in the air and its direct use in one-compartment hydrogen peroxide fuel cells to obtain electric power. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Marshes on the Move: Testing effects of seawater intrusion on vegetation communities of the salt marsh-upland ecotone

    Science.gov (United States)

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress to...

  12. Development and validation of an automated unit for the extraction of radiocaesium from seawater

    International Nuclear Information System (INIS)

    Bokor, Ilonka; Sdraulig, Sandra; Jenkinson, Peter; Madamperuma, Janaka; Martin, Paul

    2016-01-01

    An automated unit was developed for the in-situ extraction of radiocaesium ( 137 Cs and 134 Cs) from large volumes of seawater to achieve very low detection limits. The unit was designed for monitoring of Australian ocean and coastal waters, including at ports visited by nuclear-powered warships. The unit is housed within a robust case, and is easily transported and operated. It contains four filter cartridges connected in series. The first two cartridges are used to remove any suspended material that may be present in the seawater, while the last two cartridges are coated with potassium copper hexacyanoferrate for caesium extraction. Once the extraction is completed the coated cartridges are ashed. The ash is transferred to a small petri dish for counting of 137 Cs and 134 Cs by high resolution gamma spectrometry for a minimum of 24 h. The extraction method was validated for the following criteria: selectivity, trueness, precision, linearity, limit of detection and traceability. The validation showed the unit to be fit for purpose with the method capable of achieving low detection limits required for environmental samples. The results for the environmental measurements in Australian seawater correlate well with those reported in the Worldwide Marine Radioactivity Study (WOMARS). The cost of preparation and running the system is low and waste generation is minimal. - Highlights: • Automated unit for in-situ extraction of 137 Cs and 134 Cs from 1000 L of seawater. • Unit is robust, and easily transported and operated. • Cs extraction uses cartridges coated with potassium copper hexacyanoferrate. • Validated for selectivity, trueness, precision, linearity, LOD and traceability. • System fit for purpose for monitoring of Australian coastal and ocean waters.

  13. Stable lead isotopes as a tracer in coastal waters

    International Nuclear Information System (INIS)

    Stukas, V.J.; Wong, C.S.

    1981-01-01

    The natural abundances of the stable isotopes of lead are used to identify natural and industrial sources of lead in the coastal waters of British Columbia, Canada. The 206 Pb/ 207 Pb ratios, used to characterize the lead source, had values of approx. 1.24 for coastal oceanic water, approx. 1.22 for fjord waters receiving lead from mine tailings, and approx. 1.163 for waters near urban centers. The lead concentration data are in agreement with presently accepted seawater values

  14. The integrated impacts of natural processes and human activities on groundwater salinization in the coastal aquifers of Beihai, southern China

    Science.gov (United States)

    Li, Qinghua; Zhang, Yanpeng; Chen, Wen; Yu, Shaowen

    2018-03-01

    Salinization in coastal aquifers is usually related to both seawater intrusion and water-rock interaction. The results of chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai, southern China. The concentrations of the major ions that dominate in seawater (Cl-, Na+, Ca2+, Mg2+ and SO4 2- ), as well as the isotopic content and ratios (2H, 18O, 87Sr/86Sr and 13C), suggest that the salinization occurring in the aquifer of the coastal plain is related to seawater and that the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization has occurred in an area that is significantly influenced by land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds are identified in the shallowest confined aquifer (I) in the middle of the area (site BBW2). Leakage from this polluted confined aquifer causes the salinization of groundwater in the underlying confined aquifer (II). At the coastal monitoring site (BBW3), confined aquifer I and lower confined aquifer II are heavily contaminated by seawater intrusion. The weak connectivity between the upper aquifers, and the seaward movement of freshwater, prevents saltwater from encroaching the deepest confined aquifer (III). A conceptual model is presented. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for the planning and sustainable management of groundwater resources in this region.

  15. Surfactant induced complex formation and their effects on the interfacial properties of seawater.

    Science.gov (United States)

    Guzmán, Eduardo; Santini, Eva; Benedetti, Alessandro; Ravera, Francesca; Ferrari, Michele; Liggieri, Libero

    2014-11-01

    The effect of a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), on the interfacial properties of seawater has been studied by dynamic and equilibrium surface tension and by dilational rheology essays. Important modifications of the surface tension and dilational rheology response have been observed already at the very low CTAB concentrations, where the effects due to the high ionic strength are negligible. The comparison with the effects of CTAB in different seawater models, or in natural seawater fractions, points out the establishment of strong interactions between the surfactant molecules and the lipophilic fraction of organic material dispersed/dissolved in seawater, affecting the interfacial activity of the molecules. Considering the biochemical richness of seawater, these results can be explained assuming interaction mechanisms and adsorption schemes similar to those speculated for protein and other macromolecules in the presence of surfactants, which in fact show similar features. Thus already at the low concentrations the surfactant molecules form highly surface-active complexes with part of the organic fraction of seawater. At the larger surfactant concentrations these complexes compete for adsorption with an excess of free CTAB molecules which, according to the thermodynamic conditions, are most favoured to occupy the liquid interface. The results of this study underline the important role of the sea organic content in enhancing the surface-activity of surfactants, which is relevant for a deeper understand of the direct and indirect effects of these types of pollutants on the physico-chemical environment in the sea coastal areas and develop mitigation strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Influence of Indian summer monsoon variability on the surface waves in the coastal regions of eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Jesbin, G.

    –885, 2016 www.ann-geophys.net/34/871/2016/ doi:10.5194/angeo-34-871-2016 © Author(s) 2016. CC Attribution 3.0 License. Influence of Indian summer monsoon variability on the surface waves in the coastal regions of eastern Arabian Sea V. Sanil Kumar and Jesbin... of the period. The annual average value is ∼ 1.5 m (Anoop et al., 2015). During the non-monsoon period, the land and sea breeze has a signif- icant influence on the wave climate of eastern AS (Glejin Ann. Geophys., 34, 871–885, 2016 www.ann-geophys.net/34...

  17. Coastal upwelling along the southwest coast of India – ENSO modulation

    Directory of Open Access Journals (Sweden)

    K. Muni Krishna

    2008-06-01

    Full Text Available An index of El Niño Southern Oscillation (ENSO in the Pacific during pre monsoon season is shown to account for a significant part of the variability of coastal Sea Surface Temperature (SST anomalies measured a few months later within the wind driven southwest coast of India coastal upwelling region 7° N–14° N. This teleconnection is thought to result from an atmospheric bridge between the Pacific and north Indian Oceans, leading to warm (cold ENSO events being associated with relaxation (intensification of the Indian trade winds and of the wind-induced coastal upwelling. This ENSO related modulation of the wind-driven coastal upwelling appears to contribute to the connection observed at the basin-scale between ENSO and SST in the Arabian Sea. The ability to use this teleconnection to give warning of large changes in the southwest coast of India coastal upwelling few months in advance is successfully tested using data from 1998 and 1999 ENSO events.

  18. The Dynamics of Mercury Speciation and Transport at a Central California Coastal Lagoon

    Science.gov (United States)

    Ganguli, P. M.; Swarzenski, P. W.; Dimova, N. T.; Merckling, J.; Kehrlein, N. C.; Hohn, R. A.; Richardson, C. M.; Johnson, C. D.; Fisher, A. T.; Lamborg, C. H.; Flegal, A. R., Jr.

    2014-12-01

    We evaluated spatial and temporal trends in total mercury and monomethylmercury (MMHg) in groundwater, lagoon water, and nearshore seawater to assess the drivers of MMHg production in a coastal lagoon system. Many West Coast streams transition from estuarine to lagoon conditions in the dry season when a sand berm develops at the stream mouth, restricting surface water exchange with the ocean. Because lagoons accumulate nutrients from their upstream watershed they are susceptible to eutrophication, which can promote the growth of anaerobic bacteria. In nearshore settings, these bacteria are primarily responsible for producing MMHg, a bioaccumulative neurotoxin. We found that MMHg concentrations in lagoon water (1 - 5 pM) were higher than in groundwater (0.2 - 1 pM) and coastal seawater (0.1 - 0.6 pM). Groundwater depth profiles combined with subsurface resistivity images suggest MMHg in lagoon water was transported through the sand berm to adjacent seawater. MMHg in seawater and groundwater followed similar trends, providing additional evidence of groundwater-surface water interaction. MMHg in groundwater directly below the lagoon was consistently higher where dissolved oxygen and NO3- decreased, implying MMHg production by anaerobic bacteria. Over a ~7-hour period we observed a 0.6 pM decrease in groundwater MMHg (1 to 0.4 pM) that coincided with a decrease in water temperature (16.5 to 13 °C). We hypothesize that microbial activity, and consequently MMHg production, were enhanced in warmer water. Because coastal lagoons support intricate food webs and serve as nurseries for a variety of organisms, processes that influence mercury speciation and transport in these ecosystems may have a disproportionate impact on nearshore mercury biogeochemical cycling.

  19. Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

    OpenAIRE

    Ganot, Y.; Ganot, Y.; Holtzman, R.; Weisbrod, N.; Nitzan, I.; Katz, Y.; Kurtzman, D.

    2017-01-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil senso...

  20. Nitrogen fate in a subtropical mangrove swamp: Potential association with seawater-groundwater exchange.

    Science.gov (United States)

    Xiao, Kai; Wu, Jiapeng; Li, Hailong; Hong, Yiguo; Wilson, Alicia M; Jiao, Jiu Jimmy; Shananan, Meghan

    2018-04-18

    Coastal mangrove swamps play an important role in nutrient cycling at the land-ocean boundary. However, little is known about the role of periodic seawater-groundwater exchange in the nitrogen cycling processes. Seawater-groundwater exchange rates and inorganic nitrogen concentrations were investigated along a shore-perpendicular intertidal transect in Daya Bay, China. The intertidal transect comprises three hydrologic subzones (tidal creek, mangrove and bare mudflat zones), each with different physicochemical characteristics. Salinity and hydraulic head measurements taken along the transect were used to estimate the exchange rates between seawater and groundwater over a spring-neap tidal cycle. Results showed that the maximum seawater-groundwater exchange occurred within the tidal creek zone, which facilitated high-oxygen seawater infiltration and subsequent nitrification. In contrast, the lowest exchange rate found in the mangrove zone caused over-loading of organic matter and longer groundwater residence times. This created an anoxic environment conducive to nitrogen loss through the anammox and denitrification processes. Potential oxidation rates of ammonia and nitrite were measured by the rapid and high-throughput method and rates of denitrification and anammox were measured by the modified membrane inlet mass spectrometry (MIMS) with isotope pairing, respectively. In the whole transect, denitrification accounted for 90% of the total nitrogen loss, and anammox accounted for the remaining 10%. The average nitrogen removal rate was about 2.07g per day per cubic meter of mangrove sediments. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Distributed Memory Parallel Computing with SEAWAT

    Science.gov (United States)

    Verkaik, J.; Huizer, S.; van Engelen, J.; Oude Essink, G.; Ram, R.; Vuik, K.

    2017-12-01

    Fresh groundwater reserves in coastal aquifers are threatened by sea-level rise, extreme weather conditions, increasing urbanization and associated groundwater extraction rates. To counteract these threats, accurate high-resolution numerical models are required to optimize the management of these precious reserves. The major model drawbacks are long run times and large memory requirements, limiting the predictive power of these models. Distributed memory parallel computing is an efficient technique for reducing run times and memory requirements, where the problem is divided over multiple processor cores. A new Parallel Krylov Solver (PKS) for SEAWAT is presented. PKS has recently been applied to MODFLOW and includes Conjugate Gradient (CG) and Biconjugate Gradient Stabilized (BiCGSTAB) linear accelerators. Both accelerators are preconditioned by an overlapping additive Schwarz preconditioner in a way that: a) subdomains are partitioned using Recursive Coordinate Bisection (RCB) load balancing, b) each subdomain uses local memory only and communicates with other subdomains by Message Passing Interface (MPI) within the linear accelerator, c) it is fully integrated in SEAWAT. Within SEAWAT, the PKS-CG solver replaces the Preconditioned Conjugate Gradient (PCG) solver for solving the variable-density groundwater flow equation and the PKS-BiCGSTAB solver replaces the Generalized Conjugate Gradient (GCG) solver for solving the advection-diffusion equation. PKS supports the third-order Total Variation Diminishing (TVD) scheme for computing advection. Benchmarks were performed on the Dutch national supercomputer (https://userinfo.surfsara.nl/systems/cartesius) using up to 128 cores, for a synthetic 3D Henry model (100 million cells) and the real-life Sand Engine model ( 10 million cells). The Sand Engine model was used to investigate the potential effect of the long-term morphological evolution of a large sand replenishment and climate change on fresh groundwater resources

  2. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater

    OpenAIRE

    Ganot, Yonatan; Holtzman, Ran; Weisbrod, Noam; Nitzan, Ido; Katz, Yoram; Kurtzman, Daniel

    2016-01-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors and observation...

  3. Uranium from seawater

    International Nuclear Information System (INIS)

    Gregg, D.; Folkendt, M.

    1982-01-01

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10 5 , which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10 3 in seawater instead of the reported values of 10 5 . However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10 5 in fresh water. However, the system was not tested in seawater

  4. Summary of other human activities in the coastal and marine environment

    CSIR Research Space (South Africa)

    Celliers, Louis

    2015-01-01

    Full Text Available The Western Indian Ocean (WIO) offers a wealth of opportunity for the profitable and beneficial use of coastal and marine resources – a prospect for a true ocean economy. These benefits are derived from a range of human activities in the coastal...

  5. Post-Mesozoic Rapid Increase of Seawater Mg/Ca due to Enhanced Mantle-Seawater Interaction

    Science.gov (United States)

    Ligi, Marco; Bonatti, Enrico; Cuffaro, Marco; Brunelli, Daniele

    2013-01-01

    The seawater Mg/Ca ratio increased significantly from ~ 80 Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ocean occur in fast spreading, East Pacific Rise-type ridges. The Mesozoic Pangean superocean implies a hot fast spreading ridge system. This prevented peridotite-seawater interaction and Mg release to the Mesozoic ocean, but favored hydrothermal Mg capture and Ca release by the basaltic crust, resulting in a low seawater Mg/Ca ratio. Continent dispersal and development of slow spreading ridges allowed Mg release to the ocean by peridotite-seawater reactions, contributing to the increase of the Mg/Ca ratio of post-Mesozoic seawater. PMID:24067442

  6. Marshes on the Move: Testing effects of seawater intrusion on ...

    Science.gov (United States)

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress tolerance and interspecific interactions. As seawater inundates progressively higher marsh elevations, shifts in marsh vegetation communities landward may herald salt marsh “migration”, which could allow continuity of marsh function and ecosystem service provision. To elucidate possible effects of seawater intrusion on marsh-upland edge plant communities, a space-for-time approach was replicated at two Rhode Island salt marshes. At each site, peat blocks (0.5 m x 0.5 m x 0.5 m, n=6) with intact upland-marsh edge vegetation were transplanted downslope into the regularly-inundated mid-marsh. Procedural controls (n=3) were established at each elevation by removing and replacing peat blocks, and natural controls (n=3) consisted of undisturbed plots. During peak productivity, each plot was assessed for species composition, percent cover and average height. Results demonstrate stunting of marsh-upland edge vegetation in response to increased inundation, and the beginnings of colonization of the transplanted plots by salt marsh species. The extent of colonization differed between the two sites, suggesting that site-specific factors govern vegetation responses to increased inundation.

  7. Behaviors and chemical forms of radionuclides in seawater

    International Nuclear Information System (INIS)

    Honda, Yoshihide

    1981-01-01

    Although the radionuclides introduced into the marine environment from various sources and routes are finally distributed among the components of the marine ecosystem, the residence time is one of the most useful measures of the reactivity of an element in the oceanic chemical system. Heavy metals such as Mn, Fe, Co and Zn which have shorter residence times, reveal more complicated behaviours in relation to marine radioecological interest than alkaline earth element such as Sr which has a longer residence time. The possible physico-chemical forms of radionuclides in the oceans are usually classified into three categories, that is, species in true solution, colloidal species, and particulate forms. The modeling to study the dispersion of radionuclides introduced into the marine environment can be approached with the aid of the knowledge of behaviors of their stable counterparts in seawater. The different physico-chemical forms between stable and radioactive nuclides in seawater may cause different biological concentration of the element. To realize the chemical speciation of radionuclides in the marine environment, it is also important in thermodynamical calculation to consider heterogeneous interfaces where cause raising the concentration of reactants in seawater, especially in the coastal waters. In the discussion on the primary factors that can affect the elemental distribution in the marine environment, primary productivity and bacterial activity are emphasized for the transformation of physicochemical states of radionuclides in the marine environment. Finally, the radioecological differences between radiocobalt in organic complexed and ionic forms were demonstrated in the experiments on the uptake and elimination of radiocobalt by mussels. (J.P.N.)

  8. Personal care products and steroid hormones in the Antarctic coastal environment associated with two Antarctic research stations, McMurdo Station and Scott Base.

    Science.gov (United States)

    Emnet, Philipp; Gaw, Sally; Northcott, Grant; Storey, Bryan; Graham, Lisa

    2015-01-01

    Pharmaceutical and personal care products (PPCPs) are a major source of micropollutants to the aquatic environment. Despite intense research on the fate and effects of PPCPs in temperate climates, there is a paucity of data on their presence in polar environments. This study reports the presence of selected PPCPs in sewage effluents from two Antarctic research stations, the adjacent coastal seawater, sea ice, and biota. Sewage effluents contained bisphenol-A, ethinylestradiol, estrone, methyl triclosan, octylphenol, triclosan, and three UV-filters. The maximum sewage effluent concentrations of 4-methyl-benzylidene camphor, benzophenone-1, estrone, ethinylestradiol, and octylphenol exceeded concentrations previously reported. Coastal seawaters contained bisphenol-A, octylphenol, triclosan, three paraben preservatives, and four UV-filters. The sea ice contained a similar range and concentration of PPCPs as the seawater. Benzophenone-3 (preferential accumulation in clams), estradiol, ethinylestradiol, methyl paraben (preferential accumulation in fish, with concentrations correlating negatively with fillet size), octylphenol, and propyl paraben were detected in biota samples. PPCPs were detected in seawater and biota at distances up to 25 km from the research stations WWTP discharges. Sewage effluent discharges and disposal of raw human waste through sea ice cracks have been identified as sources of PPCPs to Antarctic coastal environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Climate change and Mediterranean coastal karst aquifers: the case of Salento (southern Italy)

    OpenAIRE

    Polemio, M.; Romanazzi, A.

    2014-01-01

    Second half of the 20th century was characterized by an increase of groundwater discharge. Numerous aquifers are overexploited in the world and in particular in the Mediterranean area. Problems tie to overexploitation, as piezometric decline and increase of seawater intrusion, are amplified in karst coastal aquifers where the whole effect could be a groundwater quality and quantity degradation. Focusing on Mediterranean countries, most part of coastal aquifers of Spain, France, Portugal, S...

  10. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.

    2013-02-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.

  11. Nature/culture/seawater.

    Science.gov (United States)

    Helmreich, Stefan

    2011-01-01

    Seawater has occupied an ambiguous place in anthropological categories of "nature" and "culture." Seawater as nature appears as potentiality of form and uncontainable flux; it moves faster than culture - with culture frequently figured through land-based metaphors - even as culture seeks to channel water's (nature's) flow. Seawater as culture manifests as a medium of pleasure, sustenance, travel, disaster. I argue that, although seawater's qualities in early anthropology were portrayed impressionistically, today technical, scientific descriptions of water's form prevail. For example, processes of globalization - which may also be called "oceanization" - are often described as "currents," "flows," and "circulations." Examining sea-set ethnography, maritime anthropologies, and contemporary social theory, I propose that seawater has operated as a “theory machine” for generating insights about human cultural organization. I develop this argument with ethnography from the Sargasso Sea and in the Sea Islands. I conclude with a critique of appeals to water's form in social theory.

  12. Variation pattern of terrestrial antibiotic resistances and bacterial communities in seawater/freshwater mixed microcosms.

    Science.gov (United States)

    Zhang, Kai; Zhang, Ying; Xin, Rui; Zhang, Yongpeng; Niu, Zhiguang

    2018-06-01

    The ocean is the final place where pollutants generated by human activities are deposited. As a result, the long-range transport of the ocean can facilitate the diffusion of terrestrial contaminants, including ARGs. However, to our knowledge, little research has been devoted to discussing the content change of terrestrial ARGs and the reason for the change in coastal area. This study established various microcosms, in which seawater and freshwater were mixed at different ratio to simulate the environmental conditions of different regions in coastal areas. Four ARGs were quantified, and 16S pyrosequencing was conducted. The results showed that the terrestrial ARGs influenced the concentration of the corresponding ARGs in coastal areas, and the content change pattern of each ARG was distinct. The influence of salinity on the ARG content was limited in most cases. Moreover, most dominant bacteria from freshwater had significant positive correlation (p prompt the growth of some bacteria (include potential hosts of ARGs) in coastal area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Materials resistant to seawater

    International Nuclear Information System (INIS)

    Lunde, L.

    1986-03-01

    The report is a summary of the topics discussed at a two-day seminar at Institute for Energy Technology, Kjeller in August 1985. Experience with seawater corrosion in Nordic power reactor plants was discussed. There was also input from Danish experience with seawater corrosion in coal fired power plants. The following topics were dealt with: Experience in seawater cooling system materials, chlorination of seawater systems, and accelerated laboratory tests for stainless steels

  14. Comparison of groundwater flow in Southern California coastal aquifers

    Science.gov (United States)

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers.

  15. Monitoring and Management of Karstic Coastal Groundwater in a Changing Environment (Southern Italy: A Review of a Regional Experience

    Directory of Open Access Journals (Sweden)

    Maurizio Polemio

    2016-04-01

    Full Text Available The population concentration in coastal areas and the increase of groundwater discharge in combination with the peculiarities of karstic coastal aquifers constitute a huge worldwide problem, which is particularly relevant for coastal aquifers of the Mediterranean basin. This paper offers a review of scientific activities realized to pursue the optimal utilization of Apulian coastal groundwater. Apulia, with a coastline extending for over 800 km, is the Italian region with the largest coastal karst aquifers. Apulian aquifers have suffered both in terms of water quality and quantity. Some regional regulations were implemented from the 1970s with the purpose of controlling the number of wells, well locations, and well discharge. The practical effects of these management criteria, the temporal and spatial trend of recharge, groundwater quality, and seawater intrusion effects are discussed based on long-term monitoring. The efficacy of existing management tools and the development of predictive scenarios to identify the best way to reconcile irrigation and demands for high-quality drinking water have been pursued in a selected area. The Salento peninsula was selected as the Apulian aquifer portion exposed to the highest risk of quality degradation due to seawater intrusion. The capability of large-scale numerical models in groundwater management was tested, particularly for achieving forecast scenarios to evaluate the impacts of climate change on groundwater resources. The results show qualitative and quantitative groundwater trends from 1930 to 2060 and emphasize the substantial decrease of the piezometric level and a serious worsening of groundwater salinization due to seawater intrusion.

  16. Land-Sourced Pollution with an Emphasis on Domestic Sewage: Lessons from the Caribbean and Implications for Coastal Development on Indian Ocean and Pacific Coral Reefs

    Directory of Open Access Journals (Sweden)

    Andre DeGeorges

    2010-09-01

    Full Text Available This paper discusses land-sourced pollution with an emphasis on domestic sewage in the Caribbean in relation to similar issues in the Indian Ocean and Pacific. Starting on a large-scale in the 1980s, tropical Atlantic coastlines of Florida and Caribbean islands were over-developed to the point that traditional sewage treatment and disposal were inadequate to protect fragile coral reefs from eutrophication by land-sourced nutrient pollution. This pollution caused both ecological and public health problems. Coral reefs were smothered by macro-algae and died, becoming rapidly transformed into weedy algal lawns, which resulted in beach erosion, and loss of habitat that added to fisheries collapse previously caused by over-fishing. Barbados was one of the first countries to recognize this problem and to begin implementation of effective solutions. Eastern Africa, the Indian Ocean Islands, Pacific Islands, and South East Asia, are now starting to develop their coastlines for ecotourism, like the Caribbean was in the 1970s. Tourism is an important and increasing component of the economies of most tropical coastal areas. There are important lessons to be learned from this Caribbean experience for coastal zone planners, developers, engineers, coastal communities and decision makers in other parts of the world to assure that history does not repeat itself. Coral reef die-off from land-sourced pollution has been eclipsed as an issue since the ocean warming events of 1998, linked to global warming. Addressing ocean warming will take considerable international cooperation, but much of the land-sourced pollution issue, especially sewage, can be dealt with on a watershed by watershed basis by Indian Ocean and Pacific countries. Failure to solve this critical issue can adversely impact both coral reef and public health with dire economic consequences, and will prevent coral reef recovery from extreme high temperature events. Sewage treatment, disposal options

  17. Osmotically driven membrane process for the management of urban runoff in coastal regions

    KAUST Repository

    Li, Zhenyu; Valladares Linares, Rodrigo; Abu-Ghdaib, Muhannad; Zhan, Tong; Yangali-Quintanilla, Victor; Amy, Gary L.

    2014-01-01

    An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier

  18. Radioactivity in the Exclusive Economic Zone of east coast Peninsular Malaysia. Distribution trends of 137Cs in surface seawater

    International Nuclear Information System (INIS)

    Zaharudin Ahmad; Zal U'yun Wan Mahmood; Hidayah Shahar; Mei Wo Yii; Ahmad Sanadi Abu Bakar

    2011-01-01

    Large volumes of surface seawater samples were collected from thirty locations in the Exclusive Economic Zone (EEZ) of the east coast Peninsular Malaysia on June 2008 to study the activity concentrations of 137 Cs. The results will serve as additional information to the existing baseline data and is very useful for monitoring fresh input of anthropogenic radionuclide into Malaysian marine environment. In this study, the activity concentrations of 137 Cs were determined using co-precipitation technique, followed by Gamma Spectrometry measurement. The mean activity concentration of 137 Cs ranged between 3.40 and 5.89 Bq/m 3 . Higher activity concentrations were observed at the coastal and towards the south of Peninsular Malaysia and were aligned with the high turbidity. These may due to the rapid diffusion of 137 Cs from suspended particulates and fine sediments into surface seawater. The activity concentrations of 137 Cs observed in this study were slightly higher than the concentrations reported in seawater at the Straits of Malacca, Vietnam and Philippines. This might be because the study area received more input of 137 Cs that originated from global fallout and then deposited on land which later being transported subsequently into the coastal zone due to siltation and erosion processes. It could also be attributed to the intrusion of river waters containing higher concentrations of 137 Cs. (author)

  19. Butterfly valves for seawater

    International Nuclear Information System (INIS)

    Yamanaka, Katsuto

    1991-01-01

    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  20. Osmotically driven membrane process for the management of urban runoff in coastal regions

    KAUST Repository

    Li, Zhenyu

    2014-01-01

    An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier to reject runoff-derived contaminants. The process was demonstrated by a lab scale testing using synthetic urban runoff (as the feed solution) and synthetic seawater (as the draw solution). The submerged forward osmosis process was conducted under neutral, acidic and natural organic matter fouling condition, respectively. Forward osmosis flux decline was mainly attributed to the dilution of seawater during a semi-batch process in lab scale testing. However, it is possible to minimize flux decrease by maintaining a constant salinity at the draw solution side. Various changes in urban runoff water quality, including acidic conditions (acid rain) and natural organic matter presence, did not show significant effects on the rejection of trace metals and phosphorus, but influenced salt leakage and the rejection of nitrate and total nitrogen. Rejection of trace metals varied from 98% to 100%, phosphorus varied from 97% to 100, nitrate varied from 52% to 94% and total nitrogen varied from 65% to 85% under different feed water conditions. The work described in this study contributes to an integrated system of urban runoff management, seawater desalination and possible power generation in coastal regions to achieve a sustainable solution to the water-energy nexus. © 2013 Elsevier Ltd.

  1. Osmotically driven membrane process for the management of urban runoff in coastal regions.

    Science.gov (United States)

    Li, Zhenyu; Valladares Linares, Rodrigo; Abu-Ghdaib, Muhannad; Zhan, Tong; Yangali-Quintanilla, Victor; Amy, Gary

    2014-01-01

    An osmotic detention pond was proposed for the management of urban runoff in coastal regions. Forward osmosis was employed as a bridge to utilize natural osmotic energy from seawater for concentrating and reusing urban runoff water, and as a barrier to reject runoff-derived contaminants. The process was demonstrated by a lab scale testing using synthetic urban runoff (as the feed solution) and synthetic seawater (as the draw solution). The submerged forward osmosis process was conducted under neutral, acidic and natural organic matter fouling condition, respectively. Forward osmosis flux decline was mainly attributed to the dilution of seawater during a semi-batch process in lab scale testing. However, it is possible to minimize flux decrease by maintaining a constant salinity at the draw solution side. Various changes in urban runoff water quality, including acidic conditions (acid rain) and natural organic matter presence, did not show significant effects on the rejection of trace metals and phosphorus, but influenced salt leakage and the rejection of nitrate and total nitrogen. Rejection of trace metals varied from 98% to 100%, phosphorus varied from 97% to 100, nitrate varied from 52% to 94% and total nitrogen varied from 65% to 85% under different feed water conditions. The work described in this study contributes to an integrated system of urban runoff management, seawater desalination and possible power generation in coastal regions to achieve a sustainable solution to the water-energy nexus. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Long distance seawater intrusion through a karst conduit network in the Woodville Karst Plain, Florida

    Science.gov (United States)

    Xu, Zexuan; Bassett, Seth Willis; Hu, Bill; Dyer, Scott Barrett

    2016-08-01

    Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electrical conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 11 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This paper documents the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.

  3. Coastal aquifers: Scientific advances in the face of global environmental challenges

    Science.gov (United States)

    Post, Vincent E. A.; Werner, Adrian D.

    2017-08-01

    Coastal aquifers embody the subsurface transition between terrestrial and marine systems, and form the almost invisible pathway for tremendous volumes of freshwater that flow to the ocean. Changing conditions of the earth's landscapes and oceans can disrupt the fragile natural equilibrium between fresh and saltwater that exists in coastal zones. Among these, over-abstraction of groundwater is considered the leading man-made cause of seawater intrusion. Moreover, many of the world's largest urban settings, where sources of contamination are profuse, have been built over the freshwater in coastal aquifers. Thus, coastal aquifers are important receptors of human impacts to water on Earth (Michael et al., 2017). This Special Issue on 'Investigation and Management of Coastal Aquifers' contains current scientific advances on the topic, dealing with the storage and quality of water, affected by stressors ranging in scale from point source contamination to global climate change.

  4. Trace elements release from volcanic ash to seawater. Natural concentrations in Central Mediterranean sea

    Science.gov (United States)

    Randazzo, L. A.; Censi, P.; Saiano, F.; Zuddas, P.; Aricò, P.; Mazzola, S.

    2009-04-01

    Distributions and concentrations of many minor and trace elements in epicontinental basins, as Mediterranean Sea, are mainly driven to atmospheric fallout from surroundings. This mechanism supplies an estimated yearly flux of about 1000 kg km-2 of terrigenous matter of different nature on the whole Mediterranean basin. Dissolution of these materials and processes occurring at solid-liquid interface along the water column drive the distributions of many trace elements as V, Cr, Mn, Co, Cu, and Pb with contents ranging from pmol l-1 (Co, Cd, Pb) to nmol l-1 scale in Mediterranean seawater, with some local differences in the basin. The unwinding of an oceanographic cruise in the coastal waters of Ionian Sea during the Etna's eruptive activity in summer 2001 led to the almost unique chance to test the effects of large delivery of volcanic ash to a coastal sea water system through the analyses of distribution of selected trace elements along several seawater columns. The collection of these waters and their analyses about V, Cr, Mn, Co, Cu, and Pb contents evidenced trace element concentrations were always higher (about 1 order of magnitude at least) than those measured concentrations in the recent past in Mediterranean seawater, apart from Pb. Progressive increase of concentrations of some elements with depth, sometimes changing in a "conservative" behaviour without any clear reason and the observed higher concentrations required an investigation about interaction processes occurring at solid-liquid interface between volcanic ash and seawater along water columns. This investigation involving kinetic evaluation of trace element leaching to seawater, was carried out during a 6 months time period under laboratory conditions. X-ray investigations, SEM-EDS observations and analyses on freshly-erupted volcanic ash evidenced formation of alteration clay minerals onto glass fraction surfaces. Chemical analyses carried out on coexisting liquid phase demonstrated that trace

  5. Effect of seawater and high-temperature history on swelling characteristics of bentonite

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko

    2005-01-01

    In the case of construction of repository for nuclear waste near the coastal area, the effect of seawater on swelling characteristics of bentonite as an engineering as an engineering barrier should be considered. Effects of high-temperature history on swelling characteristics of bentonite should also be considered because nuclear waste generates heat. Thus, in this study, swelling characteristics of bentonite on the conditions of high temperature history and seawater are investigated. The results of this study imply that : (1) Swelling strain of sodium bentonite or transformed sodium bentonite decrease as the salinity of water increases, whereas those of calcium bentonite are not affected by salinity of the water. (2) Quantitative evaluation method for swelling strain and swelling pressure of several kinds of bentonites under brine is proposed. (3) Using distilled water, swelling strain and swelling pressure of sodium bentonite with high-temperature history is less than those without high-temperature history. (author)

  6. On the classification of seawater intrusion

    Science.gov (United States)

    Werner, Adrian D.

    2017-08-01

    Seawater intrusion (SWI) arising from aquifer depletion is often classified as ;active; or ;passive;, depending on whether seawater moves in the same direction as groundwater flow or not. However, recent studies have demonstrated that alternative forms of active SWI show distinctly different characteristics, to the degree that the term ;active SWI; may be misleading without additional qualification. In response, this article proposes to modify hydrogeology lexicon by defining and characterizing three classes of SWI, namely passive SWI, passive-active SWI and active SWI. The threshold parameter combinations for the onset of each form of SWI are developed using sharp-interface, steady-state analytical solutions. Numerical simulation is then applied to a hypothetical case study to test the developed theory and to provide additional insights into dispersive SWI behavior. The results indicate that the three classes of SWI are readily predictable, with the exception of active SWI occurring in the presence of distributed recharge. The key characteristics of each SWI class are described to distinguish their most defining features. For example, active SWI occurring in aquifers receiving distributed recharge only creates watertable salinization downstream of the groundwater mound and only where dispersion effects are significant. The revised classification of SWI proposed in this article, along with the analysis of thresholds and SWI characteristics, provides coastal aquifer custodians with an improved basis upon which to expect salinization mechanisms to impact freshwater availability following aquifer depletion.

  7. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved inorganic carbon (DIC) that is currently not accounted for

  8. SOME BIOLOGICAL ASPECTS OF SCALLOPED HAMMERHEAD SHARKS (Sphyrna lewini Griffith & Smith, 1834 CAUGHT FROM COASTAL FISHERIES IN THE EASTERN INDIAN OCEAN

    Directory of Open Access Journals (Sweden)

    Umi Chodrijah

    2015-12-01

    Full Text Available Indonesia has the largest chondrichthyan fishery in the world, with a reported of 105,000 and 118,000 tonnes landed in 2002 and 2003 respectively. Scalloped hammerhead shark was either targeted or by-catch from this fishery, mostly for its fins. Despite of the growing concern around the world, the availability of biological data of this species, especially in the Eastern Indian Ocean is still lacking. The objectives of this paper are to present some biological information (size composition and sex ratio of the scalloped hammerhead, from coastal fisheries in Eastern Indian Ocean. The data used for the analysis comprised of two components, i.e. survey data in 2010 (February, March, June, August, October and December and data from daily monitoring shark landing in 2013 (January to December. Substantially lower mean size, more immature sharks and more frequent of female caught over years showed that scalloped hammerhead shark in the Eastern Indian Ocean are facing intensive fishing pressure which could lead to overfishing. This could harm the sustainability of scalloped hammerhead shark resource in the long run. The relationship between clasper length and total length was positively correlated where every 5 cmTL increment on clasper length adding 51 cmTL on total length.

  9. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary

    Science.gov (United States)

    Langevin, C.; Swain, E.; Wolfert, M.

    2005-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. A sequentially coupled time-lagged approach was implemented, based on a variable-density form of Darcy's Law, to couple the surface and subsurface systems. The integrated code also represents the advective transport of salt mass between the surface and subsurface. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Model results confirm several important observations about the coastal wetland: (1) the coastal embankment separating the wetland from the estuary is overtopped only during tropical storms, (2) leakage between the surface and subsurface is locally important in the wetland, but submarine ground-water discharge does not contribute large quantities of freshwater to the estuary, and (3) coastal wetland salinities increase to near seawater values during the dry season, and the wetland flushes each year with the onset of the wet season. ?? 2005 Elsevier B.V. All rights reserved.

  10. Towards a quality-controlled and accessible Pitzer model for seawater and related systems

    Directory of Open Access Journals (Sweden)

    David Turner

    2016-09-01

    Full Text Available We elaborate the need for a quality-controlled chemical speciation model for seawater and related natural waters, work which forms the major focus of SCOR Working Group 145. Model development is based on Pitzer equations for the seawater electrolyte and trace components. These equations can be used to calculate activities of dissolved ions and molecules and, in combination with thermodynamic equilibrium constants, chemical speciation. The major tasks to be addressed are ensuring internal consistency of the Pitzer model parameters (expressing the interactions between pairs and triplets of species, which ultimately determines the calculated activities, assessing uncertainties, and identifying important data gaps that should be addressed by new measurements. It is recognised that natural organic matter plays an important role in many aquatic ecosystems, and options for including this material in a Pitzer-based model are discussed. The process of model development begins with the core components which include the seawater electrolyte and the weak acids controlling pH. This core model can then be expanded by incorporating additional chemical components, changing the standard seawater composition and/or broadening the range of temperature and pressure, without compromising its validity. Seven important areas of application are identified: open ocean acidification; micro-nutrient biogeochemistry and geochemical tracers; micro-nutrient behaviour in laboratory studies; water quality in coastal and estuarine waters; cycling of nutrients and trace metals in pore waters; chemical equilibria in hydrothermal systems; brines and salt lakes.

  11. Seawater desalination as an option to alleviate water scarcity in South Africa: the need for a strategic approach to planning and environmental decision-making

    CSIR Research Space (South Africa)

    Schreiner, GO

    2014-04-01

    Full Text Available In the last decade, seawater reverse osmosis (SWRO) has come to be seen by policy-makers as a novel technology that will significantly advance water security in South African coastal regions. Water purveyors, from the private sector, local...

  12. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data

    International Nuclear Information System (INIS)

    Koepnick, R.B.; Burke, W.H.; Denison, R.E.; Hetherington, E.A.; Nelson, H.F.; Otto, J.B.; Waite, L.E.

    1985-01-01

    We present the data used to construct the Cenozoic and Cretaceous portion of the Phanerozoic curve of seawater 87 Sr/ 86 Sr that had been given in summary form by W.H. Burke and coworkers. All Cenozoic samples (128) and 22 Cretaceous samples are foram-nannofossil oozes and limestones from DSDP cores distributed among 13 sites in the Atlantic, Pacific and Indian Oceans, and the Caribbean Sea. Non-DSDP Cretaceous samples (126) include limestone, anhydrite and phosphate samples from North America, Europe and Asia. Determination of the 87 Sr/ 86 Sr value of seawater at particular times in the past is based on comparison of ratios derived from coeval marine samples from widely separated geographic areas. The general configuration of the Cenozoic and Cretaceous curve appears to be strongly influenced by the history of plate interactions and sea-floor spreading. Specific rises and falls in the 87 Sr/ 86 Sr of seawater, however, may be caused by a variety of factors such as variation in lithologic composition of the crust exposed to weathering, configuration and topographic relief of continents, volcanic activity, rate of sea-floor spreading, extent of continental inundation by epeiric seas, and variations in both climate and paleo-oceanographic conditions. Many or all of these factors are probably related to global tectonic processes, yet their combined effect on the temporal variation of seawater 87 Sr/ 86 Sr can complicate a direct plate-tectonic interpretation for portions of the seawater curve. (Auth.)

  13. Hydrochemistry and Isotope Hydrology for Groundwater Sustainability of the Coastal Multilayered Aquifer System (Zhanjiang, China

    Directory of Open Access Journals (Sweden)

    Pengpeng Zhou

    2017-01-01

    Full Text Available Groundwater sustainability has become a critical issue for Zhanjiang (China because of serious groundwater level drawdown induced by overexploitation of its coastal multilayered aquifer system. It is necessary to understand the origins, material sources, hydrochemical processes, and dynamics of the coastal groundwater in Zhanjiang to support its sustainable management. To this end, an integrated analysis of hydrochemical and isotopic data of 95 groundwater samples was conducted. Hydrochemical analysis shows that coastal groundwater is fresh; however, relatively high levels of Cl−, Mg2+, and total dissolved solid (TDS imply slight seawater mixing with coastal unconfined groundwater. Stable isotopes (δ18O and δ2H values reveal the recharge sources of groundwater in the multilayered aquifer system. The unconfined groundwater originates from local modern precipitation; the confined groundwater in mainland originates from modern precipitation in northwestern mountain area, and the confined groundwater in Donghai and Leizhou is sourced from rainfall recharge during an older period with a colder climate. Ionic relations demonstrate that silicate weathering, carbonate dissolutions, and cation exchange are the primary processes controlling the groundwater chemical composition. Declining trends of groundwater level and increasing trends of TDS of the confined groundwater in islands reveal the landward extending tendency of the freshwater-seawater mixing zone.

  14. Discharge of perfluorinated compounds from rivers and their influence on the coastal seas of Hyogo prefecture, Japan

    International Nuclear Information System (INIS)

    Takemine, Shusuke; Matsumura, Chisato; Yamamoto, Katsuya; Suzuki, Motoharu; Tsurukawa, Masahiro; Imaishi, Hiromasa; Nakano, Takeshi; Kondo, Akira

    2014-01-01

    The aim of this study was to investigate 12 perfluorinated compounds (PFCs) including perfluorinated carboxylates (C4–C12) and perfluorinated alkyl sulfonates (C4, C6, and C8) in river and seawater samples to determine contamination levels in the aquatic environment of Hyogo prefecture, Japan. High levels of perfluorohexanoic acid (PFHxA; 2300–16,000 ng/L) were detected in the Samondogawa River at Tatsumi Bridge downstream of a PFC production facility; this location also had the highest mass flow rate of PFCs (3900–29,000 kg/y). Widespread contamination of coastal waters was confirmed with PFHxA as the dominant compound. Perfluorooctanoic acid was also prevalent in coastal waters. The concentration of PFHxA in coastal seawater and the distance from the mouth of the Samondogawa River were inversely related. This discharge of high concentrations of PFHxA from the Samondogawa River may have affected concentrations of PFCs in Osaka Bay. -- Highlights: • High perfluorohexanoic acid concentration was detected in the Samondogawa River. • The mass flow rate of PFCs in this river section was 3900–29,000 kg/y. • Perfluorohexanoic acid was the dominant compound at all seawater sampling sites. • Perfluorohexanoic acid from the Samondogawa River may have affected Osaka Bay. -- Discharge of perfluorohexanoic acid from the Samondogawa River may have affected Osaka Bay

  15. Respiratory Problems Associated with Surfing in Coastal Waters

    OpenAIRE

    O Halloran, C; Silver, MW; Lahiff, M; Colford, J

    2017-01-01

    © 2016, International Association for Ecology and Health. A pilot project was conducted to examine the health status and possible adverse health effects associated with seawater exposure (microbial water-quality indicators and phytoplankton abundance and their toxins) of surfers in Monterey Bay, Central California coastal waters. Forty-eight surfers enrolled in the study and completed an initial health background survey and weekly health surveys online using Survey Monkey. Descriptive statist...

  16. Distribution of heavy metals (Cu and Fe in sea water of Gresik coastal area

    Directory of Open Access Journals (Sweden)

    Nindyapuspa Ayu

    2018-01-01

    Full Text Available The improvement of industrial activities at Gresik Regency will increase the heavy metals concentration on the seawater at Gresik Regency. Therefore, the research of Fe and Cr distribution on the seawater at Gresik Regency has been conducted. Methods that were used is sampling by Nansen water sampler at three sampling points (housing in northern coastal Gresik Regency, Maspion V Industrial Estate, and Petrokimia Port. Samples were analyzed by Atomic Absorption Spectrophotometry (AAS to determine the concentration of heavy metals. The results showed that the highest Fe and Cr concentration are located at Maspion V Industrial Estate (0.452 mg/L and 0.081 mg/L respectively. Meanwhile, Fe and Cr concentrations at the housing in northern coastal are (0.408 mg/L and 0.081 mg/L respectively. The concentration of Fe and Cr at Petrokimia Port are 0.174 mg/L and 0.021 mg/L respectively.

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The power of the cyclone waves which hit in the eastern Indian coastal region is also analysed and it reveals that the coastal region which lies on the right side of the cyclone track receives high amount wave energy throughout the cyclone period. The study also says that the abnormal waves mostly present on the right side ...

  18. Coastal circulation in the North Indian Ocean: Coastal segment (14,S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Gouveia, A.D.

    and as a result the circulation shows a distinct seasonal character. The nature of winds, precipitation, runoff, and tides in the region are summarized. Characteristics of large-scale near surface circulation and of water masses in the North Indian Basin...

  19. The clam (Chamelea gallina: evaluation of the effects of solids suspended in seawater on bivalve molluscs

    Directory of Open Access Journals (Sweden)

    Salvatora Angela Angioni

    2010-03-01

    Full Text Available The study was designed to evaluate the effects of solids in suspension in seawater on clams (Chamelea gallina. The aim was to investigate the possible correlation between the widespread deaths of clams in the coastal waters of the central and northern Adriatic in the last five years and increased concentrations of solids in suspension. The research involved conducting 96-hour tests on clams farmed in aquariums containing filtered seawater. The tests were preceded by a 7-day adaptation stage to allow the molluscs to acclimatise. During this period, the clams were fed on unicellular seaweed (Dunaliella tertiolecta. The molluscs were exposed to particles of solids in suspension consisting of pools of silica gel (SiO2 granules of various sizes, similar to those constituting silt, whose presence and suspension in the sea considerably increase after heavy rain and heavy seas. The study established that the number of deaths caused by solids suspended in seawater at the concentrations used in the tests was not statistically significant.

  20. Post-Mesozoic Rapid Increase of Seawater Mg/Ca due to Enhanced Mantle-Seawater Interaction

    OpenAIRE

    Marco Ligi; Enrico Bonatti; Marco Cuffaro; Daniele Brunelli

    2013-01-01

    The seawater Mg/Ca ratio increased significantly from ~ 80?Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ...

  1. Effect of organic on chemical oxidation for biofouling control in pilot-scale seawater cooling towers

    KAUST Repository

    Al-Bloushi, Mohammed

    2017-09-14

    Due to the scarcity of potable water in many regions of the world, the demand for seawater as an alternative evaporative cooling medium in cooling towers (CTs) has increased significantly in recent years. Seawater make-up in CTs is deemed the most feasible because of its unlimited supply in the coastal areas of Gulf and Red Sea. However, the seawater CTs have higher challenges greatly mitigating their performances because it is an open system where biofouling and bio-corrosion occurring within the fillers and piping of recirculation systems. Their pilot-scale CTs were constructed to assess the performance of three types of oxidizing biocides or oxidants, namely chlorine, chlorine dioxide (ClO2) and ozone, for biofouling control. The test results showed that the addition of organic (5mg/L of methanol (MeOH)) increased the bacterial growth in CT basin. All oxidants were effective in keeping the microbial growth to the minimum. Oxidation increased the oxidation-reduction potential (ORP) level from 270 to 600mV. Total residual oxidant (TRO) was increased with oxidation but it was slightly increased with organic addition. Other parameters including pH, dissolved oxygen (DO), conductivity levels were not changed. However, higher formation of disinfection by-products (DBPs) was detected with chlorination and ozonation. This indicates the organic level should be limited in the oxidation for biofouling control in seawater CTs.

  2. Effect of organic on chemical oxidation for biofouling control in pilot-scale seawater cooling towers

    KAUST Repository

    Al-Bloushi, Mohammed; Saththasivam, Jayaprakash; Jeong, Sanghyun; Amy, Gary L.; Leiknes, TorOve

    2017-01-01

    Due to the scarcity of potable water in many regions of the world, the demand for seawater as an alternative evaporative cooling medium in cooling towers (CTs) has increased significantly in recent years. Seawater make-up in CTs is deemed the most feasible because of its unlimited supply in the coastal areas of Gulf and Red Sea. However, the seawater CTs have higher challenges greatly mitigating their performances because it is an open system where biofouling and bio-corrosion occurring within the fillers and piping of recirculation systems. Their pilot-scale CTs were constructed to assess the performance of three types of oxidizing biocides or oxidants, namely chlorine, chlorine dioxide (ClO2) and ozone, for biofouling control. The test results showed that the addition of organic (5mg/L of methanol (MeOH)) increased the bacterial growth in CT basin. All oxidants were effective in keeping the microbial growth to the minimum. Oxidation increased the oxidation-reduction potential (ORP) level from 270 to 600mV. Total residual oxidant (TRO) was increased with oxidation but it was slightly increased with organic addition. Other parameters including pH, dissolved oxygen (DO), conductivity levels were not changed. However, higher formation of disinfection by-products (DBPs) was detected with chlorination and ozonation. This indicates the organic level should be limited in the oxidation for biofouling control in seawater CTs.

  3. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Prevalence of microplastics in Singapore's coastal marine environment

    International Nuclear Information System (INIS)

    Ng, K.L.; Obbard, J.P. . E-mail esejpo@nus.edu.sg

    2006-01-01

    Microplastics have been recently identified as marine pollutants of significant concern due to their persistence, ubiquity and potential to act as vectors for the transfer and exposure of persistent organic pollutants to marine organisms. This study documents, for the first time, the presence and abundance of microplastics (>1.6 μm) in Singapore's coastal environment. An optimized sampling protocol for the collection and analysis of microplastics was developed, and beach sediments and seawater (surface microlayer and subsurface layer) samples were collected from nine different locations around the coastline. Low density microplastics were separated from sediments by flotation and polymer types were identified using Fourier transform infrared (FTIR) spectrometry. Synthetic polymer microplastics identified in beach sediments included polyethylene, polypropylene, polystyrene, nylon, polyvinyl alcohol and acrylonitrile butadiene styrene. Microplastics were detected in samples from four out of seven beach environments, with the greatest quantity found in sediments from two popular beaches in the eastern part of Singapore. Polyethylene, polypropylene and polystyrene microplastics were also found in the surface microlayer (50-60 μm) and subsurface layer (1 m) of coastal waters. The presence of microplastics in sediments and seawater is likely due to on-going waste disposal practices from industries and recreational activities, and discharge from shipping

  5. Control of pH of retained water in the coastal waste disposal site

    Directory of Open Access Journals (Sweden)

    Hem Ramrav

    2018-01-01

    Full Text Available After landfilling of wastes is completed, the stabilization of landfilled ground requires much time and cost. Therefore, this study aimed to control the pH of retained water in the coastal waste disposal sites during landfilling process, by conducting field surveys and laboratory experiments. In field surveys, we investigated the changes of retained water quality such as pH, salinity, and dissolved oxygen. The results show the pH of retained water has risen to about 10 when the volume of landfilled wastes reached about 25% of landfill capacity. In lowing the pH, we considered a low-cost method by pumping seawater from the adjacent sea into the landfill. The mechanism in this method is that, H+ dissociated from HCO3- in the fresh seawater react with OH- eluted from wastes would result in pH decrease. The laboratory experiments were conducted to verify the effect on pH change by adding fresh seawater to alkalized seawater. As a result, the effect of injecting fresh seawater into alkalized seawater with pH higher than 9 was confirmed. Therefore, this treatment method is suggested to enable the disposal sites to be used promptly after landfilling is completed, by adding fresh seawater to purify the retained water and waste at low cost during landfilling process.

  6. Umboniibacter roseus sp. nov., isolated from coastal seawater.

    Science.gov (United States)

    Sung, Hye-Ri; Kim, Mibang; Shin, Kee-Sun

    2015-11-01

    A Gram-reaction-negative, non-motile, strictly aerobic, dark pink-pigmented and rod-shaped bacterial isolate, designated 14-121-B13T, was isolated from surface seawater off the coast of the South Sea at Namhae-gun, Republic of Korea. Cells were catalase- and oxidase-positive and required NaCl for growth. Strain 14-121-B13T grew optimally at 30 °C, in the presence of 2 % (w/v) NaCl and at pH 7.5-8.0.Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain 14-121-B13T clustered with the type strain of Umboniibacter marinipuniceus, with which it exhibited 96.7 % sequence similarity. The DNA G+C content of strain 14-121-B13T was 48.9 mol%. The major cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The major respiratory quinone was ubiquinone Q-7 and the polar lipids detected in strain 14-121-B13T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid, unidentified phospholipids, unidentified aminophospholipids and unidentified lipids. Based on the phenotypic, chemotaxonomic and phylogenetic data presented, strain 14-121-B13T is considered to represent a novel species of the genus, Umboniibacter for which the name Umboniibacter roseus sp. nov. is proposed. The type strain is 14-121-B13T ( = DSM 29882T = KCTC 42467T).

  7. Skeletonema (Bacillariophyceae) in Indian waters: A reappraisal

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, R.K.; Sarno, D.; Kooistra, W.H.C.F.; DeCosta, P.M.; Anil, A.C.

    The planktonic diatom genus Skeletonema is common in Indian coastal waters. Recent taxonomic studies have uncovered high diversity in this genus, and it is expected that several species occur also in the highly diverse marine habitats along...

  8. Coastal biogeochemical processes in the north Indian Ocean (14, S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Narvekar, P.V.; Desa, E.

    of the region are also shown with the numbers denoting the annual runoff in 10" m3. Due to the proximity to landmasses, the North Indian Ocean is probably af- fected by processes originating at the land-ocean boundary more than any other region. Lndeed... IN TIiE NORTH INDIAN OCEAN tion of contributions by the Indian oceanographic community, most of this infor- mation has been generated by scientists from countries outside this region under international efforts that started with the John Murray...

  9. 'Rare biosphere' bacteria as key phenanthrene degraders in coastal seawaters.

    Science.gov (United States)

    Sauret, Caroline; Séverin, Tatiana; Vétion, Gilles; Guigue, Catherine; Goutx, Madeleine; Pujo-Pay, Mireille; Conan, Pascal; Fagervold, Sonja K; Ghiglione, Jean-François

    2014-11-01

    By coupling DNA-SIP and pyrosequencing approaches, we identified Cycloclasticus sp. as a keystone degrader of polycyclic aromatic hydrocarbons (PAH) despite being a member of the 'rare biosphere' in NW Mediterranean seawaters. We discovered novel PAH-degrading bacteria (Oceanibaculum sp., Sneathiella sp.) and we identified other groups already known to possess this function (Alteromonas sp., Paracoccus sp.). Together with Cycloclasticus sp., these groups contributed to potential in situ phenanthrene degradation at a rate >0.5 mg l(-1) day(-1), sufficient to account for a considerable part of PAH degradation. Further, we characterized the PAH-tolerant bacterial communities, which were much more diverse in the polluted site by comparison to unpolluted marine references. PAH-tolerant bacteria were also members of the rare biosphere, such as Glaciecola sp. Collectively, these data show the complex interactions between PAH-degraders and PAH-tolerant bacteria and provide new insights for the understanding of the functional ecology of marine bacteria in polluted waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of Sea Level Rise on Groundwater Flow Paths in a Coastal Aquifer System

    Science.gov (United States)

    Morrissey, S. K.; Clark, J. F.; Bennett, M. W.; Richardson, E.; Stute, M.

    2008-05-01

    Changes in groundwater flow in the Floridan aquifer system, South Florida, from the rise in sea level at the end of the last glacial period may be indicative of changes coastal aquifers will experience with continued sea level rise. As sea level rises, the hydraulic head near the coast increases. Coastal aquifers can therefore experience decreased groundwater gradients (increased residence times) and seawater intrusion. Stable isotopes of water, dissolved noble gas temperatures, radiocarbon and He concentrations were analyzed in water collected from 68 wells in the Floridan aquifer system throughout South Florida. Near the recharge area, geochemical data along groundwater flow paths in the Upper Floridan aquifer show a transition from recently recharged groundwater to glacial-aged water. Down gradient from this transition, little variation is apparent in the stable isotopes and noble gas recharge temperatures, indicating that most of the Upper Floridan aquifer contains groundwater recharged during the last glacial period. The rapid 120-meter rise in sea level marking the end of the last glacial period increased the hydraulic head in the Floridan aquifer system near the coast, slowing the flow of groundwater from the recharge area to the ocean and trapping glacial-aged groundwater. The raised sea level also flooded half of the Florida platform and caused seawater to intrude into the Lower Floridan. This circulation of seawater in the Lower Floridan continues today as our data indicate that the groundwater is similar to modern seawater with a freshwater component entering vertically from the recharge area to the Upper Floridan.

  11. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    DEFF Research Database (Denmark)

    Sjøgaard, Kamilla Schneekloth; Treusch, Alexander H.; Valdemarsen, Thomas Bruun

    2017-01-01

    Strand) that was planned to be flooded in a coastal realignment project. We found rapid carbon degradation almost immediately after flooding and microbial sulfate reduction rapidly established as the dominant mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe...

  12. Concentrations and activity ratios of 228Ra and 226Ra in surface seawater along the Pacific coast of Japan

    International Nuclear Information System (INIS)

    Ohta, T.; Mahara, Y.; Kubota, T.; Sato, J.; Gamo, T.

    2011-01-01

    We measured the 228 Ra/ 226 Ra activity ratios in surface seawater along the Pacific coast of Japan at five ports around the island of Izu-Oshima (n = 29), at Atami in Sagami Bay (n = 13), and at Umizuri Park in Tokyo Bay (n = 14). We also conducted these measurements along a transect from the open Pacific Ocean across the Kuroshio to the mouth of Tokyo Bay (n = 7). The activity ratios decreased with increasing salinity of the sampling sites. The 228 Ra/ 226 Ra activity ratios in surface seawater along the coast gradually decreased after at the end of autumn and were lowest in winter and the beginning of spring. The surface salinity along the coast decreased from summer into autumn and increased from winter to the beginning of spring. The activity ratios decreased with the increase of salinity. The variation in activity ratios at the three coastal sites is possibly caused by differing contributions of surface seawater from the Kuroshio and surrounding open ocean. The different patterns and ranges of variation in the 228 Ra/ 226 Ra activity ratios in surface seawater at Izu-Oshima, Atami, and Umizuri Park may reflect both the amount of water from the Kuroshio and vicinity, and the local bathymetry, because continental shelf sediment is the source of Ra isotopes in surface seawater. (orig.)

  13. Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran.

    Science.gov (United States)

    Ranjbar Jafarabadi, Ali; Riyahi Bakhtiyari, Alireza; Shadmehri Toosi, Amirhossein; Jadot, Catherine

    2017-10-01

    Concentrations of 13 heavy metals (Al, Fe, Mn, Zn, Cu, Cr, Co, Ni, V, As, Cd, Hg, Pb) in 360 reef surface sediments (0-5 cm) and coastal seawater samples from ten coral Islands in the Persian Gulf were analyzed to determine their spatial distribution and potential ecological risks. Different sediment quality indices were applied to assess the surface sediment quality. The mean concentrations of metals in studied sediments followed the order: Al > Fe > Ni > V > Mn > Zn > Cu > Cr > Co > As > Cd > Pb > As. Average Cd and Hg exceeded coastal background levels at most sampling sites. With the exception of As, concentrations of heavy metals decreased progressively from the west to the east of the Persian Gulf. Based on the Enrichment Factor (EF) and Potential Ecological Risk Index (RI), concentrations of V, Ni, Hg and Cd indicated moderate contamination and is of some concern. The mean values of heavy metals Toxic Units (TUs) were calculated in the following order: Hg (0.75)> Cr (0.41)> Cd (0.27)> As (0.23)> Cu (0.12)> Zn (0.05)> Pb (0.009). Furthermore, the mean contributing ratios of six heavy metals to Toxic Risk Index (TRI) values were 79% for Hg, 11.48% for Cd, 6.16% for Cr, 3.27% for Cu, 0.07% for Zn and 0.01% for Pb. Calculated values of potential ecological risk factor, revealed that the risk of the heavy metals followed the order Cd > Pb > Ni > Cr > V > Cu > Zn. The results reflected that the level of heavy metals, especially Hg and Cd, are on rise due to emerging oil exploration, industrial development, and oil refineries along the entire Gulf. Fe, Mn, Cu, Zn, V and Ni concentrations in seawater were significantly higher (p heavy metals in the sampling sites. A health risk assessment using the hazard quotient index (HQ) recommended by the USEPA suggests that there is no adverse health effect through dermal exposure, and there is no carcinogenic and non-carcinogenic harm to human health. Copyright © 2017 Elsevier Ltd. All

  14. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea.

    Science.gov (United States)

    Kim, Nam Sook; Shim, Won Joon; Yim, Un Hyuk; Hong, Sang Hee; Ha, Sung Yong; Han, Gi Myung; Shin, Kyung-Hoon

    2014-01-15

    Seawater samples from major enclosed bays, fishing ports, and harbors of Korea were analyzed to determine levels of tributyltin (TBT) and booster biocides, which are antifouling agents used as alternatives to TBT. TBT levels were in the range of not detected (nd) to 23.9 ng Sn/L. Diuron and Irgarol 1051, at concentration ranges of 35-1360 ng/L and nd to 14 ng/L, respectively, were the most common alternative biocides present in seawater, with the highest concentrations detected in fishing ports. Hot spots were identified where TBT levels exceeded environmental quality targets even 6 years after a total ban on its use in Korea. Diuron exceeded the UK environmental quality standard (EQS) value in 73% of the fishing port samples, 64% of the major bays, and 42% of the harbors. Irgarol 1051 levels were marginally below the Dutch and UK EQS values at all sites. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of Mg and Ca on the Stability of the MRI Contrast Agent Gd–DTPA in Seawater

    Directory of Open Access Journals (Sweden)

    Johan Schijf

    2018-04-01

    Full Text Available Gadolinium diethylenetriaminepentaacetic acid (Gd–DTPA is widely applied as a contrast enhancer in medical MRI. As Gd–DTPA is only minimally captured in wastewater treatment plants (WTPs or degraded by UV light and other oxidative processes, concentrations in rivers have increased globally by orders of magnitude following its introduction in 1987. The complex also seems impervious to estuarine scavenging and is beginning to emerge in coastal waters, yet it is unknown how its stability is changed by competition for the DTPA ligand from major seawater cations. We performed potentiometric titrations at seawater ionic strength (0.7 M NaClO4 to determine dissociation constants of the five DTPA carboxylic acid groups, as well as stability constants of Mg, Ca, and Gd complexes with the fully deprotonated and single-protonated ligand. These are in general agreement with literature values at low ionic strength and confirm that complexes with Ca are more stable than with Mg. A new finding, that the DTPA complexes of Mg and Ca appear to be hydrolyzed at elevated pH, implies that their coordination in these chelates is less than hexadentate, enabling additional competition with Gd from dinuclear Mg and Ca species. Side-reaction coefficients for trace-metal-free seawater, calculated from our results, suggest that the higher abundance of Mg and Ca may significantly destabilize Gd–DTPA in coastal waters, causing dissociation and release of as much as 15% of the organically complexed Gd from the ligand. This effect could magnify the particle-reactivity and bioavailability of anthropogenic Gd in sensitive estuarine habitats, indicating an urgent need to further study the fate of this contaminant in marine environments.

  16. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    as a source of safe and sustainable water supply. In such a situation, a number of scientists consider that the population's water supply must be achieved through a more comprehensive use of fresh and even subsaline groundwater resources from the coastal aquifers. The 2004 tsunami in the Indian Ocean caused a disaster affecting thousands of kilometers of coastal zone in SE Asia. Many coastal wetlands were affected in the short term by the large inflow of salt seawater and littoral sediment deposited during the tsunami, and in the longer-term by changes in their hydrogeology caused by changes to coastlines and damage to sea-defenses. Many water quality and associated problems were generated by the tsunami. The tsunami has created an accelerating process of salt-water intrusion and fresh-water contaminations in affected regions that now require drastic remediation measures. We report here some efforts and results in studying the processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones.

  17. Drinking water vulnerability to climate change and alternatives for adaptation in coastal South and South East Asia

    OpenAIRE

    Hoque, M. A.; Scheelbeek, P. F. D.; Vineis, P.; Khan, A. E.; Ahmed, K. M.; Butler, A. P.

    2016-01-01

    Drinking water in much of Asia, particularly in coastal and rural settings, is provided by a variety of sources, which are widely distributed and frequently managed at an individual or local community level. Coastal and near-inland drinking water sources in South and South East (SSE) Asia are vulnerable to contamination by seawater, most dramatically from tropical cyclone induced storm surges. This paper assesses spatial vulnerabilities to salinisation of drinking water sources due to meteoro...

  18. [The effect of hypertonic seawater and isotonic seawater for nasal mucosa of allergic rhinitis mice model].

    Science.gov (United States)

    Deng, Zhifeng; Xu, Yu; Ou, Jin; Xiang, Rong; Tao, Zezhang

    2014-12-01

    To study the effect of hypertonic seawater and isotonic seawater for nasal mucosa of allergic rhinitis mice model, and explore the possible mechanism of nasal irrigation with seawater in treatment of allergic rhinitis. We used Der pl to make allergic rhinitis model of BALB/c mice, and divided them into three groups randomly. Nasal irrigation with hypertonic seawater (HS) or isotonic seawater (IS) in the treatment group 1-14 days after modeling, and black control (BC) group was given no treatment after modeling. Normal control (NC) group was given no treatment, the number of rubs and sneezings in each group were counted in 30 min after the last nasal irrigation. Mice were then killed 24 h after the last therapy. The noses of mice from each group were removed and fixed, then the slices were stained with hematoxylin and eosin, the others were observed by transmission electron microscope. Mice with hypertonic seawater and isotonic seawater were significantly improved in rubs and sneezings compared to the black control group (P 0. 05); Ciliated columnar epithelium cells in mucosal tissues of HS group and IS group were arranged trimly, better than that in the black control group. Morphology and microstructure in nasal mucosal of HS group was closer to the normal group than in IS group. The injury of nasal mucosa ciliated epithelium was significantly improved by nasal irrigation with hypertonic seawater and isotonic seawater, and the former is better than the latter, the mechanism of nasal irrigation with seawater in treatment of allergic rhinitis may rely on repairing the injured nasal mucosa ciliated epithelium, thereby the symptoms of nasal was reduced.

  19. SRB seawater corrosion project

    Science.gov (United States)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  20. Viral lysis of photosynthesizing microbes as a mechanism for calcium carbonate nucleation in seawater

    Science.gov (United States)

    Lisle, John T.; Robbins, Lisa L.

    2016-01-01

    Removal of carbon through the precipitation and burial of calcium carbonate in marine sediments constitutes over 70% of the total carbon on Earth and is partitioned between coastal and pelagic zones. The precipitation of authigenic calcium carbonate in seawater, however, has been hotly debated because despite being in a supersaturated state, there is an absence of persistent precipitation. One of the explanations for this paradox is the geochemical conditions in seawater cannot overcome the activation energy barrier for the first step in any precipitation reaction; nucleation. Here we show that virally induced rupturing of photosynthetic cyanobacterial cells releases cytoplasmic-associated bicarbonate at concentrations ~23-fold greater than in the surrounding seawater, thereby shifting the carbonate chemistry toward the homogenous nucleation of one or more of the calcium carbonate polymorphs. Using geochemical reaction energetics, we show the saturation states (Ω) in typical seawater for calcite (Ω = 4.3), aragonite (Ω = 3.1), and vaterite (Ω = 1.2) are significantly elevated following the release and diffusion of the cytoplasmic bicarbonate (Ωcalcite = 95.7; Ωaragonite = 68.5; Ωvaterite = 25.9). These increases in Ω significantly reduce the activation energy for nuclei formation thresholds for all three polymorphs, but only vaterite nucleation is energetically favored. In the post-lysis seawater, vaterite's nuclei formation activation energy is significantly reduced from 1.85 × 10−17 J to 3.85 × 10−20 J, which increases the nuclei formation rate from highly improbable (nucleation of calcium carbonate in seawater describes a mechanism through which the initial step in the production of carbonate sediments may proceed. It also presents an additional role of photosynthesizing microbes and their viruses in marine carbon cycles and reveals these microorganisms are a collective repository for concentrated and reactive dissolved inorganic carbon (DIC

  1. Effects of seawater mixing on the mobility of trace elements in acid phosphogypsum leachates.

    Science.gov (United States)

    Papaslioti, Evgenia-Maria; Pérez-López, Rafael; Parviainen, Annika; Sarmiento, Aguasanta M; Nieto, José M; Marchesi, Claudio; Delgado-Huertas, Antonio; Garrido, Carlos J

    2018-02-01

    This research reports the effects of pH increase on contaminant mobility in phosphogypsum leachates by seawater mixing, as occurs with dumpings on marine environments. Acid leachates from a phosphogypsum stack located in the Estuary of Huelva (Spain) were mixed with seawater to achieve gradually pH7. Concentrations of Al, Fe, Cr, Pb and U in mixed solutions significantly decreased with increasing pH by sorption and/or precipitation processes. Nevertheless, this study provides insight into the high contribution of the phosphogypsum stack to the release of other toxic elements (Co, Ni, Cu, Zn, As, Cd and Sb) to the coastal areas, as 80-100% of their initial concentrations behaved conservatively in mixing solutions with no participation in sorption processes. Stable isotopes ruled out connexion between different phosphogypsum-related wastewaters and unveiled possible weathering inputs of estuarine waters to the stack. The urgency of adopting effective restoration measures in the study area is also stressed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Response of zooplankton to physical changes in the environment: coastal upwelling along central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Madhupratap, M.; Nair, S.R.S.; Haridas, P.; Padmavati, G.

    .U. Haq and J.D. Milliman, (Eds.), Marine Geology and Oceanography ofArabian Sea and Coastal Pakistan. New York: Reinhold, pp. 339-350. PAFFENHOFER, G-A.; WESTER, B.T. and NICHO· LAS, W.O., 1984. Zooplankton abundance in rela- Journal of Coastal Research... Ocean. Proceedings of the Indian Academy of Sciences, 94, 129-137. SMITH, S.L., 1982. The northwest Indian Ocean dur ing the monsoons of 1979: distribution, abundance and feeding of zooplankton. Deep-Sea Research, 29, 1331-1353. SMITH, S.L.; BOYQ, C...

  3. Surface ozone and NOx trends observed over Kannur, a South Indian coastal location of weak industrial activities

    Science.gov (United States)

    Kumar, Satheesh Mk; T, Nishanth; M, Praseeed K.

    South India is a peninsular region surrounded by the three belts of Arabian Sea, Bay of Bengal and Indian Ocean. Usually, coastal regions experience relatively high air quality compared to that of the interior land masses owing to the abundance of OH over ocean surface which acts as detergent in the atmosphere. Kannur (11.9 N, 75.4E, 5 m AMSL) is a coastal location along the Arabian Sea which is located in the northern district of Kerala State with fairly low industrial activities. A continuous observation of surface ozone (O3), NOx and OX (NO2+ O3) which has been initiated at this coastal site since 2009 reveals the enhancement in the concentrations of these trace species quite significantly. It is observed that surface O3 mixing ratio is increased at a rate of 1.51 ± 0.5 ppbv/year during the four year period from 2009 at Kannur. The enhancement rate in the mixing ratios of NOx is 1.01 ± 0.4 ppbv/year and OX is 1.49±0.42 ppbv/year respectively. The increase of O3 may be attributed due to the increase in methane and non-methane organic emissions from the wet lands and vehicles may enhance O3 production and fairly low rate of change of NO concentration at this site. This paper describes the rate of changes of O3, NOx and OX during the period of observation in detail. Likewise, the increase in nighttime concentrations of O3 and PM10 observed during the festival occasions in the summer month of April in all years is explained. Being a weak industrialized location, the main source of pollution is by vehicular emissions and the increase in these trace gases in the context of rapid enhancement in the number of vehicles is well correlated. These results may be helpful for improving government policies to control the photochemical formation of secondary air pollutants in the rural coastal sites that has a significant influence on the onset of monsoon and the outcome of this study have significant relevance for gradual transformation of pristine locations into polluted

  4. Seawater intrusion in karstic, coastal aquifers: Current challenges and future scenarios in the Taranto area (southern Italy).

    Science.gov (United States)

    De Filippis, Giovanna; Foglia, Laura; Giudici, Mauro; Mehl, Steffen; Margiotta, Stefano; Negri, Sergio Luigi

    2016-12-15

    Mediterranean areas are characterized by complex hydrogeological systems, where management of freshwater resources, mostly stored in karstic, coastal aquifers, is necessary and requires the application of numerical tools to detect and prevent deterioration of groundwater, mostly caused by overexploitation. In the Taranto area (southern Italy), the deep, karstic aquifer is the only source of freshwater and satisfies the main human activities. Preserving quantity and quality of this system through management policies is so necessary and such task can be addressed through modeling tools which take into account human impacts and the effects of climate changes. A variable-density flow model was developed with SEAWAT to depict the "current" status of the saltwater intrusion, namely the status simulated over an average hydrogeological year. Considering the goals of this analysis and the scale at which the model was built, the equivalent porous medium approach was adopted to represent the deep aquifer. The effects that different flow boundary conditions along the coast have on the transport model were assessed. Furthermore, salinity stratification occurs within a strip spreading between 4km and 7km from the coast in the deep aquifer. The model predicts a similar phenomenon for some submarine freshwater springs and modeling outcomes were positively compared with measurements found in the literature. Two scenarios were simulated to assess the effects of decreased rainfall and increased pumping on saline intrusion. Major differences in the concentration field with respect to the "current" status were found where the hydraulic conductivity of the deep aquifer is higher and such differences are higher when Dirichlet flow boundary conditions are assigned. Furthermore, the Dirichlet boundary condition along the coast for transport modeling influences the concentration field in different scenarios at shallow depths; as such, concentration values simulated under stressed conditions

  5. Coastal Culture Area. Native American Curriculum Series.

    Science.gov (United States)

    Ross, Cathy; Fernandes, Roger

    Background information, legends, games, illustrations, and art projects are provided in this booklet introducing elementary students to the history and culture of Indian tribes of the North Pacific Coast and Pacific Northwest. One in a series of Native American instructional materials, the booklet provides an overview of the coastal culture area,…

  6. Seawater predesalination with electrodialysis

    NARCIS (Netherlands)

    Galama, A.H.; Saakes, M.; Bruning, H.; Rijnaarts, H.H.M.; Post, J.W.

    2014-01-01

    The suitability of ED for seawater desalination was investigated and we quantified the energy losses that play a role in electrodialysis. The combination of electrodialysis (ED) and brackish water reverse osmosis (BWRO) is presented as an alternative desalination strategy for seawater reverse

  7. Immediate supervision of the coastal site at the La Hague centre

    International Nuclear Information System (INIS)

    Scheidhauer, J.

    1968-01-01

    The disposal into the sea of the residual waters from a plant processing irradiated fuels means that a very close watch has to be kept on the corresponding coastal zone. The material organisation of such a supervision, and the sampling techniques, are described. These latter concern: flora, fauna, sediments and sea-water. Results obtained using various analytical and routine measurement methods are presented. (author) [fr

  8. Simulation Of Seawater Intrusion With 2D And 3D Models: Nauru Island Case Study

    Science.gov (United States)

    Ghassemi, F.; Jakeman, A. J.; Jacobson, G.; Howard, K. W. F.

    1996-03-01

    With the advent of large computing capacities during the past few decades, sophisticated models have been developed for the simulation of seawater intrusion in coastal and island aquifers. Currently, several models are commercially available for the simulation of this problem. This paper describes the mathematical basis and application of the SUTRA and HST3D models to simulate seawater intrusion in Nauru Island, in the central Pacific Ocean. A comparison of the performance and limitations of these two models in simulating a real problem indicates that three-dimensional simulation of seawater intrusion with the HST3D model has the major advantage of being able to specify natural boundary conditions as well as pumping stresses. However, HST3D requires a small grid size and short time steps in order to maintain numerical stability and accuracy. These requirements lead to solution of a large set of linear equations that requires the availability of powerful computing facilities in terms of memory and computing speed. Combined results of the two simulation models indicate a safe pumping rate of 400 m3/d for the aquifer on Nauru Island, where additional fresh water is presently needed for the rehabilitation of mined-out land.

  9. The strontium isotopic composition of seawater, and seawater-oceanic crust interaction

    International Nuclear Information System (INIS)

    Spooner, E.T.C.

    1976-01-01

    The 87 Sr/ 86 Sr ratio of seawater strontium (0.7091) is less than the 87 Sr/ 86 Sr ratio of dissolved strontium delivered to the oceans by continental run-off (approximately 0.716). Isotope exchange with strontium isotopically lighter oceanic crust during hydrothermal convection within spreading oceanic ridges can explain this observation. In quantitative terms, the current 87 Sr/ 86 Sr ratio of seawater (0.7091) may be maintained by balancing the continental run-off flux of strontium (0.59 x 10 12 g/yr) against a hydrothermal recirculation flux of 3.6 x 10 12 g/yr, during which the 87 Sr/ 86 Sr ratio of seawater drops by 0.0011. A concomitant mean increase in the 87 Sr/ 86 Sr ratio of the upper 4.5 km of oceanic crust of 0.0010 (0.7029-0.7039) should be produced. This required 87 Sr enrichment has been observed in hydrothermally metamorphosed ophiolitic rocks from the Troodos Massif, Cyprus. The post-Upper Cretaceous increase in the strontium isotopic composition of seawater (approximately 0.7075-0.7091) covaries smoothly with inferred increase in land area. This suggests that during this period the main factor which has caused variability in the 87 Sr/ 86 Sr ratio of seawater strontium could have been variation in the magnitude of the continental run-off flux caused by variation in land area. Variations in land area may themselves have been partly a consequence of variations in global mean sea-floor spreading rate. (Auth.)

  10. Disturbance and coastal forests: a strategic approach to forest management in hurricane impact zones

    Science.gov (United States)

    John A. Stanturf; Scott L. Goodrick; Kenneth W. Outcalt

    2007-01-01

    The Indian Ocean Tsunami focused world attention on societal responses to environmental hazards and the potential of natural systems to moderate disturbance effects. Coastal areas are critical to the welfare of up to 50% of the world's population. Coastal systems in the southern United States are adapted to specific disturbance regimes of tropical cyclones (...

  11. Prevalence of microplastics in Singapore's coastal marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.L. [Division of Environmental Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Obbard, J.P. [Division of Environmental Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)]. E-mail esejpo@nus.edu.sg

    2006-07-15

    Microplastics have been recently identified as marine pollutants of significant concern due to their persistence, ubiquity and potential to act as vectors for the transfer and exposure of persistent organic pollutants to marine organisms. This study documents, for the first time, the presence and abundance of microplastics (>1.6 {mu}m) in Singapore's coastal environment. An optimized sampling protocol for the collection and analysis of microplastics was developed, and beach sediments and seawater (surface microlayer and subsurface layer) samples were collected from nine different locations around the coastline. Low density microplastics were separated from sediments by flotation and polymer types were identified using Fourier transform infrared (FTIR) spectrometry. Synthetic polymer microplastics identified in beach sediments included polyethylene, polypropylene, polystyrene, nylon, polyvinyl alcohol and acrylonitrile butadiene styrene. Microplastics were detected in samples from four out of seven beach environments, with the greatest quantity found in sediments from two popular beaches in the eastern part of Singapore. Polyethylene, polypropylene and polystyrene microplastics were also found in the surface microlayer (50-60 {mu}m) and subsurface layer (1 m) of coastal waters. The presence of microplastics in sediments and seawater is likely due to on-going waste disposal practices from industries and recreational activities, and discharge from shipping.

  12. Temporal and spatial variability of phytoplankton pigment concentrations in the Indian Ocean, derived from the CZCS time series images

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available A total of 93 monthly global composite remotely sensed ocean color images from the Coastal Zone Color Scanner (CZCS on board the Nimbus-7 satellite were extracted for the Indian Ocean region (35ºN–55ºS; 30–120ºE to examine the seasonal variations in phytoplankton pigment concentrations, resulting from large-scale changes in physical oceanographic processes. The CZCS data sets were analyzed with the PC-SEAPAK software, and revealed large phytoplankton blooms in the northwest Arabian Sea and off the Somali coast. The blooms were triggered by wind-driven upwelling during the southwest monsoonal months of August and September. In the northern Arabian Sea, phytoplankton blooms, detected from January to March, appeared to be associated with nutrient enhancement resulting from winter convective mixing. In the Bay of Bengal, higher pigment concentrations were confined to the coastal regions but varied only marginally between seasons both in the coastal and offshore regions. Phytoplankton pigment concentrations were consistently low in the open Indian Ocean. Analysis of pigment concentrations extracted from the monthly-accumulated images revealed that the Arabian Sea sustained a greater biomass of phytoplankton compared with any other region of the Indian Ocean. Overall, the coastal regions of the Indian Ocean are richer in phytoplankton pigment than the open Indian Ocean. The number of images in individual areas was highly variable throughout the region due to varying cloud cover.

  13. Monsoon oscillations of the Findlater Jet and coastal winds of India

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Zhao, C.; Muraleedharan, P.M.; Rao, G.S.P.; Sugimori, Y.

    Intraseasonal variability (ISV) of the Low Level Jet (LLJ) and its effects on coastal winds during the Indian summer monsoon are examined using National Centre for Environmental Prediction / National Centre for Atmospheric Research (NCEP) reanalyses...

  14. Assertiveness in Indian Context: Perspectives of Women in Coastal Karnataka

    Directory of Open Access Journals (Sweden)

    Vinita A Acharya

    2016-07-01

    Full Text Available Introduction: Assertiveness is considered to be an important communication skill influencing our interpersonal relations. It is known to play a role in stress management, conflict resolution and developing a positive self-concept. However, it is often suggested that Indians may not be as assertive as their Western counterparts. Indian women in particular have an image of being docile and submissive in a patriarchal society bowing down to cultural norms. Method: This study is a qualitative inquiry to explore the views of Indian women about assertiveness. Four focus group discussions were conducted with women from different social strata around Udupi and Mangalore to understand their perspectives on assertiveness. Findings: Three key themes emerged from the analysis of the data. Perceptions of others to one being assertive, sense of freedom after having expressed one’s emotions assertively and consequences of being assertive appeared to be major concerns in being assertive. Conclusion: Exploring the role of assertiveness in women empowerment and social development is recommended.

  15. Impact of seawater [Ca

    NARCIS (Netherlands)

    Mewes, A.; Langer, G.; Thoms, S.; Nehrke, G.; Reichart, G.J.; de Nooijer, L.J.; Bijma, J.

    2015-01-01

    Mg / Ca ratios in foraminiferal tests are routinely used as paleotemperature proxies, but on long timescales, they also hold the potential to reconstruct past seawater Mg / Ca. The impact of both temperature and seawater Mg / Ca on Mg incorporation in Foraminifera has been quantified by a number of

  16. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2018-01-01

    Full Text Available Two separate groups of geothermal waters have been identified in the coastal region of Guangdong, China. One is Xinzhou thermal water of regional groundwater flow system in a granite batholith and the other is thermal water derived from shallow coastal aquifers in Shenzao geothermal field, characterized by high salinity. The hydrochemical characteristics of the thermal waters were examined and characterized as Na-Cl and Ca-Na-Cl types, which are very similar to that of seawater. The hydrochemical evolution is revealed by analyzing the correlations of components versus Cl and their relative changes for different water samples, reflecting different extents of water-rock interactions and clear mixing trends with seawaters. Nevertheless, isotopic data indicate that thermal waters are all of the meteoric origins. Isotopic data also allowed determination of different recharge elevations and presentation of different mixing proportions of seawater with thermal waters. The reservoir temperatures were estimated by chemical geothermometries and validated by fluid-mineral equilibrium calculations. The most reliable estimates of reservoir temperature lie in the range of 148–162°C for Xinzhou and the range of 135–144°C for Shenzao thermal waters, based on the retrograde and prograde solubilities of anhydrite and chalcedony. Finally, a schematic cross-sectional fault-hydrology conceptual model was proposed.

  17. How Subsurface Water Technologies (SWT) can Provide Robust, Effective, and Cost-Efficient Solutions for Freshwater Management in Coastal Zones

    NARCIS (Netherlands)

    Zuurbier, K.G.; Raat, K.J.; Paalman, M.; Oosterhof, A.T.; Stuyfzand, P.J.

    2016-01-01

    Freshwater resources in coastal zones are limited while demands are high, resulting in problems like seasonal water shortage, overexploitation of freshwater aquifers, and seawater intrusion. Three subsurface water technologies (SWT) that can provide robust, effective, and cost-efficient solutions to

  18. Dynamics of the east India coastal current. 2. Numerical solutions

    Digital Repository Service at National Institute of Oceanography (India)

    McCreary, J.P.; Han, W.; Shankar, D.; Shetye, S.R.

    A linear, continuously stratified model is used to investigate the dynamics of the East India Coastal Current (EICC). Solutions are found numerically in a basin that resembles the Indian Ocean basin north of 29 degrees S, and they are forced...

  19. Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis.

    Science.gov (United States)

    Mangan, Stephanie; Urbina, Mauricio A; Findlay, Helen S; Wilson, Rod W; Lewis, Ceri

    2017-10-25

    Ocean acidification (OA) studies typically use stable open-ocean pH or CO 2 values. However, species living within dynamic coastal environments can naturally experience wide fluctuations in abiotic factors, suggesting their responses to stable pH conditions may not be reflective of either present or near-future conditions. Here we investigate the physiological responses of the mussel Mytilus edulis to variable seawater pH conditions over short- (6 h) and medium-term (2 weeks) exposures under both current and near-future OA scenarios. Mussel haemolymph pH closely mirrored that of seawater pH over short-term changes of 1 pH unit with acidosis or recovery accordingly, highlighting a limited capacity for acid-base regulation. After 2 weeks, mussels under variable pH conditions had significantly higher metabolic rates, antioxidant enzyme activities and lipid peroxidation than those exposed to static pH under both current and near-future OA scenarios. Static near-future pH conditions induced significant acid-base disturbances and lipid peroxidation compared with the static present-day conditions but did not affect the metabolic rate. These results clearly demonstrate that living in naturally variable environments is energetically more expensive than living in static seawater conditions, which has consequences for how we extrapolate future OA responses in coastal species. © 2017 The Authors.

  20. Radionuclide adsorption characteristics around coastal water

    International Nuclear Information System (INIS)

    Song, Young Il; Chung, Yang Geun; Hong, Sung Yul; Lee, Gab Bock

    1999-01-01

    The adsorption capacity of radionuclides onto suspended sediment was experimented on each of the coastal seawater sampled around the Kori and the Wolsung nuclear power plant. During the experiment the quantity and size fraction of suspended sediment were adjusted and the seawater and sediment chemistry is approximated to the expected field condition. Because the sorption capacity depends on the specific minerals, ocean chemistry and radionuclide involved, it is necessary to analyze sediment mineralogy. Clay mineral is dominant in seabed mineral and suspended sediment as the result of x-ray diffraction. Radionuclide sorbed to silty-clay mineral can be rather transported to ocean than scavenged to seabed because of low quantity and fine grained suspended sediment in the coast around the Kori and the Wolsung. The result of adsorption examinations shows that 139 Ce and 51 Cr and 110m Ag are strongly sorbed to suspended particle, while 137 Cs is less sorbed and 60 Co uptake is varied with experiment condition, which can be inferred from various biological factors. (author). 9 refs., 2 tabs., 7 figs

  1. Formation and maintenance of high-nitrate, low pH layers in the eastern Indian Ocean and the role of nitrogen fixation

    Directory of Open Access Journals (Sweden)

    A. M. Waite

    2013-08-01

    Full Text Available We investigated the biogeochemistry of low dissolved oxygen high-nitrate (LDOHN layers forming against the backdrop of several interleaving regional water masses in the eastern Indian Ocean, off northwest Australia adjacent to Ningaloo Reef. These water masses, including the forming Leeuwin Current, have been shown directly to impact the ecological function of Ningaloo Reef and other iconic coastal habitats downstream. Our results indicate that LDOHN layers are formed from multiple subduction events of the Eastern Gyral Current beneath the Leeuwin Current (LC; the LC originates from both the Indonesian Throughflow and tropical Indian Ocean. Density differences of up to 0.025 kg m−3 between the Eastern Gyral Current and the Leeuwin Current produce sharp gradients that can trap high concentrations of particles (measured as low transmission along the density interfaces. The oxidation of the trapped particulate matter results in local depletion of dissolved oxygen and regeneration of dissolved nitrate (nitrification. We document an associated increase in total dissolved carbon dioxide, which lowers the seawater pH by 0.04 units. Based on isotopic measurements (δ15N and δ18O of dissolved nitrate, we determine that ~ 40–100% of the nitrate found in LDOHN layers is likely to originate from nitrogen fixation, and that, regionally, the importance of N-fixation in contributing to LDOHN layers is likely to be highest at the surface and offshore.

  2. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered as a source of safe and sustainable water supply. In such a situation, a number of scientists consider that the population's water supply must be achieved through a more comprehensive use of fresh and even subsaline groundwater resources from the coastal aquifers. The 2004 tsunami in the Indian Ocean caused imbalance in groundwater-surface water interactions and a disaster affecting thousands of kilometers of coastal zone in SE Asia. Many coastal wetlands were affected in the short term by the large inflow of salt seawater and littoral sediment deposited during the tsunami, and in the longer-term by changes in their hydrogeology caused by changes to coastlines and damage to sea-defenses. Many water quality and associated problems were generated by the tsunami. The tsunami has created imbalance in groundwater-surface water interactions and an accelerating process of salt-water intrusion and fresh-water contaminations in affected regions that now require drastic remediation measures.

  3. Sorption isolation of strontium from seawater

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Zheleznov, V.V.; Kaplun, E.V.; Sokol'nitskaya, T.A.; Yukhkam, A.A.

    2001-01-01

    Sorption isolation of strontium from seawater is considered and prospects of use of selective adsorbents for purification of seawater or liquid radioactive wastes mixed with seawater from 90 Sr are discussed. Comparative analysis of sorptive properties of adsorbents of different nature is done. It is shown that sorption-reagent materials developed by authors can to afford effective separation of 90 Sr from seawater. Possible mechanism of strontium sorption by these adsorbents is considered. The prospect of their use for purification of liquid radioactive wastes from strontium is shown [ru

  4. A seawater desalination scheme for global hydrological models

    Science.gov (United States)

    Hanasaki, Naota; Yoshikawa, Sayaka; Kakinuma, Kaoru; Kanae, Shinjiro

    2016-10-01

    Seawater desalination is a practical technology for providing fresh water to coastal arid regions. Indeed, the use of desalination is rapidly increasing due to growing water demand in these areas and decreases in production costs due to technological advances. In this study, we developed a model to estimate the areas where seawater desalination is likely to be used as a major water source and the likely volume of production. The model was designed to be incorporated into global hydrological models (GHMs) that explicitly include human water usage. The model requires spatially detailed information on climate, income levels, and industrial and municipal water use, which represent standard input/output data in GHMs. The model was applied to a specific historical year (2005) and showed fairly good reproduction of the present geographical distribution and national production of desalinated water in the world. The model was applied globally to two periods in the future (2011-2040 and 2041-2070) under three distinct socioeconomic conditions, i.e., SSP (shared socioeconomic pathway) 1, SSP2, and SSP3. The results indicate that the usage of seawater desalination will have expanded considerably in geographical extent, and that production will have increased by 1.4-2.1-fold in 2011-2040 compared to the present (from 2.8 × 109 m3 yr-1 in 2005 to 4.0-6.0 × 109 m3 yr-1), and 6.7-17.3-fold in 2041-2070 (from 18.7 to 48.6 × 109 m3 yr-1). The estimated global costs for production for each period are USD 1.1-10.6 × 109 (0.002-0.019 % of the total global GDP), USD 1.6-22.8 × 109 (0.001-0.020 %), and USD 7.5-183.9 × 109 (0.002-0.100 %), respectively. The large spreads in these projections are primarily attributable to variations within the socioeconomic scenarios.

  5. Development of radioactive seawater monitors, 1

    International Nuclear Information System (INIS)

    Fukushima, Masanori

    1989-01-01

    Applicability of some adsorptive materials to monitoring of radioactive seawater is generalized. Studied techniques that allow utilization of adsorptive materials in monitoring radioactive seawater are the substitute methods using sampled seawater or indicator plants such as gulfweed and the method using adsorptive materials for continuous monitoring of underwater radioactivity, the method using them for field measurement of under water radioactivity from a boat, and the method using an adsorptive material moored underwater for integration monitoring of underwater radioactivity. Selected adsorptive materials that were judged suitable for monitoring radioactive seawater is the one composed of some kind of adsorptive compound (manganese dioxide or ferrocyan cobalt potassium) fixed to crylic cellulose. This adsorptive material permits selective scavenging radioactive Cs, Mn, Co, Zn, Ce, Fe, Ru, Ra Th, Pu and Am from seawater. (aurhor)

  6. Field observations of extended seawater intrusion through subsurface karst conduit networks at Wakulla Spring in the Woodville Karst Plain, Florida

    Science.gov (United States)

    Xu, Z.; Bassett, S.; Hu, B. X.; Dyer, S.

    2016-12-01

    Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electric conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 14 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This abstract documented the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.

  7. The growing human footprint on coastal and open-ocean biogeochemistry.

    Science.gov (United States)

    Doney, Scott C

    2010-06-18

    Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both in near-shore coastal water and in the open ocean, rising coastal nitrogen levels, and widespread increase in mercury and persistent organic pollutants. Most of these perturbations, tied either directly or indirectly to human fossil fuel combustion, fertilizer use, and industrial activity, are projected to grow in coming decades, resulting in increasing negative impacts on ocean biota and marine resources.

  8. Seismotectonics of the Indian subcontinent and the Bengal fan

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    The great Sumatra earthquake of 26th December, 2004 (0629 hrs IST) followed by the unique Indian ocean tsunami have added a new dimension to the natural hazard scenario of the country. Hitherto, the coastal region is associated mainly...

  9. Groundwater salinity in coastal aquifer of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.; Ahmad, E.; Tasneem, M.A.; Sajjad, M.I.; Khan, H.A.

    2002-01-01

    Potable groundwater salinity has become a problem of great concern in the Karachi Metropolis, which is not only the most populous and biggest industrial base but also the largest coastal dwelling of Pakistan. Stable isotope techniques [O/sup 18/ content of Oxygen in the water molecular and C/sup 13/ content of the Total Dissolved Inorganic Carbon (TDIC)] have been used, in conjunction with physiochemical tools (temperature, dissolved oxygen, pH, redox electrical conductivity, salinity), to examine the quality of potable water and the source of salinity. Surface water samples (12 No.) were collected from polluted streams, namely: Layeri River, Malir River; Hub River/Hub Lake and the Indus River. Shallow groundwater samples (7 No. ) were collected from operating dug wells. Relatively deep groundwater samples (12 No.) were collected from operating dug wells, relatively deep groundwater samples (12 No.) were collected from pumping wells/tube-wells. Physicochemical analysis of water samples was completed in the field. In the laboratory, water samples were analyzed for O/sup 18/ content of oxygen in the water molecule and C/sup 13/ content of the TDIC, using specific gas extraction systems and a modified GD-150 gas source mass spectrometer. It is concluded from this preliminary investigation that the potable aquifer system in coastal Karachi hosts a mixture of precipitation (rainwater only) from hinterlands, trapped seawater in relatively deep aquifer system, as well as intruded seawater under natural infiltration conditions and/or induced recharge conditions (in shallow aquifers). (author)

  10. Thirty novel microsatellite markers for the coastal pelagic fish ...

    Indian Academy of Sciences (India)

    Scomber japonicus (Scombridae: Scomber) is a wide-spread pelagic fish in the warm and temperate transition coastal areas and adjacent seas of Atlantic, Pacific and northwest. Indian oceans (Collette and Nauen 1983). Although there are few studies on development of microsatellite markers that provide useful tool to ...

  11. Use of a time-domain electromagnetic method with geochemical tracers to explore the salinity anomalies in a small coastal aquifer in north-eastern Tunisia

    Science.gov (United States)

    Chekirbane, Anis; Tsujimura, Maki; Kawachi, Atsushi; Lachaal, Fethi; Isoda, Hiroko; Tarhouni, Jamila

    2014-12-01

    The study area is a small coastal plain in north-eastern Tunisia. It is drained by an ephemeral stream network and is subject to several pollutant discharges such as oilfield brine coming from a neighboring oil company and wastewater from Somâa city, located in the upstream of the plain. Furthermore, a hydraulic head near the coastal part of the aquifer is below sea level, suggesting that seawater intrusion may occur. A time-domain electromagnetic (TDEM) survey, based on 28 soundings, was conducted in Wadi Al Ayn and Daroufa plains to delineate the saline groundwater. Based on longitudinal and transversal resistivity two-dimensional pseudosections calibrated with boring data, the extent of saline water was identified. Geochemical tracers were combined with the resistivity dataset to differentiate the origin of groundwater salinization. In the upstream part of the plain, the infiltration of oilfield brine through the sandy bed of Wadi Al Ayn seems to have a considerable effect on groundwater salinization. However, in the coastal part of the aquifer, groundwater salinization is due to seawater intrusion and the saltwater is reaching an inland extent around 1.3 km from the shoreline. The contribution ratios of saline water bodies derived from the inverted chloride data vary for the oilfield brine from 1 to 13 % and for the seawater from 2 to 21 %.

  12. Analysis of lipophilic marine biotoxins by liquid chromatography coupled with high-resolution mass spectrometry in seawater from the Catalan Coast.

    Science.gov (United States)

    Bosch-Orea, Cristina; Sanchís, Josep; Farré, Marinella; Barceló, Damià

    2017-09-01

    Marine biotoxins regularly occur along the coast, with several consequences for the environment as well as the food industry. Monitoring of these compounds in seawater is required to assure the safety of marine resources for human consumption, providing a means for forecasting shellfish contamination events. In this study, an analytical method was developed for the detection of ten lipophilic marine biotoxins in seawater: azaspiracids 1, 2, 3, 4 and 5, classified as azaspiracid shellfish poisoning toxins, and pectenotoxin 2, okadaic acid and the related dinophysistoxin 1, yessotoxin and homoyessotoxin, classified as diarrheic shellfish poisoning toxins. The method is based on the application of solid-liquid ultrasound-assisted extraction and solid-phase extraction, followed by high-performance liquid chromatography coupled with high-resolution mass spectrometry. The limits of detection of this method are in the range of nanograms per litre and picograms per litre for most of the compounds, and recoveries range from 20.5% to 97.2%. To validate the effectiveness of this method, 36 samples of surface water from open coastal areas and marinas located along the Catalan coast on the Mediterranean Sea were collected and analysed. Eighty-eight per cent of these samples exhibited okadaic acid in particulate and aqueous phases in concentrations ranging from 0.11 to 560 μg/g and from 2.1 to 1780 ng/L respectively. Samples from open coastal areas exhibited higher concentrations of okadaic acid in particulate material, whereas in samples collected in sportive ports, the particulate material exhibited lower levels than the aqueous phase. Graphical Abstract Biotoxins investigated in seawater of the Catalan coast.

  13. Recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Takagi, Norio; Katoh, Shunsaku

    1995-01-01

    Present status of the development of chelating adsorbents for the recovery of uranium from seawater is outlined with emphasis on the research by the author. Uranium is estimated to exist as stable tri (carbonate) uranylate (6) ion in seawater in a very low concentration. The adsorbent for uranium from seawater in a very low concentration. The adsorbent for uranium from seawater should have high selectivity and affinity for uranium around pH 8. The required characteristics for uranium adsorbent are examined. Various chelating adsorbents have been proposed for the uranium adsorbent and their structures are discussed. Amidoxime type adsorbents have the highest adsorbing power for uranium among the adsorbents hitherto developed and fibrous amidoxime adsorbents are most promising for the practical application. Synthesis, structure and suitable shape of the amidoxime adsorbents are discussed. Uranium adsorption behavior and the amount of saturated adsorption are examined theoretically based on the complexation of an amidoxime monomer and the formula for the adsorption equiliburium is derived. The adsorption and recovery process for uranium from seawater is composed of adsorption, desorption, separation and concentration and finally, uranium is recovered as the yellow cake. A floating body mooring system is proposed by Nobukawa. (T.H.)

  14. Strontium (Sr) separation from seawater using titanate adsorbents: Effects of seawater matrix ions on Sr sorption behavior

    Science.gov (United States)

    Ryu, Jungho; Hong, Hye-jin; Ryu, Taegong; Park, In-Su

    2017-04-01

    Strontium (Sr) which has many industrial applications such as ferrite magnet, ceramic, and fire works exists in seawater with the concentration of approximately 7 mg/L. In previous report estimating economic potential on recovery of various elements from seawater in terms of their commercial values and concentrations in seawater, Sr locates upper than approximate break-even line, which implies Sr recovery from seawater can be potentially profitable. Recently, Sr separation from seawater has received great attention in the environmental aspect after Fukushima Nuclear Power Plant (NPP) accident which released much amount of radioactive Sr and Cs. Accordingly, the efficient separation of radioactive elements released to seawater has become critical as an important technological need as well as their removal from radioactive wastes. So far, it has been introduced to separate Sr from aqueous media by various methods including solvent extraction, adsorption by solid materials, and ion exchange. Among them, the adsorption technique using solid adsorbents is of great interest for selectively separating Sr from seawater with respect to low concentration level of Sr. In this study, we synthesized titanate nanotube (TiNT) by simple hydrothermal reaction, characterized its physicochemical properties, and systematically evaluated Sr sorption behavior under various reaction conditions corresponding to seawater environment. The synthesized TiNT exhibited the fibril-type nanotube structure with high specific surface area of 260 m2/g. The adsorption of Sr on TiNT rapidly occurred following pseudo-second-order kinetic model, and was in good agreement with Langmuir isotherm model, indicating maximum adsorption capacity of 97 mg/g. Based on Sr uptake and Na release with stoichiometric balance, sorption mechanism of Sr on TiNT was found to be ion-exchange between Na in TiNT lattice and Sr in solution phase, which was also confirmed by XRD and Raman analysis. Among competitive ions, Ca

  15. A one year comparison of radar and pressure tide gauge at Goa, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Desai, R.G.P.; Joseph, A.; VijayKumar, K.; Agarvadekar, Y.; Luis, R.; Sundar, D.; Viegas, B.

    is essential for wide variety of practical (e.g. engineering, navigation, risk to coastal areas, defense etc) and scientific applications. Considering the historically known vulnerability of the Indian coasts to storm surges (Joseph and Prabhudesai, 2005..., which required knowledge of atmospheric pressure (in case of absolute pressure sensor), seawater density and gravitational acceleration to make the conversion from pressure to sea level. In spite of the above lacuna, the instruments have many practical...

  16. Occurrence of pharmaceuticals and personal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea.

    Science.gov (United States)

    Ali, Aasim M; Rønning, Helene Thorsen; Alarif, Walied; Kallenborn, Roland; Al-Lihaibi, Sultan S

    2017-05-01

    The occurrence of selected pharmaceuticals and personal care products (PPCPs) and the pesticide atrazine were investigated in seawater samples collected from stations located at effluent dominated sites in the Saudi Arabian coastal waters of the Red Sea. PPCPs were analysed using solid phase extraction (SPE) followed by high performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). A multi component method for the ultra-trace level quantification of 13 target PPCPs in Seawater was developed and validated for the here performed study. The method procedure is described in detail in the supplementary material section. 26 samples from 7 distinct locations (2 directly influenced by continuous sewage release) were chosen for the sampling of surface seawater. Based upon local sales information, 25 target substances (20 PPCPs, 4 pesticides and 1 stimulant) were chosen for the here reported method development. Thirteen PPCPs were detected and quantified in a total of 26 seawater samples. Metformin, diclofenac, acetaminophen, and caffeine were identified as the most abundant PPCPs, detected in maximum concentration higher than 3 μg/L (upper quantification limit for the here developed method). Concentrations were in the range of 7- >3000 (metformin), 3000 ng/L (caffeine). The contribution of direct sewage release on the PPCP levels detected was obvious, the target PPCPs were detected in the Al-Arbaeen and Al-Shabab coastal lagoons in high concentrations due to the low water exchange with the open sea and still ongoing sewage releases in the lagoons. Also, substantial amounts of antibiotics were detected in all samples. Levels and distribution profile of the detected PPCPs revealed high level release rates and give raise to concern on potential environmental risks associated with the here document long term exposure on the fragile coastal marine environment of the region but particularly in the nearby protected coral reef environment outside the harbour

  17. The integrated impacts of natural processes and human activities on the origin and processes of groundwater salinization in the coastal aquifers of Beihai, Southern China

    Science.gov (United States)

    Li, Q.; Zhan, Y., , Dr; Chen, W. Ms; Yu, S., , Dr

    2017-12-01

    Salinization in coastal aquifers usually is the results of contamination related to both seawater intrusion and water-rock interaction. The chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai. The concentrations of the major ions that dominate in sea water (Cl-, Na+, Ca2+, Mg2+ and SO2- 4), as well as the isotopic ratios (2H, 18O, 87Sr/86Sr and 13C) suggest that the salinization occurring in the aquifer water of the coastal plain is related to seawater and the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization occurred in parts of the area, which is significantly influenced by the land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds is identified in the confined aquifer I at site BBW2. In consequence, the leakage from this polluted aquifer causes the salinization of groundwater in the confined aquifer II. At site BBW3, the confined aquifer I and lower confined aquifer II are remarkably contaminated by seawater intrusion. The weak connectivity with upper aquifers and seaward movement of freshwater prevents saltwater from encroaching the confined aquifer III. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for sustainable planning and management of groundwater resources in this region.

  18. Biodiversity and biogeography pattern of benthic communities in the coastal basins of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.K.; Ingole, B.S.

    Our understanding of coastal biogeography patterns is presently limited to certain regions and marine groups. Comprehending large-scale patterns and their underlying predictors is critical due to the changing environmental conditions. The Indian...

  19. Natural and Synthetic Estrogens in Wastewater Treatment Plant Effluent and the Coastal Ocean

    Science.gov (United States)

    2013-09-01

    isotopes (12C, 13C) is used routinely to identify synthetic steroid doping in athletics and livestock applications. 36 Chapter 4 will present...Suri (2009). "Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed- use areas." Environmental Monitoring...halogenated estrogens at picomolar levels in wastewater effluent and coastal seawater. The method was validated using treated effluent from the

  20. Biodiversity of chaetognaths of the Andaman Sea, Indian Ocean.

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Gireesh, R.

    Andaman Sea is a prominent biodiversity hotspot in the Indian Ocean. Stratified zooplankton collections were taken at 33 locations during 2003-2006. Average density of chaetognaths was 8.5/msup(3) in open ocean and 41.6/m sup(3) in coastal waters...

  1. Comparative Inactivation of Murine Norovirus, Human Adenovirus, and Human JC Polyomavirus by Chlorine in Seawater

    Science.gov (United States)

    de Abreu Corrêa, Adriana; Carratala, Anna; Barardi, Celia Regina Monte; Calvo, Miquel; Bofill-Mas, Sílvia

    2012-01-01

    Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log10 GC reductions and a 2.3- and 2.4-log10 PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log10 GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log10 GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration. PMID:22773637

  2. Distribution and dynamics of radionuclides and stable elements in the coastal waters off Rokkasho Village, Japan, prior to the opening of a nuclear reprocessing facility. Part 1. Sedimentation flux of suspended particles and elimination of radionuclides and stable elements from seawater

    International Nuclear Information System (INIS)

    Kondo, K.; Kawabata, H.; Ueda, S.; Hasegawa, H.; Inaba, J.; Ohmomo, Y.; Mitamura, O.; Seike, Y.

    2004-01-01

    A nuclear fuel reprocessing facility is currently under construction in Rokkasho Village, Aomori, Japan. After completion and start-up, this facility will discharge radionuclides into the Pacific Ocean through an outlet pipe set on the seafloor offshore. For future assessments of the stability of these radionuclides in the environment, a sufficient understanding of the behavior of radionuclides in this ocean ecosystem before the start-up of the facility is necessary. To understand the processes by which radionuclides and various other types of elements are eliminated from seawater, we measured the sedimentation flux of suspended particles in the coastal waters off Rokkasho Village where the sea emissions pipes will be placed. (author)

  3. Rapid determination of actinides in seawater samples

    International Nuclear Information System (INIS)

    Maxwell, S.L.; Culligan, B.K.; Hutchison, J.B.; Utsey, R.C.; McAlister, D.R.

    2014-01-01

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti +3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1-2 weeks and provide chemical yields of ∼30-60 %. This new sample preparation method can be performed in 4-8 h with tracer yields of ∼85-95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort. (author)

  4. Colloidal nature of radionuclides in seawater

    International Nuclear Information System (INIS)

    Feldman, I.

    1976-01-01

    There is considerable doubt that equilibrium calculations, i.e., employing solubility products and complex-ion stability constants, are valid for the submicro concentrations of radionuclides in seawater. The existence of radiocolloids should be expected in seawater. The great tendency of radiocolloids to adsorb onto finely-divided hydrous oxides makes their formation of significance in seawater, especially for artificial radionuclides. The subject of radiocolloid formation is reviewed in this chapter. It is shown that the 226 Ra/ 230 Th/U relationship found in seawater can be explained from the fact that the tendencies of these elements to form radiocolloids in seawater should decrease in order thorium > radium much greater than uranium. This explanation is much simpler than the prevailing oceanographic one. The theories for radiocolloid formation are discussed. The recent theory of Jones and Healy for the adsorption of hydrolyzable metal ions onto hydrous oxides is reviewed briefly, and its relevance to radiocolloid formation is pointed out

  5. Arabian Sea upwelling - A comparison between coastal and open ocean regions

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; PrasannaKumar, S.

    The response of the eastern Arabian Sea to prevailing winds during an upwelling event, in the peak of southwest monsoon, was studied at both coastal and open ocean environment based on the data collected as a part of the Indian Joint Global Ocean...

  6. 137Cs activity and associated dose in the coastal marine environment of India

    International Nuclear Information System (INIS)

    Verma, G.P.; Sharma, D.N.; Jha, S.K.

    2010-01-01

    Coastal marine environment is important for India since a considerable percentage of the human population resides in coastal areas. Fallout radionuclides as well as non-radioactive substances have polluted the coastal marine environment of India. The introduction of 137 Cs, a fallout radionuclide, considered as global pollutant, into marine environment has created the need for marine environmental data. The main objective is to provide data on the present level of 137 Cs which is important from the standpoint of radiological health and dose associated with it. Such database will also provide benchmark which will be helpful in assessing the impact of additional contribution to marine radioactivity in the future. The results confirm that the mean annual individual dose from 137 Cs in seafood (fish) for the Indian subcontinent is 0.03 μSv. The highest annual individual dose for 137 Cs due to the ingestion offish is in the age group of 40 to 59 years which is due to the reason that the Indian annual dietary intake of fish is highest in this age group

  7. Effects of triclosan on bacterial community composition and 'Vibrio' populations in natural seawater microcosms

    Directory of Open Access Journals (Sweden)

    Keri Ann Lydon

    2017-05-01

    Full Text Available Pharmaceuticals and personal care products, including antimicrobials, can be found at trace levels in treated wastewater effluent. Impacts of chemical contaminants on coastal aquatic microbial community structure and pathogen abundance are unknown despite the potential for selection through antimicrobial resistance. In particular, 'Vibrio', a marine bacterial genus that includes several human pathogens, displays resistance to the ubiquitous antimicrobial compound triclosan. Here we demonstrated through use of natural seawater microcosms that triclosan (at a concentration of ~5 ppm can induce a significant 'Vibrio' growth response (68–1,700 fold increases in comparison with no treatment controls for three distinct coastal ecosystems: Looe Key Reef (Florida Keys National Marine Sanctuary, Doctors Arm Canal (Big Pine Key, FL, and Clam Bank Landing (North Inlet Estuary, Georgetown, SC. Additionally, microbial community analysis by 16 S rRNA gene sequencing for Looe Key Reef showed distinct changes in microbial community structure with exposure to 5 ppm triclosan, with increases observed in the relative abundance of 'Vibrio'naceae (17-fold, Pseudoalteromonadaceae (65-fold, Alteromonadaceae (108-fold, Colwelliaceae (430-fold, and Oceanospirillaceae (1,494-fold. While the triclosan doses tested were above concentrations typically observed in coastal surface waters, results identify bacterial families that are potentially resistant to triclosan and/or adapted to use triclosan as a carbon source. The results further suggest the potential for selection of 'Vibrio' in coastal environments, especially sediments, where triclosan may accumulate at high levels.

  8. Remote sensing reflectance simulation of coastal optical complex water in the East China Sea

    Science.gov (United States)

    He, Shuo; Lou, Xiulin; Zhang, Huaguo; Zheng, Gang

    2018-02-01

    In this work, remote sensing reflectance (Rrs) spectra of the Zhejiang coastal water in the East China Sea (ECS) were simulated by using the Hydrolight software with field data as input parameters. The seawater along the Zhejiang coast is typical Case II water with complex optical properties. A field observation was conducted in the Zhejiang coastal region in late May of 2016, and the concentration of ocean color constituents (pigment, SPM and CDOM), IOPs (absorption and backscattering coefficients) and Rrs were measured at 24 stations of 3 sections covering the turbid to clear inshore coastal waters. Referring to these ocean color field data, an ocean color model suitable for the Zhejiang coastal water was setup and applied in the Hydrolight. A set of 11 remote sensing reflectance spectra above water surface were modeled and calculated. Then, the simulated spectra were compared with the filed measurements. Finally, the spectral shape and characteristics of the remote sensing reflectance spectra were analyzed and discussed.

  9. Evaluation and Numerical Simulation of Tsunami for Coastal Nuclear Power Plants of India

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-01-01

    Recent tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunami-genic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on different analytical/numerical approaches with shallow water wave theory. (authors)

  10. Effect of different seawater Mg

    NARCIS (Netherlands)

    Mewes, A.; Langer, G.; de Nooijer, L.J.; Bijma, J.; Reichart, G.J.

    2014-01-01

    Magnesium, incorporated in foraminiferal calcite (Mg/CaCC), is used intensively to reconstruct past seawater temperatures but, in addition to temperature, the Mg/CaCC of foraminiferal tests also depends on the ratio of Mg and Ca in seawater (Mg/CaSW). The physiological mechanisms responsible for

  11. Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone.

    Science.gov (United States)

    Pereira, Camilo D Seabra; Maranho, Luciane A; Cortez, Fernando S; Pusceddu, Fabio H; Santos, Aldo R; Ribeiro, Daniel A; Cesar, Augusto; Guimarães, Luciana L

    2016-04-01

    The present study determined environmental concentrations of pharmaceuticals, cocaine, and the main human metabolite of cocaine in seawater sampled from a subtropical coastal zone (Santos, Brazil). The Santos Bay is located in a metropolitan region and receives over 7367m(3) of wastewater per day. Five sample points under strong influence of the submarine sewage outfall were chosen. Through quantitative analysis by LC-MS/MS, 33 compounds were investigated. Seven pharmaceuticals (atenolol, acetaminophen, caffeine, losartan, valsartan, diclofenac, and ibuprofen), an illicit drug (cocaine), and its main human metabolite (benzoylecgonine) were detected at least once in seawater sampled from Santos Bay at concentrations that ranged from ng·L(-1) to μg·L(-1). In light of the possibility of bioaccumulation and harmful effects, the high concentrations of pharmaceuticals and cocaine found in this marine subtropical ecosystem are of environmental concern. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Environmental impact of condenser effluents into coastal marine environments: need for continuous monitoring

    International Nuclear Information System (INIS)

    Venugopal, V.P.

    2015-01-01

    Electric plants working on the principle of steam-water cycle require large amounts of water for condenser cooling purpose. Nuclear power plants require, on an average, about 3m 3 cooling water per minute per megawatt of electricity generated. Owning to the scarcity of large sources of freshwater for cooling, newer power plants, particularly in water-stressed parts of the world, tend to get located in coastal regions, where they can make use of the abundant seawater. However, this also poses a problem, in terms of the biofouling potential of coastal marine environments. Sessile benthic organism, which are generally present as part of the coastal marine ecosystem, extend their habitat into the cooling water system of the power plant. It is often observed that massive growth of such fouling organisms may endanger normal operation of the cooling water system, unless appropriate control measures are adopted. Presence of calcareous organisms such as mussels and barnacles in the pre-condenser sections of the power plant is a common sight; but these organisms, when lodged inside condenser tubes, can not only reduce the heat transfer efficiency but also can cause localized corrosion and tube leakage, leading of ingress of seawater into the steam-water system. It is, therefore, important that appropriate control measures are adopted to discourage the growth of the organisms. However, this needs to be done in an environmentally sustainable manner, as the cooling water is ultimately discharged back into the sea. The presentation aims to give and overview of the biofouling problems generally encountered in a typical tropical coastal power station operating in India and the chemical control measures adopted and their effectiveness. The talk also throws light on the more recent advances in biofouling control such as surface modification and use of nanotechnology which, in the foreseeable future, may provide more lasting and environmentally sustainable solutions. (author)

  13. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice-seawater mesocosm

    Science.gov (United States)

    Geilfus, Nicolas-Xavier; Galley, Ryan J.; Else, Brent G. T.; Campbell, Karley; Papakyriakou, Tim; Crabeck, Odile; Lemes, Marcos; Delille, Bruno; Rysgaard, Søren

    2016-09-01

    The precipitation of ikaite and its fate within sea ice is still poorly understood. We quantify temporal inorganic carbon dynamics in sea ice from initial formation to its melt in a sea ice-seawater mesocosm pool from 11 to 29 January 2013. Based on measurements of total alkalinity (TA) and total dissolved inorganic carbon (TCO2), the main processes affecting inorganic carbon dynamics within sea ice were ikaite precipitation and CO2 exchange with the atmosphere. In the underlying seawater, the dissolution of ikaite was the main process affecting inorganic carbon dynamics. Sea ice acted as an active layer, releasing CO2 to the atmosphere during the growth phase, taking up CO2 as it melted and exporting both ikaite and TCO2 into the underlying seawater during the whole experiment. Ikaite precipitation of up to 167 µmol kg-1 within sea ice was estimated, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64-66 µmol kg-1 in the water column. The export of TCO2 from sea ice to the water column increased the underlying seawater TCO2 by 43.5 µmol kg-1, suggesting that almost all of the TCO2 that left the sea ice was exported to the underlying seawater. The export of ikaite from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased vertical connectivity in sea ice due to the upward percolation of seawater and meltwater flushing during sea ice melt. Based on the change in TA in the water column around the onset of sea ice melt, more than half of the total ikaite precipitated in the ice during sea ice growth was still contained in the ice when the sea ice began to melt. Ikaite crystal dissolution in the water column kept the seawater pCO2 undersaturated with respect to the atmosphere in spite of increased salinity, TA and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying seawater can potentially hamper

  14. Characterization of saline groundwater across the coastal aquifer of Israel as resource for desalination

    Science.gov (United States)

    Stein, Shaked; Russak, Amos; Sivan, Orit; Yechieli, Yospeh; Oren, Yoram; Kasher, Roni

    2015-04-01

    In arid countries with access to marine water seawater desalination is becoming an important water source in order to deal with the water scarcity and population growth. Seawater reverse osmosis (RO) facilities use open seawater intake, which requires pretreatment processes to remove particles in order to avoid fouling of the RO membrane. In small and medium size desalination facilities, an alternative water source can be saline groundwater in coastal aquifers. Using saline groundwater from boreholes near the shore as feed water may have the advantage of natural filtration and low organic content. It will also reduce operation costs of pretreatment. Another advantage of using groundwater is its availability in highly populated areas, where planning of large RO desalination plants is difficult and expensive due to real-estate prices. Pumping saline groundwater underneath the freshwater-seawater interface (FSI) might shift the interface towards the sea, thus rehabilitating the fresh water reservoirs in the aquifer. In this research, we tested the potential use of saline groundwater in the coastal aquifer of Israel as feed water for desalination using field work and desalination experiments. Specifically, we sampled the groundwater from a pumping well 100 m from the shore of Tel-Aviv and sea water from the desalination plant in Ashqelon, Israel. We used an RO cross flow system in a pilot plant in order to compare between the two water types in terms of permeate flux, permeate flux decline, salt rejection of the membrane and the fouling on the membrane. The feed, brine and fresh desalinated water from the outlet of the desalination system were chemically analyzed and compared. Field measurements of dissolved oxygen, temperature, pH and salinity were also conducted in situ. Additionally, SDI (silt density index), which is an important index for desalination, and total organic carbon that has a key role in organic fouling and development of biofouling, were measured and

  15. Reintroduction of salt marsh vegetation and phosphorus fertilisation improve plant colonisation on seawater-contaminated cutover bogs

    Directory of Open Access Journals (Sweden)

    C. Emond

    2016-07-01

    Full Text Available Coastal bogs that are used for peat extraction are prone to contamination by seawater during storm events. Once contaminated, they remain mostly bare because of the combination of high salinity, low pH, high water table and low nutrient availability. The goal of this research was to investigate how plant colonisation at salt-contaminated bogs can be accelerated, in order to prevent erosion and fluvial export of the peat. At two seawater-contaminated bogs, we tested the application of rock phosphate and dolomitic lime in combination with five plant introduction treatments: transplantation of Carex paleacea; transplantation of Spartina pectinata; transfer of salt marsh diaspores in July; transfer of salt marsh diaspores in August; and no treatment (control. The effects of different doses of lime on the growth of C. paleacea and S. pectinata were also investigated in a greenhouse experiment. In the field, phosphorus fertilisation improved plant growth. Transplantation of C. paleacea resulted in the highest plant colonisation, whereas salt marsh diaspore transfer led to the highest species diversity. Lime applications did not improve plant establishment in either the field or the greenhouse. To promote revegetation of seawater-contaminated cutover bogs, adding P is an asset, Carex paleacea is a good species to transplant, and the transfer of salt marsh diaspores improves plant diversity.

  16. Physico-chemical behavior of radionuclides in seawater

    International Nuclear Information System (INIS)

    Kimura, Yuichiro; Ogawa, Yoshihiro; Honda, Yoshihide; Katsurayama, Kosuke.

    1980-01-01

    To elucidate the physico-chemical states of radionuclides in seawater in relation to uptake by the marine biosphere, the physicochemical behavior of radiocobalt, radioruthenium and radiocerium in seawater was investigated by electrodialysis, high-voltage paper electrophoresis, and also by paper chromatography for nitrosylruthenium complexes. Most of the radiocobalt in seawater behaved as dialytic cations. However, these cationic species were not necessarily simple divalent, because their electrophoretic bands were rather diffuse and showed two peaks temporarily. The electroneutral form also increased with aging in seawater. The radioruthenium in seawater showed relatively a number of well-defined species which could be readily classified into anionic, cationic, electroneutral, colloidal or particulate, non-dialytic and more or less adsorbable species. The radioruthenium in the chloro and nitratonitrosylruthenium complexes occurred mainly electroneutral and anionic species, while nitro and binuclear oxygen-bridged nitratonitrosylruthenium complexes showed dominant anionic species. The hydrolysis of higher nitro and nitratonitrosylruthenium complexes to lower ones was demonstrated with aging in seawater by paper chromatography. The radiocerium in seawater showed initially cationic species. However, the electroneutral and anionic species were revealed with aging by electrodialysis. The radiocerium were strongly adsorbed on filter paper at the starting band in paper electrophoresis, presumably because of the formation of strongly adsorbable or insoluble hydrolytic species or particle formation. (author)

  17. Inverse modeling for seawater intrusion in coastal aquifers: Insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem

    Science.gov (United States)

    Sanz, E.; Voss, C.I.

    2006-01-01

    Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only

  18. Paleogene Seawater Osmium Isotope Records

    Science.gov (United States)

    Rolewicz, Z.; Thomas, D. J.; Marcantonio, F.

    2012-12-01

    Paleoceanographic reconstructions of the Late Cretaceous and early Cenozoic require enhanced geographic coverage, particularly in the Pacific, in order to better constrain meridional variations in environmental conditions. The challenge with the existing inventory of Pacific deep-sea cores is that they consist almost exclusively of pelagic clay with little existing age control. Pelagic clay sequences are useful for reconstructions of dust accumulation and water mass composition, but accurate correlation of these records to other sites requires improved age control. Recent work indicates that seawater Os isotope analyses provide useful age control for red clay sequences. The residence time of Os in seawater is relatively long compared to oceanic mixing, therefore the global seawater 187Os/188Os composition is practically homogeneous. A growing body of Late Cretaceous and Cenozoic data has constrained the evolution of the seawater Os isotopic composition and this curve is now a viable stratigraphic tool, employed in dating layers of Fe-Mn crusts (e.g., Klemm et al., 2005). Ravizza (2007) also demonstrated that the seawater Os isotopic composition can be extracted reliably from pelagic red clay sediments by analyzing the leached oxide minerals. The drawback to using seawater Os isotope stratigraphy to date Paleogene age sediments is that the compilation of existing data has some significant temporal gaps, notably between ~38 and 55 Ma. To improve the temporal resolution of the seawater Os isotope curve, we present new data from Ocean Drilling Program (ODP) Site 865 in the equatorial Pacific. Site 865 has excellent biostratigraphic age control over the interval ~38-55Ma. Preliminary data indicate an increase in the seawater composition from 0.427 at 53.4 Ma to 0.499 by 43 Ma, consistent with the apparent trend in the few existing data points. We also analyzed the Os isotopic composition recorded by oxide minerals at Integrated Ocean Drilling Program (IODP) Site U1370

  19. Cooperative Monitoring Center Occasional Paper/11: Cooperative Environmental Monitoring in the Coastal Regions of India and Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Rajen, Gauray

    1999-06-01

    The cessation of hostilities between India and Pakistan is an immediate need and of global concern, as these countries have tested nuclear devices, and have the capability to deploy nuclear weapons and long-range ballistic missiles. Cooperative monitoring projects among neighboring countries in South Asia could build regional confidence, and, through gradual improvements in relations, reduce the threat of war and the proliferation of weapons of mass destruction. This paper discusses monitoring the trans-border movement of flow and sediment in the Indian and Pakistani coastal areas. Through such a project, India and Pakistan could initiate greater cooperation, and engender movement towards the resolution of the Sir Creek territorial dispute in their coastal region. The Joint Working Groups dialogue being conducted by India and Pakistan provides a mechanism for promoting such a project. The proposed project also falls within a regional framework of cooperation agreed to by several South Asian countries. This framework has been codified in the South Asian Seas Action Plan, developed by Bangladesh, India, Maldives, Pakistan and Sri Lanka. This framework provides a useful starting point for Indian and Pakistani cooperative monitoring in their trans-border coastal area. The project discussed in this paper involves computer modeling, the placement of in situ sensors for remote data acquisition, and the development of joint reports. Preliminary computer modeling studies are presented in the paper. These results illustrate the cross-flow connections between Indian and Pakistani coastal regions and strengthen the argument for cooperation. Technologies and actions similar to those suggested for the coastal project are likely to be applied in future arms control and treaty verification agreements. The project, therefore, serves as a demonstration of cooperative monitoring technologies. The project will also increase people-to-people contacts among Indian and Pakistani policy

  20. ANALYSIS OF SEA WATER POLLUTION IN COASTAL MARINE DISTRICT TUBAN TO THE QUALITY STANDARDS OF SEA WATER WITH USING STORET METHOD

    Directory of Open Access Journals (Sweden)

    Perdana Ixbal Spanton

    2017-05-01

    Full Text Available The sea water is a component that interacts with the terrestrial environment, where sewage from the land will lead to the sea. Waste containing these pollutants will enter into coastal waters and marine ecosystems. Partially soluble in water, partially sinks to the bottom and was concentrated sediment, and partly into the body tissues of marine organisms. This study was conducted to determine the level of pollution of sea water on the coast in the district of Tuban. This research was conducted in the Coastal Water Tuban, East Java. The main material used in research on Analysis of Water Pollution in Coastal Sea on Tuban. The method used in this research is using storet method and compared to the quality standards of the Environment Decree No. 51 in 2004. Based on the analysis of testing at five sampling point’s seawater around Bodies Tuban, obtained by sea water quality measurement results either in physics, chemistry, and microbiology varied. The level of pollution of sea water around Coastal Tuban obtained by using Storet Method average value of analysis is -4.2 included in class B are lightly blackened, while using values obtained Pollution Index average pollution index of 3.60 is included in the category lightly blackened. Keywords: Analysis of the pollution level of seawater on the coast in Tuban, Quality Standards of Sea Water, Storet Method.

  1. Comparative approach to capture bacterial diversity in coastal waters

    DEFF Research Database (Denmark)

    Na, Hyunsoo; Kim, Ok-Sun; Yoon, Suk-hwan

    2011-01-01

    Despite the revolutionary advancements in DNA sequencing technology and cultivation techniques, few studies have been done to directly compare these methods. In this study, a 16S rRNA gene-based, integrative approach combining culture-independent techniques with culture-dependent methods was taken...... to investigate the bacterial community structure of coastal seawater collected from the Yellow Sea, Korea. For culture-independent studies, we used the latest model pyrosequencer, Roche/454 Genome Sequencer FLX Titanium. Pyrosequencing captured a total of 52 phyla including 27 candidate divisions from the water...

  2. Elders recall an earlier tsunami on Indian Ocean shores

    Science.gov (United States)

    Kakar, Din Mohammad; Naeem, Ghazala; Usman, Abdullah; Hasan, Haider; Lohdi, Hira; Srinivasalu, Seshachalam; Andrade, Vanessa; Rajendran, C.P.; Naderi Beni, Abdolmajid; Hamzeh, Mohammad Ali; Hoffmann, Goesta; Al Balushi, Noora; Gale, Nora; Kodijat, Ardito; Fritz, Hermann M.; Atwater, Brian F.

    2014-01-01

    Ten years on, the Indian Ocean tsunami of 26 December 2004 still looms large in efforts to reduce coastal risk. The disaster has spurred worldwide advances in tsunami detection and warning, tsunami-risk assessment, and tsunami awareness [Satake, 2014]. Nearly a lifetime has passed since the northwestern Indian Ocean last produced a devastating tsunami. Documentation of this tsunami, in November 1945, was hindered by international instability in the wake of the Second World War and, in British India, by the approach of independence and partition. The parent earthquake, of magnitude 8.1, was widely recorded, and the tsunami registered on tide gauges, but intelligence reports and newspaper articles say little about inundation limits while permitting a broad range of catalogued death tolls. What has been established about the 1945 tsunami falls short of what's needed today for ground-truthing inundation models, estimating risk to enlarged populations, and anchoring awareness campaigns in local facts. Recent efforts to reduce coastal risk around the Arabian Sea include a project in which eyewitnesses to the 1945 tsunami were found and interviewed (Fig. 1), and related archives were gathered. Results are being made available through UNESCO's Indian Ocean Tsunami Information Center in hopes of increasing scientific understanding and public awareness of the region's tsunami hazards.

  3. Barrier spit recovery following the 2004 Indian Ocean tsunami at Pakarang Cape, southwest Thailand

    Science.gov (United States)

    Koiwa, Naoto; Takahashi, Mio; Sugisawa, Shuhei; Ito, Akifumi; Matsumoto, Hide-aki; Tanavud, Charlchai; Goto, Kazuhisa

    2018-04-01

    The 2004 Indian Ocean tsunami had notable impacts on coastal landforms. Temporal change in topography by coastal erosion and subsequent formation of a new barrier spit on the nearshore of Pakrang Cape, southeastern Thailand, had been monitored for 10 years since 2005 based on field measurement using satellite images, high-resolution differential GPS, and/or handy GPS. Monitored topography data show that a barrier island was formed offshore from the cape several months after the tsunami event through progradation of multiple elongated gravelly beach ridges and washover fan composed of coral gravels. Subsequently, the barrier spit expanded to the open sea. The progradation and expansion were supported by supply of a large amount of coral debris produced by the tsunami waves. These observations provide useful data to elucidate processes of change in coastal landforms after a tsunami event. The 2004 Indian Ocean tsunami played an important role in barrier spit evolution over a period of at least a decade.

  4. A component of the Indian Climate Research Programme (ICRP)

    Indian Academy of Sciences (India)

    The Indian Climate Research Programme (ICRP) focuses on the study of climate variability and its impact on agriculture. To address the role of the Bay of Bengal in monsoon variability, a process study was organised during July-August 1999, deploying research ships, buoys, INSAT, coastal radar and conventional ...

  5. Why hasn't a seawater intrusion yet happened in the Kaluvelli-Pondicherry basin, Tamil Nadu, India?

    Science.gov (United States)

    Vincent, Aude; Violette, Sophie

    2016-04-01

    Worldwide, coastal aquifers are threatened by seawater intrusion. The threat is even bigger when those aquifers are overexploited, for example for irrigation, or when their recharge is low due to a semi-arid or arid climate. The sedimentary basin studied here presents both this characteristics, and water level records in the main aquifer can be as low as 30m below MSL. Though, no seawater intrusion has been monitored yet. To understand why, and because a good knowledge of a system hydrodynamic is a necessary step to an efficient water management strategy, hydrogeological numerical modelling of this multi-layered system has been conducted. Existing and acquired geological and hydrodynamic data have been implemented into a quasi-3D hydrogeological model performed with NEWSAM code. Recharge had been previously quantified through the intercomparison of hydrological models, based on surface flow field measurements. During the hydrogeological modelling, sensitivity tests on parameters, and on the nature of the boundary condition with the sea, led to the hypothesis of an offshore freshwater stock. Extension of this fresh groundwater stock has been calculated thanks to Groen approximation.

  6. Seawater and Detrital Marine Pb Isotopes as Monitors of Antarctic Weathering Following Ice Sheet Development

    Science.gov (United States)

    Fenn, C.; Martin, E. E.; Basak, C.

    2011-12-01

    Comparisons of seawater and detrital Pb isotopes from sites proximal to Antarctica at the Eocene/Oligocene transition (EOT) are being used to understand variations in continental weathering associated with the development of the East Antarctic Ice Sheet (EAIS). Previous work has shown that seawater and detrital archives yield similar isotopic values during Eocene warmth, which is interpreted to record congruent chemical weathering of the continent. In contrast, distinct isotopic values for the two phases at the EOT represents increased incongruent mechanical weathering during growth of the ice sheet. For this study we expanded beyond the initial glaciation at the EOT to determine whether less dramatic changes in ice volume and climate also produce variations in weathering and intensity that are recorded by seawater and detrital Pb isotopes. We collected Nd and Pb isotope data from extractions of Fe-Mn oxide coatings of bulk decarbonated marine sediments, which preserve seawater isotopic values, and from complete dissolutions of the remaining silicate fraction for Ocean Drilling Program Site 748 on Kerguelen Plateau (1300 m modern water depth). The data spans an interval of deglaciation from ~23.5-27 Ma documented by δ18O that has been equated to a ~30% decrease in ice volume on Antarctica (Pekar and Christie-Blick, 2008, Palaeogeogr., Palaeoclim., Palaeoecol.). Initial results from Site 748 include the first ɛNd values for intermediate waters in the Oligocene Southern Ocean and reveal a value of ~-8 over the entire 3.5 my interval, which is consistent with values reported for deep Indian Ocean sites at this time and similar to deeper Southern Ocean sites. Corresponding detrital ɛNd values are less radiogenic and decrease from -9 to -13 during the study interval. Detrital 206Pb/204Pb values also decrease during the warming interval, while seawater 206Pb/204Pb values increase. The decrease in detrital values indicates the composition of source materials entering

  7. Distribution of Tritium and {sup 137}CS in South Indian Ocean Waters - Implications of Water Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, P. P.; Jeskovsky, M.; Sykora, I. [Comenius University, Faculty of Mathematics, Physics and Informatics, Bratislava (Slovakia); Aoyama, M. [Meteorological Research Institute, Tsukuba (Japan); Gastaud, J.; Levy, I. [International Atomic Energy Agency, Marine Environment Laboratories (Monaco); Hamajima, Y. [Kanazawa University, Low-Level Radioactivity Laboratory, Nomi (Japan); Hirose, K. [Sophia University, Faculty of Science and Technology, Tokyo (Japan); Sanchez-Cabeza, J. A. [Universitat Autonoma de Barcelona, Bellaterra (Spain)

    2013-07-15

    The World Ocean, and specifically the Indian Ocean, plays a significant role in the better understanding of the climate. The distribution of global fallout {sup 3}H, {sup 14}C, {sup 90}Sr, {sup 129}I and {sup 137}Cs in the seawater of the Indian Ocean, after their main injection from atmospheric nuclear weapons tests during the 1960s, have been investigated. Results obtained in the framework of the SHOTS (Southern Hemisphere Ocean Tracer Studies) project are evaluated and compared with previously published data. The enhanced {sup 3}H and {sup 137}Cs levels observed in the south Indian ocean indicate transport of water masses labelled with these radionuclides from the central Pacific Ocean via the Indonesian Seas to the Indian Ocean. The observed surface gradients and presence of several water masses in the south Indian ocean makes this ocean one of the most dynamic parts of the World ocean. (author)

  8. Geophysical characterization of saltwater intrusion in a coastal aquifer: The case of Martil-Alila plain (North Morocco)

    Science.gov (United States)

    Himi, Mahjoub; Tapias, Josefiina; Benabdelouahab, Sara; Salhi, Adil; Rivero, Luis; Elgettafi, Mohamed; El Mandour, Abdenabi; Stitou, Jamal; Casas, Albert

    2017-02-01

    Several factors can affect the quantity and the quality of groundwater resources, but in coastal aquifers seawater intrusion is often the most significant issue regarding freshwater supply. Further, saltwater intrusion is a worldwide issue because about seventy percent of the world's population lives in coastal regions. Generally, fresh groundwater not affected by saltwater intrusion is characterized by low salinity and therefore low electrical conductivity (EC) values. Consequently, high values of EC in groundwater along the coastline are usually associated to seawater intrusion. This effect is amplified if the coastal aquifer is overexploited with a subsequent gradual displacement of the freshwater-saltwater interface towards the continent. Delineation of marine intrusion in coastal aquifers has traditionally relied upon observation wells and collection of water samples. This approach may miss important hydrologic features related to saltwater intrusion in areas where access is difficult and where wells are widely spaced. Consequently, the scarcity of sampling points and sometimes their total absence makes the number of data available limited and most of the time not representative for mapping the spatial and temporal variability of groundwater salinity. In this study, we use a series of geophysical methods for characterizing the aquifer geometry and the extension of saltwater intrusion in the Martil-Alila coastal region (Morocco) as a complement to geological and hydrogeochemical data. For this reason, we carried out three geophysical surveys: Gravity, Electrical Resistivity and Frequency Domain Electromagnetic. The geometry of the basin has been determined from the interpretation of a detailed gravity survey. Electrical resistivity models derived from vertical electrical soundings allowed to characterize the vertical and the lateral extensions of aquifer formations. Finally, frequency domain electromagnetic methods allowed delineating the extension of the

  9. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    Science.gov (United States)

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  10. Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic

    Science.gov (United States)

    Grasby, Stephen E.; Rod Smith, I.; Bell, Trevor; Forbes, Donald L.

    2013-06-01

    Two informally named basins (Mirabilite Basins 1 and 2) along a submergent coastline on Banks Island, Canadian Arctic Archipelago, host up to 1 m-thick accumulations of mirabilite (Na2SO4·10H2O) underlying stratified water bodies with basal anoxic brines. Unlike isostatically uplifting coastlines that trap seawater in coastal basins, these basins formed from freshwater lakes that were transgressed by seawater. The depth of the sill that separates the basins from the sea is shallow (1.15 m), such that seasonal sea ice formation down to 1.6 m isolates the basins from open water exchange through the winter. Freezing of seawater excludes salts, generating dense brines that sink to the basin bottom. Progressive freezing increases salinity of residual brines to the point of mirabilite saturation, and as a result sedimentary deposits of mirabilite accumulate on the basin floors. Brine formation also leads to density stratification and bottom water anoxia. We propose a model whereby summer melt of the ice cover forms a temporary freshwater lens, and rather than mixing with the underlying brines, it is exchanged with seawater once the ice plug that separates the basins from the open sea melts. This permits progressive brine development and density stratification within the basins.

  11. Intrinsic bioremediation potential of a chronically polluted marine coastal area.

    Science.gov (United States)

    Catania, Valentina; Santisi, Santina; Signa, Geraldina; Vizzini, Salvatrice; Mazzola, Antonio; Cappello, Simone; Yakimov, Michail M; Quatrini, Paola

    2015-10-15

    A microbiological survey of the Priolo Bay (eastern coast of Sicily, Ionian Sea), a chronically polluted marine coastal area, was carried out in order to discern its intrinsic bioremediation potential. Microbiological analysis, 16S rDNA-based DGGE fingerprinting and PLFAs analysis were performed on seawater and sediment samples from six stations on two transects. Higher diversity and variability among stations was detected by DGGE in sediment than in water samples although seawater revealed higher diversity of culturable hydrocarbon-degrading bacteria. The most polluted sediment hosted higher total bacterial diversity and higher abundance and diversity of culturable HC degraders. Alkane- and PAH-degrading bacteria were isolated from all stations and assigned to Alcanivorax, Marinobacter, Thalassospira, Alteromonas and Oleibacter (first isolation from the Mediterranean area). High total microbial diversity associated to a large selection of HC degraders is believed to contribute to natural attenuation of the area, provided that new contaminant contributions are avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Rapid determination of 90Sr in seawater

    International Nuclear Information System (INIS)

    Pavlotskaya, F.I.; Moskin, A.I.

    1994-01-01

    A method for determining 90 Sr in seawater that is based on direct isolation and radiochemical purification of daughter 90 Y is proposed. The analysis time is 6-8 h. The chemical yield of the Y-carrier during the 90 Sr determination from 35 liters of seawater varies in the range 37-69%. The analysis uncertainty is 90 Sr from seawater and subsequent isolation of 90 Y

  13. Baseline geophysical data for hazard management in coastal areas in relation to earthquakes and tsunamis

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    is another factor for some of the intraplate earthquakes in the South Indian Shield, which includes the Eastern and Western Continental Margins of India. Baseline geophysical data for hazard management in coastal areas in relation to earthquakes... surge. Keywords Hazard management, marine geophysical data, geomorphology and tsunami surge, coastal seismicity Date received: 7 August 2015; accepted: 15 October 2015 CSIR – National Institute of Oceanography, Visakhapatnam, India Corresponding author...

  14. Chemistry of superoxide radical in seawater: CDOM associated sink of superoxide in coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Goldstone, J.V.; Voelker, B.M.

    2000-03-15

    Colored dissolved organic matter (CDOM) and humic substances contain a nonmetallic redox-cycling component capable of catalyzing superoxide (O{sub 2}{sup {minus}}) dismutation. First-order rate coefficients (k{sub pseudo}) measured for this O{sub 2}{sup {minus}} sink in a number of coastal and Chesapeake Bay water samples range up to 1.4s{sup {minus}1}, comparable in magnitude to catalyzed dismutation by Cu species. A significant (r{sup 2}=0.73) correlation is observed between k{sub pseudo} and the optical absorption and salinity of individual coastal water samples, suggesting an association with non-marine-derived CDOM. The activity of this sink is not changed by acidification or boiling of samples but is removed by photooxidation, indicating that it is an organic compound, but that it is neither enzymatic nor likely to consist of tightly bound metals. The stoichiometry of hydrogen peroxide formation from O{sub 2}{sup {minus}} decay indicates that this sink is capable of a redox cycle catalyzing the dismutation of O{sub 2}{sup {minus}}. This CDOM sink combined with the organic copper sink previously described will produce a steady-state superoxide concentration in coastal waters that is 100--1000-fold lower than that predicted from bimolecular dismutation alone. Catalyzed O{sub 2}{sup {minus}} decay was also observed in a variety of humic and fulvic acid samples, possibly occurring through quinone functionalities. Although the presence of quinone moieties in humic and fulvic acids has been demonstrated, there do not appear to be good correlations between several measures of quinone content and the O{sub 2}{sup {minus}} dismutation rates of these samples.

  15. Remobilization of polycyclic aromatic hydrocarbons and organic matter in seawater during sediment resuspension experiments from a polluted coastal environment: Insights from Toulon Bay (France).

    Science.gov (United States)

    Guigue, Catherine; Tedetti, Marc; Dang, Duc Huy; Mullot, Jean-Ulrich; Garnier, Cédric; Goutx, Madeleine

    2017-10-01

    Polycyclic aromatic hydrocarbons (PAHs) and organic matter contents were measured in seawater during resuspension experiments using sediments collected from Toulon Bay (Northwestern Mediterranean Sea, France). The studied sediments were very highly contaminated in PAHs, especially in 4-ring compounds emitted from combustion processes. The sediments used for resuspension experiments were collected at 0-2 cm (diagenetically new organic matter, OM) and 30-32 cm depths (diagenetically transformed OM). They were both mostly composed of fine particles (seawater up to 10-, 1.3-, 4.4- and 5.7-fold, respectively. The remobilization in seawater was higher for 4-6 ring PAHs, especially benzo(g,h,i)perylene, whose concentration exceeded the threshold values of the European Water Framework Directive. This noted the potential harmful effects of sediment resuspension on marine biota. From these sediment resuspension experiments, we determined OC-normalized partition coefficients of PAHs between sediment and water (K oc ) and found that during such events, the transfer of PAHs from sediment particles to seawater was lower than that predicted from octanol-water partition coefficients (K ow ) (i.e., measured K oc  > K oc predicted from K ow ). The results confirmed the sequestration role of sedimentary OC quality and grain size on PAHs; the OM diagenetic state seemed to impact the partition process but in a relatively minor way. Furthermore, differences were observed between 2-4 ring and 5-6 ring PAHs, with the latter displaying a relatively higher mobility towards seawater. These differences may be explained by the distribution of these two PAH pools within different OM moieties, such as humic substances and black carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Documentation of the seawater intrusion (SWI2) package for MODFLOW

    Science.gov (United States)

    Bakker, Mark; Schaars, Frans; Hughes, Joseph D.; Langevin, Christian D.; Dausman, Alyssa M.

    2013-01-01

    The SWI2 Package is the latest release of the Seawater Intrusion (SWI) Package for MODFLOW. The SWI2 Package allows three-dimensional vertically integrated variable-density groundwater flow and seawater intrusion in coastal multiaquifer systems to be simulated using MODFLOW-2005. Vertically integrated variable-density groundwater flow is based on the Dupuit approximation in which an aquifer is vertically discretized into zones of differing densities, separated from each other by defined surfaces representing interfaces or density isosurfaces. The numerical approach used in the SWI2 Package does not account for diffusion and dispersion and should not be used where these processes are important. The resulting differential equations are equivalent in form to the groundwater flow equation for uniform-density flow. The approach implemented in the SWI2 Package allows density effects to be incorporated into MODFLOW-2005 through the addition of pseudo-source terms to the groundwater flow equation without the need to solve a separate advective-dispersive transport equation. Vertical and horizontal movement of defined density surfaces is calculated separately using a combination of fluxes calculated through solution of the groundwater flow equation and a simple tip and toe tracking algorithm. Use of the SWI2 Package in MODFLOW-2005 only requires the addition of a single additional input file and modification of boundary heads to freshwater heads referenced to the top of the aquifer. Fluid density within model layers can be represented using zones of constant density (stratified flow) or continuously varying density (piecewise linear in the vertical direction) in the SWI2 Package. The main advantage of using the SWI2 Package instead of variable-density groundwater flow and dispersive solute transport codes, such as SEAWAT and SUTRA, is that fewer model cells are required for simulations using the SWI2 Package because every aquifer can be represented by a single layer of cells

  17. Chlorine-36 in seawater

    International Nuclear Information System (INIS)

    Argento, David C.; Stone, John O.; Keith Fifield, L.; Tims, Stephen G.

    2010-01-01

    Natural cosmogenic 36 Cl found in seawater originates from spallation of atmospheric 40 Ar, capture of secondary cosmic-ray neutrons by dissolved 35 Cl, and river runoff which contains 36 Cl produced in situ over the surface of the continents. The long residence time of chloride in the ocean and long half-life of 36 Cl compared to the oceanic mixing time should result in a homogenous 36 Cl/Cl ratio throughout the ocean. Production by neutron capture in the course of nuclear weapons testing should be insignificant averaged over the oceans as a whole, but may have led to regions of elevated 36 Cl concentration. Previous attempts to measure the 36 Cl/Cl ratio of seawater have been hindered by interferences, contamination, or insufficient analytic sensitivity. Here we report preliminary measurements on seawater samples, which demonstrate that the 36 Cl/Cl ratio is 0.5 ± 0.3 x 10 -15 , in reasonable agreement with calculated contributions from the sources listed above.

  18. Seawater desalination with nuclear power

    International Nuclear Information System (INIS)

    2005-01-01

    Nuclear power helps reduce costs for energy-intensive processes such as seawater desalination. A new generation of innovative small and medium nuclear power plants could co-generate electricity and potable water from seawater, both safely and at competitive prices in today's market. The IAEA provides technical support to Member States facing water shortage problems, on assessing the viability of nuclear power in seawater desalination. The support, usually channelled through national Technical Cooperation (TC) projects, can take several forms, ranging from educational training and technical advice on feasibility studies to design and safety review of demonstration projects. The IAEA offers a software tool (DEEP) that can be used to evaluate the economics of the different desalination and heat source configurations, including nuclear and fossil options

  19. Coastal Ocean Observing Network - Open Source Architecture for Data Management and Web-Based Data Services

    Science.gov (United States)

    Pattabhi Rama Rao, E.; Venkat Shesu, R.; Udaya Bhaskar, T. V. S.

    2012-07-01

    The observations from the oceans are the backbone for any kind of operational services, viz. potential fishing zone advisory services, ocean state forecast, storm surges, cyclones, monsoon variability, tsunami, etc. Though it is important to monitor open Ocean, it is equally important to acquire sufficient data in the coastal ocean through coastal ocean observing systems for re-analysis, analysis and forecast of coastal ocean by assimilating different ocean variables, especially sub-surface information; validation of remote sensing data, ocean and atmosphere model/analysis and to understand the processes related to air-sea interaction and ocean physics. Accurate information and forecast of the state of the coastal ocean at different time scales is vital for the wellbeing of the coastal population as well as for the socio-economic development of the country through shipping, offshore oil and energy etc. Considering the importance of ocean observations in terms of understanding our ocean environment and utilize them for operational oceanography, a large number of platforms were deployed in the Indian Ocean including coastal observatories, to acquire data on ocean variables in and around Indian Seas. The coastal observation network includes HF Radars, wave rider buoys, sea level gauges, etc. The surface meteorological and oceanographic data generated by these observing networks are being translated into ocean information services through analysis and modelling. Centralized data management system is a critical component in providing timely delivery of Ocean information and advisory services. In this paper, we describe about the development of open-source architecture for real-time data reception from the coastal observation network, processing, quality control, database generation and web-based data services that includes on-line data visualization and data downloads by various means.

  20. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  1. Hybrid gas turbine–organic Rankine cycle for seawater desalination by reverse osmosis in a hydrocarbon production facility

    International Nuclear Information System (INIS)

    Eveloy, Valérie; Rodgers, Peter; Qiu, Linyue

    2015-01-01

    Highlights: • Seawater reverse osmosis driven by hybrid gas turbine–organic Rankine power cycle. • High ambient air and seawater temperatures, and high seawater salinity. • Energy–exergy analysis of power and desalination systems for six organic fluids. • Economic viability of waste heat recovery in subsidized utility pricing context. - Abstract: Despite water scarcity, the use of industrial waste heat for seawater desalination has been limited in the Middle East to date. This study evaluates the technical and economic feasibility of integrating on-site gas turbine power generation and reverse osmosis equipment for the production of both electricity and fresh water in a coastal hydrocarbon production facility. Gas turbine exhaust gas waste heat is recovered using an intermediate heat transfer fluid and fed to an organic Rankine cycle evaporator, to generate mechanical power to drive the reverse osmosis high pressure pump. Six candidate organic working fluids are evaluated, namely toluene, benzene, cyclohexane, cyclopentane, n-pentane and R245fa. Thermodynamic and desalination performance are assessed in the harsh climatic and salinity conditions of the Arabian Gulf. The performance metrics considered incorporate electric power and permeate production, thermal and exergy efficiency, specific energy consumption, system size, and permeate quality. Using toluene in the bottoming power cycle, a gain in power generation efficiency of approximately 12% is achieved relative to the existing gas turbine cycle, with an annual average of 2260 m"3/h of fresh water produced. Depending upon the projected evolution of local water prices, the investment becomes profitable after two to four years, with an end-of-life net present value of 220–380 million USD, and internal rate of return of 26–48%.

  2. Conceptual design on uranium recovery plant from seawater

    International Nuclear Information System (INIS)

    Kato, Toshiaki; Okugawa, Katsumi; Sugihara, Yutaka; Matsumura, Tsuyoshi

    1999-01-01

    Uranium containing in seawater is extremely low concentration, which is about 3 mg (3 ppb) per 1 ton of seawater. Recently, a report on development of a more effective collector of uranium in seawater (a radiation graft polymerization product of amidoxime onto polyethylene fiber) was issued by Japan Atomic Energy Research Institute. In this paper, an outline design of a uranium recovery plant from seawater was conducted on a base of the collector. As a result of cost estimation, the collection cost of seawater uranium using this method was much higher than that of uranium mine on land and described in the Red Book for mineral uranium cost. In order to make the seawater uranium cost comparable to the on-land uranium cost, it is necessary to establish comprehensive efforts in future technical development, such as development in absorption property of uranium with the collector, resolution method using less HCl, and so forth. (G.K.)

  3. Biomarkers of physiological responses of Octopus vulgaris to different coastal environments in the western Mediterranean Sea.

    Science.gov (United States)

    Sillero-Ríos, J; Sureda, A; Capó, X; Oliver-Codorniú, M; Arechavala-Lopez, P

    2018-03-01

    The increase of pollutants in coastal seawater could produce several harmful biological effects on marine organisms related to the production of reactive oxygen species (ROS) causing cellular and tissue damages through oxidative stress mechanisms. Common octopuses (Octopus vulgaris) inhabiting coastal areas under high anthropogenic activity of Mallorca (W-Mediterranean Sea) have the ability to control oxidative damage by triggering antioxidant enzyme responses. Analyzing the digestive glands, octopuses from human-altered coastal areas showed higher activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) compared to octopuses from non-influenced coastal waters (i.e. marine reserve area). Higher metallothionein (MT) concentrations and lack of malondialdehyde (MDA) variations also reflect adaptations of O. vulgaris to polluted areas. This is the first study assessing the levels of the oxidative stress biomarkers on O. vulgaris in the Mediterranean Sea, revealing their usefulness to assess diverse environmental pollution effects on this relevant ecological and commercial species.

  4. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China

    Science.gov (United States)

    Chen, Liuzhu; Ma, Teng; Du, Yao; Xiao, Cong; Chen, Xinming; Liu, Cunfu; Wang, Yanxin

    2016-05-01

    Geothermal energy is abundant in Guangdong Province of China, however, majority of it is still unexploited. To take full advantage of this energy, it is essential to know the information of geothermal system. Here, physical parameters such as pH and temperature, major ion (Na+, Ca2 +, Mg2 +, Cl-, SO42 - and HCO3-), trace elements (Br-, Sr2 +, Li+ and B3 +) and stable isotopes (2H, 18O and 37Cl) in geothermal water, non-geothermal water (river water, cold groundwater) and seawater were used to identify the origin and evolution of geothermal water in coastal plain of Southwest of Guangdong. Two separate groups of geothermal water have been identified in study area. Group A, located in inland of study area, is characterized by Na+ and HCO3-. Group B, located in coastal area, is characterized by Na+ and Cl-. The relationships of components vs. Cl for different water samples clearly suggest the hydrochemical differences caused by mixing with seawater and water-rock interactions. It's evident that water-rock interactions under high temperature make a significant contribution to hydrochemistry of geothermal water for both Group A and Group B. Besides, seawater also plays an important role during geothermal water evolution for Group B. Mixing ratios of seawater with geothermal water for Group B are calculated by Cl and Br binary diagram, the estimated results show that about < 1% to < 35% of seawater has mixed into geothermal water, and seawater might get into the geothermal system by deep faults. Molar Na/Cl ratios also support these two processes. Geothermal and non-geothermal water samples plot around GMWL in the δ2H vs. δ18O diagram, indicating that these samples have a predominant origin from meteoric water. Most of geothermal water samples display δ37Cl values between those of the non-geothermal water and seawater samples, further reveals three sources of elements supply for geothermal water, including atmospheric deposition, bedrocks and seawater, which show a

  5. Concept, approaches and applications of integrated coastal zone management in planning and management of Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Pathak, M.C.; Sinha, R.; Nigam, R.; Gujar, A.R.; Kotnala, K.L.

    of coastal planning and management in India is to achieve a balance between these two. In order to regulate coastal development and to ensure minimisation of long term problems, a specific coastal legislation namely Coastal Regulation Zone (CRZ) was enacted...

  6. Reconstructing Environmental Changes of a Coastal Lagoon with Coral Reefs in Southeastern Hainan Island

    Institute of Scientific and Technical Information of China (English)

    ZHOU Liang; GAO Shu; GAO Jianhua; ZHAO Yangyang; HAN Zhuochen; YANG Yang; JIA Peihong

    2017-01-01

    Coastal lagoons with small catchment basins are highly sensitive to natural processes and anthropogenic activities.To figure out the environmental changes of a coastal lagoon and its contribution to carbon burial,two sediment cores were collected in Xincun Lagoon,southeastern Hainan Island and 210pb activities,grain size parameters,total organic carbon (TOC),total nitrogen (TN),total inorganic carbon (TIC) and stable carbon isotopes (δ13C) were measured.The results show that in 1770-1815,the decreasing water exchange capacity with outer open water,probably caused by the shifting and narrowing of the tidal inlet,not only diminished the currents and fined the sediments in the lagoon,but also reduced the organic matter of marine sources.From 1815 to 1950,the sedimentary environment of Xincun Lagoon was frequently influenced by storm events.These extreme events resulted in the high fluctuation of sediment grain size and sorting,as well as the great variation in contributions of terrestrial (higher plants,soils) and marine sources (phytoplankton,algae,seagrass).The extremely high content of TIC,compared to TOC before 1950 could be attributed to the large-scale coverage of coral reefs.However,with the boost of seawater aquaculture activities after 1970,the health growth of coral species was severely threatened,and corresponding production and inorganic carbon burial flux reduced.The apparent enhanced inorganic carbon burial rate after 1990 might result from the concomitant carbonate debris produced by seawater aquaculture.This result is important for local government long-term coastal management and environmental planning.

  7. A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean

    International Nuclear Information System (INIS)

    Dulaiova, H.; Peterson, R.; Burnett, W.C.

    2005-01-01

    Radon-222 is a good natural tracer of groundwater discharge and other physical processes in the coastal ocean. Unfortunately, its usefulness is limited by the time consuming nature of collecting individual samples and traditional analysis schemes. An automated multi-detector system is demonstrated that can be used in a continuous survey basis to assess radon activities in coastal ocean waters. The system analyses 222 Rn from a constant stream of water delivered by a submersible pump to an air-water exchanger where radon in the water phase equilibrates with radon in a closed air loop. The air stream is fed to 3 commercial radon-in-air monitors connected in parallel to determine the activity of 222 Rn. By running the detectors out of phase, it is possible to obtain as many as 6 readings per hour with a precision of approximately ±5-15% for typical coastal seawater concentrations. (author)

  8. Potential Effects of Desalinated Seawater on Arteriosclerosis in Rats.

    Science.gov (United States)

    Duan, Lian; Zhang, Li Xia; Zhang, Shao Ping; Kong, Jian; Zhi, Hong; Zhang, Ming; Lu, Kai; Zhang, Hong Wei

    2017-10-01

    To evaluate the potential risk of arteriosclerosis caused by desalinated seawater, Wistar rats were provided desalinated seawater over a 1-year period, and blood samples were collected at 0, 90, 180, and 360 days. Blood calcium, magnesium, and arteriosclerosis-related indicators were investigated. Female rats treated with desalinated seawater for 180 days showed lower magnesium levels than the control rats (P seawater for 360 days (P seawater, and no increase in risk of arteriosclerosis was observed. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  9. Energy Implications of Seawater Desalination (Invited)

    Science.gov (United States)

    Cooley, H.; Heberger, M. G.

    2013-12-01

    Freshwater has traditionally come from rivers, lakes, streams, and groundwater aquifers. As demand increases and climate change alters the location and timing of water supply, these traditional sources are becoming unavailable, more difficult, or increasingly expensive to develop. As a result, many communities are switching to alternative sources of water. Interest in pursuing seawater desalination is high in many coastal communities. In California, for example, 17 plants are proposed for development along the California coast and two in Mexico. Water managers are pursing desalination because is a local supply that can help diversify the water supply portfolio. Additionally, it is a reliable supply, which can be especially valuable during a drought. But removing the salt from seawater is an energy-intensive process that consumes more energy per gallon than most other water supply and treatment options. These energy requirements are key factors that will impact the extent and success of desalination in California. Energy requirements for seawater desalination average about 4.0 kWh per cubic meter (m3) of water produced. By comparison, the least energy-intensive options of local sources of groundwater and surface water require 0 - 0.90 kWh per m3; wastewater reuse, depending on treatment levels, may require from 0.26 - 2.2 kWh per m3. Beyond the electricity required for the desalination facility itself, producing any new source of water, including through desalination, increases the amount of energy required to deliver and use the water produced as well as collect, treat, and dispose of the wastewater generated. Energy is the largest single variable cost for a desalination plant, varying from one-third to more than one-half the cost of produced water. Building a desalination plant may reduce a water utility's exposure to water reliability risks at the added expense of an increase in exposure to energy price risk. In dependent on hydropower, electricity prices tend to

  10. Phytoplanktons and zooplanktons diversity in karachi coastal seawater under high and low tide during winter monsoon

    International Nuclear Information System (INIS)

    Yaqoob, N.; Mashiatullah, A.; Sher, N.; Javed, T.; Ghaffar, A.

    2013-01-01

    This paper represents the population density of phytoplanktons and zooplanktons recorded during the marine environmental studies at Karachi coast in the month of February 2011. Samples were collected by towing net, preserved and quantification and identification was carried out under light microscope. Twenty-three phytoplanktons species and nine zooplankton groups were recorded in the seawater from the sampling area of 10 square kilometers. Coscinodiscus and Copepods were dominant in the population of phytoplankton and zooplankton, respectively. Phytoplankton population density increased while zooplankton abundance decreased offshore from the coastline in the open sea. (author)

  11. Spatial distribution of fall out 137Cs in the marine environment of Kudankulam and its comparison with Indian and Asia Pacific Regional sea water

    International Nuclear Information System (INIS)

    Vijayakumar, B.; Thomas, G.; Selvi, B.S.; Ravi, P.M.; Tripathi, R.M.

    2017-01-01

    Benchmarking the fallout 137 Cs in the coastal marine environment assumes significance in view of expansion of nuclear power plants in India and the Asia-Pacific region. This paper presents a snapshot of 137 Cs activity in marine coastal water samples collected around Kudankulam Nuclear Power Plant site across a 50 km stretch from Kanyakumari to Uvari and attempts to compare with the 137 Cs concentration observed across Indian coastal region and Asia Pacific regional sea water. 137 Cs activity of the Kudankulam coast ranges from ≤ 0.40 - 1.92 mBq/L with a GM value of 1.0 mBq/L. In general, 137 Cs activity in sea water of the entire Indian coastal region varies from 0.30 - 1.25 mBq/L, which may be considered as global fallout. (author)

  12. Uranium from seawater

    International Nuclear Information System (INIS)

    1974-12-01

    The report concerns the possibilities of extracting uranium from seawater using either 'tidal' and 'pumped' schemes. It was decided to undertake an initial exercise on the pumped scheme. It was to take into account not only the direct energy requirements, but also the indirect energy inputs needed to produce the capital equipment, operating materials, etc. The report begins with a discussion of the technique of energy accounting, and the merits and limitations of the two principal approaches are compared. These are: 'Process Analysis' (or 'Energy Cost of Materials') and 'Input-Output Analysis' (or 'Energy Cost of Money'). A comparison is made between the energy cost of the tidal and pumped schemes, by both methods of analysis. A 'Best Estimate' is compiled calling on both methods, and this indicates that on an energy cost basis the pumped scheme is three times as expensive as the tidal scheme. Intermediate schemes are feasible, however. There is some evidence that the energy cost of an ore refining process with an initial concentration of 0.007% would be of the same order as that of the pumped seawater scheme. The energy cost of generating electricity using seawater uranium in an SGHWR is compared with the present UK generating system as a whole. (U.K.)

  13. Salinization of porewater in a multiple aquitard-aquifer system in Jiangsu coastal plain, China

    Science.gov (United States)

    Li, Jing; Liang, Xing; Zhang, Yanian; Liu, Yan; Chen, Naijia; Abubakari, Alhassan; Jin, Menggui

    2017-12-01

    Chemical and isotopic compositions were analyzed in porewater squeezed from a clayey aquitard in Jiangsu coastal plain, eastern China, to interpret the salinity origin, chemical evolution and water-mass mixing process. A strong geochemical fingerprint was obtained with an aligned Cl/Br ratio of 154 in the salinized aquitard porewater over a wide Cl- concentration range (396-9,720 mg/L), indicating that porewater salinity is likely derived from a mixing with old brine with a proportion of less than 20%. Very small contributions of brine exerted limited effects on water stable isotopes. The relationships between porewater δ18O and δD indicate that shallow and intermediate porewaters could be original seawater and were subsequently diluted with modern meteoric water, whereas deep porewaters with depleted stable isotopic values were probably recharged during a cooler period and modified by evaporation and seawater infiltration. The cation-Cl relationship and mineralogy of associated strata indicate that porewater has been chemically modified by silicate weathering and ion-exchange reactions. 87Sr/86Sr ratios of 0.7094-0.7112 further confirm the input source of silicate minerals. Numerical simulations were used to evaluate the long-term salinity evolution of the deep porewater. The alternations of boundary conditions (i.e., the third aquifer mixed with brine at approximately 70 ka BP, followed by recharge of glacial meltwater at 20-25 ka BP, and then mixing with Holocene seawater at 7-10 ka BP) are responsible for the shift in porewater salinity. These timeframes correspond with the results of previous studies on ancient marine transgression-regression in Jiangsu coastal plain.

  14. Seawater movement in the Japan Sea inferred from 14C measurement in seawater

    International Nuclear Information System (INIS)

    Otosaka, Shigeyoshi; Tanaka, Takayuki; Togawa, Orihiko; Amano, Hikaru; Aramaki, Takafumi

    2008-01-01

    Research Group for Environmental Science, JAEA has carried out oceanographic observations in the Japan Sea since 1997 to clarify the biogeochemical cycle in the Japan Sea. More than 3,000 seawater samples for measurement of radiocarbon were collected during the observations, and radiocarbon in the seawater samples was measured at AMS facility in JAEA Mutsu. In this paper, formation and circulation of water mass in the northern Japan Sea were discussed using analysis of radiocarbon and hydrographic data (e.g. salinity, temperature, nutrients). (author)

  15. Determination of organochlorine pesticides in Indian coastal water using a moored in-situ sampler

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    An attempt has been made to determine the concentration of different organochlorine pesticides in the seawater off the central West Coast of India using an in-situ-sampler. The Seastar in-situ sampler is an instrument, which is designed to pump...

  16. Estimates of ikaite export from sea ice to the underlying seawater in a sea ice–seawater mesocosm

    Directory of Open Access Journals (Sweden)

    N.-X. Geilfus

    2016-09-01

    Full Text Available The precipitation of ikaite and its fate within sea ice is still poorly understood. We quantify temporal inorganic carbon dynamics in sea ice from initial formation to its melt in a sea ice–seawater mesocosm pool from 11 to 29 January 2013. Based on measurements of total alkalinity (TA and total dissolved inorganic carbon (TCO2, the main processes affecting inorganic carbon dynamics within sea ice were ikaite precipitation and CO2 exchange with the atmosphere. In the underlying seawater, the dissolution of ikaite was the main process affecting inorganic carbon dynamics. Sea ice acted as an active layer, releasing CO2 to the atmosphere during the growth phase, taking up CO2 as it melted and exporting both ikaite and TCO2 into the underlying seawater during the whole experiment. Ikaite precipitation of up to 167 µmolkg−1 within sea ice was estimated, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64–66 µmolkg−1 in the water column. The export of TCO2 from sea ice to the water column increased the underlying seawater TCO2 by 43.5 µmolkg−1, suggesting that almost all of the TCO2 that left the sea ice was exported to the underlying seawater. The export of ikaite from the ice to the underlying seawater was associated with brine rejection during sea ice growth, increased vertical connectivity in sea ice due to the upward percolation of seawater and meltwater flushing during sea ice melt. Based on the change in TA in the water column around the onset of sea ice melt, more than half of the total ikaite precipitated in the ice during sea ice growth was still contained in the ice when the sea ice began to melt. Ikaite crystal dissolution in the water column kept the seawater pCO2 undersaturated with respect to the atmosphere in spite of increased salinity, TA and TCO2 associated with sea ice growth. Results indicate that ikaite export from sea ice and its dissolution in the underlying

  17. Determination of trace zinc in seawater by coupling solid phase extraction and fluorescence detection in the Lab-On-Valve format.

    Science.gov (United States)

    Grand, Maxime M; Chocholouš, Petr; Růžička, Jarda; Solich, Petr; Measures, Christopher I

    2016-06-07

    By virtue of their compactness, long-term stability, minimal reagent consumption and robustness, miniaturized sequential injection instruments are well suited for automation of assays onboard research ships. However, in order to reach the sensitivity and limit of detection required for open-ocean determinations of trace elements, it is necessary to preconcentrate the analyte prior its derivatization and subsequent detection by fluorescence. In this work, a novel method for the determination of dissolved zinc (Zn) at subnanomolar levels in seawater is described. The proposed method combines, for the first time, automated matrix removal, extraction of the target element, and fluorescence detection within a miniaturized flow manifold, based on the Lab-On-Valve (LOV) concept. The key feature of the microfluidic manipulation of the sample is flow programming, designed to pass sample through a mini-column where the target analyte and other complexable cations are retained, while the seawater matrix is washed out. Next, zinc is eluted and merged with a Zn selective fluorescent probe (FluoZin-3) at the confluence point of the LOV central channel using two high-precision stepper motor driven pumps that are operated in concert. Finally, the thus formed Zn complex is transported to the LOV flow cell for selective fluorescence measurement. This work describes the characterization and optimization of the method including Solid Phase Extraction using the Toyopearl AF-Chelate-650M resin, and detailed assay protocol controlled by a commercially available software and instrument. The proposed method features a LOD of 0.02 nM, high precision (seawater reference standards and comparison with ICP-MS determinations on seawater samples collected in the upper 1300 m of the subtropical south Indian Ocean. This work confirms that integration of sample pretreatment with optical detection in the LOV format offers a widely applicable approach to trace analysis of seawater. Copyright © 2016

  18. Western Indian Ocean Journal of Marine Science - Vol 9, No 1 (2010)

    African Journals Online (AJOL)

    Coastal Marine Pollution in Dar es Salaam (Tanzania) relative to Recommended Environmental Quality Targets for the Western Indian Ocean · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. JF Machiwa, 17-30 ...

  19. Non‐diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle

    2016-01-01

    Background The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non‐diluted seawater and diluted seawater, on nasal mucosa functional parameters. Methods For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non‐diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Results Non‐diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Conclusion Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non‐diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. PMID:27101776

  20. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH.

    Science.gov (United States)

    Comeau, S; Tambutté, E; Carpenter, R C; Edmunds, P J; Evensen, N R; Allemand, D; Ferrier-Pagès, C; Tambutté, S; Venn, A A

    2017-01-25

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pH CF ) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pH CF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (A T ). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pH CF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [A T ], revealing that seawater pH is not the sole driver of pH CF Notably, when we synthesize our results with published data, we identify linear relationships of pH CF with the seawater [DIC]/[H + ] ratio, [A T ]/ [H + ] ratio and [[Formula: see text

  1. Evaluation of durability of SSCs injected with seawater

    International Nuclear Information System (INIS)

    2012-01-01

    At the units 1 to 4 in the Fukushima Daiichi Nuclear Power Plant, seawater was injected into reactor pressure vessels and spent fuel pools in order to cool down nuclear fuel is after the disaster of the 2011 off the Pacific Coast of Tohoku Earthquake and Tsunami. Therefore, for fuel cladding tubes exposed to seawater and piping items to pour seawater into a nuclear reactor, it was necessary to evaluate structural integrity under the seawater environment. And then, JNES carried out the safety research of 'Evaluation of Durability of SSCs injected with Seawater' in FY2011. The contents and the results obtained from the search are as follows; (1) For the pipes and nuclear reactor containment vessels, corrosion tests under high temperature seawater at 50degC and 80degC were carried out for the carbon steel that corrosion resistance was less. The data of relationship between a dipping time upto 1,500h and a corrosion rate were obtained as parameters at chloride ion (CI - ) content and the temperature of the seawater. As the results, the corrosion rate was almost 0.1 mm/y for the carbon steel SGV480. No significant influence of CT - content and the temperature of the seawater was confirmed. (2) Corrosion tests were carried out to obtain the relations of time and corrosion under different CI - content conditions for the simulated fuel rod specimens in seawater at 90degC for durations upto 1,200h. As the results, very little corrosion was observed on Zry-2 cladding tube. Brown rust was slightly appeared on the nut made of stainless steel and the lower tie plate made of cast stainless steel. Thinning and corrosion pit were not observed. (author)

  2. Improvement of seawater booster pump outlet check valve

    International Nuclear Information System (INIS)

    Li Xuning; Du Yansong; Huang Huimin

    2010-01-01

    Conventional island seawater booster pump set of QNPC 310 MWe unit are very important in the whole circulating cooling system, and the integrate function of seawater booster pump outlet check valve is the foundation of steady operation of the seawater booster pump set. The article mainly introduce that through the analyses to the reason to the problem that the seawater booster pump outlet check valve of QNPC 310 MWe unit appeared in past years by our team, and considering the influence of operation condition and circumstance, the team improve the seawater booster pump outlet check valve from swing check valve to shuttle check valve which operate more appropriately in the system. By the test of continuous practice, we make further modification to the inner structure of shuttle check valve contrapuntally, and therefore we solve the problem in seawater booster pump outlet check valve fundamentally which has troubled the security of system operation in past years, so we realize the aim of technical improvement and ensure that the system operate in safety and stability. (authors)

  3. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami.

    Science.gov (United States)

    Rubin, Charles M; Horton, Benjamin P; Sieh, Kerry; Pilarczyk, Jessica E; Daly, Patrick; Ismail, Nazli; Parnell, Andrew C

    2017-07-19

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here we present an extraordinary 7,400 year stratigraphic sequence of prehistoric tsunami deposits from a coastal cave in Aceh, Indonesia. This record demonstrates that at least 11 prehistoric tsunamis struck the Aceh coast between 7,400 and 2,900 years ago. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda megathrust ruptures as large as that of the 2004 Indian Ocean tsunami.

  4. Selection of site coolant intake and discharge of shore based power stations - coastal oceanographic considerations

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.; Krishnakumar, V.

    Many new nuclear power plants, reactors are proposed along coastal area of Indian coastline apart from the existing ones. All these, being ultimately a heat exchange process, necessitate enormous quantity of cooling water drawn from the sea...

  5. Why seawater intrusion has not yet occurred in the Kaluvelli-Pondicherry basin, Tamil Nadu, India

    Science.gov (United States)

    Vincent, Aude; Violette, Sophie

    2017-09-01

    Worldwide, coastal aquifers are threatened by seawater intrusion. The threat is greatest when aquifers are overexploited or when recharge is low due to a semi-arid or arid climate. The Kaluvelli-Pondicherry sedimentary basin in Tamil Nadu (India) presents both these characteristics. Groundwater levels in the Vanur aquifer can reach 50 m below sea level at less than 20 km inland. This groundwater depletion is due to an exponential increase in extraction for irrigation over 35 years. No seawater intrusion has yet been detected, but a sulphate-rich mineralization is observed, the result of upward vertical leakage from the underlying Ramanathapuram aquifer. To characterize the mechanisms involved, and to facilitate effective water management, hydrogeological numerical modelling of this multi-layered system has been conducted. Existing and acquired geological and hydrodynamic data have been applied to a quasi-3D hydrogeological model, NEWSAM. Recharge had been previously quantified through the inter-comparison of hydrological models, based on climatological and surface-flow field measurements. Sensitivity tests on parameters and boundary conditions associated with the sea were performed. The resulting water balances for each aquifer led to hypotheses of (1) an offshore fresh groundwater stock, and (2) a reversal and increase of the upward leakage from the Ramanathapuram aquifer, thus corroborating the hypothesis proposed to explain geochemical results of the previous study, and denying a seawater intrusion. Palaeo-climate review supports the existence of favourable hydro-climatological conditions to replenish an offshore groundwater stock of the Vanur aquifer in the past. The extent of this fresh groundwater stock was calculated using the Kooi and Groen method.

  6. Human impacts and changes in the coastal waters of south China.

    Science.gov (United States)

    Wang, Linlin; Li, Qiang; Bi, Hongsheng; Mao, Xian-Zhong

    2016-08-15

    Human impact on the environment remains at the center of the debate on global environmental change. Using the Hong Kong-Shenzhen corridor in south China as an example, we present evidence that rapid urbanization and economic development in coastal areas were the dominant factors causing rapid changes in coastal waters. From 1990 to 2012, coastal seawater temperature increased ~0.060°C per year, sea level rose 4.4mm per year and pH decreased from 8.2 to 7.7, much faster than global averages. In the same period, there were exponential increases in the local population, gross domestic product and land fill area. Empirical analyses suggest that the large increase in the population affected local temperature, and economic development had a major impact on local pH. Results also show that pH and temperature were significantly correlated with local sea level rise, but pH had more predictive power, suggesting it could be considered a predictor for changes in local sea level. We conclude that human activities could significantly exacerbate local environmental changes which should be considered in predictive models and future development plans in coastal areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Drivers of larval fish assemblage shift during the spring-summer transition in the coastal Mediterranean

    Science.gov (United States)

    Álvarez, Itziar; Catalán, Ignacio A.; Jordi, Antoni; Palmer, Miquel; Sabatés, Ana; Basterretxea, Gotzon

    2012-01-01

    The influence of coastal environmental conditions from winter-spring to summer on fish larvae assemblages in a temperate area has suggested a seasonal shift in ecosystem-level variation through which trophic pathways shift from the pelagic to the benthic system. This variation may be related to marked effects in the reproductive strategies in the fishes inhabiting the area and indirectly affect ichthyoplankton assemblages. Larval fish assemblages were sampled fortnightly at three stations located in coastal waters off southern Mallorca (Western Mediterranean) from March to August 2007, covering the main spawning period for the resident coastal fish in this region. The larval fish assemblage showed clear seasonality with higher specific abundance but lower diversity in the spring. Two main assemblages were identified: a spring assemblage, occurring at surface seawater temperatures ichthyoplankton communities occurred in early June, coinciding with the onset of summer hydrographical conditions and the local benthic productivity peak.

  8. Characterization of the lowland coastal aquifer of Comacchio (Ferrara, Italy): Hydrology, hydrochemistry and evolution of the system

    Science.gov (United States)

    Giambastiani, B. M. S.; Colombani, N.; Mastrocicco, M.; Fidelibus, M. D.

    2013-09-01

    This study delineates the actual hydrogeochemistry and the geological evolution of an unconfined coastal aquifer located in a lowland setting in order to understand the drivers of the groundwater salinization. Physical aquifer parameterization highlights a vertical hydraulic gradient due to the presence of a heavy drainage system, which controls the hydrodynamics of this coastal area, forcing groundwater to flow from the bottom toward the top of the aquifer. As a consequence, relict seawater in stable density stratification, preserved within low permeability sediments in the deepest portion of the aquifer, has been drawn upward. The hydrogeochemical investigations allow identifying the role of seepage and water-sediment interactions in the aquifer salinization process and in the modification of groundwater chemistry. Mixing between freshwater and saltwater occurs; however, it is neither the only nor the dominant process driving groundwater hydrochemistry. In the aquifer several concurring and competing water-sediment interactions - as NaCl solution, ion-exchange, calcite and dolomite dissolution/precipitation, oxidation of organic matter, and sulfate bacterial reduction - are triggered by or overlap freshwater-saltwater mixing The hyper-salinity found in the deepest portion of the aquifer cannot be associated with present seawater intrusion, but suggests the presence of salt water of marine origin, which was trapped in the inter-basin during the Holocene transgression. The results of this study contribute to a better understanding of groundwater dynamics and salinization processes in this lowland coastal aquifer.

  9. Non-diluted seawater enhances nasal ciliary beat frequency and wound repair speed compared to diluted seawater and normal saline.

    Science.gov (United States)

    Bonnomet, Arnaud; Luczka, Emilie; Coraux, Christelle; de Gabory, Ludovic

    2016-10-01

    The regulation of mucociliary clearance is a key part of the defense mechanisms developed by the airway epithelium. If a high aggregate quality of evidence shows the clinical effectiveness of nasal irrigation, there is a lack of studies showing the intrinsic role of the different irrigation solutions allowing such results. This study investigated the impact of solutions with different pH and ionic compositions, eg, normal saline, non-diluted seawater and diluted seawater, on nasal mucosa functional parameters. For this randomized, controlled, blinded, in vitro study, we used airway epithelial cells obtained from 13 nasal polyps explants to measure ciliary beat frequency (CBF) and epithelial wound repair speed (WRS) in response to 3 isotonic nasal irrigation solutions: (1) normal saline 0.9%; (2) non-diluted seawater (Physiomer®); and (3) 30% diluted seawater (Stérimar). The results were compared to control (cell culture medium). Non-diluted seawater enhanced the CBF and the WRS when compared to diluted seawater and to normal saline. When compared to the control, it significantly enhanced CBF and slightly, though nonsignificantly, improved the WRS. Interestingly, normal saline markedly reduced the number of epithelial cells and ciliated cells when compared to the control condition. Our results suggest that the physicochemical features of the nasal wash solution is important because it determines the optimal conditions to enhance CBF and epithelial WRS thus preserving the respiratory mucosa in pathological conditions. Non-diluted seawater obtains the best results on CBF and WRS vs normal saline showing a deleterious effect on epithelial cell function. © 2016 The Authors International Forum of Allergy & Rhinology, published by ARSAAOA, LLC.

  10. Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200-3500C

    International Nuclear Information System (INIS)

    Shanks, W.C. III; Bischoff, J.L.; Rosenbauer, R.J.

    1981-01-01

    Sulfate reduction during seawater reaction with fayalite and with magnetite was rapid at 350 0 C, producing equilibrium assemblages of talc-pyrite-hematite-magnetite at low water/rock ratios and talc-pyrite-hematite-anhydrite at higher water/rock ratios. At 250 0 C, seawater reacting with fayalite produced detectable amounts of dissolved H 2 S. At 200 0 C, dissolved H 2 S was not detected, even after 219 days. Reaction stoichiometry indicates that sulfate reduction requires large amounts of H + , which, in subseafloor hydrothermal systems is provided by Mg metasomatism. Seawater contains sufficient Mg to supply all the H + necessary for quantitative reduction of seawater sulfate. Systematics of sulfur isotopes in the 250 and 350 0 C experiments indicate that isotopic equilibrium is reached and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H 2 S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur. (author)

  11. Seawater bicarbonate removal during hydrothermal circulation

    Science.gov (United States)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  12. Status of technology of uranium recovery from seawater

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Saito, Kyoichi.

    1990-01-01

    By bringing the solid material called adsorbent in contact with seawater, uranium can be collected, therefore, the adsorbent to which uranium was adsorbed in seawater can be regarded as the resource of uranium storing. To the adsorbent, also rare metals are concentrated in addition to uranium. From such viewpoint, the development of the technology for collecting seawater uranium is important for the Japanese energy policy. The uranium concentration in seawater is about 3 mg/m 3 and its form of dissolution is uranyl tricarbonate ions. The technology of collecting seawater uranium is the separation technology for extracting the component of very low concentration from the aqueous solution containing many components. The total amount of uranium in the whole oceans reaches about 4 billion t, which is about 1000 times as much as the uranium commercially mined on land. It is the target of the technology to make artificial uranium ore of as high quality as possible quickly. The process of collecting seawater uranium comprises adsorption, desorption, separation and enrichment. As the adsorbents, hydrated titanium oxide and chelate resin represented by amidoxime are promising. The adsorption system is described. (K.I.)

  13. The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters

    International Nuclear Information System (INIS)

    Fang, Tien-Hsi; Nan, Fan-Hua; Chin, Tzong-Shean; Feng, Hui-Min

    2012-01-01

    The pharmaceutical residues in waste water from the largest sewage treatment plant (STP) in Northern Taiwan and in seawater around the effluent discharged area were determined. An environmental risk assessment for the marine environment was conducted based on the environment risk quotient (ERQ). The concentrations of the analyzed compounds in STP influent and effluent were generally higher than those found in coastal seawater. Relatively higher values were found at the estuarine mouth and the discharged area, suggesting that the STP effluent is a point source. The removal efficiency and half life of the analyzed compounds were 6.3–46.8% and 3–18 days, respectively. The ERQ value theoretical calculation was generally greater than 1. However, when the measured concentrations replaced the predicated concentrations, the ERQ values were considerably lower than 1. Therefore, our results call for a re-evaluation of the risks posed by pharmaceuticals to coastal marine ecosystems in Northern Taiwan.

  14. Concentration factors for Cs-137 in marine algae from Japanese coastal waters

    International Nuclear Information System (INIS)

    Tateda, Yutaka; Koyanagi, Taku.

    1994-01-01

    Concentration factors (CF: Bq·kg -1 in wet algae/Bq·kg -1 in filtered seawater) for Cs-137 in Japanese coastal algae, were investigated during 1984-1990. Cs-137/Cs (stable) atom ratios were also examined to clarify the distribution equilibrium of Cs-137 in marine algae and sea water. The CFs in marine algae were within the range of 5.4-92, and the geometric mean of CF was 28±2 (standard error) in Japanese coastal species. The CFs in edible species were within the range of 5.4-67, and the geometric means of CF was 26±4 (standard error). The values of Cs-137/Cs atom ratios in marine algae and sea water indicated that Cs-137 reached an equilibrium state in partition between algae and sea water. Therefore, the CF value obtained in the present study can be regarded as an equilibrated value. Our results showed that hte CF for Cs-137 in Japanese coastal algae were consistent with the Japanese guideline CFs, but were smaller than the recommended value by IAEA. (author)

  15. Detecting Springs in the Coastal Area of the Gunungsewu Karst Terrain, Yogyakarta Special Province, Indonesia, Analysis using Fractal Geometry

    Directory of Open Access Journals (Sweden)

    Sari Bahagiarti Kusumayudha

    2009-11-01

    Full Text Available The Gunungsewu area is a karst terrain with water scarcity, located in the Yogyakarta Special Province, adjacent to the open sea of Indian Ocean in the South. Shorelines of the Gunungsewu southern parts show fractal geometry phenomenon, and there can be found some groundwater outlets discharging to the Indian Ocean. One of the coastal outlets exists at the Baron Beach.The amount of water discharge from this spring reaches 20,000 l/sec in wet season, and approximately 9000 in dry season. In order to find other potential coastal springs, shoreline of the south coast is divided into some segments. By applying fractal analysis utilizing air photo of 1 : 30,000 scale, the fractal dimension of every shore line segment is determined, and then the fractal dimension value is correlated to the existence of spring in the segment being analyzed. The results inform us that shoreline segments having fractal dimension (D > 1.300 are potential for the occurrence of coastal springs.

  16. The major-ion composition of Carboniferous seawater

    Science.gov (United States)

    Holt, Nora M.; García-Veigas, Javier; Lowenstein, Tim K.; Giles, Peter S.; Williams-Stroud, Sherilyn

    2014-06-01

    The major-ion chemistry (Na+, Mg2+, Ca2+, K+, SO42-, and Cl-) of Carboniferous seawater was determined from chemical analyses of fluid inclusions in marine halites, using the cryo scanning electron microscopy (Cryo-SEM) X-ray energy-dispersive spectrometry (EDS) technique. Fluid inclusions in halite from the Mississippian Windsor and Mabou Groups, Shubenacadie Basin, Nova Scotia, Canada (Asbian and Pendleian Substages, 335.5-330 Ma), and from the Pennsylvanian Paradox Formation, Utah, USA, (Desmoinesian Stage 309-305 Ma) contain Na+-Mg2+-K+-Ca2+-Cl- brines, with no measurable SO42-, which shows that the Carboniferous ocean was a “CaCl2 sea”, relatively enriched in Ca2+ and low in SO42- with equivalents Ca2+ > SO42- + HCO3-. δ34S values from anhydrite in the Mississippian Shubenacadie Basin (13.2-14.0 ‰) and the Pennsylvanian Paradox Formation (11.2-12.6 ‰) support seawater sources. Br in halite from the Shubenacadie Basin (53-111 ppm) and the Paradox Basin (68-147 ppm) also indicate seawater parentages. Carboniferous seawater, modeled from fluid inclusions, contained ∼22 mmol Ca2+/kg H2O (Mississippian) and ∼24 mmol Ca2+/kg H2O (Pennsylvanian). Estimated sulfate concentrations are ∼14 mmol SO42-/kg H2O (Mississippian), and ∼12 mmol SO42-/kg H2O (Pennsylvanian). Calculated Mg2+/Ca2+ ratios are 2.5 (Mississippian) and 2.3 (Pennsylvanian), with an estimated range of 2.0-3.2. The fluid inclusion record of seawater chemistry shows a long period of CaCl2 seas in the Paleozoic, from the Early Cambrian through the Carboniferous, when seawater was enriched in Ca2+ and relatively depleted in SO42-. During this ∼200 Myr interval, Ca2+ decreased and SO42- increased, but did not cross the Ca2+-SO42- chemical divide to become a MgSO4 sea (when SO42- in seawater became greater than Ca2+) until the latest Pennsylvanian or earliest Permian (∼309-295 Ma). Seawater remained a MgSO4 sea during the Permian and Triassic, for ∼100 Myr. Fluid inclusions also record

  17. Radiolytic removal of trihalomethane in chlorinated seawater

    International Nuclear Information System (INIS)

    Rajamohan, R.; Rajesh, Puspalata; Venugopalan, V.P.; Rangarajan, S.; Natesan, Usha

    2015-01-01

    Biofouling is one of the major operational problems in seawater cooling systems. It is controlled by application of chlorine based biocides in the range of 0.5-2.0 mg L -1 . The bromide in seawater reacts with the added chlorine and forms hypobromous acid. The brominated residual biocides react with natural organic matter present in the seawater, resulting in the formation of trihalomethanes (THM) such as bromoform (CHBr 3 ), dibromochloromethane (CHBr 2 Cl) bromodichloromethane (CHBrCl 2 ). Though THMs represent a small fraction of the added chlorine, they are relatively more persistent than residual chlorine, and hence pose a potential hazard to marine life because of their reported mutagenicity. There have been few reports on removal of THMs from chlorinated seawater. In this work, the efficacy of gamma irradiation technique for the removal of THMs from chlorine-dosed seawater was investigated. Experiments were carried out using seawater collected from Kalpakkam. Irradiation study was conducted in chlorinated (1, 3, and 5 mg L -1 of Cl 2 ) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation using a 60 Co Gamma Chamber 5000. Bromoform showed a faster rate of degradation as compared to other halocarbons like bromodichloromethane and dibromochloromethane. This shows the change in total THM concentration with variation in the radiation dose and initial Cl 2 dosing. When the percentage degradation of all the three trihalomethane species was compared with applied doses, it was found that the maximum reduction occurred at a dose of 2.5 kGy. The reduction was almost similar for all the three doses (1, 3, 5 ppm of Cl 2 ) used for chlorination. With a further increase in radiation dose to 5.0 kGy, a slight increase in reduction was observed

  18. Application of factor analysis to the hydrogeochemical study of a coastal aquifer

    OpenAIRE

    Ruiz Beviá, Francisco; Gomis Yagües, Vicente; Blasco Alemany, Pilar

    1989-01-01

    The use of numerical values for the chemical components of waters from an aquifer as input data for factor analysis is shown to be sometimes more convenient than the use of the logarithms of these figures. Factor analysis was applied to the hydrogeochemical study of a coastal aquifer located in Javea, Alicante (Spain). A set of factors was found which explained the source of the ions in the water and even certain chemical processes which accompany the intrusion of seawater, such as the strong...

  19. Uranium preconcentration from seawater using adsorptive membranes

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, A.K.; Manchanda, V.K.; Athawale, A.A.

    2009-01-01

    Uranium recovery from bio-aggressive but lean feed like seawater is a challenging problem as it requires in situ preconcentration of uranium in presence of huge excess of competing ions with fast sorption kinetics. In our laboratory, widely used amidoxime membrane (AO-membrane) was evaluated for uranium sorption under seawater conditions. This study indicated that AO-membrane was inherently slow because of the complexation chemistry involved in transfer of U(VI) from (UO 2 (CO 3 ) 3 ) 4 - to AO sites in membrane. In order to search better options, several chemical compositions of membrane were scanned for their efficacy for uranium preconcentration from seawater, and concluded that EGMP-membrane offers several advantages over AO-membrane. In this paper, the comparison of EGMP-membrane with AO-membrane for uranium sorption under seawater conditions has been reviewed. (author)

  20. Indian Ocean Earthquake and Tsunamis: Food Aid Needs and the U.S. Response

    National Research Council Canada - National Science Library

    Hanrahan, Charles E

    2005-01-01

    ...) in Indonesia set off a series of large tsunamis across the Indian Ocean region. In all, 12 countries were hit by wave surges, with the brunt of the impact in coastal communities in Indonesia, the Maldives, Sri Lanka, and Thailand...

  1. Trends in the Indian Ocean Climatology due to anthropogenic induced global warming

    CSIR Research Space (South Africa)

    Meyer, AA

    2009-09-01

    Full Text Available clearly show that due to global warming the South West Indian Ocean Climatology has been changing and that this changing trend will continue into the future as global warming continues. The impacts of regional oceanic climate change on the regions coastal...

  2. Acidified seawater increases accumulation of cobalt but not cesium in manila clam Ruditapes philippinarum.

    Science.gov (United States)

    Sezer, Narin; Kocaoğlan, Hasan Oğuz; Kılıç, Önder; Lacoue-Labarthe, Thomas; Belivermiş, Murat

    2018-04-01

    The pH of seawater around the world is expected to continue its decline in the near future in response to ocean acidification that is driven by heightened atmospheric CO 2 emissions. Concomitantly, economically-important molluscs that live in coastal waters including estuaries and embayments, may be exposed to a wide assortment of contaminants, including trace metals and radionuclides. Seawater acidification may alter both the chemical speciation of select elements as well as the physiology of organisms, and may thus pose at risk to many shellfish species, including the manila clam Ruditapes philippinarum. The bioconcentration efficiency of two common radionuclides associated with the nuclear fuel cycle, 134 Cs and 57 Co, were investigated by exposing live clams to dissolved 134 Cs and 57 Co at control (pH = 8.1) and two lowered pH (pH = 7.8 and 7.5) levels using controlled aquaria. The uptake and depuration kinetics of the two radionuclides in the whole-body clam were followed for 21 and 35 days, respectively. At steady-state equilibrium, the concentration factor (CF ss ) for 57 Co increased as the pH decreased (i.e. 130 ± 5, 194 ± 6, and 258 ± 10 at pH levels 8.1, 7.8 and 7.5, respectively), whereas the 134 Cs uptake was not influenced by a change in pH conditions. During depuration, the lowest depuration rate constant of 57 Co by the manila clam was observed at the intermediate pH of 7.8. An increase in the accumulation of 57 Co at the intermediate pH value was thought to be caused mainly by the aragonitic shell of the clam, as well as the low salinity and alkalinity of seawater used in the experiment. Considering that accumulation consists of uptake and depuration, among the three pH conditions moderately acidified seawater enhanced most the accumulation of 57 Co. Accumulation of 134 Cs was not strongly influenced by a reduced pH condition, as represented by an analogous uptake constant rate and CF ss in each treatment. Such results suggest that

  3. IndOBIS, an Ocean Biogeographic Information System for assessment and conservation of Indian Ocean biodiversity

    Digital Repository Service at National Institute of Oceanography (India)

    Chavan, V.S.; Achuthankutty, C.T.; Berghe, E.V.; Wafar, M.V.M.

    Compilation of inventories of components of coastal and marine biodiversity of Indian Ocean is hampered by several factors: low effort by some countries, preference to certain taxon, dwindling taxonomic expertise, low infrastructure of Information...

  4. Primary biodegradation of petroleum hydrocarbons in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.H.; Djemel, N.; Eadsforth, C.V.; King, D.; Paumen, M.L.; Parkerton, T.; Dmytrasz, B.

    2012-12-15

    This report describes primary biodegradation experiments performed to determine the persistence of higher molecular weight petroleum hydrocarbons in seawater. Results from the biodegradation experiments show that the majority of tested petroleum hydrocarbons have half-lives in seawater less than 60 days.

  5. Floating nuclear energy plants for seawater desalination. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-05-01

    Floating nuclear desalination facilities are one of the alternatives being considered. They may offer a particularly suitable choice for remote locations and small island or coastal communities where the necessary manpower and infrastructure to support desalination plants are not available. In the interest of focusing specific attention on the technology of floating nuclear desalination, the IAEA sponsored a Technical Committee Meeting on Floating Nuclear Plants for Seawater Desalination from 29 to 31 May 1995 in Obninsk, Russian Federation. This publication documents the papers and presentations given by experts from several countries at that meeting. It is hoped that the information contained in this report will be a valuable resource for those interested in nuclear desalination, and that it will stimulate further interest in the potential for floating nuclear desalination facilities. Refs, figs, tabs

  6. Survival and bioturbation effects of common marine macrofauna in coastal soils newly flooded with seawater

    DEFF Research Database (Denmark)

    Valdemarsen, Thomas Bruun; Quintana, Cintia Organo; Thorsen, Sandra Walløe

    Low-lying coastal soils are at risk of being permanently flooded due to global sea level rise, but how will these areas develop as habitat for marine species? We conducted an experiment to evaluate the habitat quality of flooded soils for common marine polychaetes (Marenzelleria viridis, Nereis d...

  7. Coastal and marine biodiversity of India

    Digital Repository Service at National Institute of Oceanography (India)

    Venkataraman, K.; Wafar, M.V.M.

    endangered eco-regions of the world 1 . Among the Asian countries, India is perhaps the only one that has a long INDIAN J. MAR. SCI., VOL. 34, No. 1, MARCH 2005 58 record of inventories of coastal and marine biodiversity dating back to at least two..., planktonic algae appear to have been more completely catalogued 2,3 . Their compilation suggests that the number of pennate diatoms in the world oceans could range from 500 to 784 and that of centric diatoms, from 865 to 999. Compared with these, not more...

  8. Seawater-cultured Botryococcus braunii for efficient hydrocarbon extraction.

    Directory of Open Access Journals (Sweden)

    Kenichi Furuhashi

    Full Text Available As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured in media derived from the modified Chu13 medium by supplying artificial seawater, natural seawater, or NaCl. After a certain period of culture in the media with an osmotic pressure corresponding to 1/4-seawater, hydrocarbon recovery rates exceeding 90% were obtained by simply mixing intact wet algae with n-hexane without any pretreatments and the results using the present culture conditions indicate the potential for hydrocarbon milking.Seawater was used for efficient hydrocarbon extraction from Botryococcus braunii. The alga was cultured in media prepared with seawater or NaCl. Hydrocarbon recovery rate exceeding 90% was obtained without any pretreatment.

  9. Time series analyses of hydrological parameter variations and their correlations at a coastal area in Busan, South Korea

    Science.gov (United States)

    Chung, Sang Yong; Senapathi, Venkatramanan; Sekar, Selvam; Kim, Tae Hyung

    2018-02-01

    Monitoring and time-series analysis of the hydrological parameters electrical conductivity (EC), water pressure, precipitation and tide were carried out, to understand the characteristics of the parameter variations and their correlations at a coastal area in Busan, South Korea. The monitoring data were collected at a sharp interface between freshwater and saline water at the depth of 25 m below ground. Two well-logging profiles showed that seawater intrusion has largely expanded (progressed inland), and has greatly affected the groundwater quality in a coastal aquifer of tuffaceous sedimentary rock over a 9-year period. According to the time series analyses, the periodograms of the hydrological parameters present very similar trends to the power spectral densities (PSD) of the hydrological parameters. Autocorrelation functions (ACF) and partial autocorrelation functions (PACF) of the hydrological parameters were produced to evaluate their self-correlations. The ACFs of all hydrologic parameters showed very good correlation over the entire time lag, but the PACF revealed that the correlations were good only at time lag 1. Crosscorrelation functions (CCF) were used to evaluate the correlations between the hydrological parameters and the characteristics of seawater intrusion in the coastal aquifer system. The CCFs showed that EC had a close relationship with water pressure and precipitation rather than tide. The CCFs of water pressure with tide and precipitation were in inverse proportion, and the CCF of water pressure with precipitation was larger than that with tide.

  10. Role of Snow Deposition of Perfluoroalkylated Substances at Coastal Livingston Island (Maritime Antarctica).

    Science.gov (United States)

    Casal, Paulo; Zhang, Yifeng; Martin, Jonathan W; Pizarro, Mariana; Jiménez, Begoña; Dachs, Jordi

    2017-08-01

    Perfluoroalkyl substances (PFAS) are ubiquitous in the environment, including remote polar regions. To evaluate the role of snow deposition as an input of PFAS to Maritime Antarctica, fresh snow deposition, surface snow, streams from melted snow, coastal seawater, and plankton samples were collected over a three-month period (December 2014-February 2015) at Livingston Island. Local sources of PFASs were significant for perfluoroalkyl sulfonates (PFSAs) and C7-14 perfluoroalkyl carboxylates (PFCAs) in snow but limited to the transited areas of the research station. The concentrations of 14 ionizable PFAS (∑PFAS) in freshly deposited snow (760-3600 pg L -1 ) were 1 order of magnitude higher than those in background surface snow (82-430 pg L -1 ). ∑PFAS ranged from 94 to 420 pg L -1 in seawater and from 3.1 to 16 ng g dw -1 in plankton. Ratios of individual PFAS concentrations in freshly deposited snow relative to surface snow (C SD /C Snow ), snowmelt (C SD /C SM ), and seawater (C SD /C SW ) were close to 1 (from 0.44 to 1.4) for all perfluorooctanesulfonate (PFOS) isomers, suggesting that snowfall does not contribute significantly to PFOS in seawater. Conversely, these ratios for PFCAs ranged from 1 to 33 and were positively correlated with the number of carbons in the PFCA alkylated chain. These trends suggest that snow deposition, scavenging sea-salt aerosol bound PFAS, plays a role as a significant input of PFCAs to the Maritime Antarctica.

  11. Adjoint-state inversion of electric resistivity tomography data of seawater intrusion at the Argentona coastal aquifer (Spain)

    Science.gov (United States)

    Fernández-López, Sheila; Carrera, Jesús; Ledo, Juanjo; Queralt, Pilar; Luquot, Linda; Martínez, Laura; Bellmunt, Fabián

    2016-04-01

    Seawater intrusion in aquifers is a complex phenomenon that can be characterized with the help of electric resistivity tomography (ERT) because of the low resistivity of seawater, which underlies the freshwater floating on top. The problem is complex because of the need for joint inversion of electrical and hydraulic (density dependent flow) data. Here we present an adjoint-state algorithm to treat electrical data. This method is a common technique to obtain derivatives of an objective function, depending on potentials with respect to model parameters. The main advantages of it are its simplicity in stationary problems and the reduction of computational cost respect others methodologies. The relationship between the concentration of chlorides and the resistivity values of the field is well known. Also, these resistivities are related to the values of potentials measured using ERT. Taking this into account, it will be possible to define the different resistivities zones from the field data of potential distribution using the basis of inverse problem. In this case, the studied zone is situated in Argentona (Baix Maresme, Catalonia), where the values of chlorides obtained in some wells of the zone are too high. The adjoint-state method will be used to invert the measured data using a new finite element code in C ++ language developed in an open-source framework called Kratos. Finally, the information obtained numerically with our code will be checked with the information obtained with other codes.

  12. Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems

    Science.gov (United States)

    Dimova, Natasha T.; Swarzenski, Peter W.; Dulaiova, Henrieta; Glenn, Craig R.

    2012-01-01

    Multichannel electrical resistivity (ER) measurements were conducted at two contrasting coastal sites in Hawaii to obtain new information on the spatial scales and dynamics of the fresh water–seawater interface and rates of coastal groundwater exchange. At Kiholo Bay (located on the dry, Kona side of the Big Island) and at a site in Maunalua Bay (Oahu), there is an evidence for abundant submarine groundwater discharge (SGD). However, the hydrologic and geologic controls on coastal groundwater discharge are likely to be different at these two sites. While at Kiholo Bay SGD is predominantly through lava tubes, at the Maunalua Bay site exchange occurs mostly through nearshore submarine springs. In order to calculate SGD fluxes, it is important to understand the spatial and temporal scales of coastal groundwater exchange. From ER time series data, subsurface salinity distributions were calculated using site-specific formation factors. A salinity mass balance box model was then used to calculate rates of point source (i.e., spatially discreet) and total fresh water discharge. From these data, mean SGD rates were calculated for Kiholo Bay (∼9,200 m3/d) and for the Maunalua Bay site (∼5,900 m3/d). While such results are on the same order of magnitude to geochemical tracer-derived SGD rates, the ER SGD rates provide enhanced details of coastal groundwater exchange that can enable a more cohesive whole watershed perspective.

  13. Chemical effect on ozone deposition over seawater

    Science.gov (United States)

    Surface layer resistance plays an important role in determining ozone deposition velocity over seawater. Recent studies suggest that surface layer resistance over sea-water is influenced by wind-speed and chemical interaction at the air-water interface. Here, we investigate the e...

  14. Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Md Yunus, Sabarina, E-mail: sabarina2020@salam.uitm.edu.m; Hamzah, Zaini; Wood, Ab. Khalik; Ahmad [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-29

    This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia’s major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly, in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985

  15. Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia

    Science.gov (United States)

    Md Yunus, Sabarina; Hamzah, Zaini; Wood, Ab. Khalik; Ahmad

    2015-04-01

    This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia's major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly, in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985

  16. Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia

    International Nuclear Information System (INIS)

    Md Yunus, Sabarina; Hamzah, Zaini; Wood, Ab. Khalik; Ahmad

    2015-01-01

    This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia’s major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly, in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985

  17. Corrosion and Protection of Metal in the Seawater Desalination

    Science.gov (United States)

    Hou, Xiangyu; Gao, Lili; Cui, Zhendong; Yin, Jianhua

    2018-01-01

    Seawater desalination develops rapid for it can solve water scarcity efficiently. However, corrosion problem in the seawater desalination system is more serious than that in normal water. So, it is important to pay attention to the corrosion and protection of metal in seawater desalination. The corrosion characteristics and corrosion types of metal in the seawater desalination system are introduced in this paper; In addition, corrosion protect methods and main influencing factors are stated, the latest new technologies about anti-corrosion with quantum energy assisted and magnetic inhibitor are presented.

  18. Simultaneous Extraction of Lithium and Hydrogen from Seawater

    Science.gov (United States)

    2011-08-22

    N00014-10-M-0234 20126083 0001AD Dr. Pyoungho Choi University of Central Florida/Florida Solar Energy Center 1679 Clearlake Road Cocoa FL 32922-5703...South America (Bolivia and Chile), Australia, and China. There have been debates as to whether the lithium supplies would meet the surging demand...extract the lithium in seawater should be developed [1]. Seawater is also the ultimate source of hydrogen. The production of hydrogen from seawater is

  19. Resistivity-Chemistry Integrated Approaches for Investigating Groundwater Salinity of Water Supply and Agricultural Activity at Island Coastal Area

    Science.gov (United States)

    Baharuddin, M. F. T.; Masirin, M. I. M.; Hazreek, Z. A. M.; Azman, M. A. A.; Madun, A.

    2018-04-01

    Groundwater suitability for water supply and agriculture in an island coastal area may easily be influenced by seawater intrusion. The aim of this study was to investigate seawater intrusion to the suitability of the groundwater for water supply and oil palm cultivation on Carey Island in Malaysia. This is the first study that used integrated method of geo-electrical resistivity and hydrogeochemical methods to investigate seawater intrusion to the suitability of groundwater for water supply and oil palm cultivation at two different surface elevation and land cover. The relationship between earth resistivity, total dissolved solids and earth conductivity was derived with water type classifications and crop suitability classification according to salinity, used to identify water types and also oil palm tolerance to salinity. Results from the contour resistivity and conductivity maps showed that the area facing severe coastal erosion (east area) exhibited unsuitable groundwater condition for water supply and oil palm at the unconfined aquifer thickness of 7.8 m and 14.1 m, respectively. Comparing to the area that are still intact with mangrove (west area), at the same depth, groundwater condition exhibits suitable usage for both socioeconomic activities. Different characteristics of surface elevation and land cover are paramount factors influencing saltwater distribution at the west and east area. By the end of the twenty-first century there will no longer be suitable water for supply and oil palm plantation based on the local sea-level rise prediction and Ghyben–Herzberg assumption (sharp interface), focusing on the severe erosion area of the study site.

  20. Ostreococcus tauri Luminescent Reporter Lines as Biosensors for Detecting Pollution From Copper-Mine Tailing Effluents in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Carlos Henríquez-Castillo

    2018-05-01

    Full Text Available Phytoplankton cells are excellent biosensors for environmental monitoring and toxicity assessments in different natural systems. Green algae, in particular, appear to be more responsive to copper (Cu disturbances. This is interesting considering that Cu pollution in coastal environments has increased over the last century, with enormous repercussions to marine ecosystems. Unfortunately, no high-throughput method exists for the environmental monitoring of Cu toxicity in seawater. To assess potential uses as biosensors of Cu pollution, high-throughput screening was performed on five luminescence reporter lines constructed in the green algae Ostreococcus tauri RCC745. The reporter line expressing the iron storage ferritin protein fused to luciferase (Fer-Luc was the most sensitive, responding to Cu concentrations in the μM range. Fer-Luc was also the most sensitive reporter line for detecting toxicity in mining-derived polluted seawater predominantly contaminated by soluble Cu. Nevertheless, the Cyclin-Dependent-Kinase A (CDKA reporter was most suitable for detecting the toxicity of copper-mine tailing effluents containing other metals (e.g., iron. These results highlight that Ostreococcus biosensors can serve as a reliable, inexpensive, and automated, high-throughput laboratory approach for performing seawater analyses of coastal areas subjected to metal disturbances. When challenged with Cu, O. tauri not only evidenced a rapid, transcriptional response for the tested genes, but also showed changes in a broad range of genes, especially as related to the stress response. Overall, the obtained results reinforce that a single biosensor is insufficient when dealing with complex mixtures of toxic compounds in natural environments.

  1. Present status of uranium extraction from seawater

    International Nuclear Information System (INIS)

    Kusakabe, Katsuki; Morooka, Shigeharu

    1993-01-01

    For the research on the extraction of uranium from seawater, various processes have been examined, but the most promising process is adsorption. Its key point is the performance of the adsorbent. The system as compact as possible, in which a large quantity of seawater effectively contacts with the adsorbent, must be constructed economically. As the inorganic adsorbent, titanium oxide is the best, but organic amidoxime is superior to it. The present state of the development of the adsorbent, the rate of adsorption of the adsorbenbt, the seawater uranium adsorption system and the experiment in Imari Bay are reported. (K.I.)

  2. Inferring coastal processes from regional-scale mapping of 222Radon and salinity: examples from the Great Barrier Reef, Australia

    International Nuclear Information System (INIS)

    Stieglitz, Thomas C.; Cook, Peter G.; Burnett, William C.

    2010-01-01

    The radon isotope 222 Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected. These included riverine fluxes, terrestrially-derived fresh submarine groundwater discharge (SGD) and the tidal pumping of seawater through mangrove forests. Based on variations in the relationship of the tracers radon and salinity, some aspects of regional freshwater inputs to the coastal zone and to estuaries could be assessed. Concurrent mapping of radon and salinity allowed an efficient qualitative assessment of land-ocean interaction on various spatial and temporal scales, indicating that such surveys on coastal scales can be a useful tool to obtain an overview of SGD locations and processes.

  3. Discovery of a living coral reef in the coastal waters of Iraq

    OpenAIRE

    Pohl, Thomas; Al-Muqdadi, Sameh W.; Ali, Malik H.; Fawzi, Nadia Al-Mudaffar; Ehrlich, Hermann; Merkel, Broder

    2014-01-01

    Until now, it has been well-established that coral complex in the Arabian/Persian Gulf only exist in the coastal regions of Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, and United Arab Emirates and it was thought that there are no coral reefs in Iraq. However, here for the first time we show the existence of a living 28 km2 large coral reef in this country. These corals are adapted to one of the most extreme coral-bearing environments on earth: the seawater temperature in this area range...

  4. Desalination Brine Discharge Impacts on Coastal Biology and Water Chemistry - A Case Study from Carlsbad Southern California

    Science.gov (United States)

    Petersen, K. L.; Heck, N.; Potts, D. C.; Paytan, A.

    2017-12-01

    Fresh water demand is increasing world-wide due to on-going droughts, climate change and increasing human population and associated demand for food and water. Desalination of seawater is a reliable source of potable water; however the effects of byproduct brine discharge from desalination plants on coastal areas have not been thoroughly assessed. Here we report results from in-situmeasurements of the effects of brine discharge on water chemistry and coastal biology from a desalination plant in Carlsbad, Southern California. We compared select parameters in the coastal zone around the discharge site before and after operation began and conducted additional controlled laboratory incubations with key coastal species and brine effluent. Our in-situ data shows differences in salinity and temperature between the discharge area and a control site both before and after the desalination plant started operation. The discharge water is warmer by 3-5 Co than the ambient seawater and a temperature gradient is seen around the discharge channel. This is likely a result of mixing of the desalination brine with power plant cooling water for dilution prior to discharge and the higher temperatures are not directly attributed to the desalination. Our post-discharge results show a decipherable salinity plume at the bottom of the water column ( 6 m depth) reaching up to 600 m offshore from the discharge site. This indicates inefficient mixing of the brine in the coastal discharge zone. No significant differences are found in nutrient levels, organic carbon or chlorophyll a concentrations around the discharge. The benthic biology assemblage post-discharge is significantly different from the pre-discharge organisms' assemblage. However, the role of seasonal changes in temperature may also have impacted the data as the sampling was conducted during different seasons. Controlled incubation experiments of brittle stars (Ophiothrix spiculata) shows no significant difference in growth or

  5. Erythropoietin Pretreatment Attenuates Seawater Aspiration-Induced Acute Lung Injury in Rats.

    Science.gov (United States)

    Ji, Mu-Huo; Tong, Jian-Hua; Tan, Yuan-Hui; Cao, Zhen-Yu; Ou, Cong-Yang; Li, Wei-Yan; Yang, Jian-Jun; Peng, Y G; Zhu, Si-Hai

    2016-02-01

    Seawater drowning-induced acute lung injury (ALI) is a serious clinical condition characterized by increased alveolar-capillary permeability, excessive inflammatory responses, and refractory hypoxemia. However, current therapeutic options are largely supportive; thus, it is of great interest to search for alternative agents to treat seawater aspiration-induced ALI. Erythropoietin (EPO) is a multifunctional agent with antiinflammatory, antioxidative, and antiapoptotic properties. However, the effects of EPO on seawater aspiration-induced ALI remain unclear. In the present study, male rats were randomly assigned to the naive group, normal saline group, seawater group, or seawater + EPO group. EPO was administered intraperitoneally at 48 and 24 h before seawater aspiration. Arterial blood gas analysis was performed with a gas analyzer at baseline, 30 min, 1 h, 4 h, and 24 h after seawater aspiration, respectively. Histological scores, computed tomography scan, nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, wet-to-dry weight ratio, myeloperoxidase activity, malondialdehyde, and superoxide dismutase in the lung were determined 30 min after seawater aspiration. Our results showed that EPO pretreatment alleviated seawater aspiration-induced ALI, as indicated by increased arterial partial oxygen tension and decreased lung histological scores. Furthermore, EPO pretreatment attenuated seawater aspiration-induced increase in the expressions of pulmonary nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, IL-1β, myeloperoxidase activity, and malondialdehyde when compared with the seawater group. Collectively, our study suggested that EPO pretreatment attenuates seawater aspiration-induced ALI by down-regulation of pulmonary pro-inflammatory cytokines, oxidative stress, and apoptosis.

  6. Contribution of Seawater Surfactants to Generated Primary Marine Aerosol Particles

    Science.gov (United States)

    Frossard, A. A.; Gerard, V.; Duplessis, P.; Kinsey, J. D.; Lu, X.; Zhu, Y.; Bisgrove, J.; Maben, J. R.; Long, M. S.; Chang, R.; Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Noziere, B.; Cohen, R. C.

    2017-12-01

    Surfactants account for minor fractions of total organic carbon in the ocean but may have major impacts on the surface tension of bursting bubbles at the sea surface that drive the production of primary marine aerosol particles (PMA). Surfactants associated with marine aerosol may also significantly reduce the surface tension of water thereby increasing the potential for cloud droplet activation and growth. During September and October 2016, PMA were produced from bursting bubbles in seawater using a high capacity generator at two biologically productive and two oligotrophic stations in the western North Atlantic, as part of a cruise on the R/V Endeavor. Surfactants were extracted from paired PMA and seawater samples, and their ionic compositions, total concentrations, and critical micelle concentrations (CMC) were quantified and compared for the four hydrographic stations. Higher surfactant concentrations were determined in the aerosol produced from biologically productive seawater compared to oligotrophic seawater, and the surfactants extracted from productive seawater were stronger (had lower CMCs) than those in the oligotrophic seawater. Surfactants associated with PMA and seawater in productive regions also varied over diel cycles, whereas those in the oligotrophic regions did not. This work demonstrates a direct link between surfactants in seawater and those in PMA.

  7. Radiation-induced reactions of Cl-, CO32-, and Br- in seawater, - Model calculation of gamma radiolysis of seawater

    International Nuclear Information System (INIS)

    Hata, Kuniki; Hanawa, Satoshi; Kasahara, Shigeki; Muroya, Yusa; Katsumura, Yosuke

    2012-09-01

    Gamma-radiolysis of seawater has been simulated to estimate the concentrations of radiolysis products. Although gas products such as H 2 , O 2 and H 2 O 2 in irradiated pure water quickly attain the steady state with very low concentrations, the products in seawater monotonically increase with dose. It was found that H 2 is produced almost linearly with dose, and corresponding G-value was 4.4 x 10 -8 mol J -1 . As similar result was obtained from the calculation of 8 x 10 -4 mol dm -3 NaBr solution, the origin of the linear increase in seawater was attributable to be the reactions of Br - . According to the sensitivity analysis, three reactions, 1: Br - + ·OH → BrOH· - , 2: BrOH· - → Br - + ·OH, and 3: BrOH· - → Br· + OH - , determined the concentrations of the products. The presence of Cl - and HCO 3 - in seawater hardly affected the concentrations of the radiolysis products. Oxyanions derived from Cl - and Br - were not obtained at observable concentration. (authors)

  8. Use of experimentally determined Henry's Law and salting-out constants for ethanol in seawater for determination of the saturation state of ethanol in coastal waters.

    Science.gov (United States)

    Willey, Joan D; Powell, Jacqueline P; Avery, G Brooks; Kieber, Robert J; Mead, Ralph N

    2017-09-01

    The Henry's law constant for ethanol in seawater was experimentally determined to be 221 ± 4 M/atm at 22 °C compared with 247 ± 6 M/atm in pure water. The salting out coefficient for ethanol was 0.13 M -1 . In seawater ln(K H ) = -(12.8 ± 0.7) + (5310 ± 197)/T where K H is in M atm -1 and temperature is in K. This plus the salting out coefficient allow calculation of K H for any estuarine or sea water between 1 and 35 °C. High concentrations of dissolved organic carbon do not affect K H values in fresh or seawater. Nearshore surface waters were usually undersaturated with respect to gas phase ethanol except when air concentrations decreased, whereas surface seawater 40 km from shore was supersaturated. The percent saturation in surface waters is driven primarily by changes in air concentrations because these change quickly (hours) and more extensively than surface water. This study allows calculation of ethanol saturation states from air and surface water concentrations which is a necessary step to define the role of surface oceans in the global biogeochemical cycling of ethanol both now and in the future as use of ethanol biofuel continues to grow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Lawrence Livermore Laboratory concept for uranium recovery from seawater

    International Nuclear Information System (INIS)

    Gregg, D.; Wang, F.

    1980-01-01

    The Lawrence Livermore Laboratory concept for uranium recovery from seawater involves the following process steps: (1) produce activated carbon via a coal gasification plant; (2) contact activated carbon sorbent with seawater using a settling process (no pumping of seawater); (3) vacuum activated carbon from sea floor; (4) gasify or burn activated carbon (further concentrating the uranium in the ash); (5) extract the uranium from the rich ash ore by conventional techniques. The process advantages are: (1) eliminates seawater pumping, the need for an illuent, and the need for a fresh water wash; (2) should result in much lower capital investment and regional process energy. Major process issues are: (1) uranium loading on activated carbon; (2) activated carbon modifications required to improve the sorbtion performance; (3) activated carbon particle size needed to meet system requirements; (4) minimization of sorbent losses when contacted with seawater

  10. Fishery potential along the Indian coastal waters between Porbandar and Ratnagiri

    Digital Repository Service at National Institute of Oceanography (India)

    Gajbhiye, S.N.; Mehta, P.; Mustafa, S.; Nair, V.R.

    As part of the ongoing marine pollution monitoring programme the coastal stretch between Porbandar and Ratnagiri was considered to assess the fishery potential. Regular experimental trawling was done off Porbandar, Veraval, Diu, Hazira, Daman...

  11. Influence of El Niño and Indian Ocean Dipole on sea level variability in the Bay of Bengal

    Science.gov (United States)

    Sreenivas, P.; Gnanaseelan, C.; Prasad, K. V. S. R.

    2012-01-01

    Zonally oscillating seasonal equatorial winds generate pairs of upwelling and downwelling Kelvin waves in the Equatorial Indian Ocean, which then advance in to the coastal Bay of Bengal. The first (second) equatorial upwelling Kelvin wave has its origin in the western (eastern) basin, whereas the downwelling Kelvin waves originate in the central basin. The observed interannual variability of these Kelvin waves is highly governed by the associated zonal wind changes in the central and eastern equatorial Indian Ocean during the anomalous years. The second downwelling (upwelling) Kelvin wave is absent (weak) during El Niño (La Niña) years, whereas the second upwelling Kelvin wave strengthened during El Niño years both in the equatorial Indian Ocean and Bay of Bengal. The large scale off equatorial Rossby waves occasionally feedback the equatorial Kelvin waves, which then strengthen the Bay of Bengal coastal Kelvin waves. The coastal Kelvin waves and the associated radiated Rossby waves from east play a dominant role in the mesoscale eddy generation in Bay of Bengal. The analysis of cyclogenesis characteristics in the bay over the past 65 years revealed that the active (suppressed) phases of cyclogenesis are coinciding with the downwelling (upwelling) planetary waves which influence the cyclone heat potential by altering the thermocline depth.

  12. Insulated Wire Fed Floating Monopole Antenna for Coastal Monitoring

    Directory of Open Access Journals (Sweden)

    Z. M. Loni

    2018-04-01

    Full Text Available A thin, flexible, insulated wire submerged in seawater forms a coaxial cable which has attenuation at ultra-high frequency (UHF dependent on the operating frequency, the diameter of the insulating material and the diameter of the inner conductor. An extension of the insulated wire above the surface through a spherical float forms a monopole antenna. Attenuation through the wire depends on the conductivity and temperature of seawater. This paper reports the effect of electromagnetic (EM wave propagation at 433 MHz through insulated wires with different radii of the insulating material and inner conductor. The attenuation was calculated and measured in the range of 32-47 dB/m. The propagation from the monopole antenna to a fixed shore based receiver was measured to be approximately equal to 1 dB/m. The propagation measurements were compared with a shielded coaxial cable. Results show that the propagation range depends on the ratio of the insulation radius to conductor radius for insulated wire, however, a shielded coaxial cable showed no significant attenuation. The technique has applications in coastal wireless sensor networks where the water depth changes continually due to tide and wave motion.

  13. Assessing sea-level rise impact on saltwater intrusion into the root zone of a geo-typical area in coastal east-central Florida.

    Science.gov (United States)

    Xiao, Han; Wang, Dingbao; Medeiros, Stephen C; Hagen, Scott C; Hall, Carlton R

    2018-07-15

    Saltwater intrusion (SWI) into root zone in low-lying coastal areas can affect the survival and spatial distribution of various vegetation species by altering plant communities and the wildlife habitats they support. In this study, a baseline model was developed based on FEMWATER to simulate the monthly variation of root zone salinity of a geo-typical area located at the Cape Canaveral Barrier Island Complex (CCBIC) of coastal east-central Florida (USA) in 2010. Based on the developed and calibrated baseline model, three diagnostic FEMWATER models were developed to predict the extent of SWI into root zone by modifying the boundary values representing the rising sea level based on various sea-level rise (SLR) scenarios projected for 2080. The simulation results indicated that the extent of SWI would be insignificant if SLR is either low (23.4cm) or intermediate (59.0cm), but would be significant if SLR is high (119.5cm) in that infiltration/diffusion of overtopping seawater in coastal low-lying areas can greatly increase root zone salinity level, since the sand dunes may fail to prevent the landward migration of seawater because the waves of the rising sea level can reach and pass over the crest under high (119.5cm) SLR scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Coastal nutrification and coral health at Porto Seguro reefs, Brazil

    Science.gov (United States)

    Costa, O.; Attrill, M.; Nimmo, M.

    2003-04-01

    Human activities have substantially increased the natural flux of nutrients to coastal systems worldwide. In Brazilian reefs, all major stresses (sedimentation, overfishing, tourism-related activities and nutrification) are human induced. To assess nutrification levels in Brazilian coastal reefs, measurements of the distribution patterns of nutrients and chlorophyll concentrations were conducted in three nearshore and offshore reefs with distinct nutrient inputs along the south coast of Bahia State. Seawater and porewater samples were analysed for soluble reactive phosphorus, total oxidised nitrogen and reactive silica. Benthic surveys were performed at all sites to investigate the relationships between benthic community composition and nutrient and chlorophyll concentrations. Sampling was undertaken in dry and rainy seasons. Results of both seawater and porewater nutrient measurements revealed the occurrence of consistent spatial and temporal patterns. An inshore-offshore gradient reflects the occurrence of land-based point sources, with significant amount of nutrients being delivered by human activities on the coast (untreated sewage and groundwater seepage). Another spatial gradient is related to distance from a localized source of pollution (an urban settlement without sewerage treatment) with two nearshore reefs presenting distinct nutrient and chlorophyll concentrations. Seasonal variations suggest that submarine groundwater discharge (SGD) is the primary source of nutrients for the coastal reefs during rainy season. The data also suggests that the SGD effect is not restricted to nearshore reefs, and may be an important factor controlling the differences between landward and seaward sides on the offshore reef. Benthic community assessment revealed that turf alga is the dominant group in all studied reefs and that zoanthids are the organisms most adapted to take advantage of nutrient increase in coastal areas. At nearshore reefs, there was a negative

  15. A new perspective of particle adsorption: Dispersed oil and granular materials interactions in simulated coastal environment.

    Science.gov (United States)

    Meng, Long; Bao, Mutai; Sun, Peiyan

    2017-09-15

    This study, adsorption behaviors of dispersed oil in seawaters by granular materials were explored in simulation environment. We quantitatively demonstrated the dispersed oil adsorbed by granular materials were both dissolved petroleum hydrocarbons (DPHs) and oil droplets. Furthermore, DPHs were accounted for 42.5%, 63.4%, and 85.2% (35.5% was emulsion adsorption) in the adsorption of dispersed oil by coastal rocks, sediments, and bacterial strain particles respectively. Effects of controlling parameters, such as temperature, particle size and concentration on adsorption of petroleum hydrocarbons were described in detail. Most strikingly, adsorption concentration was followed a decreasing order of bacterial strain (0.5-2μm)>sediments (0.005-0.625mm)>coastal rocks (0.2-1cm). With particle concentration or temperature increased, adsorption concentration increased for coastal rocks particle but decreased for sediments particle. Besides, particle adsorption rate of petroleum hydrocarbons (n-alkanes and PAHs) was different among granular materials during 60 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Inferring coastal processes from regional-scale mapping of {sup 222}Radon and salinity: examples from the Great Barrier Reef, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Stieglitz, Thomas C., E-mail: thomas.stieglitz@jcu.edu.a [AIMS-JCU, Townsville (Australia); Australian Institute of Marine Science, PMB NO 3, Townsville QLD 4810 (Australia); School of Engineering and Physical Sciences, James Cook University, Townsville QLD 4811 (Australia); Cook, Peter G., E-mail: peter.g.cook@csiro.a [CSIRO Land and Water, Private Bag 2, Glen Osmond SA 5064 (Australia); Burnett, William C., E-mail: wburnett@mailer.fsu.ed [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States)

    2010-07-15

    The radon isotope {sup 222}Rn and salinity in coastal surface water were mapped on regional scales, to improve the understanding of coastal processes and their spatial variability. Radon was measured with a surface-towed, continuously recording multi-detector setup on a moving vessel. Numerous processes and locations of land-ocean interaction along the Central Great Barrier Reef coastline were identified and interpreted based on the data collected. These included riverine fluxes, terrestrially-derived fresh submarine groundwater discharge (SGD) and the tidal pumping of seawater through mangrove forests. Based on variations in the relationship of the tracers radon and salinity, some aspects of regional freshwater inputs to the coastal zone and to estuaries could be assessed. Concurrent mapping of radon and salinity allowed an efficient qualitative assessment of land-ocean interaction on various spatial and temporal scales, indicating that such surveys on coastal scales can be a useful tool to obtain an overview of SGD locations and processes.

  17. Inhibition of Sodium Benzoate on Stainless Steel in Tropical Seawater

    International Nuclear Information System (INIS)

    Seoh, S. Y.; Senin, H. B.; Nik, W. N. Wan; Amin, M. M.

    2007-01-01

    The inhibition of sodium benzoate for stainless steel controlling corrosion was studied in seawater at room temperature. Three sets of sample have been immersed in seawater containing sodium benzoate with the concentrations of 0.3M, 0.6M and 1.0M respectively. One set of sample has been immersed in seawater without adding any sodium benzoate. It was found that the highest corrosion rate was observed for the stainless steel with no inhibitor was added to the seawater. As the concentration of sodium benzoate being increased, the corrosion rate is decreases. Results show that by the addition of 1.0M of sodium benzoate in seawater samples, it giving ≥ 90% efficiencies

  18. Groundwater flow in a coastal peatland and its influence on submarine groundwater discharge

    Science.gov (United States)

    Ptak, T.; Ibenthal, M.; Janssen, M.; Massmann, G.; Lenartz, B.

    2017-12-01

    Coastal peatlands are characterized by intense interactions between land and sea, comprising both a submarine discharge of fresh groundwater and inundations of the peatland with seawater. Nutrients and salts can influence the biogeochemical processes both in the shallow marine sediments and in the peatland. The determination of flow direction and quantity of groundwater flow are therefore elementary. Submarine groundwater discharge (SGD) has been reported from several locations in the Baltic. The objective of this study is to quantify the exchange of fresh and brackish water across the shoreline in a coastal peatland in Northeastern Germany, and to assess the influence of a peat layer extending into the Baltic Sea. Below the peatland, a shallow fine sand aquifer differs in depth and is limited downwards by glacial till. Water level and electrical conductivity (EC) are permanently measured in different depths at eight locations in the peatland. First results indicate a general groundwater flow direction towards the sea. Electrical conductivity measurements suggest different permeabilities within the peat layer, depending on its thickness and degradation. Near the beach, EC fluctuates partially during storm events due to seawater intrusion and reverse discharge afterwards. The groundwater flow will be verified with a 3D model considering varying thicknesses of the aquifer. Permanent water level and electrical conductivity readings, meteorological data and hydraulic conductivity from slug tests and grain size analysis are the base for the calibration of the numerical model.

  19. Radiocesium monitoring in Indonesian waters of the Indian Ocean after the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Suseno, Heny; Wahono, Ikhsan Budi; Muslim

    2015-01-01

    Highlights: • The accident at Fukushima becomes public concern in Indonesia. • Very few data on anthropogenic radionuclide concentrations in marine areas. • Monitoring have been performed at West Sumatra Sea and South Java Sea. - Abstract: As data on anthropogenic radionuclide concentrations (i.e., 134 Cs and 137 Cs) in Indonesian marine environments including the Indian Ocean are scarce, offshore monitoring has been performed in the West Sumatra and South Java Seas. The activity concentration of 137 Cs ranges from below minimum detectable activity (MDA) to 0.13 Bq m −3 in the surface seawater of the South Java Sea and from lower than MDA to 0.28 Bq m −3 in the surface seawater of the West Sumatra Sea. The concentrations of 137 Cs in the surface seawater of the West Sumatra and South Java Seas are lower than the estimation of 137 Cs concentration in the subsurface waters owing to the input of the North Pacific Ocean via the Indonesian Throughflow (ITF). The concentrations of 134 Cs in the sampling locations were lower than MDA. These results have indicated that these Indonesian marine waters have not yet been influenced by the Fukushima radioactive release

  20. Concentration of enteric virus indicator from seawater using granular activated carbon.

    Science.gov (United States)

    Cormier, Jiemin; Gutierrez, Miguel; Goodridge, Lawrence; Janes, Marlene

    2014-02-01

    Fecal contamination of shellfish growing seawater with enteric viruses is often associated with human outbreaks of gastroenteritis. Male specific bacteriophage MS2 is correlated with those of enteric viruses in a wide range of water environments and has been used widely as a surrogate for pathogenic waterborne viruses. Since viruses in contaminated water are usually at low levels, the development of methods to concentrate viruses from water is crucial for detection purposes. In the present study, granular activated carbon was evaluated for concentration of MS2 from artificial seawater, and different parameters of the seawater were also compared. Recovery of MS2 from warm seawater (37°C) was found to be significantly greater than from cold seawater (4 and 20°C), and even greater than from fresh water (4, 20 and 37°C); the difference between seawater and fresh water became less profound when the temperatures of both were below 37°C. Although not of statistical significance, recovery of MS2 from low salinity seawater (10 and 20 parts per thousand, ppt) was greater than from high salinity seawater (30 and 40ppt). One gram of granular activated carbon was able to extract 6-log plaque forming units (PFU) of MS2 from 500ml seawater at 37°C. This study demonstrated that granular activated carbon can concentrate an enteric virus indicator from shellfish growing seawater effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Full utilization of silt density index (SDI) measurements for seawater pre-treatment

    KAUST Repository

    Wei, Chunhai

    2012-07-01

    In order to clarify the fouling mechanism during silt density index (SDI) measurements of seawater in the seawater reverse osmosis (SWRO) desalination process, 11 runs were conducted under constant-pressure (207kPa) dead-end filtration mode according to the standard protocol for SDI measurement, in which two kinds of 0.45μm membranes of different material and seawater samples from the Mediterranean including raw seawater and seawater pre-treated by coagulation followed by sand filtration (CSF) and coagulation followed by microfiltration (CMF) technologies were tested. Fouling mechanisms based on the constant-pressure filtration equation were fully analyzed. For all runs, only t/(V/A)∼t showed very good linearity (correlation coefficient R 2>0.99) since the first moment of the filtration, indicating that standard blocking rather than cake filtration was the dominant fouling mechanism during the entire filtration process. The very low concentration of suspended solids rejected by MF of 0.45μm in seawater was the main reason why a cake layer was not formed. High turbidity removal during filtration indicated that organic colloids retained on and/or adsorbed in membrane pores governed the filtration process (i.e., standard blocking) due to the important contribution of organic substances to seawater turbidity in this study. Therefore the standard blocking coefficient k s, i.e., the slope of t/(V/A)∼t, could be used as a good fouling index for seawater because it showed good linearity with feed seawater turbidity. The correlation of SDI with k s and feed seawater quality indicated that SDI could be reliably used for seawater with low fouling potential (SDI 15min<5) like pre-treated seawater in this study. From both k s and SDI, the order of fouling potential was raw seawater>seawater pre-treated by CSF>seawater pre-treated by CMF, indicating the better performance of CMF than CSF. © 2012 Elsevier B.V.

  2. Concentration of uranium in seawater by flotation

    International Nuclear Information System (INIS)

    Nozaki, Toru; Yamashita, Hiroshi

    1986-01-01

    A method has been developed for the concentration of uranium in seawater by precipitation flotation-carbonate extraction-ion flotation. Uranium in seawater was coprecipitated with hydrated iron (III) oxide by adjusting the pH to 5.5 after addition of 1.0 x 10 -3 mol/l of iron (III) and agitating for 1 hr, and the precipitate was floated with 1.0 x 10 -5 mol/l of sodium oleate and 5.0 x 10 -5 mol/l of sodium lauryl sulfate by bubbling nitrogen through the seawater for 15 min. Uranium was extracted from the precipitate scum at the yield of 89 % with 100 ml of 1.8 % of ammonium carbonate solution by agitating for 2 hr, and floated with 1.2 x 10 -3 mol/l of cetylpyridinium chloride by bubbling nitrogen through the extract diluted 5-fold for 30 min in the recovery of about 100 %. The fairly selective recovery of uranium was obtained from 4 l of seawater at the yield of 87 % throughout the entire process. (author)

  3. Determination of uranium in seawater by fluorescence spectrometry

    International Nuclear Information System (INIS)

    Kawashima, Toshi; Kawakubo, Senkichi; Minegishi, Hisako.

    1984-01-01

    A Fluorescence spectrometry for the determination of uranium in seawater has been developed. Anion exchange separation of uranium from seawater followed by preparation of NaF-carbonate cake and by spectrometry for ultraviolet ray excited fluorescence of uranium on the fluoride host provide the trace determinaton of uranium at the subnano gram level. Anion exchange behavior, excitation-emission behavior of the uranium on the host and effects of foreign ions to the fluorescence have been presented. Appling the method to 1 ml of seawater 3 ppb of uranium has been determined. (author)

  4. Biologically mediated dissolution of volcanic glass in seawater

    NARCIS (Netherlands)

    Staudigel, H; Yayanos, A; Chastain, R; Davies, G.T.; Verdurmen, E.A Th; Schiffmann, P; Bourcier, R; de Baar, H.J.W.

    1998-01-01

    We studied the effects of biological mediation on the dissolution of basaltic glass in seawater. Experiments with typical seawater microbial populations were contrasted with a sterile control, and reactions were monitored chemically and isotopically. Biologically mediated experiments produce twice

  5. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami

    Science.gov (United States)

    Horton, B.; Rubin, C. M.; Sieh, K.; Jessica, P.; Daly, P.; Ismail, N.; Parnell, A. C.

    2017-12-01

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here, we identify coastal caves as a new depositional environment for reconstructing tsunami records and present a 5,000 year record of continuous tsunami deposits from a coastal cave in Sumatra, Indonesia which shows the irregular recurrence of 11 tsunamis between 7,400 and 2,900 years BP. The data demonstrates that the 2004 tsunami was just the latest in a sequence of devastating tsunamis stretching back to at least the early Holocene and suggests a high likelihood for future tsunamis in the Indian Ocean. The sedimentary record in the cave shows that ruptures of the Sunda megathrust vary between large (which generated the 2004 Indian Ocean tsunami) and smaller slip failures. The chronology of events suggests the recurrence of multiple smaller tsunamis within relatively short time periods, interrupted by long periods of strain accumulation followed by giant tsunamis. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. The very long dormant period suggests that the Sunda megathrust is capable of accumulating large slip deficits between earthquakes. Such a high slip rupture would produce a substantially larger earthquake than the 2004 event. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda Megathrust ruptures as large as that of 2004 Indian Ocean tsunami. The remarkable variability of recurrence suggests that regional hazard mitigation plans should be based upon the high likelihood of future destructive tsunami demonstrated by

  6. Strong Endemism of bloom-forming tubular Ulva in Indian West Coast, with description of Ulva paschima Sp. Nov. (Ulvales, Chlorophyta).

    Science.gov (United States)

    Bast, Felix; John, Aijaz Ahmad; Bhushan, Satej

    2014-01-01

    Ulva intestinalis and Ulva compressa are two bloom-forming morphologically-cryptic species of green seaweeds widely accepted as cosmopolitan in distribution. Previous studies have shown that these are two distinct species that exhibit great morphological plasticity with changing seawater salinity. Here we present a phylogeographic assessment of tubular Ulva that we considered belonging to this complex collected from various marine and estuarine green-tide occurrences in a ca. 600 km stretch of the Indian west coast. Maximum Likelihood and Bayesian Inference phylogenetic reconstructions using ITS nrDNA revealed strong endemism of Indian tubular Ulva, with none of the Indian isolates forming part of the already described phylogenetic clades of either U. compressa or U. intestinalis. Due to the straightforward conclusion that Indian isolates form a robust and distinct phylogenetic clade, a description of a new bloom-forming species, Ulva paschima Bast, is formally proposed. Our phylogenetic reconstructions using Neighbor-Joining method revealed evolutionary affinity of this new species with Ulva flexuosa. This is the first molecular assessment of Ulva from the Indian Subcontinent.

  7. Neodymium isotopic variations in seawater

    Science.gov (United States)

    Piepgras, D. J.; Wasserburg, G. J.

    1980-01-01

    Direct measurement of the isotopic composition of Nd in the Atlantic agree with the Nd content in ferromanganese sediments and differ from the observed amounts in the Pacific samples. These data indicate the existence of distinctive differences in the isotopic composition of Nd in the waters of major oceans; the average values determined from seawater and ferromanganese sediments are considerably lower than in sources with oceanic mantle affinities showing that the REE in the oceans is dominated by continental sources. The Nd isotopic variations in seawater are applied to relate the residence time of Nd and mixing rates between the oceans.

  8. Global Climatology of the Coastal Low-Level Wind Jets using different Reanalysis

    Science.gov (United States)

    Lima, Daniela C. A.; Soares, Pedro M. M.; Semedo, Alvaro; Cardoso, Rita M.

    2016-04-01

    Coastal Low-Level Jets (henceforth referred to as "coastal jets" or simply as CLLJ) are low-tropospheric mesoscale wind features, with wind speed maxima confined to the marine atmospheric boundary layer (MABL), typically bellow 1km. Coastal jets occur in the eastern flank of the semi-permanent subtropical mid-latitude high pressure systems, along equatorward eastern boundary currents, due to a large-scale synoptic forcing. The large-scale synoptic forcing behind CLLJ occurrences is a high pressure system over the ocean and a thermal low inland. This results in coastal parallel winds that are the consequence of the geostrophic adjustment. CLLJ are found along the California (California-Oregon) and the Canary (Iberia and Northeastern Africa) currents in the Northern Hemisphere, and along the Peru-Humboldt (Peru-Chile), Benguela (Namibia) and Western Australia (West Australia) currents in the Southern Hemisphere. In the Arabian Sea (Oman CLLJ), the interaction between the high pressure over the Indian Ocean in summer (Summer Indian Monsoon) and the Somali (also known as Findlater) Jet forces a coastal jet wind feature off the southeast coast of Oman. Coastal jets play an important role in the regional climates of the mid-latitude western continental regions. The decrease of the sea surface temperatures (SST) along the coast due to upwelling lowers the evaporation over the ocean and the coast parallel winds prevents the advection of marine air inshore. The feedback processes between the CLLJ and upwelling play a crucial role in the regional climate, namely, promoting aridity since the parallel flow prevents the intrusion of moisture inland, and increasing fish stocks through the transport of rich nutrient cold water from the bottom. In this study, the global coastal low-level wind jets are identified and characterized using an ensemble of three reanalysis, the ECMWF Interim Reanalysis (ERA-Interim), the Japanese 55-year Reanalysis (JRA-55) and the NCEP Climate Forecast

  9. Factors affecting seawater-based pretreatment of lignocellulosic date palm residues

    DEFF Research Database (Denmark)

    Fang, Chuanji; Thomsen, Mette Hedegaard; Frankaer, Christian Grundahl

    2017-01-01

    Seawater-based pretreatment of lignocellulosic biomass is an innovative process at research stage. With respect to process optimization, factors affecting seawater-based pretreatment of lignocellulosic date palm residues were studied for the first time in this paper. Pretreatment temperature (180...... °C–210 °C), salinity of seawater (0 ppt–50 ppt), and catalysts (H2SO4, Na2CO3, and NaOH) were investigated. The results showed that pretreatment temperature exerted the largest influence on seawater-based pretreatment in terms of the enzymatic digestibility and fermentability of pretreated solids...

  10. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    Science.gov (United States)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and

  11. Effects of dissolved species on radiolysis of diluted seawater

    International Nuclear Information System (INIS)

    Hata, Kuniki; Hanawa, Satoshi; Kasahara, Shigeki; Motooka, Takafumi; Tsukada, Takashi; Muroya, Yusa; Yamashita, Shinichi; Katsumura, Yosuke

    2014-01-01

    Fukushima Daiichi Nuclear Power Plants (NPPs) experienced seawater injection into the cores and fuel pools as an emergent measure after the accident. After the accident, retained water has been continuously desalinized, and subsequently the concentration of chloride ion (Cl"-) has been kept at a lower level these days. These ions in seawater are known to affect water radiolysis, which causes the production of radiolytic products, such as hydrogen peroxide (H_2O_2), molecular hydrogen (H_2) and molecular oxygen (O_2). However, the effects of dissolved ions relating seawater on the production of the stable radiolytic products are not well understood in the diluted seawater. To understand of the production behavior in diluted seawater under radiation, radiolysis calculations were carried out. Production of H_2 is effectively suppressed by diluting by up to vol10%. The concentrations of oxidants (H_2O_2 and O_2) are also suppressed by dilution of dissolved species. The effect of oxidants on corrosion of materials is thought to be low when the seawater was diluted by less than 1 vol% by water. It is also shown that deaeration is one of the effective measure to suppress the concentrations of oxidants at a lower level for any dilution conditions. (author)

  12. Study on extreme high temperature of cooling water in Chinese coastal nuclear power plant

    International Nuclear Information System (INIS)

    Yu Fan; Jiang Ziying

    2012-01-01

    In order to protect aquatic life from the harmful effects of thermal discharge, the appropriate water temperature limits or the scope of the mixing zone is a key issue in the regulatory control of the environmental impact of thermal discharge. Based on the sea surface temperature in the Chinese coastal waters, the extreme value of the seawater temperature change was analyzed by using the Gumbel model. The limit of the design temperature rise of cooling water in the outfall is 9 ℃, and the limit of the temperature rise of cooling water in the edge of the mixing zone is 4 ℃. The extreme high temperature of the cooling water in Chinese coastal nuclear power plant is 37 ℃ in the Bohai Sea, Yellow Sea, and is 40 ℃ in East China Sea, South China Sea. (authors)

  13. Sulfate was a trace constituent of Archean seawater

    DEFF Research Database (Denmark)

    Crowe, Sean Andrew; Paris, Guillaume; Katsev, Sergei

    2014-01-01

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column...

  14. Numerical Modelling of the 26th December 2004 Indian Ocean Tsunami for the Southeastern Coast of India

    Science.gov (United States)

    Ioualalen, M.; Arreaga-Vargas, P.; Pophet, N.; Chlieh, M.; Ilayaraja, K.; Ordoñez, J.; Renteria, W.; Pazmiño, N.

    2010-10-01

    A numerical simulation of the 26th December, 2004 Indian Ocean tsunami of the Tamil Nadu coastal zone is presented. The simulation approach is based on a fully nonlinear Boussinesq tsunami propagation model and included an accurate computational domain and a robust coseismic source. The simulation is first confronted to available tide gauge and runup observations. The agreement between observations and the predicted wave heights allowed a reasonable validation of the simulation. As a result, a full picture of the tsunami impact is provided over the entire coastal zone Tamil Nadu. The processes responsible for coastal vulnerability are discussed.

  15. Ultra-trace plutonium determination in small volume seawater by sector field inductively coupled plasma mass spectrometry with application to Fukushima seawater samples.

    Science.gov (United States)

    Bu, Wenting; Zheng, Jian; Guo, Qiuju; Aono, Tatsuo; Tagami, Keiko; Uchida, Shigeo; Tazoe, Hirofumi; Yamada, Masatoshi

    2014-04-11

    Long-term monitoring of Pu isotopes in seawater is required for assessing Pu contamination in the marine environment from the Fukushima Dai-ichi Nuclear Power Plant accident. In this study, we established an accurate and precise analytical method based on anion-exchange chromatography and SF-ICP-MS. This method was able to determine Pu isotopes in seawater samples with small volumes (20-60L). The U decontamination factor was 3×10(7)-1×10(8), which provided sufficient removal of interfering U from the seawater samples. The estimated limits of detection for (239)Pu and (240)Pu were 0.11fgmL(-1) and 0.08fgmL(-1), respectively, which corresponded to 0.01mBqm(-3) for (239)Pu and 0.03mBqm(-3) for (240)Pu when a 20L volume of seawater was measured. We achieved good precision (2.9%) and accuracy (0.8%) for measurement of the (240)Pu/(239)Pu atom ratio in the standard Pu solution with a (239)Pu concentration of 11fgmL(-1) and (240)Pu concentration of 2.7fgmL(-1). Seawater reference materials were used for the method validation and both the (239+240)Pu activities and (240)Pu/(239)Pu atom ratios agreed well with the expected values. Surface and bottom seawater samples collected off Fukushima in the western North Pacific since March 2011 were analyzed. Our results suggested that there was no significant variation of the Pu distribution in seawater in the investigated areas compared to the distribution before the accident. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effectiveness of KNIFC-PAN Resin in Absorbing Radiocesium in Seawater

    International Nuclear Information System (INIS)

    Nurrul Assyikeen Mohd Jaffary; Abdul Kadir Ishak; Zal Uyun Wan Mahmood; Wo, Y.M.; Norfaizal Mohamed; Mohd Tarmizi Ishak

    2016-01-01

    The effectiveness of KNiFC-PAN absorber, potassium-nickel hexacyanoferrate (II) (KNiFC) bound into modified polyacrylonitrile (PAN) have been tested for capability in absorbing radiocesium in seawater samples. The efficiency of the KNiFC-PAN were measured by the different activity of the radiocesium measured using Hyper Pure Germanium Detector (HPGe) in initial spiked seawater and eluent seawater after passed through 5 ml of KNiFC absorber. Study showed 87 % effectiveness of the KNiFC-PAN in absorbing radiocesium. Further study conducted to illustrate relation between spiked seawater and activity measured for 5 ml of KniFC passed through spiked seawater in packed column. This study suggested this relative 15L cubitainer method can be used to monitor the radiocesium in emergency situation for the fast and reliable result. (author)

  17. Greening Drylands with Seawater Easily and Naturally.

    Science.gov (United States)

    Moustafa, Khaled

    2017-03-01

    The sun and sea are inexhaustible sources of energy and water that could be used to transform drylands into more viable ecosystems. A sustainable and cost-effective approach is proposed for greening drylands and restoring wildlife and biodiversity in deserts using seawater desert-houses (or movable seawater ponds) that could offer important environmental advantages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Perchlorate in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Martinelango, P. Kalyani [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States); Tian Kang [Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409 (United States); Dasgupta, Purnendu K. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)]. E-mail: Sandyd@ttu.edu

    2006-05-10

    There has been no reliable published data on the presence of perchlorate in seawater. Seaweeds are among the most important plant life in the ocean and are good sources of iodine and have been widely used as food and nutritional supplement. Perchlorate is known to inhibit the transport of iodide by the sodium iodide symporter (NIS), present e.g., in the thyroid and mammary glands. With perchlorate being increasingly detected in drinking water, milk and various other foods, increasing the iodide intake through inexpensive natural supplements may be an attractive solution for maintaining iodine assimilation. We report here measurable concentrations of perchlorate in several samples of seawater (detectable in about half the samples analyzed). We also report the iodide and perchlorate concentrations of 11 different species of seaweed and the corresponding bioconcentration factors (BCF) for perchlorate and iodide, relative to the seawater from which they were harvested. All seaweed samples came from the same region, off the coast of Northeastern Maine. Concentrations of iodide and perchlorate in four seawater samples collected from the region near harvest time were 30 {+-} 11 and 0.16 {+-} 0.084 {mu}g l{sup -1}, respectively. Concentrations of both iodide and perchlorate varied over a wide range for different seaweed species; iodide ranging from 16 to 3134 mg kg{sup -1} and perchlorate from 0.077 to 3.2 mg kg{sup -1}. The Laminaria species had the highest iodide concentration; Laminaria digitata is the seaweed species most commonly used in the kelp tablets sold in health food stores. Our sample of L. digitata contained 3134 {+-} 15 mg iodide/kg dry weight. The BCF varied widely for different species, with Laminaria species concentrating iodide preferentially over perchlorate. The iodide BCF (BCF{sub i}) to perchlorate BCF (BCF{sub p}) quotient ranged from 0.66 to 53; L. digitata and L. saccarina having a BCF{sub i}/BCF{sub p} value of 45 and 53, respectively, far

  19. Perchlorate in seawater

    International Nuclear Information System (INIS)

    Martinelango, P. Kalyani; Tian Kang; Dasgupta, Purnendu K.

    2006-01-01

    There has been no reliable published data on the presence of perchlorate in seawater. Seaweeds are among the most important plant life in the ocean and are good sources of iodine and have been widely used as food and nutritional supplement. Perchlorate is known to inhibit the transport of iodide by the sodium iodide symporter (NIS), present e.g., in the thyroid and mammary glands. With perchlorate being increasingly detected in drinking water, milk and various other foods, increasing the iodide intake through inexpensive natural supplements may be an attractive solution for maintaining iodine assimilation. We report here measurable concentrations of perchlorate in several samples of seawater (detectable in about half the samples analyzed). We also report the iodide and perchlorate concentrations of 11 different species of seaweed and the corresponding bioconcentration factors (BCF) for perchlorate and iodide, relative to the seawater from which they were harvested. All seaweed samples came from the same region, off the coast of Northeastern Maine. Concentrations of iodide and perchlorate in four seawater samples collected from the region near harvest time were 30 ± 11 and 0.16 ± 0.084 μg l -1 , respectively. Concentrations of both iodide and perchlorate varied over a wide range for different seaweed species; iodide ranging from 16 to 3134 mg kg -1 and perchlorate from 0.077 to 3.2 mg kg -1 . The Laminaria species had the highest iodide concentration; Laminaria digitata is the seaweed species most commonly used in the kelp tablets sold in health food stores. Our sample of L. digitata contained 3134 ± 15 mg iodide/kg dry weight. The BCF varied widely for different species, with Laminaria species concentrating iodide preferentially over perchlorate. The iodide BCF (BCF i ) to perchlorate BCF (BCF p ) quotient ranged from 0.66 to 53; L. digitata and L. saccarina having a BCF i /BCF p value of 45 and 53, respectively, far greater than a simple anion exchange process

  20. Milestone Report - Demonstrate Braided Material with 3.5 g U/kg Sorption Capacity under Seawater Testing Condition (Milestone M2FT-15OR0310041 - 1/30/2015)

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher James [ORNL; Das, Sadananda [ORNL; Oyola, Yatsandra [ORNL; Mayes, Richard T [ORNL; Gill, Gary [Pacific Northwest National Laboratory (PNNL); Kuo, Li-Jung [Pacific Northwest National Laboratory (PNNL); Wood, Jordana [Pacific Northwest National Laboratory (PNNL)

    2015-01-01

    This report describes work on the successful completion of Milestone M2FT-15OR0310041 (1/30/2015) entitled, Demonstrate braided material with 3.5 g U/kg sorption capacity under seawater testing condition . This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent braided materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed four braided fiber adsorbents that have demonstrated uranium adsorption capacities greater than 3.5 g U/kg adsorbent after marine testing at PNNL. The braided adsorbents were synthesized by braiding or leno weaving high surface area polyethylene fibers and conducting radiation-induced graft polymerization of itaconic acid and acrylonitrile monomers onto the braided materials followed by amidoximation and base conditioning. The four braided adsorbents demonstrated capacity values ranging from 3.7 to 4.2 g U/kg adsorbent after 56 days of exposure in natural coastal seawater at 20 oC. All data are normalized to a salinity of 35 psu.

  1. Spatial Distribution of Field Physico-Chemical Parameters in the Vulcano Island (Italy) Coastal Aquifer: Volcanological and Hydrogeological Implications

    OpenAIRE

    Paolo Madonia; Giorgio Capasso; Rocco Favara; Salvatore Francofonte; Paolo Tommasi

    2015-01-01

    Vulcano, the southernmost of the Aeolian island arc (Italy), is characterized by a shallow coastal aquifer resulting from the mixing of seawater, meteoric recharge and volcanogenic fluids. The aquifer has been intensively studied during the last decades, but a comprehensive hydrogeological model has never been developed due to the lack of direct information about the litho-stratigraphic columns of the wells and the depth of water bearing levels. We present and discuss here the ...

  2. Comparison of techniques for pre-concentrating radium from seawater

    International Nuclear Information System (INIS)

    Bourquin, M.; Van Beek, P.; Souhaut, M.; Jeandel, C.; Reyss, J.L.; Charette, M.A.

    2008-01-01

    In the framework of the KEOPS project (Kerguelen: compared study of the Ocean and the Plateau in Surface water), we aimed to provide information on the water mass pathways and vertical mixing on the Kerguelen Plateau, Southern Ocean, based on 228 Ra profiles. Because 228 Ra activities are extremely low in this area (∼ 0.1 dpm/100 kg or ∼ 2.10 -18 g kg -1 ), the filtration of large volumes of seawater was required in order to be able to detect it with minimal uncertainty. This challenging study was an opportunity for us to test and compare methods aimed at removing efficiently radium isotopes from seawater. We used Mn-fiber that retains radium and that allows the measurement of all four radium isotopes ( 226 Ra, 228 Ra, 223 Ra, 224 Ra). First, we used Niskin bottles or the ship's seawater intake to collect large volumes of seawater that were passed onto Mn-fiber in the laboratory. Second, we filled cartridges with Mn-fiber that we placed in tandem on in situ pumps. Finally, we fixed nylon nets filled with Mn-fiber on the frame of in situ pumps to allow the passive filtration of seawater during the pump deployment. Yields of radium fixation on the cartridges filled with Mn-fiber and placed on in situ pumps are ca. 30% when combining the two cartridges. Because large volumes of seawater can be filtered with these pumps, this yields to effective volumes of 177-280 kg (that is, higher than that recovered from fourteen 12-1 Niskin bottles). Finally, the effective volume of seawater that passed through Mn-fiber placed in nylon nets and deployed during 4 h ranged between 125 and 364 kg. Consequently, the two techniques that separate Ra isotopes in situ are good alternatives for pre-concentrating radium from seawater. They can save ship-time by avoiding repeated CTD casts to obtain the large volumes of seawater. This is especially true when in situ pumps are deployed to collect suspended particles. However, both methods only provide 228 Ra/ 226 Ra ratios. The

  3. Assessment of coastal management options by means of multilayered ecosystem models

    Science.gov (United States)

    Nobre, Ana M.; Ferreira, João G.; Nunes, João P.; Yan, Xiaojun; Bricker, Suzanne; Corner, Richard; Groom, Steve; Gu, Haifeng; Hawkins, Anthony J. S.; Hutson, Rory; Lan, Dongzhao; Silva, João D. Lencart e.; Pascoe, Philip; Telfer, Trevor; Zhang, Xuelei; Zhu, Mingyuan

    2010-03-01

    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%-28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of

  4. Trace metals analysis in estuarine and seawater by ICP-MS using on line preconcentration and matrix elimination with chelating resin.

    Science.gov (United States)

    Nicolaı, M; Rosin, C; Tousset, N; Nicolai, Y

    1999-09-13

    The main difficulties of trace metals analysis in estuarine and seawater stem from their very low concentration (mug/l to sub-mug/l), and, by contrast, the high salt content (up to 38 g/l in the Mediterranean Sea). ICP-MS allows multi-elemental analysis and offers great sensitivity, but may be strongly affected by matrix effects induced by high salt contents (> 1 g/l). To perform trace metals analysis both in riverine, estuarine and seawater, we have developed a hyphenated method: ion chelation chromatography coupled on-line with ICP-MS. Iminodiacetate resin, Metpac CC-1 (Dionex), was used to concentrate most of the trace metals, and to separate them from alkaline and alkaline-earth metals. Behaviour of 17 elements (Pb, Cu, Cd, Ni, U, Cr, Mn, Al, Co, Ga, In, Zn, V, Tl, Bi, Ag and Sn) towards the resin was qualitatively investigated. A method validation, partly derived from AFNOR standard XPT 90-210, was carried out on 12 elements (Pb, Cu, Cd, Ni, U, Cr, Mn, Al, Co, Ga, Bi and In). Replicate measurements of multi-elemental standard solutions were used to check linearity, and to determine repeatability and detection limits. Method accuracy was then assessed by analysing two certified materials: a synthetic freshwater (SRM 1643d), and a natural filtered coastal seawater (NRCC CASS-3). An application assay of natural samples from the Rhône river (France) was eventually carried out, and the analytical results were found to be consistent with previous works.

  5. Carbon dioxide emissions from Indian monsoonal estuaries

    Science.gov (United States)

    Sarma Vedula, VSS

    2012-07-01

    The oceans act as a net sink for atmospheric CO2, however, the role of coastal bodies on global CO2 fluxes remains unclear due to lack of data. The estimated absorption of CO2 from the continental shelves, with limited data, is 0.22 to 1.0 PgC/y, and of CO2 emission by estuaries to the atmosphere is 0.27 PgC/y. The estimates from the estuaries suffer from large uncertainties due to large variability and lack of systematic data collection. It is especially true for Southeast Asian estuaries as the biogeochemical cycling of material are different due to high atmospheric temperature, seasonality driven by monsoons, seasonal discharge etc. In order to quantify CO2 emissions from the Indian estuaries, samples were collected at 27 estuaries all along the Indian coast during discharge wet and dry periods. The emissions of CO2 to the atmosphere from Indian estuaries were 4-5 times higher during wet than dry period. The pCO2 ranged between ~300 and 18492 microatm which were within the range of world estuaries. The mean pCO2 and particulate organic carbon (POC) showed positive relation with rate of discharge suggesting availability of high quantities of organic matter that led to enhanced microbial decomposition. The annual CO2 fluxes from the Indian estuaries, together with dry period data available in the literature, amounts to 1.92 TgC which is >10 times less than that from the European estuaries. The low CO2 fluxes from the Indian estuaries are attributed to low flushing rates and less human settlements along the banks of the Indian estuaries.

  6. Numerical Model of SO2 Scrubbing with Seawater Applied to Marine Engines

    Directory of Open Access Journals (Sweden)

    Lamas M. I.

    2016-04-01

    Full Text Available The present paper proposes a CFD model to study sulphur dioxide (SO2 absorption in seawater. The focus is on the treatment of marine diesel engine exhaust gas. Both seawater and distilled water were compared to analyze the effect of seawater alkalinity. The results indicate that seawater is more appropriate than distilled water due to its alkalinity, obtaining almost 100% cleaning efficiency for the conditions analyzed. This SO2 reduction meets the limits of SOx emission control areas (SECA when operating on heavy fuel oil. These numerical simulations were satisfactory validated with experimental tests. Such data are essential in designing seawater scrubbers and judging the operating cost of seawater scrubbing compared to alternative fuels.

  7. Development of adsorbents for recovery of uranium from seawater

    International Nuclear Information System (INIS)

    Egawa, Hiroaki; Furusaki, Shintaro.

    1987-01-01

    The largest subject for putting the extraction of uranium from seawater in practical use is the development of high performance adsorbents for uranium. In this paper, the way of thinking about the development of adsorbents for extracting uranium from seawater and the recent reports on this subject are described. Next, the research on the adsorbing capacity and adsorbing rate of the adsorbents developed so far is summarized, and the way of thinking about the evaluation of adsorbent performance which is the base of the design of a system for extracting uranium from seawater is explained, taking amidoxime type adsorbent as the example. For Japan where energy resources are scant, the uranium contained in seawater, which is estimated to be about 4.2 billion t, is the most luring important element. Uranium is contained in seawater is very low concentration of 3 ppb, and exists as anion complex salt. In 1960s, the Harwell Atomic Energy Research Establishment in UK found out that titanium oxide hydrate is the most promising as the adsorbent. Also a number of organic absorbents have been developed. In order to bring adsorbents in contact with seawater, pumping, ocean current and wave force are utilized. Adsorbents are in spherical, fiber and film forms, and held as fixed beds and fluidized beds. (Kako, I.) 48 refs

  8. Biomass production of Tetraselmis suecica using seawater with sanguaza

    Directory of Open Access Journals (Sweden)

    Juan Silva B.

    2011-03-01

    Full Text Available The growth of Tetraselmis suecica was evaluated. The experiment was realized using the Response Surface Methodology (RSM with Central Composite Rotational Design (CCRD with two factors, pH and sanguaza/seawater concentration in the range of 7 - 9 and 2 - 5 % (v/v, respectively. The culture media were stirred by bubbling air constantly (0.07 L/s and continuously illuminated with 40 W of fluorescent light in glass containers of 1.5 L capacity at a temperature of 22.5 ± 2.1 °C. Using the Gompertz mathematical model was determined that from an 8.0 of pH and a ratio of 3.5% of sanguaza/seawater, the Tetraselmis suecica achieves maximum growth. An 8.71 of pH and a ratio of 4.56% of sanguaza/seawater allow the Tetraselmis suecica maximum growth (logN/N0 of 0.659, with a 12.3% of prediction error by applying a mathematical model of 2nd order. According to the study, the values obtained in sanguaza/seawater as a culture medium outperformed the traditionally used culture medium (Guillard F/2 with seawater. The results demonstrate the potential use of the sanguaza/seawater medium in scalable studies on pilot scale production of Tetraselmis suecica, with a view to the production of biodiesel

  9. Detection of polycyclic aromatic hydrocarbons along Alexandria’s coastal water, Egyptian Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Naglaa A. El-Naggar

    2018-03-01

    Full Text Available This paper provides important information about the compositions and concentrations of polycyclic aromatic hydrocarbons in Alexandria’s coastal seawater during winter of 2015. By applying gas chromatographic technique using the FID detector, the determination of PAHs in seawater was used as a chemical signature to recognize various sources of PAHs pollutions. Concentrations were found to range between 13.4 and 6076 ng/L with a mean 991 ng/L; that exceeded the maximum admissible concentrations (200 ng/L for the water standard of the European Union. Percentage distribution of water samples showed that 41.7% of the analyzed samples contained less than 500 ng/L and 4.2% exhibited high concentrations that exceeded 6000 ng/L. The PAHs of four, five and six rings were 84%, 16.7%, 5.5% of the total PAH, respectively; while low molecular-weight did not exceed 1.5%. The sources of PAHs in the investigated area were mainly from pyrolytic origin that had been derived from incomplete combustion of the fuel of boats and vehicle engines with little evidence of petrogenic origins in El-Mex and Abou-Qir bay. Contribution of PAHs from El-Mex Bay and Eastern Harbor was found to be 2,860 and 15.3 kg/year, respectively. Keywords: PAHs, Pollution, GC-FID, Seawater, Egyptian Mediterranean

  10. Identification of the mechanisms and origin of salinization of groundwaters in coastal aquifers by means of isotopic techniques

    International Nuclear Information System (INIS)

    Araguas, L. J.; Quejido, A. J.

    2007-01-01

    To study the origin of salinity and the mechanisms operating in coastal aquifers, a set of tools is available to determine the essential aspects of the hydrogeological behaviour of the system. these tools are based on the integrated use of hydrochemical parameters (major constituents and trace elements) and isotopic parameters (oxygen, hydrogen, sulfur, carbon, strontium and boron). In addition to the active intrusion of seawater, salinization in coastal areas may be influenced by various human activities that accelerate the degradation of water quality, such as concentrated pumping, intensive farming techniques with return of irrigation water, or reuse of urban and industrial waste water. Characterization of the dominant processes and mechanisms is required for suitable management of the resource and implementation of corrective measures. (Author)

  11. Ecological Studies in the Coastal Waters of Kalpakkam, Southeast Coast of India, in the Vicinity of a Nuclear Island

    Energy Technology Data Exchange (ETDEWEB)

    Satpathy, K. K.; Mohanty, A. K.; Sahu, Gouri; Prasad, M. V.R.; Bramha, S. N. [Environmetal Safety Division, Radiological and Environmental Safety Group, REG, Indira Gandhi Center for Atomic Research, Tamil Nadu (India); Smita Achary, M.; Samantara, M. K.; Biswas, S.; Selvanayagam, M. [Loyola Institute of Frontier Energy, Loyola College, Chennai (India)

    2013-07-15

    Ecological monitoring of the coastal waters at Kalpakkam, which presently harbour various nuclear facilities, has been in progress for the last four years to create a benchmark dataset on water quality, phytoplankton, zooplankton, fisheries, sedentary organisms and molluscan species diversity. Results indicated a significant impact of monsoonal rain and backwaters on the coastal water quality. About 325 phytoplankton, 140 zooplankton, 350 fish, 130 molluscs and 100 species of sedentary organisms have been catalogued. Two fish species, which are native to Indonesia, were recorded for the first time in Indian coastal water. The study indicated that the coastal water is rich in biodiversity. Similarly, results of studies on costal sediment characteristics indicated the influence of monsoonal rain and backwater discharge. Overall, the study indicated little impact of nuclear activity on coastal water biodiversity and water quality. (author)

  12. Calcium extraction from brine water and seawater using oxalic acid

    Science.gov (United States)

    Natasha, Nadia Chrisayu; Lalasari, Latifa Hanum

    2017-01-01

    Calcium can be extracted not only from rocks but also from natural liquor such as seawater and brine water. In order to extract the calcium from seawater and brine water, oxalic acid was used in this research. Effect of variations of the volume of the oxalic acid at a constant concentration in seawater and brine water to produce calcium was investigated. The concentration of oxalic acid was 100 g/l and the variations of its volume were 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml, and 50 ml. The used seawater and brine water were firstly evaporated from 100 ml into 50 ml and then the oxalic acid was added into them with mixing to produce the calcium precipitates. The precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) and the filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES). The SEM analysis showed that the precipitates from brine water were consisted of only calcium compound while from seawater sodium one was also found along with calcium compound. The XRD analysis showed that the calcium was present in the form of calcium oxalate for both seawater and brine water. The ICP-OES analysis of the filtrate from seawater precipitation showed that the its calcium content was decreased from 826.20 ppm to 0.04 ppm while from brine water, it decreased from 170.06 ppm to 1.96 ppm. These results showed that both seawater and brine water have the potential to be a raw material for calcium production.

  13. Liberation of Adsorbed and Co-Precipitated Arsenic from Jarosite, Schwertmannite, Ferrihydrite, and Goethite in Seawater

    Directory of Open Access Journals (Sweden)

    Rodrigo Alarcón

    2014-07-01

    Full Text Available Sea level rise is able to change the geochemical conditions in coastal systems. In these environments, transport of contaminants can be controlled by the stability and adsorption capacity of iron oxides. The behavior of adsorbed and co-precipitated arsenic in jarosite, schwertmannite, ferrihydrite, and goethite in sea water (common secondary minerals in coastal tailings was investigated. The aim of the investigation was to establish As retention and transport under a marine flood scenario, which may occur due to climate change. Natural and synthetic minerals with co-precipitated and adsorbed As were contacted with seawater for 25 days. During this period As, Fe, Cl, SO4, and pH levels were constantly measured. The larger retention capability of samples with co-precipitated As, in relation with adsorbed As samples, reflects the different kinetics between diffusion, dissolution, and surface exchange processes. Ferrihydrite and schwertmannite showed good results in retaining arsenic, although schwertmannite holding capacity was enhanced due its buffering capacity, which prevented reductive dissolution throughout the experiment. Arsenic desorption from goethite could be understood in terms of ion exchange between oxides and electrolytes, due to the charge difference generated by a low point-of-zero-charge and the change in stability of surface complexes between synthesis conditions and natural media.

  14. Behaviour of stainless steel in natural seawater

    OpenAIRE

    Compere, Chantal; Le Bozec, Nathalie

    1997-01-01

    In this paper, investigations performed in natural and artificial seawater on stainless steels will be presented. They concerned studies on: biofilm formation, passive layers composition, electrochemical behaviour, localised corrosion and the evolution of these different parameters as a function of ageing time. According to literature surveys, the different aspects will be discussed. Some conclusions will be drawn concerning the actual knowledge on the behaviour of stainless steels in seawater.

  15. The assessment of waters ecological state of the Crimea coastal near high-rise construction zones

    Science.gov (United States)

    Vetrova, Natalya; Ivanenko, Tatyana; Mannanov, Emran

    2018-03-01

    The relevance of our study is determined by the significant level of coastal sea waters pollution by sewage near high-rise construction zones, which determines the violation of the sanitary and hygienic of sea waters `characteristics and limits the possibilities for organizing recreational activities. The purpose of this study is to identify the ecological state of the marine aquatic area by the example of the Western Crimea near high-rise construction zones. The studies confirmed that the recreational and coastal area wastewater is intensely mixed with seawater, as a result, the pollution in the coastal strip of the sea in the area of deep water discharges sharply decrease. This happens because of water rapid rise to the surface and under the influence of the continuous movement of sea water huge masses with deep-water discharge, fresh wastewater is actively mixed with sea water. However, with no doubt, it is inadmissible to discharge sewage into the sea directly from the shore, but only at the estimated distance from the coast. The materials of the article can be useful for the management bodies and organizations involved in monitoring the quality of the coastal zone of the sea, teachers and students of higher educational institutions when assessing the ecological situation of the territories.

  16. Reconstruction of Redox Conditions and Productivity in Coastal Waters of the Bothnian Sea during the Holocene

    Science.gov (United States)

    Dijkstra, N.; Quintana Krupinski, N. B.; Slomp, C. P.

    2014-12-01

    Hypoxia is a growing problem in coastal waters worldwide, and is a well-known cause of benthic mortality. The semi-enclosed Baltic Sea is currently the world's largest human-induced dead zone. During the early Holocene, it experienced several periods of natural hypoxia following the intrusion of seawater into the previous freshwater lake. Recent studies suggest that at that time, the hypoxia expanded north to include the deep basin of the Bothnian Sea. In this study, we assess whether the coastal zone of the Bothnian Sea was also hypoxic during the early Holocene. We analysed a unique sediment record (0 - 30 mbsf) from the Ångermanälven estuary, which was retrieved during the International Ocean Discovery Programme (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. Using geochemical proxies and foraminifera abundances, we reconstruct the changes in redox conditions, salinity and productivity in the estuary. Our preliminary results suggest that bottom waters in this coastal basin became anoxic upon the intrusion of brackish seawater in the early Holocene and that the productivity was elevated. The presence of benthic foraminifera in this estuary during the mid-Holocene suggests more saline conditions in the Bothnian Sea than today. Due to isostatic uplift, the estuary likely gradually became more isolated from the Bothnian Sea, which itself became more isolated from the Baltic Sea. Both factors likely explain the subsequent re-oxygenation of bottom waters and gradual refreshening of the estuary as recorded in the sediments. Interestingly, the upper meters of sediment are enriched in minerals that contain iron, phosphorus and manganese. We postulate that the refreshening of the estuary triggered the formation of these minerals, thereby increasing the phosphorus retention in these sediments and further reducing primary productivity. This enhanced retention linked to refreshening may contribute to the current oligotrophic conditions in the Bothnian Sea.

  17. A Carbon Cycle Model for the Social-Ecological Process in Coastal Wetland: A Case Study on Gouqi Island, East China

    Directory of Open Access Journals (Sweden)

    Yanxia Li

    2017-01-01

    Full Text Available Coastal wetlands offer many important ecosystem services both in natural and in social systems. How to simultaneously decrease the destructive effects flowing from human activities and maintaining the sustainability of regional wetland ecosystems are an important issue for coastal wetlands zones. We use carbon credits as the basis for regional sustainable developing policy-making. With the case of Gouqi Island, a typical coastal wetlands zone that locates in the East China Sea, a carbon cycle model was developed to illustrate the complex social-ecological processes. Carbon-related processes in natural ecosystem, primary industry, secondary industry, tertiary industry, and residents on the island were identified in the model. The model showed that 36780 tons of carbon is released to atmosphere with the form of CO2, and 51240 tons of carbon is captured by the ecosystem in 2014 and the three major resources of carbon emission are transportation and tourism development and seawater desalination. Based on the carbon-related processes and carbon balance, we proposed suggestions on the sustainable development strategy of Gouqi Island as coastal wetlands zone.

  18. A Carbon Cycle Model for the Social-Ecological Process in Coastal Wetland: A Case Study on Gouqi Island, East China

    Science.gov (United States)

    Xiong, Lihu; Zhu, Wenjia

    2017-01-01

    Coastal wetlands offer many important ecosystem services both in natural and in social systems. How to simultaneously decrease the destructive effects flowing from human activities and maintaining the sustainability of regional wetland ecosystems are an important issue for coastal wetlands zones. We use carbon credits as the basis for regional sustainable developing policy-making. With the case of Gouqi Island, a typical coastal wetlands zone that locates in the East China Sea, a carbon cycle model was developed to illustrate the complex social-ecological processes. Carbon-related processes in natural ecosystem, primary industry, secondary industry, tertiary industry, and residents on the island were identified in the model. The model showed that 36780 tons of carbon is released to atmosphere with the form of CO2, and 51240 tons of carbon is captured by the ecosystem in 2014 and the three major resources of carbon emission are transportation and tourism development and seawater desalination. Based on the carbon-related processes and carbon balance, we proposed suggestions on the sustainable development strategy of Gouqi Island as coastal wetlands zone. PMID:28286690

  19. Biofouling control of industrial seawater cooling towers

    KAUST Repository

    Al-Bloushi, Mohammed

    2017-01-01

    In this study, the research focuses on biofouling control in seawater cooling towers by investigating two different approaches. The first strategy addresses the use of alternative oxidants (i.e. ozone micro-bubbles and chlorine dioxide) in treatment of cooling towers. The second strategy investigates removing nutrients in seawater using granular activated carbon filter column and ultrafiltration to prevent the growth of microorganisms. Laboratory bench-scale tests in terms of temperature, cycle of concentration, dosage, etc. indicated that, at lower oxidant dosages (total residual oxidant (TRO) equivalent = 0.1 mg/l Cl2), chlorine dioxide had a better disinfection effect than chlorine and ozone. The performance of oxidizing biocides at pilot scale, operating at assorted conditions, showed that for the disinfectants tested, ozone could remove 95 % bioactivity of total number of bacteria and algae followed by chlorine dioxide at 85%, while conventional chlorine dosing only gave 60% reduction in bioactivities. Test results of GAC bio-filter showed that around 70 % removal of total organic carbon in the seawater feed was achieved and was effective in keeping the microbial growth to a minimum. The measured results from this study enable designers of seawater cooling towers to manage the biofouling problems when such cooling towers are extrapolated to a pilot scale.

  20. Durability of high performance concrete in seawater

    International Nuclear Information System (INIS)

    Amjad Hussain Memon; Salihuddin Radin Sumadi; Rabitah Handan

    2000-01-01

    This paper presents a report on the effects of blended cements on the durability of high performance concrete (HPC) in seawater. In this research the effect of seawater was investigated. The specimens were initially subjected to water curing for seven days inside the laboratory at room temperature, followed by seawater curing exposed to tidal zone until testing. In this study three levels of cement replacement (0%, 30% and 70%) were used. The combined use of chemical and mineral admixtures has resulted in a new generation of concrete called HPC. The HPC has been identified as one of the most important advanced materials necessary in the effort to build a nation's infrastructure. HPC opens new opportunities in the utilization of the industrial by-products (mineral admixtures) in the construction industry. As a matter of fact permeability is considered as one of the fundamental properties governing the durability of concrete in the marine environment. Results of this investigation indicated that the oxygen permeability values for the blended cement concretes at the age of one year are reduced by a factor of about 2 as compared to OPC control mix concrete. Therefore both blended cement concretes are expected to withstand in the seawater exposed to tidal zone without serious deterioration. (Author)

  1. A Survey of Tritium in Irish Seawater

    International Nuclear Information System (INIS)

    Currivan, L.; Kelleher, K.; McGinnity, P.; Wong, J.; McMahon, C.

    2013-07-01

    This report provides a comprehensive record of the study and measurements of tritium in Irish seawater undertaken by the Radiological Protection Institute of Ireland RPII. The majority of the samples analysed were found to have tritium concentrations below the limit of detection and a conservative assessment of radiation dose arising showed a negligible impact to the public. Tritium is discharged in large quantities from various nuclear facilities, and mostly in liquid form. For this reason it is included in the list of radioactive substances of interest to the OSPAR (Oslo-Paris) Convention to protect the marine environment of the North-East Atlantic. To fulfil its role within OSPAR, to provide technical support to the Irish Government, RPII carried out a project to determine the levels of tritium in seawater from around the Irish coast to supplement its routine marine monitoring programme. A total of 85 seawater samples were collected over a three year period and analysed at the RPII's laboratory. Given that the operational discharges for tritium from the nuclear fuel reprocessing plant at Sellafield, UK, are expected to increase due to current and planned decommissioning activities RPII will continue to monitor tritium levels in seawater around the Irish coast, including the Irish Sea, as part of its routine marine monitoring programme

  2. Gaining the necessary geologic, hydrologic, and geochemical understanding for additional brackish groundwater development, coastal San Diego, California, USA

    Science.gov (United States)

    Danskin, Wesley R.

    2012-01-01

    Local water agencies and the United States Geological Survey are using a combination of techniques to better understand the scant freshwater resources and the much more abundant brackish resources in coastal San Diego, California, USA. Techniques include installation of multiple-depth monitoring well sites; geologic and paleontological analysis of drill cuttings; geophysical logging to identify formations and possible seawater intrusion; sampling of pore-water obtained from cores; analysis of chemical constituents including trace elements and isotopes; and use of scoping models including a three-dimensional geologic framework model, rainfall-runoff model, regional groundwater flow model, and coastal density-dependent groundwater flow model. Results show that most fresh groundwater was recharged during the last glacial period and that the coastal aquifer has had recurring intrusions of fresh and saline water. These intrusions disguise the source, flowpaths, and history of ground water near the coast. The flow system includes a freshwater lens resting on brackish water; a 100-meter-thick flowtube of freshwater discharging under brackish estuarine water and above highly saline water; and broad areas of fine-grained coastal sediment filled with fairly uniform brackish water. Stable isotopes of hydrogen and oxygen indicate the recharged water flows through many kilometers of fractured crystalline rock before entering the narrow coastal aquifer.

  3. Coastal ground water at risk - Saltwater contamination at Brunswick, Georgia and Hilton Head Island, South Carolina

    Science.gov (United States)

    Krause, Richard E.; Clarke, John S.

    2001-01-01

    IntroductionSaltwater contamination is restricting the development of ground-water supply in coastal Georgia and adjacent parts of South Carolina and Florida. The principal source of water in the coastal area is the Upper Floridan aquifer—an extremely permeable and high-yielding aquifer—which was first developed in the late 1800s. Pumping from the aquifer has resulted in substantial ground-water-level decline and subsequent saltwater intrusion of the aquifer from underlying strata containing highly saline water at Brunswick, Georgia, and with encroachment of sea-water into the aquifer at the northern end of Hilton Head Island, South Carolina. The saltwater contamination at these locations has constrained further development of the Upper Floridan aquifer in the coastal area and has created competing demands for the limited supply of freshwater. The Georgia Department of Natural Resources, Georgia Environmental Protection Division (GaEPD) has restricted permitted withdrawal of water from the Upper Floridan aquifer in parts of the coastal area (including the Savannah and Brunswick areas) to 1997 rates, and also has restricted additional permitted pumpage in all 24 coastal area counties to 36 million gallons per day above 1997 rates. These actions have prompted interest in alternative management of the aquifer and in the development of supplemental sources of water supply including those from the shallower surficial and upper and lower Brunswick aquifers and from the deeper Lower Floridan aquifer.

  4. Atlantic and indian oceans pollution in africa

    Science.gov (United States)

    Abubakar, Babagana

    Africa is the second largest and most populated continent after Asia. Geographically it is located between the Atlantic and Indian Oceans. Most of the Africa's most populated and industrialized cities are located along the coast of the continent facing the Atlantic and Indian Oceans, example of such cities include Casablanca, Dakar, Accra, Lagos, Luanda and Cape town all facing the Atlantic Ocean and cities like East London, Durban, Maputo, Dar-es-salaam and Mogadishu are all facing the Indian Ocean. As a result of the geographical locations of African Coastal Cities plus increase in their population, industries, sea port operations, petroleum exploration activities, trafficking of toxic wastes and improper waste management culture lead to the incessant increase in the pollution of the two oceans. NATURE OF POLLUTION OF THE ATLANTIC OCEAN i. The petroleum exploration activities going on along the coast of "Gulf of Guinea" region and Angola continuously causes oil spillages in the process of drilling, bunkering and discharging of petroleum products in the Atlantic Ocean. ii. The incessant degreasing of the Sea Ports "Quay Aprons" along the Coastal cities of Lagos, Luanda, Cape Town etc are continuously polluting the Atlantic Ocean with chemicals. iii. Local wastes generated from the houses located in the coastal cities are always finding their ways into the Atlantic Ocean. NATURE OF POLLUTION OF THE INDIAN OCEAN i. Unlike the Atlantic ocean where petroleum is the major pollutant, the Indian Ocean is polluted by Toxic / Radioactive waste suspected to have been coming from the developed nations as reported by the United Nations Environmental Programme after the Tsunami disaster in December 2004 especially along the coast of Somalia. ii. The degreasing of the Quay Aprons at Port Elizabeth, Maputo, Dar-es-Salaam and Mongolism Sea Ports are also another major source polluting the Indian Ocean. PROBLEMS GENERATED AS A RESULT OF THE OCEANS POLLUTION i. Recent report

  5. The system of wind-driven seasonal coastal currents around the Indian subcontinent

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    characteristic of the entire North Indian Ocean. It is a consequence of the occurrence of the monsoons. As the Sun moves towards the north during January-June as a part of its annual cycle, the Inter- Tropical Convergence Zone (ITCZ) follows it. When...

  6. Time dependent phase associations of iron and other trace elements elucidated by 234Th/238U inventories in tropical coastal waters

    International Nuclear Information System (INIS)

    Szymczak, R.; Zaw, M.

    1999-01-01

    In this study samples were collected in the Gulf of Papua region of PNG, on board the research vessel Franklin as apart of a multidisciplinary study of factors influencing the fate of terrestrial material entering the tropical coastal ocean. Samples for 234 Th were collected using a in situ large volume pump device (Challenger Oceanic) passing seawater (1000-2000 litres) through a series of cartridge filters in polycarbonate housings

  7. Mimicking Seawater For Culturing Marine Bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone

    2015-01-01

    Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum as solidif......Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum...... as solidifying agents, and enumerated bacteria from seawater and algal exudates. We tested if culturability could be influenced by addition of quorum sensing signals (AHLs). All plates were incubated at 15°C. Bacterial counts (CFU/g) from algal exudates from brown algae were highest on media containing algal...... polymers. In general, bacteria isolated from algal exudates preferred more rich media than bacteria isolated from seawater. Overall, culturability ranged from 0.01 to 0.8% as compared to total cell count. Substitution of agar with gellan gum increased the culturability of seawater bacteria approximately...

  8. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  9. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding

  10. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters.

    Science.gov (United States)

    Leonard, Anne F C; Zhang, Lihong; Balfour, Andrew J; Garside, Ruth; Gaze, William H

    2015-09-01

    Infections caused by antibiotic resistant bacteria (ARB) are associated with poor health outcomes and are recognised globally as a serious health problem. Much research has been conducted on the transmission of ARB to humans. Yet the role the natural environment plays in the spread of ARB and antibiotic resistance genes is not well understood. Antibiotic resistant bacteria have been detected in natural aquatic environments, and ingestion of seawater during water sports is one route by which many people could be directly exposed. The aim was to estimate the prevalence of resistance to one clinically important class of antibiotics (third-generation cephalosporins (3GCs)) amongst Escherichia coli in coastal surface waters in England and Wales. Prevalence data was used to quantify ingestion of 3GC-resistant E. coli (3GCREC) by people participating in water sports in designated coastal bathing waters. A further aim was to use this value to derive a population-level estimate of exposure to these bacteria during recreational use of coastal waters in 2012. The prevalence of 3GC-resistance amongst E. coli isolated from coastal surface waters was estimated using culture-based methods. This was combined with the density of E. coli reported in designated coastal bathing waters along with estimations of the volumes of water ingested during various water sports reported in the literature to calculate the mean number of 3GCREC ingested during different water sports. 0.12% of E. coli isolated from surface waters were resistant to 3GCs. This value was used to estimate that in England and Wales over 6.3 million water sport sessions occurred in 2012 that resulted in the ingestion of at least one 3GCREC. Despite the low prevalence of resistance to 3GCs amongst E. coli in surface waters, there is an identifiable human exposure risk for water users, which varies with the type of water sport undertaken. The relative importance of this exposure is likely to be greater in areas where a

  11. Influence of glacial meltwater on global seawater δ234U

    Science.gov (United States)

    Arendt, Carli A.; Aciego, Sarah M.; Sims, Kenneth W. W.; Das, Sarah B.; Sheik, Cody; Stevenson, Emily I.

    2018-03-01

    We present the first published uranium-series measurements from modern Greenland Ice Sheet (GrIS) runoff and proximal seawater, and investigate the influence of glacial melt on global seawater δ234U over glacial-interglacial (g-ig) timescales. Climate reconstructions based on closed-system uranium-thorium (U/Th) dating of fossil corals assume U chemistry of seawater has remained stable over time despite notable fluctuations in major elemental compositions, concentrations, and isotopic compositions of global seawater on g-ig timescales. Deglacial processes increase weathering, significantly increasing U-series concentrations and changing the δ234U of glacial meltwater. Analyses of glacial discharge from GrIS outlet glaciers indicate that meltwater runoff has elevated U concentrations and differing 222Rn concentrations and δ234U compositions, likely due to variations in subglacial residence time. Locations with high δ234U have the potential to increase proximal seawater δ234U. To better understand the impact of bulk glacial melt on global seawater δ234U over time, we use a simple box model to scale these processes to periods of extreme deglaciation. We account for U fluxes from the GrIS, Antarctica, and large Northern Hemisphere Continental Ice Sheets, and assess sensitivity by varying melt volumes, duration and U flux input rates based on modern subglacial water U concentrations and compositions. All scenarios support the hypothesis that global seawater δ234U has varied by more than 1‰ through time as a function of predictable perturbations in continental U fluxes during g-ig periods.

  12. Degradation of riverine dissolved organic matter by seawater bacteria

    NARCIS (Netherlands)

    Rochelle-Newall, E.J.; Pizay, M-D.; Middelburg, J.J.; Boschker, H.T.S.; Gattuso, J.P.

    2004-01-01

    The functional response of a seawater bacterial community transplanted into freshwater dissolved organic matter (DOM) was investigated together with the response of natural populations of bacteria to size-fractioned natural source water. Seawater bacteria were incubated over a period of 8 d in

  13. Corrosion of mild steel, copper and brass in crude oil / seawater mixture

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi, S.; Sawant, S.S.; Wagh, A.B.

    Mild steel, copper and brass coupons were introduced in natural seawater containing varying amount of crude oil. Mild steel showed higher rate of corrosion in seawater containing oil and lower corrosion rate in natural as well as artificial seawater...

  14. Water quality decline in coastal aquifers under anthropic pressure: the case of a suburban area of Dakar (Senegal).

    Science.gov (United States)

    Re, Viviana; Cissé Faye, Seynabou; Faye, Abdoulaye; Faye, Serigne; Gaye, Cheikh Becaye; Sacchi, Elisa; Zuppi, Gian Maria

    2011-01-01

    In recent years, the unregulated increase of the population in coastal areas of developing countries has become source of concern for both water supply and quality control. In the region of Dakar (Senegal), approximately 80% of water resources come from groundwater reservoirs, which are increasingly affected by anthropogenic pressures. The identification of the main sources of pollution, and thus the aquifer vulnerability, is essential to provide a sound basis for the implementation of long-term geochemically based water management plans in this sub-Saharan area. With this aim, a hydrochemical and isotopic survey on 26 wells was performed in the so-called Peninsula of Cap-Vert. Results show that seawater intrusion represents the main process affecting groundwater chemical characteristics. Nitrates often exceed the World Health Organization drinking water limits: stable isotopes of dissolved nitrate (δ¹⁵N and δ¹⁸O) indicate urban sewage and fertilizers as a major source of contamination. Results depict a complex situation in which groundwater is affected by direct and indirect infiltration of effluents, mixing with seawater and freshening processes from below. Besides the relevance of the investigation at a regional level, it represents a basis for decision-making processes in an integrated water resources management and in the planning of similar monitoring strategies for other urban coastal regions.

  15. Full utilization of silt density index (SDI) measurements for seawater pre-treatment

    KAUST Repository

    Wei, Chunhai; Laborie, Sté phanie; Ben Aï m, Roger M.; Amy, Gary L.

    2012-01-01

    according to the standard protocol for SDI measurement, in which two kinds of 0.45μm membranes of different material and seawater samples from the Mediterranean including raw seawater and seawater pre-treated by coagulation followed by sand filtration (CSF

  16. Particulate uranium, plutonium and polonium in the biogeochemistries of the coastal zone

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, V F; Koide, M; Goldberg, E D [Scripps Institution of Oceanography, La Jolla, CA (USA)

    1979-01-18

    It is stated that although increasing attention has been paid to the role of inorganic solid phases in the chemistry of seawater, little quantitative data has been available to assess their involvement with living systems. Recent observations are here reported on the uptake of uranium, plutonium and polonium in coastal waters by organisms and submerged surfaces as traced by their isotopes. It is shown that the body burdens of these radioelements in some marine organisms are governed measurably by the uptake of their particulate forms. Furthermore, these elements are associated with different particulate phases, as deduced from the rates at which they deposit on submerged surfaces.

  17. Standardization of solvent extraction procedure for determination of uranium in seawater

    International Nuclear Information System (INIS)

    Sukanta Maity; Sahu, S.K.; Pandit, G.G.

    2015-01-01

    Solvent extraction procedure using ammonium pyrolidine dithiocarbamate complexing agent in methyl isobutyl ketone organic phase and acid exchange back-extraction is described for the simultaneous quantitative pre-concentration of uranium in seawater followed by its determination by differential pulse adsorptive stripping voltammetry. Solvent extraction time is optimized for extraction of uranium from seawater. Solvent extraction efficiency for uranium in seawater at different pH was carried out. The method gives a recovery of 98 ± 2 % for 400 mL sample at pH 3.0 ± 0.02, facilitating the rapid and interference free analysis of seawater samples. (author)

  18. Hydrogeology and groundwater evaluation of a shallow coastal aquifer, southern Akwa Ibom State (Nigeria)

    Science.gov (United States)

    Edet, Aniekan

    2017-09-01

    The rapid expansion of economic activities in coastal parts of Nigeria has triggered an uncoordinated development of groundwater leading to stress on the resource. Hence a study was conducted to assess the hydrogeological characteristics of the shallow coastal aquifer of southern Akwa Ibom State, Nigeria. Emphasis was on the hydraulic characteristics, quality with respect to domestic and irrigation purposes and influence of seawater. The study result revealed that the aquifer consist of intercalations of clayey sand and sand. The aquifer is characterized by high hydraulic conductivity and transmissivity values. The groundwater flow direction is southwards with higher groundwater depletion in the dry season. Groundwater samples from hand dug wells and boreholes were evaluated based on World Health Organization standard and some indices, respectively, for drinking and irrigation uses. The groundwaters are fit for drinking and domestic uses. However, more than 70 % of the pH values are not within the allowable limits of between 6.5 and 9.2 for drinking and domestic use. Therefore, it is recommended that neutralizing filter containing calcite or ground limestone should be applied to raise the pH of the groundwater. Of the 10 parameters used to assess the water for irrigation use, only sodium adsorption ratio (SAR), magnesium hazard (MH) and magnesium ratio indicated the excellent quality of these waters. Na+-K+-HCO3 - constitute the dominant water type. Total dissolved solids and ratios of Na+/Cl-, Mg2+/Cl-, and Ca2+/SO4 2- and saltwater mixing index (SMI) suggest some level of seawater intrusion in the area.

  19. Analysis of calibrated sea clutter and boat reflectivity data at C- and X-band in South African coastal waters

    CSIR Research Space (South Africa)

    Herselman, PLR

    2007-10-01

    Full Text Available datasets of sea clutter returns at different frequencies, range resolutions, grazing angles, look angles and environmental conditions to validate the state-of-the-art sea clutter models on South African coastal seawaters. Secondly, the aim was to record... boat reflectivity datasets for a number of small boats to investigate its detectability with state-of-the-art detectors. This will lead to the development of improved detection algorithms for radar systems employing adaptive dwell times. Figure 1...

  20. Variability of coastal water hydrodynamics in the southern Baltic - hindcast modelling of an upwelling event along the Polish coast

    Directory of Open Access Journals (Sweden)

    Andrzej Jankowski

    2002-12-01

    Full Text Available This paper presents the results of an attempt to reproduce, with theaid of a numerical circulation model, the hydrological conditions observedin the coastal area of the southern Baltic in September 1989.A large fall in surface layer seawater temperature was recordedin September 1989 at two coastal stations in the vicinity ofKolobrzeg and Wladyslawowo. This upwelling-like phenomenon was assumed tobe related to the specific anemobaric situation in September 1989,however typical of this phenomenon to occur along the Polish Baltic coast(Malicki & Mietus 1994. A three-dimensional (3-D sigma-coordinatebaroclinic model of the Baltic Sea, with a horizontal resolution of~5 km and 24 sigma-levels in the vertical, was applied to investigatewater circulation and thermohaline variability. Hindcastnumerical simulation showed that the model provided a good reproductionof the temporal history of the surface seawater temperature and theduration of the upwelling-like fall, but that the model results wereunderestimated. The maxima of this large fall in the surface layertemperature at both coastal stations are closely related to the phase ofchange of the upwelling-favourable wind direction to the opposite one.The results of simulation runs showed details of upwelling developmentdue to wind field fluctuations in time and differences in shaping thetemperature and current patterns in conjunction with the variations intopography and coastline features in some areas along the Polish coast.Two different hydrodynamic regimes of water movements along the coastresulting from topographical features (the Slupsk Bank can be distinguished.From the model simulation the specific conditions for the occurrence anddevelopment of upwelling at the eastern end of the Polish coast(in the vicinity of Wladyslawowo can be deduced.

  1. Climate warming and estuarine and marine coastal ecosystems

    International Nuclear Information System (INIS)

    Kennedy, V.S.

    1994-01-01

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs

  2. Seasonal variation in natural recharge of coastal aquifers

    Science.gov (United States)

    Mollema, Pauline N.; Antonellini, Marco

    2013-06-01

    Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960-1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070-2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258-616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.

  3. Isotope and Hydrochemical Study of Seawater Intrusion into the Aquifers of a Coastal Zone in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Dapena, C.; Panarello, H. O.; Ducos, E. I.; Marban, L. [Instituto de Geocronologia y Geologia Isotopica (INGEIS, CONICET -UBA), Buenos Aires (Argentina); Peralta Vital, J. L.; Gil Castillo, R.; Leyva Bombuse, D. [Centro de Proteccion e Higiene de las Radiaciones (CPHR), La Habana (Cuba); Valdez, L. [Empresa de Investigaciones y Proyectos Hidraulicos Habana, La Habana (Cuba); Olivera Acosta, J. [Instituto de Geofisica y Astronomia. La Habana (Cuba)

    2013-07-15

    The Artemisa-Quivican Basin is located in the southern sector of the province of Havana, Cuba. This basin contains the most important aquifer of Havana province. It has a length of nearly 120 km and is 25 km in width. Recharge depends on the precipitation regime and rain infiltrates in a considerable proportion due to the intense development of karstic features. This aquifer is used for water supply to population, industry, and irrigation and is affected by over-exploitation and risk of contamination by saline sea intrusion. The main objective of this study is the isotope and chemical characterization of the aquifer and the delimitation of the area influenced by saline intrusion. Groundwater and river water are of the calcium bicarbonate type except those with evidence of mixture with saline water. Groundwater exhibits a variable proportion of mixture with seawater, indicating the presence of the saline intrusion. (author)

  4. Simultaneous effects of environmental factors on motile Aeromonas dynamics in an urban effluent and in the natural seawater.

    Science.gov (United States)

    Maalej, Sami; Mahjoubi, Amira; Elazri, Chafai; Dukan, Sam

    2003-07-01

    Seasonal dynamics of motile Aeromonas in a treated urban effluent and in natural seawater along the Sfax coast (Mediterranean sea, Tunisia) were measured over a year concurrently with seven environmental factors, and compared with those of faecal coliforms. Counts for Aeromonas from a standard plate count method, ranged from 1.48 x 10(5)CFU.100 ml(-1) to 2.2 x 10(8)CFU.100 ml(-1) in the effluent and from 7.9 x 10(3)CFU.100 ml(-1) to undetectable level in the surface marine waters. Contrary to faecal coliforms, the Aeromonas dynamics exhibited a seasonal distribution in seawater which was inverse of the seasonal distribution in the sewage: From the end of November 1998 to April 1999 (cold period), Aeromonas counts increased in the treated effluent, while it decreased very rapidly in seawater. From May to October (warm period), Aeromonas abundance decreased in the effluent but showed an increasing fluctuating trend in the marine waters with a maximum in late summer/early autumn when the temperatures were around 22-23 degrees C. Multiple correlation and regression analyses suggest, by the coefficient of determination (R(2)), that 42% of variance in Aeromonas number changes in the treated effluent, may be explained by only turbidity, radiation and Aeromonas density in the previous sample, while 37% of variance in marine ecosystem were explained by radiance and conductivity. Furthermore, the t statistics and their p values and the coefficient of partial determination (r(2)) indicated that radiance contributed the most (r(2)=0.3184, t=-3.2, p=0.0041) to the dynamics of motile Aeromonas in seawater, when combined with conductivity. The models relevant for changes in faecal coliforms abundance incorporated turbidity, radiance in the effluent and conductivity, pH, radiance, turbidity in coastal marine environment. These models explain 66% and 73% of the observed cell number fluctuation, with turbidity (r(2)=0.529, t=5.08, p=0.0001) and conductivity (r(2)=0.5407, t=4.97, p=0

  5. Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity.

    Science.gov (United States)

    Nacke, Heiko; Schöning, Ingo; Schindler, Malte; Schrumpf, Marion; Daniel, Rolf; Nicol, Graeme W; Prosser, James I

    2017-11-01

    Coastal areas worldwide are challenged by climate change-associated increases in sea level and storm surge quantities that potentially lead to more frequent flooding of soil ecosystems. Currently, little is known of the effects of inundation events on microorganisms controlling nitrification in these ecosystems. The goal of this study was to investigate the impact of seawater flooding on the abundance, community composition and salinity tolerance of soil ammonia oxidisers. Topsoil was sampled from three islands flooded at different frequencies by the Wadden Sea. Archaeal ammonia oxidiser amoA genes were more abundant than their betaproteobacterial counterparts, and the distribution of archaeal and bacterial ammonia oxidiser amoA and 16S rRNA gene sequences significantly differed between the islands. The findings indicate selection of ammonia oxidiser phylotypes with greater tolerance to high salinity and slightly alkaline pH (e.g. Nitrosopumilus representatives) in frequently flooded soils. A cluster phylogenetically related to gammaproteobacterial ammonia oxidisers was detected in all samples analysed in this survey. Nevertheless, no gammaprotebacterial amoA genes could be amplified via PCR and only betaproteobacterial ammonia oxidisers were detected in enrichment cultures. A slurry-based experiment demonstrated the tolerance of both bacterial and archaeal ammonia oxidisers to a wide range of salinities (e.g. Wadden Sea water salinity) in soil naturally exposed to seawater at a high frequency. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential treatments.

    Science.gov (United States)

    Jin, Faguang; Li, Congcong

    2017-06-01

    Drowning is a crucial public safety problem and is the third leading cause of accidental fatality, claiming ~372,000 lives annually, worldwide. In near-drowning patients, acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is one of the most common complications. Approximately 1/3 of near-drowning patients fulfill the criteria for ALI or ARDS. In the present article, the current literature of near-drowning, pathophysiologic changes and the molecular mechanisms of seawater-drowning-induced ALI and ARDS was reviewed. Seawater is three times more hyperosmolar than plasma, and following inhalation of seawater the hyperosmotic seawater may cause serious injury in the lung and alveoli. The perturbing effects of seawater may be primarily categorized into insufficiency of pulmonary surfactant, blood-air barrier disruption, formation of pulmonary edema, inflammation, oxidative stress, autophagy, apoptosis and various other hypertonic stimulation. Potential treatments for seawater-induced ALI/ARDS were also presented, in addition to suggestions for further studies. A total of nine therapeutic strategies had been tested and all had focused on modulating the over-activated immunoreactions. In conclusion, seawater drowning is a complex injury process and the exact mechanisms and potential treatments require further exploration.

  7. Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential treatments

    Science.gov (United States)

    Jin, Faguang; Li, Congcong

    2017-01-01

    Drowning is a crucial public safety problem and is the third leading cause of accidental fatality, claiming ~372,000 lives annually, worldwide. In near-drowning patients, acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is one of the most common complications. Approximately 1/3 of near-drowning patients fulfill the criteria for ALI or ARDS. In the present article, the current literature of near-drowning, pathophysiologic changes and the molecular mechanisms of seawater-drowning-induced ALI and ARDS was reviewed. Seawater is three times more hyperosmolar than plasma, and following inhalation of seawater the hyperosmotic seawater may cause serious injury in the lung and alveoli. The perturbing effects of seawater may be primarily categorized into insufficiency of pulmonary surfactant, blood-air barrier disruption, formation of pulmonary edema, inflammation, oxidative stress, autophagy, apoptosis and various other hypertonic stimulation. Potential treatments for seawater-induced ALI/ARDS were also presented, in addition to suggestions for further studies. A total of nine therapeutic strategies had been tested and all had focused on modulating the over-activated immunoreactions. In conclusion, seawater drowning is a complex injury process and the exact mechanisms and potential treatments require further exploration. PMID:28587319

  8. Plutonium determination in seawater by inductively coupled plasma mass spectrometry: A review.

    Science.gov (United States)

    Cao, Liguo; Bu, Wenting; Zheng, Jian; Pan, Shaoming; Wang, Zhongtang; Uchida, Shigeo

    2016-05-01

    Knowing the concentration and isotopic ratio of Pu in seawater is of critical importance for assessing Pu contamination and investigating oceanic processes. In recent decades, the concentration of (239+240)Pu in seawater, particularly for surface seawater, has presented an exponential decreasing trend with time; thus determination of Pu in seawater has become a challenge nowadays. Here, we have summarized and critically discussed a variety of reported analytical methods for Pu determination in seawater sample based on inductively coupled plasma mass spectrometry (ICP-MS) analytical technique for rapid ultra-trace detection of Pu. Generally, pretreatments for seawater sample include co-precipitation, valence adjustment and chemical separation and purification procedures, all of which are comprehensively reviewed. Overall, the selected anion-exchange, extraction resins and operation condition are important for decontamination of interference from matrix elements and achieving satisfactory chemical yields. In addition, other mass spectrometric and radiometric detections are briefly addressed and compared with the focus on assessing ICP-MS. Finally, we discuss some issues and prospects in determination and application of Pu isotopes in seawater samples for future research. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Melbourne (FL) WFO - Indian River, St. Lucie, and Martin Counties

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea...

  10. Adsorption and desorption of phosphate on limestone in experiments simulating seawater intrusion

    Science.gov (United States)

    The absorption and desorption of phosphorus on a large block of limestone was investigated using deionized water (DIW) and seawater. The limestone had a high affinity to adsorb phosphorus in DIW. Phosphate adsorption was significantly less in seawater, and more phosphorus was desorbed in the seawate...

  11. Seawater infiltration effect on thermal degradation of fiber reinforced epoxy composites

    Science.gov (United States)

    Ibrahim, Mohd Haziq Izzuddin bin; Hassan, Mohamad Zaki bin; Ibrahim, Ikhwan; Rashidi, Ahmad Hadi Mohamed; Nor, Siti Fadzilah M.; Daud, Mohd Yusof Md

    2018-05-01

    Seawater salinity has been associated with the reduction of polymer structure durability. The aim of this study is to investigate the change in thermal degradation of fiber reinforced epoxy composite due to the presence of seawater. Carbon fiber, carbon/kevlar, fiberglass, and jute that reinforced with epoxy resin was laminated through hand-layup technique. Initially, these specimen was sectioned to 5×5 mm dimension, then immersed in seawater and distilled water at room temperature until it has thoroughly saturated. Following, the thermal degradation analysis using Differential Scanning Calorimetry (DSC), the thermic changes due to seawater infiltration was defined. The finding shows that moisture absorption reduces the glass transition temperature (Tg) of fiber reinforced epoxy composite. However, the glass transition temperature (Tg) of seawater infiltrated laminate composite is compareable with distilled water infiltrated laminate composite. The carbon fiber reinfored epoxy has the highest glass transition temperature out of all specimen.

  12. 60Co levels in the seawater regions

    International Nuclear Information System (INIS)

    Yoshioka, Mitsuo

    1983-01-01

    In order to assess the contribution from nuclear power facilities to the 60 Co levels in seawater regions, it is essential to grasp the background values of 60 Co. The following matters are described: 60 Co sources and the respective inputs; nuclear test fallout and nuclear power plants; the 60 Co levels in overseas countries; the 60 Co levels in Japan; the 60 Co levels from nuclear power plants in Fukui prefecture. In the seawater regions around Japan, there have been numerous instances of 60 Co detection; several pCi/kg of dry earth in sea bottom earth and about 1 pCi/kg of raw material in marine life can be considered as the background levels due to nuclear test fallout and nuclear-powered submarines. In the seawater regions of Fukui prefecture, the 60 Co levels appreciably exceeded the above background due to the nuclear power plants, which are insignificant concerning the radiation exposure of the local people. (Mori, K.)

  13. Extracting Minerals from Seawater: An Energy Analysis

    Directory of Open Access Journals (Sweden)

    Ugo Bardi

    2010-04-01

    Full Text Available The concept of recovering minerals from seawater has been proposed as a way of counteracting the gradual depletion of conventional mineral ores. Seawater contains large amounts of dissolved ions and the four most concentrated metal ones (Na, Mg, Ca, K are being commercially extracted today. However, all the other metal ions exist at much lower concentrations. This paper reports an estimate of the feasibility of the extraction of these metal ions on the basis of the energy needed. In most cases, the result is that extraction in amounts comparable to the present production from land mines would be impossible because of the very large amount of energy needed. This conclusion holds also for uranium as fuel for the present generation of nuclear fission plants. Nevertheless, in a few cases, mainly lithium, extraction from seawater could provide amounts of metals sufficient for closing the cycle of metal use in the economy, provided that an increased level of recycling can be attained.

  14. Uncertainties in Climatological Seawater Density Calculations

    Science.gov (United States)

    Dai, Hao; Zhang, Xining

    2018-03-01

    In most applications, with seawater conductivity, temperature, and pressure data measured in situ by various observation instruments e.g., Conductivity-Temperature-Depth instruments (CTD), the density which has strong ties to ocean dynamics and so on is computed according to equations of state for seawater. This paper, based on density computational formulae in the Thermodynamic Equation of Seawater 2010 (TEOS-10), follows the Guide of the expression of Uncertainty in Measurement (GUM) and assesses the main sources of uncertainties. By virtue of climatological decades-average temperature/Practical Salinity/pressure data sets in the global ocean provided by the National Oceanic and Atmospheric Administration (NOAA), correlation coefficients between uncertainty sources are determined and the combined standard uncertainties uc>(ρ>) in seawater density calculations are evaluated. For grid points in the world ocean with 0.25° resolution, the standard deviations of uc>(ρ>) in vertical profiles cover the magnitude order of 10-4 kg m-3. The uc>(ρ>) means in vertical profiles of the Baltic Sea are about 0.028kg m-3 due to the larger scatter of Absolute Salinity anomaly. The distribution of the uc>(ρ>) means in vertical profiles of the world ocean except for the Baltic Sea, which covers the range of >(0.004,0.01>) kg m-3, is related to the correlation coefficient r>(SA,p>) between Absolute Salinity SA and pressure p. The results in the paper are based on sensors' measuring uncertainties of high accuracy CTD. Larger uncertainties in density calculations may arise if connected with lower sensors' specifications. This work may provide valuable uncertainty information required for reliability considerations of ocean circulation and global climate models.

  15. Closed-form analytical solutions incorporating pumping and tidal effects in various coastal aquifer systems

    Science.gov (United States)

    Wang, Chaoyue; Li, Hailong; Wan, Li; Wang, Xusheng; Jiang, Xiaowei

    2014-07-01

    Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer's permeability (semi-permeable and impermeable), of the boundary condition at the aquifer's submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.

  16. Impediment to symbiosis establishment between giant clams and Symbiodinium algae due to sterilization of seawater.

    Science.gov (United States)

    Kurihara, Takeo; Yamada, Hideaki; Inoue, Ken; Iwai, Kenji; Hatta, Masayuki

    2013-01-01

    To survive the juvenile stage, giant clam juveniles need to establish a symbiotic relationship with the microalgae Symbiodinium occurring in the environment. The percentage of giant clam juveniles succeeding in symbiosis establishment ("symbiosis rate") is often low, which is problematic for seed producers. We investigated how and why symbiosis rates vary, depending on whether giant clam seeds are continuously reared in UV treated or non treated seawater. Results repeatedly demonstrated that symbiosis rates were lower for UV treated seawater than for non treated seawater. Symbiosis rates were also lower for autoclaved seawater and 0.2-µm filtered seawater than for non treated seawater. The decreased symbiosis rates in various sterilized seawater suggest the possibility that some factors helping symbiosis establishment in natural seawater are weakened owing to sterilization. The possible factors include vitality of giant clam seeds, since additional experiments revealed that survival rates of seeds reared alone without Symbiodinium were lower in sterilized seawater than in non treated seawater. In conclusion, UV treatment of seawater was found to lead to decreased symbiosis rates, which is due possibly to some adverse effects common to the various sterilization techniques and relates to the vitality of the giant clam seeds.

  17. MULTIELEMENT SOLID PHASE PRECONCENTRATION USING A CHELATING RESIN OF STYRENE DIVINYLBENZENE COPOLYMER AND APPLICATION TO ANALYSIS OF SEAWATER AND FISH OTOLITHS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP�MS)

    Science.gov (United States)

    Zereen, Fahmida; Yilmaz, Vedat; Arslan, Zikri

    2013-01-01

    A new chelating resin has been synthesized by immobilizing 4–(2–thiazolylazo) resorcinol (TAR) onto styrene divinlybenzene copolymer and examined for on-line solid phase extraction/preconcentration of Cd, Co, Cu, Ni, Pb and Zn in seawater and fish otoliths for determination by inductively plasma mass spectrometry (ICP-MS). A volume of 5.0 mL sample solution was loaded onto the mini column of TAR immobilized resin at 2.0 mL min−1 via a sequential injection system. The optimum pH for multielement preconcentration was around pH 5.5. Recoveries were better than 96% in artificial seawater. Elution was achieved with 1.0 mL of 0.75 mol L−1 HNO3. The resin possesses large sorption capacity ranging from 82.0 µmol g−1 for Pb to 319 µmol g−1 for Cu. The detection limits (3s) varied between 0.0016 µg L−1 (Cd) and to 0.015 µg L−1 (Zn) for preconcentration of 5.0 mL blank solutions (pH 5.5). Relative standard deviation (RSD)for three replicate runs was between 0.3% (Cd) and 6% (Zn) at 1.0 µg L−1 level. The procedure was validated by analysis of Nearshore Seawater certified reference material (CASS–4), and then successfully applied to the determination of the trace elements in fish otoliths (CRM 22) and in coastal seawater and estuarine water samples. PMID:24976635

  18. Effects of seawater components on radiolysis of water at elevated temperature

    International Nuclear Information System (INIS)

    Wada, Yoichi; Tachibana, Masahiko; Ishida, Kazushige; Ota, Nobuyuki; Shigenaka, Naoto; Inagaki, Hiromitsu; Noda, Hiroshi

    2014-01-01

    Effects of seawater components on radiolysis of water at elevated temperature have been studied with a radiolysis model in order to evaluate influence on integrity of materials used in an ABWR. In 2011, seawater flowed into a wide part of the nuclear power plant system of the Hamaoka Nuclear Power Station Reactor No. 5 owned by Chubu Electric Power Co., Inc. after condenser tubes broke during the plant shutdown operation. The reactor water temperature was 250°C and its maximum Cl − concentration was ca. 450 ppm when seawater was mixed with reactor water. In order to clarify effects of the sea water components on radiolysis of water at elevated temperature, a radiolysis model calculation was conducted with Hitachi's radiolysis analysis code 'SIMFONY'. For the calculation, the temperature range was set from 50 to 250°C with 50°C increments and the gamma dose rate was set at 60 Gys −1 to see the effect of gamma irradiation from fuels under shutdown conditions. Concentrations of radiolytic species were calculated for 10 5 s. Dilution ratio of seawater was changed to see the effects of concentration of seawater components. Reaction rate constants of the Cl − , Br − , HCO 3 − , and SO 4 2− systems were considered. The main radiolytic species were predicted to be hydrogen and oxygen. Hydrogen peroxide of low concentration was produced in seawater-mixed water at elevated temperatures. Compared with these main products, concentrations of radiolytic products originating from chloride ion and other seawater components were found to be rather low. The dominant product among them was ClO 3 − and its concentration was found to be below 0.01ppm at 10 5 s. Then, during the plant shutdown operation, the harmful influence from radiolytic species originating from seawater components on integrity of fuel materials must be smaller than that of chloride ion which is the main ionic species in seawater. (author)

  19. Sustainable and safe energy supply with seawater uranium fueled HTGR and its economy

    International Nuclear Information System (INIS)

    Fukaya, Y.; Goto, M.

    2017-01-01

    Highlights: • We discussed uranium resources with an energy security perspective. • We concluded seawater uranium is preferable for sustainability and energy security. • We evaluated electricity generation cost of seawater uranium fueled HTGR. • We concluded electricity generation with seawater uranium is reasonable. - Abstract: Sustainable and safe energy supply with High Temperature Gas-cooled Reactor (HTGR) fueled by uranium from seawater have been investigated and discussed. From the view point of safety feature of self-regulation with thermal reactor of HTGR, the uranium resources should be inexhaustible. The seawater uranium is expected to be alternative resources to conventional resources because it exists so much in seawater as a solute. It is said that 4.5 billion tons of uranium is dissolved in the seawater, which corresponds to a consumption of approximately 72 thousand years. Moreover, a thousand times of the amount of 4.5 trillion tU of uranium, which corresponds to the consumption of 72 million years, also is included in the rock on the surface of the sea floor, and that is also recoverable as seawater uranium because uranium in seawater is in an equilibrium state with that. In other words, the uranium from seawater is almost inexhaustible natural resource. However, the recovery cost with current technology is still expensive compared with that of conventional uranium. Then, we assessed the effect of increase in uranium purchase cost on the entire electricity generation cost. In this study, the economy of electricity generation of cost of a commercial HTGR was evaluated with conventional uranium and seawater uranium. Compared with ordinary LWR using conventional uranium, HTGR can generate electricity cheaply because of small volume of simple direct gas turbine system compared with water and steam systems of LWR, rationalization by modularizing, and high thermal efficiency, even if fueled by seawater uranium. It is concluded that the HTGR

  20. Penetration of bomb radiocarbon in the tropical Indian Ocean measured by means of accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Bard, E.; Arnold, M.; Maurice, P.; Monfray, P.; Duplessy, J.C.; Oestlund, H.G.

    1988-01-01

    Radiocarbon measurements performed on seawater samples by means of accelerator mass spectrometry (AMS) enable to reduce by a factor of 2000 the water sample size needed for the 14 C measurements. Therefore no chemical treatment on board the oceanographic vessel is required. Seventy-four AMS 14 C determinations on samples collected in the tropical-equatorial Indian Ocean during the second leg of the INDIGO program (1986) are presented and compared with the β-counting results obtained during the same campaign and the GEOSECS program (1978). A pronounced reduction of the equatorial 14 C deficit suggests that substantial amounts of bomb- 14 C are associated with the westward flowing Pacific water which enters the Indian Ocean via passages through the Indonesia Archipelago and/or to meridional mixing with 14 C-rich water of the southern subtropical gyre. (orig.)

  1. Use of a Land-Based, Dual-Parameter Analyzer for Tracking Ocean Acidification in Nearshore Coastal Habitats

    Science.gov (United States)

    Shea, M.; Alin, S. R.; Evans, W.; Sutton, A.; Hales, B. R.; Newton, J.; Feely, R. A.

    2016-12-01

    In 2007 to 2008, U.S. Pacific Northwest shellfish hatcheries experienced unprecedented larval mortality, attributed to upwelling along the Washington-Oregon coast that brought seawater enriched in anthropogenic CO2 and undersaturated with respect to aragonite to the surface. In response, several hatcheries have been outfitted with land-based analyzers to measure CO2 partial pressure (pCO2) and total dissolved CO2 (TCO2) through U.S. IOOS and NOAA OAP funding. This analyzer, developed at Oregon State University and known as the `Burke-O-Lator,' allows users to track CO2 system parameters in real-time. The data are available in near real-time on the IOOS Pacific Region Ocean Acidification (IPACOA) data portal, which feeds to the Global Ocean Acidification Observing Network (GOA-ON). Here, we explore the broader use of this system as an environmental monitoring tool. Most of the high-quality OA time-series locations in GOA-ON are in the open and coastal ocean, yet many areas of biological interest—such as shellfish hatcheries, shellfish farms, and coastal laboratories—are in the nearshore area of the coastal zone. A truly globally integrated assessment of OA must include nearshore conditions, which have been shown to be quite different in terms of variability, drivers, and range. We evaluated two pCO2 time-series from the coastal nearshore: the Taylor Shellfish Hatchery Burke-O-Lator system on the shore of Dabob Bay in Puget Sound, WA, and the nearby but offshore Dabob ORCA buoy MAPCO2 system within the bay. Preliminary comparison of three years of data reveals similar patterns despite differences in location and seawater intake depth, highlighting the opportunity for the addition of coupled nearshore biology and biogeochemistry measurements in GOA-ON. In addition, the well-calibrated, dual-parameter nature of the system is important for constraining nearshore chemistry, as biology, groundwater, and river inputs can lead to strong variability in carbonate

  2. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach

    International Nuclear Information System (INIS)

    Cary, Lise; Petelet-Giraud, Emmanuelle; Bertrand, Guillaume; Kloppmann, Wolfram; Aquilina, Luc; Martins, Veridiana; Hirata, Ricardo; Montenegro, Suzana; Pauwels, Hélène; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel; Lasseur, Eric; Picot, Géraldine; Guerrot, Catherine; Fléhoc, Christine

    2015-01-01

    In the coastal multilayer aquifer system of a highly urbanized southern city (Recife, Brazil), where groundwaters are affected by salinization, a multi-isotope approach (Sr, B, O, H) was used to investigate the sources and processes of salinization. The high diversity of the geological bodies, built since the Atlantic opening during the Cretaceous, highly constrains the heterogeneity of the groundwater chemistry, e.g. Sr isotope ratios, and needs to be integrated to explain the salinization processes and groundwater pathways. A paleoseawater intrusion, most probably the 120 ky B.P. Pleistocene marine transgression, and cationic exchange are clearly evidenced in the most salinized parts of the Cabo and Beberibe aquifers. All 87 Sr/ 86 Sr values are above the past and present-day seawater signatures, meaning that the Sr isotopic signature is altered due to additional Sr inputs from dilution with different freshwaters, and water–rock interactions. Only the Cabo aquifer presents a well-delimitated area of Na-HCO 3 water typical of a freshening process. The two deep aquifers also display a broad range of B concentrations and B isotope ratios with values among the highest known to date (63–68.5‰). This suggests multiple sources and processes affecting B behavior, among which mixing with saline water, B sorption on clays and mixing with wastewater. The highly fractionated B isotopic values were explained by infiltration of relatively salty water with B interacting with clays, pointing out the major role played by (palaeo)-channels for the deep Beberibe aquifer recharge. Based on an increase of salinity at the end of the dry season, a present-day seawater intrusion is identified in the surficial Boa Viagem aquifer. Our conceptual model presents a comprehensive understanding of the major groundwater salinization pathways and processes, and should be of benefit for other southern Atlantic coastal aquifers to better address groundwater management issues. - Highlights:

  3. Biodegradation of phenanthrene in artificial seawater by using free ...

    African Journals Online (AJOL)

    and related aromatic compounds. This paper reports the domestication of strain Sphingomonas sp. GY2B in artificial seawater (AS) and the immobilization of the strain onto rice straw. Results showed that adding 85% artificial seawater had very low impact on the growth and phenanthrene degradation ability of strain GY2B ...

  4. Substrate Use of Pseudovibrio sp. Growing in Ultra-Oligotrophic Seawater

    Science.gov (United States)

    Schwedt, Anne; Seidel, Michael; Dittmar, Thorsten; Simon, Meinhard; Bondarev, Vladimir; Romano, Stefano; Lavik, Gaute; Schulz-Vogt, Heide N.

    2015-01-01

    Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM). To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), free and hydrolysable amino acids, and the molecular composition of DOM by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The DOC concentration of the artificial seawater we used for cultivation was 4.4 μmol C L-1, which was eight times lower compared to the natural oligotrophic seawater we used for parallel experiments (36 μmol C L -1). During the three-week duration of the experiment, cell numbers increased from 40 cells mL-1 to 2x104 cells mL -1 in artificial and to 3x105 cells mL -1 in natural seawater. No nitrogen fixation and minor CO2 fixation (seawater, using unexpected organic compounds to fuel their energy, carbon and nitrogen requirements. PMID:25826215

  5. Microbiological Study in Coastal Water of Port Dickson, Malaysia

    International Nuclear Information System (INIS)

    Ainon Hamzah; Saiful Hazwa Kipli; Siti Rahil Ismail; Rawlins Una; Sukiman Sarmani

    2011-01-01

    The microbial composition in coastal water of the Port Dickson beach in Negeri Sembilan, Malaysia was analyzed using several microbial indicators for the purpose of selecting the best indicator for marine water pollution. The indicators studied were total coliform (TC), fecal coliform (FC), fecal streptococci (FS) and coliphage. Five locations were selected along the Port Dickson beaches and samplings were carried out in 1998 and 2001. The results showed an increase in the number of total coliform (TC), fecal coliform (FC) and fecal streptococci (FS) between these two sampling by 98.12 %, 86.12 % and 99 %, respectively. The numbers of TC, FC and FS exceeded the recommended limit for recreational seawater based on U.S. EPA 1986 standard. There was a positive correlation between TC, FC and FS and negative to coliphages. (author)

  6. Impediment to Symbiosis Establishment between Giant Clams and Symbiodinium Algae Due to Sterilization of Seawater

    Science.gov (United States)

    Kurihara, Takeo; Yamada, Hideaki; Inoue, Ken; Iwai, Kenji; Hatta, Masayuki

    2013-01-01

    To survive the juvenile stage, giant clam juveniles need to establish a symbiotic relationship with the microalgae Symbiodinium occurring in the environment. The percentage of giant clam juveniles succeeding in symbiosis establishment (“symbiosis rate”) is often low, which is problematic for seed producers. We investigated how and why symbiosis rates vary, depending on whether giant clam seeds are continuously reared in UV treated or non treated seawater. Results repeatedly demonstrated that symbiosis rates were lower for UV treated seawater than for non treated seawater. Symbiosis rates were also lower for autoclaved seawater and 0.2-µm filtered seawater than for non treated seawater. The decreased symbiosis rates in various sterilized seawater suggest the possibility that some factors helping symbiosis establishment in natural seawater are weakened owing to sterilization. The possible factors include vitality of giant clam seeds, since additional experiments revealed that survival rates of seeds reared alone without Symbiodinium were lower in sterilized seawater than in non treated seawater. In conclusion, UV treatment of seawater was found to lead to decreased symbiosis rates, which is due possibly to some adverse effects common to the various sterilization techniques and relates to the vitality of the giant clam seeds. PMID:23613802

  7. The density-salinity relation of standard seawater

    Science.gov (United States)

    Schmidt, Hannes; Seitz, Steffen; Hassel, Egon; Wolf, Henning

    2018-01-01

    The determination of salinity by means of electrical conductivity relies on stable salt proportions in the North Atlantic Ocean, because standard seawater, which is required for salinometer calibration, is produced from water of the North Atlantic. To verify the long-term stability of the standard seawater composition, it was proposed to perform measurements of the standard seawater density. Since the density is sensitive to all salt components, a density measurement can detect any change in the composition. A conversion of the density values to salinity can be performed by means of a density-salinity relation. To use such a relation with a target uncertainty in salinity comparable to that in salinity obtained from conductivity measurements, a density measurement with an uncertainty of 2 g m-3 is mandatory. We present a new density-salinity relation based on such accurate density measurements. The substitution measurement method used is described and density corrections for uniform isotopic and chemical compositions are reported. The comparison of densities calculated using the new relation with those calculated using the present reference equations of state TEOS-10 suggests that the density accuracy of TEOS-10 (as well as that of EOS-80) has been overestimated, as the accuracy of some of its underlying density measurements had been overestimated. The new density-salinity relation may be used to verify the stable composition of standard seawater by means of routine density measurements.

  8. An AHP-derived method for mapping the physical vulnerability of coastal areas at regional scales

    Directory of Open Access Journals (Sweden)

    G. Le Cozannet

    2013-05-01

    Full Text Available Assessing coastal vulnerability to climate change at regional scales is now mandatory in France since the adoption of recent laws to support adaptation to climate change. However, there is presently no commonly recognised method to assess accurately how sea level rise will modify coastal processes in the coming decades. Therefore, many assessments of the physical component of coastal vulnerability are presently based on a combined use of data (e.g. digital elevation models, historical shoreline and coastal geomorphology datasets, simple models and expert opinion. In this study, we assess the applicability and usefulness of a multi-criteria decision-mapping method (the analytical hierarchy process, AHP to map physical coastal vulnerability to erosion and flooding in a structured way. We apply the method in two regions of France: the coastal zones of Languedoc-Roussillon (north-western Mediterranean, France and the island of La Réunion (south-western Indian Ocean, notably using the regional geological maps. As expected, the results show not only the greater vulnerability of sand spits, estuaries and low-lying areas near to coastal lagoons in both regions, but also that of a thin strip of erodible cliffs exposed to waves in La Réunion. Despite gaps in knowledge and data, the method is found to provide a flexible and transportable framework to represent and aggregate existing knowledge and to support long-term coastal zone planning through the integration of such studies into existing adaptation schemes.

  9. Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during spring (Tunisia, Southern Mediterranean Sea).

    Science.gov (United States)

    Drira, Zaher; Kmiha-Megdiche, Salma; Sahnoun, Houda; Hammami, Ahmed; Allouche, Noureddine; Tedetti, Marc; Ayadi, Habib

    2016-03-15

    The coastal marine area of Sfax (Tunisia), which is well-known for its high productivity and fisheries, is also subjected to anthropogenic inputs from diverse industrial, urban and agriculture activities. We investigated the spatial distribution of physical, chemical and biogeochemical parameters in the surface waters of the southern coastal area of Sfax. Pertinent tracers of anthropogenic inputs were identified. Twenty stations were sampled during March 2013 in the vicinity of the coastal areas reserved for waste discharge. Phosphogypsum wastes dumped close to the beaches were the main source of PO4(3-), Cl(-) and SO4(2-) in seawater. The high content in total polyphenolic compounds was due to the olive oil treatment waste water released from margins. These inorganic and organic inputs in the surface waters were associated with elevated COD. The BOD5/COD (3) ratios highlighted a chemical pollution with organic load of a low biodegradability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Coastal groundwater salinization: Focus on the vertical variability in a multi-layered aquifer through a multi-isotope fingerprinting (Roussillon Basin, France)

    Energy Technology Data Exchange (ETDEWEB)

    Petelet-Giraud, Emmanuelle, E-mail: e.petelet@brgm.fr [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Négrel, Philippe [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Aunay, Bertrand [BRGM, Réunion Agency, 5, rue Sainte-Anne, CS 51016, 97404 Saint Denis Cedex (France); Ladouche, Bernard; Bailly-Comte, Vincent [BRGM Montpellier Agency, 1039, rue de Pinville, 34000 Montpellier (France); Guerrot, Catherine; Flehoc, Christine [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France); Pezard, Philippe; Lofi, Johanna [Géosciences Montpellier, UMR 5243, Université de Montpellier, cc069, Place Eugène Bataillon, 34095 Montpellier Cedex 05 (France); Dörfliger, Nathalie [BRGM, Avenue C. Guillemin, BP 36009, 45060 Orléans Cedex 02 (France)

    2016-10-01

    The Roussillon sedimentary Basin (South France) is a complex multi-layered aquifer, close to the Mediterranean Sea facing seasonally increases of water abstraction and salinization issues. We report geochemical and isotopic vertical variability in this aquifer using groundwater sampled with a Westbay System® at two coastal monitoring sites: Barcarès and Canet. The Westbay sampling allows pointing out and explaining the variation of water quality along vertical profiles, both in productive layers and in the less permeable ones where most of the chemical processes are susceptible to take place. The aquifer layers are not equally impacted by salinization, with electrical conductivity ranging from 460 to 43,000 μS·cm{sup −1}. The δ{sup 2}H–δ{sup 18}O signatures show mixing between seawater and freshwater components with long water residence time as evidenced by the lack of contribution from modern water using {sup 3}H, {sup 14}C and CFCs/SF6. S(SO{sub 4}) isotopes also evidence seawater contribution but some signatures can be related to oxidation of pyrite and/or organically bounded S. In the upper layers {sup 87}Sr/{sup 86}Sr ratios are close to that of seawater and then increase with depth, reflecting water–rock interaction with argillaceous formations while punctual low values reflect interaction with carbonate. Boron isotopes highlight secondary processes such as adsorption/desorption onto clays in addition to mixings. At the Barcarès site (120 m deep), the high salinity in some layers appear to be related neither to present day seawater intrusion, nor to Salses-Leucate lagoonwater intrusion. Groundwater chemical composition thus highlights binary mixing between fresh groundwater and inherited salty water together with cation exchange processes, water–rock interactions and, locally, sedimentary organic matter mineralisation probably enhanced by pyrite oxidation. Finally, combining the results of this study and those of Caballero and Ladouche (2015

  11. 226Ra and 228Ra tracer study on nutrient transport in east coastal waters of Hainan Island, China

    Directory of Open Access Journals (Sweden)

    Ni Su

    2011-06-01

    Full Text Available Material fluxes (e.g., nutrients from coastal waters to offshore areas play an important role in controlling the water quality of the adjacent sea areas not only by increasing nutrient concentration but also by changing nutrient structures. In this study, naturally occurring isotopes, 226Ra and 228Ra, were measured with the alpha spectrometry in the Wenjiao-Wenchang and Wanquan estuaries and adjacent sea areas along the east coast of Hainan Island. The excess 226Ra and 228Ra activities were observed by comparison with the values derived from the conservative mixing of freshwater and seawater end-members in both estuaries. Using a one-dimensional diffusion model, the horizontal eddy diffusion coefficient of 3.16 x 105 cm2/s, for nutrients diffusing from their sources, was derived from 228Ra activities. Consequently, the corresponding nutrient fluxes flowing into the coastal waters were assessed. The results can provide useful information for the study of the mixing and exchange processes of coastal waters as well as dissoluble pollutant transport in this sea area.

  12. Methane-oxidizing seawater microbial communities from an Arctic shelf

    Science.gov (United States)

    Uhlig, Christiane; Kirkpatrick, John B.; D'Hondt, Steven; Loose, Brice

    2018-06-01

    Marine microbial communities can consume dissolved methane before it can escape to the atmosphere and contribute to global warming. Seawater over the shallow Arctic shelf is characterized by excess methane compared to atmospheric equilibrium. This methane originates in sediment, permafrost, and hydrate. Particularly high concentrations are found beneath sea ice. We studied the structure and methane oxidation potential of the microbial communities from seawater collected close to Utqiagvik, Alaska, in April 2016. The in situ methane concentrations were 16.3 ± 7.2 nmol L-1, approximately 4.8 times oversaturated relative to atmospheric equilibrium. The group of methane-oxidizing bacteria (MOB) in the natural seawater and incubated seawater was > 97 % dominated by Methylococcales (γ-Proteobacteria). Incubations of seawater under a range of methane concentrations led to loss of diversity in the bacterial community. The abundance of MOB was low with maximal fractions of 2.5 % at 200 times elevated methane concentration, while sequence reads of non-MOB methylotrophs were 4 times more abundant than MOB in most incubations. The abundances of MOB as well as non-MOB methylotroph sequences correlated tightly with the rate constant (kox) for methane oxidation, indicating that non-MOB methylotrophs might be coupled to MOB and involved in community methane oxidation. In sea ice, where methane concentrations of 82 ± 35.8 nmol kg-1 were found, Methylobacterium (α-Proteobacteria) was the dominant MOB with a relative abundance of 80 %. Total MOB abundances were very low in sea ice, with maximal fractions found at the ice-snow interface (0.1 %), while non-MOB methylotrophs were present in abundances similar to natural seawater communities. The dissimilarities in MOB taxa, methane concentrations, and stable isotope ratios between the sea ice and water column point toward different methane dynamics in the two environments.

  13. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    Science.gov (United States)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  14. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian; Zuo, Jian; Lu, Kang-Jia; Chung, Neal Tai-Shung

    2016-01-01

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  15. Freeze desalination of seawater using LNG cold energy

    KAUST Repository

    Chang, Jian

    2016-06-23

    With the aid of cold energy from regasification of liquefied natural gas (LNG), freeze desalination (FD) is an emerging technology for seawater desalination because of its low energy characteristics and insensitivities to fouling problems. This work aims to investigate the major operating parameters of FD such as coolant temperature, freezing duration, supercooling, seeding, agitation, crystallizer material and subsequent washing procedure on ice production and water quality. It was found that the optimal freezing duration per batch was 1 h for an iron crystallizer and 1.5 h for a glass crystallizer. The optimal coolant temperature should be around −8 °C. The optimal amount of washing water to clean the raw ice was about 50 wt% of the raw ice. Over 50 wt% of the feed could be recovered as raw ice within 1 h, which means an overall ice recovery rate of higher than 25% (of the original seawater), considering the consumption of washing water. Both artificial and real seawater were tested under the optimized conditions. The total dissolved solid in the product ice was around 300 ppm, which met the World Health Organization (WHO) potable water salinity standard of 500 ppm. Therefore, the process parameters optimized in this study can be directly used for the freeze desalination of seawater.

  16. SST and OLR relationship during Indian summer monsoon: a coupled climate modelling perspective

    Science.gov (United States)

    Chaudhari, Hemantkumar S.; Hazra, Anupam; Pokhrel, Samir; Chakrabarty, Chandrima; Saha, Subodh Kumar; Sreenivas, P.

    2018-04-01

    The study mainly investigates sea surface temperature (SST) and outgoing longwave radiation (OLR) relationships in coupled climate model. To support the analysis, high-level cloud and OLR relationship is also investigated. High-level cloud and OLR relationship depicts significant negative correlation over the entire monsoon regime. Coupled climate model is able to produce the same. SST and OLR relationship in observation also depicts significant negative relationship, in particular, over the Equatorial Eastern Indian Ocean (EIO) region. Climate Forecast System version 2 (CFSv2) is able to portray the negative relationship over EIO region; however, it is underestimated as compared to observation. Significant negative correlations elucidate that local SSTs regulate the convection and further it initiates Bjerknes feedback in the central Indian Ocean. It connotes that SST anomalies during monsoon period tend to be determined by oceanic forcing. The heat content of the coastal Bay of Bengal shows highest response to EIO SST by a lag of 1 month. It suggests that the coastal region of the Bay of Bengal is marked by coastally trapped Kelvin waves, which might have come from EIO at a time lag of 1 month. Sea surface height anomalies, depth at 20 °C isotherms and depth at 26 isotherms also supports the above hypothesis. Composite analysis based on EIO index and coupled climate model sensitivity experiments also suggest that the coastal Bay of Bengal region is marked by coastally trapped Kelvin waves, which are propagated from EIO at a time lag of 1 month. Thus, SST and OLR relationship pinpoints that the Bay of Bengal OLR (convection) is governed by local ocean-atmospheric coupling, which is influenced by the delayed response from EIO brought forward through oceanic planetary waves at a lag of 1 month. These results have utmost predictive value for seasonal and extended range forecasting. Thus, OLR and SST relationship can constitute a pivotal role in investigating the

  17. Coastal Morphology and Coastal Protection

    NARCIS (Netherlands)

    Van de Graaff, J.

    2009-01-01

    Lecture notes ct5309. Tides, currents and water; coastal problems; sediment transport processes; coastal transport modes; longshore transport; cross-shore transport; fundamentals of mud; channels and trenches; coastal protection; application of structures; application of nourishments.

  18. Extraction of Carbon Dioxide and Hydrogen from Seawater and Hydrocarbon Production Therefrom

    Science.gov (United States)

    2016-04-05

    acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H.sup. ions for Na.sup. ions. Carbon dioxide may be...extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide . The carbon dioxide and hydrogen may be used to produce hydrocarbons.

  19. Modelling of a transmembrane evaporation module for desalination of seawater

    NARCIS (Netherlands)

    Guijt, C.M.; Racz, I.G.; van Heuven, Jan Willem; Reith, T.; de Haan, A.B.

    1999-01-01

    Transmembrane evaporation (often called membrane distillation) carried out in a countercurrent flow module, in which incoming cold seawater is heated by the condensing product water flow, is a promising technology for low-cost seawater desalination. This paper presents a model for preliminary design

  20. Recovery of uranium from sea-water

    International Nuclear Information System (INIS)

    Llewelyn, G.I.W.

    1976-01-01

    The possibility of extraction of uranium from sea-water on a sufficiently large scale to contribute significantly to national UK requirements is placed in perspective. It seems unlikely that there are sites around the UK coast where this could be achieved, and insufficient work has been done to be confident that sites exist anywhere to enable uranium extraction to be carried out on a large scale. Process techniques have been developed on a small scale, but extensive further research work would be necessary to reduce appreciably the present uncertainties. It would be unwise to expect uranium from sea-water to contribute significant amounts to the world's uranium demand for thermal reactors on an acceptable timescale. (author)