WorldWideScience

Sample records for coastal high hazard

  1. Application of the Coastal Hazard Wheel methodology for coastal multi-hazard assessment and management in the state of Djibouti

    Directory of Open Access Journals (Sweden)

    Lars Rosendahl Appelquist

    2014-01-01

    Full Text Available This paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW is developed for worldwide application and is based on a specially designed coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure for applying the CHW methodology for national hazard assessments. The assessment shows that the coastline of Djibouti is characterized by extensive stretches with high or very high hazards of ecosystem disruption, mainly related to coral reefs and mangrove forests, while large sections along the coastlines of especially northern and southern Djibouti have high hazard levels for gradual inundation. The hazard of salt water intrusion is moderate along most of Djibouti’s coastline, although groundwater availability is considered to be very sensitive to human ground water extraction. High or very high erosion hazards are associated with Djibouti’s sedimentary plains, estuaries and river mouths, while very high flooding hazards are associated with the dry river mouths.

  2. The global coastal hazards data base

    International Nuclear Information System (INIS)

    Gornitz, V.; White, T.W.

    1989-01-01

    A rise of sea level between 0.5 and 1.5 m, caused by predicted climate warming in the next century, could jeopardize low-lying radioactive waste disposal sites near the coast, due to permanent and episodic inundation, increased shoreline retreat, and changes in the water table. The effects of global sea level rise on the shoreline will not be spatially uniform. Therefore, site selection will depend on assessment of these differential vulnerabilities, in order to avoid high-risk coasts. The coastal hazards data base described here could provide an appropriate framework. The coastal hazards data base integrates relevant topographic, geologic, geomorphologic, erosional and subsidence information in a Geographic Information System (GIS), to identify high-risk shorelines characterized by low coastal relief, an erodible substrate, present and past evidence of subsidence, extensive shoreline retreat, and high wave/tide energies. Data for seven variables relating to inundation and erosion hazards are incorporated into the ORNL ARC/INFO Geographic Information System (GIS). Data compilation has been completed for the US and is being extended to North America, and ultimately the world. A coastal vulnerability index (CVI) has been designed to flag high risk coastal segments. 17 refs., 2 figs., 2 tabs

  3. The Coastal Hazard Wheel system for coastal multi-hazard assessment & management in a changing climate

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Halsnæs, Kirsten

    2015-01-01

    This paper presents the complete Coastal Hazard Wheel (CHW) system, developed for multi-hazard-assessment and multi-hazard-management of coastal areas worldwide under a changing climate. The system is designed as a low-tech tool that can be used in areas with limited data availability...... screening and management. The system is developed to assess the main coastal hazards in a single process and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The system was initially presented in 2012 and based on a range of test......-applications and feedback from coastal experts, the system has been further refined and developed into a complete hazard management tool. This paper therefore covers the coastal classification system used by the CHW, a standardized assessment procedure for implementation of multi-hazard-assessments, technical guidance...

  4. Elevation uncertainty in coastal inundation hazard assessments

    Science.gov (United States)

    Gesch, Dean B.; Cheval, Sorin

    2012-01-01

    Coastal inundation has been identified as an important natural hazard that affects densely populated and built-up areas (Subcommittee on Disaster Reduction, 2008). Inundation, or coastal flooding, can result from various physical processes, including storm surges, tsunamis, intense precipitation events, and extreme high tides. Such events cause quickly rising water levels. When rapidly rising water levels overwhelm flood defenses, especially in heavily populated areas, the potential of the hazard is realized and a natural disaster results. Two noteworthy recent examples of such natural disasters resulting from coastal inundation are the Hurricane Katrina storm surge in 2005 along the Gulf of Mexico coast in the United States, and the tsunami in northern Japan in 2011. Longer term, slowly varying processes such as land subsidence (Committee on Floodplain Mapping Technologies, 2007) and sea-level rise also can result in coastal inundation, although such conditions do not have the rapid water level rise associated with other flooding events. Geospatial data are a critical resource for conducting assessments of the potential impacts of coastal inundation, and geospatial representations of the topography in the form of elevation measurements are a primary source of information for identifying the natural and human components of the landscape that are at risk. Recently, the quantity and quality of elevation data available for the coastal zone have increased markedly, and this availability facilitates more detailed and comprehensive hazard impact assessments.

  5. Application of the Coastal Hazard Wheel methodology for coastal multi-hazard assessment and management in the state of Djibouti

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Balstrøm, Thomas

    2014-01-01

    coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used...... to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS) to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure......This paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW) is developed for worldwide application and is based on a specially designed...

  6. Coastal Hazards: Hurricanes, Tsunamis, Coastal Erosion.

    Science.gov (United States)

    Vandas, Steve

    1998-01-01

    Details an ocean-based lesson and provides background information on the designation of 1998 as the "Year of the Ocean" by the United Nations. Contains activities on the poster insert that can help raise student awareness of coastal-zone hazards. (DDR)

  7. Coastal vulnerability: climate change and natural hazards perspectives

    Science.gov (United States)

    Romieu, E.; Vinchon, C.

    2009-04-01

    . This concept is a great tool for policy makers to help managing their action and taking into account climate change (McFadden, et al. 2006). However, in those approaches, vulnerability is the output itself (cost of effective impacts, geomorphologic impacts…), but is not integrated it in a risk analysis. Furthermore, those studies emerged from a climatic perspective, which leads to consider climate change as a hazard or pressure whereas risk studies commonly consider hazards such as erosion and flooding, where climate change modifies the drivers of the hazard. 2) The natural hazards and socio economic perspectives In order to reduce impacts of natural hazards, decision makers need a complete risk assessment (probability of losses). Past studies on natural risks (landslide, earthquake...) highlighted the pertinence of defining risk as a combination of : (1)hazard occurrence and intensity, (2) exposition and (3)vulnerability of assets and population to this hazard (e.g. Douglas. 2007, Sarewitz, et al. 2003). Following the Renn and Klinke risk assessment frame, high uncertainties associated with coastal risks considering climatic and anthropic change highlights the importance of working on that concept of "vulnerability" (Klinke and Renn. 2002). Past studies on vulnerability assessment showed a frequently mentioned gap between "impact based" and "human based" points of view. It is nowadays a great issue for natural risk sciences. Many research efforts in FP7 projects such as MOVE and ENSURE focus on integrating the different dimensions of vulnerability (Turner, et al. 2003, Birkmann. 2006). Coastal risk studies highlight another issue of concern. We previously detailed the different use of the term "vulnerability" in the coastal context, quite different of the "natural risk's" use. Interaction of social, economic and physical sciences is considered within two french research projects (Vulsaco, Miseeva), in order to identify the vulnerability of a system to flooding or

  8. Assessing Hazard Vulnerability, Habitat Conservation, and Restoration for the Enhancement of Mainland China's Coastal Resilience

    Science.gov (United States)

    Sajjad, Muhammad; Li, Yangfan; Tang, Zhenghong; Cao, Ling; Liu, Xiaoping

    2018-03-01

    Worldwide, humans are facing high risks from natural hazards, especially in coastal regions with high population densities. Rising sea levels due to global warming are making coastal communities' infrastructure vulnerable to natural disasters. The present study aims to provide a coupling approach of vulnerability and resilience through restoration and conservation of lost or degraded coastal natural habitats to reclamation under different climate change scenarios. The integrated valuation of ecosystems and tradeoffs model is used to assess the current and future vulnerability of coastal communities. The model employed is based on seven different biogeophysical variables to calculate a natural hazard index and to highlight the criticality of the restoration of natural habitats. The results show that roughly 25% of the coastline and more than 5 million residents are in highly vulnerable coastal areas of mainland China, and these numbers are expected to double by 2100. Our study suggests that restoration and conservation in recently reclaimed areas have the potential to reduce this vulnerability by 45%. Hence, natural habitats have proved to be a great defense against coastal hazards and should be prioritized in coastal planning and development. The findings confirm that natural habitats are critical for coastal resilience and can act as a recovery force of coastal functionality loss. Therefore, we recommend that the Chinese government prioritizes restoration (where possible) and conservation of the remaining habitats for the sake of coastal resilience to prevent natural hazards from escalating into disasters.

  9. Coastal Flood Hazard Composite Layer for the Coastal Flood Exposure Mapper

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a map service for the Coastal Flood Hazard Composite dataset. This dataset was created by combining hazard zones from the following datasets: FEMA V zones,...

  10. An index-based method to assess risks of climate-related hazards in coastal zones: The case of Tetouan

    Science.gov (United States)

    Satta, Alessio; Snoussi, Maria; Puddu, Manuela; Flayou, Latifa; Hout, Radouane

    2016-06-01

    The regional risk assessment carried out within the ClimVar & ICZM Project identified the coastal zone of Tetouan as a hotspot of the Mediterranean Moroccan coast and so it was chosen for the application of the Multi-Scale Coastal Risk Index for Local Scale (CRI-LS). The local scale approach provides a useful tool for local coastal planning and management by exploring the effects and the extensions of the hazards and combining hazard, vulnerability and exposure variables in order to identify areas where the risk is relatively high. The coast of Tetouan is one of the coastal areas that have been most rapidly and densely urbanized in Morocco and it is characterized by an erosive shoreline. Local authorities are facing the complex task of balancing development and managing coastal risks, especially coastal erosion and flooding, and then be prepared to the unavoidable impacts of climate change. The first phase of the application of the CRI-LS methodology to Tetouan consisted of defining the coastal hazard zone, which results from the overlaying of the erosion hazard zone and the flooding hazard zone. Nineteen variables were chosen to describe the Hazards, Vulnerability and Exposure factors. The scores corresponding to each variable were calculated and the weights assigned through an expert judgement elicitation. The resulting values are hosted in a geographic information system (GIS) platform that enables the individual variables and aggregated risk scores to be color-coded and mapped across the coastal hazard zone. The results indicated that 10% and 27% of investigated littoral fall under respectively very high and high vulnerability because of combination of high erosion rates with high capital land use. The risk map showed that some areas, especially the flood plains of Restinga, Smir and Martil-Alila, with distances over 5 km from the coast, are characterized by high levels of risk due to the low topography of the flood plains and to the high values of exposure

  11. Generic framework for meso-scale assessment of climate change hazards in coastal environments

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl

    2013-01-01

    coastal environments worldwide through a specially designed coastal classification system containing 113 generic coastal types. The framework provides information on the degree to which key climate change hazards are inherent in a particular coastal environment, and covers the hazards of ecosystem......This paper presents a generic framework for assessing inherent climate change hazards in coastal environments through a combined coastal classification and hazard evaluation system. The framework is developed to be used at scales relevant for regional and national planning and aims to cover all...... and computing requirements, allowing for application in developing country settings. It is presented as a graphical tool—the Coastal Hazard Wheel—to ease its application for planning purposes....

  12. Integrated approach for coastal hazards and risks in Sri Lanka

    Science.gov (United States)

    Garcin, M.; Desprats, J. F.; Fontaine, M.; Pedreros, R.; Attanayake, N.; Fernando, S.; Siriwardana, C. H. E. R.; de Silva, U.; Poisson, B.

    2008-06-01

    The devastating impact of the tsunami of 26 December 2004 on the shores of the Indian Ocean recalled the importance of knowledge and the taking into account of coastal hazards. Sri Lanka was one of the countries most affected by this tsunami (e.g. 30 000 dead, 1 million people homeless and 70% of the fishing fleet destroyed). Following this tsunami, as part of the French post-tsunami aid, a project to establish a Geographical Information System (GIS) on coastal hazards and risks was funded. This project aims to define, at a pilot site, a methodology for multiple coastal hazards assessment that might be useful for the post-tsunami reconstruction and for development planning. This methodology could be applied to the whole coastline of Sri Lanka. The multi-hazard approach deals with very different coastal processes in terms of dynamics as well as in terms of return period. The first elements of this study are presented here. We used a set of tools integrating a GIS, numerical simulations and risk scenario modelling. While this action occurred in response to the crisis caused by the tsunami, it was decided to integrate other coastal hazards into the study. Although less dramatic than the tsunami these remain responsible for loss of life and damage. Furthermore, the establishment of such a system could not ignore the longer-term effects of climate change on coastal hazards in Sri Lanka. This GIS integrates the physical and demographic data available in Sri Lanka that is useful for assessing the coastal hazards and risks. In addition, these data have been used in numerical modelling of the waves generated during periods of monsoon as well as for the December 2004 tsunami. Risk scenarios have also been assessed for test areas and validated by field data acquired during the project. The results obtained from the models can be further integrated into the GIS and contribute to its enrichment and to help in better assessment and mitigation of these risks. The coastal-hazards

  13. Integrated approach for coastal hazards and risks in Sri Lanka

    Directory of Open Access Journals (Sweden)

    M. Garcin

    2008-06-01

    Full Text Available The devastating impact of the tsunami of 26 December 2004 on the shores of the Indian Ocean recalled the importance of knowledge and the taking into account of coastal hazards. Sri Lanka was one of the countries most affected by this tsunami (e.g. 30 000 dead, 1 million people homeless and 70% of the fishing fleet destroyed. Following this tsunami, as part of the French post-tsunami aid, a project to establish a Geographical Information System (GIS on coastal hazards and risks was funded. This project aims to define, at a pilot site, a methodology for multiple coastal hazards assessment that might be useful for the post-tsunami reconstruction and for development planning. This methodology could be applied to the whole coastline of Sri Lanka.

    The multi-hazard approach deals with very different coastal processes in terms of dynamics as well as in terms of return period. The first elements of this study are presented here. We used a set of tools integrating a GIS, numerical simulations and risk scenario modelling. While this action occurred in response to the crisis caused by the tsunami, it was decided to integrate other coastal hazards into the study. Although less dramatic than the tsunami these remain responsible for loss of life and damage. Furthermore, the establishment of such a system could not ignore the longer-term effects of climate change on coastal hazards in Sri Lanka.

    This GIS integrates the physical and demographic data available in Sri Lanka that is useful for assessing the coastal hazards and risks. In addition, these data have been used in numerical modelling of the waves generated during periods of monsoon as well as for the December 2004 tsunami. Risk scenarios have also been assessed for test areas and validated by field data acquired during the project. The results obtained from the models can be further integrated into the GIS and contribute to its enrichment and to help in better assessment and mitigation

  14. Risk Analysis of Coastal hazard Considering Sea-level Rise and Local Environment in Coastal Area

    Science.gov (United States)

    Sangjin, P.; Lee, D. K.; KIM, H.; Ryu, J. E.; Yoo, S.; Ryoo, H.

    2014-12-01

    Recently, natural hazards has been more unpredictable with increasing frequency and strength due to climate change. Especially, coastal areas would be more vulnerable in the future because of sea-level rise (SLR). In case of Korea, it is surrounded by oceans and has many big cities at coastal area, thus a hazard prevention plan in coastal area is absolutely necessary. However, prior to making the plan, finding areas at risk would be the first step. In order to find the vulnerable area, local characteristics of coastal areas should also be considered along with SLR. Therefore, the objective of the research is to find vulnerable areas, which could be damaged by coastal hazards considering local environment and SLR of coastal areas. Spatial scope of the research was set up as 1km from the coastline according to the 'coastal management law' in Korea. The assessment was done up to the year of 2050, and the highest sea level rise scenario was used. For risk analysis, biophysical and socioeconomic characteristics were considered as to represent local characteristics of coastal area. Risk analysis was carried out through the combination of 'possibility of hazard' and the 'level of damages', and both of them reflect the above-mentioned regional characteristics. Since the range of inundation was narrowed down to the inundation from typhoon in this research, the possibility of inundation caused by typhoon was estimated by using numerical model, which calculated the height of storm surge considering wave, tide, sea-level pressure and SLR. Also the level of damage was estimated by categorizing the socioeconomic character into four factors; human, infrastructure, ecology and socioeconomic. Variables that represent each factor were selected and used in damage estimation with their classification and weighting value. The result shows that the urban coastal areas are more vulnerable and hazardous than other areas because of socioeconomic factors. The east and the south coast are

  15. Projected 21st century coastal flooding in the Southern California Bight. Part 2: Tools for assessing climate change-driven coastal hazards and socio-economic impacts

    Science.gov (United States)

    Erikson, Li; Barnard, Patrick; O'Neill, Andrea; Wood, Nathan J.; Jones, Jeanne M.; Finzi Hart, Juliette; Vitousek, Sean; Limber, Patrick; Hayden, Maya; Fitzgibbon, Michael; Lovering, Jessica; Foxgrover, Amy C.

    2018-01-01

    This paper is the second of two that describes the Coastal Storm Modeling System (CoSMoS) approach for quantifying physical hazards and socio-economic hazard exposure in coastal zones affected by sea-level rise and changing coastal storms. The modelling approach, presented in Part 1, downscales atmospheric global-scale projections to local scale coastal flood impacts by deterministically computing the combined hazards of sea-level rise, waves, storm surges, astronomic tides, fluvial discharges, and changes in shoreline positions. The method is demonstrated through an application to Southern California, United States, where the shoreline is a mix of bluffs, beaches, highly managed coastal communities, and infrastructure of high economic value. Results show that inclusion of 100-year projected coastal storms will increase flooding by 9–350% (an additional average 53.0 ± 16.0 km2) in addition to a 25–500 cm sea-level rise. The greater flooding extents translate to a 55–110% increase in residential impact and a 40–90% increase in building replacement costs. To communicate hazards and ranges in socio-economic exposures to these hazards, a set of tools were collaboratively designed and tested with stakeholders and policy makers; these tools consist of two web-based mapping and analytic applications as well as virtual reality visualizations. To reach a larger audience and enhance usability of the data, outreach and engagement included workshop-style trainings for targeted end-users and innovative applications of the virtual reality visualizations.

  16. Modeling Compound Flood Hazards in Coastal Embayments

    Science.gov (United States)

    Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.

    2017-12-01

    Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the

  17. Coastal Hazards and Climate Change. A guidance manual for Local Government in New Zealand

    International Nuclear Information System (INIS)

    Wratt, D.; Mullan, B.; Salinger, J.; Allan, S.; Morgan, T.; Kenny, G.

    2004-05-01

    Climate change will not introduce any new types of coastal hazards, but it will affect existing hazards. Coastal hazards in many areas are expected to increase as a result of the effects of climate change. As development of coastal areas and property values increase, the potential impacts of coastal hazards increase. There is increasing confidence in the predictions of the effects of climate change. Sea level has risen in New Zealand by about 0.25 m since the mid-1800s (historical sea-level rise has been approximately 0.16 m per century), and this rise is expected to accelerate. Under the most likely mid-range projections, sea level is projected to rise a further 0.14 - 0.18 m by 2050, and 0.31 - 0.49 m by 2100. In developing scenarios, it is recommended that at least the most likely mid-range scenario for sea-level rise is used: it is recommended that council staff use a figure of 0.2 m by 2050 and 0.5 m by 2100 when considering sea-level rise in projects or plans. Sea-level rise and other climate change effects, such as increased intensity of storms and changes in sediment supply to coastlines, are expected to modify coastal hazards in many areas around New Zealand. Because climate change effects are very gradual, land-use planning decisions must have long-term horizons to accommodate the lifetimes of structures. It is vital that planning occurs now for climate change effects, particularly where decisions are being made on issues and developments that have planning horizons and life expectancies of 50 years or more. This Guidance Manual is intended to help local authorities manage coastal hazards by: providing information on the effects of climate change on coastal hazards; presenting a decision-making framework to assess the associated risks; providing guidance on appropriate response options. Three main types of coastal hazard are addressed: coastal erosion caused by storms and/or long-term processes; coastal inundation caused by storms or gradual inundation

  18. Coastal Zone Hazards Related to Groundwater-Surface Water Interactions and Groundwater Flooding

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2009-12-01

    Worldwide, as many as half a million people have died in natural and man-made disasters since the turn of the 21st century (Wirtz, 2008). Further, natural and man-made hazards can lead to extreme financial losses (Elsner et al, 2009). Hazards, hydrological and geophysical risk analysis related to groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of its significance. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models (Geist and Parsons, 2006), and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health (Glantz, 2007). In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction. This paper proposes consideration of two case studies which are important and significant for future development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone (Zavialov, 2005). It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due to their intensive pollution by industrial wastes and by drainage waters from irrigated fields, the Syr Darya and Amu Darya rivers can no longer be considered

  19. Coastal Hazards Impacts And Interventions

    Directory of Open Access Journals (Sweden)

    Rosanna D. Gonzales

    2017-10-01

    Full Text Available Communitys participation in the activities like the preparation and creation of historical timeline. resource and hazard mapping as well as vulnerability assessment matrix VAM are effective tools in determining hazards impacts and interventions of a certain locality. The most common hazards are typhoons saltwater intrusion floods and drought. Data were collected through focus group discussions FGDs from respondents along coastal areas. Findings revealed that natural calamities had great impact to livelihood properties and health. The damaged business operations fishing and agricultural livelihood led to loss of income likewise the sources of water were also contaminated. Planned interventions include launching of periodic education and awareness program creation of evacuation centers and relocation sites rescue centers installation of deep well water pumps and irrigation systems solid waste management drainage and sea walls construction canal rehabilitationdredging tree planting and alternative livelihood programs.

  20. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Science.gov (United States)

    2010-10-01

    ... mapping coastal flood hazard areas. 65.11 Section 65.11 Emergency Management and Assistance FEDERAL... Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.11 Evaluation of sand dunes in mapping coastal flood hazard areas. (a) General conditions. For purposes of the NFIP, FEMA will consider...

  1. The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms

    Science.gov (United States)

    Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie

    2009-01-01

    The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with

  2. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    Science.gov (United States)

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  3. Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain)

    Science.gov (United States)

    Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A.

    2006-06-01

    Mapping of coastal inundation hazard related to storms requires the combination of multiple sources of information regarding meteorological, morphological and dynamic characteristics of both the area at risk and the studied phenomena. Variables such as beach slope, storm wave height or wind speed have traditionally been used, but detailed geomorphological features of the area as well as long-term shoreline evolution trends must also be taken into account in order to achieve more realistic results. This work presents an evaluation of storm flooding hazard in Valdelagrana spit and marshes (SW Spain), considering two types of storm that are characteristic of the area: a modal storm with 1 year of recurrence interval (maximum wave height of 3.3 m), and an extreme storm with 6-10 years of recurrence interval (maximum wave height of 10.6 m), both approaching the coast perpendicularly. After calculating theoretical storm surge elevation, a digital terrain model was made by adjusting topographic data to field work and detailed geomorphological analysis. A model of flooding extent was subsequently developed for each storm type, and then corrected according to the rates of shoreline change in the last decades, which were assessed by means of aerial photographs taking the dune toe as shoreline indicator. Results show that long-term coastline trend represents an important factor in the prediction of flooding extent, since shoreline retreat causes the deterioration of natural coastal defences as dune ridges, thus increasing coastal exposure to high-energy waves. This way, it has been stated that the lack of sedimentary supply plays an important role in spatial variability of inundation extent in Valdelagrana spit. Finally, a hazard map is presented, where calculated coastal retreat rates are employed in order to predict the areas that could be affected by future inundation events.

  4. High Arctic Coasts At Risk - The Impact of Coastal Hazards on Scientific and Community Infrastructure in Svalbard

    Science.gov (United States)

    Strzelecki, M. C.; Pawlowski, L.; Jaskolski, M.; Lim, M.; Zagorski, P.; Long, A. J.; Jensen, M.

    2015-12-01

    The rapid climate warming being observed in the Svalbard is leading to an increase in human activities in the coastal zone, leading to an increased need for coastal hazard assessment. Present-day Svalbard coastal landscapes are modified by increased degradation of permafrost accelerated sediment supply from deglaciated catchments, and prolonged periods of open-water conditions and wave activity. Since the second half of 20thcentury there is also an observed increase in the number and intensity of storms entering the Arctic particularly in summer months when coastlines are free of protective ice cover. Despite the potential significance of these coastal hazards on the security of scientific (research bases and devices) and community (ports, airports, roads, buildings) infrastructure on Svalbard, relatively little is known on the present-day rate of Svalbard coastal zone changes and how they might impact the nearshore infrastructure in the future. Here we report the results of a project that focused on rates of coastal zone changes in Svalbard and examined the impact of extreme coastal processes on scientific and community infrastructure. The project applied combination of remote sensing and field-based mapping techniques to characterise coastal changes observed in the surroundings of main research stations in Svalbard in Hornsund (PPS), Petuniabukta (AMUPS) and Bellsund (Calypsobyen) as well as a major towns: Longyearbyen, Piramiden, Barentsburg and Svea. Our results document dramatic changes of Svalbard coastal zone under intervals characterised by a warming climate, retreating local ice masses, a shortened winter sea-ice season and melting permafrost. The study confirmed the growing importance of extreme processes in shaping coasts of Svalbard and the impact of these changes on human infrastructure. Our study proposes a risk assessment for a development and protection of infrastructure along the coasts of Svalbard under scenarios of climate change, sea level rise

  5. Imbalance in Groundwater-Surface Water Interactions and its Relationship to the Coastal Zone Hazards

    Science.gov (United States)

    Kontar, Y. A.; Ozorovich, Y. R.; Salokhiddinov, A. T.

    2011-12-01

    We report here some efforts and results in studying the imbalance in groundwater-surface water interactions and processes of groundwater-surface water interactions and groundwater flooding creating hazards in the coastal zones. Hazards, hydrological and geophysical risk analysis related to imbalance in groundwater-surface water interactions and groundwater flooding have been to a large extent under-emphasized for coastal zone applications either due to economical limitations or underestimation of significance of imbalance in groundwater-surface water interactions. This is particularly true for tsunamis creating salt water intrusion to coastal aquifers, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models, and to increasing mineralization of potable water because of intensive water diversions and also the abundance of highly toxic pollutants (mainly pesticides) in water, air and food, which contribute to the deterioration of the coastal population's health. In the wake of pressing environmental and economic issues, it is of prime importance for the scientific community to shed light onto the great efforts by hydrologists and geophysicists to quantify conceptual uncertainties and to provide quality assurances of potential coastal zone hazard evaluation and prediction under conditions of imbalance in groundwater-surface water interactions. This paper proposes consideration of two case studies which are important and significant for future understanding of a concept of imbalance in groundwater-surface water interactions and development and essential for feasibility studies of hazards in the coastal zone. The territory of the Aral Sea Region in Central Asia is known as an ecological disaster coastal zone. It is now obvious that, in order to provide reasonable living conditions to the coastal zone population, it is first of all necessary to drastically improve the quality of the water dedicated to human needs. Due

  6. Coastal hazards and groundwater salinization on low coral islands.

    Science.gov (United States)

    Terry, James P.; Chui, T. F. May

    2016-04-01

    Remote oceanic communities living on low-lying coral islands (atolls) without surface water rely for their survival on the continuing viability of fragile groundwater resources. These exist in the form of fresh groundwater lenses (FGLs) that develop naturally within the porous coral sand and gravel substrate. Coastal hazards such as inundation by high-energy waves driven by storms and continuing sea-level rise (SLR) are among many possible threats to viable FGL size and quality on atolls. Yet, not much is known about the combined effects of wave washover during powerful storms and SLR on different sizes of coral island, nor conversely how island size influences lens resilience against damage. This study investigates FGL damage by salinization (and resilience) caused by such coastal hazards using a modelling approach. Numerical modelling is carried out to generate steady-state FGL configurations at three chosen island sizes (400, 600 and 800 m widths). Steady-state solutions reveal how FGL dimensions are related in a non-linear manner to coral island size, such that smaller islands develop much more restricted lenses than larger islands. A 40 cm SLR scenario is then imposed. This is followed by transient simulations to examine storm-induced wave washover and subsequent FGL responses to saline damage over a 1 year period. Smaller FGLs display greater potential for disturbance by SLR, while larger and more robust FGLs tend to show more resilience. Further results produce a somewhat counterintuitive finding: in the post-SLR condition, FGL vulnerability to washover salinization may actually be reduced, owing to the thinner layer of unsaturated substrate lying above the water table into which saline water can infiltrate during a storm event. Nonetheless, combined washover and SLR impacts imply overall that advancing groundwater salinization may lead to some coral islands becoming uninhabitable long before they are completely submerged by sea-level rise, thereby calling

  7. Integrating socio-economic and infrastructural dimension to reveal hazard vulnerability of coastal districts

    Science.gov (United States)

    Mazumdar, Jublee; Paul, Saikat

    2015-04-01

    Losses of life and property due to natural hazards have intensified in the past decade, motivating an alteration of disaster management away from simple post event resettlement and rehabilitation. The degree of exposure to hazard for a homogeneous population is not entirely reliant upon nearness to the source of hazard event. Socio-economic factors and infrastructural capability play an important role in determining the vulnerability of a place. This study investigates the vulnerability of eastern coastal states of India from tropical cyclones. The record of past hundred years shows that the physical vulnerability of eastern coastal states is four times as compared to the western coastal states in terms of frequency and intensity of tropical cyclones. Nevertheless, these physical factors played an imperative role in determining the vulnerability of eastern coast. However, the socio-economic and infrastructural factors influence the risk of exposure exponentially. Inclusion of these indicators would provide better insight regarding the preparedness and resilience of settlements to hazard events. In this regard, the present study is an effort to develop an Integrated Vulnerability Model (IVM) based on socio-economic and infrastructural factors for the districts of eastern coastal states of India. A method is proposed for quantifying the socio-economic and infrastructural vulnerability to tropical cyclone in these districts. The variables included in the study are extracted from Census of India, 2011 at district level administrative unit. In the analysis, a large number of variables are reduced to a smaller number of factors by using principal component analysis that represents the socio-economic and infrastructure vulnerability to tropical cyclone. Subsequently, the factor scores in socio-economic Vulnerability Index (SeVI) and Infrastructure Vulnerability Index (InVI) are standardized from 0 to 1, indicating the range from low to high vulnerability. The factor

  8. Assessment of tsunami hazard for coastal areas of Shandong Province, China

    Science.gov (United States)

    Feng, Xingru; Yin, Baoshu

    2017-04-01

    Shandong province is located on the east coast of China and has a coastline of about 3100 km. There are only a few tsunami events recorded in the history of Shandong Province, but the tsunami hazard assessment is still necessary as the rapid economic development and increasing population of this area. The objective of this study was to evaluate the potential danger posed by tsunamis for Shandong Province. The numerical simulation method was adopted to assess the tsunami hazard for coastal areas of Shandong Province. The Cornell multi-grid coupled tsunami numerical model (COMCOT) was used and its efficacy was verified by comparison with three historical tsunami events. The simulated maximum tsunami wave height agreed well with the observational data. Based on previous studies and statistical analyses, multiple earthquake scenarios in eight seismic zones were designed, the magnitudes of which were set as the potential maximum values. Then, the tsunamis they induced were simulated using the COMCOT model to investigate their impact on the coastal areas of Shandong Province. The numerical results showed that the maximum tsunami wave height, which was caused by the earthquake scenario located in the sea area of the Mariana Islands, could reach up to 1.39 m off the eastern coast of Weihai city. The tsunamis from the seismic zones of the Bohai Sea, Okinawa Trough, and Manila Trench could also reach heights of >1 m in some areas, meaning that earthquakes in these zones should not be ignored. The inundation hazard was distributed primarily in some northern coastal areas near Yantai and southeastern coastal areas of Shandong Peninsula. When considering both the magnitude and arrival time of tsunamis, it is suggested that greater attention be paid to earthquakes that occur in the Bohai Sea. In conclusion, the tsunami hazard facing the coastal area of Shandong Province is not very serious; however, disasters could occur if such events coincided with spring tides or other

  9. Coastal dynamics studies for evaluation of hazard and vulnerability for coastal erosion. case study the town La Bocana, Buenaventura, colombian pacific

    Science.gov (United States)

    Coca-Domínguez, Oswaldo; Ricaurte-Villota, Constanza

    2015-04-01

    The analysis of the hazard and vulnerability in coastal areas caused for erosion is based on studies of coastal dynamics since that allows having a better information detail that is useful for decision-making in aspects like prevention, mitigation, disaster reduction and integrated risk management. The Town of La Bocana, located in Buenaventura (Colombian Pacific) was selected to carry out the threat assessment for coastal erosion based on three components: i) magnitude, ii) occurrence and iii) susceptibility. Vulnerability meanwhile, is also composed of three main components for its evaluation: i) exposure ii) fragility and iii) resilience, which in turn are evaluated in 6 dimensions of vulnerability: physical, social, economic, ecological, institutional and cultural. The hazard analysis performed used a semi-quantitative approach, and an index of variables such as type of geomorphological unit, type of beach, exposure of the surfing coast, occurrence, among others. Quantitative data of coastal retreat was measured through the use of DSAS (Digital Shoreline Analysis System) an application of ArcGIS, as well as the development of digital elevation models from the beach and 6 beach profiles strategically located on the coast obtained with GNSS technology. Sediment samples collected from these beaches, medium height and wave direction were used as complementary data. The information was integrated across the coast line into segments of 250 x 250 meters. 4 sectors are part of the coastal area of La Bocana: Pianguita, Vistahermosa, Donwtown and Shangay. 6 vulnerability dimensions units were taken from these population, as well as its density for exposure, wich was analyzed through a multi-array method that include variables such as, land use, population, type of structure, education, basic services, among others, to measure frailty, and their respective indicator of resilience. The hazard analysis results indicate that Vistahermosa is in very high threat, while

  10. The international workshop on wave hindcasting and forecasting and the coastal hazards symposium

    Science.gov (United States)

    Breivik, Øyvind; Swail, Val; Babanin, Alexander V.; Horsburgh, Kevin

    2015-05-01

    Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection.

  11. Coastal Flooding Hazards due to storm surges and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Knudsen, Per; Andersen, Ole B.

    Flooding hazard and risk mapping are major topics in low-lying coastal areas before even considering the adverse effects of sea level rise (SLR) due to climate change. While permanent inundation may be a prevalent issue, more often floods related to extreme events (storm surges) have the largest...... damage potential.Challenges are amplified in some areas due to subsidence from natural and/or anthropogenic causes. Subsidence of even a few mm/y may over time greatly impair the safety against flooding of coastal communities and must be accounted for in order to accomplish the economically most viable...

  12. Application of a new methodology for coastal multi-hazard-assessment and management on the state of Karnataka, India

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Balstrom, Thomas

    2015-01-01

    This paper presents the application of a new Methodology for coastal multi-hazard assessment & management under a changing global climate on the state of Karnataka, India. The recently published methodology termed the Coastal Hazard Wheel (CHW) is designed for local, regional and national hazard...... at a scale relevant for regional planning purposes. It uses a GIS approach to develop regional and sub-regional hazard maps as well as to produce relevant hazard risk data, and includes a discussion of uncertainties, limitations and management perspectives. The hazard assessment shows that 61 percent...

  13. Baseline geophysical data for hazard management in coastal areas in relation to earthquakes and tsunamis

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    is another factor for some of the intraplate earthquakes in the South Indian Shield, which includes the Eastern and Western Continental Margins of India. Baseline geophysical data for hazard management in coastal areas in relation to earthquakes... surge. Keywords Hazard management, marine geophysical data, geomorphology and tsunami surge, coastal seismicity Date received: 7 August 2015; accepted: 15 October 2015 CSIR – National Institute of Oceanography, Visakhapatnam, India Corresponding author...

  14. Checking of seismic and tsunami hazard for coastal NPP of Chinese continent after Fukushima nuclear accident

    Institute of Scientific and Technical Information of China (English)

    Chang Xiangdong; Zhou Bengang; Zhao Lianda

    2013-01-01

    A checking on seismic and tsunami hazard for coastal nuclear power plant (NPP) of Chinese continent has been made after Japanese Fukushima nuclear accident caused by earthquake tsunami.The results of the checking are introduced briefly in this paper,including the evaluations of seismic and tsunami hazard in NPP siting period,checking results on seismic and tsunami hazard.Because Chinese coastal area belongs to the continental shelf and far from the boundary of plate collision,the tsunami hazard is not significant for coastal area of Chinese continent.However,the effect from tsunami still can' t be excluded absolutely since calculated result of Manila trench tsunami source although the tsunami wave is lower than water level from storm surge.The research about earthquake tsunami will continue in future.The tsunami warning system and emergency program of NPP will be established based on principle of defense in depth in China.

  15. Building Coastal Resilience to sea-level rise and storm hazards: supporting decisions in the NE USA, Gulf of Mexico, and eastern Caribbean

    Science.gov (United States)

    Shepard, C.; Beck, M. W.; Gilmer, B.; Ferdana, Z.; Raber, G.; Agostini, V.; Whelchel, A.; Stone, J.

    2012-12-01

    Coastal communities are increasingly vulnerable to coastal hazards including storm surge and sea level rise. We describe the use of Coastal Resilience, an approach to help support decisions to reduce socio-economic and ecological vulnerability to coastal hazards. We provide examples of this work from towns and cities around Long Island Sound (NY, CT) and the Gulf of Mexico (FL, AL, MS, LA, TX) in the USA and from the Eastern Caribbean (Grenada, St. Vincent and the Grenadines). All of these shores are densely populated and have significant coastal development only centimetres above the sea. This makes people and property very vulnerable and threatens coastal wetlands (marsh, mangrove) and reefs (oyster, coral) that provide habitat and natural buffers to storms while providing other ecosystem services. We describe this work specifically and then offer broader perspectives and recommendations for using ecological habitats to reduce vulnerability to coastal hazards. The Nature Conservancy's Coastal Resilience approach is driven by extensive community engagement and uses spatial information on storm surge, sea level rise, ecological and socio-economic variables to identify options for reducing the vulnerability of human and natural communities to coastal hazards (http://www.coastalresilience.org). We have worked with local communities to map current and future coastal hazards and to identify the vulnerable natural resources and human communities. Communities are able to visualize potential hazard impacts and identify options to reduce them within their existing planning and regulatory frameworks.

  16. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    Science.gov (United States)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  17. Tsunami Hazard Assessment of Coastal South Africa Based on Mega-Earthquakes of Remote Subduction Zones

    Science.gov (United States)

    Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana

    2017-11-01

    After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.

  18. Tsunami Hazard Assessment of Coastal South Africa Based on Mega-Earthquakes of Remote Subduction Zones

    Science.gov (United States)

    Kijko, Andrzej; Smit, Ansie; Papadopoulos, Gerassimos A.; Novikova, Tatyana

    2018-04-01

    After the mega-earthquakes and concomitant devastating tsunamis in Sumatra (2004) and Japan (2011), we launched an investigation into the potential risk of tsunami hazard to the coastal cities of South Africa. This paper presents the analysis of the seismic hazard of seismogenic sources that could potentially generate tsunamis, as well as the analysis of the tsunami hazard to coastal areas of South Africa. The subduction zones of Makran, South Sandwich Island, Sumatra, and the Andaman Islands were identified as possible sources of mega-earthquakes and tsunamis that could affect the African coast. Numerical tsunami simulations were used to investigate the realistic and worst-case scenarios that could be generated by these subduction zones. The simulated tsunami amplitudes and run-up heights calculated for the coastal cities of Cape Town, Durban, and Port Elizabeth are relatively small and therefore pose no real risk to the South African coast. However, only distant tsunamigenic sources were considered and the results should therefore be viewed as preliminary.

  19. Marine natural hazards in coastal zone: observations, analysis and modelling (Plinius Medal Lecture)

    Science.gov (United States)

    Didenkulova, Ira

    2010-05-01

    Giant surface waves approaching the coast frequently cause extensive coastal flooding, destruction of coastal constructions and loss of lives. Such waves can be generated by various phenomena: strong storms and cyclones, underwater earthquakes, high-speed ferries, aerial and submarine landslides. The most famous examples of such events are the catastrophic tsunami in the Indian Ocean, which occurred on 26 December 2004 and hurricane Katrina (28 August 2005) in the Atlantic Ocean. The huge storm in the Baltic Sea on 9 January 2005, which produced unexpectedly long waves in many areas of the Baltic Sea and the influence of unusually high surge created by long waves from high-speed ferries, should also be mentioned as examples of regional marine natural hazards connected with extensive runup of certain types of waves. The processes of wave shoaling and runup for all these different marine natural hazards (tsunami, coastal freak waves, ship waves) are studied based on rigorous solutions of nonlinear shallow-water theory. The key and novel results presented here are: i) parameterization of basic formulas for extreme runup characteristics for bell-shape waves, showing that they weakly depend on the initial wave shape, which is usually unknown in real sea conditions; ii) runup analysis of periodic asymmetric waves with a steep front, as such waves are penetrating inland over large distances and with larger velocities than symmetric waves; iii) statistical analysis of irregular wave runup demonstrating that wave nonlinearity nearshore does not influence on the probability distribution of the velocity of the moving shoreline and its moments, and influences on the vertical displacement of the moving shoreline (runup). Wave runup on convex beaches and in narrow bays, which allow abnormal wave amplification is also discussed. Described analytical results are used for explanation of observed extreme runup of tsunami, freak (sneaker) waves and ship waves on different coasts

  20. Study and mapping of natural hazards in the coastal zone of Murcia; Estudio y cartografia de los peligros naturales costeros de la region de Murcia

    Energy Technology Data Exchange (ETDEWEB)

    Seisdedos, J.; Mulas, J.; Gonzalez de Vallejo, L. I.; Rodriguez Franco, J. A.; Garcia, F. J.; Rio, L. del; Garrote, J.

    2013-09-01

    Despite the importance and implications of coastal hazards, very few studies have been focused on their analysis and mapping on a regional scale in a systematic and integrated way. This article presents a methodology based on the detailed analysis of natural hazards affecting coastal zones: floods, erosion, sea level rise, tsunamis, landslides, etc., and the study and mapping of the factors involved (coastal geomorphology, coastal processes, historical events, human activities). These factors and hazards are evaluated and integrated to prepare maps which include the assessments of each individual hazard and the overall ones. A mapping system in strips parallel to the coast is used, allowing the recognition and interpretation of the characteristics of the coast and the associated hazards. This methodology is applied to the coastal zone of Murcia, showing its usefulness for studying and mapping coastal hazards and its applicability to other regions. (Author)

  1. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards

    NARCIS (Netherlands)

    Wolff, Claudia; Vafeidis, Athanasios T.; Muis, Sanne; Lincke, Daniel; Satta, Alessio; Lionello, Piero; Jimenez, Jose A.; Conte, Dario; Hinkel, Jochen

    2018-01-01

    We have developed a new coastal database for the Mediterranean basin that is intended for coastal impact and adaptation assessment to sea-level rise and associated hazards on a regional scale. The data structure of the database relies on a linear representation of the coast with associated spatial

  2. Investigating Coastal Processes and Hazards Along the Coastline of Ghana, West Africa (Invited)

    Science.gov (United States)

    Hapke, C. J.; Ashton, A. D.; Wiafe, G.; Addo, K. A.; Ababio, S.; Agyekum, K. A.; Lippmann, T. C.; Roelvink, J.

    2010-12-01

    coast and responding to erosion issues. Funding for program development and equipment has been provided via the Coastal Geosciences Program of the U.S. Office of Naval Research through the Navy’s Africa Partnership Station. Data collection and analysis to date include the first regional shoreline change assessment of the Ghana coast, utilizing aerial photography spanning 31 years and RTK-GPS field surveys and reconnaissance mapping. Initial results from the shoreline change analysis indicate highly variable alongshore rates of change, although the trend is predominantly erosional. The highest erosion rates are found in the east, on the downdrift flank of the low-lying, sandy Volta Delta complex. The rapid erosion rates are likely due to the disruption of sediment supplied to the coast by the damming of the Volta River in the 1960s, as well as alongshore transport gradients generated by the progradation and morphologic evolution of the delta. Continuing investigations of coastal processes in Ghana will allow for a better understanding of erosion hazards and will aid in the development of appropriate, systematic, and sustainable responses to future increased hazards associated with rising sea-levels.

  3. Environmental hazards for pipelines in coastal regions/shore approaches

    International Nuclear Information System (INIS)

    Jinsi, B.K.

    1995-01-01

    Often oil/gas and other hydrocarbons discovered and produced offshore are transported to onshore facilities via submarine pipelines. The route of such pipelines traverses through coastal/shore approach regions. For a rational/economic design, safe installation and subsequent operation it is of utmost importance to review, evaluate and finalize various environmental hazard such as winds, waves, currents, seabed topography, seabed and sub-bottom soils, seabed erosion and soil accretion. This paper addresses the above described environmental hazards, their assessment and techniques to prepare design parameters which must be used for stability analysis, installation methods, long term operation and maintenance for the shore approaches. Additionally, various proven pipeline installation and stabilization techniques for the shore approach region are detailed. As case histories, three approaches installed in the Dutch North Sea are described

  4. Teaching Coastal Hazard, Risk, and Environmental Justice

    Science.gov (United States)

    Orr, C. H.; Manduca, C. A.; Blockstein, D.; Davis, F.; McDaris, J. R.

    2015-12-01

    Geoscience literacy and expertise play a role in all societal issues that involve the Earth. Issues that range from environmental degradation and natural hazards to creating sustainable economic systems or livable cities. Human health and resilience also involves the Earth. Environmental hazard issues have dimensions and consequences that have connections to environmental justice and disproportionate impacts on people based on their ethnicity, gender, cultural and socioeconomic conditions. Often these dimensions are hidden or unexplored in common approaches to teaching about hazards. However, they can provide importance context and meaning to students who would not otherwise see themselves in STEM disciplines. Teaching geoscience in a framework of societal issues may be an important mechanism for building science and sustainability capacity in future graduates. In May 2015, the NSF STEP center InTeGrate held a workshop in New Orleans, LA on teaching about Coastal Hazards, Risk and Environmental Justice. This was an opportunity to bring together people who use these topics as a powerful topic for transdisciplinary learning that connects science to local communities. This workshop was tailored for faculty members from minority-serving institutions and other colleges and universities that serve populations that are under-represented in the geosciences and related fields. The workshop outcome was a set of strategies for accomplishing this work, including participants' experience teaching with local cases, making connections to communities, and building partnerships with employers to understand workforce needs related to interdisciplinary thinking, sustainability science and risk. The participants articulated both the great need and opportunity for educators to help learners to explore these dimensions with their students as well as the challenge of learning to teach across disciplines and using controversial topics.

  5. A socioeconomic assessment of climate change-enhanced coastal storm hazards in the U.S. Pacific Northwest

    Science.gov (United States)

    Baron, H. M.; Ruggiero, P.; Harris, E.

    2010-12-01

    Every winter, coastal communities in the U.S. Pacific Northwest are at risk to coastal change hazards caused by extreme storm events. These storms have the potential to erode large portions of the primary foredune that may be a community’s only barrier from the ocean. Furthermore, the frequency and magnitude of significant erosion events appears to be increasing, likely due to climate-related processes such as sea level rise and increases in storm wave heights. To reduce risks posed by winter storms, it is not only important to determine the impending physical impacts but it is also necessary to explore the vulnerability of the social-ecological system in the context of these hazards. Here we assess the exposure to both annually occurring and extreme storm events at various planning timelines using a methodology that incorporates the effect of a variable and changing climate on future total water levels. To do this, we have developed a suite of climate change scenarios involving a range of projections for the wave climate, global sea level rise, and the occurrence of El Niño events through 2100. Simple geometric models are then used to conservatively determine the extent of erosion that may occur for a given combination of these climatic factors. We integrate the physical hazards with socioeconomic data using a geographic information system (GIS) in order to quantify societal vulnerability, characterized by the exposure and sensitivity of a community, which is based on the distribution of people, property, and resources. Here we focus on a 14 km stretch of dune-backed coast in northwest Oregon, from Cascade Head to Cape Kiwanda—the location of two communities that, historically, have experienced problematic storm-induced coastal change, Pacific City and Neskowin. Although both of these communities have similar exposure to coastal change hazards at the present, Neskowin is more than twice as sensitive to erosion because almost all of its residents and community

  6. Synoptic conditions and hazards in coastal zone

    Science.gov (United States)

    Surkova, Galina; Arkhipkin, Victor; Kislov, Alexsandr

    2013-04-01

    This work is an approach to the methodology of prediction of hazards in the coastal zone. For the past 60 years, according to the observations and reanalysis, meteorological conditions are rough in connection with the storm waves and strong winds resulting in catastrophic damage in the coastal zone of the Black and Caspian Seas. Forecast of similar events is taken from CMIP3 modeled for the future climate 2046-2065 by general global atmosphere and ocean circulation model MPI-ECHAM5. The research was conducted for the three types of calendar data samples: 1) storm wave and surge from observations (1948-2012), 2) storm simulations with wave height of 4 m and more (1948-2010), and 3) prognostic climate scenarios for 2046-2065. In the first sample especially rare events were chosen, accompanied by a large damage in the coastal zone. Second sample of cases was derived from modeling of SWAN (Simulating WAves Nearshore). The third sample was derived from projections of cases from group 1 in the MPI-ECHAM5 climate forecasts for 2046-2065. For each sample the data of large-scale fields of surface pressure, height 500 hPa isobaric surfaces, 700gPa (Reanalysis NCEP / NCAR) was analyzed. On the basis of statistical techniques (decomposition of fields in the natural orthogonal functions (EOF) and cluster analysis) the synoptic situations associated with these events were classified. Centroids of pressure fields for dominated cases show that there are two basic types of synoptic situations in case of storm waves for the Black Sea. In the first case main role play the Mediterranean cyclones located in the east of the Mediterranean Sea, they are spread over the Black Sea, and often form a local center of low pressure. Their movement is blocked by the high pressure over the European Russia and Eastern Europe. If the center of the cyclone is over Asia and the southern part of the Black Sea, the weather is dominated by the north-eastern, eastern, south-easterly winds. In some cases

  7. Assessing coastal flooding hazard in urban areas: the case of estuarian villages in the city of Hyères-les-Palmiers

    Directory of Open Access Journals (Sweden)

    Le Roy Sylvestre

    2016-01-01

    Full Text Available This study, conducted on the city of Hyéres-les-Palmiers (French Riviera to guide the future land use planning, aimed to evaluate how sea level rise could modify coastal flooding hazards in urban areas located near small estuaries in a microtidal context. A joint probability approach allowed establishing typical storm parameters for specific return periods (30, 50 and 100 years, integrating offshore conditions (sea level and significant wave height and the river level. Storm scenarios have been established from these parameters and the chronology of the most impacting recent storm. Sea level rise has been integrated (20 cm for year 2030 and 60 cm for year 2100, and the coastal flooding has been simulated with a non-hydrostatic non-linear shallow-water model (SWASH. The calculations have been realized on high resolution DEM (1 to 5 m mesh size, integrating buildings and coastal protections. The approach has been validated by reproducing a recent flooding event. Obtained results show the importance of wave overtopping in current coastal flooding hazard in this area. Nevertheless, if Hyéres-les-Palmiers is currently little exposed to coastal flooding, these simulations highlight an increasing role of overflowing due to sea level rise, leading to significant flooding in 2100, even for quite frequent events.

  8. Implications of Sea Level Rise on Coastal Flood Hazards

    Science.gov (United States)

    Roeber, V.; Li, N.; Cheung, K.; Lane, P.; Evans, R. L.; Donnelly, J. P.; Ashton, A. D.

    2012-12-01

    Recent global and local projections suggest the sea level will be on the order of 1 m or higher than the current level by the end of the century. Coastal communities and ecosystems in low-lying areas are vulnerable to impacts resulting from hurricane or large swell events in combination with sea-level rise. This study presents the implementation and results of an integrated numerical modeling package to delineate coastal inundation due to storm landfalls at future sea levels. The modeling package utilizes a suite of numerical models to capture both large-scale phenomena in the open ocean and small-scale processes in coastal areas. It contains four components to simulate (1) meteorological conditions, (2) astronomical tides and surge, (3) wave generation, propagation, and nearshore transformation, and (4) surf-zone processes and inundation onto dry land associated with a storm event. Important aspects of this package are the two-way coupling of a spectral wave model and a storm surge model as well as a detailed representation of surf and swash zone dynamics by a higher-order Boussinesq-type wave model. The package was validated with field data from Hurricane Ivan of 2005 on the US Gulf coast and applied to tropical and extratropical storm scenarios respectively at Eglin, Florida and Camp Lejeune, North Carolina. The results show a nonlinear increase of storm surge level and nearshore wave energy with a rising sea level. The exacerbated flood hazard can have major consequences for coastal communities with respect to erosion and damage to infrastructure.

  9. Stakeholder perspectives on land-use strategies for adapting to climate-change-enhanced coastal hazards: Sarasota, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent

    2010-01-01

    Sustainable land-use planning requires decision makers to balance community growth with resilience to natural hazards. This balance is especially difficult in many coastal communities where planners must grapple with significant growth projections, the persistent threat of extreme events (e.g., hurricanes), and climate-change-driven sea level rise that not only presents a chronic hazard but also alters the spatial extent of sudden-onset hazards such as hurricanes. We examine these stressors on coastal, long-term land-use planning by reporting the results of a one-day community workshop held in Sarasota County, Florida that included focus groups and participatory mapping exercises. Workshop participants reflected various political agendas and socioeconomic interests of five local knowledge domains: business, environment, emergency management and infrastructure, government, and planning. Through a series of alternating domain-specific focus groups and interactive plenary sessions, participants compared the county 2050 comprehensive land-use plan to maps of contemporary hurricane storm-surge hazard zones and projected storm-surge hazard zones enlarged by sea level rise scenarios. This interactive, collaborative approach provided each group of domain experts the opportunity to combine geographically-specific, scientific knowledge on natural hazards and climate change with local viewpoints and concerns. Despite different agendas, interests, and proposed adaptation strategies, there was common agreement among participants for the need to increase community resilience to contemporary hurricane storm-surge hazards and to explore adaptation strategies to combat the projected, enlarged storm-surge hazard zones.

  10. Coordinated management of coastal hazard awareness and preparedness in the USVI

    Science.gov (United States)

    Watlington, R. A.; Lewis, E.; Drost, D.

    2014-04-01

    As far back as history has been written in the islands today known as the US Virgin Islands (USVI), residents have had to endure and survive costly and deadly onslaughts from tropical storms such as the 1867 San Narciso Hurricane, Hurricane Hugo and Hurricane Marilyn. Keenly alerted by recent tragic events in the Indian Ocean in 2004, in Haiti in 2010 and in Japan in 2011, the USVI was reminded that it had suffered its greatest tsunami impact in a well-documented event that had followed the 1867 hurricane by fewer than three weeks. To address their community's continual vulnerability to coastal hazards, USVI emergency managers, scientists and educators, assisted by national and regional disaster management agencies and warning programs, have engaged programs for understanding, anticipating and mitigating these hazards. This paper focuses on how three public-serving institutions, the Virgin Islands Territorial Emergency Management Agency (VITEMA), the University of the Virgin Islands and the Caribbean Ocean Observing System have responded to the community's need for improved preparedness through programs of physical preparation, planning, research, observations, education and outreach. This report reviews some of the approaches and activities employed in the USVI in the hope of sharing their benefits with similarly vulnerable coastal communities.

  11. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards

    Science.gov (United States)

    Wolff, Claudia; Vafeidis, Athanasios T.; Muis, Sanne; Lincke, Daniel; Satta, Alessio; Lionello, Piero; Jimenez, Jose A.; Conte, Dario; Hinkel, Jochen

    2018-01-01

    We have developed a new coastal database for the Mediterranean basin that is intended for coastal impact and adaptation assessment to sea-level rise and associated hazards on a regional scale. The data structure of the database relies on a linear representation of the coast with associated spatial assessment units. Using information on coastal morphology, human settlements and administrative boundaries, we have divided the Mediterranean coast into 13 900 coastal assessment units. To these units we have spatially attributed 160 parameters on the characteristics of the natural and socio-economic subsystems, such as extreme sea levels, vertical land movement and number of people exposed to sea-level rise and extreme sea levels. The database contains information on current conditions and on plausible future changes that are essential drivers for future impacts, such as sea-level rise rates and socio-economic development. Besides its intended use in risk and impact assessment, we anticipate that the Mediterranean Coastal Database (MCD) constitutes a useful source of information for a wide range of coastal applications. PMID:29583140

  12. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards

    Science.gov (United States)

    Wolff, Claudia; Vafeidis, Athanasios T.; Muis, Sanne; Lincke, Daniel; Satta, Alessio; Lionello, Piero; Jimenez, Jose A.; Conte, Dario; Hinkel, Jochen

    2018-03-01

    We have developed a new coastal database for the Mediterranean basin that is intended for coastal impact and adaptation assessment to sea-level rise and associated hazards on a regional scale. The data structure of the database relies on a linear representation of the coast with associated spatial assessment units. Using information on coastal morphology, human settlements and administrative boundaries, we have divided the Mediterranean coast into 13 900 coastal assessment units. To these units we have spatially attributed 160 parameters on the characteristics of the natural and socio-economic subsystems, such as extreme sea levels, vertical land movement and number of people exposed to sea-level rise and extreme sea levels. The database contains information on current conditions and on plausible future changes that are essential drivers for future impacts, such as sea-level rise rates and socio-economic development. Besides its intended use in risk and impact assessment, we anticipate that the Mediterranean Coastal Database (MCD) constitutes a useful source of information for a wide range of coastal applications.

  13. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards.

    Science.gov (United States)

    Wolff, Claudia; Vafeidis, Athanasios T; Muis, Sanne; Lincke, Daniel; Satta, Alessio; Lionello, Piero; Jimenez, Jose A; Conte, Dario; Hinkel, Jochen

    2018-03-27

    We have developed a new coastal database for the Mediterranean basin that is intended for coastal impact and adaptation assessment to sea-level rise and associated hazards on a regional scale. The data structure of the database relies on a linear representation of the coast with associated spatial assessment units. Using information on coastal morphology, human settlements and administrative boundaries, we have divided the Mediterranean coast into 13 900 coastal assessment units. To these units we have spatially attributed 160 parameters on the characteristics of the natural and socio-economic subsystems, such as extreme sea levels, vertical land movement and number of people exposed to sea-level rise and extreme sea levels. The database contains information on current conditions and on plausible future changes that are essential drivers for future impacts, such as sea-level rise rates and socio-economic development. Besides its intended use in risk and impact assessment, we anticipate that the Mediterranean Coastal Database (MCD) constitutes a useful source of information for a wide range of coastal applications.

  14. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones - A GIS based approach for the Odisha coast.

    Science.gov (United States)

    Sahoo, Bishnupriya; Bhaskaran, Prasad K

    2018-01-15

    The coastal region bordering the East coast of India is a thickly populated belt exposed to high risk and vulnerability from natural hazards such as tropical cyclones. Tropical cyclone frequencies that develop over the Bay of Bengal (average of 5-6 per year) region are much higher as compared to the Arabian Sea thereby posing a high risk factor associated with storm surge, inland inundation, wind gust, intense rainfall, etc. The Odisha State in the East coast of India experiences the highest number of cyclone strikes as compared to West Bengal, Andhra Pradesh, and Tamil Nadu. To express the destructive potential resulting from tropical cyclones the Power Dissipation Index (PDI) is a widely used metric globally. A recent study indicates that PDI for cyclones in the present decade have increased about six times as compared to the past. Hence there is a need to precisely ascertain the coastal vulnerability and risk factors associated with high intense cyclones expected in a changing climate. As such there are no comprehensive studies attempted so far on the determination of Coastal Vulnerability Index (CVI) for Odisha coast that is highly prone to cyclone strikes. With this motivation, the present study makes an attempt to investigate the physical, environmental, social, and economic impacts on coastal vulnerability associated with tropical cyclones for the Odisha coast. The study also investigates the futuristic projection of coastal vulnerability over this region expected in a changing climate scenario. Eight fair weather parameters along with storm surge height and onshore inundation were used to estimate the Physical Vulnerability Index (PVI). Thereafter, the PVI along with social, economic, and environmental vulnerability was used to determine the overall CVI using the GIS based approach. The authors believe that the comprehensive nature of this study is expected to benefit coastal zone management authorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Scoping study for coastal slope instability hazard susceptibility : Filey Bay, Beachy Head and Lyme Bay

    OpenAIRE

    Wildman, G.; Hobbs, P.R.N.

    2005-01-01

    This report describes the factors that may lead to coastal landslides. It assesses these on a national scale and suggests ways in which they can be incorporated into a landslide potential hazard map for Great Britain. It then details how these factors can be combined in a GIS to produce a digital hazard map in three areas of the country. The results from these test areas are discussed and improvements suggested that might increase the validation of the model.

  16. Intensified coastal development in beach-nourishment zones

    Science.gov (United States)

    Lazarus, E.; Armstrong, S.; Limber, P. W.; Goldstein, E. B.; Ballinger, R.

    2016-12-01

    Population density, housing development, and property values in coastal counties along the U.S. Atlantic and Gulf Coasts continue to rise despite increasing hazard from storm impacts. Beach nourishment, a method for mitigating coastal storm damage or chronic erosion by deliberately replacing sand on an eroded beach, has been the leading form of coastal protection in the U.S. since the 1970s. However, investment in hazard protection can have the unintended consequence of encouraging development in places especially vulnerable to damage. To quantitatively compare development in nourishing and non-nourishing zones, we examine the parcel-scale housing stock of all shorefront single-family homes in the state of Florida. We find that houses in nourishing zones are significantly larger and more numerous than in non-nourishing zones. Florida represents both an advanced case of coastal risk and an exemplar of ubiquitous, fundamental challenges in coastal management. The predominance of larger homes in nourishing zones indicates a positive feedback between nourishment and development that is compounding coastal risk in zones already characterized by high vulnerability. We offer that this phenomenon represents a variant of Jevons' paradox, a theoretical argument from environmental economics in which more efficient use of a resource spurs an increase in its consumption. Here, we suggest reductions in coastal risk through hazard protection are ultimately offset or reversed by increased coastal development.

  17. Operational Forecasting and Warning systems for Coastal hazards in Korea

    Science.gov (United States)

    Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon

    2017-04-01

    Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.

  18. Multidsciplinary Approaches to Coastal Adaptation - Aplying Machine Learning Techniques to assess coastal risk in Latin America and The Caribbean

    Science.gov (United States)

    Calil, J.

    2016-12-01

    The global population, currently at 7.3 billion, is increasing by nearly 230,000 people every day. As the world's population grows to an estimated 11.2 billion by 2100, the number of people living in low elevation areas, exposed to coastal hazards, is continuing to increase. In 2013, 22 million people were displaced by extreme weather events, with 37 events displacing at least 100,000 people each. Losses from natural disasters and disaster risk are determined by a complex interaction between physical hazards and the vulnerability of a society or social-ecological system, and its exposure to such hazards. Impacts from coastal hazards depend on the number of people, value of assets, and presence of critical resources in harm's way. Moreover, coastal risks are amplified by challenging socioeconomic dynamics, including ill-advised urban development, income inequality, and poverty level. Our results demonstrate that in Latin America and the Caribbean (LAC), more than half a million people live in areas where coastal hazards, exposure (of people, assets and ecosystems), and poverty converge, creating the ideal conditions for a perfect storm. In order to identify the population at greatest risk to coastal hazards in LAC, and in response to a growing demand for multidisciplinary coastal adaptation approaches, this study employs a combination of machine learning clustering techniques (K-Means and Self Organizing Maps), and a spatial index, to assess coastal risks on a comparative scale. Data for more than 13,000 coastal locations in LAC were collected and allocated into three categories: (1) Coastal Hazards (including storm surge, wave energy and El Niño); (2) Geographic Exposure (including population, agriculture, and ecosystems); and (3) Vulnerability (including income inequality, infant mortality rate and malnutrition). This study identified hotspots of coastal vulnerability, the key drivers of coastal risk at each geographic location. Our results provide important

  19. Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina).

    Science.gov (United States)

    Marinho, C H; Giarratano, E; Esteves, J L; Narvarte, M A; Gil, M N

    2017-03-01

    The San Antonio Bay is a protected natural coastal area of Argentina that has been exposed to mining wastes over the last three decades. Iron and trace metals of potential concern to biota and human health (Cd, Pb, Cu, and Zn) were investigated in the sediments from the bay and in the soils of the Pile (mining wastes). Concentrations of Cd (45 mg kg -1 ), Pb (42,853 mg kg -1 ), Cu (24,505 mg kg -1 ), and Zn (28,686 mg kg -1 ) in the soils Pile exceeded guidelines for agricultural, residential, and industrial land uses. Risk assessment due to exposure to contaminated soils (Pile) was performed. Hazard quotients were superior to non-risk (HQ >1) for all trace metals, while accumulative hazard quotient index indicated a high risk for children (HI = 93) and moderate for adults (HI = 9). In the bay, sediments closest to the Pile (mudflat and salt marsh) exceeded sediment quality guidelines for protection of biota. Results of different acid extraction methods suggest that most of the pseudototal content was potentially mobile. Principal component analysis indicated that the sites near the Pile (Encerrado channel) were more polluted than the distal ones. Tissues of Spartina spp. located within Encerrado channel showed the highest metal levels among all studied sites. These results show that the problem still persists and the mining wastes are the sources of the pollution. Furthermore, the Encerrado channel is a highly impacted area, as it is shown by their metal enriched sediments.

  20. Intensified coastal development behind nourished beaches

    Science.gov (United States)

    Armstrong, Scott; Lazarus, Eli; Limber, Patrick; Goldstein, Evan; Thorpe, Curtis; Ballinger, Rhoda

    2016-04-01

    Population density, housing development, and property values in coastal counties along the U.S. Atlantic and Gulf Coasts continue to rise despite increasing hazard from storm impacts. Since the 1970s, beach nourishment, which involves importing sand to deliberately widen an eroding beach, has been the main strategy in the U.S. for protecting coastal properties from erosion and flooding hazards. Paradoxically, investment in hazard protection may intensify development. Here, we examine the housing stock of all existing shorefront single-family homes in Florida - a microcosm of U.S. coastal hazards and development - to quantitatively compare development in nourishing and non-nourishing towns. We find that nourishing towns now account for more than half of Florida's coastline, and that houses in nourishing towns are larger and more numerous. Even as the mean size of single-family homes nationwide has grown steadily since 1970, Florida's shorefront stock has exceeded the national average by 34%, and in nourishing towns by 45%. This emergent disparity between nourishing and non-nourishing towns in Florida demonstrates a pattern of intensifying coastal risk, and is likely representative of a dominant trend in coastal development more generally. These data lend empirical support to the hypothesis that US coastal development and hazard mitigation through beach nourishment have become dynamically coupled.

  1. Assessment of vulnerability to storm induced flood hazard along diverse coastline settings

    Directory of Open Access Journals (Sweden)

    Valchev Nikolay

    2016-01-01

    Full Text Available European coasts suffer notably from hazards caused by low-probability and high-impact hydrometeorological events. The aim of the study is to assess in probabilistic terms the magnitude of storm‐induced flooding hazard along Varna regional coast (Bulgaria, western Black Sea and to identify susceptible coastal sectors (hotspots. The study is performed employing the Coastal Risk Assessment Framework (CRAF developed within EU FP7 RISC-KIT project. It constitutes a screening process that allows estimation of relevant hazard intensities, extents and potential receptors’ exposure vulnerability within predefined sectors. Total water level was the chief property considered for calculation of coastal flooding hazard. It was estimated using Holman model (for sandy beaches and EurOtop formulation (for artificial or rocky slopes. Resulting values were subjected to Extreme Value Analysis to establish that the best fitting distribution corresponds to Generalized Extreme Value distribution. Furthermore, hazard extents were modelled by means of bathtubbing or overwash estimation in order to form the flooding hazard indicator. Land use, social vulnerability, transport systems, utilities and business settings were considered as exposure indicators. Finally, potential risk was assessed by coastal indices following an index-based methodology, which combines hazard and exposure indicators into a single index, thereby providing base for comparison of coastal sectors’ vulnerability. The study found that the concentration of hotspots is highest in Varna Bay.

  2. Integrated Coastal Data at NOAA's National Centers for Environmental Information (NCEI)

    Science.gov (United States)

    Stroker, K. J.; Mesick, S.

    2016-02-01

    The National Centers for Environmental Information (NCEI) provides stewardship for the world's largest collection of data enabling communities to ensure preparedness and resilience to coastal hazards. In this unique collection, NCEI has the responsibility to ensure access to high-resolution coastal tide gauge data, coastal bathymetry and topography data, global geologic hazards data (tsunami, earthquakes, and volcanic eruptions) as part of the World Data Center for Geophysics, and are expanding the archive to support other coastal data streams, such as coastal current velocity data important for safety in ports and harbors. These data, collected by partners from academia, federal and state governments, support a wide variety of uses. Ensuring accurate, high quality metadata for these data are essential for their proper use. In addition to providing easy access to partner data to extend the use of these data, NCEI also develops scientifically-validated derived products. One such example is our collection of high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. These DEMs can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Additionally, the US Extended Continental Shelf (ECS) project is determining the outer limits of the US continental shelf though the collection and analysis of data that describe the depth, shape and geophysical characteristics of the seabed and sub-seafloor. These data are all housed and stewarded at NCEI. The paper will discuss the wide variety of coastal data maintained and stewarded at NCEI

  3. South Texas coastal classification maps - Mansfield Channel to the Rio Grande

    Science.gov (United States)

    Morton, Robert A.; Peterson, Russell L.

    2006-01-01

    The Nation's rapidly growing coastal population requires reliable information regarding the vulnerability of coastal regions to storm impacts. This has created a need for classifying coastal lands and evaluating storm-hazard vulnerability. Government officials and resource managers responsible for dealing with natural hazards also need accurate assessments of potential storm impacts in order to make informed decisions before, during, and after major storm events. Both economic development and coastal-damage mitigation require integrated models of storm parameters, hazard vulnerability, and expected coastal responses. Thus, storm-hazard vulnerability assessments constitute one of the fundamental components of forecasting storm impacts. Each year as many as 10 to 12 hurricanes and tropical storms will be the focus of national attention. Of particular interest are intense hurricanes (Categories 3 to 5 of the Saffir-Simpson Hurricane Scale) that have the potential to cause substantial economic and environmental damage to the Atlantic and Gulf Coasts of the United States. These coastal regions include some of the largest metropolitan areas in the country and they continue to experience rapid population growth. Based on media reports, there is a general lack of public knowledge regarding how different coastal segments will respond to the same storm or how the same coastal segment will respond differently depending on storm conditions. A primary purpose of the USGS National Assessment of Coastal Change Project is to provide accurate representations of pre-storm ground conditions for areas that are designated high priority because they have dense populations or valuable resources that are at risk. A secondary purpose is to develop a broad coastal classification that, with only minor modification, can be applied to most coastal regions in the United States.

  4. Development of high-resolution multi-scale modelling system for simulation of coastal-fluvial urban flooding

    Science.gov (United States)

    Comer, Joanne; Indiana Olbert, Agnieszka; Nash, Stephen; Hartnett, Michael

    2017-02-01

    Urban developments in coastal zones are often exposed to natural hazards such as flooding. In this research, a state-of-the-art, multi-scale nested flood (MSN_Flood) model is applied to simulate complex coastal-fluvial urban flooding due to combined effects of tides, surges and river discharges. Cork city on Ireland's southwest coast is a study case. The flood modelling system comprises a cascade of four dynamically linked models that resolve the hydrodynamics of Cork Harbour and/or its sub-region at four scales: 90, 30, 6 and 2 m. Results demonstrate that the internalization of the nested boundary through the use of ghost cells combined with a tailored adaptive interpolation technique creates a highly dynamic moving boundary that permits flooding and drying of the nested boundary. This novel feature of MSN_Flood provides a high degree of choice regarding the location of the boundaries to the nested domain and therefore flexibility in model application. The nested MSN_Flood model through dynamic downscaling facilitates significant improvements in accuracy of model output without incurring the computational expense of high spatial resolution over the entire model domain. The urban flood model provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.

  5. Determining Coastal Hazards Risk Perception to Enhance Local Mitigation Planning through a Participatory Mapping Approach

    Science.gov (United States)

    Bethel, M.; Braud, D.; Lambeth, T.; Biber, P.; Wu, W.

    2017-12-01

    Coastal community leaders, government officials, and natural resource managers must be able to accurately assess and predict a given coastal landscape's sustainability and/or vulnerability as coastal habitat continues to undergo rapid and dramatic changes associated with natural and anthropogenic activities such as accelerated relative sea level rise (SLR). To help address this information need, a multi-disciplinary project team conducted Sea Grant sponsored research in Louisiana and Mississippi with traditional ecosystem users and natural resource managers to determine a method for producing localized vulnerability and sustainability maps for projected SLR and storm surge impacts, and determine how and whether the results of such an approach can provide more useful information to enhance hazard mitigation planning. The goals of the project are to develop and refine SLR visualization tools for local implementation in areas experiencing subsidence and erosion, and discover the different ways stakeholder groups evaluate risk and plan mitigation strategies associated with projected SLR and storm surge. Results from physical information derived from data and modeling of subsidence, erosion, engineered restoration and coastal protection features, historical land loss, and future land projections under SLR are integrated with complimentary traditional ecological knowledge (TEK) offered by the collaborating local ecosystem users for these assessments. The data analysis involves interviewing stakeholders, coding the interviews for themes, and then converting the themes into vulnerability and sustainability factors. Each factor is weighted according to emphasis by the TEK experts and number of experts who mention it to determine which factors are the highest priority. The priority factors are then mapped with emphasis on the perception of contributing to local community vulnerability or sustainability to SLR and storm surge. The maps are used by the collaborators to benefit

  6. Coastal Mapping for Baseline Geoscience Knowledge to Support Community Hazard Assessment and Sustainable Development, Eastern Baffin Island, Nunavut

    Science.gov (United States)

    Forbes, D. L.; Bell, T.; Campbell, D. C.; Cowan, B.; Deering, R. L.; Hatcher, S. V.; Hughes Clarke, J. E.; Irvine, M.; Manson, G. K.; Smith, I. R.; Edinger, E.

    2015-12-01

    Since 2012 we have carried out extensive multibeam bathymetric and backscatter surveys in coastal waters of eastern Baffin Island, supplemented by sub-bottom imaging and coring. Shore-zone surveys have been undertaken in proximity to the communities of Iqaluit and Qikiqtarjuaq, following earlier work in Clyde River. These support benthic habitat mapping, geological exploration, analysis of past and present sea-level trends, and assessment of coastal hazards relating to climate change and seabed instability. Outputs include a seamless topographic-bathymetric digital elevation model (DEM) of extensive boulder-strewn tidal flats in the large tidal-range setting at Iqaluit, supporting analysis of coastal flooding, wave run-up, and sea-ice impacts on a rapidly developing urban waterfront in the context of climate change. Seabed mapping of inner Frobisher Bay seaward of Iqaluit reveals a potential local tsunami hazard in widespread submarine slope failures, the triggers, magnitudes, and ages of which are the subject of ongoing research. In fjords of the Cumberland Peninsula, this project has mapped numerous submerged delta terraces at 19 to 45 m present water depth. These attest to an early postglacial submerged shoreline, displaced by glacial-isostatic adjustment. It rises linearly over a distance of 100 km east to west, where a submerged boulder barricade on a -16 m shoreline was discovered at a proposed port site in Broughton Channel near Qikiqtarjuaq. Palaeotopographic mapping using the multibeam data revealed an enclosed estuarine environment quite different from the present-day open passage swept by tidal currents. At Clyde River, combined seabed and onshore DEMs with geohazard mapping provided foundation data for community assessment and planning under a local knowledge co-production initiative. The geohazard work identified portions of the town-site more vulnerable to both coastal flooding and potential thaw subsidence, while the shallow delta terrace suggested a

  7. Assessing Future Flood Hazards for Adaptation Planning in a Northern European Coastal Community

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, Niels H.; Molgaard, Mads R.

    2016-01-01

    From a transdisciplinary approach in the town of Thyboron, Denmark, we investigate couplings between sea state (i.e., mean and extreme) and flooding hazards today and ahead. This includes analyses of change and variability in the groundwater table, precipitation, land motion, geotechnical ground ......, and it will provide for more holistic solutions that both serve to protect the town and allow for business development and better municipal planning ahead....... properties, sewerage systems and other infrastructure to outline a more complete platform for the integration of knowledge into climate adaptation schemes at this highly vulnerable coastal location. It involves the engagement of the main stakeholders who, although having different responsibilities, interests......, needs of knowledge and data, and different timeframes for investment and planning, must join in a common appraisal of the challenges faced ahead to provide for better adaptation measures. Apart from obvious adverse effects from future storm surge events, knowledge about the coupled effects...

  8. Development of Generic Tools for Coastal Early Warning and Decision Support

    Directory of Open Access Journals (Sweden)

    Bogaard Tom

    2016-01-01

    Full Text Available Recent and historic high-impact events demonstrated coastal risk (Xynthia, Europe, 2010; Katrina, USA, 2005. This is only to get worse, because risk is increasing due to increase in both hazard intensity, frequency and increase in consequences (increased coastal development. Adaptation requires a re-evaluation of coastal disaster risk reduction (DRR strategies and a new mix of prevention, mitigation (e.g. limiting construction in flood-prone areas and preparedness (e.g. Early warning systems, EWS measures. Within the EU funded project RISC-KIT the focus is on preparedness measures and its aim is to demonstrate robustness and applicability of coastal EWS (Early Warning Systems and DSS (Decision Support Systems. Delft-FEWS, a generic tool for Early Warning Systems has been extended, to be applied at sites all across Europe. The challenges for developing a modern EWS are found in the integration of large data sets, specialised modules to process the data, and open interfaces to allow easy integration of existing modelling capacities. In response to these challenges, Delft-FEWS provides a state of the art EWS framework, which is highly customizable to the specific requirements of an individual organisation. For ten case study sites on all EU regional seas a EWS has been developed, to provide real-time (short-term forecasts and early warnings. The EWS component is a 2D model framework of hydro-meteo and morphological models which computes hazard intensities. The total expected impact of a hazard can be obtained by using a Bayesian network DSS. This DSS, which is incorporated in the Delft-FEWS platform is a tool that links coastal multi-hazards to their socioeconomic and environmental consequences. An important innovation of the EWS/DSS lies in its application in dual mode: as a forecast and warning system and as a consistent ex-ante planning tool to evaluate the long-term vulnerability due to multiple (low-frequency coastal hazards, under various

  9. Coastal hazards: hurricanes, tsunamis, coastal erosion

    Science.gov (United States)

    Vandas, Stephen; Mersfelder, Lynne; Farrar, Frank; France, Rigoberto Guardado; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Oceans are the largest geographic feature on the surface of the Earth, covering approximately 70% of the planet's surface. As a result, oceans have a tremendous impact on the Earth, its climate, and its inhabitants. The coast or shoreline is the boundary between ocean environments and land habitats. By the year 2025, it is estimated that approximately two-thirds of the world's population will be living within 200 kilometers of a coast. In many ways, we treat the coast just like any other type of land area, as a safe and stable place to live and play. However, coastal environments are dynamic, and they constantly change in response to natural processes and to human activities.

  10. Coastal erosion hazard and vulnerability using sig tools. Comparison between "La Barra town, Buenaventura, (Pacific Ocean of Colombia) and Providence - Santa Catalina islands (Colombian Caribbean Sea)

    Science.gov (United States)

    Coca-Domínguez, Oswaldo; Ricaurte-Villota, Constanza; Morales-Giraldo, David; Rangel-Buitrago, Nelson

    2014-05-01

    Analysis of hazards and vulnerability associated to coastal erosion along coastlines is a first issue in order to establish plans for adaptation to climate change in coastal areas. La Barra Town, Buenaventura (Pacific ocean of Colombia) and Providence - Santa Catalina Islands (Colombian Caribbean) were selected to develop a detailed analysis of coastal erosion hazard and vulnerability from different perspectives: i) physical (hazard) , ii) social , iii) conservation approach and iv) cultural heritage (Raizal). The analysis was made by a semi quantitative approximation method, applying variables associated with the intrinsic coastal zone properties (i.e. type of beach, exposure of the coast to waves, etc.). Coastal erosion data and associated variables as well land use; conservation and heritage data were used to carry out a further detailed analysis of the human - structural vulnerability and exposure to hazards. The data shows erosion rates close to -17 m yr-1 in La Barra Town (highlighting their critical condition and urgent relocation process), while in some sectors of Providence Island, such as Old Town, erosion rate was -5 m yr-1. The observed erosion process affects directly the land use and the local and regional economy. The differences between indexes and the structural and physical vulnerability as well the use of methodological variables are presented in the context of each region. In this work, all the information was worked using a GIS environment since this allows editing and updating the information continuously. The application of this methodology generates useful information in order to promote risk management as well prevention, mitigation and reduction plans. In both areas the adaptation must be a priority strategy to be considered, including relocation alternatives and sustainable protection with the support of studies of uses and future outlooks in the coast. The methodology is framed into the use of GIS tools and it highlights their benefits

  11. Resilience from coastal protection.

    Science.gov (United States)

    Ewing, Lesley C

    2015-10-28

    Coastal areas are important residential, commercial and industrial areas; but coastal hazards can pose significant threats to these areas. Shoreline/coastal protection elements, both built structures such as breakwaters, seawalls and revetments, as well as natural features such as beaches, reefs and wetlands, are regular features of a coastal community and are important for community safety and development. These protection structures provide a range of resilience to coastal communities. During and after disasters, they help to minimize damages and support recovery; during non-disaster times, the values from shoreline elements shift from the narrow focus on protection. Most coastal communities have limited land and resources and few can dedicate scarce resources solely for protection. Values from shore protection can and should expand to include environmental, economic and social/cultural values. This paper discusses the key aspects of shoreline protection that influence effective community resilience and protection from disasters. This paper also presents ways that the economic, environmental and social/cultural values of shore protection can be evaluated and quantified. It presents the Coastal Community Hazard Protection Resilience (CCHPR) Index for evaluating the resilience capacity to coastal communities from various protection schemes and demonstrates the use of this Index for an urban beach in San Francisco, CA, USA. © 2015 The Author(s).

  12. Creating a Coastal National Elevation Database (CoNED) for science and conservation applications

    Science.gov (United States)

    Thatcher, Cindy A.; Brock, John C.; Danielson, Jeffrey J.; Poppenga, Sandra K.; Gesch, Dean B.; Palaseanu-Lovejoy, Monica; Barras, John; Evans, Gayla A.; Gibbs, Ann

    2016-01-01

    The U.S. Geological Survey is creating the Coastal National Elevation Database, an expanding set of topobathymetric elevation models that extend seamlessly across coastal regions of high societal or ecological significance in the United States that are undergoing rapid change or are threatened by inundation hazards. Topobathymetric elevation models are raster datasets useful for inundation prediction and other earth science applications, such as the development of sediment-transport and storm surge models. These topobathymetric elevation models are being constructed by the broad regional assimilation of numerous topographic and bathymetric datasets, and are intended to fulfill the pressing needs of decision makers establishing policies for hazard mitigation and emergency preparedness, coastal managers tasked with coastal planning compatible with predictions of inundation due to sea-level rise, and scientists investigating processes of coastal geomorphic change. A key priority of this coastal elevation mapping effort is to foster collaborative lidar acquisitions that meet the standards of the USGS National Geospatial Program's 3D Elevation Program, a nationwide initiative to systematically collect high-quality elevation data. The focus regions are located in highly dynamic environments, for example in areas subject to shoreline change, rapid wetland loss, hurricane impacts such as overwash and wave scouring, and/or human-induced changes to coastal topography.

  13. Impacts of Climatic Hazards on the Small Wetland Ecosystems (ponds: Evidence from Some Selected Areas of Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Lucy Faulkner

    2013-04-01

    Full Text Available Most climate related hazards in Bangladesh are linked to water. The climate vulnerable poor—the poorest and most marginalized communities living in remote villages along Bangladesh’s coastal zone that are vulnerable to climate change impacts and who possess low adaptive capacity are most affected by lack of access to safe water sources. Many climate vulnerable poor households depend on small isolated wetlands (ponds for daily drinking water needs and other domestic requirements, including cooking, bathing and washing. Similarly, the livelihoods of many of these households also depend on access to ponds due to activities of small-scale irrigation for rice farming, vegetable farming and home gardening. This is particularly true for those poorest and most marginalized communities living in Satkhira, one of the most vulnerable coastal districts in south-west Bangladesh. These households rely on pond water for vegetable farming and home gardening, especially during winter months. However, these pond water sources are highly vulnerable to climate change induced hazards, including flooding, drought, salinity intrusion, cyclone and storm surges, erratic rainfall patterns and variations in temperature. Cyclone Sidr and Cyclone Aila, which hit Bangladesh in 2007 and 2009 respectively, led to a significant number of such ponds being inundated with saline water. This impacted upon and resulted in wide scale implications for climate vulnerable poor households, including reduced availability of safe drinking water, and safe water for health and hygiene practices and livelihood activities. Those households living in remote areas and who are most affected by these climate impacts are dependent on water being supplied through aid, as well as travelling long distances to collect safe water for drinking purposes.

  14. Climate change impacts on rural poverty in low-elevation coastal zones

    Science.gov (United States)

    Barbier, Edward B.

    2015-11-01

    This paper identifies the low-elevation coastal zone (LECZ) populations and developing regions most vulnerable to sea-level rise and other coastal hazards, such as storm surges, coastal erosion and salt-water intrusion. The focus is on the rural poor in the LECZ, as their economic livelihoods are especially endangered both directly by coastal hazards and indirectly through the impacts of climate change on key coastal and near-shore ecosystems. Using geo-spatially referenced malnutrition and infant mortality data for 2000 as a proxy for poverty, this study finds that just 15 developing countries contain over 90% of the world's LECZ rural poor. Low-income countries as a group have the highest incidence of poverty, which declines somewhat for lower middle-income countries, and then is much lower for upper middle-income economies. South Asia, East Asia and the Pacific and Sub-Saharan Africa account for most of the world's LECZ rural poor, and have a high incidence of poverty among their rural LECZ populations. Although fostering growth, especially in coastal areas, may reduce rural poverty in the LECZ, additional policy actions will be required to protect vulnerable communities from disasters, to conserve and restore key coastal and near-shore ecosystems, and to promote key infrastructure investments and coastal community response capability.

  15. Influence of ENSO on coastal flood hazard and exposure at the global-scale

    Science.gov (United States)

    Muis, S.; Haigh, I. D.; Guimarães Nobre, G.; Aerts, J.; Ward, P.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) is the dominant signal of interannual climate variability. The unusually warm (El Niño) and cold (La Niña) oceanic and atmospheric conditions in the tropical Pacific drives interannual variability in both mean and extreme sea levels, which in turn may influence the probabilities and impacts of coastal flooding. We assess the influence of ENSO on coastal flood hazard and exposure using daily timeseries from the Global Time and Surge Reanalysis (GTSR) dataset (Muis et al., 2016). As the GTSR timeseries do not include steric effects (i.e. density differences), we improve the GTSR timeseries by adding steric sea levels. Evaluation against observed sea levels shows that the including steric sea levels leads to a much better representation of the seasonal and interannual variability. We show that sea level anomalies occur during ENSO years with higher sea levels during La Niña in the South-Atlantic, Indian Ocean and the West Pacific, whereas sea levels are lower in the east Pacific. The pattern is generally inversed for El Niño. We also find an effect of ENSO in the number of people exposed to coastal flooding. Although the effect is minor at the global-scale, it may be important for flood risk management to consider at the national or sub national levels. Previous studies at the global-scale have used tide gauge observation to assess the influence of ENSO on extreme sea levels. The advantage of our approach over observations is that GTSR provides a consistent dataset with a full global coverage for the period 1979-2014. This allows us to assess ENSO's influence on sea level extremes anywhere in the world. Furthermore, it enables us to also calculate the impacts of extreme sea levels in terms of coastal flooding and exposed population. ReferencesMuis et al (2016) A global reanalysis of storm surges and extreme sea levels. Nature Communications.7:11969. doi:10.1038/ncomms11969.

  16. Assessing Surface Fuel Hazard in Coastal Conifer Forests through the Use of LiDAR Remote Sensing

    Science.gov (United States)

    Koulas, Christos

    The research problem that this thesis seeks to examine is a method of predicting conventional fire hazards using data drawn from specific regions, namely the Sooke and Goldstream watershed regions in coastal British Columbia. This thesis investigates whether LiDAR data can be used to describe conventional forest stand fire hazard classes. Three objectives guided this thesis: to discuss the variables associated with fire hazard, specifically the distribution and makeup of fuel; to examine the relationship between derived LiDAR biometrics and forest attributes related to hazard assessment factors defined by the Capitol Regional District (CRD); and to assess the viability of the LiDAR biometric decision tree in the CRD based on current frameworks for use. The research method uses quantitative datasets to assess the optimal generalization of these types of fire hazard data through discriminant analysis. Findings illustrate significant LiDAR-derived data limitations, and reflect the literature in that flawed field application of data modelling techniques has led to a disconnect between the ways in which fire hazard models have been intended to be used by scholars and the ways in which they are used by those tasked with prevention of forest fires. It can be concluded that a significant trade-off exists between computational requirements for wildfire simulation models and the algorithms commonly used by field teams to apply these models with remote sensing data, and that CRD forest management practices would need to change to incorporate a decision tree model in order to decrease risk.

  17. A Multi-Hazard Vulnerability Assessment of Coastal Landmarks along Cape Hatteras National Seashore

    Science.gov (United States)

    Flynn, M. J.

    2015-12-01

    Cape Hatteras National Seashore is located along the Outer Banks, a narrow string of barrier islands in eastern North Carolina. The seashore was established to preserve cultural and natural resources of national significance, yet these islands have shoreline rates of change that are predominately erosional, frequently experience storm surge inundation driven by tropical and extra-tropical storm events, and are highly vulnerable to sea level rise. The National Park Service staff are concerned about the vulnerability of historic structures located within the park, and recognized the utility of a coastal hazard risk assessment to assist park managers with long-term planning. They formed a cooperative agreement with researchers at East Carolina University to conduct the assessment, which primarily used GIS to evaluate the susceptibility of 27 historical structures to coastal erosion, storm surge, and sea-level rise. The Digital Shoreline Analysis System was used to calculate a linear regression rate of shoreline movement based on historical shorelines. Those rates were used to simulate the future position of the shoreline along transects. The SLOSH model output was down scaled to a DEM generated from the 2014 NC QL2 LiDAR collection to determine the extent and depth of inundation that would occur from storm events. Sea level rise was modeled for various scenarios referenced to existing MHHW, and also added to each SLOSH model output to determine the effect of a storm event under those sea level rise scenarios. Risk maps were developed to include not only areal coverage for existing structures and districts, but also identify potential areas of relocation or retreat in the long-term. In addition to evaluating vulnerability, timelines for potential impacts provided scenarios for National Park Service staff to research adaption and mitigation strategies.

  18. Coastal Vulnerability to Erosion Processes: Study Cases from Different Countries

    Science.gov (United States)

    Anfuso, Giorgio; Martinez Del Pozo, Jose Angel; Rangel-Buitrago, Nelson

    2010-05-01

    When natural processes affect or threaten human activities or infrastructures they become a natural hazard. In order to prevent the natural hazards impact and the associated economic and human losses, coastal managers need to know the intrinsic vulnerability of the littoral, using information on the physical and ecological coastal features, human occupation and present and future shoreline trends. The prediction of future coastline positions can be based on the study of coastal changes which have occurred over recent decades. Vertical aerial photographs, satellite imagery and maps are very useful data sources for the reconstruction of coast line changes at long (>60 years) and medium (between 60 and 10 years) temporal and spatial scales. Vulnerability maps have been obtained for several coastal sectors around the world through the use of Geographical Information Systems (GIS), computer-assisted multivariate analysis and numerical models. In the USA, "Flood Insurance Rate Maps" have been created by the government and "Coastal Zone Hazard Maps" have been prepared for coastal stretches affected by hurricane Hugo. In Spain, the vulnerability of the Ebro and an Andalusia coastal sector were investigated over different time scales. McLaughlin et al., (2002) developed a GIS based coastal vulnerability index for the Northern Ireland littoral that took into account socio-economic activities and coastal resistance to erosion and energetic characteristics. Lizárraga et al., (2001) combined beach reduction at Rosario (Mexico) with the probability of damage to landward structures, obtaining a vulnerability matrix. In this work several coastal vulnerability maps have also been created by comparing data on coastal erosion/accretion and land use along different coastal sectors in Italy, Morocco and Colombia. Keywords: Hazard, Vulnerability, Coastal Erosion, Italy, Morocco, Colombia.

  19. Adapting Coastal State Indicators to end-users: the iCoast Project

    Science.gov (United States)

    Demarchi, Alessandro; Isotta Cristofori, Elena; Gracia, Vicente; Sairouní, Abdel; García-León, Manuel; Cámaro, Walther; Facello, Anna

    2016-04-01

    The extraordinary development of the built environment and of the population densities in the coastal areas are making coastal communities highly exposed. The sea level rise induced by climate change will worsen this coastal vulnerability scenario and a considerable amount of people are expected to be threatened by coastal flooding in the future. Due to the increasing number of catastrophic events, and the consequent increased number of damages and people affected, over the last decades coastal hazard management has become a fundamental activity in order to improve the resilience of coastal community. In this scenario, iCoast (integrated COastal Alert SysTem) project has been founded to develop a tool able to address coastal risks caused by extreme waves and high sea water levels in European coastal areas. In the framework of iCoast Project, a set of Coastal State Indicators (CSIs) has been developed in order to improve the forecasting and the assessment of coastal risks. CSIs are indeed parameters able to provide end-users with an essential information about coastal hazards and related impacts. Within the iCoast Project, following a comprehensive literature review about existing indicators concerning coastal risks, a list of CSIs have been chosen as parameters that can be derived from the meteorological and the hydrodynamic modules. They include both physical variables used as trigger for meteorological and flood warnings from the majority of the operational National/Regional warning systems and further essential parameters, so called 'storm integrated' coastal-storm indicators, able to describe the physical processes that drive coastal damages, such as erosion, accumulation, flooding, destructions. Nowadays, it is generally acknowledged that communities are not homogenous and hence their different vulnerable groups might need different warnings. Generally, even existing national EWS in developed countries are often ineffective to issue targeted warnings for

  20. Clusters of community exposure to coastal flooding hazards based on storm and sea level rise scenarios—implications for adaptation networks in the San Francisco Bay region

    Science.gov (United States)

    Hummel, Michelle; Wood, Nathan J.; Schweikert, Amy; Stacey, Mark T.; Jones, Jeanne; Barnard, Patrick L.; Erikson, Li H.

    2018-01-01

    Sea level is projected to rise over the coming decades, further increasing the extent of flooding hazards in coastal communities. Efforts to address potential impacts from climate-driven coastal hazards have called for collaboration among communities to strengthen the application of best practices. However, communities currently lack practical tools for identifying potential partner communities based on similar hazard exposure characteristics. This study uses statistical cluster analysis to identify similarities in community exposure to flooding hazards for a suite of sea level rise and storm scenarios. We demonstrate this approach using 63 jurisdictions in the San Francisco Bay region of California (USA) and compare 21 distinct exposure variables related to residents, employees, and structures for six hazard scenario combinations of sea level rise and storms. Results indicate that cluster analysis can provide an effective mechanism for identifying community groupings. Cluster compositions changed based on the selected societal variables and sea level rise scenarios, suggesting that a community could participate in multiple networks to target specific issues or policy interventions. The proposed clustering approach can serve as a data-driven foundation to help communities identify other communities with similar adaptation challenges and to enhance regional efforts that aim to facilitate adaptation planning and investment prioritization.

  1. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing.

    Science.gov (United States)

    Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J

    2017-07-11

    Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.

  2. Moving from deterministic towards probabilistic coastal hazard and risk assessment: Development of a modelling framework and application to Narrabeen Beach, New South Wales, Australia, doi: 10.1016/j.coastaleng.2014.11.009

    NARCIS (Netherlands)

    Wainwright, D.J.; Ranasinghe, Ranasinghe W M R J B; Callaghan, D.P.; Woodroffe, C.D.; Jongejan, R.; Dougherty, A.J.; Rogers, K.; Cowell, P.J.

    2015-01-01

    Traditional methods for assessing coastal hazards have not typically incorporated a rigorous treatment of uncertainty. Such treatment is necessary to enable risk assessments which are now required by emerging risk based coastal zone management/planning frameworks. While unresolved issues remain,

  3. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  4. Hazard proximity and risk perception of tsunamis in coastal cities: Are people able to identify their risk?

    Science.gov (United States)

    Arias, Juan Pablo; Bronfman, Nicolás C; Cisternas, Pamela C; Repetto, Paula B

    2017-01-01

    Researchers have previously reported that hazard proximity can influence risk perception among individuals exposed to potential hazards. Understanding this relationship among coastline communities at risk of flood events caused by storms and/or tsunamis, is important because hazard proximity, should be recognized when planning and implementing preparation and mitigation actions against these events. Yet, we are not aware of studies that have examined this relationship among coastline inhabitants facing the risk of a tsunami. Consequently, the aim of this study was to examine the relationship between hazard proximity and perceived risk from tsunamis among coastline inhabitants. Participants were 487 residents of the coastal city of Iquique, Chile. They completed a survey during the spring of 2013 that assessed their perceived risk from several natural and non-natural hazards. We found that hazard proximity maintains a negative relationship with the perception of tsunami risk among coastline inhabitants. While this result confirms the general trend obtained in previous studies, this one is conclusive and significant. In contradiction with previous findings, we found that participants from the highest socioeconomic status reported the highest levels of risk perception. This finding can be explained by the fact that most participants from the highest socioeconomic status live closer to the coastline areas, so their risk perception reflects the place where they live, that is in a tsunami inundation zone. Once again, hazard proximity proved to be a determinant factor of risk perception. Our findings have important implications for the development of plans and programs for tsunami preparedness and mitigation. These indicate that individuals do use environmental cues to evaluate their own risk and can potentially make correct choices when having or not to evacuate. Also suggest that preparedness should incorporate how hazard proximity is recognized by individuals and

  5. Hazard proximity and risk perception of tsunamis in coastal cities: Are people able to identify their risk?

    Science.gov (United States)

    Arias, Juan Pablo; Bronfman, Nicolás C.; Cisternas, Pamela C.; Repetto, Paula B.

    2017-01-01

    Researchers have previously reported that hazard proximity can influence risk perception among individuals exposed to potential hazards. Understanding this relationship among coastline communities at risk of flood events caused by storms and/or tsunamis, is important because hazard proximity, should be recognized when planning and implementing preparation and mitigation actions against these events. Yet, we are not aware of studies that have examined this relationship among coastline inhabitants facing the risk of a tsunami. Consequently, the aim of this study was to examine the relationship between hazard proximity and perceived risk from tsunamis among coastline inhabitants. Participants were 487 residents of the coastal city of Iquique, Chile. They completed a survey during the spring of 2013 that assessed their perceived risk from several natural and non-natural hazards. We found that hazard proximity maintains a negative relationship with the perception of tsunami risk among coastline inhabitants. While this result confirms the general trend obtained in previous studies, this one is conclusive and significant. In contradiction with previous findings, we found that participants from the highest socioeconomic status reported the highest levels of risk perception. This finding can be explained by the fact that most participants from the highest socioeconomic status live closer to the coastline areas, so their risk perception reflects the place where they live, that is in a tsunami inundation zone. Once again, hazard proximity proved to be a determinant factor of risk perception. Our findings have important implications for the development of plans and programs for tsunami preparedness and mitigation. These indicate that individuals do use environmental cues to evaluate their own risk and can potentially make correct choices when having or not to evacuate. Also suggest that preparedness should incorporate how hazard proximity is recognized by individuals and

  6. Tsunami hazard and risk assessment in El Salvador

    Science.gov (United States)

    González, M.; González-Riancho, P.; Gutiérrez, O. Q.; García-Aguilar, O.; Aniel-Quiroga, I.; Aguirre, I.; Alvarez, J. A.; Gavidia, F.; Jaimes, I.; Larreynaga, J. A.

    2012-04-01

    Tsunamis are relatively infrequent phenomena representing a greater threat than earthquakes, hurricanes and tornadoes, causing the loss of thousands of human lives and extensive damage to coastal infrastructure around the world. Several works have attempted to study these phenomena in order to understand their origin, causes, evolution, consequences, and magnitude of their damages, to finally propose mechanisms to protect coastal societies. Advances in the understanding and prediction of tsunami impacts allow the development of adaptation and mitigation strategies to reduce risk on coastal areas. This work -Tsunami Hazard and Risk Assessment in El Salvador-, funded by AECID during the period 2009-12, examines the state of the art and presents a comprehensive methodology for assessing the risk of tsunamis at any coastal area worldwide and applying it to the coast of El Salvador. The conceptual framework is based on the definition of Risk as the probability of harmful consequences or expected losses resulting from a given hazard to a given element at danger or peril, over a specified time period (European Commission, Schneiderbauer et al., 2004). The HAZARD assessment (Phase I of the project) is based on propagation models for earthquake-generated tsunamis, developed through the characterization of tsunamigenic sources -sismotectonic faults- and other dynamics under study -tsunami waves, sea level, etc.-. The study area is located in a high seismic activity area and has been hit by 11 tsunamis between 1859 and 1997, nine of them recorded in the twentieth century and all generated by earthquakes. Simulations of historical and potential tsunamis with greater or lesser affection to the country's coast have been performed, including distant sources, intermediate and close. Deterministic analyses of the threats under study -coastal flooding- have been carried out, resulting in different hazard maps (maximum wave height elevation, maximum water depth, minimum tsunami

  7. Assessing future flood hazards for adaptation planning in a northern European coastal community

    Directory of Open Access Journals (Sweden)

    Carlo eSorensen

    2016-05-01

    Full Text Available From a transdisciplinary approach in the town of Thyboron, Denmark, we investigate couplings between sea state (i.e. mean and extreme and flooding hazards today and ahead. This includes analyses of change and variability in the groundwater table, precipitation, land motion, geotechnical ground properties, sewerage systems and other infrastructure to outline a more complete platform for the integration of knowledge into climate adaptation schemes at this highly vulnerable coastal location. It involves the engagement of the main stakeholders who, although having different responsibilities, interests, needs of knowledge and data, and different timeframes for investment and planning, must join in a common appraisal of the challenges faced ahead to provide for better adaptation measures. Apart from obvious adverse effects from future storm surge events, knowledge about the coupled effects of the abovementioned parameters needs to be taken into account to reach optimal mitigation and adaptation measures. Through stakeholder interviews it becomes clear that an enhanced focus on transdisciplinary research is a viable way forward to develop such measures: it will bring in more knowledge, a broader scope, and it will provide for more holistic solutions that both serve to protect the town and allow for business development and better municipal planning ahead.

  8. Coastal Analysis Submission for Pierce County, WA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study data as defined in FEMA Guidelines and Specifications, Appendix D: Final Draft Guidelines for Coastal Flood Hazard Analysis and Mapping for the Pacific...

  9. Numerical tsunami hazard assessment of the submarine volcano Kick 'em Jenny in high resolution are

    Science.gov (United States)

    Dondin, Frédéric; Dorville, Jean-Francois Marc; Robertson, Richard E. A.

    2016-04-01

    Landslide-generated tsunami are infrequent phenomena that can be potentially highly hazardous for population located in the near-field domain of the source. The Lesser Antilles volcanic arc is a curved 800 km chain of volcanic islands. At least 53 flank collapse episodes have been recognized along the arc. Several of these collapses have been associated with underwater voluminous deposits (volume > 1 km3). Due to their momentum these events were likely capable of generating regional tsunami. However no clear field evidence of tsunami associated with these voluminous events have been reported but the occurrence of such an episode nowadays would certainly have catastrophic consequences. Kick 'em Jenny (KeJ) is the only active submarine volcano of the Lesser Antilles Arc (LAA), with a current edifice volume estimated to 1.5 km3. It is the southernmost edifice of the LAA with recognized associated volcanic landslide deposits. The volcano appears to have undergone three episodes of flank failure. Numerical simulations of one of these episodes associated with a collapse volume of ca. 4.4 km3 and considering a single pulse collapse revealed that this episode would have produced a regional tsunami with amplitude of 30 m. In the present study we applied a detailed hazard assessment on KeJ submarine volcano (KeJ) form its collapse to its waves impact on high resolution coastal area of selected island of the LAA in order to highlight needs to improve alert system and risk mitigation. We present the assessment process of tsunami hazard related to shoreline surface elevation (i.e. run-up) and flood dynamic (i.e. duration, height, speed...) at the coast of LAA island in the case of a potential flank collapse scenario at KeJ. After quantification of potential initial volumes of collapse material using relative slope instability analysis (RSIA, VolcanoFit 2.0 & SSAP 4.5) based on seven geomechanical models, the tsunami source have been simulate by St-Venant equations-based code

  10. Hurricane Sandy science plan: coastal impact assessments

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: coastal topography and bathymetry, impacts to coastal beaches and barriers, impacts of storm surge, including disturbed estuarine and bay hydrology, impacts on environmental quality and persisting contaminant exposures, impacts to coastal ecosystems, habitats, and fish and wildlife. This fact sheet focuses assessing impacts to coastal beaches and barriers.

  11. Risk Analysis of Coastal Disaster of Semarang City, Indonesia

    Science.gov (United States)

    Sunaryo; Ambariyanto; Sugianto, Denny Nugroho; Helmi, Muhammad; Kaimuddin, Awaluddin Halirin; Indarjo, Agus

    2018-02-01

    Coastal areas are highly vulnerable to disasters, as they are affected by events occurring both on land and at sea. In the development of cities in these areas, information on vulnerability levels is needed as a consideration in determining policy. This study aims to identify potential vulnerability of Semarang city, and to investigate the potential of hazard and disaster risk levels of the city. The study was conducted in 17 villages in the northern coastal area of Semarang. The assessment approach used was score analysis to some variables, i.e geomorphology, erosion, coastal slope, waves and socio-economic aspects. The research showed that the highest level of coastal vulnerability in the Semarang city were at three villages i.e.Terboyo Kulon, Terboyo Wetan and Trimulyo with value of 4.5; while the lowest level were at the Maron beach, Marina beach and Tanah Mas with value of 2.8. The highest potential coastal hazard in the Semarang city were at two villages i.e. Tanjung Mas and Tambak Lorok with value of 4.5; and the lowest value were in the village of Randugarut, Karanganyar, Tugurejo, Marina beach and Tanah Mas with value of 1.25.The highest level of coastal risk in the Semarang city were in the Trimulyo village with value of 3.13; and the lowest level were in the Marina beach and Tanah mas with value of 1.32.

  12. Comparative Coastal Risk Index (CCRI: A multidisciplinary risk index for Latin America and the Caribbean.

    Directory of Open Access Journals (Sweden)

    Juliano Calil

    Full Text Available As the world's population grows to a projected 11.2 billion by 2100, the number of people living in low-lying areas exposed to coastal hazards is projected to increase. Critical infrastructure and valuable assets continue to be placed in vulnerable areas, and in recent years, millions of people have been displaced by natural hazards. Impacts from coastal hazards depend on the number of people, value of assets, and presence of critical resources in harm's way. Risks related to natural hazards are determined by a complex interaction between physical hazards, the vulnerability of a society or social-ecological system and its exposure to such hazards. Moreover, these risks are amplified by challenging socioeconomic dynamics, including poorly planned urban development, income inequality, and poverty. This study employs a combination of machine learning clustering techniques (Self Organizing Maps and K-Means and a spatial index, to assess coastal risks in Latin America and the Caribbean (LAC on a comparative scale. The proposed method meets multiple objectives, including the identification of hotspots and key drivers of coastal risk, and the ability to process large-volume multidimensional and multivariate datasets, effectively reducing sixteen variables related to coastal hazards, geographic exposure, and socioeconomic vulnerability, into a single index. Our results demonstrate that in LAC, more than 500,000 people live in areas where coastal hazards, exposure (of people, assets and ecosystems and poverty converge, creating the ideal conditions for a perfect storm. Hotspot locations of coastal risk, identified by the proposed Comparative Coastal Risk Index (CCRI, contain more than 300,00 people and include: El Oro, Ecuador; Sinaloa, Mexico; Usulutan, El Salvador; and Chiapas, Mexico. Our results provide important insights into potential adaptation alternatives that could reduce the impacts of future hazards. Effective adaptation options must not only

  13. Coastal ecosystems, productivity and ecosystem protection: Coastal ecosystem management

    International Nuclear Information System (INIS)

    Ngoile, M.A.K.; Horrill, C.J.

    1993-01-01

    The coastal zone is a complex ecosystem under the influence of physical, chemical and biological processes. Under natural conditions these processes interact and maintain an equilibrium in the coastal ecosystem. Man makes a variety of important uses of coastal resources, ranging from harvesting of living resources, extraction of nonliving resources, and recreation, to the disposal of wastes. Man's extensive use of the oceans introduces factors which bring about an imbalance in the natural processes, and may result in harmful and hazardous effects to life hindering further use. Man's pressure on the resources of the coastal zone is already manifest and will increase manifold. This calls for an immediate solution to the protection and sustainable use of coastal resources. The current sectorized approach to the management of human activities will not solve the problem because the different resources of the coastal zone interact in such a manner that disturbances in one cause imbalance in the others. This is further complicated by the sectorized approach to research and limited communication between policy makers, managers, and scientists. This paper discusses strategies for managing coastal-resources use through an integrated approach. The coastal zone is presented as a unified ecosystem in equilibrium and shows that man's extensive use of the coastal resources destabilizes this equilibrium. Examples from the East Africa Region are presented. 15 refs, 2 figs, 3 tabs

  14. Multi-hazard Non-regulatory Risk Maps for Resilient Coastal Communities of Washington State in Pacific Northwest Region of the United States

    Science.gov (United States)

    Cakir, R.; Walsh, T. J.; Zou, Y.; Gufler, T.; Norman, D. K.

    2015-12-01

    Washington Department of Natural Resources - Division of Geology and Earth Resources (WADNR-DGER) partnered with FEMA through the FEMA Cooperating Technical Partners (CTP) program to assess annualized losses from flood and other hazards and prepare supportive risk related data for FEMA's coastal RiskMAP projects. We used HAZUS-MH analysis to assess losses from earthquake, flood and other potential hazards such as landslide and tsunami in the project areas; on shorelines of the Pacific Ocean and Puget Sound of Washington Grays Harbor, Pacific, Skagit, Whatcom, Island, Mason, Clallam, Jefferson and San Juan counties. The FEMA's Hazus-MH tool was applied to estimate losses and damages for each building due to floods and earthquakes. User-defined facilities (UDF) inventory data were prepared and used for individual building damage estimations and updating general building stocks. Flood depth grids were used to determine which properties are most impacted by flooding. For example, the HAZUS-MH (flood model) run based on the 1% annual chance event (or 100 year flood) for Grays Harbor County, resulted in a total of 161 million in losses to buildings including residential, commercial properties, and other building and occupancy types. A likely M9 megathrust Cascadia earthquake scenario USGS-ShakeMap was used for the HAZUS-MH earthquake model. For example, the HAZUS-MH (earthquake model) run based on the Cascadia M9 earthquake for Grays Harbor County, resulted in a total of 1.15 billion in losses to building inventory. We produced GIS-based overlay maps of properties exposed to tsunami, landslide, and liquefaction hazards within the communities. This multi-hazard approach is an essential component to produce non-regulatory maps for FEMA's RiskMAP project, and they help further improve local and regional mitigation efforts and emergency response plans, and overall resiliency plan of the communities in and around the coastal communities in western Washington.

  15. Resilience of coastal wetlands to extreme hydrologicevents in Apalachicola Bay

    Science.gov (United States)

    Medeiros, S. C.; Singh, A.; Tahsin, S.

    2017-12-01

    Extreme hydrologic events such as hurricanes and droughts continuously threaten wetlands which provide key ecosystem services in coastal areas. The recovery time for vegetation after impact fromthese extreme events can be highly variable depending on the hazard type and intensity. Apalachicola Bay in Florida is home to a rich variety of saltwater and freshwater wetlands and is subject to a wide rangeof hydrologic hazards. Using spatiotemporal changes in Landsat-based empirical vegetation indices, we investigate the impact of hurricane and drought on both freshwater and saltwater wetlands from year 2000to 2015 in Apalachicola Bay. Our results indicate that saltwater wetlands are more resilient than freshwater wetlands and suggest that in response to hurricanes, the coastal wetlands took almost a year to recover,while recovery following a drought period was observed after only a month.

  16. Enhancing resilience to coastal flooding from severe storms in the USA: international lessons

    Science.gov (United States)

    Lumbroso, Darren M.; Suckall, Natalie R.; Nicholls, Robert J.; White, Kathleen D.

    2017-08-01

    Recent events in the USA have highlighted a lack of resilience in the coastal population to coastal flooding, especially amongst disadvantaged and isolated communities. Some low-income countries, such as Cuba and Bangladesh, have made significant progress towards transformed societies that are more resilient to the impacts of cyclones and coastal flooding. To understand how this has come about, a systematic review of the peer-reviewed and grey literature related to resilience of communities to coastal flooding was undertaken in both countries. In both Cuba and Bangladesh the trust between national and local authorities, community leaders and civil society is high. As a consequence evacuation warnings are generally followed and communities are well prepared. As a result over the past 25 years in Bangladesh the number of deaths directly related to cyclones and coastal flooding has decreased, despite an increase of almost 50 % in the number of people exposed to these hazards. In Cuba, over the course of eight hurricanes between 2003 and 2011, the normalized number of deaths related to cyclones and coastal floods was an order of magnitude less than in the USA. In low-income countries, warning systems and effective shelter/evacuation systems, combined with high levels of disaster risk-reduction education and social cohesion, coupled with trust between government authorities and vulnerable communities can help to increase resilience to coastal hazards and tropical cyclones. In the USA, transferable lessons include improving communication and the awareness of the risk posed by coastal surges, mainstreaming disaster risk reduction into the education system and building trusted community networks to help isolated and disadvantaged communities, and improve community resilience.

  17. Enhancing resilience to coastal flooding from severe storms in the USA: international lessons

    Directory of Open Access Journals (Sweden)

    D. M. Lumbroso

    2017-08-01

    Full Text Available Recent events in the USA have highlighted a lack of resilience in the coastal population to coastal flooding, especially amongst disadvantaged and isolated communities. Some low-income countries, such as Cuba and Bangladesh, have made significant progress towards transformed societies that are more resilient to the impacts of cyclones and coastal flooding. To understand how this has come about, a systematic review of the peer-reviewed and grey literature related to resilience of communities to coastal flooding was undertaken in both countries. In both Cuba and Bangladesh the trust between national and local authorities, community leaders and civil society is high. As a consequence evacuation warnings are generally followed and communities are well prepared. As a result over the past 25 years in Bangladesh the number of deaths directly related to cyclones and coastal flooding has decreased, despite an increase of almost 50 % in the number of people exposed to these hazards. In Cuba, over the course of eight hurricanes between 2003 and 2011, the normalized number of deaths related to cyclones and coastal floods was an order of magnitude less than in the USA. In low-income countries, warning systems and effective shelter/evacuation systems, combined with high levels of disaster risk-reduction education and social cohesion, coupled with trust between government authorities and vulnerable communities can help to increase resilience to coastal hazards and tropical cyclones. In the USA, transferable lessons include improving communication and the awareness of the risk posed by coastal surges, mainstreaming disaster risk reduction into the education system and building trusted community networks to help isolated and disadvantaged communities, and improve community resilience.

  18. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards.

    Science.gov (United States)

    Hagenlocher, Michael; Renaud, Fabrice G; Haas, Susanne; Sebesvari, Zita

    2018-08-01

    Coastal river deltas are hotspots of global change impacts. Sustainable delta futures are increasingly threatened due to rising hazard exposure combined with high vulnerabilities of deltaic social-ecological systems. While the need for integrated multi-hazard approaches has been clearly articulated, studies on vulnerability and risk in deltas either focus on local case studies or single hazards and do not apply a social-ecological systems perspective. As a result, vulnerabilities and risks in areas with strong social and ecological coupling, such as coastal deltas, are not fully understood and the identification of risk reduction and adaptation strategies are often based on incomplete assumptions. To overcome these limitations, we propose an innovative modular indicator library-based approach for the assessment of multi-hazard risk of social-ecological systems across and within coastal deltas globally, and apply it to the Amazon, Ganges-Brahmaputra-Meghna (GBM), and Mekong deltas. Results show that multi-hazard risk is highest in the GBM delta and lowest in the Amazon delta. The analysis reveals major differences between social and environmental vulnerability across the three deltas, notably in the Mekong and the GBM deltas where environmental vulnerability is significantly higher than social vulnerability. Hotspots and drivers of risk vary spatially, thus calling for spatially targeted risk reduction and adaptation strategies within the deltas. Ecosystems have been identified as both an important element at risk as well as an entry point for risk reduction and adaptation strategies. Copyright © 2018. Published by Elsevier B.V.

  19. Building Blocks: A Quantitative Approach for Evaluating Coastal Vulnerability

    Directory of Open Access Journals (Sweden)

    Komali Kantamaneni

    2017-11-01

    Full Text Available Climate change and associated factors such as global and regional sea-level rise; the upsurge in high-intensity flooding events; and coastal erosion are pulse and press disturbances that threaten to increase landslides in coastal regions. Under these circumstances; a rigorous framework is required to evaluate coastal vulnerability in order to plan for future climate change scenarios. A vast majority of coastal vulnerability assessments across the globe are evaluated at the macro level (city scale but not at the micro level (small town scale; particularly in the United Kingdom (UK. In order to fill this vital research gap; the current study established a coastal vulnerability index termed here as the Micro Town Coastal Vulnerability Index (MTCVI and then applied it to Barton-on-Sea; which is a small coastal town of the Hampshire region; England; UK. MTCVI was evaluated for Barton-on-Sea coastal vulnerability by integrating both novel and existing parameters. Results suggest that the entire shoreline frontage (2 km exhibits very high coastal vulnerability and is prone to various coastal hazards such as landslides; erosion; and wave intrusion. This suggests that Barton-on-Sea coastal amenities will require a substantial improvement in shoreline protection measures. In this study; GIS (geographic information system coastal vulnerability and landslide maps were generated; and these maps can be used by the local authorities; district councils; coastal engineers; and planners to improve and design coastal management strategies under the climate change scenarios. Meanwhile; the methodology used in this study could also be applied to any other suitable location in the world depending on the availability of the data.

  20. The 14th international workshop on wave hindcasting and forecasting and the 5th coastal hazards symposium

    Science.gov (United States)

    Breivik, Øyvind; Alves, Jose Henrique; Greenslade, Diana; Horsburgh, Kevin; Swail, Val

    2017-04-01

    Following the 14th International Workshop on Wave Hindcasting and Forecasting and 5th Coastal Hazards Symposium in November 2014 in Key West, Florida, a topical collection has appeared in recent issues of Ocean Dynamics. Here, we give a brief overview of the 16 papers published in this topical collection as well as an overview of the widening scope of the conference in recent years. A general trend in the field has been towards closer integration between the wave and ocean modelling communities. This is also seen in this topical collection, with several papers exploring the interaction between surface waves and mixed layer dynamics and sea ice.

  1. Coastal flood protection management under uncertainty – the Danish case

    DEFF Research Database (Denmark)

    Jumppanen Andersen, Kaija; Sørensen, Carlo Sass; Piontkowitz, Thorsten

    Local stakeholders responsible for coastal management. In Denmark, the responsibility of defining, planning and implementing coastal flood protection lies with the local stakeholders, such as landowners and municipalities. Similarly, it is a municipal responsibility to define building foundation...... and flood protection levels in urban planning and long term development. These planning and protection levels are most often defined from the hazard instead of a risk perspective.The Danish Coastal Authority (DCA) guides local stakeholders on general coastal flood protection and implements the EU Flood...... Directive on flood risk reduction in appointed areas of significant flood risk. DCA is obligated to communicate the concept of risk and, in a thorough and easily comprehendible way, the hazards and uncertainties relating to this today and in the future....

  2. Management of Coastal Erosion Using Remote Sensing and GIS Techniques (SE India

    Directory of Open Access Journals (Sweden)

    S. Saravanan

    2014-12-01

    Full Text Available World wide, coastal erosion is recognized as a great threat for beach environment. Total control of coastal erosion is not feasible but it should not be ignored and needs timely management. Erosional activities have been significantly noticed along the coastal tract of Vembar and Kallar (Kallurani, South India. An attempt has been made here to delineate different zones based on their sand budget and erosion rate. Linear Imaging Self Scanning Sensor (LISS III 2001 and Linear Imaging Self Scanning Sensor III and PAN merged data of the year 2001 have been utilized to identify the coastal geomorphological features, shoreline changes and river course changes. A Geographic Information System (GIS software namely ArcGIS (9.1 has been used as a tool to delineate the coastal erosion hazard for proper planning and management of coastal developments. Beach profile studies have shown significant variation in the beach morphology. The study area has been categorized into five different zones in the GIS analysis based on the degree of coastal erosion and sediment dynamics namely (i very high - Kalaignanapuram, (ii high - Sippikulam (iii medium - Periyasamypuram (iv low - Vembar and Kallar (Kallurani (v very low - Pachayapuram.

  3. Perfluoroalkyl and polyfluoroalkyl substances in sediments from South Bohai coastal watersheds, China

    International Nuclear Information System (INIS)

    Zhu, Zhaoyun; Wang, Tieyu; Wang, Pei; Lu, Yonglong; Giesy, John P.

    2014-01-01

    Highlights: • Relatively high concentrations of PFAS, especially PFOA, were found in the Xiaoqing River sediment. • PFOA and PFBS were the dominant PFAS in the sediments from coastal and riverine area, respectively. • Concentrations of PFNA, PFDA and PFHxS in sediment were significantly correlated with concentrations of organic carbon. • Risks posed by PFOA and PFOS to benthic organisms from concentrations of PFAS in sediments were small. - Abstract: This study investigated the concentrations and distribution of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) in sediments of 12 rivers from South Bohai coastal watersheds. The highest concentrations of ΣPFAS (31.920 ng g −1 dw) and PFOA (29.021 ng g −1 dw) were found in sediments from the Xiaoqing River, which was indicative of local point sources in this region. As for other rivers, concentrations of ΣPFAS ranged from 0.218 to 1.583 ng g −1 dw were found in the coastal sediments and from 0.167 to 1.953 ng g −1 dw in the riverine sediments. Predominant PFAS from coastal and riverine areas were PFOA and PFBS, with percentages of 30% and 35%, respectively. Partitioning analysis showed the concentrations of PFNA, PFDA and PFHxS were significantly correlated with organic carbon. The results of a preliminary environmental hazard assessment showed that PFOS posed the highest hazard in the Mi River, while PFOA posed a relative higher hazard in the Xiaoqing River

  4. IMPACT OF TSUNAMI 2004 IN COASTAL VILLAGES OF NAGAPATTINAM DISTRICT, INDIA

    Directory of Open Access Journals (Sweden)

    R. Kumaraperumal

    2007-01-01

    Full Text Available ABSTRACTA quake-triggered tsunami lashed the Nagapattinam coast of southern India on December 26, 2004 at around 9.00 am (IST. The tsunami caused heavy damage to houses, tourist resorts, fishing boats, prawn culture ponds, soil and crops, and consequently affected the livelihood of large numbers of the coastal communities. The study was carried out in the Tsunami affected villages in the coastal Nagapattinam with the help of remote sensing and geographical information science tools. Through the use of the IRS 1D PAN and LISS 3 merged data and quick bird images, it was found that 1,320 ha of agricultural and non-agricultural lands were affected by the tsunami. The lands were affected by soil erosion, salt deposition, water logging and other deposited sediments and debris. The maximum run-up height of 6.1 m and the maximum seawater inundation distance of 2.2 km were observed at Vadakkupoyyur village in coastal Nagapattinam.Pre and Post Tsunami survey on soil quality showed an increase in pH and EC values, irrespectiveof distance from the sea. The water reaction was found to be in alkaline range (> 8.00 in most of the -1wells. Salinity levels are greater than 4 dS m in all the wells except the ring well. The effect of summer rainfall on soil and water quality showed the dilution of soluble salts. Pumping of water has reduced the salinity levels in the well water samples and as well as in the open ponds. Following the 2004 event, it has become apparent to know the relative tsunami hazard for this coastal Nagapattinam. So, the Tsunami hazard maps are generated using a geographical information systems (GIS approach and the results showed 20.6 per cent, 63.7 per cent and 15.2 per cent of the study area fall under high hazard, medium hazard and low hazard category respectively.

  5. Decision-support for climate change adaptation – applications for coastal regions

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl

    of a coastline, its hazard profile and possible management options, and can be used for screening purposes prior to more detailed feasibility studies. The project has applied the framework for multi-hazard-assessments for the state of Karnataka, India and for the state of Djibouti to showcase its application...... challenges, uncertainties and limitations. Based on the applications on Karnataka and Djibouti, feedback from coastal experts and a range of selected spot-assessments, a slightly revised version of the Coastal Hazard Wheel has been developed. This is presented in an overview paper together with general...

  6. Indications of a positive feedback between coastal development and beach nourishment

    Science.gov (United States)

    Armstrong, Scott B.; Lazarus, Eli D.; Limber, Patrick W.; Goldstein, Evan B.; Thorpe, Curtis; Ballinger, Rhoda C.

    2016-12-01

    Beach nourishment, a method for mitigating coastal storm damage or chronic erosion by deliberately replacing sand on an eroded beach, has been the leading form of coastal protection in the United States for four decades. However, investment in hazard protection can have the unintended consequence of encouraging development in places especially vulnerable to damage. In a comprehensive, parcel-scale analysis of all shorefront single-family homes in the state of Florida, we find that houses in nourishing zones are significantly larger and more numerous than in non-nourishing zones. The predominance of larger homes in nourishing zones suggests a positive feedback between nourishment and development that is compounding coastal risk in zones already characterized by high vulnerability.

  7. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    Science.gov (United States)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  8. Climate Change Indicator for Hazard Identification of Indian North West Coast Marine Environment Using Synthetic Aperture Radar (sar)

    Science.gov (United States)

    Gambheer, Phani Raj

    2012-07-01

    Stormwater runoff, Petroleum Hydrocarbon plumes are found abundantly near coastal cities, coastal population settlements especially in developing nations as more than half the world's human population. Ever increasing coastal populations and development in coastal areas have led to increased loading of toxic substances, nutrients and pathogens. These hazards cause deleterious effects on the population in many ways directly or indirectly which lead to algal blooms, hypoxia, beach closures, and damage to coastal fisheries. Hence these pollution hazards are important and the coastal administrations and people need to be aware of such a danger lurking very close to them. These hazards due to their small size, dynamic and episodic in nature are difficult to be visualized or to sample using in-situ traditional scientific methods. Natural obstructions like cloud cover and complex coastal circulations can hinder to detect and monitor such occurrences in the selected areas chosen for observations. This study takes recourse to Synthetic Aperture Radar (SAR) imagery because the pollution hazards are easily detectable as surfactants are deposited on the sea surface, along with nutrients and pathogens, smoothing capillary and small gravity waves to produce areas of reduced backscatter compared with surrounding ocean. These black spots can be termed as `Ecologic Indicator' and formed probably due to stronger thermal stratification, a deepening event of thermocline. SAR imagery that delivers useful data better than others regardless of darkness or cloud cover, should be made as an important observational tool for assessment and monitoring marine pollution hazards in the areas close to coastal regions. Till now the effects of climate change, sea level rise and global warming seems to have not affected the coastal populace of India in intrusions of sea water but it takes significance to the human health as the tides dominate these latitudes with bringing these polluted waters. KEY

  9. High resolution, topobathymetric LiDAR coastal zone characterization in Denmark

    DEFF Research Database (Denmark)

    Steinbacher, Frank; Baran, Ramona; Andersen, Mikkel S.

    2016-01-01

    Coastal and tidal environments are valuable ecosystems, which, however, are under pressure in many areas around the world due to globalization and/or climate change. Detailed mapping of these environments is required in order to manage the coastal zone in a sustainable way. However, historically...... locations with different environmental settings. We demonstrate the potential of using airborne topobathymetric LiDAR for seamless mapping of land-water transition zones in challenging coastal environments, e.g. in an environment with high water column turbidity and continuously varying water levels due...... these transition zones between land and water are difficult or even impossible to map and investigate in high spatial resolution due to the challenging environmental conditions. The new generation of airborne topobathymetric light detection and ranging (LiDAR) potentially enables full-coverage and high...

  10. Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

    Directory of Open Access Journals (Sweden)

    Barbara Neumann

    Full Text Available Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential

  11. Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

    Science.gov (United States)

    Neumann, Barbara; Vafeidis, Athanasios T; Zimmermann, Juliane; Nicholls, Robert J

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  12. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment

    Science.gov (United States)

    Neumann, Barbara; Vafeidis, Athanasios T.; Zimmermann, Juliane; Nicholls, Robert J.

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  13. Study on mobility-disadvantage group' risk perception and coping behaviors of abrupt geological hazards in coastal rural area of China.

    Science.gov (United States)

    Pan, Anping

    2016-07-01

    China is a country highly vulnerable to abrupt geological hazards. The present study aims to investigate disaster preparedness and perception of abrupt geological disasters (such as rock avalanches, landslide, mud-rock flows etc) in mobility-disadvantage group living in coastal rural area of China. This research is to take into account all factors regarding disasters and to design the questionnaires accordingly. Two debris flow vulnerable townships are selected as study areas including Hedi Township in Qinyuan County and Xianxi Township in Yueqing City which are located in East China's Zhejiang Province. SPSS was applied to conduct descriptive analysis, which results in an effective empirical model for evacuation behavior of the disable groups. The result of this study shows mobility-disadvantage groups' awareness on disaster prevention and mitigation is poor and their knowledge about basic theory and emergency response is limited. Errors and distortions in public consciousness on disaster prevention and mitigation stimulate the development of areas with frequent disasters, which will expose more life and property to danger and aggravate the vulnerability of hazard bearing body. In conclusion, before drafting emergency planning, the government should consider more the disable group's expectations and actual evacuation behavior than the request of the situation to ensure the planning is good to work. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Coastal Hazard Vulnerability Assessment: A Case Study of Erosion and Flooding on Herschel Island, Yukon Territory, Canada

    Science.gov (United States)

    Radosavljevic, B.; Lantuit, H.; Overduin, P. P.; Fritz, M.

    2015-12-01

    Coastal infrastructure, cultural, and archeological sites are increasingly vulnerable to erosion and flooding along permafrost coasts. Amplified warming of the Arctic, sea level rise, lengthening of the open water period, and a predicted increase in frequency of major storms compound these threats. Mitigation necessitates decision-making tools at an appropriate scale. We present a study of coastal erosion combining it with a flooding risk assessment for the culturally important historic settlement on Herschel Island, a UNESCO World Heritage candidate site. The resulting map may help local stakeholders devise management strategies to cope with rapidly changing environmental conditions. We analyzed shoreline movement using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, and 2011. Using these data, forecasts of shoreline positions were made for 20 and 50 years into the future. Flooding risk was assessed using a cost-distance map based on a high-resolution Light Detection and Ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement for different periods of the study ranges from -5.5 to 2.7 m·a-1 (mean -0.6 m·a-1). Mean coastal retreat decreased from -0.6 m·a-1 to -0.5 m·a-1, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a-1 in the period 2000-2011. Ice-rich coastal sections, and coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map resulting from shoreline projections and flood risk analysis indicates that most of the area occupied by the historic settlement is at extreme or very high risk of flooding, and some buildings are vulnerable to coastal erosion. The results of this study indicate a greater threat by coastal flooding than erosion. Our assessment may be applied in other locations where limited data are available.

  15. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  16. Hurricane Ike: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  17. Coastal Adaptation: The Case of Ocean Beach, San Francisco

    Science.gov (United States)

    Cheong, S.

    2012-12-01

    Coastal erosion, storms, sea-level rise, and tsunamis all lead to inundation that puts people and communities at risk. Adapting to these coastal hazards has gained increasing attention with climate change. Instead of promoting one particular strategy such as seawalls or defending against one type of hazard, scholars and practitioners encourage a combination of existing methods and strategies to promote synergistic effects. The recently published Intergovernmental Panel on Climate Change (IPCC) Special Report on climate extremes reflects this trend in the integration of disaster risk management and climate change adaptation. This paper focuses on the roles, compatibilities, and synergies of three coastal adaptation options - engineering, vegetation, and policy - in the case of Ocean Beach in San Francisco. Traditionally engineering approach and ecosystem conservation often have stood in opposition as hard shoreline structures destroy coastal habitats, worsen coastal erosion, divert ocean currents, and prevent the natural migration of shores. A natural migration of shores without structure translates into the abandonment of properties in the coastal zone, and is at odds with property rights and development. For example, policies of relocation, retreat, and insurance may not be popular given the concerns of infrastructure and coastal access. As such, engineering, natural defense, and policy can be more conflictual than complementary. Nonetheless, all these responses are used in combination in many locations. Complementarities and compatibilities, therefore, must be assessed when considering the necessity of engineering responses, natural defense capabilities, and policy options. In this light, the question is how to resolve the problem of mixed responses and short- and long-term interests and values, identify compatibilities, and generate synergies. In the case of Ocean Beach, recent erosions that endangered San Francisco's wastewater treatment system acted as major

  18. Quantification of risks to coastal areas and development: wave run-up and erosion

    CSIR Research Space (South Africa)

    Theron, A

    2010-09-01

    Full Text Available In support of the effective implementation of the Integrated Coastal Management Act (Act No 24 of 2008), a review is presented of coastal hazard assessment methods. In particular the ICM Act legislates the establishment or change of coastal setback...

  19. Geomorphometry in coastal morphodynamics

    Science.gov (United States)

    Guisado-Pintado, Emilia; Jackson, Derek

    2017-04-01

    Geomorphometry is a cross-cutting discipline that has interwoven itself into multiple research themes due to its ability to encompass topographic quantification on many fronts. Its operational focus is largely defined as the extraction of land-surface parameters and earth surface characterisation. In particular, the coastal sciences have been enriched by the use of digital terrain production techniques both on land and in the nearshore/marine area. Numerous examples exist in which the utilisation of field instrumentation (e.g. LIDAR, GPS, Terrestrial Laser Scanning, multi-beam echo-sounders) are used for surface sampling and development of Digital Terrain Models, monitoring topographic change and creation of nearshore bathymetry, and have become central elements in modern investigations of coastal morphodynamics. The coastal zone is a highly dynamic system that embraces variable and at times, inter-related environments (sand dunes, sandy beaches, shoreline and nearshore) all of which require accurate and integrated monitoring. Although coastal studies can be widely diverse (with interconnected links to other related disciplines such as geology or biology), the characterisation of the landforms (coastal geomorphology) and associated processes (morphodynamics, hydrodynamics, aeolian processes) is perhaps where geomorphometry (topo-bathymetry quantification) is best highlighted. In this respect, many tools have been developed (or improved upon) for the acquisition of topographic data that now commands a high degree of accuracy, simplicity, and ultimately acquisition cost reduction. We present a series of field data acquisitions examples that have produced land surface characterisation using a range of techniques including traditional GPS surveys to more recent Terrestrial Laser Scanning and airborne LIDAR. These have been conducted within beach and dune environments and have helped describe erosion and depositional processes driven by wind and wave energy (high

  20. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  1. Tsunami hazard mitigation in tourism in the tropical and subtropical coastal areas: a case study in the Ryukyu Islands, southwest of Japan

    Science.gov (United States)

    Matsumoto, T.

    2006-12-01

    Life and economy (including tourism) in tropical and subtropical coastal areas, such as Okinawa Prefecture (Ryukyu) are highly relying on the sea. The sea has both "gentle" side to give people healing and "dangerous" side to kill people. If we are going to utilise the sea for marine tourism such as constructing resort facilities on the oceanfront, we should know all of the sea, including the both sides of the sea: especially the nature of tsunamis. And also we islanders should issue accurate information about the sea towards outsiders, especially tourists visiting the island. We have already learned a lesson about this issue from the Sumatra tsunami in 2004. However, measures against the tsunami disaster by marine tourism industry are still inadequate in these areas. The goal of tsunami hazard mitigation for those engaged in tourism industry in tropical and subtropical coastal areas should be as follows. (1) Preparedness against tsunamis: "Be aware of the characteristics of tsunamis." "Prepare tsunamis when you feel an earthquake." "Prepare tsunamis when an earthquake takes place somewhere in the world." (2) Maintenance of an exact tsunami hazard map under quantitative analyses of the characteristics of tsunamis: "Flooding areas by tsunami attacks are dependent not only on altitude but also on amplification and inundation due to the seafloor topography near the coast and the onland topographic relief." "Tsunami damage happens repeatedly." (3) Maintenance of a tsunami disaster prevention manual and training after the manual: "Who should do what in case of tsunamis?" "How should the resort hotel employees lead the guests to the safe place?" Such a policy for disaster prevention is discussed in the class of the general education of "Ocean Sciences" in University of the Ryukyus (UR) and summer school for high school students. The students (most of them are from Okinawa Prefecture) consider, discuss and make reports about what to do in case of tsunamis as an islander

  2. Analytical techniques for assessment of coastal impact of natural disasters Tsunami

    International Nuclear Information System (INIS)

    Jha, S.K.; Gothankar, S.S.; Tripathi, R.M.; Puranik, V.D.

    2010-01-01

    Tsunami is a less known and less frequent coastal hazard, in comparison to the other commonly occurring hazards namely the storm surge, oil spills, coastal pollution, coastal erosion, algal bloom and effect of climate change on flora and fauna. Marine sediments contain a record of past events and proved to be an interesting indicator matrix for this study. Instrumental Neutron Activation Analysis (INAA) and Energy Dispersive X-ray Fluorescence (EDXRF) techniques offer adequate sensitivity for analysis of trace elements for conducting geo-chemical studies. Grain size analysis of sediment samples before and after tsunami showed a shift in textural characteristics of the sediment which is not observed during regular monsoon and seasonal changes

  3. MONITORING CONCEPTS FOR COASTAL AREAS USING LIDAR DATA

    Directory of Open Access Journals (Sweden)

    A. Schmidt

    2013-05-01

    Full Text Available Coastal areas are characterized by high spatial and temporal variability. In order to detect undesired changes at early stages, enabling rapid countermeasures to mitigate or minimize potential harm or hazard, a recurrent monitoring becomes necessary. In this paper, we focus on two monitoring task: the analysis of morphological changes and the classification and mapping of habitats. Our concepts are solely based on airborne lidar data which provide substantial information in coastal areas. For the first task, we generate a digital terrain model (DTM from the lidar point cloud and analyse the dynamic of an island by comparing the DTMs of different epochs with a time difference of six years. For the deeper understanding of the habitat composition in coastal areas, we classify the lidar point cloud by a supervised approach based on Conditional Random Fields. From the classified point cloud, water-land-boundaries as well as mussel bed objects are derived afterwards. We evaluate our approaches on two datasets of the German Wadden Sea.

  4. Role of beach morphology in wave overtopping hazard assessment

    Science.gov (United States)

    Phillips, Benjamin; Brown, Jennifer; Bidlot, Jean-Raymond; Plater, Andrew

    2017-04-01

    Understanding the role of beach morphology in controlling wave overtopping volume will further minimise uncertainties in flood risk assessments at coastal locations defended by engineered structures worldwide. XBeach is used to model wave overtopping volume for a 1:200 yr joint probability distribution of waves and water levels with measured, pre- and post-storm beach profiles. The simulation with measured bathymetry is repeated with and without morphological evolution enabled during the modelled storm event. This research assesses the role of morphology in controlling wave overtopping volumes for hazardous events that meet the typical design level of coastal defence structures. Results show disabling storm-driven morphology under-represents modelled wave overtopping volumes by up to 39% under high Hs conditions, and has a greater impact on the wave overtopping rate than the variability applied within the boundary conditions due to the range of wave-water level combinations that meet the 1:200 yr joint probability criterion. Accounting for morphology in flood modelling is therefore critical for accurately predicting wave overtopping volumes and the resulting flood hazard and to assess economic losses.

  5. Quantifying Coastal Hazard of Airburst-Generated Tsunamis

    Science.gov (United States)

    Titov, V. V.; Boslough, M.

    2017-12-01

    forcing, the tsunami should continue to be driven by the out-of-resonance gradient associated with the suction phase, which may depend strongly on the details of the airburst scenario. The open question is whether there are any conditions under which such an airburst can generate tsunami with substantial coastal hazard to contribute to the overall impact risk.

  6. Coastal flooding as a parameter in multi-criteria analysis for industrial site selection

    Science.gov (United States)

    Christina, C.; Memos, C.; Diakoulaki, D.

    2014-12-01

    Natural hazards can trigger major industrial accidents, which apart from affecting industrial installations may cause a series of accidents with serious impacts on human health and the environment far beyond the site boundary. Such accidents, also called Na-Tech (natural - technical) accidents, deserve particular attention since they can cause release of hazardous substances possibly resulting in severe environmental pollution, explosions and/or fires. There are different kinds of natural events or, in general terms, of natural causes of industrial accidents, such as landslides, hurricanes, high winds, tsunamis, lightning, cold/hot temperature, floods, heavy rains etc that have caused accidents. The scope of this paper is to examine the coastal flooding as a parameter in causing an industrial accident, such as the nuclear disaster in Fukushima, Japan, and the critical role of this parameter in industrial site selection. Land use planning is a complex procedure that requires multi-criteria decision analysis involving economic, environmental and social parameters. In this context the parameter of a natural hazard occurrence, such as coastal flooding, for industrial site selection should be set by the decision makers. In this paper it is evaluated the influence that has in the outcome of a multi-criteria decision analysis for industrial spatial planning the parameter of an accident risk triggered by coastal flooding. The latter is analyzed in the context of both sea-and-inland induced flooding.

  7. Predicting coastal cliff erosion using a Bayesian probabilistic model

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  8. Self-organization and forcing templates in coastal barrier response to storms

    Science.gov (United States)

    Lazarus, E.

    2015-12-01

    When a storm event pushes water up and over a coastal barrier, cross-shore flow transports sediment from the barrier face to the back-barrier environment. This natural physical process is called "overwash", and "washover" is the sedimentary deposit it forms. Overwash and washover support critical coastal habitats, and enable barriers to maintain their height and width relative to rising sea level. On developed barrier coasts, overwash constitutes a natural hazard, which sea-level rise will exacerbate. Overwash is also a prerequisite for barrier breaching and coastal flooding. Predicting occurrence and characteristics of overwash and washover has significant societal value. Hazard models typically assume that pre-storm barrier morphology determines how the barrier changes during a storm. However, classic work has documented the absence of a relationship between pre/post-storm topography in some cases, and has also identified rhythmic patterns in washover alongshore. Previous explanations for these spatial patterns have looked to forcing templates, forms that get imprinted in the barrier shape. An alternative explanation is that washover patterns self-organize, emerging from feedbacks between water flow and sediment transport. Self-organization and forcing templates are often framed as mutually exclusive, but patterns likely form across a continuum of conditions. Here, I use data from a new physical experiment to suggest that spatial patterns in washover can self-organize within the limit of a forcing template of some critical "strength", beyond which pre/post-storm morphologies are highly correlated. Quantifying spatial patterns in washover deposits opens exciting questions regarding coastal morphodynamic response to storms. Measurement of relative template strength over extended spatial (and temporal) scales has the potential to improve hazard assessment and prediction, particularly where template strength is low and self-organization dominates barrier change.

  9. How to weigh coastal hazard against economic consequence (poster)

    NARCIS (Netherlands)

    Wainwright, D.; Callaghan, D.; Jongejan, R.B.; Ranasinghe, R.; Cowell, P.

    2012-01-01

    It is well recognised that sea level change over the coming century will have an extraordinary economic impact on coastal communities. To overcome the uncertainty that still surrounds the mechanics of shoreline recession and stochastic forcing, landuse planning and management decisions will require

  10. Tsunami hazard map in eastern Bali

    International Nuclear Information System (INIS)

    Afif, Haunan; Cipta, Athanasius

    2015-01-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography

  11. Tsunami hazard map in eastern Bali

    Energy Technology Data Exchange (ETDEWEB)

    Afif, Haunan, E-mail: afif@vsi.esdm.go.id [Geological Agency, Bandung (Indonesia); Cipta, Athanasius [Geological Agency, Bandung (Indonesia); Australian National University, Canberra (Australia)

    2015-04-24

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  12. Tsunami hazard map in eastern Bali

    Science.gov (United States)

    Afif, Haunan; Cipta, Athanasius

    2015-04-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  13. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

    Science.gov (United States)

    Barnard, Patrick; Maarten van Ormondt,; Erikson, Li H.; Jodi Eshleman,; Hapke, Cheryl J.; Peter Ruggiero,; Peter Adams,; Foxgrover, Amy C.

    2014-01-01

    The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

  14. Hazard and risk of herbicides for marine microalgae

    International Nuclear Information System (INIS)

    Sjollema, Sascha B.; MartínezGarcía, Gema; Geest, Harm G. van der; Kraak, Michiel H.S.; Booij, Petra; Vethaak, A. Dick; Admiraal, Wim

    2014-01-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol ® 1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. - Highlights: • The hazard of herbicides for microalgae is compound and species specific. • In general a low risk although occasional potential effect levels are reached. • Current legislation does not protect marine microalgae sufficiently. - The hazard of herbicides in the coastal waters is compound and species specific and although the general risk in the field is low, occasionally potential effect levels are reached

  15. Designsafe-Ci a Cyberinfrastructure for Natural Hazard Simulation and Data

    Science.gov (United States)

    Dawson, C.; Rathje, E.; Stanzione, D.; Padgett, J.; Pinelli, J. P.

    2017-12-01

    DesignSafe is the web-based research platform of the Natural Hazards Engineering Research Infrastructure (NHERI) network that provides the computational tools needed to manage and analyze critical data for natural hazards research, with wind and storm surge related hazards being a primary focus. One of the simulation tools under DesignSafe is the Advanced Circulation (ADCIRC) model, a coastal ocean model used in storm surge analysis. ADCIRC is an unstructured, finite element model with high resolution capabilities for studying storm surge impacts, and has long been used in storm surge hind-casting and forecasting. In this talk, we will demonstrate the use of ADCIRC within the DesignSafe platform and its use for forecasting Hurricane Harvey. We will also demonstrate how to analyze, visualize and archive critical storm surge related data within DesignSafe.

  16. Urban-hazard risk analysis: mapping of heat-related risks in the elderly in major Italian cities.

    Science.gov (United States)

    Morabito, Marco; Crisci, Alfonso; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Di Stefano, Valentina; Orlandini, Simone; Gensini, Gian Franco

    2015-01-01

    Short-term impacts of high temperatures on the elderly are well known. Even though Italy has the highest proportion of elderly citizens in Europe, there is a lack of information on spatial heat-related elderly risks. Development of high-resolution, heat-related urban risk maps regarding the elderly population (≥ 65). A long time-series (2001-2013) of remote sensing MODIS data, averaged over the summer period for eleven major Italian cities, were downscaled to obtain high spatial resolution (100 m) daytime and night-time land surface temperatures (LST). LST was estimated pixel-wise by applying two statistical model approaches: 1) the Linear Regression Model (LRM); 2) the Generalized Additive Model (GAM). Total and elderly population density data were extracted from the Joint Research Centre population grid (100 m) from the 2001 census (Eurostat source), and processed together using "Crichton's Risk Triangle" hazard-risk methodology for obtaining a Heat-related Elderly Risk Index (HERI). The GAM procedure allowed for improved daytime and night-time LST estimations compared to the LRM approach. High-resolution maps of daytime and night-time HERI levels were developed for inland and coastal cities. Urban areas with the hazardous HERI level (very high risk) were not necessarily characterized by the highest temperatures. The hazardous HERI level was generally localized to encompass the city-centre in inland cities and the inner area in coastal cities. The two most dangerous HERI levels were greater in the coastal rather than inland cities. This study shows the great potential of combining geospatial technologies and spatial demographic characteristics within a simple and flexible framework in order to provide high-resolution urban mapping of daytime and night-time HERI. In this way, potential areas for intervention are immediately identified with up-to-street level details. This information could support public health operators and facilitate coordination for heat

  17. Urban-hazard risk analysis: mapping of heat-related risks in the elderly in major Italian cities.

    Directory of Open Access Journals (Sweden)

    Marco Morabito

    Full Text Available Short-term impacts of high temperatures on the elderly are well known. Even though Italy has the highest proportion of elderly citizens in Europe, there is a lack of information on spatial heat-related elderly risks.Development of high-resolution, heat-related urban risk maps regarding the elderly population (≥ 65.A long time-series (2001-2013 of remote sensing MODIS data, averaged over the summer period for eleven major Italian cities, were downscaled to obtain high spatial resolution (100 m daytime and night-time land surface temperatures (LST. LST was estimated pixel-wise by applying two statistical model approaches: 1 the Linear Regression Model (LRM; 2 the Generalized Additive Model (GAM. Total and elderly population density data were extracted from the Joint Research Centre population grid (100 m from the 2001 census (Eurostat source, and processed together using "Crichton's Risk Triangle" hazard-risk methodology for obtaining a Heat-related Elderly Risk Index (HERI.The GAM procedure allowed for improved daytime and night-time LST estimations compared to the LRM approach. High-resolution maps of daytime and night-time HERI levels were developed for inland and coastal cities. Urban areas with the hazardous HERI level (very high risk were not necessarily characterized by the highest temperatures. The hazardous HERI level was generally localized to encompass the city-centre in inland cities and the inner area in coastal cities. The two most dangerous HERI levels were greater in the coastal rather than inland cities.This study shows the great potential of combining geospatial technologies and spatial demographic characteristics within a simple and flexible framework in order to provide high-resolution urban mapping of daytime and night-time HERI. In this way, potential areas for intervention are immediately identified with up-to-street level details. This information could support public health operators and facilitate coordination for heat

  18. Hurricane Gustav: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and

  19. Conceptual geoinformation model of natural hazards risk assessment

    Science.gov (United States)

    Kulygin, Valerii

    2016-04-01

    Natural hazards are the major threat to safe interactions between nature and society. The assessment of the natural hazards impacts and their consequences is important in spatial planning and resource management. Today there is a challenge to advance our understanding of how socio-economical and climate changes will affect the frequency and magnitude of hydro-meteorological hazards and associated risks. However, the impacts from different types of natural hazards on various marine and coastal economic activities are not of the same type. In this study, the conceptual geomodel of risk assessment is presented to highlight the differentiation by the type of economic activities in extreme events risk assessment. The marine and coastal ecosystems are considered as the objects of management, on the one hand, and as the place of natural hazards' origin, on the other hand. One of the key elements in describing of such systems is the spatial characterization of their components. Assessment of ecosystem state is based on ecosystem indicators (indexes). They are used to identify the changes in time. The scenario approach is utilized to account for the spatio-temporal dynamics and uncertainty factors. Two types of scenarios are considered: scenarios of using ecosystem services by economic activities and scenarios of extreme events and related hazards. The reported study was funded by RFBR, according to the research project No. 16-35-60043 mol_a_dk.

  20. Development of a unified federal/state coastal/inland oil and hazardous substance contingency plan for the state of Alaska

    International Nuclear Information System (INIS)

    Lautenberger, C.; Pearson, L.

    1993-01-01

    Passage of the US Oil Pollution Act (OPA) of 1990 expanded the existing federal planning and response framework in several ways. The OPA created a new requirement for facility and tank vessel response plans and creates an area-level planning and coordination structure to help supplement federal, regional, and local planning efforts. The OPA amended the existing Clean Water Act's section 311(j)(4), which establishes area committees and area contingency plans as primary components of this structure. In 1980, the Alaska legislature enacted legislation which defines the state's policies regarding oil spills. Following the 1989 Exxon Valdez spill, additional legislation was passed to expand and strengthen the state's oil spill program. Specifically, in 1989 the Senate Bill 261 required the Alaska Department of Environmental Conservation to develop, annually review, and revise the State Oil and Hazardous Substance Contingency Plans (State Master and Regional Plans). State regional plans serve as annexes to the State Master Plan. The coordinated and cooperative efforts by government agencies and local entities toward creating a unified federal/state, coastal/inland Oil and Hazardous Substance Contingency Plan are presented, along with the development and progress of unified area/regional contingency plans for Alaska. 3 figs

  1. High-level waste description, inventory and hazard

    International Nuclear Information System (INIS)

    Crandall, J.; Hennelly, E.J.; McElroy, J.L.

    1983-01-01

    High-level nuclear waste (HLW), including its origin, is described and the current differences in definitions discussed. Quantities of defense and commercial radioactive HLW, both volume and curie content, are given. Current waste handling, which is interimin nature, is described for the several sites. The HLW hazard is defined by the times during which various radionuclides are the dominant contributors. The hazard is also compared to that of the ore. Using ICRP-2, which is the legal reference in the US, the hazard of the waste reduces to a level equal to the ore in about 300 years. The disposal plans are summarized and it is shown that regulatory requirements will probably govern disposal operations in such a conservative manner that the risk (product of hazard times probability of release) may well be lower than for any other wastes in existence or perhaps lower than those for any other human endeavor

  2. Hurricane Isaac: observations and analysis of coastal change

    Science.gov (United States)

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  3. Coastal Change Analysis Program (C-CAP) High Resolution Land Cover and Change Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Change Analysis Program (C-CAP) produces national standardized high resolution land cover and change products for the coastal regions of the U.S....

  4. Quaternary geophysical framework of the northeastern North Carolina coastal system

    Science.gov (United States)

    Thieler, E.R.; Foster, D.S.; Mallinson, D.M.; Himmelstoss, E.A.; McNinch, J.E.; List, J.H.; Hammar-Klose, E.S.

    2013-01-01

    The northeastern North Carolina coastal system, from False Cape, Virginia, to Cape Lookout, North Carolina, has been studied by a cooperative research program that mapped the Quaternary geologic framework of the estuaries, barrier islands, and inner continental shelf. This information provides a basis to understand the linkage between geologic framework, physical processes, and coastal evolution at time scales from storm events to millennia. The study area attracts significant tourism to its parks and beaches, contains a number of coastal communities, and supports a local fishing industry, all of which are impacted by coastal change. Knowledge derived from this research program can be used to mitigate hazards and facilitate effective management of this dynamic coastal system.

  5. An evolving research agenda for human-coastal systems

    Science.gov (United States)

    Lazarus, Eli D.; Ellis, Michael A.; Brad Murray, A.; Hall, Damon M.

    2016-03-01

    Within the broad discourses of environmental change, sustainability science, and anthropogenic Earth-surface systems, a focused body of work involves the coupled economic and physical dynamics of developed shorelines. Rapid rates of change in coastal environments, from wetlands and deltas to inlets and dune systems, help researchers recognize, observe, and investigate coupling in natural (non-human) morphodynamics and biomorphodynamics. This same intrinsic quality of fast-paced change also makes developed coastal zones exemplars of observable coupling between physical processes and human activities. In many coastal communities, beach erosion is a natural hazard with economic costs that coastal management counters through a variety of mitigation strategies, including beach replenishment, groynes, revetments, and seawalls. As cycles of erosion and mitigation iterate, coastline change and economically driven interventions become mutually linked. Emergent dynamics of two-way economic-physical coupling is a recent research discovery. Having established a strong theoretical basis, research into coupled human-coastal systems has passed its early proof-of-concept phase. This paper frames three major challenges that need resolving in order to advance theoretical and empirical treatments of human-coastal systems: (1) codifying salient individual and social behaviors of decision-making in ways that capture societal actions across a range of scales (thus engaging economics, social science, and policy disciplines); (2) quantifying anthropogenic effects on alongshore and cross-shore sediment pathways and long-term landscape evolution in coastal zones through time, including direct measurement of cumulative changes to sediment cells resulting from coastal development and management practices (e.g., construction of buildings and artificial dunes, bulldozer removal of overwash after major storms); and (3) reciprocal knowledge and data exchange between researchers in coastal

  6. Environmental hazards and distribution of radioactive black sand along the Rosetta coastal zone in Egypt using airborne spectrometric and remote sensing data.

    Science.gov (United States)

    Kaiser, M F; Aziz, A M; Ghieth, B M

    2014-11-01

    High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Monitoring the change of coastal zones from space

    Science.gov (United States)

    Cazenave, A. A.; Le Cozannet, G.; Benveniste, J.; Woodworth, P. L.

    2017-12-01

    The world's coastal zones, where an important fraction of the world population is currently living, are under serious threat because of coastal erosion, cyclones, storms, and salinization of estuaries and coastal aquifers. In the future, these hazards are expected to increase due to the combined effects of sea level rise, climate change, human activities and population increase. The response of coastal environments to natural and anthropogenic forcing factors (including climate change) depends on the characteristics of the forcing agents, as well as on the internal properties of the coastal systems, that remain poorly known and mostly un-surveyed at global scale. To better understand changes affecting coastal zones and to provide useful information to decision makers, various types of observations with global coverage need to be collected and analysed. Observations from space appear as an important complement to existing in situ observing systems (e.g., regional tide gauge networks). In this presentation, we discuss the benefit of systematic coastal monitoring from space, addressing both observations of forcing agents and of the coastal response. We highlight the need for a global coastal sea level data set based on retracked nadir altimetry missions and new SAR technology.

  8. Environmental hazards and distribution of radioactive black sand along the Rosetta coastal zone in Egypt using airborne spectrometric and remote sensing data

    International Nuclear Information System (INIS)

    Kaiser, M.F.; Aziz, A.M.; Ghieth, B.M.

    2014-01-01

    High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. - Highlights: • Spatial and temporal distributions of the black sand were

  9. Communicating Coastal Risk Analysis in an Age of Climate Change

    Science.gov (United States)

    2011-10-01

    extratropical storm systems); the geometry and geomorphology of the area (regional and local bathymetry and topography, including rivers, marshes, and...at risk from coastal hazards including storm surge inundation, precipitation driven flooding, waves, and coastal erosion. This population segment...will likely be exposed to increased risk as impacts of a changing climate are felt through elevated sea levels and potentially increased storm

  10. POTENTIAL HAZARDS OF SEDIMENT IN KENDARI BAY, SOUTHEAST SULAWESI

    Directory of Open Access Journals (Sweden)

    Nur Adi Kristanto

    2017-07-01

    Full Text Available Kendari bay is located in front of Kendari city. There are two harbors in the inner part of bay which very important to support economic activities such as shipping and passenger transportation. The result of coastal characteristic mapping and physical oceanography survey show various coastal morphology, vegetation, weathering processes, sedimentation, currents, and water depth and sea floor morphology. Kendari bay is an enclosed bay; the area is wide in the inner part and narrow in mouth of bay (outlet, the morphology look like a bottle’s neck. Numerous mouth rivers are concentrate around the bay. The rivers load material from land since erosion on land is intensive enough. There is indication that sediment supplies from land trough river mouth not equivalent with outlet capacity. Sediment load is trapped in the inner bay caused the outlet morphology. So high sediment rate play an important role in the process of shallow of water depth in Kendari bay. This condition make the Kendari bay is a prone area of sediment hazard due to height rate of sedimentary process. Therefore, to anticipate the hazards, precaution should be taken related to the Kendari bay as the center of activities in southeast of Sulawesi. The further survey is needed such as marine geotechnique and on land environmental to collect data, which can be used as database for development planning. Key words: Potential hazard, sediment, Kendari Bay Teluk

  11. Multi-hazard risk analysis related to hurricanes

    Science.gov (United States)

    Lin, Ning

    Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is

  12. 77 FR 35357 - Atlantic Highly Migratory Species; Commercial Atlantic Region Non-Sandbar Large Coastal Shark...

    Science.gov (United States)

    2012-06-13

    ... Highly Migratory Species; Commercial Atlantic Region Non-Sandbar Large Coastal Shark Fishery Opening Date... commercial Atlantic region non-sandbar large coastal shark fishery. This action is necessary to inform... large coastal shark fishery will open on July 15, 2012. FOR FURTHER INFORMATION CONTACT: Karyl Brewster...

  13. Towards a robust methodology to assess coastal impacts and adaptation policies for Europe

    Science.gov (United States)

    Vousdoukas, Michalis; Voukouvalas, Evangelos; Mentaschi, Lorenzo; Feyen, Luc

    2016-04-01

    The present contribution aims to present preliminary results from efforts towards (i) the development of the integrated risk assessment tool LISCoAsT for Europe (Large scale Integrated Sea-level and Coastal Assessment Tool); (ii) the assessment of coastal risk along the European coastline in view of climate change; and (iii) the development and application of a robust methodology to evaluate adaptation options for the European coastline under climate change scenarios. The overall approach builds on the disaster risk methodology proposed by the IPCC SREX (2012) report, defining risk as the combination of hazard, exposure and vulnerability. Substantial effort has been put in all the individual components of the risk assessment chain, including: (1) the development of dynamic scenarios of catastrophic coastal hazards (e.g., storm surges, sea-level rise) in view of climate change; (2) quantification, mapping and forecasting exposure and vulnerability in coastal areas; (3) carrying out a bottom-up, highly disaggregated assessment of climate impacts on coastal areas in Europe in view of global warming; (4) estimating the costs and assessing the effectiveness of different adaptation options. Projections indicate that, by the end of this century, sea levels in Europe will rise on average between 45 and 70 cm; while projections of coastal hazard showed that for some European regions, the increased storminess can be an additional significant driver of further risk. Projections of increasing extreme storm surge levels (SSL) were even more pronounced under the business-as-usual RCP8.5 concentration pathway, in particular along the Northern Europe coastline. The above are also reflected in the coastal impact projections, which show a significant increase in the expected annual damage (EAD) from coastal flooding. The present EAD for Europe of 800 million €/year is projected to increase up to 2.4 and 3.2 billion €/year by 2040 under RCP 4.5 and 8.5, respectively, and to 11

  14. High Resolution Modeling of Coastal Inundation: User Requirements and Current Practice, A Navy Perspective

    National Research Council Canada - National Science Library

    Blain, Cheryl Ann; Preller, Ruth H

    2007-01-01

    The impact of coastal flooding and inundation on Navy operational missions and the existing Navy requirements for resolution and accuracy relevant to coastal inundation are presented. High resolution (less than 500 m...

  15. Hurricane Sandy science plan: impacts to coastal ecosystems, habitats, and fish and wildlife

    Science.gov (United States)

    Campbell, Warren H.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry

  16. Characteristics of Large Low-frequency Debris Flow Hazards and Mitigation Strategies

    Institute of Scientific and Technical Information of China (English)

    WANG Shige

    2005-01-01

    A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999,and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazard are discussed: long return period and extreme catastrophe, special rare triggering factors,difficulty in distinguishing and a series of small hazards subsequent to the catastrophe. Different measures, such as preventing, forecast - warning,engineering, can be used for mitigating and controlling the catastrophe. In engineering practice, it is a key that large silt-trap dams are used to control rare large debris flow. A kind of low dam with cheap cost can be used to replace high dam in developing countries. A planning for controlling debris flow hazard in Cerro Grande stream of Venezuela is presented at the end of this paper.

  17. A high-resolution global flood hazard model

    Science.gov (United States)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  18. Examples Not Numbers: Using Historical Events To Present Regional Hazard Information And Stimulate Client Thinking In The Insurance Industry

    Science.gov (United States)

    Pile, J.; Switzer, A.; Gouramanis, C.; Rush, B.; Reynolds, I.; Ryrie, S.; Soria, L.

    2013-12-01

    Coastal hazards, including tsunami and storm surges, periodically affect many of the world's coasts. Re-insurers and insurance companies use a variety of means to understand and quantify the recurrence interval and risk of such events. Such work is done with the primary aim of placing monetary values on the risk. This collective understanding is often gleaned from the available scientific literature and commonly makes use of maps to delineate areas of risk that assist in communicating risk with clients. In this study we approached the problem of producing an integrated map of coastal hazards (storm and tsunami) for much of southeast Asia (including the Bay of Bengal and northern Australia). Initial analysis showed that assessments based on the short, partial and, for the most part, fragmentary documented history of past events in southeast Asia, would deem almost every coast on the map at high risk of coastal hazards at the regional scale. Although this may be true to a certain extent it would be unjust and unscientific to label entire coastlines 'high risk' as clearly particular sites on any coast are more susceptible to coastal hazards at the local scale. This raises the question: What is the best way to communicate risk at a regional scale without broad generalisations? Our recent collaboration with a major re-insurer lead to the creation of a new form of map (poster) for their clientele using a case study approach aimed at getting clients to think about the details of historical events in the context of localised risk. Using the pedagogical premise of 'Concept, Example, Consequence', we highlight risk in a way that will hopefully stimulate thought among practitioners and provide an alternative to the broad generalizations found in many products in the marketplace. The envisaged outcome is to enhance communication of site-specific risk assessments between stakeholders and encourage a better understanding of localised and regional risk.

  19. Urban-Hazard Risk Analysis: Mapping of Heat-Related Risks in the Elderly in Major Italian Cities

    Science.gov (United States)

    Morabito, Marco; Crisci, Alfonso; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Di Stefano, Valentina; Orlandini, Simone; Gensini, Gian Franco

    2015-01-01

    Background Short-term impacts of high temperatures on the elderly are well known. Even though Italy has the highest proportion of elderly citizens in Europe, there is a lack of information on spatial heat-related elderly risks. Objectives Development of high-resolution, heat-related urban risk maps regarding the elderly population (≥65). Methods A long time-series (2001–2013) of remote sensing MODIS data, averaged over the summer period for eleven major Italian cities, were downscaled to obtain high spatial resolution (100 m) daytime and night-time land surface temperatures (LST). LST was estimated pixel-wise by applying two statistical model approaches: 1) the Linear Regression Model (LRM); 2) the Generalized Additive Model (GAM). Total and elderly population density data were extracted from the Joint Research Centre population grid (100 m) from the 2001 census (Eurostat source), and processed together using “Crichton’s Risk Triangle” hazard-risk methodology for obtaining a Heat-related Elderly Risk Index (HERI). Results The GAM procedure allowed for improved daytime and night-time LST estimations compared to the LRM approach. High-resolution maps of daytime and night-time HERI levels were developed for inland and coastal cities. Urban areas with the hazardous HERI level (very high risk) were not necessarily characterized by the highest temperatures. The hazardous HERI level was generally localized to encompass the city-centre in inland cities and the inner area in coastal cities. The two most dangerous HERI levels were greater in the coastal rather than inland cities. Conclusions This study shows the great potential of combining geospatial technologies and spatial demographic characteristics within a simple and flexible framework in order to provide high-resolution urban mapping of daytime and night-time HERI. In this way, potential areas for intervention are immediately identified with up-to-street level details. This information could support public

  20. Influence of risk factors and past events on flood resilience in coastal megacities: Comparative analysis of NYC and Shanghai.

    Science.gov (United States)

    Xian, Siyuan; Yin, Jie; Lin, Ning; Oppenheimer, Michael

    2018-01-01

    Coastal flood protection measures have been widely implemented to improve flood resilience. However, protection levels vary among coastal megacities globally. This study compares the distinct flood protection standards for two coastal megacities, New York City and Shanghai, and investigates potential influences such as risk factors and past flood events. Extreme value analysis reveals that, compared to NYC, Shanghai faces a significantly higher flood hazard. Flood inundation analysis indicates that Shanghai has a higher exposure to extreme flooding. Meanwhile, Shanghai's urban development, population, and economy have increased much faster than NYC's over the last three decades. These risk factors provide part of the explanation for the implementation of a relatively high level of protection (e.g. reinforced concrete sea-wall designed for a 200-year flood return level) in Shanghai and low protection (e.g. vertical brick and stone walls and sand dunes) in NYC. However, individual extreme flood events (typhoons in 1962, 1974, and 1981) seem to have had a greater impact on flood protection decision-making in Shanghai, while NYC responded significantly less to past events (with the exception of Hurricane Sandy). Climate change, sea level rise, and ongoing coastal development are rapidly changing the hazard and risk calculus for both cities and both would benefit from a more systematic and dynamic approach to coastal protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Climatic Changes and Consequences on the French West Indies (C3AF), Hurricane and Tsunami Hazards Assessment

    Science.gov (United States)

    Arnaud, G.; Krien, Y.; Zahibo, N.; Dudon, B.

    2017-12-01

    Coastal hazards are among the most worrying threats of our time. In a context of climate change coupled to a large population increase, tropical areas could be the most exposed zones of the globe. In such circumstances, understanding the underlying processes can help to better predict storm surges and the associated global risks.Here we present the partial preliminary results integrated in a multidisciplinary project focused on climatic change effects over the coastal threat in the French West Indies and funded by the European Regional Development Fund. The study aims to provide a coastal hazard assessment based on hurricane surge and tsunami modeling including several aspects of climate changes that can affect hazards such as sea level rise, crustal subsidence/uplift, coastline changes etc. Several tsunamis scenarios have been simulated including tele-tsunamis to ensure a large range of tsunami hazards. Surge level of hurricane have been calculated using a large number of synthetic hurricanes to cover the actual and forecasted climate over the tropical area of Atlantic ocean. This hazard assessment will be later coupled with stakes assessed over the territory to provide risk maps.

  2. Application of geo-spatial technologies in coastal vulnerability studies due to Sea Level Rise (SLR) along the Central Orissa Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.

    This chapter emphasizes the regional and local level coastal vulnerability studies due to sea level rise and the subsequent coastal inundation along the low-lying coastal areas using the advanced geo-spatial technologies. Natural hazards...

  3. Hurricane Sandy science plan: coastal topographic and bathymetric data to support hurricane impact assessment and response

    Science.gov (United States)

    Stronko, Jakob M.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers • Impacts of storm surge, including disturbed estuarine and bay hydrology • Impacts on environmental quality and persisting contaminant exposures • Impacts to coastal ecosystems, habitats, and fish and wildlife This fact sheet focuses on coastal topography and bathymetry. This fact sheet focuses on coastal topography and bathymetry.

  4. Natural hazards in a changing world: a case for ecosystem-based management.

    Directory of Open Access Journals (Sweden)

    Jeanne L Nel

    Full Text Available Communities worldwide are increasingly affected by natural hazards such as floods, droughts, wildfires and storm-waves. However, the causes of these increases remain underexplored, often attributed to climate changes or changes in the patterns of human exposure. This paper aims to quantify the effect of climate change, as well as land cover change, on a suite of natural hazards. Changes to four natural hazards (floods, droughts, wildfires and storm-waves were investigated through scenario-based models using land cover and climate change drivers as inputs. Findings showed that human-induced land cover changes are likely to increase natural hazards, in some cases quite substantially. Of the drivers explored, the uncontrolled spread of invasive alien trees was estimated to halve the monthly flows experienced during extremely dry periods, and also to double fire intensities. Changes to plantation forestry management shifted the 1:100 year flood event to a 1:80 year return period in the most extreme scenario. Severe 1:100 year storm-waves were estimated to occur on an annual basis with only modest human-induced coastal hardening, predominantly from removal of coastal foredunes and infrastructure development. This study suggests that through appropriate land use management (e.g. clearing invasive alien trees, re-vegetating clear-felled forests, and restoring coastal foredunes, it would be possible to reduce the impacts of natural hazards to a large degree. It also highlights the value of intact and well-managed landscapes and their role in reducing the probabilities and impacts of extreme climate events.

  5. Natural Hazards Science at the U.S. Geological Survey

    Science.gov (United States)

    Perry, Suzanne C.; Jones, Lucile M.; Holmes, Robert R.

    2013-01-01

    The mission of the USGS in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. The USGS conducts hazard research and works closely with stakeholders and cooperators to inform a broad range of planning and response activities at individual, local, State, national, and international levels. It has critical statutory and nonstatutory roles regarding floods, earthquakes, tsunamis, landslides, coastal erosion, volcanic eruptions, wildfires, and magnetic storms. USGS science can help to understand and reduce risks from natural hazards by providing the information that decisionmakers need to determine which risk management activities are worth­while.

  6. Variations in population vulnerability to tectonic and landslide-related tsunami hazards in Alaska

    Science.gov (United States)

    Wood, Nathan J.; Peters, Jeff

    2015-01-01

    Effective tsunami risk reduction requires an understanding of how at-risk populations are specifically vulnerable to tsunami threats. Vulnerability assessments primarily have been based on single hazard zones, even though a coastal community may be threatened by multiple tsunami sources that vary locally in terms of inundation extents and wave arrival times. We use the Alaskan coastal communities of Cordova, Kodiak, Seward, Valdez, and Whittier (USA), as a case study to explore population vulnerability to multiple tsunami threats. We use anisotropic pedestrian evacuation models to assess variations in population exposure as a function of travel time out of hazard zones associated with tectonic and landslide-related tsunamis (based on scenarios similar to the 1964 M w9.2 Good Friday earthquake and tsunami disaster). Results demonstrate that there are thousands of residents, employees, and business customers in tsunami hazard zones associated with tectonically generated waves, but that at-risk individuals will likely have sufficient time to evacuate to high ground before waves are estimated to arrive 30–60 min after generation. Tsunami hazard zones associated with submarine landslides initiated by a subduction zone earthquake are smaller and contain fewer people, but many at-risk individuals may not have enough time to evacuate as waves are estimated to arrive in 1–2 min and evacuations may need to occur during earthquake ground shaking. For all hazard zones, employees and customers at businesses far outnumber residents at their homes and evacuation travel times are highest on docks and along waterfronts. Results suggest that population vulnerability studies related to tsunami hazards should recognize non-residential populations and differences in wave arrival times if emergency managers are to develop realistic preparedness and outreach efforts.

  7. Projected 21st century coastal flooding in the Southern California Bight. Part 1: Development of the third generation CoSMoS model

    Science.gov (United States)

    O'Neill, Andrea; Erikson, Li; Barnard, Patrick; Limber, Patrick; Vitousek, Sean; Warrick, Jonathan; Foxgrover, Amy C.; Lovering, Jessica

    2018-01-01

    Due to the effects of climate change over the course of the next century, the combination of rising sea levels, severe storms, and coastal change will threaten the sustainability of coastal communities, development, and ecosystems as we know them today. To clearly identify coastal vulnerabilities and develop appropriate adaptation strategies due to projected increased levels of coastal flooding and erosion, coastal managers need local-scale hazards projections using the best available climate and coastal science. In collaboration with leading scientists world-wide, the USGS designed the Coastal Storm Modeling System (CoSMoS) to assess the coastal impacts of climate change for the California coast, including the combination of sea-level rise, storms, and coastal change. In this project, we directly address the needs of coastal resource managers in Southern California by integrating a vast range of global climate change projections in a thorough and comprehensive numerical modeling framework. In Part 1 of a two-part submission on CoSMoS, methods and the latest improvements are discussed, and an example of hazard projections is presented.

  8. Multi-hazards coastal vulnerability assessment of Goa, India, using geospatial techniques.

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Jauhari, N.; Mehrotra, U.; Kotha, M.; Hursthouse, A.S.; Gagnon, A.S.

    that are the most and least vulnerable to erosion, flooding and inundation of coastal lands, and that the inclusion of socio-economic parameters influences the overall assessment of vulnerability. This study provides information aimed at increasing awareness amongst...

  9. Hazard and risk of herbicides for marine microalgae

    NARCIS (Netherlands)

    Sjollema, S.B.; Martínez-García, G.; van der Geest, H.G.; Kraak, M.H.S.; Booij, P.; Vethaak, A.D.; Admiraal, W.

    2014-01-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects

  10. Proceedings of the 79th Meeting of the Coastal Engineering Research Board, 6-10 June 2005 (Anchorage, AK)

    Science.gov (United States)

    2006-09-29

    integrated Coastal Community Vulnerability and Adaptation Program focused on improving the resilience of coastal communities to natural hazards and...in sharp contrast to the situation of a coastal community facing a serious erosion threat. The nature of the problem may be pretty clear, but the...products to improve the preparedness of communities, businesses, and government entities. As described in Section 8 of S.50, this Coastal

  11. HERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios

    Science.gov (United States)

    Jones, Jeanne M.; Henry, Kevin; Wood, Nathan J.; Ng, Peter; Jamieson, Matthew

    2017-01-01

    The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.

  12. HERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios

    Science.gov (United States)

    Jones, Jeanne M.; Henry, Kevin; Wood, Nathan; Ng, Peter; Jamieson, Matthew

    2017-12-01

    The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.

  13. Geological hazards in the Azores archipelago: Volcanic terrain instability and human vulnerability

    Science.gov (United States)

    Malheiro, A.

    2006-08-01

    The islands of the Azores archipelago are geologically young and located in a tectonically and volcanically active region. Not surprisingly, the islands are subject to many geological hazards, including earthquakes, landslides, and coastal erosion; some selected examples are discussed in this paper. As demonstrated by two recent earthquakes (1980, Terceira; 1998, Faial), the principal damage was related to one or more of these factors: (1) unsafe location of structures near faults; (2) unstable foundation soils; (3) poor quality of building materials and construction methods; (4) disregard of building codes; and (5) lack of building maintenance. Major landsliding events in the Azores (e.g., Ponta da Fajã, Ribeira Quente, and Fajã dos Cubres) typically are triggered by intense, long-duration precipitation and (or) earthquake-induced ground shaking. The loose, unconsolidated nature of the rocks and soils of these volcanic islands is another significant contributing factor, sometimes aggravated by ground instability caused by human activity. Coastal erosion is prevalent on the north coast of São Miguel and the south coast of Faial, mostly resulting from natural circumstances (e.g., steepness of cliffs, differential erosion, intense wave action during storms) and also from human activity (e.g., poorly engineered drainage works on cliff faces). Where severe, coastal erosion can pose a risk to populations and societal infrastructures situated near the tops of the seacliffs. To mitigate the risk of these and other geological hazards in the Azores, it is necessary to (1) prepare hazards and risks maps of the affected areas; (2) adopt prudent land-use planning that considers the hazards; (3) upgrade the building codes in the hazardous areas; (4) initiate slope-stabilization programs; (5) preserve the natural environmental integrity of the regions; and (6) educate the affected populace and governmental officials about the possibilities and consequences of hazardous

  14. Quantification of tsunami hazard on Canada's Pacific Coast; implications for risk assessment

    Science.gov (United States)

    Evans, Stephen G.; Delaney, Keith B.

    2015-04-01

    Our assessment of tsunami hazard on Canada's Pacific Coast (i.e., the coast of British Columbia) begins with a review of the 1964 tsunami generated by The Great Alaska Earthquake (M9.2) that resulted in significant damage to coastal communities and infrastructure. In particular, the tsunami waves swept up inlets on the west coast of Vancouver Island and damaged several communities; Port Alberni suffered upwards of 5M worth of damage. At Port Alberni, the maximum tsunami wave height was estimated at 8.2 m above mean sea level and was recorded on the stream gauge on the Somass River located at about 7 m a.s.l, 6 km upstream from its mouth. The highest wave (9.75 m above tidal datum) was reported from Shields Bay, Graham Island, Queen Charlotte Islands (Haida Gwaii). In addition, the 1964 tsunami was recorded on tide gauges at a number of locations on the BC coast. The 1964 signal and the magnitude and frequency of traces of other historical Pacific tsunamis (both far-field and local) are analysed in the Tofino tide gauge records and compared to tsunami traces in other tide gauges in the Pacific Basin (e.g., Miyako, Japan). Together with a review of the geological evidence for tsunami occurrence along Vancouver Island's west coast, we use this tide gauge data to develop a quantitative framework for tsunami hazard on Canada's Pacific coast. In larger time scales, tsunamis are a major component of the hazard from Cascadia megathrust events. From sedimentological evidence and seismological considerations, the recurrence interval of megathrust events on the Cascadia Subduction Zone has been estimated by others at roughly 500 years. We assume that the hazard associated with a high-magnitude destructive tsunami thus has an annual frequency of roughly 1/500. Compared to other major natural hazards in western Canada this represents a very high annual probability of potentially destructive hazard that, in some coastal communities, translates into high levels of local risk

  15. Disturbance and coastal forests: a strategic approach to forest management in hurricane impact zones

    Science.gov (United States)

    John A. Stanturf; Scott L. Goodrick; Kenneth W. Outcalt

    2007-01-01

    The Indian Ocean Tsunami focused world attention on societal responses to environmental hazards and the potential of natural systems to moderate disturbance effects. Coastal areas are critical to the welfare of up to 50% of the world's population. Coastal systems in the southern United States are adapted to specific disturbance regimes of tropical cyclones (...

  16. Coastal and tidal landform detection from high resolution topobathymetric LiDAR data

    Science.gov (United States)

    Skovgaard Andersen, Mikkel; Al-Hamdani, Zyad; Steinbacher, Frank; Rolighed Larsen, Laurids; Brandbyge Ernstsen, Verner

    2016-04-01

    Coastal and tidal environments are valuable ecosystems, which, however, are under pressure in many areas around the world due to globalisation and/or climate change. Detailed mapping of these environments is required in order to manage the coastal zone in a sustainable way. However, historically these transition zones between land and water are difficult or even impossible to map and investigate in high spatial resolution due to the challenging environmental conditions. The new generation of airborne topobathymetric light detection and ranging (LiDAR) potentially enables full-coverage and high-resolution mapping of these land-water transition zones. We have carried out topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part of the Wadden Sea National Park and UNESCO World Heritage. Detailed digital elevation models (DEMs) with a grid cell size of 0.5 m x 0.5 m were generated from the LiDAR point cloud with a mean point density in the order of 20 points/m2. The DEM was analysed morphometrically using a modification of the tool Benthic Terrain Modeler (BTM) developed by Wright et al. (2005). Initially, stage (the elevation in relation to tidal range) was used to divide the area of investigation into the different tidal zones, i.e. subtidal, intertidal and supratidal. Subsequently, morphometric units were identified and characterised by a combination of statistical neighbourhood analysis with varying window sizes (using the Bathymetric Positioning Index (BPI) from the BTM, moving average and standard deviation), slope parameters and area/perimeter ratios. Finally, these morphometric units were classified into six different types of landforms based on their stage and morphometric characteristics, i.e. either subtidal channel, intertidal flat, intertidal creek, linear bar, swash bar or beach dune. We hereby demonstrate the potential of using airborne topobathymetric LiDAR for seamless mapping of land

  17. A GIS Inventory of Critical Coastal Infrastructure Land Use in Caribbean Island Small Island Developing States: Classification and Criteria Methodology

    Science.gov (United States)

    D'aversa, N.; Becker, A.; Bove, G.

    2017-12-01

    Caribbean Small Island Developing States (SIDS) face significant natural hazard risks, as demonstrated by recent Hurricanes Jose, Irma, and Maria. Scientists project storms to become more intense and sea level rise to increase over the next century. As a result, the Inter-American Development Bank projections suggest that Caribbean nations could face climate-related losses in excess of $22 billion annually by 2050. Critical infrastructure that supports island economies, such as airports, seaports, cruise ports, and energy facilities, are typically located in the coastal zone with high exposure to natural hazards. Despite the increasing danger from climate driven natural hazards in coastal zones in the region, there is very little data available to identify how much land and associated infrastructure is at risk. This work focuses on the criteria and data standards developed for this new region-wide GIS database, which will then be used to formulate a risk assessment. Results will be integrated into a single, comprehensive source for data of lands identified as critical coastal infrastructure and used to address such questions as: How much of the Caribbean SIDS infrastructure lands are at risk from sea level rise? How might demand for such lands change in the future, based on historical trends? Answers to these questions will help decision makers understand how to prioritize resilience investment decisions in the coming decades.

  18. A coastal hazards data base for the US Gulf Coast

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, R.C. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center]|[Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment and Resources Center; Gornitz, V.M. [National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; White, T.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

    1994-06-01

    This document describes the contents of a digital data base that may be used to identify coastlines along the US Gulf Coast at risk to sea-level rise. The data base integrates point, line, and polygon data for the US Gulf Coast into 0.25{degree} latitude by 0.25{degree} longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data base systems. Each coastal grid cell and line segment contains data on elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. To allow for the identification of coastlines at risk from sea-level rise, 7 of the 22 original data variables in this data base were classified by vulnerability and used to create 7 relative risk variables. These relative risk variables range in value from 1 to 5 and may be used to calculate a coastal vulnerability index for each grid cell and/or line segment. The data for these 29 variables (i.e., the 22 original variables and 7 risk variables) have been placed into the following data formats: (1) Gridded polygon data for the 22 original data variables. Data include elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. (2) Gridded polygon data for the seven classified risk variables. The risk variables are classified versions of: mean coastal elevation, geology, geomorphology, local subsidence trend, mean shoreline displacement, maximum tidal range, and maximum significant wave height. (3) 1:2,000,000 line segment data containing the 29 data variables (the 22 original data variables and the seven classified risk variables). (4) Supplemental point data for the stations used in calculating the sea-level trend and tidal range data sets. (5) Supplemental line segment data containing a 1:2,000,000 digitized coastline of the US Gulf Coast as defined by this document.

  19. Investigating extreme event loading on coastal bridges using wireless sensor technology

    Science.gov (United States)

    Gelineau, Douglas A.; Davis, Justin R.; Rice, Jennifer A.

    2017-04-01

    Coastal infrastructure, such as bridges, are susceptible to many forms of coastal hazards: particularly hurricane surge and wave loading. These two forms of loading can cause catastrophic damage to aging highway infrastructure. It is estimated that storm damage costs the United States about $50 Billion per year. In light of this, it is crucial that we understand the damaging forces placed on infrastructure during storm events so that we can develop safer and more resilient coastal structures. This paper presents the ongoing research to enable the efficient collection of extreme event loads acting on both the substructure and superstructure of low clearance, simple span, reinforced concrete bridges. Bridges of this type were commonly constructed during the 1950's and 60's and are particularly susceptible to deck unseating caused by hurricane surge and wave loading. The sensing technology used to capture this data must be ruggedized to survive in an extremely challenging environment, be designed to allow for redundancy in the event of sensors or other network components being lost in the storm, and be relatively low cost to allow for more bridges to be instrumented per storm event. The prototype system described in this paper includes wireless technology, rapid data transmission, and, for the sensors, self-contained power. While this specific application focuses on hurricane hazards, the framework can be extended to include other natural hazards.

  20. Natural hazards on alluvial fans: the debris flow and flash flood disaster of December 1999, Vargas state, Venezuela

    Science.gov (United States)

    Larsen, Matthew C.; Wieczorek, Gerald F.; Eaton, L.S.; Torres-Sierra, Heriberto; Sylva, Walter F.

    2001-01-01

    Large populations live on or near alluvial fans in locations such as Los Angeles, California, Salt Lake City, Utah, Denver, Colorado, and lesser known areas such as Sarno, Italy, and Vargas, Venezuela. Debris flows and flash floods occur episodically in these alluvial fan environments, and place many communities at high risk during intense and prolonged rainfall. In December 1999, rainstorms induced thousands of landslides along the Cordillera de la Costa, Vargas, Venezuela. Rainfall accumulation of 293 mm during the first 2 weeks of December was followed by an additional 911 mm of rainfall on December 14 through 16. Debris flows and floods inundated coastal communities resulting in a catastrophic death toll of as many as 30,000 people. Flash floods and debris flows caused severe property destruction on alluvial fans at the mouths of the coastal mountain drainage network. In time scales spanning thousands of years, the alluvial fans along this Caribbean coastline are dynamic zones of high geomorphic activity. Because most of the coastal zone in Vargas consists of steep mountain fronts that rise abruptly from the Caribbean Sea, the alluvial fans provide practically the only flat areas upon which to build. Rebuilding and reoccupation of these areas requires careful determination of hazard zones to avoid future loss of life and property. KEY TERMS: Debris flows, flash floods, alluvial fans, natural hazards, landslides, Venezuela

  1. Evaluation of anthropogenic influence in probabilistic forecasting of coastal change

    Science.gov (United States)

    Hapke, C. J.; Wilson, K.; Adams, P. N.

    2014-12-01

    Prediction of large scale coastal behavior is especially challenging in areas of pervasive human activity. Many coastal zones on the Gulf and Atlantic coasts are moderately to highly modified through the use of soft sediment and hard stabilization techniques. These practices have the potential to alter sediment transport and availability, as well as reshape the beach profile, ultimately transforming the natural evolution of the coastal system. We present the results of a series of probabilistic models, designed to predict the observed geomorphic response to high wave events at Fire Island, New York. The island comprises a variety of land use types, including inhabited communities with modified beaches, where beach nourishment and artificial dune construction (scraping) occur, unmodified zones, and protected national seashore. This variation in land use presents an opportunity for comparison of model accuracy across highly modified and rarely modified stretches of coastline. Eight models with basic and expanded structures were developed, resulting in sixteen models, informed with observational data from Fire Island. The basic model type does not include anthropogenic modification. The expanded model includes records of nourishment and scraping, designed to quantify the improved accuracy when anthropogenic activity is represented. Modification was included as frequency of occurrence divided by the time since the most recent event, to distinguish between recent and historic events. All but one model reported improved predictive accuracy from the basic to expanded form. The addition of nourishment and scraping parameters resulted in a maximum reduction in predictive error of 36%. The seven improved models reported an average 23% reduction in error. These results indicate that it is advantageous to incorporate the human forcing into a coastal hazards probability model framework.

  2. Agricultural vulnerability in Bangladesh to climate change induced sea level rise and options for adaptation: a study of a coastal Upazila

    Directory of Open Access Journals (Sweden)

    Md. Anowarul Islam

    2015-06-01

    Full Text Available This paper examines the vulnerabilities of agriculture in coastal regions of Bangladesh to the different adverse effects of sea level rise induced hazards, and also identifies option for future agricultural adaptations. It reveals that due to sea level rise, agriculture of the study area has already experienced noticeable adverse impacts especially in terms of area of inundation, salinity intrusion and reduction in crop production. The study is conducted based on both primary and secondary data. A total 303 out of 1200 respondents from three coastal villages were randomly interviewed. Samples are drawn proportionately from three villages. Descriptive and inferential statistics and logistic regression have been done to analysis data. The study find that the agricultural land, production of crops, local crop varieties, income and employment facilities of the farmers is highly vulnerable to various SLR induced hazards. Selection of various adaptive options such as control of saline water intrusion into agricultural land, coastal afforestation, cultivation of saline tolerant crops, homestead and floating gardening, embankment cropping and increase of income through alternative livelihoods are emerging need for sustainable coastal agricultural development. Therefore, this paper argues that further development and implementation of such adaptive measures could help to minimize vulnerabilities of agriculture in the long run.

  3. Cyclone, Salinity Intrusion and Adaptation and Coping Measures in Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Sebak Kumar Saha

    2017-06-01

    Full Text Available Although households in the coastal areas of Bangladesh undertake various adaptation and coping measures to minimise their vulnerability to cyclone hazards and salinity intrusion, these autonomous measures have received little attention in the past. However, the Government of Bangladesh has recently emphasised the importance of understanding these measures so that necessary interventions to make households more resilient to natural hazards and the adverse impacts of climate change can be introduced. This paper, based on secondary sources, explores adaptation and coping measures that households in the coastal areas of Bangladesh undertake to minimise their vulnerability to cyclone hazards and salinity intrusion. This paper shows that many of the adaptation and coping measures contribute to making households less vulnerable and more resilient to cyclone hazards and salinity intrusion, although some coping measures do the opposite as they reduce households’ adaptive capacities instead of improving them. This paper argues that the adaptation and coping measures that contribute to reducing households’ vulnerability to natural hazards need to be supported and guided by the government and NGOs to make them more effective. Additionally, measures that make households more vulnerable also need to be addressed by the government and NGOs, as most of these measures are related to and constrained by both poverty, and because the households have little or no access to economic opportunities.

  4. The challenges of coastal oceanography. Prediction limits and new applications based on Sentinel data

    Science.gov (United States)

    Sánchez-Arcilla, Agustín; Carniel, Sandro; Badger, Merete; Bidlot, Jean; Boye Hansen, Lars; Bolaños-Sanchez, Rodolfo; Cipollini, Paolo; Espino, Manuel; Marcello Miglietta, Mario; Saulter, Andy; Staneva, Joanna

    2017-04-01

    The increasing quality and quantity (resolution in space, coverage in time, combinations of sensors in the Sentinel family) of information provided by Copernicus offer the possibility to analyse and predict coastal meteo-oceanography at an unprecedented level. This is a unique opportunity to develop the Copernicus coastal dimension to tackle the pressures of increasing population and activities. The combination of ocean/atmosphere/land observations from the Sentinel (S) 1/2/3, aligned with the availability of an increasing number of high-resolution numerical simulations (e.g. wave and current fields) in the Copernicus Marine Environment Monitoring Service (CMEMS) catalogue, should allow users to access proven representations of the coastal environment at a new level of understanding (e.g. wave diffraction at coastal "obstacles"), coupling (e.g. incorporating the land discharge into the coastal sea) and reliability for applications (e.g. hazards for coastal navigation). By adding periodic bathymetric up-dating and incorporating new assimilation routines it will be possible to achieve a new level of analysis for coastal seas. In the paper we shall present the CEASELESS project that addresses the multiple scales coexisting in littoral areas by developing new shallow water parameterizations, introducing them into coupled model suites (wind-wave-surge-current-land discharge) and producing new standards for coastal simulations and analyses. This will demonstrate the technical feasibility of an operational coastal service. The set of derived products will be ingested into the users' work routines, proving the economic feasibility of such a coastal extension. The level of conflicts in squeezed coastal zones, expected to grow in the face of climate change, will, thus, benefit directly from CEASELESS, establishing tangible contributions for a wide range of economic sectors. The mutual validation of satellite data, numerical results and in-situ observations will generate

  5. Concepts and theoretical specifications of a Coastal Vulnerability Dynamic Simulator (COVUDS): A multi-agent system for simulating coastal vulnerability towards management of coastal ecosystem services

    Science.gov (United States)

    Orencio, P. M.; Endo, A.; Taniguchi, M.

    2014-12-01

    Disaster-causing natural hazards such as floods, erosions, earthquakes or slope failures were particularly observed to be concentrated in certain geographical regions. In the Asia-pacific region, coastal ecosystems were suffering because of perennial threats driven by chronic fluctuations in climate variability (e.g., typhoons, ENSO), or by dynamically occurring events (e.g., earthquakes, tsunamis). Among the many people that were found prone to such a risky condition were the ones inhabiting near the coastal areas. Characteristically, aside from being located at the forefront of these events, the coastal communities have impacted the resource by the kind of behavioral patterns they exhibited, such as overdependence and overexploitation to achieve their wellbeing. In this paper, we introduce the development of an approach to an assessment of the coupled human- environment using a multi- agent simulation (MAS) model known as Coastal Vulnerability Dynamic Simulator (COVUDS). The COVUDS comprised a human- environmental platform consisting multi- agents with corresponding spatial- based dynamic and static variables. These variables were used to present multiple hypothetical future situations that contribute to the purpose of supporting a more rational management of the coastal ecosystem and their environmental equities. Initially, we present the theoretical and conceptual components that would lead to the development of the COVUDS. These consisted of the human population engaged in behavioral patterns affecting the conditions of coastal ecosystem services; the system of the biophysical environment and changes in patches brought by global environment and local behavioral variations; the policy factors that were important for choosing area- specific interventions; and the decision- making mechanism that integrates the first three components. To guide a future scenario-based application that will be undertaken in a coastal area in the Philippines, the components of the

  6. Onshore preparedness for hazardous chemical marine vessel accidents: A case study

    Directory of Open Access Journals (Sweden)

    Faisel T. Illiyas

    2016-09-01

    Full Text Available Hazardous and noxious substances (HNS are widely transported in marine vessels to reach every part of the world. Bulk transportation of hazardous chemicals is carried out in tank container–carrying cargo ships or in designed vessels. Ensuring the safety of HNS containers during maritime transportation is critically important as the accidental release of any substance may be lethal to the on-board crew and marine environment. A general assumption in maritime accidents in open ocean is that it will not create any danger to the coastal population. The case study discussed in this article throws light on the dangers latent in maritime HNS accidents. An accident involving an HNS-carrying marine vessel in the Arabian Sea near the coast of Yemen became a safety issue to the coastal people of Kasargod District of Kerala, India. The ship carried more than 4000 containers, which were lost to the sea in the accident. Six HNS tank containers were carried by the waves and shored at the populated coast of Kasargod, more than 650 nautical miles east from the accident spot. The unanticipated sighting of tank containers in the coast and the response of the administration to the incident, the hurdles faced by the district administration in handling the case, the need for engaging national agencies and lessons learned from the incident are discussed in the article. This case study has proven that accidents in the open ocean have the potential to put the coastal areas at risk if the on-board cargo contains hazardous chemicals. Littoral nations, especially those close to the international waterlines, must include hazardous chemical spills to their oil spill contingency plans.

  7. Source-to-sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera, southeastern France

    Science.gov (United States)

    Anthony, Edward J.; Julian, Maurice

    1999-12-01

    Steep coastal margins are potentially subject to mass wasting processes involving notable landslide activity and sediment evacuation downstream by steep-gradient streams. Sediment transfer from short source-to-sink segments, coupled with mountain hydrological regimes, regulate patterns of river channel aggradation and coastal sediment supply in such geomorphic settings. On the steep French Riviera margin, sediment transfers from existing landslides or from various minor mass wasting processes to stream channels may result following bursts of heavy, concentrated rainfall. High-magnitude flooding and massive sediment transport downstream are generally related to unpredictable extreme rainfalls. Both mass movements and channel sediment storage pose serious hazards to downvalley settlements and infrastructure. A consideration of channel sediment storage patterns in the Var River catchment, the most important catchment in this area, highlights two important shortcomings relative to environmental engineering and hazard mitigation practices. In the first place, the appreciation of geomorphic processes is rather poor. This is illustrated by the undersized nature of engineering works constructed to mitigate hazards in the upstream bedload-dominated channels, and by the unforeseen effects that ten rock dams, constructed in the early 1970s, have had on downstream and coastal sediment storage and on sediment dispersal patterns and, consequently, valley flooding. Secondly, planners and environmental engineers have lacked foresight in valley and coastal management issues on this steep setting, notably as regards the reclaimed areas of the lower Var channel and delta liable to flooding. Urbanization and transport and environmental engineering works have progressively affected patterns of storage and transport of fine-grained sediments in the lower Var channel and delta. Meanwhile the problems raised by these changes have not been adequately addressed in terms of scientific

  8. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  9. Collaborative community hazard exposure mapping: Distant Early Warning radar sites in Alaska's North Slope

    Science.gov (United States)

    Brady, M.

    2015-12-01

    A method to produce hazard exposure maps that are developed in collaboration with local coastal communities is the focus of this research. Typically efforts to map community exposure to climate threats over large areas have limited consideration of local perspectives about associated risks, constraining their utility for local management. This problem is especially acute in remote locations such as the Arctic where there are unique vulnerabilities to coastal threats that can be fully understood only through inclusion of community stakeholders. Through collaboration with community members, this study identifies important coastal assets and places and surveys local perspectives of exposure to climate threats along Alaska's vast North Slope coastline spanning multiple municipalities. To model physical exposure, the study adapts the U.S. Geological Survey's (USGS) coastal vulnerability index (CVI) to the Arctic context by incorporating the effects of open water distance determined by sea ice extent, and assigning CVI values to coastal assets and places according to direction and proximity. The study found that in addition to concerns about exposed municipal and industrial assets, North Slope communities viewed exposure of traditional activity sites as presenting a particular risk for communities. Highly exposed legacy Cold War Distant Early Warning Line sites are of particular concern with impacts ranging from financial risk to contamination of sensitive coastal marine environments. This research demonstrates a method to collaboratively map community exposure to coastal climate threats to better understand local risks and produce locally usable exposure maps.

  10. Coastal and tidal landform detection from high resolution topobathymetric LiDAR data

    DEFF Research Database (Denmark)

    Andersen, Mikkel S.; Al-Hamdani, Zyad K.; Steinbacher, Frank

    -resolution mapping of these land-water transition zones. We have carried out topobathymetric LiDAR surveys in the Knudedyb tidal inlet system, a coastal environment in the Danish Wadden Sea which is part of the Wadden Sea National Park and UNESCO World Heritage. Detailed digital elevation models (DEMs) with a grid...... to tides. Furthermore, we demonstrate the potential of morphometric analysis on high-resolution topobathymetric LiDAR data for automatic identification, characterisation and classification of different landforms present in coastal land-water transition zones. Acknowledgements This work was funded...

  11. Coastal flooding in Denmark – future outlook

    DEFF Research Database (Denmark)

    Sørensen, C.; Knudsen, P.; Andersen, O. B.

    2014-01-01

    Water loading from all directions due to river discharge, precipitation, groundwater and the sea state (i.e. mean and extreme water levels) need to be carefully considered when dealing with flooding hazards at the coast. Flooding hazard and risk mapping are major topics in low-lying coastal are- ...... this knowledge together to enable a practice-oriented methodology that combines their effects and future sea extremes in hazard and risk mapping and climate change adaptation schemes in Denmark......- as before even considering the adverse effects of climate change and sea level rise (SLR). From an assessment of Danish sea extremes from historical evidence, tide gauge series, and space measurements, we discuss the current and future hazards, exposure, and vulnerability to flooding along the diverse......, land-use, protection measures a.o. that must be taken into account in order to evaluate current and future flooding hazards and management options. We provide examples from Danish case-studies underlining the necessity of including these factors and we outline an interdisciplinary approach to bring...

  12. Modeling of Marine Natural Hazards in the Lesser Antilles

    Science.gov (United States)

    Zahibo, Narcisse; Nikolkina, Irina; Pelinovsky, Efim

    2010-05-01

    The Caribbean Sea countries are often affected by various marine natural hazards: hurricanes and cyclones, tsunamis and flooding. The historical data of marine natural hazards for the Lesser Antilles and specially, for Guadeloupe are presented briefly. Numerical simulation of several historical tsunamis in the Caribbean Sea (1755 Lisbon trans-Atlantic tsunami, 1867 Virgin Island earthquake tsunami, 2003 Montserrat volcano tsunami) are performed within the framework of the nonlinear-shallow theory. Numerical results demonstrate the importance of the real bathymetry variability with respect to the direction of propagation of tsunami wave and its characteristics. The prognostic tsunami wave height distribution along the Caribbean Coast is computed using various forms of seismic and hydrodynamics sources. These results are used to estimate the far-field potential for tsunami hazards at coastal locations in the Caribbean Sea. The nonlinear shallow-water theory is also applied to model storm surges induced by tropical cyclones, in particular, cyclones "Lilli" in 2002 and "Dean" in 2007. Obtained results are compared with observed data. The numerical models have been tested against known analytical solutions of the nonlinear shallow-water wave equations. Obtained results are described in details in [1-7]. References [1] N. Zahibo and E. Pelinovsky, Natural Hazards and Earth System Sciences, 1, 221 (2001). [2] N. Zahibo, E. Pelinovsky, A. Yalciner, A. Kurkin, A. Koselkov and A. Zaitsev, Oceanologica Acta, 26, 609 (2003). [3] N. Zahibo, E. Pelinovsky, A. Kurkin and A. Kozelkov, Science Tsunami Hazards. 21, 202 (2003). [4] E. Pelinovsky, N. Zahibo, P. Dunkley, M. Edmonds, R. Herd, T. Talipova, A. Kozelkov and I. Nikolkina, Science of Tsunami Hazards, 22, 44 (2004). [5] N. Zahibo, E. Pelinovsky, E. Okal, A. Yalciner, C. Kharif, T. Talipova and A. Kozelkov, Science of Tsunami Hazards, 23, 25 (2005). [6] N. Zahibo, E. Pelinovsky, T. Talipova, A. Rabinovich, A. Kurkin and I

  13. A coastal hazards data base for the U.S. West Coast

    Energy Technology Data Exchange (ETDEWEB)

    Gornitz, V.M. [Columbia Univ., New York, NY (United States). Center for Climate Systems Research]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Beaty, T.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Daniels, R.C. [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment and Resources Center

    1997-12-01

    This document describes the contents of a digital data base that may be used to identify coastlines along the US West Coast that are at risk to sea-level rise. This data base integrates point, line, and polygon data for the US West Coast into 0.25{degree} latitude by 0.25{degree} longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data bases. Each coastal grid cell and line segment contains data variables from the following seven data sets: elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. One variable from each data set was classified according to its susceptibility to sea-level rise and/or erosion to form 7 relative risk variables. These risk variables range in value from 1 to 5 and may be used to calculate a Coastal Vulnerability Index (CVI). Algorithms used to calculate several CVIs are listed within this text.

  14. Reducing Vulnerability of Ports and Harbors to Earthquake and Tsunami Hazards

    Science.gov (United States)

    Wood, Nathan J.; Good, James W.; Goodwin, Robert F.

    2002-01-01

    Recent scientific research suggests the Pacific Northwest could experience catastrophic earthquakes in the near future, both from distant and local sources, posing a significant threat to coastal communities. Damage could result from numerous earthquake-related hazards, such as severe ground shaking, soil liquefaction, landslides, land subsidence/uplift, and tsunami inundation. Because of their geographic location, ports and harbors are especially vulnerable to these hazards. Ports and harbors, however, are important components of many coastal communities, supporting numerous activities critical to the local and regional economy and possibly serving as vital post-event, response-recovery transportation links. A collaborative, multi-year initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to earthquake and tsunami hazards, involving Oregon Sea Grant (OSG), Washington Sea Grant (WSG), the National Oceanic and Atmospheric Administration Coastal Services Center (CSC), and the U.S. Geological Survey Center for Science Policy (CSP). Specific products of this research, planning, and outreach initiative include a regional stakeholder issues and needs assessment, a community-based mitigation planning process, a Geographic Information System (GIS) — based vulnerability assessment methodology, an educational web-site and a regional data archive. This paper summarizes these efforts, including results of two pilot port-harbor community projects, one in Yaquina Bay, Oregon and the other in Sinclair Inlet, Washington. Finally, plans are outlined for outreach to other port and harbor communities in the Pacific Northwest and beyond, using "getting started" workshops and a web-based tutorial.

  15. Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview

    Directory of Open Access Journals (Sweden)

    A. Kääb

    2005-01-01

    Full Text Available Process interactions and chain reactions, the present shift of cryospheric hazard zones due to atmospheric warming, and the potential far reach of glacier disasters make it necessary to apply modern remote sensing techniques for the assessment of glacier and permafrost hazards in high-mountains. Typically, related hazard source areas are situated in remote regions, often difficult to access for physical and/or political reasons. In this contribution we provide an overview of air- and spaceborne remote sensing methods suitable for glacier and permafrost hazard assessment and disaster management. A number of image classification and change detection techniques support high-mountain hazard studies. Digital terrain models (DTMs, derived from optical stereo data, synthetic aperture radar or laserscanning, represent one of the most important data sets for investigating high-mountain processes. Fusion of satellite stereo-derived DTMs with the DTM from the Shuttle Radar Topography Mission (SRTM is a promising way to combine the advantages of both technologies. Large changes in terrain volume such as from avalanche deposits can indeed be measured even by repeat satellite DTMs. Multitemporal data can be used to derive surface displacements on glaciers, permafrost and landslides. Combining DTMs, results from spectral image classification, and multitemporal data from change detection and displacement measurements significantly improves the detection of hazard potentials. Modelling of hazardous processes based on geographic information systems (GIS complements the remote sensing analyses towards an integrated assessment of glacier and permafrost hazards in mountains. Major present limitations in the application of remote sensing to glacier and permafrost hazards in mountains are, on the one hand, of technical nature (e.g. combination and fusion of different methods and data; improved understanding of microwave backscatter. On the other hand, better

  16. Geo-hazard by sediment mass movements in submarine canyons

    Science.gov (United States)

    Ghaith, Afif; Fakhri, Milad; Ivaldi, Roberta; Ciavola, Paolo

    2017-04-01

    by the sedimentological characters, will provide useful constraints to the potential natural hazards that may be caused by active tectonics in the offshore and a high coastal risk in a most populated region of Lebanon.

  17. Natural hazards science strategy

    Science.gov (United States)

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    and nonstatutory roles regarding floods, earthquakes, tsunamis, landslides, coastal erosion, volcanic eruptions, wildfires, and magnetic storms—the hazards considered in this plan. There are numerous other hazards of societal importance that are considered either only peripherally or not at all in this Strategy because they are either in another of the USGS strategic science plans (such as drought) or not in the overall mission of the USGS (such as tornados).

  18. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Knudsen, Per; Broge, Niels

    2016-01-01

    protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from......We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology,and geotechnical soil properties are combined with flood...... research advances and projections for the future are updated....

  19. Identifying hotspots of coastal risk and evaluating DRR measures: results from the RISC-KIT project.

    Science.gov (United States)

    Van Dongeren, A.; Ciavola, P.; Viavattene, C.; Dekleermaeker, S.; Martinez, G.; Ferreira, O.; Costa, C.

    2016-02-01

    High-impact storm events have demonstrated the vulnerability of coastal zones in Europe and beyond. These impacts are likely to increase due to predicted climate change and ongoing coastal development. In order to reduce impacts, disaster risk reduction (DRR) measures need to be taken, which prevent or mitigate the effects of storm events. To drive the DRR agenda, the UNISDR formulated the Sendai Framework for Action, and the EU has issued the Floods Directive. However, neither is specific about the methods to be used to develop actionable DRR measures in the coastal zone. Therefore, there is a need to develop methods, tools and approaches which make it possible to: identify and prioritize the coastal zones which are most at risk through a Coastal Risk Assessment Framework, evaluate the effectiveness of DRR options for these coastal areas, using an Early Warning/Decision Support System, which can be used both in the planning and event-phase. This paper gives an overview of the products and results obtained in the FP7-funded project RISC-KIT, which aims to develop and apply a set of tools with which highly-vulnerable coastal areas (so-called "hotspots") can be identified. The identification is done using the Coastal Risk Assessment Framework, or CRAF, which computes the intensity from multi-hazards, the exposure and the vulnerability, all components of risk, including network and cascading effects. Based on this analysis hot spots of risk which warrant coastal protection investments are selected. For these hotspot areas, high-resolution Early Warning and Decision Support Tools are developed with which it is possible to compute in detail the effectiveness of Disaster Risk Reduction measures in storm event scenarios, which helps decide which measures to implement in the planning phase. The same systems, but now driven with real time data, can also be used for early warning systems. All tools are tested on eleven case study areas, at least one on each EU Regional Sea

  20. Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh

    OpenAIRE

    Mohammed Ataur Rahman; Sowmen Rahman

    2015-01-01

    Substantially resourceful and densely populated coastal zones of Bangladesh experience numerous extreme events linked to hydro-meteorological processes viz. cyclones, tidal surges, floods, salinity intrusion and erosion etc. These hazards give rise to extensive damage to property and loss of lives every year. Further, anthropogenic activities in the coastal zones are accentuating environmental degradation causing widespread suffering. Cyclones and tornadoes in particular damage infrastructure...

  1. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  2. Predicted and observed therapeutic dose exceedances of ionizable pharmaceuticals in fish plasma from urban coastal systems.

    Science.gov (United States)

    Scott, W Casan; Du, Bowen; Haddad, Samuel P; Breed, Christopher S; Saari, Gavin N; Kelly, Martin; Broach, Linda; Chambliss, C Kevin; Brooks, Bryan W

    2016-04-01

    Instream flows of the rapidly urbanizing watersheds and estuaries of the Gulf of Mexico in Texas (USA) are increasingly dominated by reclaimed waters. Though ionizable pharmaceuticals have received increasing attention in freshwaters, many research questions remain unanswered, particularly in tidally influenced urban coastal systems, which experience significant spatiotemporal variability in pH that influences bioavailability and bioaccumulation. The authors coupled fish plasma modeling of therapeutic hazard values with field monitoring of water chemistry variability and pharmaceutical occurrence to examine whether therapeutic hazards to fish existed within these urban coastal ecosystems and whether therapeutic hazards differed within and among coastal locations and seasons. Spatial and temporal fluctuations in pH within study sites altered the probability of encountering pharmaceutical hazards to fish. Significant water quality differences were consistently observed among traditional parameters and pharmaceuticals collected from surface and bottom waters, which are rarely sampled during routine surface water quality assessments. The authors then compared modeling predictions of fish plasma concentrations of pharmaceuticals to measured plasma levels from various field-collected fish species. Diphenhydramine and diltiazem were observed in plasma of multiple species, and diltiazem exceeded human therapeutic doses in largemouth bass, catfish, and mullet inhabiting these urban estuaries. Though the present study only examined a small number of target analytes, which represent a microcosm of the exposome of these fish, coastal systems are anticipated to be more strongly influenced by continued urbanization, altered instream flows, and population growth in the future. Unfortunately, aquatic toxicology information for diltiazem and many other pharmaceuticals is not available for marine and estuarine organisms, but such field observations suggest that potential adverse

  3. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  4. Vitrification of high-level radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Lutze, W.

    1993-12-01

    The main objective is to summarize work conducted on glasses as waste forms for high-level radioactive fission product solutions up to the late 1980's (section I and II). Section III addresses the question, whether waste forms designed for the immobilization of radioactive residues can be used for the same purpose for hazardous wastes. Of particular interest are those types of hazardous wastes, e.g., fly ashes from municipal combustion plants, easy to convert into glasses or ceramic materials. A large number of base glass compositions has been studied to vitrify waste from reprocessing but only borosilicate glasses with melting temperatures between 1100 C and 1200 C and very good hydrolytic stability is used today. (orig./HP) [de

  5. Coastal Risk Assessment Framework tool for the identification of hotspots along the Emilia-Romagna coastline (northern Italy)

    Science.gov (United States)

    Armaroli, Clara; Duo, Enrico; Ciavola, Paolo

    2017-04-01

    The Emilia-Romagna coastline is located in northern Italy, facing the Adriatic sea. The area is especially exposed to the flooding hazard because of its low lying nature, high urbanisation and the large exploitation of beach resources for tourism. The identification of hotspots where marine flooding can cause significant damages is, therefore, a key issue. The methodology implemented to identify hotspots is based on the Coastal Risk Assessment Framework tool that was developed in the RISC-KIT project (www.risckit.eu). The tool combines the hazard component with different exposure indicators and is applied along predefined coastal sectors of almost 1 Km alongshore length. The coastline was divided into 106 sectors in which each component was analysed. The hazard part was evaluated through the computation of maximum water levels, obtained as the sum of wave set-up, storm surge and tide, calculated along representative beach profiles, one per sector, and for two return periods (10 and 100 years). The data for the computation of the maximum water level were extracted from the literature. The landward extension of flood-prone areas in each sector was the extension of the flood maps produced by the regional authorities for the EU Flood Directive and for the same return periods. The exposure indicators were evaluated taking into account the location and type of different assets in each sector and in flood-prone areas. Specifically, the assets that were taken into account are: the transport network, the utilities (water, gas and electricity) networks, the land use typologies, the social vulnerability status of the population and the business sector. Each component was then ranked from 1 to 5, considering a scale based on their computed value (hazard), importance and location (exposure indicators). A final coastal index (CI) was computed as the root mean square of the geometrical mean of the exposure indicators multiplied by the hazard indicator. Land use typologies were

  6. Modelization of highly nonlinear waves in coastal regions

    Science.gov (United States)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2015-04-01

    The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.

  7. Coastal change analysis of Lovells Island using high resolution ground based LiDAR imagery

    Science.gov (United States)

    Ly, Jennifer K.

    Many methods have been employed to study coastline change. These methods range from historical map analysis to GPS surveys to modern airborne LiDAR and satellite imagery. These previously used methods can be time consuming, labor intensive, and expensive and have varying degrees of accuracy and temporal coverage. Additionally, it is often difficult to apply such techniques in direct response to an isolated event within an appropriate temporal framework. Here we utilize a new ground based Canopy Biomass LiDAR (CBL) system built at The University of Massachusetts Boston (in collaboration with the Rochester Institute of Technology) in order to identify and analyze coastal change on Lovells Island, Boston Harbor. Surveys of a bluff developing in an eroding drumlin and beach cusps on a high-energy cobble beach on Lovells Island were conducted in June, September and December of 2013. At each site for each survey, the CBL was set up and multiple scans of each feature were taken on a predetermined transect that was established parallel to the high-water mark at distances relative to the scale of the bluff and cusps. The scans from each feature were compiled, integrated and visualized using Meshlab. Results from our surveys indicate that the highly portable and easy to deploy CBL system produces images of exceptional clarity, with the capacity to resolve small-scale changes to coastal features and systems. The CBL, while still under development (and coastal surveying protocols with it are just being established), appears to be an ideal tool for analyzing coastal geological features and is anticipated to prove to be a useful tool for the observation and analysis of coastal change. Furthermore, there is significant potential for utilizing the low cost ultra-portable CBL in frequent deployments to develop small-scale erosion rate and sediment budget analyses.

  8. Impacts of shoreline erosion on coastal ecosystems in Songkhla Province

    Directory of Open Access Journals (Sweden)

    Nipaporn Chusrinuan

    2009-07-01

    Full Text Available Songkhla Province is located on the eastern coast of the southern Thai Peninsula, bordering the Gulf of Thailand for approximately 107 km. Most of the basin’s foreshores have been extensively developed for housing, tourism and shrimp farming. The beaches are under deteriorating impacts, often causing sediment transport which leads to an unnaturally high erosion rate. This natural phenomenon is considered to be a critical problem in the coastal areas affected by the hazard of coastal infrastructure and reduced beach esthetics for recreation. In this study, shoreline changes were compared between 1975 and 2006 using aerial photographs and Landsat imageries using Geographic Information System (GIS. The results revealed that 18.5 km2 of the coastal areas were altered during the period. Of this, 17.3 km2 suffered erosion and 1.2 km2were subjected to accretion. The most significant changes occurred between 1975-2006. Shoreline erosion was found at Ban Paktrae, Ranot District, with an average erosion rate of 5.3 m/year, while accretion occurred at Laem Samila, MuangSongkhla District with an average accretion rate of 2.04 m/year. The occurrences of shoreline erosion have contributed to the degradation of coastal soil and water quality, destruction of beach and mangrove forests, loss of human settlements and livelihood.These processes have led to deterioration of the quality of life of the residents. Prevention and mitigation measures to lessen economic and social impacts due to shoreline erosion are discussed.

  9. UAS-SfM for coastal research: Geomorphic feature extraction and land cover classification from high-resolution elevation and optical imagery

    Science.gov (United States)

    Sturdivant, Emily; Lentz, Erika; Thieler, E. Robert; Farris, Amy; Weber, Kathryn; Remsen, David P.; Miner, Simon; Henderson, Rachel

    2017-01-01

    The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM) from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a) determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b) map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a) geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b) land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm) have little influence on the classification accuracy.

  10. UAS-SfM for Coastal Research: Geomorphic Feature Extraction and Land Cover Classification from High-Resolution Elevation and Optical Imagery

    Directory of Open Access Journals (Sweden)

    Emily J. Sturdivant

    2017-10-01

    Full Text Available The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM photogrammetry applied to imagery acquired by unmanned aerial systems (UAS offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm have little influence on the classification accuracy.

  11. High prevalence of cattle fascioliasis in coastal areas of Thua Thien Hue province, Vietnam.

    Science.gov (United States)

    Nguyen, Nga Thi; LE, Thinh Cong; Vo, Minh Duc Co; VAN Cao, Hoang; Nguyen, Ly Thi; Ho, Khanh Thi; Nguyen, Quyet Ngoc; Tran, Vui Quang; Matsumoto, Yasunobu

    2017-06-16

    In Vietnam, especially central Vietnam, patients with fascioliasis are increasingly being reported. Since the fascioliasis is zoonotic, survey on the cattle fascioliasis should be informative for the control of human fascioliasis. In this study, the prevalence of cattle fascioliasis as well as the density of the intermediate host snails, Lymnaea swinhoei and L. viridis, were studied in Thua Thien Hue (TTH) province during 2014-2015. A total of 572 cattle feces were examined from 27 communes in 9 districts. Fasciola eggs were detected in cattle from 24 communes with an average prevalence of 23.4% (134/ 572). The highest prevalence was detected in cattle in the coastal plain terrain (31.0%) followed by plain (25.5%), mountain (21.7%), and low hilly (16.2%) terrains. The highest proportion of heavy infection (>200 EPG) was observed in the coastal plain terrain (36.1%), followed by mountains (20.0%), low hills (13.0%), and plains (8.9%). Low number of heavy infection, as well as relatively low prevalence in low hills and plains were associated with the extensive use of anti-fluke treatments. High number of intermediate host snails in low hilly and plain terrains also indicate high risk of fascioliasis. In this study, the density of Lymnaea snails in the coastal plain terrain was found to be very high (17.3 snails/m 2 ) compared to that in previous studies. This is the first report indicating the recent expansion of cattle fascioliasis in the coastal region in Vietnam.

  12. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments.

    Directory of Open Access Journals (Sweden)

    Matthias Egger

    Full Text Available Globally, the methane (CH4 efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands, we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2-0.8 mol m-2 yr-1 during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50-170 nmol cm-3 d-1 both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1 reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years, thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1 allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments.

  13. Coastal Digital Elevation Models (DEMs) for tsunami hazard assessment on the French coasts

    Science.gov (United States)

    Maspataud, Aurélie; Biscara, Laurie; Hébert, Hélène; Schmitt, Thierry; Créach, Ronan

    2015-04-01

    Building precise and up-to-date coastal DEMs is a prerequisite for accurate modeling and forecasting of hydrodynamic processes at local scale. Marine flooding, originating from tsunamis, storm surges or waves, is one of them. Some high resolution DEMs are being generated for multiple coast configurations (gulf, embayment, strait, estuary, harbor approaches, low-lying areas…) along French Atlantic and Channel coasts. This work is undertaken within the framework of the TANDEM project (Tsunamis in the Atlantic and the English ChaNnel: Definition of the Effects through numerical Modeling) (2014-2017). DEMs boundaries were defined considering the vicinity of French civil nuclear facilities, site effects considerations and potential tsunamigenic sources. Those were identified from available historical observations. Seamless integrated topographic and bathymetric coastal DEMs will be used by institutions taking part in the study to simulate expected wave height at regional and local scale on the French coasts, for a set of defined scenarii. The main tasks were (1) the development of a new capacity of production of DEM, (2) aiming at the release of high resolution and precision digital field models referred to vertical reference frameworks, that require (3) horizontal and vertical datum conversions (all source elevation data need to be transformed to a common datum), on the basis of (4) the building of (national and/or local) conversion grids of datum relationships based on known measurements. Challenges in coastal DEMs development deal with good practices throughout model development that can help minimizing uncertainties. This is particularly true as scattered elevation data with variable density, from multiple sources (national hydrographic services, state and local government agencies, research organizations and private engineering companies) and from many different types (paper fieldsheets to be digitized, single beam echo sounder, multibeam sonar, airborne laser

  14. Earthquake Hazard for Aswan High Dam Area

    Science.gov (United States)

    Ismail, Awad

    2016-04-01

    Earthquake activity and seismic hazard analysis are important components of the seismic aspects for very essential structures such as major dams. The Aswan High Dam (AHD) created the second man-made reservoir in the world (Lake Nasser) and is constructed near urban areas pose a high-risk potential for downstream life and property. The Dam area is one of the seismically active regions in Egypt and is occupied with several cross faults, which are dominant in the east-west and north-south. Epicenters were found to cluster around active faults in the northern part of Lake and AHD location. The space-time distribution and the relation of the seismicity with the lake water level fluctuations were studied. The Aswan seismicity separates into shallow and deep seismic zones, between 0 and 14 and 14 and 30 km, respectively. These two seismic zones behave differently over time, as indicated by the seismicity rate, lateral extent, b-value, and spatial clustering. It is characterized by earthquake swarm sequences showing activation of the clustering-events over time and space. The effect of the North African drought (1982 to present) is clearly seen in the reservoir water level. As it decreased and left the most active fault segments uncovered, the shallow activity was found to be more sensitive to rapid discharging than to the filling. This study indicates that geology, topography, lineations in seismicity, offsets in the faults, changes in fault trends and focal mechanisms are closely related. No relation was found between earthquake activity and both-ground water table fluctuations and water temperatures measured in wells located around the Kalabsha area. The peak ground acceleration is estimated in the dam site based on strong ground motion simulation. This seismic hazard analyses have indicated that AHD is stable with the present seismicity. The earthquake epicenters have recently took place approximately 5 km west of the AHD structure. This suggests that AHD dam must be

  15. High 210Po atmospheric deposition flux in the subtropical coastal area of Japan

    International Nuclear Information System (INIS)

    Tateda, Yutaka; Iwao, Kenji

    2008-01-01

    Bulk atmospheric deposition fluxes of 210 Po and 210 Pb were measured at three coastal regions of Japan, the Pacific Ocean coastal area of the Japanese mainland (Odawa Bay), the Chinese continental side of Japanese coastal area (Tsuyazaki), and an isolated island near Okinawa (Akajima). Wet and dry fallout collectors were continuously deployed from September 1997 through August 1998 for periods of 3 to 31 days depending on the frequency of precipitation events. Annual 210 Pb deposition fluxes at Odawa Bay (35 o N 139 o E), Tsuyazaki (33 o N 130 o E) and Akajima (26 o N 127 o E) were 73.3 ± 8.0, 197 ± 35 and 78.5 ± 8.0 Bq m -2 y -1 , respectively. Higher 210 Pb deposition was observed at the Chinese continental side of Japanese coast than at the Pacific Ocean coastal site. The high 210 Pb atmospheric flux at the Chinese continental side coast was thought to be attributable to 222 Rn-rich air-mass transport from the Chinese continent during the winter monsoon. In contrast, the annual 210 Po deposition fluxes at the three study sites were 13.0 ± 2.3 (Odawa Bay), 21.9 ± 4.4 (Tsuyazaki) and 58.4 ± 7.7 (Akajima) Bq m -2 y -1 , respectively, indicating unusual high 210 Po deposition at Akajima during winter. Anomalous unsupported 210 Po input was observed during summer 1997, suggesting unknown source of 210 Po at this area

  16. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities.

    Science.gov (United States)

    Arkema, Katie K; Griffin, Robert; Maldonado, Sergio; Silver, Jessica; Suckale, Jenny; Guerry, Anne D

    2017-07-01

    Interest in the role that ecosystems play in reducing the impacts of coastal hazards has grown dramatically. Yet the magnitude and nature of their effects are highly context dependent, making it difficult to know under what conditions coastal habitats, such as saltmarshes, reefs, and forests, are likely to be effective for saving lives and protecting property. We operationalize the concept of natural and nature-based solutions for coastal protection by adopting an ecosystem services framework that propagates the outcome of a management action through ecosystems to societal benefits. We review the literature on the basis of the steps in this framework, considering not only the supply of coastal protection provided by ecosystems but also the demand for protective services from beneficiaries. We recommend further attention to (1) biophysical processes beyond wave attenuation, (2) the combined effects of multiple habitat types (e.g., reefs, vegetation), (3) marginal values and expected damage functions, and, in particular, (4) community dependence on ecosystems for coastal protection and co-benefits. We apply our approach to two case studies to illustrate how estimates of multiple benefits and losses can inform restoration and development decisions. Finally, we discuss frontiers for linking social, ecological, and physical science to advance natural and nature-based solutions to coastal protection. © 2017 New York Academy of Sciences.

  17. Regional Risk Assessment for the analysis of the risks related to storm surge extreme events in the coastal area of the North Adriatic Sea.

    Science.gov (United States)

    Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge

  18. Modeling Stochastic Boundary Conditions in a Coastal Catchment using a Bayesian Network: An Application to the Houston Ship Channel, Texas

    Science.gov (United States)

    Couasnon, Anaïs; Sebastian, Antonia; Morales-Nápoles, Oswaldo

    2017-04-01

    Recent research has highlighted the increased risk of compound flooding in the U.S. In coastal catchments, an elevated downstream water level, resulting from high tide and/or storm surge, impedes drainage creating a backwater effect that may exacerbate flooding in the riverine environment. Catchments exposed to tropical cyclone activity along the Gulf of Mexico and Atlantic coasts are particularly vulnerable. However, conventional flood hazard models focus mainly on precipitation-induced flooding and few studies accurately represent the hazard associated with the interaction between discharge and elevated downstream water levels. This study presents a method to derive stochastic boundary conditions for a coastal watershed. Mean daily discharge and maximum daily residual water levels are used to build a non-parametric Bayesian network (BN) based on copulas. Stochastic boundary conditions for the watershed are extracted from the BN and input into a 1-D process-based hydraulic model to obtain water surface elevations in the main channel of the catchment. The method is applied to a section of the Houston Ship Channel (Buffalo Bayou) in Southeast Texas. Data at six stream gages and two tidal stations are used to build the BN and 100-year joint return period events are modeled. We find that the dependence relationship between the daily residual water level and the mean daily discharge in the catchment can be represented by a Gumbel copula (Spearman's rank correlation coefficient of 0.31) and that they result in higher water levels in the mid- to upstream reaches of the watershed than when modeled independently. This indicates that conventional (deterministic) methods may underestimate the flood hazard associated with compound flooding in the riverine environment and that such interactions should not be neglected in future coastal flood hazard studies.

  19. Controls of multi-modal wave conditions in a complex coastal setting

    Science.gov (United States)

    Hegermiller, Christie; Rueda, Ana C.; Erikson, Li H.; Barnard, Patrick L.; Antolinez, J.A.A.; Mendez, Fernando J.

    2017-01-01

    Coastal hazards emerge from the combined effect of wave conditions and sea level anomalies associated with storms or low-frequency atmosphere-ocean oscillations. Rigorous characterization of wave climate is limited by the availability of spectral wave observations, the computational cost of dynamical simulations, and the ability to link wave-generating atmospheric patterns with coastal conditions. We present a hybrid statistical-dynamical approach to simulating nearshore wave climate in complex coastal settings, demonstrated in the Southern California Bight, where waves arriving from distant, disparate locations are refracted over complex bathymetry and shadowed by offshore islands. Contributions of wave families and large-scale atmospheric drivers to nearshore wave energy flux are analyzed. Results highlight the variability of influences controlling wave conditions along neighboring coastlines. The universal method demonstrated here can be applied to complex coastal settings worldwide, facilitating analysis of the effects of climate change on nearshore wave climate.

  20. Impact-generated Tsunamis: An Over-rated Hazard

    Science.gov (United States)

    Melosh, H. J.

    2003-01-01

    A number of authors have suggested that oceanic waves (tsunami) created by the impact of relatively small asteroids into the Earth's oceans might cause widespread devastation to coastal cities. If correct, this suggests that asteroids > 100 m in diameter may pose a serious hazard to humanity and could require a substantial expansion of the current efforts to identify earth-crossing asteroids > 1 km in diameter. The debate on this hazard was recently altered by the release of a document previously inaccessible to the scientific community. In 1968 the US Office of Naval Research commissioned a summary of several decades of research into the hazard proposed by waves generated by nuclear explosions in the ocean. Authored by tsunami expert William Van Dorn, this 173-page report entitled Handbook of Explosion-Generated Water Waves affords new insight into the process of impact wave formation, propagation, and run up onto the shoreline.

  1. Tsunami Hazard, Vulnerability and Risk assessment for the coast of Oman

    Science.gov (United States)

    Gonzalez, Mauricio; Aniel-Quiroga, Íñigo; Aguirre-Ayerbe, Ignacio; Álvarez-Gómez, José Antonio; MArtínez, Jara; Gonzalez-Riancho, Pino; Fernandez, Felipe; Medina, Raúl; Al-Yahyai, Sultan

    2016-04-01

    Tsunamis are relatively infrequent phenomena representing a greater threat than earthquakes, hurricanes and tornadoes, and causing the loss of thousands of human lives and extensive damage to coastal infrastructures around the world. Advances in the understanding and prediction of tsunami impacts allow the development of new methodologies in this field. This work presents the methodology that has been followed for developing the tsunami hazard, vulnerability and risk assessment for the coast of Oman, including maps containing the results of the process. Oman is located in the south eastern corner of the Arabian Peninsula and of the Arabian plate, in front of the Makran Subduction Zone (MSZ), which is the major source of earthquakes in the eastern border of the Arabian plate and Oman (Al-Shaqsi, 2012). There are at least three historical tsunamis assigned to seismic origin in the MSZ (Heidarzadeh et al., 2008; Jordan, 2008). These events show the high potential for tsunami generation of the MSZ, being one of the most tsunamigenic zones in the Indian Ocean. For the tsunami hazard assessment, worst potential cases have been selected, as well as the historical case of 1945, when an 8.1 earthquake generated a tsunami affecting the coast of Oman, and prompting 4000 casualties in the countries of the area. These scenarios have been computationally simulated in order to get tsunami hazard maps, including flooding maps. These calculations have been carried out at national and local scale, in 9 municipalities all along the coast of Oman, including the cities of Sohar, Wudam, Sawadi, Muscat, Quriyat, Sur, Masirah, Al Duqm, and Salalah. Using the hazard assessment as input, this work presents as well an integrated framework for the tsunami vulnerability and risk assessment carried out in the Sultanate of Oman. This framework considers different dimensions (human, structural) and it is developed at two different spatial resolutions, national and local scale. The national

  2. Focused study of interweaving hazards across the Caribbean

    Science.gov (United States)

    Braun, John J.; Mattioli, Glen S.; Calais, Eric; Carlson, David; Dixon, Timothy H.; Jackson, Michael E.; Kursinski, E. Robert; Mora-Paez, Hector; Miller, M. Meghan; Pandya, Rajul; Robertson, Richard; Wang, Guoquan

    2012-02-01

    The Caribbean is a region of lush vegetation, beaches, active volcanoes, and significant mountain ranges, all of which create a natural aesthetic that is recognized globally. Yet these very same features, molded through geological, oceanic, and atmospheric processes, also pose natural hazards for the developing countries in the Caribbean. The rise in population density, migration to coastal areas, and substandard building practices, combined with the threat of natural hazards, put the region's human population at risk for particularly devastating disasters. These demographic and social characteristics exist against a backdrop of the threat of an evolving climate, which produces a more vigorous hurricane environment and a rising average sea level.

  3. 77 FR 39648 - Atlantic Highly Migratory Species; Commercial Gulf of Mexico Non-Sandbar Large Coastal Shark Fishery

    Science.gov (United States)

    2012-07-05

    ... Large Coastal Shark Fishery AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and... commercial fishery for non-sandbar large coastal sharks (LCS) in the Gulf of Mexico region. This action is.... SUPPLEMENTARY INFORMATION: The Atlantic shark fisheries are managed under the 2006 Consolidated Atlantic Highly...

  4. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    International Nuclear Information System (INIS)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka; Ken Yanagisawa; Tadashi Annaka

    2006-01-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present an example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)

  5. Exposure of coastal built assets in the South Pacific to climate risks

    Science.gov (United States)

    Kumar, Lalit; Taylor, Subhashni

    2015-11-01

    Pacific island countries (PICs) are situated in a highly dynamic ocean-atmosphere interface, are dispersed over a large ocean area, and have highly populated urban centres located on the coastal margin. The built infrastructure associated with urban centres is also located within close proximity to the coastlines, exposing such infrastructure to a variety of natural and climate change-related hazards. In this research we undertake a comprehensive analysis of the exposure of built infrastructure assets to climate risk for 12 PICs. We show that 57% of the assessed built infrastructure for the 12 PICs is located within 500 m of their coastlines, amounting to a total replacement value of US$21.9 billion. Eight of the 12 PICs have 50% or more of their built infrastructure located within 500 m of their coastlines. In particular, Kiribati, Marshall Islands and Tuvalu have over 95% of their built infrastructure located within 500 m of their coastlines. Coastal adaptation costs will require substantial financial resources, which may not be available in developing countries such as the PICs, leaving them to face very high impacts but lacking the adaptive capacity.

  6. Awareness of Occupational Injuries and Utilization of Safety Measures among Welders in Coastal South India

    Directory of Open Access Journals (Sweden)

    S Ganesh Kumar

    2013-10-01

    Full Text Available Background: Awareness of occupational hazards and its safety precautions among welders is an important health issue, especially in developing countries. Objective: To assess the awareness of occupational hazards and utilization of safety measures among welders in coastal South India. Methods: A cross-sectional study was conducted among 209 welders in Puducherry, South India. Baseline characteristics, awareness of health hazards, safety measures and their availability to and utilization by the participants were assessed using a pre-tested structured questionnaire. Results: The majority of studied welders aged between 20 and 40 years (n=160, 76.6% and had 1-10 years of education (n=181, 86.6%. They were more aware of hazards (n=174, 83.3% than safety measures (n=134, 64.1%. The majority of studied welders utilized at least one protective measure in the preceding week (n=200, 95.7%. Many of them had more than 5 years of experience (n=175, 83.7%, however, only 20% of them had institutional training (n=40, 19.1%. Age group, education level, and utilization of safety measures were significantly associated with awareness of hazards in univariate analysis (p<0.05. Conclusion: Awareness of occupational hazards and utilization of safety measures is low among welders in coastal South India, which highlights the importance of strengthening safety regulatory services towards this group of workers.

  7. High prevalence of cattle fascioliasis in coastal areas of Thua Thien Hue province, Vietnam

    Science.gov (United States)

    NGUYEN, Nga Thi; LE, Thinh Cong; VO, Minh Duc Co; VAN CAO, Hoang; NGUYEN, Ly Thi; HO, Khanh Thi; NGUYEN, Quyet Ngoc; TRAN, Vui Quang; MATSUMOTO, Yasunobu

    2017-01-01

    In Vietnam, especially central Vietnam, patients with fascioliasis are increasingly being reported. Since the fascioliasis is zoonotic, survey on the cattle fascioliasis should be informative for the control of human fascioliasis. In this study, the prevalence of cattle fascioliasis as well as the density of the intermediate host snails, Lymnaea swinhoei and L. viridis, were studied in Thua Thien Hue (TTH) province during 2014–2015. A total of 572 cattle feces were examined from 27 communes in 9 districts. Fasciola eggs were detected in cattle from 24 communes with an average prevalence of 23.4% (134/ 572). The highest prevalence was detected in cattle in the coastal plain terrain (31.0%) followed by plain (25.5%), mountain (21.7%), and low hilly (16.2%) terrains. The highest proportion of heavy infection (>200 EPG) was observed in the coastal plain terrain (36.1%), followed by mountains (20.0%), low hills (13.0%), and plains (8.9%). Low number of heavy infection, as well as relatively low prevalence in low hills and plains were associated with the extensive use of anti-fluke treatments. High number of intermediate host snails in low hilly and plain terrains also indicate high risk of fascioliasis. In this study, the density of Lymnaea snails in the coastal plain terrain was found to be very high (17.3 snails/m2) compared to that in previous studies. This is the first report indicating the recent expansion of cattle fascioliasis in the coastal region in Vietnam. PMID:28458272

  8. Social Vulnerability Index (SoVI) for Coastal States based on 2000 Census Block Groups

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data depicts the social vulnerability of coastal states census block groups to environmental hazards. Data were culled primarily from the 2000 Decennial Census.

  9. The Southern California Coastal Ocean Observing System (SCCOOS): Developing A Coastal Observation System To Enable Both Science Based Decision Making And Scientific Discovery

    Science.gov (United States)

    Terrill, E.; John, O.

    2005-05-01

    The Southern California Coastal Ocean Observing System (SCCOOS) is a consortium that extends from Northern Baja CA in Mexico to Morro Bay at the southern edge of central California, and aims to streamline, coordinate, and further develop individual institutional efforts by creating an integrated, multidisciplinary coastal observatory in the Bight of Southern California for the benefit of society. By leveraging existing infrastructure, partnerships, and private, local, state, and federal resources, SCCOOS is developing a fully operational coastal observation system to address issues related to coastal water quality, marine life resources, and coastal hazards for end user communities spanning local, state, and federal interests. However, to establish a sensible observational approach to address these societal drivers, sound scientific approaches are required in both the system design and the transformation of data to useful products. Since IOOS and coastal components of the NSF Ocean Observatories Initiative (OOI) are not mutually exclusive within this framework, the SCCOOS consortium of observatory implementers have created an organizational structure that encourages dovetailing of OOI into the routine observations provided by the operational components of a regional IOOS. To begin the development, SCCOOS has grant funding from the California Coastal Conservancy as part of a $21M, statewide initiative to establish a Coastal Ocean Currents Monitoring Program, and funding from NOAA's Coastal Observing Technology System (COTS). In addition, SCCOOS is leveraging IT development that has been supported by the NSF Information Technology Research program Real-time observatories, Applications,and Data Manageemnt Network (ROADNET), and anticipates using developments which will result from the NSF Laboratory for Ocean Observatory Knowledge Integration Grid (LOOKING) program. The observational components now funded at SCCOOS include surface current mapping by HF radar; high

  10. Climate change-induced impacts on urban flood risk influenced by concurrent hazards

    DEFF Research Database (Denmark)

    Pedersen, A. N.; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten

    2012-01-01

    hazards, rainfall and sea surge, are both important. The core in the methodology is the application of copula functions as an extension of one-dimensional risk analysis and projections of future climatic changes. The results for Greater Copenhagen indicate that the dependence between the hazards is weak......In coastal regions, several hazards may lead to floods, and if they occur concurrently, the damage will be higher than for the hazards individually. The paper outlines an approach for carrying out a risk analysis with several hazards and applies it on a case study in Greater Copenhagen where two...... and that climate change most likely will not increase the correlation. The overall change in flood return periods over a forecast horizon of 110 years are estimated to decrease by one to three orders of magnitude....

  11. Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission

    Science.gov (United States)

    Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.

    2017-12-01

    The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex

  12. Coastal Erosion and Flooding Hazards on the North Sea Coast at Thyboron, Denmark

    DEFF Research Database (Denmark)

    Sørensen, Per; Sørensen, Carlo Sass; Nielsen, Peter

    Since a breach of the coastal barrier in 1862, the Thyboron Channel connecting the North Sea and the Lim Fiord has been artificially maintained by construction of breakwaters and groins on the North Sea coast and inside the channel, respectively. Sand nourishment schemes have since the 1980s coun...... counteracted the natural erosion in the upper profile on the North Sea coast where the alongshore sediment transport converges towards the channel and deposits up to 1 million m3/y on the flood tidal delta inside the fiord, Figure 1.......Since a breach of the coastal barrier in 1862, the Thyboron Channel connecting the North Sea and the Lim Fiord has been artificially maintained by construction of breakwaters and groins on the North Sea coast and inside the channel, respectively. Sand nourishment schemes have since the 1980s...

  13. Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles

    Science.gov (United States)

    Krien, Y.; Dudon, B.; Roger, J.; Zahibo, N.

    2015-08-01

    Current storm surge hazard maps in the French West Indies are essentially based on simple statistical methods using limited historical data and early low-resolution models which do not take the effect of waves into account. In this paper, we infer new 100-year and 1000-year surge levels in Guadeloupe from the numerical modelling of storm surges induced by a large set of synthetic events that are in statistical agreement with features of historical hurricanes in the North Atlantic Basin between 1980 and 2011. Computations are performed using the wave-current coupled model ADCIRC-SWAN with high grid resolutions (up to 40-60 m) in the coastal and wave dissipation areas. This model is validated against observations during past events such as hurricane HUGO (1989). Results are generally found to be in reasonable agreement with past studies in areas where surge is essentially wind-driven, but found to differ significantly in coastal regions where the transfer of momentum from waves to the water column constitutes a non-negligible part of the total surge. The methodology, which can be applied to other islands in the Lesser Antilles, allows storm surge level maps to be obtained that can be of major interest for coastal planners and decision makers in terms of risk management.

  14. Coastal erosion's influencing factors include development, dams, wells, and climate change

    International Nuclear Information System (INIS)

    Aubrey, D.G.

    1993-01-01

    The demographic flight to the coast, begun in early civilization, continues unabated worldwide according to latest studies. The percentage of population living on the coast is expected to remain relatively constant over the next few decades, but the total numbers will increase as the population increases. Recent coastal battering by hurricanes and extratropical storms poses questions about coastal habitability and the real economics of coastal development. Repair costs are borne by private individuals as well as the public in various direct and indirect ways. As these costs escalate, it is fitting to ask what the future portends for storm and coastal-flood damage. It is known that development pressures will continue to increase along the coast, but what will happen concurrently to natural-hazard threats to this infrastructure? Though much emphasis has been placed on sea-level rise, the broader issue is climate change in general. Here, the author considers climate change in both its natural and anthropogenic perspectives. Without becoming mired in the debate about the greenhouse effect and human influence on climatic shifts, some of the broad classes of natural hazards that might accompany climate change are examined. There are several categories of possible global-change effects on coastal erosion. In the early 1980's, an Environmental Protection Agency (EPA) report postulated increases in global sea level up to 4 meters during the next 100 years. Though balanced somewhat by other, lower estimates of sea-level rise, this higher extreme grabbed public attention. During the next decade, scientists attempted to concur on a more reasonable estimate of global sea-level rise due to climate change. Recent credible estimates suggest that approximately 10 to 20 percent of EPA's earlier maximum estimate is most reasonable

  15. Tourism facing the challenge of recurring natural hazards: a view from Cancún

    OpenAIRE

    Frank Babinger

    2012-01-01

    This article discusses the duality between economic development based on tourism and the impact of land occupation at the expense of an environment that includes specific natural hazards. The transformation of coastal areas to be occupied by tourism is one of the serious problems which are not taken into account when planning the activity. Cancún is a paradigmatic model in which an explosive growth in tourists, residents and tourist buildings has led to the massive occupation of a coastal are...

  16. The assessment of waters ecological state of the Crimea coastal near high-rise construction zones

    Science.gov (United States)

    Vetrova, Natalya; Ivanenko, Tatyana; Mannanov, Emran

    2018-03-01

    The relevance of our study is determined by the significant level of coastal sea waters pollution by sewage near high-rise construction zones, which determines the violation of the sanitary and hygienic of sea waters `characteristics and limits the possibilities for organizing recreational activities. The purpose of this study is to identify the ecological state of the marine aquatic area by the example of the Western Crimea near high-rise construction zones. The studies confirmed that the recreational and coastal area wastewater is intensely mixed with seawater, as a result, the pollution in the coastal strip of the sea in the area of deep water discharges sharply decrease. This happens because of water rapid rise to the surface and under the influence of the continuous movement of sea water huge masses with deep-water discharge, fresh wastewater is actively mixed with sea water. However, with no doubt, it is inadmissible to discharge sewage into the sea directly from the shore, but only at the estimated distance from the coast. The materials of the article can be useful for the management bodies and organizations involved in monitoring the quality of the coastal zone of the sea, teachers and students of higher educational institutions when assessing the ecological situation of the territories.

  17. Framing 100-year overflowing and overtopping marine submersion hazard resulting from the propagation of 100-year joint hydrodynamic conditions

    Science.gov (United States)

    Nicolae Lerma, A.; Bulteau, T.; Elineau, S.; Paris, F.; Pedreros, R.

    2016-12-01

    Marine submersion is an increasing concern for coastal cities as urban development reinforces their vulnerabilities while climate change is likely to foster the frequency and magnitude of submersions. Characterising the coastal flooding hazard is therefore of paramount importance to ensure the security of people living in such places and for coastal planning. A hazard is commonly defined as an adverse phenomenon, often represented by a magnitude of a variable of interest (e.g. flooded area), hereafter called response variable, associated with a probability of exceedance or, alternatively, a return period. Characterising the coastal flooding hazard consists in finding the correspondence between the magnitude and the return period. The difficulty lies in the fact that the assessment is usually performed using physical numerical models taking as inputs scenarios composed by multiple forcing conditions that are most of the time interdependent. Indeed, a time series of the response variable is usually not available so we have to deal instead with time series of forcing variables (e.g. water level, waves). Thus, the problem is twofold: on the one hand, the definition of scenarios is a multivariate matter; on the other hand, it is tricky and approximate to associate the resulting response, being the output of the physical numerical model, to the return period defined for the scenarios. In this study, we illustrate the problem on the district of Leucate, located in the French Mediterranean coast. A multivariate extreme value analysis of waves and water levels is performed offshore using a conditional extreme model, then two different methods are used to define and select 100-year scenarios of forcing variables: one based on joint exceedance probability contours, a method classically used in coastal risks studies, the other based on environmental contours, which are commonly used in the field of structure design engineering. We show that these two methods enable one to

  18. Playing against nature: improving earthquake hazard mitigation

    Science.gov (United States)

    Stein, S. A.; Stein, J.

    2012-12-01

    The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the

  19. Increasing risk of compound flooding from storm surge and rainfall for major US coastal cities

    Science.gov (United States)

    Wahl, Thomas; Jain, Shaleen; Bender, Jens; Meyers, Steven; Luther, Mark

    2016-04-01

    Flood risk is a well-known facet of natural hazards along the US coastline where nearly 40% of the population resides in coastal counties. Given the heavy reliance on the coastal zone for natural resources and economic activity, flood preparedness and safety is a key element of long-term resilience. A clear understanding of the various flood types and changes in the frequency of their occurrence is critical towards reliable estimates of vulnerability and potential impacts in the near-term as well as into the future. When the two main flood drivers for coastal areas storm surge and heavy precipitation occur in tandem the potential for significant flooding is much greater than from either in isolation. Exploring the probability of these 'compound events' and understanding the processes driving them is essential to mitigate the associated high impact risks. For the contiguous US the likelihood of the joint occurrence of the two phenomena is largely unknown. Here we show - using storm surge and precipitation records spanning the last century - that the risk of compound flooding is higher for the US east and Gulf coasts, relative to the west coast. We also show that the number of compound events has increased significantly over the last century along large coastline stretches including many of the major coastal cities. For New York City - as an example - this increase is attributed to a shift towards storm surge weather patterns also favouring high precipitation. Preliminary analyses reveal that these synoptic scale changes are closely linked to large scale and low frequency climate variations. Our results demonstrate the importance of assessing the risk of compound flooding within the design process of coastal and urban infrastructure in a non-stationary framework and to explore the potential effects of climate change on these high impact events.

  20. Climatic hazards warning process in Bangladesh: Experience of, and lessons from, the 1991 April cyclone

    Science.gov (United States)

    Haque, C. Emdad

    1995-09-01

    Science and technology cannot control entirely the causes of natural hazards. However, by using multifaceted programs to modify the physical and human use systems, the potential losses from disasters can effectively be minized. Predicting, identifying, monitoring, and forecasting extreme meteorological events are the preliminary actions towards mitigating the cyclone-loss potential of coastal inhabitants, but without the successful dissemination of forecasts and relevant information, and without appropriate responses by the potential victims, the loss potential would probably remain the same. This study examines the process through which warning of the impending disastrous cyclone of April 1991 was received by the local communities and disseminated throughout the coastal regions of Bangladesh. It is found that identification of the threatening condition due to atmospheric disturbance, monitoring of the hazard event, and dissemination of the cyclone warning were each very successful. However, due to a number of socioeconomic and cognitive factors, the reactions and responses of coastal inhabitants to the warning were in general passive, resulting in a colossal loss, both at the individual and national level. The study recommends that the hazard mitigation policies should be integrated with national economic development plans and programs. Specifically, it is suggested that, in order to attain its goals, the cyclone warning system should regard the aspects of human response to warnings as a constituent part and accommodate human dimensions in its operational design.

  1. Remediation of Gremikha Coastal maintenance base - status of the project

    International Nuclear Information System (INIS)

    Pillette-Cousin, L.; Stepennov, B.S.; Gorbatchev, A.

    2008-01-01

    The former coastal maintenance base in Gremikha is located in the Kola Peninsula, along the Barents Sea, about 300 km east from Murmansk. There is no road or railway to get there, therefore the only possible connection is either by sea or by helicopter. Remediation of the Gremikha coastal maintenance base (CMB) is now one of the main priorities for Rosatom (the Agency for Atomic Energy of the Russian Federation) because nuclear and radioactive waste are currently stored in conditions which do not meet the up-to-date safety and regulatory requirements and it might represent an environmental hazard and a risk of misappropriation of the nuclear material stored there. (authors)

  2. Probabilistic Tsunami Hazard Analysis

    Science.gov (United States)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  3. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    Science.gov (United States)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-07-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  4. Electrical Resistivity Imaging and the Saline Water Interface in High-Quality Coastal Aquifers

    Science.gov (United States)

    Costall, A.; Harris, B.; Pigois, J. P.

    2018-05-01

    Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole-dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.

  5. Do ENSO and Coastal Development Enhance Coastal Burial of Terrestrial Carbon?

    Science.gov (United States)

    Macreadie, Peter I; Rolph, Timothy C; Boyd, Ron; Schröder-Adams, Claudia J; Skilbeck, Charles G

    2015-01-01

    Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Niño-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity ("super-ENSO") and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Niña), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensification--both of which are predicted to increase over the coming century--can enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial-marine carbon connectivity into global carbon budgets.

  6. Impact of climate change on New York City's coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE.

    Science.gov (United States)

    Garner, Andra J; Mann, Michael E; Emanuel, Kerry A; Kopp, Robert E; Lin, Ning; Alley, Richard B; Horton, Benjamin P; DeConto, Robert M; Donnelly, Jeffrey P; Pollard, David

    2017-11-07

    The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970-2005 to 4.0-5.1 m above mean tidal level by 2080-2100 and ranges from 5.0-15.4 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970-2005 and further decreases to ∼5 y by 2030-2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280-2300 for scenarios that include Antarctica's potential partial collapse. Copyright © 2017 the Author(s). Published by PNAS.

  7. The Impact of Climate Change on New York City's Coastal Flood Hazard: Increasing Flood Heights from the Pre-Industrial to 2300 CE

    Science.gov (United States)

    Garner, A. J.; Mann, M. E.; Emanuel, K.; Kopp, R. E.; Lin, N.; Alley, R. B.; Horton, B.; Deconto, R. M.; Donnelly, J. P.; Pollard, D.

    2017-12-01

    The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the pre-industrial through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP 8.5 runs of three CMIP5 models. The sea-level rise projections include the collapse of the Antarctic ice sheet to assess future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared to pre-industrial or modern flood heights. We find that the 1-in-500-year flood event increases from 3.4 m above mean tidal level during 1970-2005 to 3.9 - 4.8 m above mean tidal level by 2080-2100, and ranges from 2.8 - 13.0 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25 m flood has decreased from 500 years prior to 1800 to 25 years during 1970-2005, and further decreases to 5 years by 2030 - 2045 in 95% of our simulations.

  8. Using Bayesian Network as a tool for coastal storm flood impact prediction at Varna Bay (Bulgaria, Western Black Sea)

    Science.gov (United States)

    Valchev, Nikolay; Eftimova, Petya; Andreeva, Nataliya; Prodanov, Bogdan

    2017-04-01

    Coastal zone is among the fastest evolving areas worldwide. Ever increasing population inhabiting coastal settlements develops often conflicting economic and societal activities. The existing imbalance between the expansion of these activities, on one hand, and the potential to accommodate them in a sustainable manner, on the other, becomes a critical problem. Concurrently, coasts are affected by various hydro-meteorological phenomena such as storm surges, heavy seas, strong winds and flash floods, which intensities and occurrence frequency is likely to increase due to the climate change. This implies elaboration of tools capable of quick prediction of impact of those phenomena on the coast and providing solutions in terms of disaster risk reduction measures. One such tool is Bayesian network. Proposed paper describes the set-up of such network for Varna Bay (Bulgaria, Western Black Sea). It relates near-shore storm conditions to their onshore flood potential and ultimately to relevant impact as relative damage on coastal and manmade environment. Methodology for set-up and training of the Bayesian network was developed within RISC-KIT project (Resilience-Increasing Strategies for Coasts - toolKIT). Proposed BN reflects the interaction between boundary conditions, receptors, hazard, and consequences. Storm boundary conditions - maximum significant wave height and peak surge level, were determined on the basis of their historical and projected occurrence. The only hazard considered in this study is flooding characterized by maximum inundation depth. BN was trained with synthetic events created by combining estimated boundary conditions. Flood impact was modeled with the process-based morphodynamical model XBeach. Restaurants, sport and leisure facilities, administrative buildings, and car parks were introduced in the network as receptors. Consequences (impact) are estimated in terms of relative damage caused by given inundation depth. National depth

  9. Multi-factor evaluation indicator method for the risk assessment of atmospheric and oceanic hazard group due to the attack of tropical cyclones

    Science.gov (United States)

    Qi, Peng; Du, Mei

    2018-06-01

    China's southeast coastal areas frequently suffer from storm surge due to the attack of tropical cyclones (TCs) every year. Hazards induced by TCs are complex, such as strong wind, huge waves, storm surge, heavy rain, floods, and so on. The atmospheric and oceanic hazards cause serious disasters and substantial economic losses. This paper, from the perspective of hazard group, sets up a multi-factor evaluation method for the risk assessment of TC hazards using historical extreme data of concerned atmospheric and oceanic elements. Based on the natural hazard dynamic process, the multi-factor indicator system is composed of nine natural hazard factors representing intensity and frequency, respectively. Contributing to the indicator system, in order of importance, are maximum wind speed by TCs, attack frequency of TCs, maximum surge height, maximum wave height, frequency of gusts ≥ Scale 8, rainstorm intensity, maximum tidal range, rainstorm frequency, then sea-level rising rate. The first four factors are the most important, whose weights exceed 10% in the indicator system. With normalization processing, all the single-hazard factors are superposed by multiplying their weights to generate a superposed TC hazard. The multi-factor evaluation indicator method was applied to the risk assessment of typhoon-induced atmospheric and oceanic hazard group in typhoon-prone southeast coastal cities of China.

  10. Tsunami vulnerability assessment in the western coastal belt in Sri Lanka

    Science.gov (United States)

    Ranagalage, M. M.

    2017-12-01

    26th December 2004 tsunami disaster has caused massive loss of life, damage to coastal infrastructures and disruption to economic activities in the coastal belt of Sri Lanka. Tsunami vulnerability assessment is a requirement for disaster risk and vulnerability reduction. It plays a major role in identifying the extent and level of vulnerabilities to disasters within the communities. There is a need for a clearer understanding of the disaster risk patterns and factors contributing to it in different parts of the coastal belt. The main objective of this study is to investigate tsunami vulnerability assessment of Moratuwa Municipal council area in Sri Lanka. We have selected Moratuwa area due to considering urbanization pattern and Tsunami hazards of the country. Different data sets such as one-meter resolution LiDAR data, orthophoto, population, housing data and road layer were employed in this study. We employed tsunami vulnerability model for 1796 housing units located there, for a tsunami scenario with a maximum run-up 8 meters. 86% of the total land area affected by the tsunami in 8 meters scenarios. Additionally, building population has been used to estimate population in different vulnerability levels. The result shows that 32% of the buildings have extremely critical vulnerability level, 46% have critical vulnerability level, 22% have high vulnerability level, and 1% have a moderate vulnerability. According to the population estimation model results, 18% reside building with extremely critical vulnerability, 43% with critical vulnerability, 36% with high vulnerability and 3% belong to moderate vulnerability level. The results of the study provide a clear picture of tsunami vulnerability. Outcomes of this analysis can use as a valuable tool for urban planners to assess the risk and extent of disaster risk reduction which could be achieved via suitable mitigation measures to manage the coastal belt in Sri Lanka.

  11. Coastal Morphology and Coastal Protection

    NARCIS (Netherlands)

    Van de Graaff, J.

    2009-01-01

    Lecture notes ct5309. Tides, currents and water; coastal problems; sediment transport processes; coastal transport modes; longshore transport; cross-shore transport; fundamentals of mud; channels and trenches; coastal protection; application of structures; application of nourishments.

  12. High-resolution reconstruction of a coastal barrier system

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Andersen, Thorbjørn Joest; Nielsen, Lars Henrik

    2015-01-01

    This study presents a detailed reconstruction of the sedimentary effects of Holocene sea-level rise on a modern coastal barrier system (CBS). Increasing concern over the evolution of CBSs due to future accelerated rates of sea-level rise calls for a better understanding of coastal barriers response...... from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the CBS before the barrier shoreline stabilised between 5.0 and 4...

  13. Dependency of high coastal water level and river discharge at the global scale

    Science.gov (United States)

    Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.

    2017-12-01

    It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.

  14. A rapid, low cost approach to coastal vulnerability assessment at a national level

    NARCIS (Netherlands)

    Lopez Royo, M.; Ranasinghe, Ranasinghe W M R J B; Jimenez, J.A.

    2016-01-01

    Vulnerability is defined as the system's potential to be damaged by a certain climate change (CC) hazard, and ideally, it has to be assessed by accounting for the different factors controlling the coastal response both in negative (susceptibility) and positive (resilience) terms to changing climatic

  15. TSUNAMI HAZARD ASSESSMENT IN THE NORTHERN AEGEAN SEA

    Directory of Open Access Journals (Sweden)

    Barbara Theilen-Willige

    2008-01-01

    Full Text Available Emergency planning for the assessment of tsunami hazard inundation and of secondary effects of erosion and landslides, requires mapping that can help identify coastal areas that are potentially vulnerable. The present study reviews tsunami susceptibility mapping for coastal areas of Turkey and Greece in the Aegean Sea. Potential tsunami vulnerable locations were identified from LANDSAT ETM imageries, Shuttle Radar Topography Mission (SRTM, 2000 data and QuickBird imageries and from a GIS integrated spatial database. LANDSAT ETM and Digital Elevation Model (DEM data derived by the SRTM-Mission were investigated to help detect traces of past flooding events. LANDSAT ETM imageries, merged with digitally processed and enhanced SRTM data, clearly indicate the areas that may be prone to flooding if catastrophic tsunami events or storm surges occur.

  16. Improving low-relief coastal LiDAR DEMs with hydro-conditioning of fine-scale and artificial drainages

    Directory of Open Access Journals (Sweden)

    Thomas Richard Allen

    2015-11-01

    Full Text Available Improvements in Light Detection and Ranging (LiDAR technology and spatial analysis of high-resolution digital elevation models (DEMs have advanced the accuracy and diversity of applications for coastal hazards and natural resources management. This article presents a concise synthesis of LiDAR analysis for coastal flooding and management applications in low-relief coastal plains and a case study demonstration of a new, efficient drainage mapping algorithm. The impetus for these LiDAR applications follows historic flooding from Hurricane Floyd in 1999, after which the State of North Carolina and the Federal Emergency Management Agency undertook extensive LiDAR data acquisition and technological developments for high-resolution floodplain mapping. An efficient algorithm is outlined for hydro-conditioning bare earth LiDAR DEMs using available US Geological Survey National Hydrography Dataset canal and ditch vectors. The methodology is illustrated in Moyock, North Carolina, for refinement of hydro-conditioning by combines pre-existing bare earth DEMs with spatial analysis of LiDAR point clouds in segmented and buffered ditch and canal networks. The methodology produces improved maps of fine-scale drainage, reduced omission of areal flood inundation, and subwatershed delineations that typify heavily ditched and canalled drainage areas. These preliminary results illustrate the capability of the technique to improve the representation of ditches in DEMs as well as subsequent flow and inundation modeling that could spur further research on low-relief coastal LiDAR applications.

  17. Coastal and Riverine Flood Forecast Model powered by ADCIRC

    Science.gov (United States)

    Khalid, A.; Ferreira, C.

    2017-12-01

    Coastal flooding is becoming a major threat to increased population in the coastal areas. To protect coastal communities from tropical storms & hurricane damages, early warning systems are being developed. These systems have the capability of real time flood forecasting to identify hazardous coastal areas and aid coastal communities in rescue operations. State of the art hydrodynamic models forced by atmospheric forcing have given modelers the ability to forecast storm surge, water levels and currents. This helps to identify the areas threatened by intense storms. Study on Chesapeake Bay area has gained national importance because of its combined riverine and coastal phenomenon, which leads to greater uncertainty in flood predictions. This study presents an automated flood forecast system developed by following Advanced Circulation (ADCIRC) Surge Guidance System (ASGS) guidelines and tailored to take in riverine and coastal boundary forcing, thus includes all the hydrodynamic processes to forecast total water in the Potomac River. As studies on tidal and riverine flow interaction are very scarce in number, our forecast system would be a scientific tool to examine such area and fill the gaps with precise prediction for Potomac River. Real-time observations from National Oceanic and Atmospheric Administration (NOAA) and field measurements have been used as model boundary feeding. The model performance has been validated by using major historical riverine and coastal flooding events. Hydrodynamic model ADCIRC produced promising predictions for flood inundation areas. As better forecasts can be achieved by using coupled models, this system is developed to take boundary conditions from Global WaveWatchIII for the research purposes. Wave and swell propagation will be fed through Global WavewatchIII model to take into account the effects of swells and currents. This automated forecast system is currently undergoing rigorous testing to include any missing parameters which

  18. Scenario-based earthquake hazard and risk assessment for Baku (Azerbaijan

    Directory of Open Access Journals (Sweden)

    G. Babayev

    2010-12-01

    Full Text Available A rapid growth of population, intensive civil and industrial building, land and water instabilities (e.g. landslides, significant underground water level fluctuations, and the lack of public awareness regarding seismic hazard contribute to the increase of vulnerability of Baku (the capital city of the Republic of Azerbaijan to earthquakes. In this study, we assess an earthquake risk in the city determined as a convolution of seismic hazard (in terms of the surface peak ground acceleration, PGA, vulnerability (due to building construction fragility, population features, the gross domestic product per capita, and landslide's occurrence, and exposure of infrastructure and critical facilities. The earthquake risk assessment provides useful information to identify the factors influencing the risk. A deterministic seismic hazard for Baku is analysed for four earthquake scenarios: near, far, local, and extreme events. The seismic hazard models demonstrate the level of ground shaking in the city: PGA high values are predicted in the southern coastal and north-eastern parts of the city and in some parts of the downtown. The PGA attains its maximal values for the local and extreme earthquake scenarios. We show that the quality of buildings and the probability of their damage, the distribution of urban population, exposure, and the pattern of peak ground acceleration contribute to the seismic risk, meanwhile the vulnerability factors play a more prominent role for all earthquake scenarios. Our results can allow elaborating strategic countermeasure plans for the earthquake risk mitigation in the Baku city.

  19. Winter storm intensity, hazards, and property losses in the New York tristate area.

    Science.gov (United States)

    Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E

    2017-07-01

    Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  20. Challenges of Tsunami Disaster and Extreme climate Events Along Coastal Region in Asia-Pacific

    Science.gov (United States)

    Chaudhari, S.

    2017-12-01

    South Asia is more vulnerable to Geo disasters and impacts of climate changes in recent years. On 26 December 2004 massive waves triggered by an earthquake surged into coastal communities in Asia and East Africa with devastating force. Hitting Indonesia, Sri Lanka , Thailand and India hardest, the deadly waves swept more than 200 000 people to their deaths. Also in an another extreme climate change phenomenon during 2005 - 2006,causing heavy rains and flooding situation in the South Asia - Europe and Pacific region ,more than 100 million population in these regions are witnessing the social- economical and ecological risks and impacts due to climate changes and Geohazards. For mitigating geo-disasters, marine hazards and rehabilitation during post tsunami period, scientific knowledge is needed, requiring experienced research communities who can train the local population during tsunami rehabilitation. Several civil society institutions jointly started the initiatives on the problem identifications in management of risks in geo-disasters, tsunami rehabilitation ,Vulnerability and risk assessments for Geohazards etc., to investigate problems related to social-economic and ecological risks and management issues resulting from the December tsunami and Geo- disaster, to aid mitigation planning in affected areas and to educate scientists and local populations to form a basis for sustainable and economic solutions. The poster aims to assess the potential risk and hazard , technical issues, problems and damage arising from Tsunami in the Asia-pacific region in coastal geology, coastal ecosystems and coastal environmental systems . This poster deals with the status and issues of interactions between Human and Ocean Systems, Geo-risks, marine risks along coastal region of Asia- Pacific and also human influence on the earth system . The poster presentation focuses on capacity building of the local population, scientists and researchers for integration of human and ocean

  1. High speed rail and coastal tourism: Identifying passenger profiles and travel behaviour.

    Science.gov (United States)

    Gutiérrez, Aaron; Ortuño, Armando

    2017-01-01

    In this paper, we characterise tourists most likely to visit a coastal destination by high-speed rail (HSR). Our data came from a survey conducted among HSR passengers during 2014's high season (July and August) at Spain's Camp de Tarragona and Alicante Stations, each of which is near a mass tourism destination on the Mediterranean coast: the Costa Daurada and the Costa Blanca, respectively. We used responses to the survey, which presented binary discrete-choice situations, to construct a database necessary for a logistic regression model that allowed us to examine how passenger profile, trip characteristics, and stay conditions influenced the use of HSR services on visits to each coastal destination. Results highlighted significant differences in the profiles of tourists who arrived at each destination by HSR and, in turn, that no specific tourist profile is associated with HSR, even for two stations that serve sunny beach destinations. Among its implications, to analyse travellers that HSR can attract, it is vital to consider the specific characteristics of each destination and its current market.

  2. Secondary hazards of high power laser beam welding

    International Nuclear Information System (INIS)

    Schulmeister, K.; Schmitzer, C.; Duftschmid, K.; Liedl, G.; Schroeder, K.; Schuoecker, D.

    1996-01-01

    Hazardous UV-radiation and short-wavelength visible (blue) light is emitted by the high temperature plasma above the welding-keyhole. Ozone and NO x is produced due to UV-induced photodissociation of oxygen and high temperature gas-phase reactions. Spectral measurements of the plasma emission show that the allowed dose for UV-radiation and blue light exposure per work day can be exceeded in as short as a few seconds. Similarly, measurements and models of the ozone and NO x concentration show that the maximum workplace concentrations might be reached quickly if no appropriate exhaust and filter system is installed. (author)

  3. Regional landslide susceptibility assessment using multi-stage remote sensing data along the coastal range highway in northeastern Taiwan

    Science.gov (United States)

    Lee, Ching-Fang; Huang, Wei-Kai; Chang, Yu-Lin; Chi, Shu-Yeong; Liao, Wu-Chang

    2018-01-01

    Typhoons Megi (2010) and Saola (2012) brought torrential rainfall which triggered regional landslides and flooding hazards along Provincial Highway No. 9 in northeastern Taiwan. To reduce property loss and saving lives, this study combines multi-hazard susceptibility assessment with environmental geology map a rock mass rating system (RMR), remote sensing analysis, and micro-topography interpretation to develop an integrated landslide hazard assessment approach and reflect the intrinsic state of slopeland from the past toward the future. First, the degree of hazard as indicated by historical landslides was used to determine many landslide regions in the past. Secondly, geo-mechanical classification of rock outcroppings was performed by in-situ investigation along the vulnerable road sections. Finally, a high-resolution digital elevation model was extracted from airborne LiDAR and multi-temporal remote sensing images which was analyzed to discover possible catastrophic landslide hotspot shortly. The results of the analysis showed that 37% of the road sections in the study area were highly susceptible to landslide hazards. The spatial distribution of the road sections revealed that those characterized by high susceptibility were located near the boundaries of fault zones and in areas of lithologic dissimilarity. Headward erosion of gullies and concave-shaped topographic features had an adverse effect and was the dominant factor triggering landslides. Regional landslide reactivation on this coastal highway are almost related to the past landslide region based on hazard statistics. The final results of field validation demonstrated that an accuracy of 91% could be achieved for forecasting geohazard followed by intense rainfall events and typhoons.

  4. Vulnerability assessment of storm surges in the coastal area of Guangdong Province

    Directory of Open Access Journals (Sweden)

    K. Li

    2011-07-01

    Full Text Available Being bordered by the South China Sea and with long coastline, the coastal zone of Guangdong Province is often under severe risk of storm surges, as one of a few regions in China which is seriously threatened by storm surges. This article systematically analyzes the vulnerability factors of storm surges in the coastal area of Guangdong (from Yangjing to Shanwei. Five vulnerability assessment indicators of hazard-bearing bodies are proposed, which are social economic index, land use index, eco-environmental index, coastal construction index, and disaster-bearing capability index. Then storm surge vulnerability assessment index system in the coastal area of Guangdong is established. Additionally, the international general mode about coastal vulnerability assessment is improved, and the vulnerability evolution model of storm surges in the coastal area of Guangdong is constructed. Using ArcGIS, the vulnerability zoning map of storm surges in the study region is drawn. Results show that there is the highest degree of storm surge vulnerability in Zhuhai, Panyu, and Taishan; second in Zhongshan, Dongguan, Huiyang, and Haifeng; third in Jiangmen, Shanwei, Yangjiang, and Yangdong; fourth in Baoan, Kaiping, and Enping; and lowest in Guangzhou, Shunde, Shenzhen, and Longgang. This study on the risk of storm surges in these coastal cities can guide the land use of coastal cities in the future, and provide scientific advice for the government to prevent and mitigate the storm surge disasters. It has important theoretical and practical significance.

  5. Flood Hazard Areas - High Risk

    Data.gov (United States)

    Department of Homeland Security — The S_Fld_Haz_Ar table contains information about the flood hazards within the study area. A spatial file with locational information also corresponds with this data...

  6. Hazard Experience, Geophysical Vulnerability, and Flood Risk Perceptions in a Postdisaster City, the Case of New Orleans.

    Science.gov (United States)

    Gotham, Kevin Fox; Campanella, Richard; Lauve-Moon, Katie; Powers, Bradford

    2018-02-01

    This article investigates the determinants of flood risk perceptions in New Orleans, Louisiana (United States), a deltaic coastal city highly vulnerable to seasonal nuisance flooding and hurricane-induced deluges and storm surges. Few studies have investigated the influence of hazard experience, geophysical vulnerability (hazard proximity), and risk perceptions in cities undergoing postdisaster recovery and rebuilding. We use ordinal logistic regression techniques to analyze experiential, geophysical, and sociodemographic variables derived from a survey of 384 residents in seven neighborhoods. We find that residents living in neighborhoods that flooded during Hurricane Katrina exhibit higher levels of perceived risk than those residents living in neighborhoods that did not flood. In addition, findings suggest that flood risk perception is positively associated with female gender, lower income, and direct flood experiences. In conclusion, we discuss the implications of these findings for theoretical and empirical research on environmental risk, flood risk communication strategies, and flood hazards planning. © 2017 Society for Risk Analysis.

  7. Assessment of human health hazard due to metal uptake via fish ...

    African Journals Online (AJOL)

    Assessment of human health hazard due to metal uptake via fish consumption from coastal area of Tanzania. ... The result shows that the concentration and THQ of As in all fish samples ranges from 1.173 – 2.325 which is > 1, hence signified that a daily exposure at this level are in risk of cancer during a person lifetime.

  8. Coastal habitat mapping in the Aegean Sea using high resolution orthophoto maps

    Science.gov (United States)

    Topouzelis, Konstantinos; Papakonstantinou, Apostolos; Doukari, Michaela; Stamatis, Panagiotis; Makri, Despina; Katsanevakis, Stelios

    2017-09-01

    The significance of coastal habitat mapping lies in the need to prevent from anthropogenic interventions and other factors. Until 2015, Landsat-8 (30m) imagery were used as medium spatial resolution satellite imagery. So far, Sentinel-2 satellite imagery is very useful for more detailed regional scale mapping. However, the use of high resolution orthophoto maps, which are determined from UAV data, is expected to improve the mapping accuracy. This is due to small spatial resolution of the orthophoto maps (30 cm). This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. Additionally, the produced orthophoto maps analyzed through an object-based image analysis (OBIA) and nearest-neighbor classification for mapping the coastal habitats. Classification classes included the main general habitat types, i.e. seagrass, soft bottom, and hard bottom The developed methodology applied at the Koumbara beach (Ios Island - Greece). Results showed that UAS's data revealed the sub-bottom complexity in large shallow areas since they provide such information in the spatial resolution that permits the mapping of seagrass meadows with extreme detail. The produced habitat vectors are ideal as reference data for studies with satellite data of lower spatial resolution.

  9. First results of the research project MIRAMAR, Innovative Methodologies for Coastal Environmental Monitoring and Analysis

    Science.gov (United States)

    Rovere, A.; Casella, E.; Vacchi, M.; Mucerino, L.; Pedroncini, A.; Ferrari, M.; Firpo, M.

    2013-12-01

    A large part of the Mediterranean coastlines are strongly affected by coastal erosion. This is mainly due to human impact, natural hazards and their mutual interaction. All along the Regione Liguria coastlines (Northwestern Mediterranean), significant problems of coastal erosion are reported since the '60s. In this study, we focus on the coastal area between Albenga and Savona, where dramatic coastal retreat of ~2 m y-1 has been inferred from comparison of historic maps and older aerial pictures. Beach monitoring is essential in order to understand the mechanisms of evolution of soft coasts, and the rates of erosion. Traditional beach monitoring techniques involve topographic and bathymetric surveys of the emerged and submerged beach, and/or aerial photos repeated in time and compared through geographical information systems. A major problem of this kind of approach is the high economic cost. This often leads to increase the time lag between successive monitoring campaigns to reduce survey costs, with the consequence of fragmenting the information available for coastal zone management. MIRAMar is a project funded by Regione Liguria through the PO CRO European Social Fund, and it has two main objectives: i) to study and develop an innovative technique, relatively low-cost, to monitor the evolution of the shoreline using low-altitude Unmanned Aerial Vehicle (UAV) photos; ii) to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion using also the data collected by the UAV instrument. To achieve these aims we use a drone with its hardware and software suit, traditional survey techniques (bathymetric surveys, topographic GPS surveys and GIS techniques) and we implement a numerical modeling chain (coupling hydrodynamic, wave and sand transport modules) in order to study the impact of different type of storm events on a vulnerable coastal tract subject to coastal erosion. Aerial picture of one of the beaches studied

  10. The ISMAR high frequency coastal radar network: Monitoring surface currents for management of marine resources

    DEFF Research Database (Denmark)

    Carlson, Daniel Frazier

    2015-01-01

    The Institute of Marine Sciences (ISMAR) of the National Research Council of Italy (CNR) established a High Frequency (HF) Coastal Radar Network for the measurement of the velocity of surface currents in coastal seas. The network consists of four HF radar systems located on the coast of the Gargano...... Promontory (Southern Adriatic, Italy). The network has been operational since May 2013 and covers an area of approximately 1700 square kilometers in the Gulf of Manfredonia. Quality Assessment (QA) procedures are applied for the systems deployment and maintenance and Quality Control (QC) procedures...

  11. Estimating Areas of Vulnerability: Sea Level Rise and Storm Surge Hazards in the National Parks

    Science.gov (United States)

    Caffrey, M.; Beavers, R. L.; Slayton, I. A.

    2013-12-01

    The University of Colorado Boulder in collaboration with the National Park Service has undertaken the task of compiling sea level change and storm surge data for 105 coastal parks. The aim of our research is to highlight areas of the park system that are at increased risk of rapid inundation as well as periodic flooding due to sea level rise and storms. This research will assist park managers and planners in adapting to climate change. The National Park Service incorporates climate change data into many of their planning documents and is willing to implement innovative coastal adaptation strategies. Events such as Hurricane Sandy highlight how impacts of coastal hazards will continue to challenge management of natural and cultural resources and infrastructure along our coastlines. This poster will discuss the current status of this project. We discuss the impacts of Hurricane Sandy as well as the latest sea level rise and storm surge modeling being employed in this project. In addition to evaluating various drivers of relative sea-level change, we discuss how park planners and managers also need to consider projected storm surge values added to sea-level rise magnitudes, which could further complicate the management of coastal lands. Storm surges occurring at coastal parks will continue to change the land and seascapes of these areas, with the potential to completely submerge them. The likelihood of increased storm intensity added to increasing rates of sea-level rise make predicting the reach of future storm surges essential for planning and adaptation purposes. The National Park Service plays a leading role in developing innovative strategies for coastal parks to adapt to sea-level rise and storm surge, whilst coastal storms are opportunities to apply highly focused responses.

  12. The Development of Coastal and Marine

    Directory of Open Access Journals (Sweden)

    Suharto Widjojo

    2004-01-01

    Full Text Available Planning and development process of oastaland marine resources tends centralized and adopted top down policy, without any active participations from coastal and marine communities. In order to reach integrated and sustainable development in coastaland marine areas, people should have both complete and up to date information, so that planning and decision making for all aspect of the environment can be done easily. People should give a high attention of surveis, mappings, as well as science and technology of coastal and marine sectors, in order to change the paradigm of development from inland to coastal and marine. Moreover, people should give high attention of potential resources of coastal and marine areas.

  13. 3-Dimentional Mapping Coastal Zone using High Resolution Satellite Stereo Imageries

    International Nuclear Information System (INIS)

    Hong, Zhonghua; Liu, Fengling; Zhang, Yun

    2014-01-01

    The metropolitan coastal zone mapping is critical for coastal resource management, coastal environmental protection, and coastal sustainable development and planning. The results of geometric processing of a Shanghai coastal zone from 0.7-m-resolution QuickBird Geo stereo images are presented firstly. The geo-positioning accuracy of ground point determination with vendor-provided rigorous physical model (RPM) parameters is evaluated and systematic errors are found when compared with ground control points surveyed by GPS real-time kinematic (GPS-RTK) with 5cm accuracy. A bias-compensation process in image space that applies a RPM bundle adjustment to the RPM-calculated 3D ground points to correct the systematic errors is used to improve the geo-positioning accuracy. And then, a area-based matching (ABM) method is used to generated the densely corresponding points of left and right QuickBird images. With the densely matching points, the 3-dimentinal coordinates of ground points can be calculated by using the refined geometric relationship between image and ground points. At last step, digital surface model (DSM) can be achieved automatically using interpolation method. Accuracies of the DSM as assessed from independent checkpoints (ICPs) are approximately 1.2 m in height

  14. Risk analysis of environmental hazards at the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ho, V.S.; Johnson, D.H.

    1994-01-01

    In the late 1980s, a Level 1 internal event probabilistic risk assessment (PRA) was performed for the High-Flux Beam Reactor (HFBR), a US Department of Energy research reactor located at Brookhaven National Laboratory. Prior to the completion of that study, a level 1 PRA for external events was initiated, including environmental hazards such as fire, internal flooding, etc. Although this paper provides a brief summary of the risks from environmental hazards, emphasis will be placed on the methodology employed in utilizing industrial event databases for event frequency determination for the HFBR complex. Since the equipment in the HFBR is different from that of, say, a commercial nuclear power plant, the current approach is to categorize the industrial events according to the hazard initiators instead of categorizing by initiator location. But first a general overview of the analysis

  15. Coastal Geographic Structures in Coastal-Marine Environmental Management

    Science.gov (United States)

    Baklanov, P. Ya.; Ganzei, K. S.; Ermoshin, V. V.

    2018-01-01

    It has been proposed to distinguish the coastal geographic structures consisting of a spatial combination of three interconnected and mutually conditioned parts (coastal-territorial, coastal, coastal-marine), which are interlinked with each other by the cumulative effect of real-energy flows. Distinguishing specific resource features of the coastal structures, by which they play a connecting role in the complex coastalmarine management, has been considered. The main integral resource feature of the coastal structures is their connecting functions, which form transitional parts mutually connecting the coastal-territorial and coastalmarine environmental management.

  16. High-resolution marine flood modelling coupling overflow and overtopping processes: framing the hazard based on historical and statistical approaches

    Science.gov (United States)

    Nicolae Lerma, Alexandre; Bulteau, Thomas; Elineau, Sylvain; Paris, François; Durand, Paul; Anselme, Brice; Pedreros, Rodrigo

    2018-01-01

    A modelling chain was implemented in order to propose a realistic appraisal of the risk in coastal areas affected by overflowing as well as overtopping processes. Simulations are performed through a nested downscaling strategy from regional to local scale at high spatial resolution with explicit buildings, urban structures such as sea front walls and hydraulic structures liable to affect the propagation of water in urban areas. Validation of the model performance is based on hard and soft available data analysis and conversion of qualitative to quantitative information to reconstruct the area affected by flooding and the succession of events during two recent storms. Two joint probability approaches (joint exceedance contour and environmental contour) are used to define 100-year offshore conditions scenarios and to investigate the flood response to each scenario in terms of (1) maximum spatial extent of flooded areas, (2) volumes of water propagation inland and (3) water level in flooded areas. Scenarios of sea level rise are also considered in order to evaluate the potential hazard evolution. Our simulations show that for a maximising 100-year hazard scenario, for the municipality as a whole, 38 % of the affected zones are prone to overflow flooding and 62 % to flooding by propagation of overtopping water volume along the seafront. Results also reveal that for the two kinds of statistic scenarios a difference of about 5 % in the forcing conditions (water level, wave height and period) can produce significant differences in terms of flooding like +13.5 % of water volumes propagating inland or +11.3 % of affected surfaces. In some areas, flood response appears to be very sensitive to the chosen scenario with differences of 0.3 to 0.5 m in water level. The developed approach enables one to frame the 100-year hazard and to characterize spatially the robustness or the uncertainty over the results. Considering a 100-year scenario with mean sea level rise (0.6 m), hazard

  17. Perturbations of modeling and forecast of karachi coastal region seawater

    International Nuclear Information System (INIS)

    Hussain, M.A.; Abbas, S.; Ansari, M.R.K.; Zaffar, A.

    2013-01-01

    Global warming is now a stark reality affecting the humanity in many hazardous ways. Continuous floods in Pakistan in past two years are an eye opener in this regard. A great loss of property, agriculture and life as a result of these floods suggests for an intelligent monitoring of the future projections of climate change and global warming. This is necessary because the harmful impacts of natural hazards can be coped and alleviated with a good planning in advance. This monitoring demands for enhanced forecasting capabilities, use of better analytical techniques and a clear determination and study of the controlling factors. Karachi is a coastal city which is also the industrial hub of Pakistan. Moreover, it is among one of the largest metropolitans of the world. So expectedly is most suitable for the study of high level of complex natural and anthropogenic activities. It is peculiar in the sense that it has two summer seasons, a situation scarcely observable on the globe. Here, summer season seawater temperature fluctuations are studied with the help of Seasonal Autoregressive Integrated Moving Average (SARIMA) models and short- and long-term forecasts are made. Our short-term forecasts determine months for the summer wise temperature extremes. It appears that the months of May, June, July and August are the months of extreme temperature for the first summer and October is the month of extreme temperature for the second summer. The long-term forecasts predict that 2014, 2016, 2018, and 2019 will be the years of warm summers. The analysis appearing here would be useful for coastal-urban planners in emphasizing the impact of seawater extreme temperatures on urban industrial activities, etc. (author)

  18. Bangladesh’s dynamic coastal regions and sea-level rise

    Directory of Open Access Journals (Sweden)

    Hugh Brammer

    2014-01-01

    Full Text Available The physical geography of Bangladesh’s coastal area is more diverse and dynamic than is generally recognised. Failure to recognise this has led to serious misconceptions about the potential impacts of a rising sea-level on Bangladesh with global warming. This situation has been aggravated by accounts giving incorrect information on current rates of coastal erosion and land subsidence. This paper describes physical conditions within individual physiographic regions in Bangladesh’s coastal area based on ground-surveyed information, and it reviews possible area-specific mitigation measures to counter predicted rates of sea-level rise in the 21st century. Two important conclusions are drawn: the adoption of appropriate measures based on knowledge of the physical geography of potentially-affected areas could significantly reduce the currently-predicted displacement of many millions of people; and the impacts of a slowly-rising sea-level are currently much less than those generated by rapidly increasing population pressure on Bangladesh’s available land and water resources and by exposure to existing environmental hazards, and the latter problems need priority attention.

  19. Implementation of remote sensing data in research of coastal dynamics at the Baydaratskaya Bay, Kara Sea

    Science.gov (United States)

    Kuznetsov, D. E.; Belova, N.; Noskov, A.; Ogorodov, S.

    2011-12-01

    The development of Arctic coastal regions is now in progress due to significant amount of hydrocarbon deposits discovered. In high latitudes, natural hazards such as coastal erosion and thermoerosion, deflation, linear erosion and thermal denudation, ice gouging can make petroleum production and transport unprofitable. A prominent feature of Kara Sea, as well as other Arctic seas, is the development of coast in permafrost conditions. Despite the long ice period (up to 9 months), during the ice free period coastal dynamics are very intensive. If pipeline landfall site occurs at a shore section with high retreat rate (1 - 3m/year and higher), danger of pipeline damage due to exposure, line sagging and mechanical deformations becomes high. Protective measures may appear inefficient, since shore sections with active coastal erosion are subject not only to bluff retreat, but also to nearshore zone and coastal slope erosion. Exposed pipeline sections also get in danger of sea ice effect. For correct definition of coastal dynamics setting we use dual approach. The first part is perennial instrumental monitoring of shore morphology, relying on system of benchmarks used for repeated measures, together with in-field geomorphologic expertise. Measures include direct observations and geodetic leveling onshore and echosounding offshore. Being the most precise method, direct measurements are expensive. The other drawback is that they can't give an overview of long-span tendencies of coastal evolution for prolonged shore sections, which is essential for shore deformation forecast complying with lifetime of structures (usually 30 to 50 years). This is where the importance of the 2nd part, analysis of the different time remote sensing data, becomes decisive. Most important sources of remote sensing data include Corona imagery from 1960s - 70s, aerial photos of different times (but most of them are inaccessible for Russian Arctic coast), Landsat imagery (covering a long time span

  20. Seismic hazard studies for the high flux beam reactor at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Costantino, C.J.; Heymsfield, E.; Park, Y.J.; Hofmayer, C.H.

    1991-01-01

    This paper presents the results of a calculation to determine the site specific seismic hazard appropriate for the deep soil site at Brookhaven National Laboratory (BNL) which is to be used in the risk assessment studies being conducted for the High Flux Beam Reactor (HFBR). The calculations use as input the seismic hazard defined for the bedrock outcrop by a study conducted at Lawrence Livermore National Laboratory (LLNL). Variability in site soil properties were included in the calculations to obtain the seismic hazard at the ground surface and compare these results with those using the generic amplification factors from the LLNL study

  1. A Prototype Ontology Tool and Interface for Coastal Atlas Interoperability

    Science.gov (United States)

    Wright, D. J.; Bermudez, L.; O'Dea, L.; Haddad, T.; Cummins, V.

    2007-12-01

    While significant capacity has been built in the field of web-based coastal mapping and informatics in the last decade, little has been done to take stock of the implications of these efforts or to identify best practice in terms of taking lessons learned into consideration. This study reports on the second of two transatlantic workshops that bring together key experts from Europe, the United States and Canada to examine state-of-the-art developments in coastal web atlases (CWA), based on web enabled geographic information systems (GIS), along with future needs in mapping and informatics for the coastal practitioner community. While multiple benefits are derived from these tailor-made atlases (e.g. speedy access to multiple sources of coastal data and information; economic use of time by avoiding individual contact with different data holders), the potential exists to derive added value from the integration of disparate CWAs, to optimize decision-making at a variety of levels and across themes. The second workshop focused on the development of a strategy to make coastal web atlases interoperable by way of controlled vocabularies and ontologies. The strategy is based on web service oriented architecture and an implementation of Open Geospatial Consortium (OGC) web services, such as Web Feature Services (WFS) and Web Map Service (WMS). Atlases publishes Catalog Web Services (CSW) using ISO 19115 metadata and controlled vocabularies encoded as Uniform Resource Identifiers (URIs). URIs allows the terminology of each atlas to be uniquely identified and facilitates mapping of terminologies using semantic web technologies. A domain ontology was also created to formally represent coastal erosion terminology as a use case, and with a test linkage of those terms between the Marine Irish Digital Atlas and the Oregon Coastal Atlas. A web interface is being developed to discover coastal hazard themes in distributed coastal atlases as part of a broader International Coastal

  2. Eastern Africa Coastal Forest Programme

    OpenAIRE

    Younge, A.

    2002-01-01

    The eastern African coastal forest ecoregion is recognised as one of Africa’s centres of species endemism, and is distributed over six countries (Somalia, Kenya, Tanzania, Mozambique, Zimbabwe and Malawi). Most is found in Kenya, Tanzania and Mozambique, which form our focal region. The coastal forests are fragmented, small and surrounded by poor communities that have a high demand for land and forest resources. Although coastal forests have significant cultural and traditional...

  3. Engaging Communities Where They Are: New Hampshire's Coastal Adaptation Workgroup

    Science.gov (United States)

    Wake, C. P.; Godlewski, S.; Howard, K.; Labranche, J.; Miller, S.; Peterson, J.; Ashcraft, C.

    2015-12-01

    Rising seas are expected to have significant impacts on infrastructure and natural and cultural resources on New Hampshire's 18 mile open-ocean coastline and 235 miles of tidal shoreline. However, most coastal municipalities in NH lack financial and human resources to even assess vulnerability, let alone plan for climate change. This gap has been filled since 2010 by the NH Coastal Adaptation Workgroup (CAW), composed of 21 regional, state, and federal agencies, businesses, municipalities, academics, and NGOs that bring together stakeholders to discuss climate change challenges and collaboratively develop and implement effective coastal adaptation strategies. Our grassroot efforts serve to nurture existing and build new relationships, disseminate coastal watershed climate assessments, and tap into state, federal, and foundation funds for specific coastal adaptation projects. CAW has achieved collective impact in by connecting federal and state resources to communities by raising money and facilitating projects, translating climate science, educating community members, providing direct technical assistance and general capacity, and sharing success stories and lessons learned. Indicators of success include: 12 coastal communities improved their technical, financial, and human resources for climate adaptation; 80% of the 300 participants in the eleven CAW 'Water, Weather, Climate, and Community Workshops' have increased knowledge, motivation, and capacity to address climate adaptation; $3 million in grants to help communities with climate adaptation; winner of the 2015 EPA Region 1 Environmental Merit Award; and ongoing support for community-led adaptation efforts. In addition, the NH Climate Summit attracts over 100 participants each year, over 90% whom attest to the applicability of what they learn there. CAW also plays a central role in the Coastal Risks and Hazards Commission (established by the state legislature in 2013) to help communities and businesses prepare

  4. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions

    Science.gov (United States)

    Montiel, Daniel; Dimova, Natasha; Andreo, Bartolomé; Prieto, Jorge; García-Orellana, Jordi; Rodellas, Valentí

    2018-02-01

    Groundwater discharge in coastal karst aquifers worldwide represents a substantial part of the water budget and is a main pathway for nutrient transport to the sea. Groundwater discharge to the sea manifests under different forms, making its assessment very challenging particularly in highly heterogeneous coastal systems karst systems. In this study, we present a methodology approach to identify and quantify four forms of groundwater discharge in a mixed lithology system in southern Spain (Maro-Cerro Gordo) that includes an ecologically protected coastal area comprised of karstic marble. We found that groundwater discharge to the sea occurs via: (1) groundwater-fed creeks, (2) coastal springs, (3) diffuse groundwater seepage through seabed sediments, and (4) submarine springs. We used a multi-method approach combining tracer techniques (salinity, 224Ra, and 222Rn) and direct measurements (seepage meters and flowmeters) to evaluate the discharge. Groundwater discharge via submarine springs was the most difficult to assess due to their depth (up to 15 m) and extensive development of the springs conduits. We determined that the total groundwater discharge over the 16 km of shoreline of the study area was at least 11 ± 3 × 103 m3 d-1 for the four types of discharge assessed. Groundwater-derived nitrate (NO3-) fluxes to coastal waters over ∼3 km (or 20%) in a highly populated and farmed section of Maro-Cerro Gordo was 641 ± 166 mol d-1, or ∼75% of the total NO3- loading in the study area. We demonstrate in this study that a multi-method approach must be applied to assess all forms of SGD and derived nutrient fluxes to the sea in highly heterogeneous karst aquifer systems.

  5. Evaluation of Dynamic Coastal Response to Sea-level Rise Modifies Inundation Likelihood

    Science.gov (United States)

    Lentz, Erika E.; Thieler, E. Robert; Plant, Nathaniel G.; Stippa, Sawyer R.; Horton, Radley M.; Gesch, Dean B.

    2016-01-01

    Sea-level rise (SLR) poses a range of threats to natural and built environments, making assessments of SLR-induced hazards essential for informed decision making. We develop a probabilistic model that evaluates the likelihood that an area will inundate (flood) or dynamically respond (adapt) to SLR. The broad-area applicability of the approach is demonstrated by producing 30x30m resolution predictions for more than 38,000 sq km of diverse coastal landscape in the northeastern United States. Probabilistic SLR projections, coastal elevation and vertical land movement are used to estimate likely future inundation levels. Then, conditioned on future inundation levels and the current land-cover type, we evaluate the likelihood of dynamic response versus inundation. We find that nearly 70% of this coastal landscape has some capacity to respond dynamically to SLR, and we show that inundation models over-predict land likely to submerge. This approach is well suited to guiding coastal resource management decisions that weigh future SLR impacts and uncertainty against ecological targets and economic constraints.

  6. Do recreational activities affect coastal biodiversity?

    Science.gov (United States)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors (;diving; and ;fishing;). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  7. Coastal vulnerability across the Pacific dominated by El Niño-Southern Oscillation

    Science.gov (United States)

    Barnard, Patrick L.; Short, Andrew D.; Harley, Mitchell D.; Splinter, Kristen D.; Vitousek, Sean; Turner, Ian L.; Allan, Jonathan; Banno, Masayuki; Bryan, Karin R.; Doria, André; Hansen, Jeff E.; Kato, Shigeru; Kuriyama, Yoshiaki; Randall-Goodwin, Evan; Ruggiero, Peter; Walker, Ian J.; Heathfield, Derek K.

    2015-01-01

    To predict future coastal hazards, it is important to quantify any links between climate drivers and spatial patterns of coastal change. However, most studies of future coastal vulnerability do not account for the dynamic components of coastal water levels during storms, notably wave-driven processes, storm surges and seasonal water level anomalies, although these components can add metres to water levels during extreme events. Here we synthesize multi-decadal, co-located data assimilated between 1979 and 2012 that describe wave climate, local water levels and coastal change for 48 beaches throughout the Pacific Ocean basin. We find that observed coastal erosion across the Pacific varies most closely with El Niño/Southern Oscillation, with a smaller influence from the Southern Annular Mode and the Pacific North American pattern. In the northern and southern Pacific Ocean, regional wave and water level anomalies are significantly correlated to a suite of climate indices, particularly during boreal winter; conditions in the northeast Pacific Ocean are often opposite to those in the western and southern Pacific. We conclude that, if projections for an increasing frequency of extreme El Niño and La Niña events over the twenty-first century are confirmed, then populated regions on opposite sides of the Pacific Ocean basin could be alternately exposed to extreme coastal erosion and flooding, independent of sea-level rise.

  8. Evaluation of Tsunami Run-Up on Coastal Areas at Regional Scale

    Science.gov (United States)

    González, M.; Aniel-Quiroga, Í.; Gutiérrez, O.

    2017-12-01

    Tsunami hazard assessment is tackled by means of numerical simulations, giving as a result, the areas flooded by tsunami wave inland. To get this, some input data is required, i.e., the high resolution topobathymetry of the study area, the earthquake focal mechanism parameters, etc. The computational cost of these kinds of simulations are still excessive. An important restriction for the elaboration of large scale maps at National or regional scale is the reconstruction of high resolution topobathymetry on the coastal zone. An alternative and traditional method consists of the application of empirical-analytical formulations to calculate run-up at several coastal profiles (i.e. Synolakis, 1987), combined with numerical simulations offshore without including coastal inundation. In this case, the numerical simulations are faster but some limitations are added as the coastal bathymetric profiles are very simply idealized. In this work, we present a complementary methodology based on a hybrid numerical model, formed by 2 models that were coupled ad hoc for this work: a non-linear shallow water equations model (NLSWE) for the offshore part of the propagation and a Volume of Fluid model (VOF) for the areas near the coast and inland, applying each numerical scheme where they better reproduce the tsunami wave. The run-up of a tsunami scenario is obtained by applying the coupled model to an ad-hoc numerical flume. To design this methodology, hundreds of worldwide topobathymetric profiles have been parameterized, using 5 parameters (2 depths and 3 slopes). In addition, tsunami waves have been also parameterized by their height and period. As an application of the numerical flume methodology, the coastal parameterized profiles and tsunami waves have been combined to build a populated database of run-up calculations. The combination was tackled by means of numerical simulations in the numerical flume The result is a tsunami run-up database that considers real profiles shape

  9. Coping with Higher Sea Levels and Increased Coastal Flooding in New York City. Chapter 13

    Science.gov (United States)

    Gornitz, Vivien; Horton, Radley; Bader, Daniel A.; Orton, Philip; Rosenzweig, Cynthia

    2017-01-01

    The 837 km New York City shoreline is lined by significant economic assets and dense population vulnerable to sea level rise and coastal flooding. After Hurricane Sandy in 2012, New York City developed a comprehensive plan to mitigate future climate risks, drawing upon the scientific expertise of the New York City Panel on Climate Change (NPCC), a special advisory group comprised of university and private-sector experts. This paper highlights current NPCC findings regarding sea level rise and coastal flooding, with some of the City's ongoing and planned responses. Twentieth century sea level rise in New York City (2.8 cm/decade) exceeded the global average (1.7 cm/decade), underscoring the enhanced regional risk to coastal hazards. NPCC (2015) projects future sea level rise at the Battery of 28 - 53 cm by the 2050s and 46 - 99 cm by the 2080s, relative to 2000 - 2004 (mid-range, 25th - 75th percentile). High-end SLR estimates (90th percentile) reach 76 cm by the 2050s, and 1.9 m by 2100. Combining these projections with updated FEMA flood return period curves, assuming static flood dynamics and storm behavior, flood heights for the 100-year storm (excluding waves) attain 3.9-4.5 m (mid-range), relative to the NAVD88 tidal datum, and 4.9 m (high end) by the 2080s, up from 3.4 m in the 2000s. Flood heights with a 1% annual chance of occurrence in the 2000s increase to 2.0 - 5.4% (mid-range) and 12.7% per year (high-end), by the 2080s. Guided by NPCC (2013, 2015) findings, New York City has embarked on a suite of initiatives to strengthen coastal defenses, employing various approaches tailored to specific neighborhood needs. NPCC continues its collaboration with the city to investigate vulnerability to extreme climate events, including heat waves, inland floods and coastal storms. Current research entails higher-resolution neighborhood-level coastal flood mapping, changes in storm characteristics, surge height interactions with sea level rise, and stronger engagement

  10. Multi-hazard risk assessment of the Republic of Mauritius

    Science.gov (United States)

    Mysiak, Jaroslav; Galli, Alberto; Amadio, Mattia; Teatini, Chiara

    2013-04-01

    The Republic of Mauritius (ROM) is a small island developing state (SIDS), part of the Mascarene Islands in West Indian Ocean, comprised by Mauritius, Rodrigues, Agalega and St. Brandon islands and several islets. ROM is exposed to many natural hazards notably cyclones, tsunamis, torrential precipitation, landslides, and droughts; and highly vulnerable sea level rise (SLR) driven by human induced climate change. The multihazard risk assessment presented in this paper is aimed at identifying the areas prone to flood, inundation and landslide hazard, and inform the development of strategy for disaster risk reduction (DRR) and climate change adaptation (CCA). Climate risk analysis - a central component of the analysis - is one of the first comprehensive climate modelling studies conducted for the country. Climate change may lift the temperature by 1-2 degree Celsius by 2060-2070, and increase sizably the intensity and frequency of extreme precipitation events. According to the IPCC Forth Assessment Report (AR4), the expected Sea Level Rise (SLR) ranges between 16 and 49 cm. Individually or in combination, the inland flood, coastal inundation and landslide hazards affect large proportion of the country. Sea level rise and the changes in precipitation regimes will amplified existing vulnerabilities and create new ones. The paper outlines an Action plan for Disaster Risk Reduction that takes into account the likely effects of climate change. The Action Plan calls on the government to establish a National Platform for Disaster Risk Reduction as recommended by the Hyogo Framework for Action (HFA) 2005-2015. It consists of nine recommendations which, if put in practice, will significantly reduce the annual damage to natural hazard and produce additional (ancillary) benefits in economic, social and environmental terms.

  11. Chemicals in marine and coastal environments: the need for toxicological information

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.R.

    1982-04-01

    The tremendous increase in the number and amount of chemicals produced and transported in past years has resulted in increasing problems with accidental spills and uncontrolled waste sites involving these chemicals. The United States government has accordingly developed a mechanism for responding to such incidents. As part of that mechanism, the Hazardous Materials Response Project serves to coordinate scientific activities and facilitate in the gathering of scientific information needed for response to chemical spill or waste site emergencies involving coastal waters. Inevitably, much information of a toxicological nature is required to adequately evaluate potential hazards and appropriate responses. The Hazardous Materials Response Project is also able to provide a framework for significant progress in scientific understanding because it can bring together and encourage collaboration among experts in the various disciplines which are relevant to the environmental toxicological problems encountered.

  12. Hazard and risk of herbicides for marine microalgae.

    Science.gov (United States)

    Sjollema, Sascha B; Martínezgarcía, Gema; van der Geest, Harm G; Kraak, Michiel H S; Booij, Petra; Vethaak, A Dick; Admiraal, Wim

    2014-04-01

    Due to their specific effect on photosynthesis, herbicides pose a potential threat to coastal and estuarine microalgae. However, comprehensive understanding of the hazard and risk of these contaminants is currently lacking. Therefore the aim of the present study was to investigate the toxic effects of four ubiquitous herbicides (atrazine, diuron, Irgarol(®)1051 and isoproturon) and herbicide mixtures on marine microalgae. Using a Pulse Amplitude Modulation (PAM) fluorometry based bioassay we demonstrated a clear species and herbicide specific toxicity and showed that the current environmental legislation does not protect algae sufficiently against diuron and isoproturon. Although a low actual risk of herbicides in the field was demonstrated, monitoring data revealed that concentrations occasionally reach potential effect levels. Hence it cannot be excluded that herbicides contribute to observed changes in phytoplankton species composition in coastal waters, but this is likely to occur only occasionally. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  14. Assessing inundation hazards to nuclear powerplant sites using geologically extended histories of riverine floods, tsunamis, and storm surges

    Science.gov (United States)

    O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.

    2014-01-01

    Most nuclear powerplants in the United States are near rivers, large lakes, or oceans. As evident from the Fukushima Daiichi, Japan, disaster of 2011, these water bodies pose inundation threats. Geologic records can extend knowledge of rare hazards from flooding, storm surges, and tsunamis. This knowledge can aid in assessing the safety of critical structures such as dams and energy plants, for which even remotely possible hazards are pertinent. Quantitative analysis of inundation from geologic records perhaps is most developed for and applied to riverine flood hazards, but because of recent natural disasters, geologic investigations also are now used widely for understanding tsunami hazards and coastal storm surges.

  15. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies.

  16. Valuing the risk reduction of coastal ecosystems in data poor environments: an application in Quintana Roo, Mexico

    Science.gov (United States)

    Reguero, B. G.; Toimil, A.; Escudero, M.; Menendez, P.; Losada, I. J.; Beck, M. W.; Secaira, F.

    2016-12-01

    Coastal risks are increasing from both economic growth and climate change. Understanding such risks is critical to assessing adaptation needs and finding cost effective solutions for coastal sustainability. Interest is growing in the role that nature-based measures can play in adapting to climate change. Here we apply and advance a framework to value the risk reduction potential of coastal ecosystems, with an application in a large scale domain, the coast of Quintana Roo, México, relevant for coastal policy and management, but with limited data. We build from simple to use open-source tools. We first assess the hazards using stochastic simulation of historical tropical storms and inferring two scenarios of future climate change for the next 20 years, which include the effect of sea level rise and changes in frequency and intensity of storms. For each storm, we obtain wave and surge fields using parametrical models, corrected with pre-computed static wind surge numerical simulations. We then assess losses on capital stock and hotels and calculate total people flooded, after accounting for the effect of coastal ecosystems in reducing coastal hazards. We inferred the location of major barrier reefs and dune systems using available satellite imagery, and sections of bathymetry and elevation data. We also digitalized the surface of beaches and location of coastal structures from satellite imagery. In a poor data environment, where there is not bathymetry data for the whole of the region, we inferred representative coastal profiles of coral reef and dune sections and validated at available sections with measured data. Because we account for the effect of reefs, dunes and mangroves in coastal profiles every 200 m of shoreline, we are able to estimate the value of such ecosystems by comparing with benchmark simulations when we take them out of the propagation and flood model. Although limited in accuracy in comparison to more complex modeling, this approach is able to

  17. The protective role of coastal marshes: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Christine C Shepard

    Full Text Available BACKGROUND: Salt marshes lie between many human communities and the coast and have been presumed to protect these communities from coastal hazards by providing important ecosystem services. However, previous characterizations of these ecosystem services have typically been based on a small number of historical studies, and the consistency and extent to which marshes provide these services has not been investigated. Here, we review the current evidence for the specific processes of wave attenuation, shoreline stabilization and floodwater attenuation to determine if and under what conditions salt marshes offer these coastal protection services. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a thorough search and synthesis of the literature with reference to these processes. Seventy-five publications met our selection criteria, and we conducted meta-analyses for publications with sufficient data available for quantitative analysis. We found that combined across all studies (n = 7, salt marsh vegetation had a significant positive effect on wave attenuation as measured by reductions in wave height per unit distance across marsh vegetation. Salt marsh vegetation also had a significant positive effect on shoreline stabilization as measured by accretion, lateral erosion reduction, and marsh surface elevation change (n = 30. Salt marsh characteristics that were positively correlated to both wave attenuation and shoreline stabilization were vegetation density, biomass production, and marsh size. Although we could not find studies quantitatively evaluating floodwater attenuation within salt marshes, there are several studies noting the negative effects of wetland alteration on water quantity regulation within coastal areas. CONCLUSIONS/SIGNIFICANCE: Our results show that salt marshes have value for coastal hazard mitigation and climate change adaptation. Because we do not yet fully understand the magnitude of this value, we propose that decision

  18. Environmental literacy in agriculture and coastal areas

    Science.gov (United States)

    Pujianti, N.; Munandar, A.; Surakusumah, W.

    2018-05-01

    This research aim to investigate the environmental literacy of junior high school students in agricultural and coastal areas in Subang based on knowledge, cognitive skill and attitudes toward to environment. This research used descriptive method. The subjects of the research were 7 grade students of junior high school and involved 62 participants in agriculture area and 64 participants in coastal area. The instrument of environment literacy adapted from Middle School Environment Literacy Survey (MSELS) and adapted to the context of agricultural and coastal area. The results showed that: environmental literacy in agricultural areas is 169.30 with moderate category and environmental literacy in the coastal area is 152.61 in the moderate category.

  19. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities.

    Directory of Open Access Journals (Sweden)

    Thomas Prime

    Full Text Available Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.

  20. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities.

    Science.gov (United States)

    Prime, Thomas; Brown, Jennifer M; Plater, Andrew J

    2015-01-01

    Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.

  1. 77 FR 66638 - The Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office...

    Science.gov (United States)

    2012-11-06

    ... Standard on Process Safety Management of Highly Hazardous Chemicals; Extension of the Office of Management...) approval of the information collection requirements specified in the Standard on Process Safety Management...: The Standard on Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). OMB Number...

  2. HANZE: a pan-European database of exposure to natural hazards and damaging historical floods since 1870

    Science.gov (United States)

    Paprotny, Dominik; Morales-Nápoles, Oswaldo; Jonkman, Sebastiaan N.

    2018-03-01

    The influence of social and economic change on the consequences of natural hazards has been a matter of much interest recently. However, there is a lack of comprehensive, high-resolution data on historical changes in land use, population, or assets available to study this topic. Here, we present the Historical Analysis of Natural Hazards in Europe (HANZE) database, which contains two parts: (1) HANZE-Exposure with maps for 37 countries and territories from 1870 to 2020 in 100 m resolution and (2) HANZE-Events, a compilation of past disasters with information on dates, locations, and losses, currently limited to floods only. The database was constructed using high-resolution maps of present land use and population, a large compilation of historical statistics, and relatively simple disaggregation techniques and rule-based land use reallocation schemes. Data encompassed in HANZE allow one to "normalize" information on losses due to natural hazards by taking into account inflation as well as changes in population, production, and wealth. This database of past events currently contains 1564 records (1870-2016) of flash, river, coastal, and compound floods. The HANZE database is freely available at https://data.4tu.nl/repository/collection:HANZE" target="_blank">https://data.4tu.nl/repository/collection:HANZE.

  3. Probabilistic tsunami hazard assessment based on the long-term evaluation of subduction-zone earthquakes along the Sagami Trough, Japan

    Science.gov (United States)

    Hirata, K.; Fujiwara, H.; Nakamura, H.; Osada, M.; Ohsumi, T.; Morikawa, N.; Kawai, S.; Maeda, T.; Matsuyama, H.; Toyama, N.; Kito, T.; Murata, Y.; Saito, R.; Takayama, J.; Akiyama, S.; Korenaga, M.; Abe, Y.; Hashimoto, N.; Hakamata, T.

    2017-12-01

    30 years (from Jan. 1, 2014). Present-time hazard model showed relatively high possibility over 0.1% along the Boso Peninsula. Long-time averaged hazard model showed highest possibility over 3% along the Boso Peninsula and relatively high possibility over 0.1 % along wide coastal areas on Pacific side from Kii Peninsula to Fukushima prefecture.

  4. The additive hazards model with high-dimensional regressors

    DEFF Research Database (Denmark)

    Martinussen, Torben; Scheike, Thomas

    2009-01-01

    This paper considers estimation and prediction in the Aalen additive hazards model in the case where the covariate vector is high-dimensional such as gene expression measurements. Some form of dimension reduction of the covariate space is needed to obtain useful statistical analyses. We study...... model. A standard PLS algorithm can also be constructed, but it turns out that the resulting predictor can only be related to the original covariates via time-dependent coefficients. The methods are applied to a breast cancer data set with gene expression recordings and to the well known primary biliary...

  5. Natural hazard risk perception of Italian population: case studies along national territory.

    Science.gov (United States)

    Gravina, Teresita; Tupputi Schinosa, Francesca De Luca; Zuddas, Isabella; Preto, Mattia; Marengo, Angelo; Esposito, Alessandro; Figliozzi, Emanuele; Rapinatore, Matteo

    2015-04-01

    Risk perception is judgment that people make about the characteristics and severity of risks, in last few years risk perception studies focused on provide cognitive elements to communication experts responsible in order to design citizenship information and awareness appropriate strategies. Several authors in order to determine natural hazards risk (Seismic, landslides, cyclones, flood, Volcanic) perception used questionnaires as tool for providing reliable quantitative data and permitting comparison the results with those of similar surveys. In Italy, risk perception studies based on surveys, were also carried out in order to investigate on national importance Natural risk, in particular on Somma-Vesuvio and Phlegrean Fields volcanic Risks, but lacked risk perception studies on local situation distributed on whole national territory. National importance natural hazard were frequently reported by national mass media and there were debate about emergencies civil protection plans, otherwise could be difficult to obtain information on bonded and regional nature natural hazard which were diffuses along National territory. In fact, Italian peninsula was a younger geological area subjected to endogenous phenomena (volcanoes, earthquake) and exogenous phenomena which determine land evolution and natural hazard (landslide, coastal erosion, hydrogeological instability, sinkhole) for population. For this reason we decided to investigate on natural risks perception in different Italian place were natural hazard were taken place but not reported from mass media, as were only local relevant or historical event. We carried out surveys in different Italian place interested by different types of natural Hazard (landslide, coastal erosion, hydrogeological instability, sinkhole, volcanic phenomena and earthquake) and compared results, in order to understand population perception level, awareness and civil protection exercises preparation. Our findings support that risks

  6. Hydrodynamic Based Decision Making Framework for Impact Assessment of Extreme Storm Events on Coastal Communities

    Science.gov (United States)

    Nazari, R.; Miller, K.; Hurler, C.

    2015-12-01

    Coastal and inland flooding has been a problematic occurrence, specifically over the past century. Global warming has caused an 8 inch sea level rise since 1990, which made the coastal flood zone wider, deeper and more damaging. Additionally, riverine flooding is extremely damaging to the country's substructure and economy as well which causes river banks to overflow, inundating low-lying areas. New Jersey and New York are two areas at severe risk for flood hazard, sea level rise, land depletion and economic loss which are the main study area of this work. A decision making framework is being built to help mitigate the impacts of the environmental and economical dangers of storm surges, sea level rise, flashfloods and inland flooding. With vigorous research and the use of innovative hydrologic modeling software, this tool can be built and utilized to form resiliency for coastal communities. This will allow the individuals living in a coastal community to understand the details of climatic hazards in their area and risks associated to their communities. This tool will also suggest the best solution for the problem each community faces. Atlantic City and New York City has been modeled and compared using potential storm events and the outcomes have been analyzed. The tool offers all the possible solutions for the type of flooding that occurs. Green infrastructure such as rain gardens, detention basins and green roofs can be used as small scale solutions. Greater scale solutions such as removable flood barriers, concrete walls and height adjustable walls will also be displayed if that poses as the best solution. The results and benefits from the simulation and modeling techniques, will allow coastal communities to choose the most appropriate method for building a long lasting and sustainable resilience plan in the future.

  7. A coastal hazards data base for the US East Coast

    Energy Technology Data Exchange (ETDEWEB)

    Gornitz, V.M. [National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; White, T.W. [Oak Ridge National Lab., TN (United States); Daniels, R.C. [Energy, Environment and Resources Center, University of Tennessee, Knoxville, TN (United States)

    1992-08-01

    This document describes the contents of a digital data base that may be used by raster or vector geographic information systems (GIS) and non-GIS data bases to assess the risk of coastlines to erosion or sea level rise. The data base integrates point, line, and polygon data for the US East Coast into 0.250 latitude {times} 0.250 longitude grid cells. Each coastal grid cell contains data on geology, geomorpholog,elevation, wave heights, tidal ranges, shoreline displacement (erosion), and sea-level trends. These data are available as a Numeric Data Package (NDP), from the Carbon Dioxide Information Analysis Center, consisting of this document and a set of computerized data files. The documentation contains information on the methods used in calculating each variable, detailed descriptions of file contents and formats, and a discussion of the sources, restrictions, and limitations of the data. The data files are available on magnetic tape, on floppy diskettes, or through INTERNET.

  8. A coastal hazards data base for the US East Coast

    Energy Technology Data Exchange (ETDEWEB)

    Gornitz, V.M. (National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies); White, T.W. (Oak Ridge National Lab., TN (United States)); Daniels, R.C. (Energy, Environment and Resources Center, University of Tennessee, Knoxville, TN (United States))

    1992-08-01

    This document describes the contents of a digital data base that may be used by raster or vector geographic information systems (GIS) and non-GIS data bases to assess the risk of coastlines to erosion or sea level rise. The data base integrates point, line, and polygon data for the US East Coast into 0.250 latitude [times] 0.250 longitude grid cells. Each coastal grid cell contains data on geology, geomorpholog,elevation, wave heights, tidal ranges, shoreline displacement (erosion), and sea-level trends. These data are available as a Numeric Data Package (NDP), from the Carbon Dioxide Information Analysis Center, consisting of this document and a set of computerized data files. The documentation contains information on the methods used in calculating each variable, detailed descriptions of file contents and formats, and a discussion of the sources, restrictions, and limitations of the data. The data files are available on magnetic tape, on floppy diskettes, or through INTERNET.

  9. Nationwide high-resolution mapping of hazards in the Philippines (Plinius Medal Lecture)

    Science.gov (United States)

    Lagmay, Alfredo Mahar Francisco A.

    2015-04-01

    The Philippines being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Situated in a region where severe weather and geophysical unrest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. Recently, the Philippines put in place a responsive program called the Nationwide Operational Assessment of Hazards (NOAH) for disaster prevention and mitigation. The efforts of Project NOAH are an offshoot of lessons learned from previous disasters that have inflicted massive loss of lives and costly damage to property. Several components of the NOAH program focus on mapping of landslide, riverine flood and storm surge inundation hazards. By simulating hazards phenomena over IFSAR- and LiDAR-derived digital terrain models (DTMs) using high-performance computers, multi-hazards maps of 1:10,000 scale, have been produced and disseminated to local government units through a variety of platforms. These detailed village-level (barangay-level) maps are useful to identify safe evacuation sites, planning emergency access routes and prepositioning of search and rescue and relief supplies during times of crises. They are also essential for long-term development planning of communities. In the past two years, NOAH was instrumental in providing timely, site-specific, and understandable hazards information to the public, considered as best practice in disaster risk reduction management (DRR). The use of advanced science and technology in the country's disaster prevention efforts is imperative to successfully mitigate the adverse impacts of natural hazards and should be a continuous quest - to find the best products, put forth in the forefront of battle against

  10. Extreme oceanographic forcing and coastal response due to the 2015-2016 El Niño.

    Science.gov (United States)

    Barnard, Patrick L; Hoover, Daniel; Hubbard, David M; Snyder, Alex; Ludka, Bonnie C; Allan, Jonathan; Kaminsky, George M; Ruggiero, Peter; Gallien, Timu W; Gabel, Laura; McCandless, Diana; Weiner, Heather M; Cohn, Nicholas; Anderson, Dylan L; Serafin, Katherine A

    2017-02-14

    The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015-2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.

  11. Regionalization and Evaluation of Impacts of Climate Change on Mexican Coasts

    Science.gov (United States)

    Nava-Sanchez, E. H.; Murillo-Jimenez, J. M.; Godinez-Orta, L.; Morales-Perez, R. A.

    2009-04-01

    Mexican coasts exhibit a high variety of geoforms and processes, and consequently, are exposed to a variability of types and impact levels of geological hazards. Tropical cyclones are the most devastating hazards for the Mexican coast, although, impact levels are higher on the southern coast of both Atlantic and Pacific oceans. The second dangerous geo-hazards are earthquakes and tsunamis, which affect all Pacific coast, causing more damage the earthquakes generated in the Cocos Trench. For seismic hazards, there is a regionalization of the Mexican territory, however, even though the high levels of damages caused by other natural hazards, there is a lack of initiatives for performing atlas of natural hazards or coastal management plans. Exceptions are the local scale atlas of natural hazards by the Mexican Geological Survey or some other local scale atlas made with several errors by non experience private consultant companies. Our work shows results of analyses of coastal geological hazards associated to global warming such as the sea level rise, and the increase in strength of some coastal processes. Initially, due to the high diversity in coastal environments for the Mexican coast, it was considered that, a regional characterization of the coastal zone, and the gathering of environmental data for determining levels of impact of the various coastal hazards, as an evaluation of coastal vulnerability. Thus, the basic criteria for defining Coastal Regions, in order of importance, were the following: geomorphology, climate, geology, tectonics, and oceanography. Also, some anthropogenic factors were taken in account for the coastal regionalization, such as civil construction along the coastline, land used and modification of the fluvial system. The analysis of such criteria, allows us to classify the Mexican coasts in 10 Coastal Regions. On the Pacific coast regions are: (I) Pacific Coast of Baja California, (II) Gulf Coast of Baja California, (III) Coastal Plain of

  12. West India coastal current and Lakshadweep High/Low

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    basin is driven by seasonal monsoon winds. As a result, its wind-dirven near-surface circulation consists primarily of annual and semi-annual long, equatorially-trapped Kelvin and Rossby waves, and coastally-trapped Kelvin waves. In terms of these waves...

  13. Wave climate change, coastline response and hazard prediction in New South Wales, Australia

    International Nuclear Information System (INIS)

    Goodwin, Ian D.; Verdon, Danielle; Cowell, Peter

    2007-01-01

    Full text: Full text: Considerable research effort has been directed towards understanding and the gross prediction of shoreline response to sea level rise (eg. Cowell ef a/. 2003a, b). In contrast, synoptic prediction of changes in the planform configuration of shorelines in response to changes in wind and wave climates over many decades has been limited by the lack of geohistorical data on shoreline alignment evolution and long time series of wave climate. This paper presents new data sets on monthly mean wave direction variability based on: a. Waverider buoy data; b. a reconstruction of monthly mid-shelf wave direction, 1877 to 2002 AD from historical MSLP data (Goodwin 2005); and c. a multi-decadal reconstruction of wave direction, in association with the Interdecadal Pacific Oscillation and the Southern Annular Mode of climate variability, covering the past millennium. A model of coastline response to the wave climate variability is presented for northern and central New South Wales (NSW) for decadal to multi-decadal time scales, and is based on instrumental and geohistorical data. The sensitivity of the coastline position and alignment, and beach state to mean and extreme wave climate changes is demonstrated (e.g. Goodwin et al. 2006). State changes in geometric shoreline alignment rotation, sand volume (progradation/recession) for NSW and mean wave direction, are shown to be in agreement with the low-frequency change in Pacific-wide climate. Synoptic typing of climate patterns using Self Organised Mapping methods is used to downscale CSIRO GCM output for this century. The synoptic types are correlated to instrumental wave climate data and coastal behaviour. The shifts in downscaled synoptic types for 2030 and 2070 AD are then used as the basis for predicting mean wave climate changes, coastal behaviour and hazards along the NSW coastline. The associated coastal hazards relate to the definition of coastal land loss through rising sea levels and shoreline

  14. Determination of potential NPP site with GIS in the coastal Provinces West Kalimantan

    International Nuclear Information System (INIS)

    Heni Susiati

    2014-01-01

    The IAEA has published the IAEA Safety Guide NS-R-3 and BAPETEN has issued the Chairman Decree (Perka BAPETEN No. 5, 2007) on site evaluation for NPP to ensure safe and secure operation of NPP’s that will be built. In relation with a preparatory program of NPP in Kalimantan Barat, BATAN conducted site survey along the coastal area of Ketapang and Kayong Utara, Kalimantan Barat. This study is aimed to get potential sites along the coastal area of Ketapang and Kayong Utara based on weighting of criteria and spatial modeling and GIS. Determination of potential site is done based on following criteria: slope, lithology, geology, topography, rainfall, hazard vulnerability, proximity to water bodies, distance of residential areas, land use, peat existence, hydrogeology, etc. Based on weighting and scoring, the study identified 4 potential sites on the coastal area of Kendawangan, Sukadana, Matan Hilir Utara and Matan Hilir Selatan. (author)

  15. Strategy for integration of coastal culture in learning process of mathematics in junior high school

    Science.gov (United States)

    Suyitno, H.; Zaenuri; Florentinus, T. S.; Zakaria, E.

    2018-03-01

    Traditional life in the fishing family is part of the local culture. Many School-age children in the fishing family drop-outs due to lack of parents motivation and the environment was less supportive. The problems were: (1) How the strategy of integration of local culture in learning process of mathematics in Junior High School (JHS)? (2) How to prepare the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture, that has an ISBN, has international level, applicable, and in accordance with the current curriculum? The purposes of this research were: (1) to obtain the strategy of integration of local culture in learning process of mathematics in JHS, through FGD between UNNES and UKM; (2) to obtain the experts validation, through Focus Group Discussion (FGD) between UNNES and UKM toward the draft of the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture; (3) produces Mathematics Student’s Book for grade 7 SMP which based on coastal culture and has an ISBN, international, applicable, and in accordance with the curriculum. The research activity was a qualitative research, so that the research methods include: (1) data reduction, (2) display data, (3) data interpretation, and (4) conclusion/verification. The main activities of this research: drafting the Mathematics Student’s Book of Grade 7 which based on coastal culture; get the validation from international partners;conducting FGD at Education Faculty of Universiti Kebangsaan Malaysia through the program of visiting lecturers for getting the Mathematics Student’s Book of grade 7 which based on coastal culture, registering for ISBN, and publishing the reasearch results in International seminar and International Journals. The results of this research were as follows. (1) Getting a good strategy for integration of local culture in learning process of mathematics in JHS. (2) Getting the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture

  16. Evaluation of seismic hazards for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The main objective of this Safety Guide is to provide recommendations on how to determine the ground motion hazards for a plant at a particular site and the potential for surface faulting, which could affect the feasibility of construction and safe operation of a plant at that site. The guidelines and procedures presented in this Safety Guide can appropriately be used in evaluations of site suitability and seismic hazards for nuclear power plants in any seismotectonic environment. The probabilistic seismic hazard analysis recommended in this Safety Guide also addresses the needs for seismic hazard analysis of external event PSAs conducted for nuclear power plants. Many of the methods and processes described may also be applicable to nuclear facilities other than power plants. Other phenomena of permanent ground displacement (liquefaction, slope instability, subsidence and collapse) as well as the topic of seismically induced flooding are treated in Safety Guides relating to foundation safety and coastal flooding. Recommendations of a general nature are given in Section 2. Section 3 discusses the acquisition of a database containing the information needed to evaluate and address all hazards associated with earthquakes. Section 4 covers the use of this database for construction of a seismotectonic model. Sections 5 and 6 review ground motion hazards and evaluations of the potential for surface faulting, respectively. Section 7 addresses quality assurance in the evaluation of seismic hazards for nuclear power plants

  17. Environmental proteomics of microbial plankton in a highly productive coastal upwelling system

    Energy Technology Data Exchange (ETDEWEB)

    Sowell, Sarah [Oregon State University, Corvallis; Abraham, Paul E [ORNL; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Smith, Daniel [Oregon State University, Corvallis; Barofsky, Douglas [Oregon State University, Corvallis; Giovannoni, Stephen [Oregon State University, Corvallis

    2011-01-01

    Metaproteomics is one of a suite of new approaches providing insights into the activities of microorganisms in natural environments. Proteins, the final products of gene expression, indicate cellular priorities, taking into account both transcriptional and posttranscriptional control mechanisms that control adaptive responses. Here, we report the proteomic composition of the o 1.2 lm fraction of a microbial community from Oregon coast summer surface waters, detected with two-dimensional liquid chromatography coupled with electrospray tandem mass spectrometry. Spectra corresponding to proteins involved in protein folding and biosynthesis, transport, and viral capsid structure were the most frequently detected. A total of 36% of all the detected proteins were best matches to the SAR11 clade, and other abundant coastal microbial clades were also well represented, including the Roseobacter clade (17%), oligotrophic marine gammaproteobacteria group (6%), OM43 clade (1%). Viral origins were attributed to 2.5% of proteins. In contrast to oligotrophic waters, phosphate transporters were not highly detected in this nutrient-rich system. However, transporters for amino acids, taurine, polyamines and glutamine synthetase were among the most highly detected proteins, supporting predictions that carbon and nitrogen are more limiting than phosphate in this environment. Intriguingly, one of the highly detected proteins was methanol dehydrogenase originating from the OM43 clade, providing further support for recent reports that the metabolism of one-carbon compounds by these streamlined methylotrophs might be an important feature of coastal ocean biogeochemistry.

  18. Sea-Level Rise Implications for Coastal Protection from Southern Mediterranean to the U.S.A. Atlantic Coast

    Science.gov (United States)

    Ismail, Nabil; Williams, Jeffress

    2013-04-01

    demonstrated in autumn 2010 when the storm Becky reached the Santander Bay, Spain. As reported by THESEUS, the FP-7 EU project (2009-2013), the peak of nearshore significant wave height was about 8 m, the storm surge reached 0.6 m, with tidal level of 90% of the tidal range. The latest storm in December 2010, which hit the Nile Delta and which was the severest in the last decades showed that generated surges, up to 1.0 m as well as a maximum of 7.5 m wave height in the offshore of Alexandria presented a major natural hazard in coastal zones in terms of wave run up and overtopping. Along the US Atlantic Coast, where Hurricane Sandy this autumn and Hurricane Irene in 2011 left chaos in their wakes, a perfect storm of rising sea levels and dense coastal development at high risk . Super storm Sandy sent a storm surge of 4-5 m onto New Jersey's and New York's fragile barrier island and urban shorelines, causing an estimated 70 billion (USD) in damages and widespread misery for coastal inhabitants. Sea Level Rise and Impact on Upgrade of Coastal Structures: Williams (2013) highlights in his recent paper that adaptation planning on national scales in the USA for projected sea-level rise of 0.5-2 m by A.D. 2100 is advisable. Further he points out that sea-level rise, as a major driving force of change for coastal regions, is becoming increasingly important as a hazard to humans and urban areas in the coastal zone worldwide as global climate change takes effect. During the 20th century, sea level began rising at a global average rate of 1.7 mm/yr (). The current average rise rate is 3.1 mm/yr, a 50% increase over the past two decades. Many regions are experiencing even greater rise rates due to local geophysical (e.g., Louisiana, Chesapeake Bay) and oceanographic (mid-Atlantic coast) forces. Further the Mississippi River Delta plain region of Louisiana has much higher than average rates of LRSL rise due to geologic factors such as subsidence and man-made alterations to the delta plain

  19. Geologic and Geophysicsal Studies of Natural Hazards and Risks in the Gulf of Peter the Great, Japan Sea

    Science.gov (United States)

    Anokhin, Vladimir; Shcherbakov, Viktor; Motychko, Viktor; Slinchenkov, Vladimir; Sokolov, Georgy; Kotov, Sergey; Kartashov, Sergey

    2013-04-01

    The area of the Gulf of Peter the Great is socially, economically and culturally one of the most important regions for the Russian Far East. At the same time, there have been reported palpable natural hazards, which pose a real threat to local infrastructure. Complex field team of the Gramaberg VNIIOkeangeologia institute carried out geological and geophysical studies of natural hazards in the water area and coastal zone of the gulf in the summer and autumn of 2012. The research program included - geodetic deformation monitoring of the coastal zone by the HDS 3000 Leica tachometer; - echo sounding of the underwater part of the coastal slope by the LCX-37C depth sounder equipped with active external 12-channel GPS Lowrance antenna LGC-3000; - high-frequency acoustic profiling by GeoPulse Subbotom Profilier with oscillator frequency of 12.2 kHz for the study of bottom sediments to a depth of 40 m; - hydromagnetic measurements by SeaSPY Marine Magnetics magnetometer for investigation of deep geological structure; - sonar measurements by GEO SM C-MAX, 325 kHz frequency emitters for studying seafloor features; - studies of the water column (sensing and sampling); - bottom sediment sampling. Analytic work was performed by mass spectrometry, atomic absorption spectrophotometry, chromatography, gas chromatography-mass spectrometry, gamma spectrometry and included the following. For water - the content of Fe, Mn, Cd, As, Pb, Cu, Co, Ni, Cr, Zn, Hg in solution and in suspension, polycyclic aromatic compounds, organochlorine pesticides, oil, methane. For sediments - grade analysis, mineralogical analysis of sand, determination of Fe, Mn, Cd, As, Pb, Cu, Co, Ni, Cr, Zn, Hg content; identification of petroleum products, polychlorinated biphenyls, organochlorine pesticides, the specific activity of Cs-137. As a result, a set of geological maps was composed: maps of pre-Quaternary and Quaternary rocks and deposits, lithological map, geomorphological map, map of engineering

  20. Maximum flood hazard assessment for OPG's deep geologic repository for low and intermediate level waste

    International Nuclear Information System (INIS)

    Nimmrichter, P.; McClintock, J.; Peng, J.; Leung, H.

    2011-01-01

    Ontario Power Generation (OPG) has entered a process to seek Environmental Assessment and licensing approvals to construct a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW) near the existing Western Waste Management Facility (WWMF) at the Bruce nuclear site in the Municipality of Kincardine, Ontario. In support of the design of the proposed DGR project, maximum flood stages were estimated for potential flood hazard risks associated with coastal, riverine and direct precipitation flooding. The estimation of lake/coastal flooding for the Bruce nuclear site considered potential extreme water levels in Lake Huron, storm surge and seiche, wind waves, and tsunamis. The riverine flood hazard assessment considered the Probable Maximum Flood (PMF) within the local watersheds, and within local drainage areas that will be directly impacted by the site development. A series of hydraulic models were developed, based on DGR project site grading and ditching, to assess the impact of a Probable Maximum Precipitation (PMP) occurring directly at the DGR site. Overall, this flood assessment concluded there is no potential for lake or riverine based flooding and the DGR area is not affected by tsunamis. However, it was also concluded from the results of this analysis that the PMF in proximity to the critical DGR operational areas and infrastructure would be higher than the proposed elevation of the entrance to the underground works. This paper provides an overview of the assessment of potential flood hazard risks associated with coastal, riverine and direct precipitation flooding that was completed for the DGR development. (author)

  1. Identification and delineation of areas flood hazard using high accuracy of DEM data

    Science.gov (United States)

    Riadi, B.; Barus, B.; Widiatmaka; Yanuar, M. J. P.; Pramudya, B.

    2018-05-01

    Flood incidents that often occur in Karawang regency need to be mitigated. These expectations exist on technologies that can predict, anticipate and reduce disaster risks. Flood modeling techniques using Digital Elevation Model (DEM) data can be applied in mitigation activities. High accuracy DEM data used in modeling, will result in better flooding flood models. The result of high accuracy DEM data processing will yield information about surface morphology which can be used to identify indication of flood hazard area. The purpose of this study was to identify and describe flood hazard areas by identifying wetland areas using DEM data and Landsat-8 images. TerraSAR-X high-resolution data is used to detect wetlands from landscapes, while land cover is identified by Landsat image data. The Topography Wetness Index (TWI) method is used to detect and identify wetland areas with basic DEM data, while for land cover analysis using Tasseled Cap Transformation (TCT) method. The result of TWI modeling yields information about potential land of flood. Overlay TWI map with land cover map that produces information that in Karawang regency the most vulnerable areas occur flooding in rice fields. The spatial accuracy of the flood hazard area in this study was 87%.

  2. Hazards and hazard combinations relevant for the safety of nuclear power plants

    Science.gov (United States)

    Decker, Kurt; Brinkman, Hans; Raimond, Emmanuel

    2017-04-01

    exclusive (e.g., extremely high air temperature and surface ice). Our dataset further provides information on hazard combinations which are more likely to occur than just by random coincidence. 577 correlations between individual hazards are identified by expert opinion and shown in a cross-correlation chart. Combinations discriminate between: (1) causally connected hazards (cause-effect relation) where one hazard (e.g., costal erosion) may be caused by another hazard (e.g., storm surge); or where one hazard (e.g., high wind) is a prerequisite for a correlated hazard (e.g., storm surge). The identified causal links are not commutative. (2) Associated hazards ("contemporary" events) which are probable to occur at the same time due to a common root cause (e.g., a cold front of a meteorological low pressure area which leads to a drop of air pressure, high wind, thunderstorm, lightning, heavy rain and hail). The root cause may not necessarily be regarded as a hazard by itself. The hazard list and the hazard correlation chart may serve as a starting point for the hazard analysis process for nuclear installations in Level 1 PSA as outlined by IAEA (2010), the definition of design basis for nuclear reactors, and the assessment of design extension conditions as required by WENRA-RHWG (2014). It may further be helpful for the identification of hazard combinations and hazard cascades which threaten other critical infrastructure. References: Decker, K. & Brinkman, H., 2017. List of external hazards to be considered in extended PSA. Report No. ASAMPSA_E/WP21/D21.2/2017-41 - IRSN/ PSN-RES/SAG/2017-00011 IAEA, 2010. Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants. Safety Guide No. SSG-3, Vienna. http://www-pub.iaea.org/books/ WENRA-RHWG, 2014. WENRA Safety Reference Levels for Existing Reactors. Update in Relation to Lessons Learned from TEPCO Fukushima Dai-Ichi Accident. http://www.wenra.org/publications/

  3. U.S. Coastal Flood Damage Reduction Projects: Federal Authorization and Investment Trends

    Science.gov (United States)

    Carter, N. T.

    2015-12-01

    The 2015 U.S. Environmental Protection Agency report Climate Change in the United States: Benefits of Global Action estimated the potential cumulative future economic impacts of storm surge and sea-level rise on U.S. coasts during this century at 5 trillion (2014 dollars) if no adaptation measures are implemented. These impacts drop to 0.8 trillion if investments are made in cost-effective adaptations and protections. Awareness of flood risk and its long-term fiscal impact historically has proven insufficient to motivate pre-disaster land use changes and investments in mitigation and protection. While many adaptations and protections fall largely under state and local authority, some stakeholders are interested in federal coastal flood protection projects, including projects by the U.S. Army Corps of Engineers. Since the 1950s, Congress has authorized the Corps to construct specific coastal projects. The broad vision, strategy, and priorities for the federal role in coastal flood damage reduction projects nonetheless remain ill-defined. This research analyzes (1) the authorization and appropriations trends for Corps coastal storm damage reduction projects, and (2) how Corps feasibility studies account for and address coastal flood hazards. Identified trends include: emergency appropriations for storm-damaged areas outstrip annual investments in coastal flood projects; the rate at which projects are congressionally approved for construction outpaces the rate at which construction is funded; and how coastal protection projects are evaluated in Corps feasibility studies shows variation and change in agency practices. These trends have consequences; they affect public and local expectations when projects begin providing protection benefits, and may influence investments in other adaptation measures. These trends also raise questions for policymakers at all levels and for scientists and practitioners interested in coastal flood resilience.

  4. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño

    Science.gov (United States)

    Barnard, Patrick; Hoover, Daniel J.; Hubbard, David M.; Snyder, Alexander; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero,; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.

    2017-01-01

    The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.

  5. The near coastal environment monitored from space

    International Nuclear Information System (INIS)

    Szekielda, K.H.

    1977-01-01

    The optical information required for monitoring the marine environment from space is discussed and applied for the near coastal area. By categorizing coastal features it is possible to recognize coastal regions to a high degree and to indentify water masses derived from land sources and sewage dumping sites. It is concluded that monitoring from space can be used as a tool in environmental planning. (orig.) [de

  6. Towards sustainable coexistence of aquaculture and fisheries in the coastal zone

    DEFF Research Database (Denmark)

    Bergh, Øjvind; Gomez, Emma Bello; Børsheim, Knut Yngve

    2012-01-01

    Globally, coastal areas are subject to an increase in competing activities. Coastal fisheries and aquaculture are highly dependent on availability and accessibility of appropriate sites. Aquaculture production is increasing, whereas fisheries are at best stagnant. Coastal activities also include ......, both industries represent human activities strongly influencing, and influenced by, the environment. Management of aquaculture and fisheries, as well as other uses of the coastal zone, should be considered integral parts with local variations in their respective importance.......Globally, coastal areas are subject to an increase in competing activities. Coastal fisheries and aquaculture are highly dependent on availability and accessibility of appropriate sites. Aquaculture production is increasing, whereas fisheries are at best stagnant. Coastal activities also include...

  7. Attributing the effects of climate on phenology change suggests high sensitivity in coastal zones

    Science.gov (United States)

    Seyednasrollah, B.; Clark, J. S.

    2015-12-01

    The impact of climate change on spring phenology depends on many variables that cannot be separated using current models. Phenology can influence carbon sequestration, plant nutrition, forest health, and species distributions. Leaf phenology is sensitive to changes of environmental factors, including climate, species composition, latitude, and solar radiation. The many variables and their interactions frustrate efforts to attribute variation to climate change. We developed a Bayesian framework to quantify the influence of environment on the speed of forest green-up. This study presents a state-space hierarchical model to infer and predict change in forest greenness over time using satellite observations and ground measurements. The framework accommodates both observation and process errors and it allows for main effects of variables and their interactions. We used daily spaceborne remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify temporal variability in the enhanced vegetation index (EVI) along a habitat gradient in the Southeastern United States. The ground measurements of meteorological parameters are obtained from study sites located in the Appalachian Mountains, the Piedmont and the Atlantic Coastal Plain between years 2000 and 2015. Results suggest that warming accelerates spring green-up in the Coastal Plain to a greater degree than in the Piedmont and Appalachian. In other words, regardless of variation in the timing of spring onset, the rate of greenness in non-coastal zones decreases with increasing temperature and hence with time over the spring transitional period. However, in coastal zones, as air temperature increases, leaf expansion becomes faster. This may indicate relative vulnerability to warming in non-coastal regions where moisture could be a limiting factor, whereas high temperatures in regions close to the coast enhance forest physiological activities. Model predictions agree with the remotely

  8. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    Science.gov (United States)

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal

  9. Sea level hazards: Altimetric monitoring of tsunamis and sea level rise

    Science.gov (United States)

    Hamlington, Benjamin Dillon

    Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.

  10. Projecting community changes in hazard exposure to support long-term risk reduction: A case study of tsunami hazards in the U.S. Pacific Northwest

    Science.gov (United States)

    Sleeter, Benjamin M.; Wood, Nathan J.; Soulard, Christopher E.; Wilson, Tamara

    2017-01-01

    Tsunamis have the potential to cause considerable damage to communities along the U.S. Pacific Northwest coastline. As coastal communities expand over time, the potential societal impact of tsunami inundation changes. To understand how community exposure to tsunami hazards may change in coming decades, we projected future development (i.e. urban, residential, and rural), households, and residents over a 50-year period (2011–2061) along the Washington, Oregon, and northern California coasts. We created a spatially explicit, land use/land cover, state-and-transition simulation model to project future developed land use based on historical development trends. We then compared our development projection results to tsunami-hazard zones associated with a Cascadia subduction zone (CSZ) earthquake. Changes in tsunami-hazard exposure by 2061 were estimated for 50 incorporated cities, 7 tribal reservations, and 17 counties relative to current (2011) estimates. Across the region, 2061 population exposure in tsunami-hazard zones was projected to increase by 3880 households and 6940 residents. The top ten communities with highest population exposure to CSZ-related tsunamis in 2011 are projected to remain the areas with the highest population exposure by 2061. The largest net population increases in tsunami-hazard zones were projected in the unincorporated portions of several counties, including Skagit, Coos, and Humboldt. Land-change simulation modeling of projected future development serves as an exploratory tool aimed at helping local governments understand the hazard-exposure implications of community growth and to include this knowledge in risk-reduction planning.

  11. Managing extreme natural disasters in coastal areas

    Science.gov (United States)

    Kesavan, P. C.; Swaminathan, M. S.

    2006-08-01

    Extreme natural hazards, particularly the hydro-meteorological disasters, are emerging as a cause of major concern in the coastal regions of India and a few other developing countries. These have become more frequent in the recent past, and are taking a heavy toll of life and livelihoods. Low level of technology development in the rural areas together with social, economic and gender inequities enhance the vulnerability of the largely illiterate, unskilled, and resource-poor fishing, farming and landless labour communities. Their resilience to bounce back to pre-disaster level of normality is highly limited. For the planet Earth at crossroads, the imminent threat, however, is from a vicious spiral among environmental degradation, poverty and climate change-related natural disasters interacting in a mutually reinforcing manner. These, in turn, retard sustainable development, and also wipe out any small gains made thereof. To counter this unacceptable trend, the M.S. Swaminathan Research Foundation has developed a biovillage paradigm and rural knowledge centres for ecotechnological and knowledge empowerment of the coastal communities at risk. Frontier science and technologies blended with traditional knowledge and ecological prudence result in ecotechnologies with pro-nature, pro-poor and pro-women orientation. The rural communities are given training and helped to develop capacity to adopt ecotechnologies for market-driven eco-enterprises. The modern information and communication-based rural knowledge centres largely operated by trained semi-literate young women provide time- and locale-specific information on weather, crop and animal husbandry, market trends and prices for local communities, healthcare, transport, education, etc. to the local communities. The ecotechnologies and time- and locale-specific information content development are need-based and chosen in a ‘bottom-up’ manner. The use of recombinant DNA technology for genetic shielding of agricultural

  12. High frequency monitoring of the coastal marine environment using the MAREL buoy.

    Science.gov (United States)

    Blain, S; Guillou, J; Tréguer, P; Woerther, P; Delauney, L; Follenfant, E; Gontier, O; Hamon, M; Leilde, B; Masson, A; Tartu, C; Vuillemin, R

    2004-06-01

    The MAREL Iroise data buoy provides physico-chemical measurements acquired in surface marine water in continuous and autonomous mode. The water is pumped 1.5 m from below the surface through a sampling pipe and flows through the measuring cell located in the floating structure. Technological innovations implemented inside the measuring cell atop the buoy allow a continuous cleaning of the sensor, while injection of chloride ions into the circuit prevents biological fouling. Specific sensors for temperature, salinity, oxygen and fluorescence investigated in this paper have been evaluated to guarantee measurement precision over a 3 month period. A bi-directional link under Internet TCP-IP protocols is used for data, alarms and remote-control transmissions with the land-based data centre. Herein, we present a 29 month record for 4 parameters measured using a MAREL buoy moored in a coastal environment (Iroise Sea, Brest, France). The accuracy of the data provided by the buoy is assessed by comparison with measurements of sea water weekly sampled at the same site as part of SOMLIT (Service d'Observation du Milieu LIToral), the French network for monitoring of the coastal environment. Some particular events (impact of intensive fresh water discharges, dynamics of a fast phytoplankton bloom) are also presented, demonstrating the worth of monitoring a highly variable environment with a high frequency continuous reliable system.

  13. (abstract) Seasonal Variability in Coastal Upwelling: A Comparison of Four Coastal Upwelling Sites from Space

    Science.gov (United States)

    Carr, Mary-Elena

    1996-01-01

    Coastal upwelling of subsurface nutrient-rich water occurs along the eastern boundary of the ocean basins and leads to high primary production and fish catches. In this study satellite observations are used to compare the seasonal cycle in wind forcing and in the oceanic and biological response of the major coastal upwelling regions associated with the Canary, Benguela, California, and Humboldt Currents.

  14. Web Application for Coastal Area Planning through Analysis of Landslide and Soil Consumption

    Science.gov (United States)

    Panizzoni, Giulio; Debiasi, Alberto; Eccher, Matteo; De Amicis, Raffaele

    2016-04-01

    Global warming and rapid climatic changes are producing dramatic effects on coastal area of Mediterranean countries. Italian coastal areas are one of the most urbanized zones of the south western Europe and the extensive use of soil is causing a consistent impact on the hydrogeological context. Moreover, soil consumption combined with extreme meteorological events, facilitates the occurrence of hazardous landslide events. Environmental policy makers and data managers in territorial planning need to face such emergency situation with appropriate tools. We present an application service with the aim of advising user through environmental analysis of Landslide and Soil Consumption impact. This service wants also to improve the sharing of environmental harmonized datasets/metadata across different organizations and the creation of a collaborative environment where the stakeholders and environmental experts can share their data and work cooperatively. We developed a set of processing services providing functionalities to assess impact of landslide on territory and impact of land take and soil sealing. Among others, the service is able to evaluate environmental impacts of landslide events on Cultural Heritage sites. We have also designed a 3D WebGL client customized to execute the processing services and visualize their outputs. It provides high usability in terms of navigation and data visualization. In this way the service provides not only a Spatial Data Infrastructure to access and visualize data but a complete Decision Support Systems for a more effective environmental planning of coastal area.

  15. Study on extreme high temperature of cooling water in Chinese coastal nuclear power plant

    International Nuclear Information System (INIS)

    Yu Fan; Jiang Ziying

    2012-01-01

    In order to protect aquatic life from the harmful effects of thermal discharge, the appropriate water temperature limits or the scope of the mixing zone is a key issue in the regulatory control of the environmental impact of thermal discharge. Based on the sea surface temperature in the Chinese coastal waters, the extreme value of the seawater temperature change was analyzed by using the Gumbel model. The limit of the design temperature rise of cooling water in the outfall is 9 ℃, and the limit of the temperature rise of cooling water in the edge of the mixing zone is 4 ℃. The extreme high temperature of the cooling water in Chinese coastal nuclear power plant is 37 ℃ in the Bohai Sea, Yellow Sea, and is 40 ℃ in East China Sea, South China Sea. (authors)

  16. Modelling risk in high hazard operations : Integrating technical, organisational and cultural factors

    NARCIS (Netherlands)

    Ale, B.J.M.; Hanea, D.M.; Sillem, S.; Lin, P.H.; Van Gulijk, C.; Hudson, P.T.W.

    2012-01-01

    Recent disasters in high hazard industries such as Oil and Gas Exploration (The Deepwater Horizon) and Petrochemical production (Texas City) have been found to have causes that range from direct technical failures through organizational shortcomings right up to weak regulation and inappropriate

  17. Coastal Thematic Exploitation Platform (C-TEP): An innovative and collaborative platform to facilitate Big Data coastal research

    Science.gov (United States)

    Tuohy, Eimear; Clerc, Sebastien; Politi, Eirini; Mangin, Antoine; Datcu, Mihai; Vignudelli, Stefano; Illuzzi, Diomede; Craciunescu, Vasile; Aspetsberger, Michael

    2017-04-01

    The Coastal Thematic Exploitation Platform (C-TEP) is an on-going European Space Agency (ESA) funded project to develop a web service dedicated to the observation of the coastal environment and to support coastal management and monitoring. For over 20 years ESA satellites have provided a wealth of environmental data. The availability of an ever increasing volume of environmental data from satellite remote sensing provides a unique opportunity for exploratory science and the development of coastal applications. However, the diversity and complexity of EO data available, the need for efficient data access, information extraction, data management and high spec processing tools pose major challenges to achieving its full potential in terms of Big Data exploitation. C-TEP will provide a new means to handle the technical challenges of the observation of coastal areas and contribute to improved understanding and decision-making with respect to coastal resources and environments. C-TEP will unlock coastal knowledge and innovation as a collaborative, virtual work environment providing access to a comprehensive database of coastal Earth Observation (EO) data, in-situ data, model data and the tools and processors necessary to fully exploit these vast and heterogeneous datasets. The cloud processing capabilities provided, allow users to perform heavy processing tasks through a user-friendly Graphical User Interface (GUI). A connection to the PEPS (Plateforme pour l'Exploitation des Produits Sentinel) archive will provide data from Sentinel missions 1, 2 and 3. Automatic comparison tools will be provided to exploit the in-situ datasets in synergy with EO data. In addition, users may develop, test and share their own advanced algorithms for the extraction of coastal information. Algorithm validation will be facilitated by the capabilities to compute statistics over long time-series. Finally, C-TEP subscription services will allow users to perform automatic monitoring of some key

  18. Tsunami hazard assessment in El Salvador, Central America, from seismic sources through flooding numerical models.

    Science.gov (United States)

    Álvarez-Gómez, J. A.; Aniel-Quiroga, Í.; Gutiérrez-Gutiérrez, O. Q.; Larreynaga, J.; González, M.; Castro, M.; Gavidia, F.; Aguirre-Ayerbe, I.; González-Riancho, P.; Carreño, E.

    2013-11-01

    El Salvador is the smallest and most densely populated country in Central America; its coast has an approximate length of 320 km, 29 municipalities and more than 700 000 inhabitants. In El Salvador there were 15 recorded tsunamis between 1859 and 2012, 3 of them causing damages and resulting in hundreds of victims. Hazard assessment is commonly based on propagation numerical models for earthquake-generated tsunamis and can be approached through both probabilistic and deterministic methods. A deterministic approximation has been applied in this study as it provides essential information for coastal planning and management. The objective of the research was twofold: on the one hand the characterization of the threat over the entire coast of El Salvador, and on the other the computation of flooding maps for the three main localities of the Salvadorian coast. For the latter we developed high-resolution flooding models. For the former, due to the extension of the coastal area, we computed maximum elevation maps, and from the elevation in the near shore we computed an estimation of the run-up and the flooded area using empirical relations. We have considered local sources located in the Middle America Trench, characterized seismotectonically, and distant sources in the rest of Pacific Basin, using historical and recent earthquakes and tsunamis. We used a hybrid finite differences-finite volumes numerical model in this work, based on the linear and non-linear shallow water equations, to simulate a total of 24 earthquake-generated tsunami scenarios. Our results show that at the western Salvadorian coast, run-up values higher than 5 m are common, while in the eastern area, approximately from La Libertad to the Gulf of Fonseca, the run-up values are lower. The more exposed areas to flooding are the lowlands in the Lempa River delta and the Barra de Santiago Western Plains. The results of the empirical approximation used for the whole country are similar to the results

  19. A Review of Land-Cover Mapping Activities in Coastal Alabama and Mississippi

    Science.gov (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Brock, John C.

    2010-01-01

    -based land-use classifications. Aerial photography is typically selected for smaller landscapes (watershed-basin scale), for greater definition of the land-use categories, and for increased spatial resolution. Disadvantages of using photography include time-consuming digitization, high costs for imagery collection, and lack of seasonal data. Recently, the availability of high-resolution satellite imagery has generated a new category of LULC data product. These new datasets have similar strengths to the aerial-photo-based LULC in that they possess the potential for refined definition of land-use categories and increased spatial resolution but also have the benefit of satellite-based classifications, such as repeatability for change analysis. LULC classification based on high-resolution satellite imagery is still in the early stages of development but merits greater attention because environmental-monitoring and landscape-modeling programs rely heavily on LULC data. This publication summarizes land-use and land-cover mapping activities for Alabama and Mississippi coastal areas within the U.S. Geological Survey (USGS) Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project boundaries. Existing LULC datasets will be described, as well as imagery data sources and ancillary data that may provide ground-truth or satellite training data for a forthcoming land-cover classification. Finally, potential areas for a high-resolution land-cover classification in the Alabama-Mississippi region will be identified.

  20. High-resolution climate of the past ∼7300 years of coastal northernmost California: Results from diatoms, silicoflagellates, and pollen

    Science.gov (United States)

    Barron, John A.; Bukry, David; Heusser, Linda E.; Addison, Jason A.; Alexander, Clark R.

    2018-01-01

    Piston core TN062-O550, collected about 33 km offshore of Eureka, California, contains a high-resolution record of the climate and oceanography of coastal northernmost California during the past ∼7.34 kyr. Chronology established by nine AMS ages on a combination of planktic foraminifers, bivalve shell fragments, and wood yields a mean sedimentation rate of 103 cm kyr−1. Marine proxies (diatoms and silicoflagellates) and pollen transported by the nearby Eel River reveal a stepwise development of both modern offshore surface water oceanography and coastal arboreal ecosystems. Beginning at ∼5.4 cal ka the relative abundance of coastal redwood pollen, a proxy for coastal fog, displays a two fold increase suggesting enhanced coastal upwelling. A decline in the relative contribution of subtropical diatoms at ∼5.0 cal ka implies cooling of sea surface temperatures (SSTs). At ∼3.6 cal ka an increase in the relative abundance of alder and oak at the expense of coastal redwood likely signals intensified riverine transport of pollen from inland environments. Cooler offshore SSTs and increased precipitation characterize the interval between ∼3.6 and 2.8 cal ka. A rapid, stepwise change in coastal climatology and oceanography occurs between ∼2.8 and 2.6 cal ka that suggests an enhanced expression of modern Pacific Decadal Oscillation-like (PDO) cycles. A three-fold increase in the relative abundance of the subtropical diatom Fragilariopsis doliolus at 2.8 cal ka appears to mark an abrupt warming of winter SSTs. Soon afterwards at 2.6 cal ka, a two fold increase in the relative abundance of coastal redwood pollen is suggestive of an abrupt intensification of spring upwelling. After ∼2.8 cal ka a sequence of cool-warm, PDO-like cycles occurs wherein cool cycles are characterized by relative abundance increases in coastal redwood pollen and decreased contributions of subtropical diatoms, whereas opposite proxy trends distinguish warm cycles.

  1. Using science to strengthen our Nation's resilience to tomorrow's challenges: understanding and preparing for coastal impacts

    Science.gov (United States)

    Simmons, Dale L.; Andersen, Matthew E.; Dean, Teresa A.; Focazio, Michael J.; Fulton, John W.; Haines, John W.; Mason, Jr., Robert R.; Tihansky, Ann B.; Young, John A.

    2014-01-01

    Hurricane Sandy caused unprecedented damage across some of the most densely populated coastal areas of the northeastern United States. The costly, landscape-altering destruction left in the wake of this storm is a stark reminder of our Nation’s need to become more resilient as we inevitably face future coastal hazards. As our Nation recovers from this devastating natural disaster, it is clear that accurate scientific information is essential as we seek to identify and develop strategies to address trends in coastal landscape change and reduce our future vulnerability to major storm events. To address this need, the U.S. Geological Survey (USGS) received $43.2 million in supplemental appropriations from the Department of the Interior (DOI) to conduct the scientific research needed to guide response, recovery, and rebuilding activities and to develop effective strategies for protecting coastal communities and resources in the future. This fact sheet describes how the USGS is combining interdisciplinary science with state-of-the-art technologies to achieve a comprehensive understanding of coastal change caused by Hurricane Sandy. By assessing coastal change impacts through research and by developing tools that enhance our science capabilities, support coastal stakeholders, and facilitate effective decision making, we continue to build a greater understanding of the processes at work across our Nation’s complex coastal environment—from wetlands, estuaries, barrier islands, and nearshore marine areas to infrastructure and human communities. This improved understanding will increase our resilience as we prepare for future short-term, extreme events as well as long-term coastal change.

  2. Natural radionuclide and radiological assessment of building materials in high background radiation areas of Ramsar, Iran.

    Science.gov (United States)

    Bavarnegin, Elham; Moghaddam, Masoud Vahabi; Fathabadi, Nasrin

    2013-04-01

    Building materials, collected from different sites in Ramsar, a northern coastal city in Iran, were analyzed for their natural radionuclide contents. The measurements were carried out using a high resolution high purity Germanium (HPGe) gamma-ray spectrometer system. The activity concentration of (226)Ra, (232)Th, and (40)K content varied from below the minimum detection limit up to 86,400 Bqkg(-1), 187 Bqkg(-1), and 1350 Bqkg(-1), respectively. The radiological hazards incurred from the use of these building materials were estimated through various radiation hazard indices. The result of this survey shows that values obtained for some samples are more than the internationally accepted maximum limits and as such, the use of them as a building material pose significant radiation hazard to individuals.

  3. Identification of Potential Hazard using Hazard Identification and Risk Assessment

    Science.gov (United States)

    Sari, R. M.; Syahputri, K.; Rizkya, I.; Siregar, I.

    2017-03-01

    This research was conducted in the paper production’s company. These Paper products will be used as a cigarette paper. Along in the production’s process, Company provides the machines and equipment that operated by workers. During the operations, all workers may potentially injured. It known as a potential hazard. Hazard identification and risk assessment is one part of a safety and health program in the stage of risk management. This is very important as part of efforts to prevent occupational injuries and diseases resulting from work. This research is experiencing a problem that is not the identification of potential hazards and risks that would be faced by workers during the running production process. The purpose of this study was to identify the potential hazards by using hazard identification and risk assessment methods. Risk assessment is done using severity criteria and the probability of an accident. According to the research there are 23 potential hazard that occurs with varying severity and probability. Then made the determination Risk Assessment Code (RAC) for each potential hazard, and gained 3 extreme risks, 10 high risks, 6 medium risks and 3 low risks. We have successfully identified potential hazard using RAC.

  4. Contribution of vertical land motions to coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge and GPS measurements

    Science.gov (United States)

    Pfeffer, Julia; Allemand, Pascal

    2016-04-01

    Coastal sea level variations result from a complex mix of climatic, oceanic and geodynamical processes driven by natural and anthropogenic constraints. Combining data from multiple sources is one solution to identify particular processes and progress towards a better understanding of the sea level variations and the assessment of their impacts at coast. Here, we present a global database merging multisatellite altimetry with tide gauges and Global Positioning System (GPS) measurements. Vertical land motions and sea level variations are estimated simultaneously for a network of 886 ground stations with median errors lower than 1 mm/yr. The contribution of vertical land motions to relative sea level variations is explored to better understand the natural hazards associated with sea level rise in coastal areas. Worldwide, vertical land motions dominate 30 % of observed coastal trends. The role of the crust is highly heterogeneous: it can amplify, restrict or counter the effects of climate-induced sea level change. A set of 182 potential vulnerable localities are identified by large coastal subsidence which increases by several times the effects of sea level rise. Though regional behaviours exist, principally caused by GIA (Glacial Isostatic Adjustment), the local variability in vertical land motion prevails. An accurate determination of the vertical motions observed at the coast is fundamental to understand the local processes which contribute to sea level rise, to appraise its impacts on coastal populations and make future predictions.

  5. Shell alterations in limpets as putative biomarkers for multi-impacted coastal areas.

    Science.gov (United States)

    Begliomini, Felipe Nincao; Maciel, Daniele Claudino; de Almeida, Sérgio Mendonça; Abessa, Denis Moledo; Maranho, Luciane Alves; Pereira, Camilo Seabra; Yogui, Gilvan Takeshi; Zanardi-Lamardo, Eliete; Castro, Ítalo Braga

    2017-07-01

    During the last years, shell alterations in gastropods have been proposed as tools to be used in monitoring programs. However, no studies were so far performed investigating the relationships among shell parameters and classical biomarkers of damage. The relationship between shell alterations (biometrics, shape and elemental composition) and biomarkers (LPO and DNA strand break) was evaluated in the limpet L. subrugosa sampled along a contamination gradient in a multi-impacted coastal zone from southeastern Brazil. Statistically significant differences were detected among sites under different pollution levels. The occurrence of shell malformations was consistent with environmental levels of several hazardous substances reported for the studied area and related to lipid peroxidation and DNA damage. In addition, considering the low mobility, wide geographic distribution, ease of collection and abundance of limpets in coastal zones, this putative tool may be a cost-effective alternative to traditional biomarkers. Thus, shell alterations in limpets seem to be good proxies for assessing biological adverse effects in multi-impacted coastal zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluation of Airborne Lidar Elevation Surfaces for Propagation of Coastal Inundation: The Importance of Hydrologic Connectivity

    Directory of Open Access Journals (Sweden)

    Sandra Poppenga

    2015-09-01

    Full Text Available Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2 that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas

  7. Evaluation of airborne lidar elevation surfaces for propagation of coastal inundation: the importance of hydrologic connectivity

    Science.gov (United States)

    Poppenga, Sandra K.; Worstell, Bruce B.

    2015-01-01

    Detailed information about coastal inundation is vital to understanding dynamic and populated areas that are impacted by storm surge and flooding. To understand these natural hazard risks, lidar elevation surfaces are frequently used to model inundation in coastal areas. A single-value surface method is sometimes used to inundate areas in lidar elevation surfaces that are below a specified elevation value. However, such an approach does not take into consideration hydrologic connectivity between elevation grids cells resulting in inland areas that should be hydrologically connected to the ocean, but are not. Because inland areas that should drain to the ocean are hydrologically disconnected by raised features in a lidar elevation surface, simply raising the water level to propagate coastal inundation will lead to inundation uncertainties. We took advantage of this problem to identify hydrologically disconnected inland areas to point out that they should be considered for coastal inundation, and that a lidar-based hydrologic surface should be developed with hydrologic connectivity prior to inundation analysis. The process of achieving hydrologic connectivity with hydrologic-enforcement is not new, however, the application of hydrologically-enforced lidar elevation surfaces for improved coastal inundation mapping as approached in this research is innovative. In this article, we propagated a high-resolution lidar elevation surface in coastal Staten Island, New York to demonstrate that inland areas lacking hydrologic connectivity to the ocean could potentially be included in inundation delineations. For inland areas that were hydrologically disconnected, we evaluated if drainage to the ocean was evident, and calculated an area exceeding 11 ha (~0.11 km2) that could be considered in inundation delineations. We also assessed land cover for each inland area to determine the type of physical surfaces that would be potentially impacted if the inland areas were considered as

  8. Characteristics of the Norwegian Coastal Current during Years with High Recruitment of Norwegian Spring Spawning Herring (Clupea harengus L..

    Directory of Open Access Journals (Sweden)

    Øystein Skagseth

    Full Text Available Norwegian Spring Spawning herring (NSSH Clupea harengus L. spawn on coastal banks along the west coast of Norway. The larvae are generally transported northward in the Norwegian Coastal Current (NCC with many individuals utilizing nursery grounds in the Barents Sea. The recruitment to this stock is highly variable with a few years having exceptionally good recruitment. The principal causes of recruitment variability of this herring population have been elusive. Here we undertake an event analysis using data between 1948 and 2010 to gain insight into the physical conditions in the NCC that coincide with years of high recruitment. In contrast to a typical year when northerly upwelling winds are prominent during spring, the years with high recruitment coincide with predominantly southwesterly winds and weak upwelling in spring and summer, which lead to an enhanced northward coastal current during the larval drift period. Also in most peak recruitment years, low-salinity anomalies are observed to propagate northward during the spring and summer. It is suggested that consistent southwesterly (downwelling winds and propagating low-salinity anomalies, both leading to an enhanced northward transport of larvae, are important factors for elevated recruitment. At the same time, these conditions stabilize the coastal waters, possibly leading to enhanced production and improved feeding potential along the drift route to Barents Sea. Further studies on the drivers of early life history mortality can now be undertaken with a better understanding of the physical conditions that prevail during years when elevated recruitment occurs in this herring stock.

  9. High-Throughput and Rapid Screening of Low-Mass Hazardous Compounds in Complex Samples.

    Science.gov (United States)

    Wang, Jing; Liu, Qian; Gao, Yan; Wang, Yawei; Guo, Liangqia; Jiang, Guibin

    2015-07-07

    Rapid screening and identification of hazardous chemicals in complex samples is of extreme importance for public safety and environmental health studies. In this work, we report a new method for high-throughput, sensitive, and rapid screening of low-mass hazardous compounds in complex media without complicated sample preparation procedures. This method is achieved based on size-selective enrichment on ordered mesoporous carbon followed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis with graphene as a matrix. The ordered mesoporous carbon CMK-8 can exclude interferences from large molecules in complex samples (e.g., human serum, urine, and environmental water samples) and efficiently enrich a wide variety of low-mass hazardous compounds. The method can work at very low concentrations down to part per trillion (ppt) levels, and it is much faster and more facile than conventional methods. It was successfully applied to rapidly screen and identify unknown toxic substances such as perfluorochemicals in human serum samples from athletes and workers. Therefore, this method not only can sensitively detect target compounds but also can identify unknown hazardous compounds in complex media.

  10. Agricultural livelihoods in coastal Bangladesh under climate and environmental change--a model framework.

    Science.gov (United States)

    Lázár, Attila N; Clarke, Derek; Adams, Helen; Akanda, Abdur Razzaque; Szabo, Sylvia; Nicholls, Robert J; Matthews, Zoe; Begum, Dilruba; Saleh, Abul Fazal M; Abedin, Md Anwarul; Payo, Andres; Streatfield, Peter Kim; Hutton, Craig; Mondal, M Shahjahan; Moslehuddin, Abu Zofar Md

    2015-06-01

    Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of

  11. New Multi-HAzard and MulTi-RIsk Assessment MethodS for Europe (MATRIX): A research program towards mitigating multiple hazards and risks in Europe

    Science.gov (United States)

    Fleming, K. M.; Zschau, J.; Gasparini, P.; Modaressi, H.; Matrix Consortium

    2011-12-01

    Scientists, engineers, civil protection and disaster managers typically treat natural hazards and risks individually. This leads to the situation where the frequent causal relationships between the different hazards and risks, e.g., earthquakes and volcanos, or floods and landslides, are ignored. Such an oversight may potentially lead to inefficient mitigation planning. As part of their efforts to confront this issue, the European Union, under its FP7 program, is supporting the New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe or MATRIX project. The focus of MATRIX is on natural hazards, in particular earthquakes, landslides, volcanos, wild fires, storms and fluvial and coastal flooding. MATRIX will endeavour to develop methods and tools to tackle multi-type natural hazards and risks within a common framework, focusing on methodologies that are suited to the European context. The work will involve an assessment of current single-type hazard and risk assessment methodologies, including a comparison and quantification of uncertainties and harmonization of single-type methods, examining the consequence of cascade effects within a multi-hazard environment, time-dependent vulnerability, decision making and support for multi-hazard mitigation and adaption, and a series of test cases. Three test sites are being used to assess the methods developed within the project (Naples, Cologne, and the French West Indies), as well as a "virtual city" based on a comprehensive IT platform that will allow scenarios not represented by the test cases to be examined. In addition, a comprehensive dissemination program that will involve national platforms for disaster management, as well as various outreach activities, will be undertaken. The MATRIX consortium consists of ten research institutions (nine European and one Canadian), an end-user (i.e., one of the European national platforms for disaster reduction) and a partner from industry.

  12. Tsunami hazard assessment on nuclear power plant site evaluation accordance on DS 417

    International Nuclear Information System (INIS)

    Akhmad Khusyairi

    2011-01-01

    Nuclear power plant site evaluation should conduct the hazard evaluation on tsunami. Global climate changes and particularly extreme meteorology and hydrology phenomena have an impact on the structure, systems and important components related to safety. Therefore, IAEA makes efforts to revise the IAEA Safety Standard Series NS-G 3.4, Meteorological Events in Site Evaluation for Nuclear Power Plants and IAEA safety standard series NS-G 3.5 Flood Hazard For Nuclear Power Plants On Coastal And River Sites, in order to provide protection against the public and the environment safety due to operation of nuclear power plants. There are two methods used in assessing tsunami hazard, probabilistic and deterministic methods. In the tsunami hazard assessment, some necessary information and data should be obtained to determine the basic design of tsunami hazard during designing nuclear power plants, especially the cooling system design. Flooding caused tsunami must be evaluated to determine the site protection system. Furthermore, There must be an evaluation on either coincident event or meteorological simultaneously tsunami event that caused the worst effect on the site. Therefore, the protection of the site from extreme tsunami can be planned. (author)

  13. The need for ecosystem-based coastal planning in Trabzon city

    OpenAIRE

    Mustafa Dihkan; Nilgün Güneroğlu; Abdülaziz Güneroğlu; Fevzi Karslı

    2017-01-01

    Coastal urbanization problem was emanated from willingness of coastal living. Urban sprawl is one of the most important coastal problems in Turkey as it is in Trabzon city which is known for its natural and historical assets. In order to ensure the sustainability and ecological continuity of the city, an ecosystem based coastal planning is an issue of high priority. Protection and usage balance of the coastal areas could also ensure transition of the natural values to future gener...

  14. Application of HF Radar in Hazard Management

    Directory of Open Access Journals (Sweden)

    Mal Heron

    2016-01-01

    Full Text Available A review is given of the impact that HF radars are having on the management of coastal hazards. Maps of surface currents can be produced every 10–20 minutes which, in real time, improve navigation safety in restricted areas commonly found near ports and harbours. The time sequence of surface current maps enables Lagrangian tracking of small parcels of surface water, which enables hazard mitigation in managing suspended sediments in dredging, in emergency situations where flotsam and other drifting items need to be found, and in pollution control. The surface current measurement capability is used to assist tsunami warnings as shown by the phased-array data from Chile following the Great Tohoku Earthquake in 2011. The newly launched Tsunami Warning Center in Oman includes a network of phased-array HF radars to provide real-time tsunami monitoring. Wind direction maps can be used to locate the position of cold fronts in the open ocean and to monitor the timing and strength of sea-breeze fronts in key locations.

  15. Joint probability safety assessment for NPP defense infrastructure against extreme external natural hazards

    International Nuclear Information System (INIS)

    Guilin, L.; Defu, L.; Huajun, L.; Fengqing, W.; Tao, Z.

    2012-01-01

    With the increasing tendency of natural hazards, the typhoon, hurricane and tropical Cyclone induced surge, wave, precipitation, flood and wind as extreme external loads menacing Nuclear Power Plants (NPP) in coastal and inland provinces of China. For all of planned, designed And constructed NPP the National Nuclear Safety Administration of China and IAEA recommended Probable Maximum Hurricane /Typhoon/(PMH/T), Probable Maximum Storm Surge (PMSS), Probable Maximum Flood (PMF), Design Basis Flood (DBF) as safety regulations for NPP defense infrastructures. This paper discusses the joint probability analysis of simultaneous occurrence typhoon induced extreme external hazards and compare with IAEA 2006-2009 recommended safety regulation design criteria for some NPP defense infrastructures along China coast. (authors)

  16. Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources

    Science.gov (United States)

    Spruce, Joe; Berglund, Judith; Davis, Bruce

    2006-01-01

    This viewgraph presentation regards one element of a larger project on the integration of NASA science models and data into the Hazards U.S. Multi-Hazard (HAZUS-MH) Hurricane module for hurricane damage and loss risk assessment. HAZUS-MH is a decision support tool being developed by the National Institute of Building Sciences for the Federal Emergency Management Agency (FEMA). It includes the Hurricane Module, which employs surface roughness maps made from National Land Cover Data (NLCD) maps to estimate coastal hurricane wind damage and loss. NLCD maps are produced and distributed by the U.S. Geological Survey. This presentation discusses an effort to improve upon current HAZUS surface roughness maps by employing ASTER multispectral classifications with QuickBird "ground reference" imagery.

  17. CONTRASTING RESULTS OF POTENTIAL TSUNAMI HAZARDS IN MUISNE, CENTRAL COAST OF ECUADOR

    Directory of Open Access Journals (Sweden)

    Theofilos Toulkeridis

    2017-02-01

    Full Text Available After the 7.8 Mw Earthquake occurred in Ecuador on April 16 of 2016, the Ecuadorian Government declared the whole Island of Muisne into a risk hazard zone by a potential Tsunami impact and subsequent flooding. Based on the emitted resolution, human settlements in the affected area were prohibited, and a resettlement project in the village of Bunche is currently taking place. Nonetheless, our study demonstrates that the inundation chart used to release the mentioned resolution underestimate the flooding area in case of a real Tsunami impact. To support this conclusion, we present a new inundation chart for the three more probable scenarios, based on historical tsunami records and a seismic hazard assessment study in central coastal Ecuador.

  18. Estimating total alkalinity for coastal ocean acidification monitoring at regional to continental scales in Australian coastal waters

    KAUST Repository

    Baldry, Kimberlee; Hardman-Mountford, Nick; Greenwood, Jim

    2017-01-01

    Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity (TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, threatening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate concentration. We find that regionally parameterised models capture local variability better than more general coastal or open ocean parameterised models. The strongest contribution to model improvement came through incorporating temperature as an input variable as well as salinity. Further improvements were achieved through the incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and nitrate constituting the minimum model in most cases. These results provide an approach that can be applied to satellite Earth observation and autonomous in situ platforms to improve synoptic scale estimation of TA in coastal waters.

  19. Estimating total alkalinity for coastal ocean acidification monitoring at regional to continental scales in Australian coastal waters

    KAUST Repository

    Baldry, Kimberlee

    2017-06-01

    Owing to a lack of resources, tools, and knowledge, the natural variability and distribution of Total Alkalinity (TA) has been poorly characterised in coastal waters globally, yet variability is known to be high in coastal regions due to the complex interactions of oceanographic, biotic, and terrestrially-influenced processes. This is a particularly challenging task for the vast Australian coastline, however, it is also this vastness that demands attention in the face of ocean acidification (OA). Australian coastal waters have high biodiversity and endemism, and are home to large areas of coral reef, including the Great Barrier Reef, the largest coral reef system in the world. Ocean acidification threatens calcifying marine organisms by hindering calcification rates, threatening the structural integrity of coral reefs and other ecosystems. Tracking the progression of OA in different coastal regions requires accurate knowledge of the variability in TA. Thus, estimation methods that can capture this variability at synoptic scales are needed. Multiple linear regression is a promising approach in this regard. Here, we compare a range of both simple and multiple linear regression models to the estimation of coastal TA from a range of variables, including salinity, temperature, chlorophyll-a concentration and nitrate concentration. We find that regionally parameterised models capture local variability better than more general coastal or open ocean parameterised models. The strongest contribution to model improvement came through incorporating temperature as an input variable as well as salinity. Further improvements were achieved through the incorporation of either nitrate or chlorophyll-a, with the combination of temperature, salinity, and nitrate constituting the minimum model in most cases. These results provide an approach that can be applied to satellite Earth observation and autonomous in situ platforms to improve synoptic scale estimation of TA in coastal waters.

  20. Ecological legacies of Indigenous fire management in high-latitude coastal temperate rainforests, Canada

    Science.gov (United States)

    Hoffman, K.; Lertzman, K. P.; Starzomski, B. M.

    2016-12-01

    Anthropogenic burning is considered to have little impact on coastal temperate rainforest fire regimes in the Pacific Northwest (PNW) of North America, yet few long-term fire histories have been reconstructed in these forests. We use a multidisciplinary approach to reconstruct the ecological impact, scale, and legacies of historic fire regime variability in high-latitude coastal temperate rainforests located in British Columbia, Canada. We map seven centuries of fire activity with fire scars and records of stand establishment, and examine patterns in the distribution and composition of vegetation to assess whether fire was historically used as a tool for resource management. We conduct a paired study of 20 former Indigenous habitation and control sites across a 100 km2 island group to relate historic fire activity with long-term patterns of human land use and contemporary lightning strike densities. Fires were significantly associated with the locations of former Indigenous habitation sites, low and mixed in severity, and likely intentionally used to influence the composition and structure of vegetation, thus increasing the productivity of culturally important plants such as western redcedar, berry-producing shrubs, and bracken fern. Centuries of repeated anthropogenic burning have resulted in a mosaic of vegetation types in different stages of succession. These data are directly relevant to the management of contemporary forests as they do not support the widespread contention that old growth coastal temperate rainforests in this region are pristine landscapes where fire is rare, but more likely the result of long-term human land use practices.

  1. The 3D Elevation Program—Landslide recognition, hazard assessment, and mitigation support

    Science.gov (United States)

    Lukas, Vicki; Carswell, Jr., William J.

    2017-01-27

    The U.S. Geological Survey (USGS) Landslide Hazards Program conducts landslide hazard assessments, pursues landslide investigations and forecasts, provides technical assistance to respond to landslide emergencies, and engages in outreach. All of these activities benefit from the availability of high-resolution, three-dimensional (3D) elevation information in the form of light detection and ranging (lidar) data and interferometric synthetic aperture radar (IfSAR) data. Research on landslide processes addresses critical questions of where and when landslides are likely to occur as well as their size, speed, and effects. This understanding informs the development of methods and tools for hazard assessment and situational awareness used to guide efforts to avoid or mitigate landslide impacts. Such research is essential for the USGS to provide improved information on landslide potential associated with severe storms, earthquakes, volcanic activity, coastal wave erosion, and wildfire burn areas.Decisionmakers in government and the private sector increasingly depend on information the USGS provides before, during, and following disasters so that communities can live, work, travel, and build safely. The USGS 3D Elevation Program (3DEP) provides the programmatic infrastructure to generate and supply lidar-derived superior terrain data to address landslide applications and a wide range of other urgent needs nationwide. By providing data to users, 3DEP reduces users’ costs and risks and allows them to concentrate on their mission objectives. 3DEP includes (1) data acquisition partnerships that leverage funding, (2) contracts with experienced private mapping firms, (3) technical expertise, lidar data standards, and specifications, and (4) most important, public access to high-quality 3D elevation data.

  2. Scenario based tsunami wave height estimation towards hazard evaluation for the Hellenic coastline and examples of extreme inundation zones in South Aegean

    Science.gov (United States)

    Melis, Nikolaos S.; Barberopoulou, Aggeliki; Frentzos, Elias; Krassanakis, Vassilios

    2016-04-01

    A scenario based methodology for tsunami hazard assessment is used, by incorporating earthquake sources with the potential to produce extreme tsunamis (measured through their capacity to cause maximum wave height and inundation extent). In the present study we follow a two phase approach. In the first phase, existing earthquake hazard zoning in the greater Aegean region is used to derive representative maximum expected earthquake magnitude events, with realistic seismotectonic source characteristics, and of greatest tsunamigenic potential within each zone. By stacking the scenario produced maximum wave heights a global maximum map is constructed for the entire Hellenic coastline, corresponding to all expected extreme offshore earthquake sources. Further evaluation of the produced coastline categories based on the maximum expected wave heights emphasizes the tsunami hazard in selected coastal zones with important functions (i.e. touristic crowded zones, industrial zones, airports, power plants etc). Owing to its proximity to the Hellenic Arc, many urban centres and being a popular tourist destination, Crete Island and the South Aegean region are given a top priority to define extreme inundation zoning. In the second phase, a set of four large coastal cities (Kalamata, Chania, Heraklion and Rethymno), important for tsunami hazard, due i.e. to the crowded beaches during the summer season or industrial facilities, are explored towards preparedness and resilience for tsunami hazard in Greece. To simulate tsunamis in the Aegean region (generation, propagation and runup) the MOST - ComMIT NOAA code was used. High resolution DEMs for bathymetry and topography were joined via an interface, specifically developed for the inundation maps in this study and with similar products in mind. For the examples explored in the present study, we used 5m resolution for the topography and 30m resolution for the bathymetry, respectively. Although this study can be considered as

  3. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  4. Coastal Innovation Imperative

    Directory of Open Access Journals (Sweden)

    Bruce C. Glavovic

    2013-03-01

    Full Text Available This is the second of two articles that explores the coastal innovation paradox and imperative. Paradoxically, innovation is necessary to escape the vulnerability trap created by past innovations that have degraded coastal ecosystems and imperil coastal livelihoods. The innovation imperative is to reframe and underpin business and technology with coherent governance innovations that lead to social transformation for coastal sustainability. How might coastal management help to facilitate this transition? It is argued that coastal management needs to be reconceptualised as a transformative practice of deliberative coastal governance. A foundation comprising four deliberative or process outcomes is posited. The point of departure is to build human and social capital through issue learning and improved democratic attitudes and skills. Attention then shifts to facilitating community-oriented action and improving institutional capacity and decision-making. Together, these endeavours enable improved community problem-solving. The ultimate process goal is to build more collaborative communities. Instituting transformative deliberative coastal governance will help to stimulate innovations that chart new sustainability pathways and help to resolve the coastal problems. This framework could be adapted and applied in other geographical settings.

  5. Tsunami Hazard Preventing Based Land Use Planning Model Using GIS Techniques in Muang Krabi, Thailand

    Directory of Open Access Journals (Sweden)

    Abdul Salam Soomro

    2012-10-01

    Full Text Available The terrible tsunami disaster, on 26 December 2004 hit Krabi, one of the ecotourist and very fascinating provinces of southern Thailand including its various regions e.g. Phangna and Phuket by devastating the human lives, coastal communications and the financially viable activities. This research study has been aimed to generate the tsunami hazard preventing based lands use planning model using GIS (Geographical Information Systems based on the hazard suitability analysis approach. The different triggering factors e.g. elevation, proximity to shore line, population density, mangrove, forest, stream and road have been used based on the land use zoning criteria. Those criteria have been used by using Saaty scale of importance one, of the mathematical techniques. This model has been classified according to the land suitability classification. The various techniques of GIS, namely subsetting, spatial analysis, map difference and data conversion have been used. The model has been generated with five categories such as high, moderate, low, very low and not suitable regions illustrating with their appropriate definition for the decision makers to redevelop the region.

  6. Tsunami hazard preventing based land use planing model using GIS technique in Muang Krabi, Thailand

    International Nuclear Information System (INIS)

    Soormo, A.S.

    2012-01-01

    The terrible tsunami disaster, on 26 December 2004 hit Krabi, one of the ecotourist and very fascinating provinces of southern Thailand including its various regions e.g. Phangna and Phuket by devastating the human lives, coastal communications and the financially viable activities. This research study has been aimed to generate the tsunami hazard preventing based lands use planning model using GIS (Geographical Information Systems) based on the hazard suitability analysis approach. The different triggering factors e.g. elevation, proximity to shore line, population density, mangrove, forest, stream and road have been used based on the land use zoning criteria. Those criteria have been used by using Saaty scale of importance one, of the mathematical techniques. This model has been classified according to the land suitability classification. The various techniques of GIS, namely subsetting, spatial analysis, map difference and data conversion have been used. The model has been generated with five categories such as high, moderate, low, very low and not suitable regions illustrating with their appropriate definition for the decision makers to redevelop the region. (author)

  7. Towards a more complete SOCCR: Establishing a Coastal Carbon Data Network

    Science.gov (United States)

    Pidgeon, E.; Howard, J.; Tang, J.; Kroeger, K. D.; Windham-Myers, L.

    2015-12-01

    The 2007 State of the Carbon Cycle Report (SOCCR) was highly influential in ensuring components of the carbon cycle were accounted for in national policy and related management. However, while SOCCR detailed the significance of North American coastal wetlands, it was not until recently that leading governments began to fully recognized these ecosystems for their carbon sequestration and storage capacity and hence the significant role coastal ecosystems can play in GHG emission reductions strategies, offset mechanisms, coastal management strategies and climate mitigation policy. The new attention on coastal carbon systems has exposed limitations in terms of data availability and data quality, as well as insufficient knowledge of coastal carbon distributions, characteristics and coastal carbon cycle processes. In addition to restricting scientific progress, lack of comprehensive, comparable, and quality-controlled coastal carbon data is hindering progress towards carbon based conservation and coastal management. To directly address those limitations, we are developing a Global Science and Data Network for Coastal "Blue" Carbon, with support from the Carbon Cycle Interagency Working Group. Goals include: • Improving basic and applied science on carbon and GHG cycling in vegetated coastal ecosystems; • Supporting a coastal carbon and associated GHG data archive for use by the science community, coastal and climate practitioners and other data users; • Building the capacity of coastal carbon stakeholders globally to collect and interpret high quality coastal carbon science and data; • Providing a forum and mechanism to promote exchange and collaboration between scientists and coastal carbon data users globally; and • Outreach activities to ensure the best available data are globally accessible and that science is responsive to the needs of coastal managers and policy-makers.

  8. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    International Nuclear Information System (INIS)

    Roth, F.; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S.

    2016-01-01

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ 13 C org and δ 15 N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. - Highlights: •Pollution by untreated sewage discharge is evident at the outfall and in Salvador's coastal zone. •Seasonal wind- and tide-driven surface currents control advective transport of discharged sewage. •Water quality at Salvador's recreational beaches is impacted by a plume of untreated sewage.

  9. Impact of offshore nuclear generating stations on recreational behavior at adjacent coastal sites

    International Nuclear Information System (INIS)

    Baker, E.J.; West, S.G.; Moss, D.J.; Weyant, J.K.

    1977-10-01

    A multi-faceted investigation was undertaken to project the impact of offshore nuclear power plants on beach visitation at adjacent beaches. Related literature was reviewed concerning human adjustment to natural hazards, risk-taking behavior, and public attitudes toward nuclear power. Approximately 2400 people were interviewed at beaches in three states with respect to: intended avoidance of beaches near a hypothetical floating nuclear plant (FNP), relative importance of proximity to a FNP, when compared to other beach attributes, onshore-offshore preference for coastal nuclear plant location, behavioral impact of NRC licensing of FNPs, relative tourism impact of coastal nuclear plant compared to coastal coal-fired plant, public concerns about nuclear safety, public attitudes toward alternative energy sources, public confidence in sources of information about nuclear power, visual impact of a FNP, and knowledge about nuclear power. Four beach areas near currently operating coastal nuclear power plants were studied to assess impacts on tourism resulting from plant construction. Data suggest that proximity of a FNP is less important than other beach attributes in determining beach attractiveness, probably no more than (and perhaps less than) 5% to 10% of current beach patrons would avoid a beach after FNP siting three miles directly offshore, and impact of a FNP would decrease exponentially as distance away increased

  10. Carbon Structure Hazard Control

    Science.gov (United States)

    Yoder, Tommy; Greene, Ben; Porter, Alan

    2015-01-01

    Carbon composite structures are widely used in virtually all advanced technology industries for a multitude of applications. The high strength-to-weight ratio and resistance to aggressive service environments make them highly desirable. Automotive, aerospace, and petroleum industries extensively use, and will continue to use, this enabling technology. As a result of this broad range of use, field and test personnel are increasingly exposed to hazards associated with these structures. No single published document exists to address the hazards and make recommendations for the hazard controls required for the different exposure possibilities from damaged structures including airborne fibers, fly, and dust. The potential for personnel exposure varies depending on the application or manipulation of the structure. The effect of exposure to carbon hazards is not limited to personnel, protection of electronics and mechanical equipment must be considered as well. The various exposure opportunities defined in this document include pre-manufacturing fly and dust, the cured structure, manufacturing/machining, post-event cleanup, and post-event test and/or evaluation. Hazard control is defined as it is applicable or applied for the specific exposure opportunity. The carbon exposure hazard includes fly, dust, fiber (cured/uncured), and matrix vapor/thermal decomposition products. By using the recommendations in this document, a high level of confidence can be assured for the protection of personnel and equipment.

  11. A high capability teleoperated vehicle for hazardous applications

    International Nuclear Information System (INIS)

    Dudar, A.M.; Witherspoon, R.L.

    1995-01-01

    The Robotics Development Group at the Savannah River Site is developing a high performance teleoperated vehicle for use in radioactive and hazardous environments. The three-wheeled vehicle incorporates a highly dexterous 6 degree-of-freedom (DOF), hydraulically-powered manipulator made by Schilling Development, Inc. The teleoperator is called Little MoRT (MObile Radio-controlled Teleoperator) and is a modified version of a commercially available, battery-powered, warehouse vehicle. Little MoRT is controlled remotely by a universal robot controller either through a radio frequency link or a tethered cable. Six video cameras and a microphone provide the operator with audio-visual feedback of the vehicle and its surrounding environment. The vehicle also incorporates a hydraulic power unit consisting of a propane-driven engine for powering the Schilling manipulator. Little MoRT is capable of operating in outdoor as well as indoor environments and is well suited for decontamination and decommissioning activities such as dismantling, sorting, and surveying of radioactive waste

  12. Household Adaptive Behavior in Response to Coastal Flood Risk and External Stressors

    Science.gov (United States)

    Buchanan, M. K.

    2017-12-01

    Approximately forty percent of the world's population sits along ocean coastlines. This urban exposure to flooding is increasing due to population growth and sea level rise resulting from anthropogenic climate change. Recent research improving the characterization of physical hazards from climate change on the coastal zone has helped cities assess their risks. This work includes improving our understanding of the rate and magnitude of sea level rise, the change in distribution of tropical cyclones, and the resulting frequency and severity of flooding on global to local scales. However, the ability of settlements to cope or thrive under changing climate conditions will likely depend on the cooperation and initiative of households, regardless of any governmental efforts to reduce risk. Understanding individuals' likely responses to changing coastal hazards is thus critical for decision-makers to plan for a sustainable future. Individuals may be motivated not only by information regarding emerging flood hazards, but also by cognitive and contextual factors. For governments to develop effective adaptation policies, it is important to understand what factors tend to motivate household adaptation. We apply principles from economics and psychology to investigate how people respond to various existing adaptation options and policies, using a household survey with experiments in New York City neighborhoods affected by Hurricane Sandy. We investigate a comprehensive set of factors that may influence household adaptive behavior. A striking 64% of homeowners and 83% of renters intend to relocate among different plausible future conditions, such as frequent nuisance flooding and the adaptation of peers. This amount is substantial considering the political sensitivity of `retreat' and the lack of regional and federal preparation for large-scale climate-induced migration.

  13. The situation of hazardous chemical accidents in China between 2000 and 2006

    Energy Technology Data Exchange (ETDEWEB)

    Duan Weili [Institute of Safety Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong (China); Chen Guohua, E-mail: scut.safetycenter@gmail.com [Institute of Safety Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong (China); Ye Qing; Chen Qingguang [Institute of Safety Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong (China)

    2011-02-28

    From the aspects of the total quantity of accidents, regional inequality, enterprises scale and environmental pollution accidents, this study makes an analysis of hazardous chemical accidents in China for the period spanning from 2000 to 2006. The following results are obtained: firstly, there were lots of accidents and fatalities in hazardous chemical business, i.e., the number of casualty accidents fluctuated between 200 and 600/year, the number of fatality fluctuated between 220 and 1100/year. Secondly, the accident rate in developed southeast coastal areas, e.g., Guangdong, Zhejiang and Jiangsu, was far higher than that in the northwest regions, e.g., Xizang, Xinjiang, and Qinghai. Thirdly, nearly 80% of dangerous chemical accidents had occurred in small and medium-sized enterprises (SMEs). Finally, various sudden environmental pollution accidents resulted from hazardous chemicals were frequent in recent years, causing a huge damage to human and property. Then, based on the readjustment of economic structure in the last decades, the development status of Occupational Health and Safety (OHS) in SMEs and other factors, the paper explores the main causes, which offers valuable insight into measures that should be taken to reduce hazardous chemical accidents.

  14. The situation of hazardous chemical accidents in China between 2000 and 2006

    International Nuclear Information System (INIS)

    Duan Weili; Chen Guohua; Ye Qing; Chen Qingguang

    2011-01-01

    From the aspects of the total quantity of accidents, regional inequality, enterprises scale and environmental pollution accidents, this study makes an analysis of hazardous chemical accidents in China for the period spanning from 2000 to 2006. The following results are obtained: firstly, there were lots of accidents and fatalities in hazardous chemical business, i.e., the number of casualty accidents fluctuated between 200 and 600/year, the number of fatality fluctuated between 220 and 1100/year. Secondly, the accident rate in developed southeast coastal areas, e.g., Guangdong, Zhejiang and Jiangsu, was far higher than that in the northwest regions, e.g., Xizang, Xinjiang, and Qinghai. Thirdly, nearly 80% of dangerous chemical accidents had occurred in small and medium-sized enterprises (SMEs). Finally, various sudden environmental pollution accidents resulted from hazardous chemicals were frequent in recent years, causing a huge damage to human and property. Then, based on the readjustment of economic structure in the last decades, the development status of Occupational Health and Safety (OHS) in SMEs and other factors, the paper explores the main causes, which offers valuable insight into measures that should be taken to reduce hazardous chemical accidents.

  15. Large-scale coastal behaviour in relation to coastal zone management

    NARCIS (Netherlands)

    Stive, M.J.F.

    1990-01-01

    The development of coastal erosion management - addressing typical traditional erosion problems - towards coastal zone management addressing the evaluation of alternative solutions to guarantee a variety of coastal zone functions on their economic time scale - has necessitated the formulation of

  16. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  17. Tourism facing the challenge of recurring natural hazards: a view from Cancún

    Directory of Open Access Journals (Sweden)

    Frank Babinger

    2012-07-01

    Full Text Available This article discusses the duality between economic development based on tourism and the impact of land occupation at the expense of an environment that includes specific natural hazards. The transformation of coastal areas to be occupied by tourism is one of the serious problems which are not taken into account when planning the activity. Cancún is a paradigmatic model in which an explosive growth in tourists, residents and tourist buildings has led to the massive occupation of a coastal area historically and currently affected by tropical storms and hurricanes. The result is a clear increase in risk exposure and vulnerability. This space colonization by tourism and the impacts of hurricanes have a direct impact on the hotels and housing developments, which call into question the maintenance of tourism in the future.

  18. Appraisal of possible combustion hazards associated with a high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Palmer, H.B.; Sibulkin, M.; Strehlow, R.A.; Yang, C.H.

    1978-03-01

    The report presents a study of combustion hazards that may be associated with the High Temperature Gas Cooled Reactor (HTGR) in the event of a primary coolant circuit depressurization followed by water or air ingress into the prestressed concrete reactor vessel (PCRV). Reactions between graphite and steam or air produce the combustible gases H 2 and/or CO. When these gases are mixed with air in the containment vessel (CV), flammable mixtures may be formed. Various modes of combustion including diffusion or premixed flames and possibly detonation may be exhibited by these mixtures. These combustion processes may create high over-pressure, pressure waves, and very hot gases within the CV and hence may threaten the structural integrity of the CV or damage the instrumentation and control system installations within it. Possible circumstances leading to these hazards and the physical characteristics related to them are delineated and studied in the report

  19. Coherence between coastal and river flooding along the California coast

    Science.gov (United States)

    Odigie, Kingsley O.; Warrick, Jonathan

    2018-01-01

    Water levels around river mouths are intrinsically determined by sea level and river discharge. If storm-associated coastal water-level anomalies coincide with extreme river discharge, landscapes near river mouths will be flooded by the hydrodynamic interactions of these two water masses. Unfortunately, the temporal relationships between ocean and river water masses are not well understood. The coherence between extreme river discharge and coastal water levels at six California river mouths across different climatic and geographic regions was examined. Data from river gauges, wave buoys, and tide gauges from 2007 to 2014 were integrated to investigate the relationships between extreme river discharge and coastal water levels near the mouths of the Eel, Russian, San Lorenzo, Ventura, Arroyo Trabuco, and San Diego rivers. Results indicate that mean and extreme coastal water levels during extreme river discharge are significantly higher compared with background conditions. Elevated coastal water levels result from the combination of nontidal residuals (NTRs) and wave setups. Mean and extreme (>99th percentile of observations) NTRs are 3–20 cm and ∼30 cm higher during extreme river discharge conditions, respectively. Mean and extreme wave setups are up to 40 cm and ∼20–90 cm higher during extreme river discharge than typical conditions, respectively. These water-level anomalies were generally greatest for the northern rivers and least for the southern rivers. Time-series comparisons suggest that increases in NTRs are largely coherent with extreme river discharge, owing to the low atmospheric pressure systems associated with storms. The potential flooding risks of the concurrent timing of these water masses are tempered by the mixed, semidiurnal tides of the region that have amplitudes of 2–2.5 m. In summary, flooding hazard assessments for floodplains near California river mouths for current or future conditions with sea-level rise should include the temporal

  20. High tsunami frequency as a result of combined strike-slip faulting and coastal landslides

    Science.gov (United States)

    Hornbach, Matthew J.; Braudy, Nicole; Briggs, Richard W.; Cormier, Marie-Helene; Davis, Marcy B.; Diebold, John B.; Dieudonne, Nicole; Douilly, Roby; Frohlich, Cliff; Gulick, Sean P.S.; Johnson, Harold E.; Mann, Paul; McHugh, Cecilia; Ryan-Mishkin, Katherine; Prentice, Carol S.; Seeber, Leonardo; Sorlien, Christopher C.; Steckler, Michael S.; Symithe, Steeve Julien; Taylor, Frederick W.; Templeton, John

    2010-01-01

    Earthquakes on strike-slip faults can produce devastating natural hazards. However, because they consist predominantly of lateral motion, these faults are rarely associated with significant uplift or tsunami generation. And although submarine slides can generate tsunami, only a few per cent of all tsunami are believed to be triggered in this way. The 12 January Mw 7.0 Haiti earthquake exhibited primarily strike-slip motion but nevertheless generated a tsunami. Here we present data from a comprehensive field survey that covered the onshore and offshore area around the epicentre to document that modest uplift together with slope failure caused tsunamigenesis. Submarine landslides caused the most severe tsunami locally. Our analysis suggests that slide-generated tsunami occur an order-of-magnitude more frequently along the Gonave microplate than global estimates predict. Uplift was generated because of the earthquake's location, where the Caribbean and Gonave microplates collide obliquely. The earthquake also caused liquefaction at several river deltas that prograde rapidly and are prone to failure. We conclude that coastal strike-slip fault systems such as the Enriquillo-Plantain Garden fault produce relief conducive to rapid sedimentation, erosion and slope failure, so that even modest predominantly strike-slip earthquakes can cause potentially catastrophic slide-generated tsunami - a risk that is underestimated at present.

  1. Spatial Lead Pollution in Aquatic Habitats and the Potential Risks in Makassar Coastal Area of South Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Anwar Mallongi

    2017-11-01

    Full Text Available Background: Lead can be a poison to the environment which may affects all body systems. Lead can also affect human health especially children, lead potentially lowering level of intelligence, growth, loss, causing anemia, and disorder among children as lead is neurotoxin and accumulative. In addition lead can cause a decrease in the ability of the brain, whereas in adults may cause interference of high blood pressure and other tissue toxicity. Any increase in the levels of lead in the blood of 10 ug / dl led to a decrease in IQ of 2.5 points or 0.975 IQ. The research aims to produce a special model of health risk among elementary school children due to lead exposure in the coastal city of Makassar. Methods: This study investigate the distribution of toxic lead in Makassar coastal area namely; sea water, sediments, shells  and crab. Then investigate lead toxins around the school such as lead in soil, dust, paint, snacks and air. After create distribution maps lead risks we create analysis of environmental health risks for children. Results: Result revealed that the analysis of spatial distribution of Lead in the sediment shows that the high distribution was in station 3 in Mariso districts then coastal Tallo area and the lowest was in Tamalate District. While the analysis of the spatial Pb distribution in mussels seen that the highest distribution Pb was in  station 4 of districts Mariso then coastal waters Tallo area and the lowest was in Tamalate District 5.00 to 7.20 mg / g. Conclusion: In conclusion, it revealed the concentration of Lead at all stations of those four districts have exceeded the level of allowed standard and may potentially lead to a hazard both to environment and human being who are living in the surround area.

  2. Monitoring and ming bio-physical parameters for hypoxia hazard in a coastal sand pit

    DEFF Research Database (Denmark)

    Mariani, Patrizio; Benassai, Guido; Grieco, Luisa

    2018-01-01

    Management of coastal areas requires monitoring and modeling of the anthropogenic drivers and the bio-physical processes affecting water quality. To assess the range of hydrographic conditions controlling oxygen distribution in the bottom layers of sand pits, a multi-year oceanographic survey has...... of the sand pits is associated with higher temperatures and wind speed lower than 5 m/s, which is not infrequent during the summer season. However, the number of consecutive days of oxygen depletion can be considered lower than the danger threshold level assumed in the literature....

  3. Petroleum oil and mercury pollution from shipwrecks in Norwegian coastal waters.

    Science.gov (United States)

    Ndungu, Kuria; Beylich, Björnar A; Staalstrøm, André; Øxnevad, Sigurd; Berge, John A; Braaten, Hans Fredrik Veiteberg; Schaanning, Morten; Bergstrøm, Rune

    2017-09-01

    Worldwide there are tens of thousands of sunken shipwrecks lying on the coastal seabed. These potentially polluting wrecks (PPW) are estimated to hold 3-25milliont of oil. Other hazardous cargo in PPW includes ordnance, chemicals and radioactive waste. Here, we present and discuss studies on mercury (Hg) and oil pollution in coastal marine sediment caused by two of the >2100 documented PPW in Norwegian marine waters. The German World War II (WWII) submarine (U-864) lies at about 150m below the sea surface, near the Norwegian North Sea island of Fedje. The submarine is estimated to have been carrying 67t of elemental Hg, some of which has leaked on to surrounding sediment. The total Hg concentration in bottom surface sediment within a 200m radius of the wreckage decreases from 100g/kgd.w. at the wreckage hotspot to about 1mg/kgd.w. at 100m from the hotspot. The second wreck is a German WWII cargo ship (Nordvard), that lies at a depth of ca. 30m near the Norwegian harbor of Moss. Oil leakage from Nordvard has contaminated the bottom coastal sediment with polycyclic aromatic hydrocarbons (PAH). The findings from this study provide useful insight to coastal administration authorities involved in assessing and remediating wreck-borne pollution from any of the tens of thousands of sunken shipwrecks. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. High resolution projections for the western Iberian coastal low level jet in a changing climate

    Science.gov (United States)

    Soares, Pedro M. M.; Lima, Daniela C. A.; Cardoso, Rita M.; Semedo, Alvaro

    2017-09-01

    The Iberian coastal low-level jet (CLLJ) is one of the less studied boundary layer wind jet features in the Eastern Boundary Currents Systems (EBCS). These regions are amongst the most productive ocean ecosystems, where the atmosphere-land-ocean feedbacks, which include marine boundary layer clouds, coastal jets, upwelling and inland soil temperature and moisture, play an important role in defining the regional climate along the sub-tropical mid-latitude western coastal areas. Recently, the present climate western Iberian CLLJ properties were extensively described using a high resolution regional climate hindcast simulation. A summer maximum frequency of occurrence above 30 % was found, with mean maximum wind speeds around 15 ms-1, between 300 and 400 m heights (at the jet core). Since the 1990s the climate change impact on the EBCS is being studied, nevertheless some lack of consensus still persists regarding the evolution of upwelling and other components of the climate system in these areas. However, recently some authors have shown that changes are to be expected concerning the timing, intensity and spatial homogeneity of coastal upwelling, in response to future warming, especially at higher latitudes, namely in Iberia and Canaries. In this study, the first climate change assessment study regarding the Western Iberian CLLJ, using a high resolution (9 km) regional climate simulation, is presented. The properties of this CLLJ are studied and compared using two 30 years simulations: one historical simulation for the 1971-2000 period, and another simulation for future climate, in agreement with the RCP8.5 scenario, for the 2071-2100 period. Robust and consistent changes are found: (1) the hourly frequency of occurrence of the CLLJ is expected to increase in summer along the western Iberian coast, from mean maximum values of around 35 % to approximately 50 %; (2) the relative increase of the CLLJ frequency of occurrence is higher in the north off western Iberia; (3

  5. Egyptian coastal regions development through economic diversity for its coastal cities

    Directory of Open Access Journals (Sweden)

    Tarek AbdeL-Latif

    2012-12-01

    This study examines the structure of the coastal cities industry, the main types, the impacts (economic, environmental, and social of coastal cities, and the local trends in development in the Egyptian coastal cities and its regions. It will also analyze coastal and marine tourism in several key regions identified because of the diversity of life they support, and the potential destruction they could face. This paper confirms that economic diversification in coastal cities is more effective than developments in only one economic sector, even if this sector is prominent and important.

  6. Coastal erosion risk assessment using natural and human factors in different scales.

    Science.gov (United States)

    Alexandrakis, George; Kampanis, Nikolaos

    2015-04-01

    Climate change, including sea-level rise and increasing storms, raise the threats of coastal erosion. Mitigating and adapting to coastal erosion risks in areas of human interest, like urban areas, culture heritage sites, and areas of economic interest, present a major challenge for society. In this context, decision making needs to be based in reliable risk assessment that includes environmental, social and economic factors. By integrating coastal hazard and risk assessments maps into coastal management plans, risks in areas of interest can be reduced. To address this, the vulnerability of the coast to sea level rise and associated erosion, in terms of expected land loss and socioeconomic importance need to be identified. A holistic risk assessment based in environmental, socioeconomic and economics approach can provide managers information how to mitigate the impact of coastal erosion and plan protection measures. Such an approach needs to consider social, economic and environmental factors, which interactions can be better assessed when distributed and analysed along the geographical space. In this work, estimations of climate change impact to coastline are based on a combination of environmental and economic data analysed in a GIS database. The risk assessment is implemented through the estimation of the vulnerability and exposure variables of the coast in two scales. The larger scale estimates the vulnerability in a regional level, with the use environmental factors with the use of CVI. The exposure variable is estimated by the use of socioeconomic factors. Subsequently, a smaller scale focuses on highly vulnerable beaches with high social and economic value. The vulnerability assessment of the natural processes to the environmental characteristics of the beach is estimated with the use of the Beach Vulnerability Index. As exposure variable, the value of beach width that is capitalized in revenues is implemented through a hedonic pricing model. In this

  7. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy)

    Science.gov (United States)

    Brandolini, P.; Faccini, F.; Piccazzo, M.

    2006-06-01

    The many trails existing in the coastal area of Portofino Promontory are used by tourists for trekking or as pathways to small villages and beaches. The aim of this paper is to define geomorphological hazard and tourist vulnerability in this area, within the framework of the management and planning of hiking activities in Portofino Natural Park. In particular, processes triggered by gravity, running waters and wave motion, affecting the slopes and the cliff, are considered. The typology of the trails and trail maintenance are also taken into account in relation to weather conditions that can make the excursion routes dangerous for tourists. In conclusion, an operative model is applied for the definition of possible risk scenarios. This model is founded on an inventory and the quantification of geomorphological hazards and tourist vulnerability, in comparison with trail rescue data. The model can be applied to other environments and tourist areas.

  8. COASTAL, Pacific, Washington

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study data as defined in FEMA Guidelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a coastal study.

  9. High-school software development project helps increasing students' awareness of geo-hydrological hazards and their risks

    Science.gov (United States)

    Marchesini, Ivan; Rossi, Mauro; Balducci, Vinicio; Salvati, Paola; Guzzetti, Fausto; Bianchini, Andrea; Grzeleswki, Emanuell; Canonico, Andrea; Coccia, Rita; Fiorucci, Gianni Mario; Gobbi, Francesca; Ciuchetti, Monica

    2015-04-01

    In Italy, inundation and landslides are widespread phenomena that impact the population and cause significant economic damage to private and public properties. The perception of the risk posed by these natural geo-hydrological hazards varies geographically and in time. The variation in the perception of the risks has negative consequences on risk management, and limits the adoption of effective risk reduction strategies. We maintain that targeted education can foster the understanding of geo-hydrological hazards, improving their perception and the awareness of the associated risk. Collaboration of a research center experienced in geo-hydrological hazards and risks (CNR IRPI, Perugia) and a high school (ITIS Alessandro Volta, Perugia) has resulted in the design and execution of a project aimed at improving the perception of geo-hydrological risks in high school students and teachers through software development. In the two-year project, students, high school teachers and research scientists have jointly developed software broadly related to landslide and flood hazards. User requirements and system specifications were decided to facilitate the distribution and use of the software among students and their peers. This allowed a wider distribution of the project results. We discuss two prototype software developed by the high school students, including an application of augmented reality for improved dissemination of information of landslides and floods with human consequences in Italy, and a crowd science application to allow students (and others, including their families and friends) to collect information on landslide and flood occurrence exploiting modern mobile devices. This information can prove important e.g., for the validation of landslide forecasting models.

  10. The need for ecosystem-based coastal planning in Trabzon city

    OpenAIRE

    Dikhan, Mustafa; Güneroğlu, Nilgün; Güneroğlu, Abdülaziz; Karslı, Fevzi

    2017-01-01

    Coastalurbanization problem was emanated from willingness of coastal living. Urbansprawl is one of the most important coastal problems in Turkey as it is inTrabzon city which is known for its natural and historical assets. In order toensure the sustainability and ecological continuity of the city, an ecosystembased coastal planning is an issue of high priority. Protection and usagebalance of the coastal areas could also ensure transition of the natural valuesto future generations. Trabzon cit...

  11. 78 FR 59878 - Atlantic Highly Migratory Species; Commercial Atlantic Aggregated Large Coastal Shark (LCS...

    Science.gov (United States)

    2013-09-30

    ... Coastal Shark (LCS), Atlantic Hammerhead Shark, Atlantic Blacknose Shark, and Atlantic Non-Blacknose Small Coastal Shark (SCS) Management Groups AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... closing the commercial management groups for aggregated LCS and hammerhead sharks in the Atlantic region...

  12. Occupational, social, and relationship hazards and psychological distress among low-income workers: implications of the 'inverse hazard law'.

    Science.gov (United States)

    Krieger, Nancy; Kaddour, Afamia; Koenen, Karestan; Kosheleva, Anna; Chen, Jarvis T; Waterman, Pamela D; Barbeau, Elizabeth M

    2011-03-01

    Few studies have simultaneously included exposure information on occupational hazards, relationship hazards (eg, intimate partner violence) and social hazards (eg, poverty and racial discrimination), especially among low-income multiracial/ethnic populations. A cross-sectional study (2003-2004) of 1202 workers employed at 14 worksites in the greater Boston area of Massachusetts investigated the independent and joint association of occupational, social and relationship hazards with psychological distress (K6 scale). Among this low-income cohort (45% were below the US poverty line), exposure to occupational, social and relationship hazards, per the 'inverse hazard law,' was high: 82% exposed to at least one occupational hazard, 79% to at least one social hazard, and 32% of men and 34% of women, respectively, stated they had been the perpetrator or target of intimate partner violence (IPV). Fully 15.4% had clinically significant psychological distress scores (K6 score ≥ 13). All three types of hazards, and also poverty, were independently associated with increased risk of psychological distress. In models including all three hazards, however, significant associations with psychological distress occurred among men and women for workplace abuse and high exposure to racial discrimination only; among men, for IPV; and among women, for high exposure to occupational hazards, poverty and smoking. Reckoning with the joint and embodied reality of diverse types of hazards involving how people live and work is necessary for understanding determinants of health status.

  13. Impact assessment and coastal climate change adaptation in a local transdisciplinary perspective

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Broge, N. H.; Knudsen, Per

    , private and public institutions, and the local communities provides: understanding of the immediate and potential future challenges; appreciation of different stakeholder motives, business agendas, legislative constraints etc., and common focus on how to cost-efficiently adapt to and manage impacts......From an applied point of view, the authors present and discuss inter- and transdisciplinary approaches to assess and deal with natural coastal hazards and climate change impacts. The construction of a shared working platform for knowledge integration across levels of governance and between research...... of climate change. The platform is dynamically updated with additional data and knowledge, e.g. from climate change evidence, or, by provision of updated regional models of future sea level rise. In order to integrate natural hazards and impact development over time, models on hydrology, geology...

  14. Svalbard as a study model of future High Arctic coastal environments in a warming world

    Directory of Open Access Journals (Sweden)

    Jacek Piskozub

    2017-10-01

    Full Text Available Svalbard archipelago, a high latitude area in a region undergoing rapid climate change, is relatively easily accessible for field research. This makes the fjords of Spitsbergen, its largest island, some of the best studied Arctic coastal areas. This paper aims at answering the question of how climatically diverse the fjords are, and how representative they are for the expected future Arctic diminishing range of seasonal sea-ice. This study uses a meteorological reanalysis, sea surface temperature climatology, and the results of a recent one-year meteorological campaign in Spitsbergen to determine the seasonal differences between different Spitsbergen fjords, as well as the sea water temperature and ice ranges around Svalbard in recent years. The results show that Spitsbergen fjords have diverse seasonal patterns of air temperature due to differences in the SST of the adjacent ocean, and different cloudiness. The sea water temperatures and ice concentrations around Svalbard in recent years are similar to what is expected most of the Arctic coastal areas in the second half of this century. This makes Spitsbergen a unique field study model of the conditions expected in future warmer High Arctic.

  15. Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammed Ataur Rahman

    2015-03-01

    Full Text Available Substantially resourceful and densely populated coastal zones of Bangladesh experience numerous extreme events linked to hydro-meteorological processes viz. cyclones, tidal surges, floods, salinity intrusion and erosion etc. These hazards give rise to extensive damage to property and loss of lives every year. Further, anthropogenic activities in the coastal zones are accentuating environmental degradation causing widespread suffering. Cyclones and tornadoes in particular damage infrastructures and crops every year affecting the economy of the country negatively. Some naturally adapted plants as well as landscapes usually reduce the speed of cyclones and tornadoes and thus, protect the coastal zones. However, human activities have destroyed many of the forests and landscapes. Sundarbans and Chokoria Sundarbans mangrove forests of Bangladesh are under a great threat of extinction due to illicit logging and agricultural expansion. At least 34 plant species of tropical forest are on the verge of extinction. Many animals e.g., cats, bears, porcupines, wild boars, pythons and anteaters are in the process of being wiped out from the coastal areas. Among the marine and coastal species, Red crabs, jelly-fish, sharks, and dolphins are also rare but these were the major species prior to 1980s. This study revealed that during the recent decades there has been massive plantations and construction of embankment and polderization but these and other measures have been found to be impractical and ineffective in reducing disasters in coastal areas. There is a need for integration of traditional coping practices and wisdoms with modern approaches. Available knowledge on some of these traditional practices has been documented for establishing a sustainable policy for management of coastal zones of Bangladesh. By combining traditional and scientific management of coastal ecosystem with mangroves and other plants following triple-tier mechanism and habitat, it is

  16. A methodology to analize the safety of a coastal nuclear power plant against the Typhoon external flooding risks

    International Nuclear Information System (INIS)

    Chen Tian; He Mi; Chen Guofei; Joly, Antoine; Pan Rong; Ji Ping

    2015-01-01

    For the protection of coastal Nuclear Power Plant (NPP) against the external flooding hazard, the risks caused by natural events have to be taken into account. In this article, a methodology is proposed to analyze the risk of the typical natural event in China (Typhoon). It includes the simulation of the storm surge and the strong waves due to its passage in Chinese coastal zones and the quantification of the sequential overtopping flow rate. The simulation is carried out by coupling 2 modules of the hydraulic modeling system TELEMAC-MASCARET from EDF, TELEMAC2D (Shallow water module) and TOMAWAC (spectral wave module). As an open-source modeling system, this methodology could still be enriched by other phenomena in the near future to ameliorate its performance in safety analysis of the coastal NPPs in China. (author)

  17. Coastal sediment dynamics in Spitsbergen

    Science.gov (United States)

    Deloffre, J.; Lafite, R.; Baltzer, A.; Marlin, C.; Delangle, E.; Dethleff, D.; Petit, F.

    2010-12-01

    In arctic knowledge on coastal sediment dynamics and sedimentary processes is limited. The studied area is located in the microtidal Kongsfjorden glacial fjord on the North-western coast of Spitsbergen in the Artic Ocean (79°N). In this area sediment contributions to the coastal zone is provided by small temporary rivers that flows into the fjord. The objectives of this study are to (i) assess the origin and fate of fine-grained particles (sea ice cover on sediment dynamics. The sampling strategy is based on characterization of sediment and SPM (grain-size, X-rays diffraction, SEM images, carbonates and organic matter contents) from the glacier to the coastal zone completed by a bottom-sediment map on the nearshore using side-scan sonar validated with Ekman binge sampling. River inputs (i.e. river plumes) to the coastal zone were punctually followed using CTD (conductivity, temperature, depth and turbidity) profiles. OBS (water level, temperature and turbidity) operating at high-frequency and during at least 1 years (including under sea ice cover) was settled at the mouth of rivers at 10m depth. In the coastal zone the fine-grained sediment deposit is limited to mud patches located at river mouths that originate the piedmont glacier. However a significant amount of sediment originates the coastal glacier located in the eastern part of the fjord via two processes: direct transfer and ice-drop. Results from turbidity measurements show that the sediment dynamics is controlled by river inputs in particular during melting period. During winter sediment resuspension can occurs directly linked to significant wind-events. When the sea ice cover is present (January to April) no sediment dynamics is observed. Sediment processes in the coastal zone of arctic fjords is significant however only a small amount of SPM that originates the river plume settles in the coastal zone; only the coarser material settles at the mouth of the river while the finer one is deposited further

  18. Hyperspectral Imager for the Coastal Ocean (HICO): Overview, Operational Updates, and Coastal Ocean Applications

    Science.gov (United States)

    Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Evans, Cynthia A.; Stefanov, William L.

    2014-01-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) was built to measure in-water properties of complex coastal regions. HICO enables synoptic coverage; 100-meter spatial resolution for sampling the variability and spatial irregularity of coastal waters; and high spectral resolution to untangle the signals from chlorophyll, colored dissolved organic matter, suspended sediments and varying bottom types. HICO was built by the Naval Research Laboratory, installed on the International Space Station (ISS) in September 2009, and operated for ONR for the first three years. In 2013, NASA assumed sponsorship of operations in order to leverage HICO's ability to address their Earth monitoring mission. This has opened up access of HICO data to the broad research community. Over 8000 images are now available on NASA's Ocean Color Website (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). Oregon State University's HICO website (http://hico.coas.oregonstate.edu) remains the portal for researchers to request new collections and access their requested data. We will present updates on HICO's calibration and improvements in geolocation and show examples of the use of HICO data to address issues in the coastal ocean and Great Lakes.

  19. Analysis of Stakeholder-Defined Needs in Northeast U.S. Coastal Communities to Determine Gaps in Research Informing Coastal Resilience Planning

    Science.gov (United States)

    Molino, G. D.; Kenney, M. A.; Sutton-Grier, A.; Penn, K.

    2017-12-01

    The impacts of climate change on our coastlines are increasing pressure on communities, ecosystems, infrastructure, and state-to-local economies in the northeastern United States (U.S.). As a result of current or imminent risk of acute and chronic hazards, local, state and regional entities have taken steps to identify and address vulnerabilities to climate change. Decisions to increase coastal infrastructure resilience and grey, green, and cultural infrastructure solutions requires physical, natural, and social science that is useful for decision-making and effective science translation mechanisms. Despite the desire to conduct or fund science that meets the needs of communities, there has been no comprehensive analysis to determine stakeholder-defined research needs. To address this gap, this study conducts a stakeholder needs analysis in northeast U.S. coastal communities to determine gaps in information and translation processes supporting coastal resilience planning. Documents were sourced from local, state, and regional organizations in both the public and private sectors, using the northeast region defined by the third National Climate Assessment. Modeled after Dilling et al. (2015), a deductive coding schema was developed that categorized documents using specific search terms such as "Location and condition of infrastructure" and "Proactive planning". A qualitative document analysis was then executed using NVivo to formally identify patterns and themes present in stakeholder surveys, workshop proceedings, and reports. Initial stakeholder priorities centered around incorporation of climate science into planning and decision making regarding vulnerabilities of infrastructure, enhanced emergency planning and response, and communication of key information.

  20. COASTAL DYNAMICS OF SINGKAWANG, WEST KALIMANTAN

    Directory of Open Access Journals (Sweden)

    Yudi Darlan

    2017-07-01

    Full Text Available Morphologically, Singkawang and adjacent area consist of zones beaches, undulating hills, and steep hills. Granitic rocks and alluvium as a based rock of Singkawang coasts. Generally, Singkawang coasts was developed for coastal farms, fishery pond, and beach resorts, where most of these area have been eroded. Geological and physical oceanography condition are the aspects that build the characteristics of Singkawang coast. Human activities also play an important role in managing the equilibrium and dynamics of this coastal region. This research is to determine the dynamics and coastline changes of Singkawang coasts based on the characteristics of the coastal element and sediment. The high erosion was occurred at Semalagi–Cape Bajau. The Cape Bajau - Cape Banjar is relatively stable due to headlands of this coast is characterized by igneous rocks which resistant to the erosion. The Cape Banjar – South Coasts is very intensive erosion coast. Modern shorelines of the Singkawang coast might be as a shallow marine environment which were occurred thousands years ago (pre-Recent. The high of sedimentation process is generated by global sea level change, where was occurred at that time, and might be changed the area become part of the mainland coast of Singkawang. Keywords: coastal dynamics, erosion, sedimentation, Singkawang, West Kalimantan.

  1. 75 FR 44938 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery

    Science.gov (United States)

    2010-07-30

    ... Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery AGENCY: National... moratorium on fishing for Atlantic coastal sharks in the State waters of New Jersey. NMFS canceled the... Fisheries Commission's (Commission) Interstate Fishery Management Plan for Atlantic Coastal Sharks (Coastal...

  2. National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The U. S. Army Corps of Engineers (USACE) National Coastal Mapping Program (NCMP) is designed to provide high-resolution elevation and imagery data along U.S....

  3. Coastal Engineering

    NARCIS (Netherlands)

    Van der Velden, E.T.J.M.

    1989-01-01

    Introduction, waves, sediment transport, littoral transport, lonshore sediment transport, onshore-offshore sediment transport, coastal changes, dune erosion and storm surges, sedimentation in channels and trenches, coastal engineering in practice.

  4. An assessment of the radiological consequences of disposal of high-level waste in coastal geologic formations

    International Nuclear Information System (INIS)

    Hill, M.D.; Lawson, G.

    1980-11-01

    This study was carried out with the objectives of assessing the potential radiological consequences of entry of circulating ground-water into a high-level waste repository sited on the coast; and comparing the results with those of previous assessments for a repository sited inland. Mathematical models are used to calculate the rate of release of radioactivity into ground-water by leaching, the rates of migration of radionuclides with ground-water from the repository to the sea and the concentrations of radionuclides in sea-water and sea-food as a function of time. Estimates are made of the peak annual collective doses and collective dose commitments which could be received as a result of sea-food consumption. Since there are considerable uncertainties associated with the values of many of the parameters used in the calculations the broad features of the results are more significant than the numerical values of predicted annual doses and collective dose commitments. The results of the assessment show that the rates of migration of radionuclides with ground-water are of primary importance in determining the radiological impact of ground-water ingress. The implications of this result for selection of coastal sites and allocation of research effort are discussed. The comparison of coastal and inland sites suggest that coastal siting may have substantial advantages in terms of the radiological consequences to the public after disposal and that a significant fraction of available research effort should therefore be directed towards investigation of coastal sites. This study has been carried out under contract to the United Kingdom Atomic Energy Authority, Harwell, on behalf of the Commission of the European Communities. (author)

  5. There's Life in Hazard Trees

    Science.gov (United States)

    Mary Torsello; Toni McLellan

    The goals of hazard tree management programs are to maximize public safety and maintain a healthy sustainable tree resource. Although hazard tree management frequently targets removal of trees or parts of trees that attract wildlife, it can take into account a diversity of tree values. With just a little extra planning, hazard tree management can be highly beneficial...

  6. 75 FR 9158 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery

    Science.gov (United States)

    2010-03-01

    ... Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery AGENCY: National Marine... Commission's Interstate Fishery Management Plan (ISFMP) for Coastal Sharks. Subsequently, the Commission... New Jersey failed to carry out its responsibilities under the Coastal Sharks ISFMP, and if the...

  7. The Coastal Resilience Index: High School Students Planning for Their Community's Future

    Science.gov (United States)

    Kastler, J. A.; Dorcik, S.; Sempier, T.; Kimbrell, C.

    2017-12-01

    Communities in Jackson County, Mississippi sustained heavy damages during Hurricane Katrina in 2005 and are expected to experience early effects as sea level rise and increasing episodes of nuisance flooding. Many high school students still remember months-long evacuations and other disruptions to home and family in 2005. Others do not remember or moved here recently. None anticipate their communities are likely to face similar challenges in the future, nor do they have a strong understanding that preparing for such an event is a practical, local career choice for a science major. Through a series of classroom and field lessons, students in two coastal communities learned how and why coastal habitats are changing, and how modeling predicts future impacts. During a culminating experience students learn how to use the Coastal Resilience Index developed by Mississippi Alabama Sea Grant Consortium. Working in teams or three to four students, the students addressed one of twelve scenarios based on real experiences observed by Gulf Coast communities during their post-hurricane assessments. Each team explored its topic using internet resources and conversations with family members, then worked together to brainstorm possible approaches to address the situation described in their scenario. They selected one potential solution for their focus and developed it, ultimately producing a poster of the scenario and their idea of its solution. The teams gathered at the University of Southern Mississippi at the end of the term to present their work, science fair style, to a selection of community leaders from the Climate Community of Practice. Posters were judged and best poster presentations were awarded. This talk will focus on the evaluation results. Existing qualitative observations show differences in awareness and self-efficacy to work productively in this field. Community leaders expressed interest in the solutions offered. Ongoing quantitative evaluations will also be

  8. Hazardous materials and waste management a guide for the professional hazards manager

    CERN Document Server

    Cheremisinoff, Nicholas P

    1995-01-01

    The management of hazardous materials and industrial wastes is complex, requiring a high degree of knowledge over very broad technical and legal subject areas. Hazardous wastes and materials are diverse, with compositions and properties that not only vary significantly between industries, but within industries, and indeed within the complexity of single facilities. Proper management not only requires an understanding of the numerous and complex regulations governing hazardous materials and waste streams, but an understanding and knowledge of the treatment, post-treatment, and waste minimizatio

  9. Right of innocent passage of ships carrying ultra-hazardous cargoes

    International Nuclear Information System (INIS)

    Sousa Ferro, M.

    2006-01-01

    The analysis carried out in this paper suggests that coastal states would probably fail to persuade an international tribunal of the existence of the right to deny passage of ships carrying ultra-hazardous cargoes through their territorial seas, much less through their exclusive economic zones. The same applies to the obligation to provide (or right to require) prior notification of such passage. This may partly explain why no international litigation concerning these issues has so far taken place, even though there have been a number of conflicts between coastal states and shipping states, widely published in the media. Still, evidence suggests that officers at the head of authorities in several coastal states, often non legal experts, firmly believe in the existence of these rights and obligations, at least insofar as concerns the territorial sea; The gap between the law and practice seems to be widening. At the same time, several states are clearly pursuing a policy of pushing for an evolution of customary law, either by claiming that this evolution has already taken place, or that the letter of this or that treaty already allows for claims. It would not be surprising if this strategy should succeed eventually. For the time being, however, one must not be too hasty to confuse diplomatic concessions with an evolution of the law. (author)

  10. Increasing resiliency to natural hazards - A strategic plan for the Multi-Hazards Demonstration Project in Southern California

    Science.gov (United States)

    Jones, Lucy; Bernknopf, Richard; Cannon, Susan; Cox, Dale A.; Gaydos, Len; Keeley, Jon; Kohler, Monica; Lee, Homa; Ponti, Daniel; Ross, Stephanie L.; Schwarzbach, Steven; Shulters, Michael; Ward, A. Wesley; Wein, Anne

    2007-01-01

    The U.S. Geological Survey (USGS) is initiating a new project designed to improve resiliency to natural hazards in southern California through the application of science to community decision making and emergency response. The Multi-Hazards Demonstration Project will assist the region’s communities to reduce their risk from natural hazards by directing new and existing research towards the community’s needs, improving monitoring technology, producing innovative products, and improving dissemination of the results. The natural hazards to be investigated in this project include coastal erosion, earthquakes, floods, landslides, tsunamis, and wildfires.Americans are more at risk from natural hazards now than at any other time in our Nation’s history. Southern California, in particular, has one of the Nation’s highest potentials for extreme catastrophic losses due to natural hazards, with estimates of expected losses exceeding $3 billion per year. These losses can only be reduced through the decisions of the southern California community itself. To be effective, these decisions must be guided by the best information about hazards, risk, and the cost-effectiveness of mitigation technologies. The USGS will work with collaborators to set the direction of the research and to create multi-hazard risk frameworks where communities can apply the results of scientific research to their decision-making processes. Partners include state, county, city, and public-lands government agencies, public and private utilities, companies with a significant impact and presence in southern California, academic researchers, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), and local emergency response agencies.Prior to the writing of this strategic plan document, three strategic planning workshops were held in February and March 2006 at the USGS office in Pasadena to explore potential relationships. The goal of these planning

  11. A hazard and probabilistic safety analysis of a high-level waste transfer process

    International Nuclear Information System (INIS)

    Bott, T.F.; Sasser, M.K.

    1996-01-01

    This paper describes a safety analysis of a transfer process for high-level radioactive and toxic waste. The analysis began with a hazard assessment that used elements of What If, Checklist, Failure Modes and Effects Analysis, and Hazards and Operability Study (HAZOP) techniques to identify and rough-in accident sequences. Based on this preliminary analysis, the most significant accident sequences were developed further using event trees. Quantitative frequency estimates for the accident sequences were based on operational data taken from the historical record of the site where the process is performed. Several modeling challenges were encountered in the course of the study. These included linked initiating and accident progression events, fire propagation modeling, accounting for administrative control violations, and handling mission-phase effects

  12. Sanitary Assessment of Hazardous Materials Exposed To Highly Toxic Chemical Compounds

    International Nuclear Information System (INIS)

    Rembovskiy, V.; Ermolaeva, E.

    2007-01-01

    -and-plant microflora and hydrocoles. 4. Development of non-standard methodical approaches when determining and interpreting the hazard classes of the wastes, containing high toxic compounds such as nerve gases. In particular, disembodied methods applied for solving the tasks of assessment of chemical compounds toxicity were summarized, as well as a uniform scheme of experimental toxicological assessment of TC of a high risk is presented. A system of quantitative assessment of the TC risk is developed on the basis of integral coefficient of risk (KTC), thus simplifying decision making after toxicological testing. Calculation of the coefficient of the TC risk is based on logarithm of ratio of toxicometry parameters to the value of identical parameters determining affiliation of the TC to the 1st class of risk (extreme risk). Due to the methodology developed in our Institute, we have for the first time estimated the class of toxicity of a highly complicated industrial system. (author)

  13. Coastal Zone Color Scanner data of rich coastal waters

    Science.gov (United States)

    Wrigley, R. C.; Klooster, S. A.

    1983-01-01

    Comparisons of chlorophyll concentrations and diffuse attenuation coefficients measured from ships off the central California coast were made with satellite derived estimates of the same parameters using data from the Coastal Zone Color Scanner. Very high chlorophyll concentrations were encountered in Monterey Bay. Although lower chlorophyll values acquired off Pt. Sur agreed satisfactorily with the satellite data, the high chlorophyll values departed markedly from agreement. Two possible causes for the disagreement are suggested. Comparison of diffuse attenuation coefficients from the same data sets showed closer agreement.

  14. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy

    Directory of Open Access Journals (Sweden)

    P. Brandolini

    2006-01-01

    Full Text Available The many trails existing in the coastal area of Portofino Promontory are used by tourists for trekking or as pathways to small villages and beaches. The aim of this paper is to define geomorphological hazard and tourist vulnerability in this area, within the framework of the management and planning of hiking activities in Portofino Natural Park. In particular, processes triggered by gravity, running waters and wave motion, affecting the slopes and the cliff, are considered. The typology of the trails and trail maintenance are also taken into account in relation to weather conditions that can make the excursion routes dangerous for tourists. In conclusion, an operative model is applied for the definition of possible risk scenarios. This model is founded on an inventory and the quantification of geomorphological hazards and tourist vulnerability, in comparison with trail rescue data. The model can be applied to other environments and tourist areas.

  15. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    KAUST Repository

    Roth, Florian; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S.

    2016-01-01

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ13Corg and δ15N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  16. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil).

    Science.gov (United States)

    Roth, F; Lessa, G C; Wild, C; Kikuchi, R K P; Naumann, M S

    2016-05-15

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ(13)Corg and δ(15)N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    KAUST Repository

    Roth, Florian

    2016-03-30

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ13Corg and δ15N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  18. Relative Hazard Calculation Methodology

    International Nuclear Information System (INIS)

    DL Strenge; MK White; RD Stenner; WB Andrews

    1999-01-01

    The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation)

  19. Radiological maps in beach sands along some coastal regions of Turkey

    International Nuclear Information System (INIS)

    Kucukomeroglu, B.; Karadeniz, A.; Damla, N.; Yesilkanat, C.M.; Cevik, U.

    2016-01-01

    In the present research, the gamma-emitting radionuclides in beach sands along the coastal regions of the Ordu, Giresun and Trabzon provinces, Turkey have been determined. The natural and anthropogenic radionuclide concentrations of the samples have been measured employing a germanium (HPGe) detector with high resolution and purity. The activity for 238 U, 232 Th, 40 K and 137 Cs of the samples were found to vary in the range from below detection limit (BDL) to 65 Bq·kg −1 , from BDL to 28 Bq·kg −1 , from 9 to 1936 Bq·kg −1 and from BDL to 22 Bq·kg −1 , respectively. The activity concentrations were compared with those in the literature. The associated radiological hazard indices were estimated, and were compared to the internationally recommended values. The radiological map of beach sand in the surveyed area was imaged. The data presented in the study are crucial since they constitute a baseline for the radiological mapping of the region in the future. - Highlights: • The natural and anthropogenic radionuclide concentrations in beach sands were analyzed. • The associated radiological hazard indices were estimated. • The results were evaluated to check the compatibility of national and international values. • The radiological maps of beach sand were produced. • The findings demonstrate that the obtained values were less than the internationally accepted recommended limits.

  20. Environmental hazard analysis - contamination of nutrients, mercury and cesium-137 in natural waters

    International Nuclear Information System (INIS)

    Hakanson, L.

    1990-01-01

    Results from some ongoing Swedish research projects on different types of contamination of limnic as well as marine areas are summarized. A brief theoretical outline on the central concepts of the 'meso-scale-type' of environmental hazard analysis, utilizing examples on eutrophication of coastal waters is given. The concepts are further substantiated in two subsequent parts dealing with radioactive cesium and mercury. The idea is to illustrate that the basic concepts for ('real' world/'meso scale') environmental hazard analysis can be used for different substances and different aquatic environments. It is important to give clear, quantifiable definitions of the effect, dose and environmental sensitivity parameters, which should be valid for a defined area and for a defined span of time. All other parameters should be compatible and have the same area and time resolution. (author)

  1. Coastal Hazards and Integration of Impacts in Local Adaptation Planning

    Science.gov (United States)

    Knudsen, P.; Sorensen, C.; Molgaard, M. R.; Broge, N. H.; Andersen, O. B.

    2016-12-01

    Data on sea and groundwater levels, precipitation, land subsidence, geology, and geotechnical soil properties are combined with information on flood and erosion protection measures to analyze water-related impacts from climate change at an exposed coastal location. Future sea extremes will have a large impact but several coupled effects in the hydrological system need to be considered as well to provide for optimal protection and mitigation efforts. For instance, the investment and maintenance costs of securing functional water and wastewater pipes are significantly reduced by incorporating knowledge about climate change. The translation of regional sea level rise evidence and projections to concrete impact measures should take into account the potentially affected stakeholders who must collaborate on common and shared adaptation solutions. Here, knowledge integration across levels of governance and between research, private and public institutions, and the local communities provides: understanding of the immediate and potential future challenges; appreciation of different stakeholder motives, business agendas, legislative constraints etc., and a common focus on how to cost-efficiently adapt to and manage impacts of climate change. By construction of a common working platform that is updated with additional data and knowledge, e.g. from future regional models or extreme events, advances in sea level research can more readily be translated into concrete and local impact measures in a way that handles uncertainties in the future climate and urban development as well as suiting the varying stakeholder needs.

  2. Multi Hazard Assessment: The Azores Archipelagos (PT) case

    Science.gov (United States)

    Aifantopoulou, Dorothea; Boni, Giorgio; Cenci, Luca; Kaskara, Maria; Kontoes, Haris; Papoutsis, Ioannis; Paralikidis, Sideris; Psichogyiou, Christina; Solomos, Stavros; Squicciarino, Giuseppe; Tsouni, Alexia; Xerekakis, Themos

    2016-04-01

    ) and earthquake (475 years return period) was used. Topography, lithology, soil moisture and LU/LC were also accounted for. Soil erosion risk was assessed through the empirical model RUSLE (Renard et al. 1991b). Rainfall erosivity, topography and vegetation cover are the main parameters which were used for predicting the proneness to soil loss. Expected, maximum tsunami wave heights were estimated for a specific earthquake scenario at designated forecast points along the coasts. Deformation at the source was calculated by utilizing the Okada code (Okada, 1985). Tsunami waves' generation and propagation is based on the SWAN model (JRC/IPSC modification). To estimate the wave height (forecast points) the Green's Law function was used (JRC Tsunami Analysis Tool). Storm tracks' historical data indicate a return period of 17 /41 years for H1 /H2 hurricane categories respectively. NOAA WAVEWATCH III model hindcast reanalysis was used to estimate the maximum significant wave height (wind and swell) along the coastline during two major storms. The associated storm-surge risk assessment accounted also for the coastline morphology. Seven empirical (independent) indicators were used to express the erosion susceptibility of the coasts. Each indicator is evaluated according to a semi?quantitative score that represents low, medium and high level of erosion risk or impact. The estimation of the coastal erosion hazard was derived through aggregating the indicators in a grid scale.

  3. Baseline metals pollution profile of tropical estuaries and coastal waters of the Straits of Malacca

    International Nuclear Information System (INIS)

    Looi, Ley Juen; Aris, Ahmad Zaharin; Wan Johari, Wan Lutfi; Yusoff, Fatimah Md.; Hashim, Zailina

    2013-01-01

    Highlights: • Order of metals distribution were as follow: Fe > Al > Se > Cu > As > Zn > Mn > Ni > Ba > Pb > Cd > Cr > Co. • As and Cu levels have exceeded Malaysia Marine Water Quality Criteria and Standard. • Seven principal components of PCA were extracted from estuaries and coastal waters. • Mineral-related parameters are main pollution sources in the waters. -- Abstract: The status report on metal pollution in tropical estuaries and coastal waters is important to understand potential environmental health hazards. Detailed baseline measurements were made on physicochemical parameters (pH, temperature, redox potential, electrical conductivity, salinity, dissolved oxygen, total dissolved solid), major ions (Na, Ca, Mg, K, HCO 3 , Cl, SO 4 and NO 3 ) and metals concentrations ( 27 Al, 75 As, 138 Ba, 9 Be, 111 Cd, 59 Co, 63 Cu, 52 Cr, 57 Fe, 55 Mn, 60 Ni, 208 Pb, 80 Se, 66 Zn) at estuaries and coastal waters along the Straits of Malacca. Principal component analysis (PCA) was employed to reveal potential pollution sources. Seven principal components were extracted with relation to pollution contribution from minerals-related parameters, natural and anthropogenic sources. The output from this study will generate a profound understanding on the metal pollution status and pollution risk of the estuaries and coastal system

  4. A Coupled Economic and Physical Model of Coastal Adaptation and Abandonment: Are human occupied coastlines a bubble waiting to burst?

    Science.gov (United States)

    McNamara, D.; Keeler, A.

    2011-12-01

    Policy discussions of adaptation by coastal residents to increasing rates of sea level rise and changing frequency of damaging storms have focused on community land use planning processes. This view neglects the role that market dynamics and climate change expectations play in the way coastal communities choose among risk mitigation options and manage land use decisions in an environment of escalating risks. We use a model coupling physical coastal processes with an agent-based model of behavior in real estate and mitigation markets to examine the interplay of climate-driven coastal hazards, collective mitigation decisions, and individual beliefs. The physical component model simulates barrier island processes that respond to both storms and slow scale dynamics associated with sea level rise. The economic component model is an agent-based model of economic behavior where agents are rational economic actors working off different assessments of future climate-driven events. Agents differentially update their beliefs based on a) how much emphasis they give to observed coastal changes and b) how much weight they give to scientific predictions. In essence, agents differ along a spectrum of how much they believe that the past is the best guide to the future and how quickly they react to new information. We use the coupled model to explore three questions of interest to coastal policy. First, how do the interplay of costal processes, beliefs, and mitigation choices affect the level and stability of real estate prices? Second, how does this interplay affect the incentives for community investments in shoreline protection? Third, how do expectations and reactions to observed events, as well as mitigation investments, affect the built environment in circumstances when climate risks reach very high levels? This last question relates to a key aspect of climate change adaptation on the coast - when does mitigation give way to abandonment as an optimal adaptation strategy

  5. ThinkHazard!: an open-source, global tool for understanding hazard information

    Science.gov (United States)

    Fraser, Stuart; Jongman, Brenden; Simpson, Alanna; Nunez, Ariel; Deparday, Vivien; Saito, Keiko; Murnane, Richard; Balog, Simone

    2016-04-01

    Rapid and simple access to added-value natural hazard and disaster risk information is a key issue for various stakeholders of the development and disaster risk management (DRM) domains. Accessing available data often requires specialist knowledge of heterogeneous data, which are often highly technical and can be difficult for non-specialists in DRM to find and exploit. Thus, availability, accessibility and processing of these information sources are crucial issues, and an important reason why many development projects suffer significant impacts from natural hazards. The World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR) is currently developing a new open-source tool to address this knowledge gap: ThinkHazard! The main aim of the ThinkHazard! project is to develop an analytical tool dedicated to facilitating improvements in knowledge and understanding of natural hazards among non-specialists in DRM. It also aims at providing users with relevant guidance and information on handling the threats posed by the natural hazards present in a chosen location. Furthermore, all aspects of this tool will be open and transparent, in order to give users enough information to understand its operational principles. In this presentation, we will explain the technical approach behind the tool, which translates state-of-the-art probabilistic natural hazard data into understandable hazard classifications and practical recommendations. We will also demonstrate the functionality of the tool, and discuss limitations from a scientific as well as an operational perspective.

  6. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.

    Science.gov (United States)

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo

    2016-12-08

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  7. Validation of a short-term shoreline evolution model and coastal risk management implications. The case of the NW Portuguese coast (Ovar-Marinha Grande)

    Science.gov (United States)

    Cenci, Luca; Giuseppina Persichillo, Maria; Disperati, Leonardo; Oliveira, Eduardo R.; de Fátima Lopes Alves, Maria; Boni, Giorgio; Pulvirenti, Luca; Phillips, Mike

    2015-04-01

    Coastal zones are fragile and dynamic environments where environmental, economic and social aspects are interconnected. While these areas are often highly urbanised, they are especially vulnerable to natural hazards (e.g. storms, floods, erosion, storm surges). Hence, high risk affects people and goods in several coastal zones throughout the world. The recent storms that hit the European coasts (Hercules, Christian and Stephanie, among others) showed the high vulnerability of these territories. Integrated Coastal Management (ICM) deals with the sustainable development of coastal zones by taking into account the different aspects that affect them, including risks adaptation and mitigation. Accurate mapping of shoreline position through time and models to predict shoreline evolution play a fundamental role for coastal zone risk management. In this context, spaceborne remote sensing is fundamental because it provides synoptic and multitemporal information that allow the extraction of shorelines' proxies. These are stable coastal features (e.g. the vegetation lines, the foredune toe, etc.) that can be mapped instead of the proper shoreline, which is an extremely dynamic boundary. The use of different proxies may provide different evolutionary patterns for the same study area; therefore it is important to assess which is the most suitable, given the environmental characteristics of a specific area. In Portugal, the coastal stretch between Ovar and Marinha Grande is one of the greatest national challenges in terms of integrated management of resources and risks. This area is characterised by intense erosive processes that largely exceed the shoreline's retreat predictions made in the first Coastal Zone Management Plan, developed in 2000. The aim of this work was to assess the accuracy of a new model of shoreline evolution implemented in 2013 in order to check its robustness for short-term predictions. The method exploited the potentialities of the Landsat archive

  8. Improved Performance and Safety for High Energy Batteries Through Use of Hazard Anticipation and Capacity Prediction

    Science.gov (United States)

    Atwater, Terrill

    1993-01-01

    Prediction of the capacity remaining in used high rate, high energy batteries is important information to the user. Knowledge of the capacity remaining in used batteries results in better utilization. This translates into improved readiness and cost savings due to complete, efficient use. High rate batteries, due to their chemical nature, are highly sensitive to misuse (i.e., over discharge or very high rate discharge). Battery failure due to misuse or manufacturing defects could be disastrous. Since high rate, high energy batteries are expensive and energetic, a reliable method of predicting both failures and remaining energy has been actively sought. Due to concerns over safety, the behavior of lithium/sulphur dioxide cells at different temperatures and current drains was examined. The main thrust of this effort was to determine failure conditions for incorporation in hazard anticipation circuitry. In addition, capacity prediction formulas have been developed from test data. A process that performs continuous, real-time hazard anticipation and capacity prediction was developed. The introduction of this process into microchip technology will enable the production of reliable, safe, and efficient high energy batteries.

  9. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  10. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters

    Directory of Open Access Journals (Sweden)

    Stéfani Novoa

    2017-01-01

    Full Text Available The accurate measurement of suspended particulate matter (SPM concentrations in coastal waters is of crucial importance for ecosystem studies, sediment transport monitoring, and assessment of anthropogenic impacts in the coastal ocean. Ocean color remote sensing is an efficient tool to monitor SPM spatio-temporal variability in coastal waters. However, near-shore satellite images are complex to correct for atmospheric effects due to the proximity of land and to the high level of reflectance caused by high SPM concentrations in the visible and near-infrared spectral regions. The water reflectance signal (ρw tends to saturate at short visible wavelengths when the SPM concentration increases. Using a comprehensive dataset of high-resolution satellite imagery and in situ SPM and water reflectance data, this study presents (i an assessment of existing atmospheric correction (AC algorithms developed for turbid coastal waters; and (ii a switching method that automatically selects the most sensitive SPM vs. ρw relationship, to avoid saturation effects when computing the SPM concentration. The approach is applied to satellite data acquired by three medium-high spatial resolution sensors (Landsat-8/Operational Land Imager, National Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite and Aqua/Moderate Resolution Imaging Spectrometer to map the SPM concentration in some of the most turbid areas of the European coastal ocean, namely the Gironde and Loire estuaries as well as Bourgneuf Bay on the French Atlantic coast. For all three sensors, AC methods based on the use of short-wave infrared (SWIR spectral bands were tested, and the consistency of the retrieved water reflectance was examined along transects from low- to high-turbidity waters. For OLI data, we also compared a SWIR-based AC (ACOLITE with a method based on multi-temporal analyses of atmospheric constituents (MACCS. For the selected scenes, the ACOLITE-MACCS difference was

  11. Tsunami hazard assessment in the coastal area of Rabat and Salé, Morocco

    Directory of Open Access Journals (Sweden)

    C. Renou

    2011-08-01

    Full Text Available In the framework of the three-year SCHEMA European project (www.schemaproject.org, we present a generic methodology developed to produce tsunami building vulnerability and impact maps. We apply this methodology to the Moroccan coast. This study focuses on the Bouregreg Valley which is at the junction between Rabat (administrative capital, and Salé. Both present large populations and new infrastructure development. Using a combination of numerical modelling, field surveys, Earth Observation and GIS data, the risk has been evaluated for this vulnerable area.

    Two tsunami scenarios were studied to estimate a realistic range of hazards on this coast: a worst-case scenario based on the historical Lisbon earthquake of 1755 and a moderate scenario based on the Horseshoe earthquake of 28 February 1969. For each scenario, numerical models allowed the production of tsunami hazard maps (maximum inundation extent and maximum inundation depths. Moreover, the modelling results of these two scenarios were compared with the historical data available.

    A companion paper to this article (Atillah et al., 2011 presents the following steps of the methodology, namely the elaboration of building damage maps by crossing layers of building vulnerability and the so-inferred inundation depths.

  12. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  13. Seismic hazard maps for Haiti

    Science.gov (United States)

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  14. STORMTOOLS: Coastal Environmental Risk Index (CERI

    Directory of Open Access Journals (Sweden)

    Malcolm L. Spaulding

    2016-08-01

    Full Text Available One of the challenges facing coastal zone managers and municipal planners is the development of an objective, quantitative assessment of the risk to structures, infrastructure, and public safety that coastal communities face from storm surge in the presence of changing climatic conditions, particularly sea level rise and coastal erosion. Here we use state of the art modeling tool (ADCIRC and STWAVE to predict storm surge and wave, combined with shoreline change maps (erosion, and damage functions to construct a Coastal Environmental Risk Index (CERI. Access to the state emergency data base (E-911 provides information on structure characteristics and the ability to perform analyses for individual structures. CERI has been designed as an on line Geographic Information System (GIS based tool, and hence is fully compatible with current flooding maps, including those from FEMA. The basic framework and associated GIS methods can be readily applied to any coastal area. The approach can be used by local and state planners to objectively evaluate different policy options for effectiveness and cost/benefit. In this study, CERI is applied to RI two communities; Charlestown representing a typical coastal barrier system directly exposed to ocean waves and high erosion rates, with predominantly low density single family residences and Warwick located within Narragansett Bay, with more limited wave exposure, lower erosion rates, and higher residential housing density. Results of these applications are highlighted herein.

  15. Adaptation to Sea Level Rise in Coastal Units of the National Park Service (Invited)

    Science.gov (United States)

    Beavers, R. L.

    2010-12-01

    83 National Park Service (NPS) units contain nearly 12,000 miles of coastal, estuarine and Great Lakes shoreline and their associated resources. Iconic natural features exist along active shorelines in NPS units, including, e.g., Cape Cod, Padre Island, Hawaii Volcanoes, and the Everglades. Iconic cultural resources managed by NPS include the Cape Hatteras Lighthouse, Fort Sumter, the Golden Gate, and heiaus and fish traps along the coast of Hawaii. Impacts anticipated from sea level rise include inundation and flooding of beaches and low lying marshes, shoreline erosion of coastal areas, and saltwater intrusion into the water table. These impacts and other coastal hazards will threaten park beaches, marshes, and other resources and values; alter the viability of coastal roads; and require the NPS to re-evaluate the financial, safety, and environmental implications of maintaining current projects and implementing future projects in ocean and coastal parks in the context of sea level rise. Coastal erosion will increase as sea levels rise. Barrier islands along the coast of Louisiana and North Carolina may have already passed the threshold for maintaining island integrity in any scenario of sea level rise (U.S. Climate Change Science Program Synthesis and Assessment Program Report 4.1). Consequently, sea level rise is expected to hasten the disappearance of historic coastal villages, coastal wetlands, forests, and beaches, and threaten coastal roads, homes, and businesses. While sea level is rising in most coastal parks, some parks are experiencing lower water levels due to isostatic rebound and lower lake levels. NPS funded a Coastal Vulnerability Project to evaluate the physical and geologic factors affecting 25 coastal parks. The USGS Open File Reports for each park are available at http://woodshole.er.usgs.gov/project-pages/. These reports were designed to inform park planning efforts. NPS conducted a Storm Vulnerability Project to provide ocean and coastal

  16. Development and Application of Percent Annual Chance Coastal Inundation Maps to Support Decision-Making in the Northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, M. V.; Hagen, S. C.; Irish, J. L.; Yoskowitz, D.; Del Angel, D. C.

    2017-12-01

    Rising sea levels increase the vulnerability, exposure, probability, and thus risk associated with hurricane storm surge flooding across low-gradient coastal landscapes. In the U.S., flood risk assessments commonly employ the delineation of the 1% annual chance flood (100-year return period) that guide coastal policy and planning. As many coastal communities now include climate change effects on future development activities, the need to provide scientifically sound and scenario-based data products are becoming increasingly essential. Implementing bio-geo-physical models to study the effects of sea level rise (SLR) on coastal flooding under a variety of scenarios can be a powerful tool. However, model results alone are not appropriate for use by the broader coastal management community and thus must be further refined. For example, developing return period inundations maps or examining the potential economic damages are vital to translate scientific finding and extend their practicality to coastal resources managers, stakeholders, and governmental agencies. This work employs a collection of high-resolution wind-wave and hurricane storm surge models forced by a suite of synthetic storms to derive the 1% and 0.2% annual chance floodplain under four SLR scenarios (0.2, m, 0.5 m, 1.2 m, and 2.0 m) across the northern Gulf of Mexico (NGOM) coast, which include Mississippi, Alabama, and the Florida panhandle. The models represent the potential outlook of the coastal landscape for each of the scenarios and contains changes to the salt marsh, barrier islands, shoreline position, dune elevations, and land use land cover. Simulated surge data are fed into a hazard assessment tool that provides estimates of potential future damages and costs for each SLR scenario. Results provide evidence that the present 500-year floodplain becomes the 100-year floodplain under the 0.5 m SLR scenario by the end of the century along the Alabama and the Florida panhandle coast. Across

  17. Coastal Wetlands Protection Act: Case of Apalachicola-Chattahoochee-Flint (ACF) River

    OpenAIRE

    Latif Gürkan KAYA

    2007-01-01

    Coastal wetlands, being important components of estuarine and coastal systems, stand for all publicly owned lands subject to the ebb and flow of the tide. They are below the watermark of ordinary high tide. The coastal wetlands contain a vital natural resource system. The coastal wetlands resource system, unless impossible, to reconstruct or rehabilitate once adversely affected by human. In the USA, the Apalachicola-Chattahoochee-Flint (ACF) river states (i.e. Georgia, Alabama and Florida) ha...

  18. Contribution of psychology to the safety of installations with a high hazard potential

    International Nuclear Information System (INIS)

    Wilpert, B.

    1996-01-01

    Installations with a high hazard potential are usually characterised by the dual attribute 'low risk - high hazard'. Diverse strategies of safety management are employed in such installations in order to limit the great hazard potential of safety-relevant occurrences (faults, abnormal operating states, accidents) that can take place in them. These strategies include specific control principles. In nuclear engineering, for example, the feedforward principle has already been used for some time as a tool of analytic risk determination (e.g., in probabilistic Safety Analysis (PSA) or Human Reliability Analysis (HRA)). A further example of these strategies of safety management is the empirical determination of risks through evaluation of operating experience (feedback control, e.g., epemiological studies, accident analysis) and, derived from this, identification of the system's weak points in terms of safety. Insights derived from the application of these control principles can serve to develop specific means of intervention. These will tend to be closely oriented to the results obtained with the control method and may consist in, e.g., trainings or measures of organisation development. Independent of this, it will also be possible to identify long-term measures for preventing safety-relevant occurrences (e.g., organisational learning, safety-mindedness). The above-named strategies of safety management (control, intervention, prevention) provide a fertile basis for psychological studies in fields such as the physiology and psychology of perception (information processing), cognitive, psychology (thought and action), social psychology (division of labour, norms), paedagogic psychology (training), or organisational and environmental psychology (safety-mindedness, leadership, environmental influences). (orig./DG) [de

  19. High Ice Water Concentrations in the 19 August 2015 Coastal Mesoconvective System

    Science.gov (United States)

    Proctor, Fred H.; Harrah, Steven; Switzer, George F.; Strickland, Justin K.; Hunt, Patricia J.

    2017-01-01

    During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed.

  20. Re-evaluation and updating of the seismic hazard of Lebanon

    Science.gov (United States)

    Huijer, Carla; Harajli, Mohamed; Sadek, Salah

    2016-01-01

    This paper presents the results of a study undertaken to evaluate the implications of the newly mapped offshore Mount Lebanon Thrust (MLT) fault system on the seismic hazard of Lebanon and the current seismic zoning and design parameters used by the local engineering community. This re-evaluation is critical, given that the MLT is located at close proximity to the major cities and economic centers of the country. The updated seismic hazard was assessed using probabilistic methods of analysis. The potential sources of seismic activities that affect Lebanon were integrated along with any/all newly established characteristics within an updated database which includes the newly mapped fault system. The earthquake recurrence relationships of these sources were developed from instrumental seismology data, historical records, and earlier studies undertaken to evaluate the seismic hazard of neighboring countries. Maps of peak ground acceleration contours, based on 10 % probability of exceedance in 50 years (as per Uniform Building Code (UBC) 1997), as well as 0.2 and 1 s peak spectral acceleration contours, based on 2 % probability of exceedance in 50 years (as per International Building Code (IBC) 2012), were also developed. Finally, spectral charts for the main coastal cities of Beirut, Tripoli, Jounieh, Byblos, Saida, and Tyre are provided for use by designers.

  1. Essential coastal habitats for fish in the Baltic Sea

    DEFF Research Database (Denmark)

    Kraufvelin, Patrik; Pekcan-Hekim, Zeynep; Bergström, Ulf

    2018-01-01

    Many coastal and offshore fish species are highly dependent on specific habitat types for population maintenance. In the Baltic Sea, shallow productive habitats in the coastal zone such as wetlands, vegetated flads/lagoons and sheltered bays as well as more exposed rocky and sandy areas are utili...

  2. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  3. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  4. Intelligent Observation Strategies for Geosynchronous Remote Sensing for Natural Hazards

    Science.gov (United States)

    Moe, K.; Cappelaere, P. G.; Frye, S. W.; LeMoigne, J.; Mandl, D.; Flatley, T.; Geist, A.

    2015-12-01

    Geosynchronous satellites offer a unique perspective for monitoring environmental factors important to understanding natural hazards and supporting the disasters management life cycle, namely forecast, detection, response, recovery and mitigation. In the NASA decadal survey for Earth science, the GEO-CAPE mission was proposed to address coastal and air pollution events in geosynchronous orbit, complementing similar initiatives in Asia by the South Koreans and by ESA in Europe, thereby covering the northern hemisphere. In addition to analyzing the challenges of identifying instrument capabilities to meet the science requirements, and the implications of hosting the instrument payloads on commercial geosynchronous satellites, the GEO-CAPE mission design team conducted a short study to explore strategies to optimize the science return for the coastal imaging instrument. The study focused on intelligent scheduling strategies that took into account cloud avoidance techniques as well as onboard processing methods to reduce the data storage and transmission loads. This paper expands the findings of that study to address the use of intelligent scheduling techniques and near-real time data product acquisition of both the coastal water and air pollution events. The topics include the use of onboard processing to refine and execute schedules, to detect cloud contamination in observations, and to reduce data handling operations. Analysis of state of the art flight computing capabilities will be presented, along with an assessment of cloud detection algorithms and their performance characteristics. Tools developed to illustrate operational concepts will be described, including their applicability to environmental monitoring domains with an eye to the future. In the geostationary configuration, the payload becomes a networked "thing" with enough connectivity to exchange data seamlessly with users. This allows the full field of view to be sensed at very high rate under the

  5. Intelligent Observation Strategies for Geosynchronous Remote Sensing for Natural Hazards

    Science.gov (United States)

    Moe, Karen; Cappleare, Patrice; Frye, Stuart; LeMoigne, Jacqueline; Mandl, Daniel; Flatley, Thomas; Geist, Alessandro

    2015-01-01

    Geosynchronous satellites offer a unique perspective for monitoring environmental factors important to understanding natural hazards and supporting the disasters management life cycle, namely forecast, detection, response, recovery and mitigation. In the NASA decadal survey for Earth science, the GEO-CAPE mission was proposed to address coastal and air pollution events in geosynchronous orbit, complementing similar initiatives in Asia by the South Koreans and by ESA in Europe, thereby covering the northern hemisphere. In addition to analyzing the challenges of identifying instrument capabilities to meet the science requirements, and the implications of hosting the instrument payloads on commercial geosynchronous satellites, the GEO-CAPE mission design team conducted a short study to explore strategies to optimize the science return for the coastal imaging instrument. The study focused on intelligent scheduling strategies that took into account cloud avoidance techniques as well as onboard processing methods to reduce the data storage and transmission loads. This paper expands the findings of that study to address the use of intelligent scheduling techniques and near-real time data product acquisition of both the coastal water and air pollution events. The topics include the use of onboard processing to refine and execute schedules, to detect cloud contamination in observations, and to reduce data handling operations. Analysis of state of the art flight computing capabilities will be presented, along with an assessment of cloud detection algorithms and their performance characteristics. Tools developed to illustrate operational concepts will be described, including their applicability to environmental monitoring domains with an eye to the future. In the geostationary configuration, the payload becomes a networked thing with enough connectivity to exchange data seamlessly with users. This allows the full field of view to be sensed at very high rate under the control

  6. Crustal structure of the coastal and marine San Francisco Bay region, California

    Science.gov (United States)

    Parsons, Tom

    2002-01-01

    As of the time of this writing, the San Francisco Bay region is home to about 6.8 million people, ranking fifth among population centers in the United States. Most of these people live on the coastal lands along San Francisco Bay, the Sacramento River delta, and the Pacific coast. The region straddles the tectonic boundary between the Pacific and North American Plates and is crossed by several strands of the San Andreas Fault system. These faults, which are stressed by about 4 cm of relative plate motion each year, pose an obvious seismic hazard.

  7. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    Science.gov (United States)

    Sorensen, Carlo; Knudsen, Per; Broge, Niels; Molgaard, Mads; Andersen, Ole

    2016-04-01

    We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology, and geotechnical soil properties are combined with flood protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from future storm surges and other geo- and hydro-parameters need to be considered in order to provide for the best protection and mitigation efforts, however. Based on the results we present and discuss a simple conceptual model setup that can e.g. be used for 'translation' of regional sea level rise evidence and projections to concrete impact measures. This may be used by potentially affected stakeholders -often working in different sectors and across levels of governance, in a common appraisal of the challenges faced ahead. The model may also enter dynamic tools to evaluate local impact as sea level research advances and projections for the future are updated.

  8. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    Science.gov (United States)

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  9. Recycling of hazardous solid waste material using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A.

    2003-03-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. A 10 kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2000 kW/m2 and operated in both batch and continuous mode within the temperature range 1120-1400 K. Extraction of up to 99% and 90% of the Zn originally contained in the EAFD was achieved in the residue for the batch and continuous solar experiments, respectively. The condensed off-gas products consisted mainly of Zn, Pb, and Cl. No ZnO was detected when the O{sub 2} concentration remained below 2 vol.-%. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles. (author)

  10. Identification of Transportation Infrastructure at Risk Due To Sea-Level Rise and Subsidence of Land In Coastal Louisiana

    Science.gov (United States)

    Tewari, S.; Palmer, W.; Manning, F.

    2017-12-01

    Climate change can affect coastal areas in a variety of ways. Coasts are sensitive to sea level rise, changes in the frequency/intensity of storms, increase in precipitation and storm surges. The resilience of transportation infrastructure located in Louisiana's coastal zone, against storm surges and climatic sea-level rise is critical. The net change in sea-level is affected by the increase in global sea level as well as land movement up or down. There are many places in coastal Louisiana that have a high subsidence rate. The subsidence could be related to excess extraction activities of oil and water, natural and/or human induced compaction, and tectonic movement. Where the land is sinking, the rate of relative sea level rise is larger than the global rate. Some of the fastest rates of relative sea level rise in the United States are occurring in areas where the land is sinking, including parts of the Gulf Coast. For example, coastal Louisiana has seen its relative sea level rise by eight inches or more in the last 50 years, which is about twice the global rate. Subsiding land in the Gulf area worsens the effects of relative sea level rise, increasing the risk of flooding in cities, inhabited islands, and tidal wetlands. The research team is investigating the trends for sea-level rise and land subsidence in coastal region of Louisiana. The variability in storm surges and its potential implication on the transportation infrastructure in the region is the focus of the study. The spatial maps will be created for spatial trends. This is extremely useful in being prepared for long-term natural hazards. The results of this study will be helpful to LADOTD and infrastructure managers and officials who are tasked with resiliency planning and management. Research results will also directly benefit university researchers in the state, Coastal Protection and Restoration Authority and LADOTD/LTRC through collaborative activity which will educate both professionals and the

  11. Climatology of the Iberia coastal low-level wind jet: weather research forecasting model high-resolution results

    Directory of Open Access Journals (Sweden)

    Pedro M. M. Soares

    2013-01-01

    Full Text Available Coastal low-level jets (CLLJ are a low-tropospheric wind feature driven by the pressure gradient produced by a sharp contrast between high temperatures over land and lower temperatures over the sea. This contrast between the cold ocean and the warm land in the summer is intensified by the impact of the coastal parallel winds on the ocean generating upwelling currents, sharpening the temperature gradient close to the coast and giving rise to strong baroclinic structures at the coast. During summertime, the Iberian Peninsula is often under the effect of the Azores High and of a thermal low pressure system inland, leading to a seasonal wind, in the west coast, called the Nortada (northerly wind. This study presents a regional climatology of the CLLJ off the west coast of the Iberian Peninsula, based on a 9 km resolution downscaling dataset, produced using the Weather Research and Forecasting (WRF mesoscale model, forced by 19 years of ERA-Interim reanalysis (1989–2007. The simulation results show that the jet hourly frequency of occurrence in the summer is above 30% and decreases to about 10% during spring and autumn. The monthly frequencies of occurrence can reach higher values, around 40% in summer months, and reveal large inter-annual variability in all three seasons. In the summer, at a daily base, the CLLJ is present in almost 70% of the days. The CLLJ wind direction is mostly from north-northeasterly and occurs more persistently in three areas where the interaction of the jet flow with local capes and headlands is more pronounced. The coastal jets in this area occur at heights between 300 and 400 m, and its speed has a mean around 15 m/s, reaching maximum speeds of 25 m/s.

  12. Development of Storm Surge Hazard Maps and Advisory System for the Philippines

    Science.gov (United States)

    Santiago, Joy; Mahar Francisco Lagymay, Alfredo; Caro, Carl Vincent; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Garnet Goting, Prince

    2016-04-01

    The Philippines, located in the most active region of cyclogenesis in the world, experiences an average of 20 tropical cyclones annually. Strong winds brought by tropical cyclones, among other factors, cause storm surges that inundate the coastal areas of the country. As an archipelago with the fourth longest coastline in the world, the country is expose to the threats of storm surges. This was manifested by Typhoon Haiyan on 8 November 2013, which devastated the country and left 6,293 deaths and approximately USD 2 billion worth of damages. To prevent such disaster from happening again, the Nationwide Operational Assessment of Hazards (Project NOAH) developed a Storm Surge Advisory (SSA) that aims to warn communities in coastal areas against impending floods due to storm surges. The Japan Meteorological Agency storm surge model was used to simulate 721 tropical cyclones that entered the Philippine Area of Responsibility from 1951-2013. The resulting storm surge time series from the simulations were added to the maximum tide levels from the WXTide software for the 4,996 observation points placed nearshore in the entire country. The storm tide levels were categorized into four groups based on their peak height to create the SSA - SSA 1 (0.01m to 2m), SSA 2 (2.01m to 3m), SSA 3 (3.01m to 4m), and SSA 4 (4m and above). The time series for each advisory level was used in inundation modelling using FLO-2D, a two-dimensional flood modeling software that uses continuity and dynamic wave momentum equation. The model produced probable extent, depth of inundation, and hazard level for each advisory level. The SSA hazard maps are used as reference to warn communities that are likely to be affected by storm surges. Advisory is released 24 hours in advance and is updated every six hours in the Project NOAH website. It is also being utilized in the pre-disaster risk assessment of the national government agencies and local government units in designing appropriate response to

  13. Coastal Analysis, Nassau,NY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study as defined in FEMA Guides and Specifications, Appendix D: Guidance for coastal Flooding Analyses and Mapping submitted as a result of a coastal study....

  14. Coastal Dynamics

    NARCIS (Netherlands)

    Roelvink, J.A.; Steetzel, H.J.; Bliek, A.; Rakhorst, H.D.; Roelse, P.; Bakker, W.T.

    1998-01-01

    This book deals on "Coastal Dynamics", which will be defined in a narrow sense as a mathematical theory, which starts from given equations of motion for the sediment, which leads with the continuity equation and given boundary conditions to a calculated (eventually schematized) coastal topography,

  15. National-Level Multi-Hazard Risk Assessments in Sub-Saharan Africa

    Science.gov (United States)

    Murnane, R. J.; Balog, S.; Fraser, S. A.; Jongman, B.; Van Ledden, M.; Phillips, E.; Simpson, A.

    2017-12-01

    National-level risk assessments can provide important baseline information for decision-making on risk management and risk financing strategies. In this study, multi-hazard risk assessments were undertaken for 9 countries in Sub-Saharan Africa: Cape Verde, Ethiopia, Kenya, Niger, Malawi, Mali, Mozambique, Senegal and Uganda. The assessment was part of the Building Disaster Resilience in Sub-Saharan Africa Program and aimed at supporting the development of multi-risk financing strategies to help African countries make informed decisions to mitigate the socio-economic, fiscal and financial impacts of disasters. The assessments considered hazards and exposures consistent with the years 2010 and 2050. We worked with multiple firms to develop the hazard, exposure and vulnerability data and the risk results. The hazards include: coastal flood, drought, earthquake, landslide, riverine flood, tropical cyclone wind and storm surge, and volcanoes. For hazards expected to vary with climate, the 2050 hazard is based on the IPCC RCP 6.0. Geolocated exposure data for 2010 and 2050 at a 15 arc second ( 0.5 km) resolution includes: structures as a function of seven development patterns; transportation networks including roads, bridges, tunnels and rail; critical facilities such as schools, hospitals, energy facilities and government buildings; crops; population; and, gross domestic product (GDP). The 2050 exposure values for population are based on the IPCC SSP 2. Values for other exposure data are a function of population change. Vulnerability was based on openly available vulnerability functions. Losses were based on replacement values (e.g., cost/m2 or cost/km). Risk results are provided in terms of annual average loss and a variety of return periods at the national and Admin 1 levels. Assessments of recent historical events are used to validate the model results. In the future, it would be useful to use hazard footprints of historical events for validation purposes. The

  16. 50 Years of coastal erosion analysis: A new methodological approach.

    Science.gov (United States)

    Prieto Campos, Antonio; Diaz Cuevas, Pilar; Ojeda zujar, Jose; Guisado-Pintado, Emilia

    2017-04-01

    Coasts over the world have been subjected to increased anthropogenic pressures which combined with natural hazards impacts (storm events, rising sea-levels) have led to strong erosion problems with negative impacts on the economy and the safety of coastal communities. The Andalusian coast (South Spain) is a renowned global tourist destination. In the past decades a deep transformation in the economic model led to significant land use changes: strong regulation of rivers, urbanisation and occupation of dunes, among others. As a result irreversible transformations on the coastline, from the aggressive urbanisation undertaken, are now to be faced by local authorities and suffered by locals and visitors. Moreover, the expected impacts derived from the climate change aggravated by anthropic activities emphasises the need for tools that facilitates decision making for a sustainable coastal management. In this contribution a homogeneous (only a proxy and one photointerpreter) methodology is proposed for the calculation of coastal erosion rates of exposed beaches in Andalusia (640 km) through the use of detailed series (1:2500) of open source orthophotographies for the period (1956-1977-2001-2011). The outstanding combination of the traditional software DSAS (Digital Shoreline Analysis System) with a spatial database (PostgreSQL) which integrates the resulting erosion rates with related coastal thematic information (geomorphology, presence of engineering infrastructures, dunes and ecosystems) enhances the capacity of analysis and exploitation. Further, the homogeneity of the method used allows the comparison of the results among years in a highly diverse coast, with both Mediterranean and Atlantic façades. The novelty development and integration of a PostgreSQL/Postgis database facilitates the exploitation of the results by the user (for instance by relating calculated rates with other thematic information as geomorphology of the coast or the presence of a dune field on

  17. Multiple external hazards compound level 3 PSA methods research of nuclear power plant

    Science.gov (United States)

    Wang, Handing; Liang, Xiaoyu; Zhang, Xiaoming; Yang, Jianfeng; Liu, Weidong; Lei, Dina

    2017-01-01

    2011 Fukushima nuclear power plant severe accident was caused by both earthquake and tsunami, which results in large amount of radioactive nuclides release. That accident has caused the radioactive contamination on the surrounding environment. Although this accident probability is extremely small, once such an accident happens that is likely to release a lot of radioactive materials into the environment, and cause radiation contamination. Therefore, studying accidents consequences is important and essential to improve nuclear power plant design and management. Level 3 PSA methods of nuclear power plant can be used to analyze radiological consequences, and quantify risk to the public health effects around nuclear power plants. Based on multiple external hazards compound level 3 PSA methods studies of nuclear power plant, and the description of the multiple external hazards compound level 3 PSA technology roadmap and important technical elements, as well as taking a coastal nuclear power plant as the reference site, we analyzed the impact of off-site consequences of nuclear power plant severe accidents caused by multiple external hazards. At last we discussed the impact of off-site consequences probabilistic risk studies and its applications under multiple external hazards compound conditions, and explained feasibility and reasonableness of emergency plans implementation.

  18. Preliminary assessment of coastal erosion and local community adaptation in Sayung coastal area, central Java – Indonesia

    OpenAIRE

    Marfai, Muh Aris

    2012-01-01

    Dynamic environment in coastal area, especially due to coastal erosion process, has negative impact on human environment. Sayung coastal area, located in Central Java-Indonesia, has experienced severe impact of coastal erosion. As the result of the coastal erosion, hundreds of settlement located in coastal area has been destructed. Moreover, fishponds as the land use dominated in the coastal area also has been severely destroyed. Besides the coastal erosion, increasing of inundated area due t...

  19. Southern African Coastal vulnerability assessment

    CSIR Research Space (South Africa)

    Rautenbach, C

    2015-10-01

    Full Text Available or business. The CSIR coastal systems group uses specialist skills in coastal engineering, geographic engineering systems and numerical modelling to assess and map vulnerable coastal ecosystems to develop specific adaptation measures and coastal protection...

  20. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions

  1. Coastal areas mapping using UAV photogrammetry

    Science.gov (United States)

    Nikolakopoulos, Konstantinos G.; Kozarski, Dimitrios; Kogkas, Stefanos

    2017-10-01

    The coastal areas in the Patras Gulf suffer degradation due to the sea action and other natural and human-induced causes. Changes in beaches, ports, and other man made constructions need to be assessed, both after severe events and on a regular basis, to build models that can predict the evolution in the future. Thus, reliable spatial data acquisition is a critical process for the identification of the coastline and the broader coastal zones for geologists and other scientists involved in the study of coastal morphology. High resolution satellite data, airphotos and airborne Lidar provided in the past the necessary data for the coastline monitoring. High-resolution digital surface models (DSMs) and orthophoto maps had become a necessity in order to map with accuracy all the variations in costal environments. Recently, unmanned aerial vehicles (UAV) photogrammetry offers an alternative solution to the acquisition of high accuracy spatial data along the coastline. This paper presents the use of UAV to map the coastline in Rio area Western Greece. Multiple photogrammetric aerial campaigns were performed. A small commercial UAV (DJI Phantom 3 Advance) was used to acquire thousands of images with spatial resolutions better than 5 cm. Different photogrammetric software's were used to orientate the images, extract point clouds, build a digital surface model and produce orthoimage mosaics. In order to achieve the best positional accuracy signalised ground control points were measured with a differential GNSS receiver. The results of this coastal monitoring programme proved that UAVs can replace many of the conventional surveys, with considerable gains in the cost of the data acquisition and without any loss in the accuracy.

  2. Combining chemometric tools for assessing hazard sources and factors acting simultaneously in contaminated areas. Case study: "Mar Piccolo" Taranto (South Italy).

    Science.gov (United States)

    Mali, Matilda; Dell'Anna, Maria Michela; Notarnicola, Michele; Damiani, Leonardo; Mastrorilli, Piero

    2017-10-01

    Almost all marine coastal ecosystems possess complex structural and dynamic characteristics, which are influenced by anthropogenic causes and natural processes as well. Revealing the impact of sources and factors controlling the spatial distributions of contaminants within highly polluted areas is a fundamental propaedeutic step of their quality evaluation. Combination of different pattern recognition techniques, applied to one of the most polluted Mediterranean coastal basin, resulted in a more reliable hazard assessment. PCA/CA and factorial ANOVA were exploited as complementary techniques for apprehending the impact of multi-sources and multi-factors acting simultaneously and leading to similarities or differences in the spatial contamination pattern. The combination of PCA/CA and factorial ANOVA allowed, on one hand to determine the main processes and factors controlling the contamination trend within different layers and different basins, and, on the other hand, to ascertain possible synergistic effects. This approach showed the significance of a spatially representative overview given by the combination of PCA-CA/ANOVA in inferring the historical anthropogenic sources loading on the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Predicting impact of SLR on coastal flooding in Banda Aceh coastal defences

    Science.gov (United States)

    Al'ala, Musa; Syamsidik, Kato, Shigeru

    2017-10-01

    Banda Aceh is a low-lying city located at the northern tip of Sumatra Island and situated at the conjuncture of Malacca Strait and the Andaman Sea. A Sea Level Rise (SLR) rate at 7 mm/year has been observed around this region. In the next 50 years, this city will face a serious challenge to encounter impacts of the sea level rise, such as frequent coastal floodings. This study is aimed at estimating impacts of the sea level rise induced coastal floodings on several types of coastal structures and city drainage system. Numerical simulations of Delft3D were applied to investigate the influence of the gradual sea level rise in 50 years. The hydrodynamic process of coastal flooding and sediment transport were simulated by Delft3D-Flow. Topography and bathymetry data were collected from GEBCO and updated with the available nautical chart (DISHIDROS, JICA, and field measurements). Hydrodynamic process gains the flow process revealing the level of the sea water intrusion also observed in the model. Main rivers (Krueng Aceh, Krueng Neng, and Alue Naga Flood Canal) and the drainage system were observed to see the tides effects on coastal structures and drainage system. The impact on coastal community focusing on affected area, shoreline retreat, the rate of sea intrusion was analyzed with spatial tools. New coastal line, coastal flooding vulnerable area, and the community susceptibility properties map influenced by 50 years sea level rise is produced. This research found that the city needs to address strategies to anticipate the exacerbating impacts of the sea level rise by managing its coastal spatial planning and modify its drainage system, especially at the drainage outlets.

  4. Technologies for climate change adaptation. Coastal erosion and flooding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. (ed.) (UNEP Risoe Centre, Roskilde (Denmark)); Linham, M.M.; Nicholls, R.J. (Univ. of Southampton (United Kingdom))

    2010-11-15

    This guidebook is intended to be a practical tool for use by coastal zone managers in developing countries. The aim is to provide best practice guidance and assist these managers in assessing their evolving adaptation needs and help them to prepare action plans for adapting to climate change in the coastal zone. The guidebook first reviews the main physical and societal impacts of climate change in the coastal zone. It then considers the process of adaptation to erosion and flooding/inundation hazards where major impacts may occur and a range of adaptation technologies are best developed. Thirteen of these adaptation technologies are presented in this guide, representing examples of the protect, accommodate or (planned) retreat approaches to adaptation. While this does not represent an exhaustive list of the adaptation technologies that are available, these technologies are among those most widely used/considered in the coastal zone today. All the technologies considered are relevant to climate change adaptation and collectively, more widespread application is expected in the future under climate change and rising sea levels. For each adaptation technology the following issues are addressed: (1) definition and description; (2) technical advantages and disadvantages; (3) institutional and organisational requirements; (4) potential costs and opportunities; and (5) barriers to implementation; followed by a case study example. We have endeavoured to include developing country examples wherever possible, but as there is less activity and less documentation of developing world projects and some technologies are barely used in the developing world, this is not always possible. Knowledge and capacity building requirements and monitoring technologies are considered and contrasted across all 13 adaptation technologies. Finally, more detailed sources are indicated. Each adaptation technology has widely varying advantages and disadvantages. As such, selection of measures

  5. Treatment of hazardous metals by in situ vitrification

    International Nuclear Information System (INIS)

    Koegler, S.S.; Buelt, J.L.

    1989-02-01

    Soils contaminated with hazardous metals are a significant problem to many Defense Program sites. Contaminated soils have ranked high in assessments of research and development needs conducted by the Hazardous Waste Remedial Action Program (HAZWRAP) in FY 1988 and FY 1989. In situ vitrification (ISV) is an innovative technology suitable for stabilizing soils contaminated with radionuclides and hazardous materials. Since ISV treats the material in place, it avoids costly and hazardous preprocessing exhumation of waste. In situ vitrification was originally developed for immobilizing radioactive (primarily transuranic) soil constituents. Tests indicate that it is highly useful also for treating other soil contaminants, including hazardous metals. The ISV process produces an environmentally acceptable, highly durable glasslike product. In addition, ISV includes an efficient off-gas treatment system that eliminates noxious gaseous emissions and generates minimal hazardous byproducts. This document reviews the Technical Basis of this technology. 5 refs., 7 figs., 2 tabs

  6. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Science.gov (United States)

    2011-07-07

    ... DEPARTMENT OF COMMERCE National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under the Coastal Zone Management Act (CZMA) AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Ocean Service (NOS...

  7. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  8. Formulating a coastal zone health metric for landuse impact management in urban coastal zones.

    Science.gov (United States)

    Anilkumar, P P; Varghese, Koshy; Ganesh, L S

    2010-11-01

    The need for ICZM arises often due to inadequate or inappropriate landuse planning practices and policies, especially in urban coastal zones which are more complex due to the larger number of components, their critical dimensions, attributes and interactions. A survey of literature shows that there is no holistic metric for assessing the impacts of landuse planning on the health of a coastal zone. Thus there is a need to define such a metric. The proposed metric, CHI (Coastal zone Health Indicator), developed on the basis of coastal system sustainability, attempts to gauge the health status of any coastal zone. It is formulated and modeled through an expert survey and pertains to the characteristic components of coastal zones, their critical dimensions, and relevant attributes. The proposed metric is applied to two urban coastal zones and validated. It can be used for more coast friendly and sustainable landuse planning/masterplan preparation and thereby for the better management of landuse impacts on coastal zones. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Extreme sea-levels, coastal risks and climate changes: lost in translation

    Science.gov (United States)

    Marone, Eduardo; Castro Carneiro, Juliane; Cintra, Márcio; Ribeiro, Andréa; Cardoso, Denis; Stellfeld, Carol

    2014-05-01

    Occurring commonly in Brazilian coastal (and continental) areas, floods are probably the most devastating natural hazards our local society faces nowadays. With the expected sea-level rise and tropical storms becoming stronger and more frequents, the scenarios of local impacts of sea-level rise and storm surges; causing loss of lives, environmental damages and socio-economic stress; need to be addressed and properly communicated. We present results related to the sea-level setups accordingly to IPCC's scenarios and the expected coastal floods in the Paraná State, Southern Brazil. The outcomes are displayed in scientific language accompanied by "translations" with the objective of showing the need of a different language approach to communicate with the players affected by coastal hazards. To create the "translation" of the "scientific" text we used the Up-Goer Five Text Editor, which allows writing texts using only the ten hundred most used English words. We allowed ourselves to use a maximum of five other words per box not present at this dictionary, not considering geographical names or units in the count, provided there were simple. That was necessary because words as sea, beach, sand, storm, etc., are not among the one thousand present at the Up-Goer, and they are simple enough anyhow. On the other hand, the not scientific public we targeted speaks Portuguese, not English, and we do not have an Up-Goer tool for that language. Anyhow, each Box was also produced in Portuguese, as much simple as possible, to disseminate our results to the local community. To illustrate the need of "translation", it is worthy to mention a real case of a troublesome misunderstanding caused by us, scientists, in our coastal society. Some years ago, one of our colleagues at the university, a much-respected scientist, informed through a press release that, on a given day, "we will experience the highest astronomical tide of the century". That statement (scientifically true and

  10. Impact of offshore nuclear generating stations on recreational behavior at adjacent coastal sites. Technical report

    International Nuclear Information System (INIS)

    Baker, E.J.; Moss, D.J.; West, S.G.; Weyant, J.K.

    1977-12-01

    A multi-faceted investigation was undertaken to project the impact of offshore nuclear power plants on beach visitation at adjacent beaches. 1. Related literature was reviewed concerning human adjustment to natural hazards, risk-taking behavior, and public attitudes toward nuclear power. 2. Approximately 2400 people were interviewed at beaches in three states with respect to: (a) intended avoidance of beaches near a hypothetical floating nuclear plant (FNP), (b) relative importance of proximity to a FNP, when compared to other beach attributes, (c) onshore-offshore preference for coastal nuclear plant location, (d) behavioral impact of NRC licensing of FNP's, (e) relative tourism impact of coastal nuclear plant compared to coastal coal-fired plant, (f) public concerns about nuclear safety, (g) public attitudes toward alternative energy sources, (h) public confidence in sources of information about nuclear power, (i) visual impact of a FNP, and (j) knowledge about nuclear power. 3. Four beach areas near currently operating coastal nuclear power plants were studied to assess impacts on tourism resulting from plant construction. Data suggest that proximity of a FNP is less important than other beach attributes in determining beach attractiveness, probably no more than (and perhaps less than) 5% to 10% of current beach patrons would avoid a beach after FNP siting three miles directly offshore, and impact of a FNP would decrease exponentially as distance away increased

  11. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    Science.gov (United States)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  13. Protective role of coastal ecosystems in the context of the tsunami in Tamil Nadu coast, India: Implications for hazard preparedness

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.; Jayakumar, S.

    of society bears the recurring loss of humans, livestock and property. Prudent development of coasts is the obvious solution. The inherent benefits offered by a functional sea front have to be considered for a sustainable management of hazard-prone coasts... and high dunes act as efficient dissipaters of wave energy. Sand dunes therefore serve as stores that strong waves draw on during extreme events. Society at large is immensely benefitted. The role played by sand dunes and beach gradients during the tsunami...

  14. Polonium-210 and Lead-210 in marine biota from a coastal region with high natural radioactivity

    International Nuclear Information System (INIS)

    Zafrul Kabir, M.; Deeba, Farah; Hossain, Sushmita; Fharim, Massoud; Md Moniruzzaman; Carvalho, Fernando P.; Oliveira, João M.; Malta, M.; Silva, L.

    2013-01-01

    Coastal sediments and marine fish from a region with high natural radioactivity in Cox Bazar Bangladesh, were analyzed in order to investigate the levels of naturally occurring radionuclides. Sediment from the sea shore in high ambient radiation dose rate areas contained naturally occurring radionuclides at high concentrations. These sediments displayed 226 Ra, 232 Th and 235 U activity concentrations of 2184 ± 88 Bq kg -1 dry weight (d.w.), 3808 ± 200 Bq kg -1 (d.w.) and 123 ± 15 Bq kg -1 (d.w.), respectively. In contrast with these high values, radionuclide concentrations in sand from other areas of the Cox's Bazar coast were as low as 42 ± 3, 70 ± 4 and < 8 Bq kg -1 (d.w.) for the same radionuclides, respectively, which are comparable to concentrations determined in many coastal areas elsewhere. The presence of sand deposits with high concentration of uranium series radionuclides could potentially originate high accumulation of alpha emitting radionuclides such as 210 Po in marine biota, and food chain transfer to man. 210 Po is a major contributor to the radiation dose both in marine organisms and sea food consumers. Determination of 210 Po in marine fish and shrimp from the area lead to concentration values ranging from 4.5±0.3 to 124±3 Bq kg -1 (d.w.) in fish and 82.9±1.6 Bq kg -1 (d.w.) in shrimp. Similar concentrations are commonly reported in marine biota from several regions. Therefore, in spite of the deposits of heavy mineral sands containing high concentrations of radionuclides such as 210 Pb and 210 Po no significant raise in the accumulation of these radionuclides in biota seems to occur, which suggests that radionuclides are tightly bound in sediment grains and are not significantly bioavailable. (author)

  15. Flood risk mitigation and anthropogenic modifications of a coastal plain in southern Italy: combined effects over the past 150 years

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2007-06-01

    modifications were used to create specific databases and a GIS in which these data can be analyzed by typology, location and extension.

    The proposed approach highlights the high degree of correlation between drainage basin management, mainly in terms of increasing protection from natural hazards, and anthropogenic development in a broad coastal plain.

  16. USACE National Coastal Mapping Program Update

    Science.gov (United States)

    Sylvester, C.

    2017-12-01

    The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) formed in 1998 to support the coastal mapping and charting requirements of the USACE, NAVO, NOAA and USGS. This partnership fielded three generations of airborne lidar bathymeters, executed operational data collection programs within the U.S. and overseas, and advanced research and development in airborne lidar bathymetry and complementary technologies. JALBTCX executes a USACE Headquarters-funded National Coastal Mapping Program (NCMP). Initiated in 2004, the NCMP provides high-resolution, high-accuracy elevation and imagery data along the sandy shorelines of the U.S. on a recurring basis. NCMP mapping activities are coordinated with Federal mapping partners through the Interagency Working Group on Ocean and Coastal Mapping and the 3D Elevation Program. The NCMP, currently in it's third cycle, is performing operations along the East Coast in 2017, after having completed surveys along the Gulf Coast in 2016 and conducting emergency response operations in support of Hurricane Matthew. This presentation will provide an overview of JALBTCX, its history in furthering airborne lidar bathymetry technology to meet emerging mapping requirements, current NCMP operations and data products, and Federal mapping coordination activities.

  17. Artesian water in the Malabar coastal plain of southern Kerala, India

    Science.gov (United States)

    Taylor, George C.; Ghosh, P.K.

    1964-01-01

    coastal belt between Quilon and Alleppy was estimated at 1 to 1 1/2 million imperial gallons a day. However, favorable conations exist for considerable further ground-water development in the coastal plain provided that sufficient attention is given to the potential hazards of saltwater encroachment and local overdevelopment. It is estimated that the overall potential for development of water from wells is probably at least several tens of millions of gallons a day, and perhaps more, in the Malabar Coastal Plain of southern Kera. Such a draft would have to be well dispersed to avoid overdevelopment and salt-war encroachment.

  18. Galveston, Texas Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Savannah, Georgia Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Biloxi, Mississippi Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  1. Puerto Rico Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  2. Hilo, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  3. Hanalei, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  4. Taholah, Washington Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  5. Chignik, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  6. Monterey, California Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  7. Garibaldi, Oregon Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  8. Keauhou, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  9. Atka, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  10. Lahaina, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  11. Kawaihae, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  12. Nikolski, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  13. Shemya, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  14. Portland, Maine Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  15. Craig, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  16. Midway Atoll Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  17. Adak, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  18. Cordova, Alaska Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  19. Nantucket, Massachusetts Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...

  20. Oahu, Hawaii Coastal Digital Elevation Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated...