WorldWideScience

Sample records for coastal everglades site

  1. Using Florida Keys Reference Sites As a Standard for Restoration of Forest Structure in Everglades Tree Islands

    International Nuclear Information System (INIS)

    Ross, M.S.; Sah, J.P.; Ruiz, P.L.; Ross, M.S.; Ogurcak, D.E.

    2010-01-01

    In south Florida, tropical hardwood forests (hammocks) occur in Everglades tree islands and as more extensive forests in coastal settings in the nearby Florida Keys. Keys hammocks have been less disturbed by humans, and many qualify as old-growth, while Everglades hammocks have received much heavier use. With improvement of tree island condition an important element in Everglades restoration efforts, we examined stand structure in 23 Keys hammocks and 69 Everglades tree islands. Based on Stand Density Index and tree diameter distributions, many Everglades hammocks were characterized by low stocking and under-representation in the smaller size classes. In contrast, most Keys forests had the dense canopies and open under stories usually associated with old-growth hardwood hammocks. Subject to the same caveats that apply to off-site references elsewhere, structural information from mature Keys hammocks can be helpful in planning and implementing forest restoration in Everglades tree islands. In many of these islands, such restoration might involve supplementing tree stocking by planting native trees to produce more complete site utilization and a more open under story.

  2. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    Science.gov (United States)

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  3. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park

    Directory of Open Access Journals (Sweden)

    Kristie S. Wendelberger

    2018-03-01

    Full Text Available Coastal plant communities are being transformed or lost because of sea level rise (SLR and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata. Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP. Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species’ habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  4. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park.

    Science.gov (United States)

    Wendelberger, Kristie S; Gann, Daniel; Richards, Jennifer H

    2018-03-09

    Coastal plant communities are being transformed or lost because of sea level rise (SLR) and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata . Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR) elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP). Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species' habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.

  5. Monitoring hydrogeochemical interactions in coastal mangroves in Everglades National Park using field spectroscopy and remote sensing

    Science.gov (United States)

    Lagomasino, D.; Price, R. M.; Campbell, P. K.

    2011-12-01

    Coastal tropical and subtropical environments, where there are distinct seasonal shifts in precipitation, can be highly susceptible to environmental changes caused by increasing anthropogenic pressure (e.g., urbanization, deforestation) in addition to natural "press and pulse" events, such as sea-level rise, tropical storms, and a changing climate. These man-made and natural perturbations directly affect the quality and quantity of water flowing through the ecosystem, both on the surface and subsurface. Changes in groundwater and surface water interactions will impact ecological communities, including highly vulnerable coastal mangrove communities. Nearly 1,445 km2 of mangroves cover Everglades National Park along the southern and southwestern coast of Florida. Rising sea levels, a predicted drier climate, and increased water demand may accelerate the landward migration of salt water intrusion which poses threats to the ecological communities along this coastal ecotone. This is a growing concern for the region and it is necessary that we understand the present hydrogeologic conditions to better monitor and model the future and inevitable changes to the coastal environment. The purpose of this preliminary study was to test the feasibility of measuring water quality indirectly from the spectral responses of mangrove vegetation on a regional scale. Spectra-derived biophysical indices were used to assess various relationships between the spectral signatures of the 3 main mangrove species (i.e., Avicennia germinans, Rhizophora mangle, and Laguncularia racemosa) and the ionic and nutrient concentrations in the porewater (i.e., 20cm and 100cm depths), surface water, and groundwater of the mangrove ecotone. Water samples from these sources were collected during the dry season, a transitional period, and the wet season at three sites in large, high-biomass mangroves along Shark River and two sites in dwarf, low-biomass, mangroves along Taylor River. Water samples were

  6. Palynological reconstruction of environmental changes in coastal wetlands of the Florida Everglades since the mid-Holocene

    Science.gov (United States)

    Yao, Qiang; Liu, Kam-biu; Platt, William J.; Rivera-Monroy, Victor H.

    2015-05-01

    Palynological, loss-on-ignition, and X-ray fluorescence data from a 5.25 m sediment core from a mangrove forest at the mouth of the Shark River Estuary in the southwestern Everglades National Park, Florida were used to reconstruct changes occurring in coastal wetlands since the mid-Holocene. This multi-proxy record contains the longest paleoecological history to date in the southwestern Everglades. The Shark River Estuary basin was formed 5700 cal yr BP in response to increasing precipitation. Initial wetlands were frequently-burned short-hydroperiod prairies, which transitioned into long-hydroperiod prairies with sloughs in which peat deposits began to accumulate continuously about 5250 cal yr BP. Our data suggest that mangrove communities started to appear after 3800 cal yr BP; declines in the abundance of charcoal suggested gradual replacement of fire-dominated wetlands by mangrove forest over the following 2650 yr. By 1150 cal yr BP, a dense Rhizophora mangle dominated mangrove forest had formed at the mouth of the Shark River. The mangrove-dominated coastal ecosystem here was established at least 2000 yr later than has been previously estimated.

  7. Climate Change Projected Effects on Coastal Foundation Communities of the Greater Everglades Using a 2060 Scenario: Need for a New Management Paradigm

    Science.gov (United States)

    Koch, M. S.; Coronado, C.; Miller, M. W.; Rudnick, D. T.; Stabenau, E.; Halley, R. B.; Sklar, F. H.

    2015-04-01

    Rising sea levels and temperature will be dominant drivers of coastal Everglades' foundation communities (i.e., mangrove forests, seagrass/macroalgae, and coral reefs) by 2060 based on a climate change scenario of +1.5 °C temperature, +1.5 foot (46 cm) in sea level, ±10 % in precipitation and 490 ppm CO2. Current mangrove forest soil elevation change in South Florida ranges from 0.9 to 2.5 mm year-1 and would have to increase twofold to fourfold in order to accommodate a 2060 sea level rise rate. No evidence is available to indicate that coastal mangroves from South Florida and the wider Caribbean can keep pace with a rapid rate of sea level rise. Thus, particles and nutrients from destabilized coastlines could be mobilized and impact benthic habitats of southern Florida. Uncertainties in regional geomorphology and coastal current changes under higher sea levels make this prediction tentative without further research. The 2060 higher temperature scenario would compromise Florida's coral reefs that are already degraded. We suggest that a new paradigm is needed for resource management under climate change that manages coastlines for resilience to marine transgression and promotes active ecosystem management. In the case of the Everglades, greater freshwater flows could maximize mangrove peat accumulation, stabilize coastlines, and limit saltwater intrusion, while specific coral species may require propagation. Further, we suggest that regional climate drivers and oceanographic processes be incorporated into Everglades and South Florida management plans, as they are likely to impact coastal ecosystems, interior freshwater wetlands and urban coastlines over the next few decades.

  8. Hydrologic Monitoring and Water Balance Modeling in West and Seven Palm Lake Drainages in the Florida Everglades

    Science.gov (United States)

    Allen, J.; Whitman, D.; Price, R.

    2016-02-01

    In the Florida Everglades, sea level rise and reduced freshwater inputs have altered the hydrologic and chemical conditions in coastal estuaries. Brackish coastal groundwater discharge, an inland intrusion of submarine groundwater discharge, has been shown to occur seasonally along the coastal wetlands of the Everglades. This brackish groundwater is enriched in total phosphorus, the limiting nutrient in the Everglades. A major component of the Comprehensive Everglades Restoration Plan is to increase freshwater delivery to the southern coastal Everglades and adjacent bays, in an effort to restore a salinity and nutrient regime conducive for the development of submerged aquatic vegetation. This study is being conducted in the estuarine lakes of the Everglades that are connected to Florida Bay. Water quality in these lakes has diminished over time, potentially due to increased nutrient deliveries from coastal groundwater discharge. Current hydrologic and chemical conditions are being established within the lakes in order to gain a better understanding of the effects of restoration efforts through time. Water budgets are being constructed on daily, monthly and annual time steps to estimate the groundwater-surface water interaction term. In addition, hydrologic and topographic data from the Everglades Depth Estimation Network is being utilized in order to calculate water budgets for the lakes region spanning ten years prior to the study period. Water chemistry in the lakes and groundwater is also being monitored to determine the influence of groundwater-surface water exchange on salinity and nutrient conditions in the lakes. The results of this study can be used to assess the influence of restoration efforts on the hydrochemical conditions of downstream coastal areas affected by coastal groundwater discharge and sea level rise.

  9. Mangrove forest recovery in the Everglades following Hurricane Wilma

    Science.gov (United States)

    Sarmiento, Daniel; Barr, Jordan; Engel, Vic; Fuentes, Jose D.; Smith, Thomas J.; Zieman, Jay C.

    2009-01-01

    On October 24th, 2005, Hurricane Wilma made landfall on the south western shore of the Florida peninsula. This major disturbance destroyed approximately 30 percent of the mangrove forests in the area. However, the damage to the ecosystem following the hurricane provided researchers at the Florida Coastal Everglades (FCE) LTER site with the rare opportunity to track the recovery process of the mangroves as determined by carbon dioxide (CO2) and energy exchanges, measured along daily and seasonal time scales.

  10. Understanding Coastal Wetland Vulnerability to Sea-Level Rise Enhanced Inundation Using Real-Time Stage Monitoring, LiDAR, and Monte Carlo Simulation in Everglades National Park

    Science.gov (United States)

    Cooper, H.; Zhang, C.

    2017-12-01

    Coastal wetlands are one of the most productive ecological systems in the world, providing critical habitat area and valuable ecosystem services such as carbon sequestration. However, due to their location in low lying areas, coastal wetlands are particularly vulnerable to sea-level rise (SLR). Everglades National Park (ENP) encompasses the southern-most portion of the Greater Everglades Ecosystem, and is the largest subtropical wetland in the USA. Water depths have shown to have a significant relationship to vegetation community composition and organization while also playing a crucial role in vegetation health throughout the Everglades. Live plants play a vital role in maintaining soil structure (i.e. elevation), and decreases in vegetation health can cause peat collapse or wetland loss resulting in dramatic habitat, organic soil, and elevation loss posing concerns for Everglades management and restoration. One suspected mechanism for peat collapse is enhanced inundation due to SLR, thus mapping and modeling water depths is a critical component to understanding the potential impacts of future SLR. Previous research in the Everglades focused on a conventional Water Depth Model (WDM) approach where a Digital Elevation Model (DEM) is subtracted from a Water Table Elevation Model (WTEM). In this study, the conventional WDM approach is extended to a more rigorous WDM technique so that the accuracy and precision of the underlying data may be considered. Monte Carlo simulation is used to propagate probability distributions through our SLR depth model using our Random Forest-based LiDAR DEM, Empirical Bayesian Kriging-based WTEMs, uncertainties in vertical datums, soil accretion projections, and regional sea-level rise projections. Water depth maps were produced for the wet and dry seasons in April and October, which successfully revealed the potential spatial and temporal water depth variations due to future SLR. It is concluded that a more rigorous WDM technique helps

  11. Effects of Hydrologic Restoration on the Residence Times and Water Quality of a Coastal Wetland in the Florida Everglades

    Science.gov (United States)

    Sandoval, E.; Price, R. M.; Melesse, A. M.; Whitman, D.

    2013-05-01

    The Everglades, located in southern Florida, is a dominantly freshwater coastal wetland ecosystem that has experienced many alterations and changes led by urbanization and water management practices with most cases resulting in decreased water flow across the system. The Comprehensive Everglades Restoration Plan, passed in 2000, has the final goal of restoring natural flow and clean water to the Everglades while also balancing flood control and water supply needs of the south Florida population with approximately 60 projects to be constructed and completed in the following 30 years. One way to assess the success of restoration projects is to observe long-term hydrological and geochemical changes as the projects undergo completion. The purpose of this research was to investigate the effects of restoration on the water balance, flushing time, and water chemistry of Taylor Slough; one of the main natural waterways located within the coastal Everglades. A water balance equation was used to solve for groundwater-surface water exchange. The major parameters for the water balance equation (precipitation, evapotranspiration (ET), surface water storage, inflow and outflow) were obtained from the U.S. Geological Survey and Everglades National Park databases via the Everglades Depth Estimation Network (EDEN). Watershed flushing times were estimated as the surface water volume divided by the total outputs from the watershed. Both the water balance equation and water flushing time were calculated on a monthly time step from 2001 - 2011. Water chemistry of major ions and Total Nitrogen (TN) and Total Phosphorus (TP) was analyzed on water samples, 3-day composites collected every 18 hours from 2008 - 2012, and correlated with water flushing times. Stable isotopes of oxygen and hydrogen of water samples were obtained to support the dominant inputs of water into Taylor Slough as identified by the water budget equation. Results for flushing times varied between 3 and 78 days, with

  12. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    Science.gov (United States)

    Wagner, Sasha; Jaffe, Rudolf; Cawley, Kaelin; Dittmar, Thorsten; Stubbins, Aron

    2015-11-01

    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  13. Analysis of changes in water-level dynamics at selected sites in the Florida Everglades

    Science.gov (United States)

    Conrads, Paul; Benedict, Stephen T.

    2013-01-01

    The historical modification and regulation of the hydrologic patterns in the Florida Everglades have resulted in changes in the ecosystem of South Florida and the Florida Everglades. Since the 1970s, substantial focus has been given to the restoration of the Everglades ecosystem. The U.S. Geological Survey through its Greater Everglades Priority Ecosystem Science and National Water-Quality Assessment Programs has been providing scientific information to resource managers to assist in the Everglades restoration efforts. The current investigation included development of a simple method to identify and quantify changes in historical hydrologic behavior within the Everglades that could be used by researchers to identify responses of ecological communities to those changes. Such information then could be used by resource managers to develop appropriate water-management practices within the Everglades to promote restoration. The identification of changes in historical hydrologic behavior within the Everglades was accomplished by analyzing historical time-series water-level data from selected gages in the Everglades using (1) break-point analysis of cumulative Z-scores to identify hydrologic changes and (2) cumulative water-level frequency distribution curves to evaluate the magnitude of those changes. This analytical technique was applied to six long-term water-level gages in the Florida Everglades. The break-point analysis for the concurrent period of record (1978–2011) identified 10 common periods of changes in hydrologic behavior at the selected gages. The water-level responses at each gage for the 10 periods displayed similarity in fluctuation patterns, highlighting the interconnectedness of the Florida Everglades hydrologic system. While the patterns were similar, the analysis also showed that larger fluctuations in water levels between periods occurred in Water Conservation Areas 2 and 3 in contrast to those in Water Conservation Area 1 and the Everglades

  14. Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system

    Directory of Open Access Journals (Sweden)

    Sasha eWagner

    2015-11-01

    Full Text Available Optical properties are easy-to-measure proxies for dissolved organic matter (DOM composition, source and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows and DOM sources (e.g., terrestrial, microbial and marine. As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275-295, S350-400, SR, FI, freshness index and HIX and ultrahigh resolution mass spectrometry (FTICR-MS. Spearman’s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.

  15. The role of the Everglades Mangrove Ecotone Region (EMER) in regulating nutrient cycling and wetland productivity in South Florida

    Science.gov (United States)

    Rivera-Monroy, Victor H.; Twilley, Robert R.; Davis, Stephen E.; Childers, Daniel L.; Simard, Marc; Chambers, Randolph; Jaffe, Rudolf; Boyer, Joseph N.; Rudnick, David T.; Zhang, Keqi; Castañeda-Moya, Edward; Ewe, Sharon M.L.; Price, Rene M.; Coronado-Molina, Carlos; Ross, Michael; Smith, Thomas J.; Michot, Beatrice; Meselhe, Ehab; Nuttle, William; Troxler, Tiffany G.; Noe, Gregory B.

    2011-01-01

    The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height -1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (~1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.

  16. Copepod (Crustacea) emergence from soils from everglades marshes with different hydroperiods

    Science.gov (United States)

    Loftus, W.F.; Reid, J.W.

    2000-01-01

    During a severe drought period in the winter and spring of 1989, we made three collections of dried marsh soils from freshwater sloughs in Everglades National Park, Florida, at sites characterized by either long or intermediate annual periods of flooding (hydroperiod). After rehydrating the soils in aquaria, we documented the temporal patterns of copepod emergence over two-week periods. The species richness of copepods in the rehydrated soils was lower than in pre-drought samples from the same slough sites. Only six of the 16 species recorded from the Everglades emerged in the aquarium tests. The long hydroperiod site had a slightly different assemblage and higher numbers of most species than the intermediate-hydroperiod sites. More individuals and species emerged from the early dry-season samples compared with samples taken later in the dry season. The harpacticoid, Cletocamptus deitersi, and the cyclopoid, Microcyclops rubellus, were abundant at most sites. The cyclopoids - Ectocyclops phaleratus, Homocyclops ater, and Paracyclops chiltoni - are new records for the Everglades. We infer that 1) only a subset of Everglades copepod species can survive drought by resting in soils; and that 2) survival ability over time differs by species.

  17. Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida

    Science.gov (United States)

    Wang, John D.; Swain, Eric D.; Wolfert, Melinda A.; Langevin, Christian D.; James, Dawn E.; Telis, Pamela A.

    2007-01-01

    The Comprehensive Everglades Restoration Plan requires numerical modeling to achieve a sufficient understanding of coastal freshwater flows, nutrient sources, and the evaluation of management alternatives to restore the ecosystem of southern Florida. Numerical models include a regional water-management model to represent restoration changes to the hydrology of southern Florida and a hydrodynamic model to represent the southern and western offshore waters. The coastal interface between these two systems, however, has complex surface-water/ground-water and freshwater/saltwater interactions and requires a specialized modeling effort. The Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) code was developed to represent connected surface- and ground-water systems with variable-density flow. The first use of FTLOADDS is the Southern Inland and Coastal Systems (SICS) application to the southeastern part of the Everglades/Florida Bay coastal region. The need to (1) expand the domain of the numerical modeling into most of Everglades National Park and the western coastal area, and (2) better represent the effect of water-delivery control structures, led to the application of the FTLOADDS code to the Tides and Inflows in the Mangroves of the Everglades (TIME) domain. This application allows the model to address a broader range of hydrologic issues and incorporate new code modifications. The surface-water hydrology is of primary interest to water managers, and is the main focus of this study. The coupling to ground water, however, was necessary to accurately represent leakage exchange between the surface water and ground water, which transfers substantial volumes of water and salt. Initial calibration and analysis of the TIME application produced simulated results that compare well statistically with field-measured values. A comparison of TIME simulation results to previous SICS results shows improved capabilities, particularly in the

  18. Development of a Long-term Sampling Network to Monitor Restoration Success in the Southwest Coastal Everglades: Vegetation, Hydrology, and Sediments

    Science.gov (United States)

    Smith, Thomas J.

    2004-01-01

    Introduction and History Hurricane Andrew, a Category 5 storm, crossed the southern Florida peninsula on the morning of August 24, 1992 (Fig. 1). Following the storm, the National Park Service conducted an environmental damage assessment to gauge the storm's impacts on the natural resources of south Florida Park Service holdings (Pimm et al., 1994). Although hurricanes have impacted Park Service lands such as the Everglades in the past (Houston and Powell, 2003), no systematic, permanent sampling scheme has been established to monitor long-term recovery (or lack thereof) following disturbance. In October 1992, vegetation monitoring plots were established in heavily damaged areas of mangrove forest on the southwest coast of the Everlgades, along the Lostmans and Broad Rivers (Smith et al., 1994, see Fig. 2). As the permanent plot network was being established, funding was awarded for the South Florida Global Climate Change project (SOFL-GCC). This led to the establishment of a network of hydrological monitoring stations (Anderson and Smith, 2004). Finally, sediment elevation tables (SETs) were installed at many locations. SETs provide the means to measure very small changes (2 mm) in the sediment surface elevation accurately over time (Cahoon et al., 2002). We also set up marker horizons to measure accretion of sediment at each site (Smith and Cahoon, 2003). Sampling sites were located along three transects extending from upstream freshwater wetlands to downstream saltwater wetlands along the Shark, Lostmans and Chatham Rivers in Everglades National Park (Fig. 2). While we were developing our sampling network for basic scientific research needs, concern mounted over the health of the Greater Everglades Ecosystem and in particular over the influence of decreased freshwater flows (Smith et al., 1989). Ecosystem restoration planning was begun, resulting in the multi-agency, $8 billion Comprehensive Everglades Restoration Plan (CERP). Our co-located sampling networks

  19. Measuring organic matter in Everglades wetlands and the Everglades Agricultural Area

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)

    2015-01-01

    Here, organic matter is a complex material that represents the long-term decay products from plants and other organisms in the soil. When organic matter is allowed to build up in a soil, the soil color at the surface usually turns a darker color, often with a red or brown hue. Typically in Florida mineral soils, organic matter content is quite low, within the range of 1 to 5%. However, in some soils that remain flooded for most of the year, organic matter can build up with time and actually become the soil. Such is the case for the organic soils, or histosols, found in southern Florida. These organic soils comprise much of the Water Conservation Areas, Everglades National Park (ENP), Big Cypress Basin, and the Everglades Agricultural Area (EAA). It is important to document organic matter accumulation in the Everglades to gauge the effectiveness of wetland creation and succession. For the EAA, the drained soils lose organic matter due to oxidation, so measurement of the organic matter content of these soils over the course of time indicates the oxidation potential and mineral incorporation from bedrock. Due to the wide diversity of soil types and methods of measuring soil organic matter, there is a need to devise a more universal method applicable to many types of histosols in south Florida. The intent of this publication is: 1.To describe a simple laboratory method for determining the organic matter content of the organic soils of southern Florida and demonstrate the importance of using this new procedure for improved accuracy and precision; 2.To utilize this updated laboratory procedure for field sites across Everglades wetlands and the EAA; and 3. To recommend this procedure be used by growers, state and federal agencies, and university and agency researchers dealing with the management of organic soils in southern Florida. Growers can use this improvement to organic matter measurement to keep lab testing costs low while getting a better, more quantitative

  20. Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE; Version 1.0): web-based tools to assess the impact of sea level rise in south Florida

    Science.gov (United States)

    Hearn, Paul; Strong, David; Swain, Eric; Decker, Jeremy

    2013-01-01

    South Florida's Greater Everglades area is particularly vulnerable to sea level rise, due to its rich endowment of animal and plant species and its heavily populated urban areas along the coast. Rising sea levels are expected to have substantial impacts on inland flooding, the depth and extent of surge from coastal storms, the degradation of water supplies by saltwater intrusion, and the integrity of plant and animal habitats. Planners and managers responsible for mitigating these impacts require advanced tools to help them more effectively identify areas at risk. The U.S. Geological Survey's (USGS) Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE) Web site has been developed to address these needs by providing more convenient access to projections from models that forecast the effects of sea level rise on surface water and groundwater, the extent of surge and resulting economic losses from coastal storms, and the distribution of habitats. IMMAGE not only provides an advanced geographic information system (GIS) interface to support decision making, but also includes topic-based modules that explain and illustrate key concepts for nontechnical users. The purpose of this report is to familiarize both technical and nontechnical users with the IMMAGE Web site and its various applications.

  1. Air/water exchange of mercury in the Everglades I: the behavior of dissolved gaseous mercury in the Everglades Nutrient Removal Project

    Science.gov (United States)

    Zhang; Lindberg

    2000-10-02

    From 1996 to 1998 we determined dissolved gaseous mercury (DGM) in waters of the Everglades Nutrient Removal Project (ENR), a constructed wetlands. The concentrations of DGM measured in these waters (mean 7.3 +/- 9.5 pg l(-1)) are among the lowest reported in the literature, and suggest a system often near or slightly above equilibrium with Hg in ambient air. DGM exhibited both seasonal and diel trends, peaking at midday and during the summer. A simple box budget model of DGM in waters of the Everglades was developed using an interactive spreadsheet based on a mass balance among light-induced reduction of HgII (production of DGM), Hg0 oxidation (removal), and Hg0 evasion in a box (water column) consisting of a surface region with sunlight available and a lower dark region. The modeling results suggest high sensitivity of hourly DGM concentrations to DGM production rates and initial DGM levels. The sensitivity to Hg oxidation is lower than the sensitivity to DGM production. The model performance demonstrates successful simulations of a variety of DGM trends in the Everglades. In particular, it clearly demonstrates how it is possible to measure comparable rates of evasion over several Everglades sites with different DGM concentrations.

  2. Organic Carbon, Nitrogen and Phosphorus Accumulation Rates in the Soils of the Everglades Mangrove Ecotone

    Science.gov (United States)

    Smoak, J. M.; Breithaupt, J. L.; Sanders, C. J.

    2015-12-01

    One of the fundamental questions with regard to coastal ecotones relates to their role in the transformation, transport and storage of biogeochemically important constituents and how that role may be altered by climate change. Coastal wetlands provide a range of valuable ecosystem services including sequestering organic carbon (OC) and nutrients in their soils at rates greater than terrestrial ecosystems on a per area basis. As such the Everglades mangrove ecotone, the largest contiguous mangrove forest in North America, is a biogeochemical "hotspot" at the interface of freshwater marsh and the Gulf of Mexico. Over the last one hundred years this region has been impacted by a reduction in freshwater flow and a sea-level rise (SLR) of 2.3 mm/yr which combined to cause a landward shift in the ecotone. This creates an ideal setting to examine climate induced alterations in the mangrove-ecotone biogeochemical cycle. The ability of the Everglades mangrove forest to keep pace with SLR depends largely on the rate of organic matter accumulation as that accumulation is a key contributor to accretion. However, the basic threat from SLR can be exacerbated in some areas by accelerating organic matter mineralization due to increasing salinity. The increase in salinity supplies sulfate which functions as a terminal electron acceptor that soil microbes can utilize to enhance mineralization in the brackish ecotone regions of coastal wetlands. To investigate these processes, we measured mangrove forest soil accretion, OC, N and P accumulation rates over the most recent 10, 50 and 100 year periods (via 210Pb dating) from the Gulf of Mexico to the upper freshwater reaches of the mangrove forest within Everglades National Park. Lower organic carbon accumulation rates compared to the rest of the system were found in the ecotone region most susceptible to enhanced organic matter mineralization.

  3. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    Science.gov (United States)

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  4. Predicting future mangrove forest migration in the Everglades under rising sea level

    Science.gov (United States)

    Doyle, Thomas W.

    2003-01-01

    Mangroves are highly productive ecosystems that provide valued habitat for fish and shorebirds. Mangrove forests are universally composed of relatively few tree species and a single overstory strata. Three species of true mangroves are common to intertidal zones of the Caribbean and Gulf of Mexico Coast, namely, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangrove forests occupy intertidal settings of the coastal margin of the Everglades along the southwest tip of the Florida peninsula (fig. 1).

  5. Empirical tools for simulating salinity in the estuaries in Everglades National Park, Florida

    Science.gov (United States)

    Marshall, F. E.; Smith, D. T.; Nickerson, D. M.

    2011-12-01

    Salinity in a shallow estuary is affected by upland freshwater inputs (surface runoff, stream/canal flows, groundwater), atmospheric processes (precipitation, evaporation), marine connectivity, and wind patterns. In Everglades National Park (ENP) in South Florida, the unique Everglades ecosystem exists as an interconnected system of fresh, brackish, and salt water marshes, mangroves, and open water. For this effort a coastal aquifer conceptual model of the Everglades hydrologic system was used with traditional correlation and regression hydrologic techniques to create a series of multiple linear regression (MLR) salinity models from observed hydrologic, marine, and weather data. The 37 ENP MLR salinity models cover most of the estuarine areas of ENP and produce daily salinity simulations that are capable of estimating 65-80% of the daily variability in salinity depending upon the model. The Root Mean Squared Error is typically about 2-4 salinity units, and there is little bias in the predictions. However, the absolute error of a model prediction in the nearshore embayments and the mangrove zone of Florida Bay may be relatively large for a particular daily simulation during the seasonal transitions. Comparisons show that the models group regionally by similar independent variables and salinity regimes. The MLR salinity models have approximately the same expected range of simulation accuracy and error as higher spatial resolution salinity models.

  6. Herpetofaunal inventories of the National Parks of South Florida and the Caribbean: Volume I. Everglades National Park

    Science.gov (United States)

    Rice, Kenneth G.; Waddle, J. Hardin; Crockett, Marquette E.; Jeffery, Brian M.; Percival, H. Frankin

    2004-01-01

    Amphibian declines and extinctions have been documented around the world, often in protected natural areas. Concern for this alarming trend has prompted the U.S. Geological Survey and the National Park Service to document all species of amphibians that occur within U.S. National Parks and to search for any signs that amphibians may be declining. This study, an inventory of amphibian species in Everglades National Park, was conducted during 2000 to 2003. The goals of the project were to create a georeferenced inventory of amphibian species, use new analytical techniques to estimate proportion of sites occupied by each species, look for any signs of amphibian decline (missing species, disease, die-offs, etc.), and to establish a protocol that could be used for future monitoring efforts. Several sampling methods were used to accomplish all of these goals. Visual encounter surveys and anuran vocalization surveys were conducted in all habitats throughout the park to estimate the proportion of sites or proportion of area occupied (PAO) by each amphibian species in each habitat. Opportunistic collections, as well as some drift fence and aquatic funnel trap data were used to augment the visual encounter methods for highly aquatic or cryptic species. A total of 562 visits to 118 sites were conducted for standard sampling alone, and 1788 individual amphibians and 413 reptiles were encountered. Data analysis was done in program PRESENCE to provide PAO estimates for each of the anuran species. All but one of the amphibian species thought to occur in Everglades National Park was detected during this project. That species, the Everglades dwarf siren (Pseudobranchus axanthus belli), is especially cryptic and probably geographically limited in its range in Everglades National Park. The other three species of salamanders and all of the anurans in the park were sampled adequately using standard herpetological sampling methods. PAO estimates were produced for each species of anuran

  7. Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing

    Science.gov (United States)

    Hines, Mark E.; Pelletier, Ramona E.; Crill, Patrick M.

    1992-01-01

    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of greater than 500 nmol/m(sup -2)h(sup -1) occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of approximately 60 nmol/m(sup -2)h(sup -1) which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emission were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities (42 percent) accounted for approximately 24 percent of the total S emissions.

  8. Impact of sea-level rise on Everglades carbon storage capacity in the Holocene

    Science.gov (United States)

    Jones, M.; Bernhardt, C. E.; Wingard, G. L. L.; Keller, K.; Stackhouse, B.; Landacre, B.

    2017-12-01

    Sea-level rise (SLR) and climate have driven environmental changes in South Florida over time. Florida Bay, a shallow carbonate bay located to the south of the Florida Peninsula, contains carbonate islands and mudbanks that formed over the last few thousand years and once comprised the freshwater Everglades. The islands, often ringed with mangroves, provide wildlife habitat, physical barriers to storm surge, tidal flux, and wave development along South Florida's coastline. Because most of South Florida is only 1-2 m above mean sea level, and IPCC AR5 projections of 0.26 to 0.98 m of SLR by 2100, vertical accommodation space could outpace sediment accretion in the southern freshwater Everglades and Florida Bay islands, impacting carbon (C) storage, as well as wildlife habitat and the ability to protect shorelines from coastal storms. We analyzed sediment cores that reached the Plio-Pleistocene limestone bedrock from four islands in Florida Bay to determine how floral and faunal communities and source C change in response to Holocene sea level transgression. We used pollen and mollusk assemblages, δ13C, and C/N ratios, along with radiometric dating, bulk density, and organic C content to calculate changes in C accumulation rates (CAR) over the last 4 ka, as deposition transitioned from freshwater peat to estuarine carbonate mud, to mangrove peat and ultimately to the hyper-saline playa-like carbonate sediments deposited today. Results show that CAR are more than twice as high in the basal freshwater Everglades peat than in the overlying estuarine sediments and slightly greater than the short-lived period of Rhizophora (red mangrove) peat accumulation. Avicennia (black mangrove) and playa-like environments have similar CAR as the estuarine carbonate mud and hypersaline carbonate sediments but accretion rates are less than the current rate of SLR. These results suggest that with current rates of accretion and SLR, these islands could disappear in <200 years, and the C

  9. Endosulfan in the atmosphere of South Florida: Transport to Everglades and Biscayne National Parks

    Science.gov (United States)

    Hapeman, Cathleen J.; McConnell, Laura L.; Potter, Thomas L.; Harman-Fetcho, Jennifer; Schmidt, Walter F.; Rice, Clifford P.; Schaffer, Bruce A.; Curry, Richard

    2013-02-01

    Nutrient inputs from urban encroachment and agricultural activities have been implicated in contributing to the environmental health decline and loss of organism diversity of South Florida ecosystems. Intensive agricultural pesticide use may also challenge these ecosystems. One possible mechanism is pesticide release to the atmosphere after application. The process is enhanced in this region due to the calcareous soils, frequent rainfall, and high humidity and temperatures. This study examined the atmospheric fate of the widely-used insecticide endosulfan. Air samples were collected over a five-year period (2001-2006) at a site within the agricultural community of Homestead, Florida and at sites located in nearby Biscayne and Everglades National Parks (NPs). Mean gas phase air concentrations of α-endosulfan were 17 ± 19 ng m-3 at Homestead, 2.3 ± 3.6 ng m-3 at Everglades NP, and 0.52 ± 0.69 ng m-3 at Biscayne NP. Endosulfan emissions from agricultural areas around Homestead appeared to influence air concentration observations at the NP sites. During an intensive sampling campaign, the highest total endosulfan concentrations at the NP sites were observed on days when air parcels were predicted to move from Homestead towards the sampling locations. The α-endosulfan fraction (α/(α + β)) was used to examine the contribution of pesticide drift versus volatilization to the overall residue level. The formulated product has an α fraction of approximately 0.7, whereas volatilization is predicted to have an α fraction of ≥0.9. The median α- fraction observed during periods of high agricultural activity at Homestead and Everglades NP was 0.84 and 0.88, respectively, and during periods of low agricultural activity the median at Homestead was 0.86, indicating contributions from drift. The median α fraction at Everglades NP was 1.0 during periods of low agricultural activity, while Biscayne NP was 1.0 year round indicating air concentrations are primarily

  10. The Everglades Depth Estimation Network (EDEN) surface-water model, version 2

    Science.gov (United States)

    Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul

    2015-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.

  11. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    Science.gov (United States)

    Smith, Thomas J.; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  12. Dissolved organic matter in the Florida everglades: Implications for ecosystem restoration

    Science.gov (United States)

    Aiken, G.R.; Gilmour, C.C.; Krabbenhoft, D.P.; Orem, W.

    2011-01-01

    Dissolved organic matter (DOM) in the Florida Everglades controls a number of environmental processes important for ecosystem function including the absorption of light, mineral dissolution/precipitation, transport of hydrophobic compounds (e.g., pesticides), and the transport and reactivity of metals, such as mercury. Proposed attempts to return the Everglades to more natural flow conditions will result in changes to the present transport of DOM from the Everglades Agricultural Area and the northern conservation areas to Florida Bay. In part, the restoration plan calls for increasing water flow throughout the Everglades by removing some of the manmade barriers to flow in place today. The land- and water-use practices associated with the plan will likely result in changes in the quality, quantity, and reactivity of DOM throughout the greater Everglades ecosystem. The authors discuss the factors controlling DOM concentrations and chemistry, present distribution of DOM throughout the Everglades, the potential effects of DOM on key water-quality issues, and the potential utility of dissolved organic matter as an indicator of success of restoration efforts. Copyright ?? 2011 Taylor & Francis Group, LLC.

  13. Occurrence of monoethylmercury in the Florida Everglades: Identification and verification

    International Nuclear Information System (INIS)

    Mao Yuxiang; Yin Yongguang; Li Yanbin; Liu Guangliang; Feng Xinbin; Jiang Guibin; Cai Yong

    2010-01-01

    A few studies have reported the occurrence of monoethylmercury (CH 3 CH 2 Hg + ) in the natural environment, but further verification is needed due to the lack of direct evidence and/or uncertainty in analytical procedures. Various analytical techniques were employed to verify the occurrence of CH 3 CH 2 Hg + in soil of the Florida Everglades. The identity of CH 3 CH 2 Hg + in Everglades soil was clarified, for the first time, by GC/MS. The employment of the recently developed aqueous phenylation-purge-and-trap-GC coupled with ICPMS confirmed that the detected CH 3 CH 2 Hg + was not a misidentification of CH 3 SHg + . Stable isotope-tracer experiments further indicated that the detected CH 3 CH 2 Hg + indeed originated from Everglades soil and was not an analytical artifact. All these evidence clearly confirmed the occurrence of CH 3 CH 2 Hg + in Everglades soil, presumably as a consequence of ethylation occurring in this wetland. The prevalence of CH 3 CH 2 Hg + in Everglades soil suggests that ethylation could play an important role in the biogeochemical cycling of Hg. - A combination of various analytical techniques and stable isotope tracer experiments confirms monoethylmercury is present in Everglades soil.

  14. South Florida land-water use and its impact on the Everglades

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, C.J.

    1995-12-31

    The Everglades National Park (ENP) is the largest marsh in the United States and is the only subtropical wetland ecosystem in the U.S. that is enrolled in the international Ramsar Convention of wetland preserves. Because of its size, floral and faunal diversity, geological history and hydrological functions on the Florida landscape it is considered by many ecologists and conservationists as one of the most unique and important wetlands in the world. Unfortunately, the Everglades is surrounded by agricultural and urban development in a state whose population has increased by 33% in the last 10 years. Approximately 50% of the original 900,000 ha Everglades were historically a rainfall driven, nutrient poor (oligotrophic) phosphorous limited wetland ecosystem whose primary vegetation, - sawgrass (Cladium jamaicense Crantz) developed peat soils (Histosols) 0.2 to 6 m in depth over the past 5,000 years. Hydroperiod, nutrient additions, water quantity as well as water delivery schedules in the Everglades, have been altered significantly during the past four decades due primarily to the development of 1600 km of canals by 1967, and the pumping of nutrient enriched water from the Everglades Agricultural Area and Lake Okeechobee during certain portions of the year. Water pumping into and withdrawls from the Everglades during drought periods have altered the natural hydroperiod, but more importantly movement of water through the Everglades via canals to the ocean has removed almost all natural surface water flow across the marsh. Simply stated, the water regime of south Florida has been intensely managed for human uses but not for Everglades sustainability.

  15. Water resources in the Everglades

    Science.gov (United States)

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  16. The Impact of Sea Level Rise on Florida's Everglades

    Science.gov (United States)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous

  17. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark River Slough, Florida Coastal Everglades, USA

    Science.gov (United States)

    Smith, Christopher G.; Price, René M.; Swarzenski, Peter W.; Stalker, Jeremy C.

    2016-01-01

    Low-relief environments like the Florida Coastal Everglades (FCE) have complicated hydrologic systems where surface water and groundwater processes are intimately linked yet hard to separate. Fluid exchange within these lowhydraulic-gradient systems can occur across broad spatial and temporal scales, with variable contributions to material transport and transformation. Identifying and assessing the scales at which these processes operate is essential for accurate evaluations of how these systems contribute to global biogeochemical cycles. The distribution of 222Rn and 223,224,226Ra have complex spatial patterns along the Shark River Slough estuary (SRSE), Everglades, FL. High-resolution time-series measurements of 222Rn activity, salinity, and water level were used to quantify processes affecting radon fluxes out of the mangrove forest over a tidal cycle. Based on field data, tidal pumping through an extensive network of crab burrows in the lower FCE provides the best explanation for the high radon and fluid fluxes. Burrows are irrigated during rising tides when radon and other dissolved constituents are released from the mangrove soil. Flushing efficiency of the burrows—defined as the tidal volume divided by the volume of burrows— estimated for the creek drainage area vary seasonally from 25 (wet season) to 100 % (dry season) in this study. The tidal pumping of the mangrove forest soil acts as a significant vector for exchange between the forest and the estuary. Processes that enhance exchange of O2 and other materials across the sediment-water interface could have a profound impact on the environmental response to larger scale processes such as sea level rise and climate change. Compounding the material budgets of the SRSE are additional inputs from groundwater from the Biscayne Aquifer, which were identified using radium isotopes. Quantification of the deep groundwater component is not obtainable, but isotopic data suggest a more prevalent signal in the dry

  18. Tracking sea turtles in the Everglades

    Science.gov (United States)

    Hart, Kristin M.

    2008-01-01

    The U.S. Geological Survey (USGS) has a long history of conducting research on threatened, endangered, and at-risk species inhabiting both terrestrial and marine environments, particularly those found within national parks and protected areas. In the coastal Gulf of Mexico region, for example, USGS scientist Donna Shaver at Padre Island National Seashore in Texas has focused on “headstarting” hatchlings of the rare Kemp’s ridley sea turtle (Lepidochelys kempii). She is also analyzing trends in sea turtle strandings onshore and interactions with Gulf shrimp fisheries. Along south Florida’s Gulf coast, the USGS has focused on research and monitoring for managing the greater Everglades ecosystem. One novel project involves the endangered green sea turtle (Chelonia mydas). The ecology and movements of adult green turtles are reasonably well understood, largely due to decades of nesting beach monitoring by a network of researchers and volunteers. In contrast, relatively little is known about the habitat requirements and movements of juvenile and subadult sea turtles of any species in their aquatic environment.

  19. Wetland fire remote sensing research--The Greater Everglades example

    Science.gov (United States)

    Jones, John W.

    2012-01-01

    Fire is a major factor in the Everglades ecosystem. For thousands of years, lightning-strike fires from summer thunderstorms have helped create and maintain a dynamic landscape suited both to withstand fire and recover quickly in the wake of frequent fires. Today, managers in the Everglades National Park are implementing controlled burns to promote healthy, sustainable vegetation patterns and ecosystem functions. The U.S. Geological Survey (USGS) is using remote sensing to improve fire-management databases in the Everglades, gain insights into post-fire land-cover dynamics, and develop spatially and temporally explicit fire-scar data for habitat and hydrologic modeling.

  20. Everglades Ecological Forecasting II: Utilizing NASA Earth Observations to Enhance the Capabilities of Everglades National Park to Monitor & Predict Mangrove Extent to Aid Current Restoration Efforts

    Science.gov (United States)

    Kirk, Donnie; Wolfe, Amy; Ba, Adama; Nyquist, Mckenzie; Rhodes, Tyler; Toner, Caitlin; Cabosky, Rachel; Gotschalk, Emily; Gregory, Brad; Kendall, Candace

    2016-01-01

    Mangroves act as a transition zone between fresh and salt water habitats by filtering and indicating salinity levels along the coast of the Florida Everglades. However, dredging and canals built in the early 1900s depleted the Everglades of much of its freshwater resources. In an attempt to assist in maintaining the health of threatened habitats, efforts have been made within Everglades National Park to rebalance the ecosystem and adhere to sustainably managing mangrove forests. The Everglades Ecological Forecasting II team utilized Google Earth Engine API and satellite imagery from Landsat 5, 7, and 8 to continuously create land-change maps over a 25 year period, and to allow park officials to continue producing maps in the future. In order to make the process replicable for project partners at Everglades National Park, the team was able to conduct a supervised classification approach to display mangrove regions in 1995, 2000, 2005, 2010 and 2015. As freshwater was depleted, mangroves encroached further inland and freshwater marshes declined. The current extent map, along with transition maps helped create forecasting models that show mangrove encroachment further inland in the year 2030 as well. This project highlights the changes to the Everglade habitats in relation to a changing climate and hydrological changes throughout the park.

  1. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    Science.gov (United States)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  2. Descriptions and preliminary report on sediment cores from the southwest coastal area, Everglades National Park, Florida

    Science.gov (United States)

    Wingard, G. Lynn; Cronin, Thomas M.; Holmes, Charles W.; Willard, Debra A.; Budet, Carlos A.; Ortiz, Ruth E.

    2005-01-01

    Sediment cores were collected from five locations in the southwest coastal area of Everglades National Park, Florida, in May 2004 for the purpose of determining the ecosystem history of the area and the impacts of changes in flow through the Shark River Slough. An understanding of natural cycles of change prior to significant human disturbance allows land managers to set realistic performance measures and targets for salinity and other water quality and quantity quality measures. Preliminary examination of the cores indicates significant changes have taken place over the last 1000-2000 years. The cores collected from the inner bays - the most landward bays - are distinctly different from other estuarine sediment cores examined in Florida Bay and Biscayne Bay. Peats in the inner-bay cores from Big Lostmans Bay, Broad River Bay, and Tarpon Bay were deposited at least 1000 years before present (BP) based on radiocarbon analyses. The peats are overlain by poorly sorted organic muds and sands containing species indicative of deposition in a freshwater to very low salinity environment. The Alligator Bay core, the most northern inner-bay core, is almost entirely sand; no detailed faunal analyses or radiometric dating has been completed on this core. The Roberts River core, taken from the mouth of the River where it empties into Whitewater Bay, is lithologically and faunally similar to previously examined cores from Biscayne and Florida Bays; however, the basal unit was deposited ~2000 years before the present based on radiocarbon analyses. A definite trend of increasing salinity over time is seen in the Roberts River core, from sediments representing a terrestrially dominated freshwater environment at the bottom of the core to those representing an estuarine environment with a strong freshwater influence at the top. The changes seen at Roberts River could represent a combination of factors including rising sea-level and changes in freshwater supply, but the timing and

  3. Effects of Seasonal and Spatial Differences in Food Webs on Mercury Concentrations in Fish in the Everglades

    Science.gov (United States)

    Kendall, C.; Bemis, B. E.; Wankel, S. D.; Rawlik, P. S.; Lange, T.; Krabbenhoft, D. P.

    2002-05-01

    A clear understanding of the aquatic food web is essential for determining the entry points and subsequent biomagnification pathways of contaminants such as methyl-mercury (MeHg) in the Everglades. Anthropogenic changes in nutrients can significantly affect the entry points of MeHg by changing food web structure from one dominated by algal productivity to one dominated by macrophytes and associated microbial activity. These changes in the base of the food web can also influence the distribution of animals within the ecosystem, and subsequently the bioaccumulation of MeHg up the food chain. As part of several collaborations with local and other federal agencies, more than 7000 Everglades samples were collected in 1995-99, and analysed for d13C and d15N. Many organisms were also analysed for d34S, gut contents, total Hg, and MeHg. Carbon isotopes effectively distinguish between two main types of food webs: ones where algae is the dominant base of the food web, which are characteristic of relatively pristine marsh sites with long hydroperiods, and ones where macrophyte debris appears to be a significant source of nutrients, which are apparently characteristic of shorter hydroperiod sites, and nutrient-impacted marshes and canals. Many organisms show significant (5-12%) spatial and temporal differences in d13C and d15N values across the Everglades. These differences may reflect site and season-specific differences in the relative importance of algae vs. macrophyte debris to the food web. However, there is a lack of evidence that these sites otherwise differ in food chain length (as determined by d15N values). This conclusion is generally supported by gut contents and mercury data. Furthermore, there are no statistically significant differences between the Delta d15N (predator-algae) values at pristine marsh, nutrient-impacted marsh, or canal sites. The main conclusions from this preliminary comparison of gut contents, stable isotope, and Hg data are: (1) there is

  4. The ecological - Societal underpinnings of Everglades restoration

    Science.gov (United States)

    Sklar, Fred H.; Chimney, M.J.; Newman, S.; McCormick, P.; Gawlik, D.; Miao, S.; McVoy, C.; Said, W.; Newman, J.; Coronado, C.; Crozier, G.; Korvela, M.; Rutchey, K.

    2005-01-01

    The biotic integrity of the Florida Everglades, a wetland of immense international importance, is threatened as a result of decades of human manipulation for drainage and development. Past management of the system only exacerbated the problems associated with nutrient enrichment and disruption of regional hydrology. The Comprehensive Everglades Restoration Plan (CERP) now being implemented by Federal and State governments is an attempt to strike a balance between the needs of the environment with the complex management of water and the seemingly unbridled economic growth of southern Florida. CERP is expected to reverse negative environmental trends by "getting the water right", but successful Everglades restoration will require both geochemical and hydrologic intervention on a massive scale. This will produce ecological trade-offs and will require new and innovative scientific measures to (1) reduce total phosphorus concentrations within the remaining marsh to 10 ??g/L or lower; (2) quantify and link ecological benefits to the restoration of depths, hydroperiods, and flow velocities; and (3) compensate for ecological, economic, and hydrologic uncertainties in the CERP through adaptive management. ?? The Ecological Society of America.

  5. CRSMP Potential Coastal and Upland Borrow Sites 2012

    Data.gov (United States)

    California Natural Resource Agency — Upland debris basins and coastal borrow sites as identified originally in the California Shoreline Database compiled by Noble Consultants (Jon Moore). Later updates...

  6. 78 FR 13081 - Draft Environmental Impact Statement for General Management Plan, Everglades National Park, Florida

    Science.gov (United States)

    2013-02-26

    ... visitor use in the Park. The GMP will provide updated management direction for the entire park. The EEWS....YP0000] Draft Environmental Impact Statement for General Management Plan, Everglades National Park... the General Management Plan (GMP) and East Everglades Wilderness Study (EEWS) for Everglades National...

  7. Atmospheric diffusion at coastal site in presence of sea-breeze

    International Nuclear Information System (INIS)

    Messaci, M.

    1987-03-01

    The coastal sites present special features so much by the dominant wind system then by the lower layers of the atmosphere. Two types of experiments were handled on a coastal site in presence of sea breeze. First, vertical atmospheric sounding by radiosounding and by throwing experimental balloons; then the discharge of tracer: the SF6. The first experiment lead us to put in a prominent position the Internal Boundary Layer and the determination of its height. Whereas the second experiment allowed us to estimate the diffusion parameters of the site as well as to obtain interesting conclusions on diffusivity of the environment studied and the influence of certain factors

  8. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  9. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone.

    Science.gov (United States)

    Ewe, Sharon M L; Sternberg, Leonel da S L; Childers, Daniel L

    2007-07-01

    The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (delta(18)O) was enriched (4.8 +/- 0.2 per thousand) in the DS relative to the WS (0.0 +/- 0.1 per thousand), but groundwater delta(18)O remained constant between seasons (DS: 2.2 +/- 0.4 per thousand; WS: 2.1 +/- 0.1 per thousand). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil-groundwater mix (delta 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on delta(18)O data, the roots of R. mangle roots were exposed to salinities of 25.4 +/- 1.4 PSU, less saline than either C. jamaicense (39.1 +/- 2.2 PSU) or S. portulacastrum (38.6 +/- 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to

  10. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades

    Science.gov (United States)

    Flower, Hilary; Rains, Mark; Fitz, Carl

    2017-11-01

    In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.

  11. An evaluation of peat loss from an Everglades tree island, Florida, USA

    Directory of Open Access Journals (Sweden)

    S. Aich

    2014-03-01

    Full Text Available The tree islands of the Everglades are considered to be biodiversity “hotspots”, where the majority of terrestrial species of the Everglades are found. Drainage for agricultural and urban development in the early 1900s has had a severe impact, converting many of them into “ghost tree islands” which have lost most of their woody vegetation and much of their altitude (elevation. A survey conducted in 1973 on one of the prominent ghost tree islands, named “Dineen Island”, provides insights into the past. We compared the results of the 1973 survey with those of a survey conducted in 2009, in order to examine changes in Dineen Island that had taken place over 36 years and to provide information about general trends in the Everglades. Peat loss at Dineen Island was roughly 4 mm yr-1. This subsidence, as a consequence of peat loss, has been accompanied by losses in nitrogen and phosphorus of 234 and 2.5 metric tons (4.5 and 0.05 metric tons per hectare, respectively. As many of the Everglades tree islands have been lost from the landscape due to historical water management practices, quantifying nutrient losses from this ecosystem may be useful in helping to predict non-anthropogenic nutrient biogeochemistry shifts in Everglades oligotrophy.

  12. Inventory of coastal protected areas and historical heritage sites (North Bulgarian coast)

    Science.gov (United States)

    Palazov, Atanas; Stancheva, Margarita; Stanchev, Hristo; Krastev, Anton; Peev, Preslav

    2015-04-01

    Coastal protected areas and historical heritage sites in Bulgaria are established by national policy instruments/laws and EU Directives to protect a wide range of natural and cultural resources along the coast. Within the framework of HERAS Project (Submarine Archaeological Heritage of the Western Black Sea Shelf), financed by European Union under the CBC Program Romania-Bulgaria, we made an inventory and identification of protected areas, nature reserves, monuments, parks and onshore historical sites along the North Bulgarian coast (NUTS III level). The adjacent coastline is 96 km long between cape Sivriburun to the border of Romania on the north and cape Ekrene on the south. Coastal zone here is mostly undeveloped and low urbanized compared to other coastal regions in Bulgaria. It comprises of large sand beaches, vast sand dunes, up to 70 m spectacular high limestone cliffs, coastal fresh-water lakes, wetlands etc. This coastal section includes also one of the most important wetlands and it is migration corridor for many protected birds in Bulgaria, that host one of the rarest ecosystem types with national and international conservational value. Added to ecosystem values, the region is also an archeologically important area, where numerous underwater and coastal archaeological sites from different periods have been discovered - Prehistory, Antiquity (ancient Greek, Hellenistic, Roman), Mediaeval (Early Byzantium, Bulgarian). Research was made within 2100 m zone from the coastline (in accordance with zones defined by the Black Sea Coastal Development Act) for territories with protected status in the framework of many national laws and EU Directives. The total area of this strip zone is 182, 6 km2 and around 67% is under protection. There are 11 unique NATURA 2000 protected areas (6 Special Protection Areas (SPAs) and 5 Sites of Communities Importance (SCI), 2 nature reserves and 1 Nature Park. Some of them are also onshore historical sites. In Bulgaria such sites

  13. Satellite tracking reveals habitat use by juvenile green sea turtles Chelonia mydas in the Everglades, Florida, USA

    Science.gov (United States)

    Hart, Kristen M.; Fujisaki, Ikuko

    2010-01-01

    We tracked the movements of 6 juvenile green sea turtles captured in coastal areas of southwest Florida within Everglades National Park (ENP) using satellite transmitters for periods of 27 to 62 d in 2007 and 2008 (mean ± SD: 47.7 ± 12.9 d). Turtles ranged in size from 33.4 to 67.5 cm straight carapace length (45.7 ± 12.9 cm) and 4.4 to 40.8 kg in mass (16.0 ± 13.8 kg). These data represent the first satellite tracking data gathered on juveniles of this endangered species at this remote study site, which may represent an important developmental habitat and foraging ground. Satellite tracking results suggested that these immature turtles were resident for several months very close to capture and release sites, in waters from 0 to 10 m in depth. Mean home range for this springtime tracking period as represented by minimum convex polygon (MCP) was 1004.9 ± 618.8 km2 (range 374.1 to 2060.1 km2), with 4 of 6 individuals spending a significant proportion of time within the ENP boundaries in 2008 in areas with dense patches of marine algae. Core use areas determined by 50% kernel density estimates (KDE) ranged from 5.0 to 54.4 km2, with a mean of 22.5 ± 22.1 km2. Overlap of 50% KDE plots for 6 turtles confirmed use of shallow-water nearshore habitats =0.6 m deep within the park boundary. Delineating specific habitats used by juvenile green turtles in this and other remote coastal areas with protected status will help conservation managers to prioritize their efforts and increase efficacy in protecting endangered species.

  14. Coastal Vulnerability and risk assessment of infrastructures, natural and cultural heritage sites in Greece.

    Science.gov (United States)

    Alexandrakis, George; Kampanis, Nikolaos

    2016-04-01

    The majority of human activities are concentrated around coastal areas, making coastline retreat, a significant threat to coastal infrastructure, thus increasing protection cost and investment revenue losses. In this study the management of coastal areas in terms of protecting coastal infrastructures, cultural and environmental heritage sites, through risk assessment analysis is been made. The scope is to provide data for spatial planning for future developments in the coastal zone and the protection of existing ones. Also to determine the impact of coastal changes related to the loss of natural resources, agricultural land and beaches. The analysis is based on a multidisciplinary approach, combining environmental, spatial and economic data. This can be implemented by integrating the assessment of vulnerability of coasts, the spatial distribution and structural elements of coastal infrastructure (transport, tourism, and energy) and financial data by region, in a spatial database. The approach is based on coastal vulnerability estimations, considering sea level rise, land loss, extreme events, safety, adaptability and resilience of infrastructure and natural sites. It is based on coupling of environmental indicators and econometric models to determine the socio-economic impact in coastal infrastructure, cultural and environmental heritage sites. The indicators include variables like the coastal geomorphology; coastal slope; relative sea-level rise rate; shoreline erosion/accretion rate; mean tidal range and mean wave height. The anthropogenic factors include variables like settlements, sites of cultural heritage, transport networks, land uses, significance of infrastructure (e.g. military, power plans) and economic activities. The analysis in performed by a GIS application. The forcing variables are determined with the use of sub-indices related to coastal geomorphology, climate and wave variables and the socioeconomics of the coastal zone. The Greek coastline in

  15. Catalog of microscopic organisms of the Everglades, Part 1—The cyanobacteria

    Science.gov (United States)

    Rosen, Barry H.; Mareš, Jan

    2016-07-27

    The microscopic organisms of the Everglades include numerous prokaryotic organisms, including the eubacteria, such as the cyanobacteria and non-photosynthetic bacteria, as well as several eukaryotic algae and protozoa that form the base of the food web. This report is part 1 in a series of reports that describe microscopic organisms encountered during the examination of several hundred samples collected in the southern Everglades. Part 1 describes the cyanobacteria and includes a suite of images and the most current taxonomic treatment of each taxon. The majority of the images are of live organisms, allowing their true color to be represented. A number of potential new species are illustrated; however, corroborating evidence from a genetic analysis of the morphological characteristics is needed to confirm these designations as new species. Part 1 also includes images of eubacteria that resemble cyanobacteria. Additional parts of the report on microscopic organisms of the Everglades are currently underway, such as the green algae and diatoms. The report also serves as the basis for a taxonomic image database that will provide a digital record of the Everglades microscopic flora and fauna. It is anticipated that these images will facilitate current and future ecological studies on the Everglades, such as understanding food-web dynamics, sediment formation and accumulation, the effects of nutrients and flow, and climate change.

  16. Determination of potential NPP site with GIS in the coastal Provinces West Kalimantan

    International Nuclear Information System (INIS)

    Heni Susiati

    2014-01-01

    The IAEA has published the IAEA Safety Guide NS-R-3 and BAPETEN has issued the Chairman Decree (Perka BAPETEN No. 5, 2007) on site evaluation for NPP to ensure safe and secure operation of NPP’s that will be built. In relation with a preparatory program of NPP in Kalimantan Barat, BATAN conducted site survey along the coastal area of Ketapang and Kayong Utara, Kalimantan Barat. This study is aimed to get potential sites along the coastal area of Ketapang and Kayong Utara based on weighting of criteria and spatial modeling and GIS. Determination of potential site is done based on following criteria: slope, lithology, geology, topography, rainfall, hazard vulnerability, proximity to water bodies, distance of residential areas, land use, peat existence, hydrogeology, etc. Based on weighting and scoring, the study identified 4 potential sites on the coastal area of Kendawangan, Sukadana, Matan Hilir Utara and Matan Hilir Selatan. (author)

  17. Implications of a valuation study for ecological and social indicators associated with Everglades restoration.

    Science.gov (United States)

    Seeteram, Nadia A; Engel, Victor; Mozumder, Pallab

    2018-06-15

    The Everglades of south Florida, although degraded, imparts vital ecosystem benefits, including contributions to high quality drinking water supplies and habitat for a number of threatened and endangered species. Restoration of the Everglades can improve the provision of these benefits but also may impose tradeoffs with competing societal demands. This study focuses on understanding public preferences for Everglades restoration and estimating the willingness to pay (WTP) values for restored ecosystem services (ES) through the implementation of a discrete choice experiment (DCE). We collected data from 2302 respondents from the general public from an online survey designed to elicit WTP values for selected ecological and social attributes associated with Everglades restoration scenarios. We compare the findings to results from earlier studies (Milon et al., 1999; Milon and Scrogin, 2005), which also estimated WTP values among Floridians for Everglades restoration. For some attributes, WTP for Everglades restoration appears to have slightly increased while for others WTP appears to have decreased. We estimated statewide aggregate WTP values for components of species population restoration up to $2B over 10 years. Several factors impeded a direct comparison of current and historical WTP values, including time elapsed, different samples and sampling methods- which may have implications for integrating ecosystem service valuation studies into water management decisions. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Alligators and crocodiles as indicators for restoration of Everglades ecosystems

    Science.gov (United States)

    Mazzotti, Frank J.; Best, G. Ronnie; Brandt, Laura A.; Cherkiss, Michael S.; Jeffery, Brian M.; Rice, Kenneth G.

    2009-01-01

    Alligators and crocodiles integrate biological impacts of hydrological operations, affecting them at all life stages through three key aspects of Everglades ecology: (1) food webs, (2) diversity and productivity, and (3) freshwater flow. Responses of crocodilians are directly related to suitability of environmental conditions and hydrologic change. Correlations between biological responses and environmental conditions contribute to an understanding of species' status and trends over time. Positive or negative trends of crocodilian populations relative to hydrologic changes permit assessment of positive or negative trends in restoration. The crocodilian indicator uses monitoring parameters (performance measures) that have been shown to be both effective and efficient in tracking trends. The alligator component uses relative density (reported as an encounter rate), body condition, and occupancy rates of alligator holes; the crocodile component uses juvenile growth and hatchling survival. We hypothesize that these parameters are correlated with hydrologic conditions including depth, duration, timing, spatial extent and water quality. Salinity is a critical parameter in estuarine habitats. Assessments of parameters defined for crocodilian performance measures support these hypotheses. Alligators and crocodiles are the charismatic megafauna of the Everglades. They are both keystone and flagship species to which the public can relate. In addition, the parameters used to track trends are easy to understand. They provide answers to the following questions: How has the number of alligators or crocodiles changed? Are the animals fatter or thinner than they should be? Are the animals in the places (in terms of habitat and geography) where they should be? As surely as there is no other Everglades, no other single species defines the Everglades as does the American alligator. The Everglades is the only place in the world where both alligators and crocodiles exist. Crocodilians

  19. Development of comprehensive techniques for coastal site characterisation. (1) Strategic overview

    International Nuclear Information System (INIS)

    Ota, Kunio; Amano, Kenji; Niizato, Tadafumi; Alexander, W. Russell; Yamanaka, Yoshiaki

    2011-01-01

    Any assessment of long-term repository safety will require development of a set of analyses and arguments to demonstrate the persistence of the key safety functions of the geological environment up to several hundred thousand years into the future. However, likely future global climatic and sea-level fluctuations and uplift/subsidence would result in a dramatic change in the location of the current coastline with a subsequent significant change to hydraulic and hydrochemical conditions at coastal sites. It is thus of great importance in the Japanese disposal programme to establish comprehensive techniques for coastal site characterisation. To this end, a systematic framework, which is known as a 'Geosynthesis Data Flow Diagram', has been formulated, which outlines a basic radmap of the geosynthesis methodology for characterising temporal and spatial changes of various properties and processes of coastal sites, with particular focus on the palaeohydrogeology. A basic strategy for stepwise surface-based investigations has also been proposed, which incorporates the geosynthesis methodology in an effective manner. This Technique has been introduced in an ongoing collaborative programme for characterising the coastal geological environment around Horonobe in northern Hokkaido, Japan, and now tested and optimised based on accumulated technical knowledge and experience during the progress of the investigations. (author)

  20. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    Science.gov (United States)

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  1. Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh

    Science.gov (United States)

    K. L. Jimenez; G. Starr; C. L. Staudhammer; J. L. Schedlbauer; H. W. Loescher; Sparkle L Malone; S. F. Oberbauer

    2012-01-01

    Everglades freshwater marshes were once carbon sinks, but human-driven hydrologic changes have led to uncertainty about the current state of their carbon dynamics. To investigate the effect of hydrology on CO2 exchange, we used eddy covariance measurements for 2 years (2008-2009) in marl (short-hydroperiod) and peat (long-hydroperiod) wetlands in Everglades National...

  2. Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades

    International Nuclear Information System (INIS)

    Stern, J.; Wang, Y.; Gu, B.; Newman, J.

    2007-01-01

    Stable and radiocarbon isotopic contents of dissolved organic C (DOC), dissolved inorganic C (DIC), particulate organic C (POC) and plants were used to examine the source and turnover rate of C in natural and constructed wetlands in the Florida Everglades. DOC concentrations decreased, with P concentrations, along a water quality gradient from the agriculturally impacted areas in the northern Everglades to the more pristine Everglades National Park. δ 13 C values of DOC in the area reflect contributions of both wetland vegetation and sugarcane from agriculture. Radiocarbon ages of DOC, POC and DIC in the Everglades ranged from 2.01 ka BP to '>modern'. The old 14 C ages of DOC and POC were found in impacted areas near the Everglades Agricultural Area (EAA) in the northern Everglades. In contrast, DOC and POC in pristine marsh areas had near modern or '>modern' 14 C ages. These data indicate that a major source of POC and DOC in impacted areas is the degradation of historic peat deposits in the EAA. In the pristine areas of the marsh, DOC represents a mix of modern and historic C sources, whereas POC comes from modern primary production as indicated by positive Δ 14 C values, suggesting that DOC is transported farther away from its source than POC. High Δ 14 C values of DIC indicate that dissolution of limestone bedrock is not a significant source of DIC in the Everglades wetlands. As a restored wetland moves towards its 'original' or 'natural' state, the 14 C signatures of DOC should approach that of modern atmosphere. In addition, measurements of concentration and C isotopic composition of DOC in two small constructed wetlands (i.e., test cells) indicate that these freshwater wetland systems contain a labile DOC pool with rapid turnover times of 26-39 days and that the test cells are overall net sinks of DOC

  3. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    Science.gov (United States)

    Conrads, Paul; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    The real-time Everglades Depth Estimation Network (EDEN) has been established to support a variety of scientific and water management purposes. The expansiveness of the Everglades, limited number of gaging stations, and extreme sensitivity of the ecosystem to small changes in water depth have created a need for accurate water-level and water-depth maps. The EDEN water-surface elevation model uses data from approximately 240 gages in the Everglades to create daily continuous interpolations of the water-surface elevation and water depth for the freshwater portion of the Everglades from 2000 to the present (2014). These maps provide hydrologic data previously unavailable for assessing biological and ecological studies.

  4. Two years of wind-lidar measurements at an Italian Mediterranean Coastal Site

    DEFF Research Database (Denmark)

    Gullí, D.; Avolio, E.; Calidonna, C. R.

    2017-01-01

    Reliable measurements of vertical profiles of wind speed and direction are needed for testing models and methodologies of use for wind energy assessment. In particular, modelling complex terrain such as coastal areas is challenging due to the coastal discontinuity that is not accurately resolved...... in mesoscale numerical model. Here, we present a unique database from a coastal site in South Italy (middle of the Mediterranean area) where vertical profiles of wind speed and direction have been collected during a two-year period from a wind-lidar ZEPHIR-300® at a coastal-suburban area. We show an overview...

  5. Design basis flood for nuclear power plants on coastal sites

    International Nuclear Information System (INIS)

    1983-01-01

    This Guide discusses the phenomena causing coastal floods (storm surge, seiche, tsunami and wind-wave) and gives a general description of the methods used and the critical factors involved in the evaluation of such floods and of their associated effects. In addition, some treatment is presented of the possible combinations of two or more of these phenomena to produce a DBF. Methods are also provided for evaluating the reference water levels, taking into account the effect of tides, sea level anomalies and changes in lake level and river flow. Sites vulnerable to coastal flooding are located on open coastal regions, semi-enclosed bodies of water and enclosed bodies of water. Open coastal regions are those portions of land directly exposed to and having a shore on a major body of water. Semi-enclosed bodies of water are lagoons, river estuaries, gulfs, fjords and rias. Enclosed bodies of water are lakes and reservoirs. The phenomena of the lowering of the water level at coastal sites caused by offshore winds, low tides, wave effects or of drawdown caused by tsunamis are discussed. The static and dynamic effects of floods resulting from the various combinations (independent and interdependent) of surface waves of varying frequency are also discussed. Consideration is also given to shoreline instabilities and to the effects of erosion. Estimated flood levels and related effects on the nuclear power plant, which will vary according to the method of analysis and the type of flooding considered, shall be compared with available historical data where this is relevant, to check the conservativeness of the evaluated results

  6. Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure.

    Science.gov (United States)

    Li, Yanbin; Duan, Zhiwei; Liu, Guangliang; Kalla, Peter; Scheidt, Daniel; Cai, Yong

    2015-08-18

    The Florida Everglades is an environmentally sensitive wetland ecosystem with a number of threatened and endangered fauna species susceptible to the deterioration of water quality. Several potential toxic metal sources exist in the Everglades, including farming, atmospheric deposition, and human activities in urban areas, causing concerns of potential metal exposure risks. However, little is known about the pollution status of toxic metals/metalloids of potential concern, except for Hg. In this study, eight toxic metals/metalloids (Cd, Cr, Pb, Ni, Cu, Zn, As, and Hg) in Everglades soils were investigated in both dry and wet seasons. Pb, Cr, As, Cu, Cd, and Ni were identified to be above Florida SQGs (sediment quality guidelines) at a number of sampling sites, particularly Pb, which had a level of potential risk to organisms similar to that of Hg. In addition, a method was developed for quantitative source identification and controlling factor elucidation of toxic metals/metalloids by introducing an index, enrichment factor (EF), in the conventional multiple regression analysis. EFs represent the effects of anthropogenic sources on metals/metalloids in soils. Multiple regression analysis showed that Cr and Ni were mainly controlled by anthropogenic loading, whereas soil characteristics, in particular natural organic matter (NOM), played a more important role for Hg, As, Cd, and Zn. NOM may control the distribution of these toxic metals/metalloids by affecting their mobility in soils. For Cu and Pb, the effects of EFs and environmental factors are comparable, suggesting combined effects of loading and soil characteristics. This study is the first comprehensive research with a vast amount of sampling sites on the distribution and potential risks of toxic metals/metalloids in the Everglades. The finding suggests that in addition to Hg other metals/metalloids could also potentially be an environmental problem in this wetland ecosystem.

  7. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    Science.gov (United States)

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    Temperature variation is an important factor in Everglade wetlands ecology. A temperature fluctuation from 17°C to 32°C recorded in the Everglades may have significant impact on fish dynamics. The short life cycles of some of Everglade fishes has rendered this temperature variation to have even more impacts on the ecosystem. Fish population dynamic models, which do not explicitly consider seasonal oscillations in temperature, may fail to describe the details of such a population. Hence, a model for fish in freshwater marshes of the Florida Everglades that explicitly incorporates seasonal temperature variations is developed. The model's main objective is to assess the temporal pattern of fish population and densities through time subject to temperature variations. Fish population is divided into 2 functional groups (FGs) consisting of small fishes; each group is subdivided into 5-day age classes during their life cycles. Many governing sub-modules are set directly or indirectly to be temperature dependent. Growth, fecundity, prey availability, consumption rates and mortality are examples. Several mortality sub-modules are introduced in the model, of which starvation mortality is set to be proportional to the ratio of prey needed to prey available at that particular time step. As part of the calibration process, the model is run for 50 years to ensure that fish densities do not go to extinction, while the simulation period is about 8 years.

  8. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation

    International Nuclear Information System (INIS)

    Liu Guangliang; Cai Yong; Philippi, Thomas; Kalla, Peter; Scheidt, Daniel; Richards, Jennifer; Scinto, Leonard; Appleby, Charlie

    2008-01-01

    We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton < flocculent material (floc) < soil, while relatively high MeHg concentrations were observed in floc and periphyton. Differences in the methylation potential, THg concentration, and MeHg retention capacity could explain the relatively high MeHg concentrations in floc and periphyton. The MeHg/THg ratio was higher for water than for soil, floc, or periphyton probably due to high dissolved organic carbon (DOC) concentrations present in the Everglades. Mosquitofish THg positively correlated with periphyton MeHg and DOC-normalized water MeHg. The relative THg and MeHg distribution patterns among ecosystem compartments favor Hg bioaccumulation in the Everglades. - Mercury bioaccumulation in Florida Everglades is related to the distribution patterns of mercury species among ecosystem compartments

  9. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guangliang [Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Cai Yong [Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States)], E-mail: cai@fiu.edu; Philippi, Thomas [Department of Biological Sciences, Florida International University, Miami, FL 33199 (United States); Kalla, Peter; Scheidt, Daniel [US Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, GA 30605 (United States); Richards, Jennifer [Department of Biological Sciences, Florida International University, Miami, FL 33199 (United States); Scinto, Leonard [Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Appleby, Charlie [US Environmental Protection Agency, Region 4, Science and Ecosystem Support Division, Athens, GA 30605 (United States)

    2008-05-15

    We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton < flocculent material (floc) < soil, while relatively high MeHg concentrations were observed in floc and periphyton. Differences in the methylation potential, THg concentration, and MeHg retention capacity could explain the relatively high MeHg concentrations in floc and periphyton. The MeHg/THg ratio was higher for water than for soil, floc, or periphyton probably due to high dissolved organic carbon (DOC) concentrations present in the Everglades. Mosquitofish THg positively correlated with periphyton MeHg and DOC-normalized water MeHg. The relative THg and MeHg distribution patterns among ecosystem compartments favor Hg bioaccumulation in the Everglades. - Mercury bioaccumulation in Florida Everglades is related to the distribution patterns of mercury species among ecosystem compartments.

  10. Everglades Restoration: Competing Societal Factors Versus Good Science

    Science.gov (United States)

    Armstrong, T. R.

    2002-05-01

    For the most part, it is agreed that the future health and welfare of the Greater Everglades ecosystem relies on the critical timing and delivery of freshwater in a manner that simulates historical sheetflow (non-channelized flow). Successful restoration of sheetflow might be defined as getting the right volume of water to the right places at the right time; however, in order to achieve this a delicate balance of scientific, political and economic factors, many of which have competing interests, must be achieved. These factors include: 1) population growth and urban sprawl in south Florida. Increased demand for land and water to sustain sprawl will have some degree of detrimental impact on the time- and volume-critical delivery of water needed for restoration of essential habitat in both the terrestrial (tree islands, grasslands and marshes) and marine (Florida and Biscayne Bays and related estuaries) environments. 2) Increased demand for agriculture within south Florida requires significant management, sequestration, and diversion of surface and ground-water resources, as well as the acquisition of lands amenable to crop production. Since a large part of the agricultural area lies within the confines of the natural Everglades ecosystem, and "upstream" from Everglades National Park, impacts upon the surface and ground-water (agriculture-induced soil erosion, fertilization, pesticide practices, and surface and ground-water withdrawal) tend to have substantial impacts on the progress of natural ecosystem restoration. 3) Continued growth in the tourism and recreation markets will require concomitant growth in the development and acquisition of lands and resultant land-use changes that may have adverse impact on the natural ecosystem. Since the timing and delivery of water to the Everglades comes from recharge areas outside the boundaries of managed public lands, land-use practices within privately owned lands could have serious "downstream" impacts on the timing and

  11. Assessing the value of the Central Everglades Planning Project (CEPP) in Everglades restoration: an ecosystem service approach

    Science.gov (United States)

    Richardson, Leslie A.; Keefe, Kelly; Huber, Christopher C.; Racevskis, Laila; Gregg, Reynolds; Thourot, Scott; Miller, Ian

    2014-01-01

    This study identifies a full range of ecosystem services that could be affected by a restoration project in the central Everglades and monetizes the economic value of a subset of these services using existing data. Findings suggest that the project will potentially increase many ecosystem services that have considerable economic value to society. The ecosystem services monetized within the scope of this study are a subset of the difference between the future-with the Central Everglades Planning Project (CEPP) and the future-without CEPP, and they totaled ~ $1.8 billion USD at a 2.5% discount rate. Findings suggest that the use of ecosystem services in project planning and communications may require acknowledgment of the difficulty of monetizing important services and the limitations associated with using only existing data and models. Results of this study highlight the need for additional valuation efforts in this region, focused on those services that are likely to be impacted by restoration activities but were notably challenging to value in this assessment due to shortages of data.

  12. Marine fish diversity at Kalpakkam coastal sites of Tamilnadu

    International Nuclear Information System (INIS)

    Verma, Amrata; Ponnusamy, K.; Das, Subhashree; Munil Kumar, S.; Rajaram, S.; Lakra, W.S.; Pal, Asim K.; Sreedevi, K.R.

    2015-01-01

    In present study the marine fish diversity of Kalpakkam coastal sites of Tamil Nadu around Madras Atomic Power Station (MAPS) have been studied. The sampling was done seasonally viz post monsoon (January - March), Summer (April-June), and Premonsoon (July-September), for one year within 30 kilometer of MAPS. Total 69 species belonging to 10 order, 31 families and 42 genera were recorded. Different families such as Narcinidae -(1), Rhinobatidae-(1), Dasyatidae- (4), Clupeidae -(4), Pristigasteridae-(1), Engraulidae-(4), Ariidae-(1), Platycephalidae- (2), Polotosidae- (1), Ambassidae- (1), Sillaginidae- (1), Carangidae- (7), Sphyraenidae- (1), Scombridae- (1), Haemulidae- (1), Leiognathidae-(6), Lutjanidae-(3), Gerridae-(2), Sciaenidae- (8), Scatophagidae- (1), Mugilidae- (2), Ephippidae- (2), Mullidae- (3), Drepanidae- (1), Siganidae- (1), Paralichthyidae- (2), Trichiuridae- (1), Polynemidae- (1), Soleidae- (1), Cynoglossidae- (3), and Tetraodontidae- (1) were observed around Kalpakkam coastal sites. Among the collected species, order Perciformes was most dominant followed by Clupeiformes and Pleuronectiformes. The maximum fish collection was done during June to September and minimum during February to March. (author)

  13. Measuring and Mapping the Topography of the Florida Everglades for Ecosystem Restoration

    Science.gov (United States)

    Desmond, Gregory B.

    2003-01-01

    One of the major issues facing ecosystem restoration and management of the Greater Everglades is the availability and distribution of clean, fresh water. The South Florida ecosystem encompasses an area of approximately 28,000 square kilometers and supports a human population that exceeds 5 million and is continuing to grow. The natural systems of the Kissimmee-Okeechobee-Everglades watershed compete for water resources primarily with the region's human population and urbanization, and with the agricultural and tourism industries. Surface water flow modeling and ecological modeling studies are important means of providing scientific information needed for ecosystem restoration planning and modeling. Hydrologic and ecological models provide much-needed predictive capabilities for evaluating management options for parks, refuges, and land acquisition and for understanding the impacts of land management practices in surrounding areas. These models require various input data, including elevation data that very accurately define the topography of the Florida Everglades.

  14. Modeling Phosphorus Transport and Cycling in the Greater Everglades Ecosystem

    Science.gov (United States)

    James, A. I.; Grace, K. A.; Jawitz, J. W.; Muller, S.; Munoz-Carpena, R.; Flaig, E. G.

    2005-12-01

    A solute transport model was used to predict phosphorus mobility in the northern Everglades. Over the past several decades, agricultural drainage waters discharged into the northern Everglades, have been enriched in phosphorus (P) relative to the historic rainfall-driven inputs. While methods of reducing total P concentrations in the discharge water have been actively pursued through implementation of agricultural Best Management Practices (BMPs), a major parallel effort has focused on the construction of a network of constructed wetlands for P removal before these waters enter the Everglades. This study describes the development of a water quality model for P transport and cycling and its application to a large constructed wetland: Stormwater Treatment Area 1 West (STA 1W), located southeast of Lake Okeechobee on the eastern perimeter of the Everglades Agricultural Area (EAA). In STA 1W agricultural nutrients such as phosphorus (P) are removed from EAA runoff before entering the adjacent Water Conservation Areas (WCAs) and the Everglades. STA 1W is divided by levees into 4 cells, which are flooded for most of the year; thus the dominant mechanism for flow and transport is overland flow. P is removed either through deposition into sediments or is taken up by plants; in either case the soils end up being significantly enriched in P. The model has been applied and calibrated to several years of water quality data from Cell 4 within STA 1W. Most existing P models have been applied to agricultural/upland systems, with only a few relevant to treatment wetlands such as STA 1W. To ensure sufficient flexibility in selecting appropriate system components and reactions, the model has been designed to incorporate a wide range of user-selectable mechanisms for P uptake and release parameters between soils and inflowing water. The model can track a large number of mobile and nonmobile components and utilizes a Godunov-style operator-splitting technique for the transported

  15. Deploying scanning lidars at coastal sites

    DEFF Research Database (Denmark)

    Courtney, Michael; Simon, Elliot

    that the most desirable sites are away from sand dunes and with some significant elevation above the sea surface, such as at the top of a cliff. Coastal planning restrictions in Denmark are quite restrictive and it was important to allow sufficient time to obtain permission from the relevant authorities....... At the same time, with our particular application, the authorities and land owners were quite favourably inclined to give permission to temporary installations in support of wind energy research. The report concludes with the final positions and a pictorial description of the three RUNE scanning lidars....

  16. Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades.

    Science.gov (United States)

    Lu, X Q; Maie, N; Hanna, J V; Childers, D L; Jaffé, R

    2003-06-01

    In this study, the molecular composition of dissolved organic matter (DOM), collected from wetlands of the Southern Everglades, was examined using a variety of analytical techniques in order to characterize its sources and transformation in the environment. The methods applied for the characterization of DOM included fluorescence spectroscopy, solid state 13C CPMAS NMR spectroscopy, and pyrolysis-GC/MS. The relative abundance of protein-like components and carbohydrates increased from the canal site to more remote freshwater marsh sites suggesting that significant amounts of non-humic DOM are autochthonously produced within the freshwater marshes, and are not exclusively introduced through canal inputs. Such in situ DOM production is important when considering how DOM from canals is processed and transported to downstream estuaries of Florida Bay.

  17. 36 CFR 7.45 - Everglades National Park.

    Science.gov (United States)

    2010-07-01

    ... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.45 Everglades National Park. (a) Information...-edible form of fresh or salt water aquatic life for the purpose of sale or barter. (4) Dipnet means a... outboard motor, water-jet or an enclosed propeller or impeller system, where persons ride standing, sitting...

  18. Preliminary Use of Uric Acid as a Biomarker for Wading Birds on Everglades Tree Islands, Florida, United States

    Science.gov (United States)

    Bates, Anne L.; Orem, William H.; Newman, Susan; Gawlik, Dale E.; Lerch, Harry E.; Corum, Margo D.; Van Winkle, Monica

    2010-01-01

    Concentrations of organic biomarkers and concentrations of phosphorus in soil cores can potentially be used as proxies for historic population densities of wading birds on tree islands in the Florida Everglades. This report focuses on establishing a link between the organic biomarker uric acid found in wading bird guano and the high phosphorus concentrations in tree island soils in the Florida Everglades. Uric acid was determined in soil core sections, in surface samples, and in bird guano by using a method of high-performance liquid chromatography-mass spectrometry (HPLC-MS) developed for this purpose. Preliminary results show an overall correlation between uric acid and total phosphorus in three soil cores, with a general trend of decreasing concentrations of both uric acid and phosphorus with depth. However, we have also found no uric acid in a soil core having high concentrations of phosphorus. We believe that this result may be explained by different geochemical circumstances at that site.

  19. Methanogens Are Major Contributors to Nitrogen Fixation in Soils of the Florida Everglades.

    Science.gov (United States)

    Bae, Hee-Sung; Morrison, Elise; Chanton, Jeffrey P; Ogram, Andrew

    2018-04-01

    The objective of this study was to investigate the interaction of the nitrogen (N) cycle with methane production in the Florida Everglades, a large freshwater wetland. This study provides an initial analysis of the distribution and expression of N-cycling genes in Water Conservation Area 2A (WCA-2A), a section of the marsh that underwent phosphorus (P) loading for many years due to runoff from upstream agricultural activities. The elevated P resulted in increased primary productivity and an N limitation in P-enriched areas. Results from quantitative real-time PCR (qPCR) analyses indicated that the N cycle in WCA-2A was dominated by nifH and nirK / S , with an increasing trend in copy numbers in P-impacted sites. Many nifH sequences (6 to 44% of the total) and nifH transcript sequences (2 to 49%) clustered with the methanogenic Euryarchaeota , in stark contrast to the proportion of core gene sequences representing Archaea (≤0.27% of SSU rRNA genes) for the WCA-2A microbiota. Notably, archaeal nifH gene transcripts were detected at all sites and comprised a significant proportion of total nifH transcripts obtained from the unimpacted site, indicating that methanogens are actively fixing N 2 Laboratory incubations with soils taken from WCA-2A produced nifH transcripts with the production of methane from H 2 plus CO 2 and acetate as electron donors and carbon sources. Methanogenic N 2 fixation is likely to be an important, although largely unrecognized, route through which fixed nitrogen enters the anoxic soils of the Everglades and may have significant relevance regarding methane production in wetlands. IMPORTANCE Wetlands are the most important natural sources of the greenhouse gas methane, and much of that methane emanates from (sub)tropical peatlands. Primary productivity in these peatlands is frequently limited by the availability of nitrogen or phosphorus; however, the response to nutrient limitations of microbial communities that control biogeochemical cycling

  20. The Integrated Coastal Area Management (ICAM) Initiative in the Nyali-Bamburi-Shanzu Site, Mombasa, Kenya.

    OpenAIRE

    Mwandotto, B.A.J.

    1997-01-01

    A multi-institutional planning team headed by Coast Development Authority (CDA) in Kenya initiated an Integrated Coastal Area Management (ICAM) process in 1994. The pilot study site was Nyali-Bamburi-Shanzu area in Mombasa. The objective was to provide a starting point for addressing urgent coastal issues facing the area and to enrich the dialogue on how to address urgent coastal management problems nationwide. The pertinent coastal issues that were profiled in a participatory and interactive...

  1. Dental health and alimentation among the Quintana Roo Mayas: coastal and inland sites of the classic-postclassic periods.

    Science.gov (United States)

    Ortega-Muñoz, Allan

    2015-01-01

    The goal of this study is to compare both dental and skeletal stress indicators of the Classic and Postclassic coastal and inland sites of the State of Quintana Roo, Mexico. The hypothesis is that coastal populations will show osteo and dental pathologies characteristic of a primarily marine food source combined with a diet of horticultural resources. This kind of alimentation provides people with less environmental stress and therefore a better health status. However, over time, in the Postclassic period, the health conditions deteriorated among both coastal and inland inhabitants, according to the hierarchization of the society, militarization, and commercial activities of all the coastal sites. The sample was drawn from 19 sites (196 individuals of both sexes) from the east coast of the Yucatan Peninsula, as well as from inland localities within the boundaries of Quintana Roo. Both dental and osteological stress indicators were analyzed, and crosstabs were applied for absolute and relative frequencies and their corresponding χ(2) and F Fisher analyses. The osteopathological index of the coastal and inland sites of the Classic period were compared over time between the Classic coastal inhabitants and the Postclassic coastal inhabitants so as to understand how life conditions changed over time. The Mantel-Haenszel odds ratio, with the crosstabs controlling for sex (males and females), was also carried out. There are low frequencies of dental pathologies and anemia present in both the coastal and inland populations of Quintana Roo in the Classic and Postclassic times. Only the presence of periostitis is highly common in both types of site, and this is the only indicator with significant differences. The dental pathologies, anemia and periostitis, in general, present a slight upward trend in both the coastal and inland populations over time. The coastal populations have fewer frequencies of the above than the inland sites whilst, in the Postclassic period, both the

  2. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States.

    Science.gov (United States)

    Yu, Xubiao; Ladewig, Samantha; Bao, Shaowu; Toline, Catherine A; Whitmire, Stefanie; Chow, Alex T

    2018-02-01

    To investigate the occurrence and distribution of microplastics in the southeastern coastal region of the United States, we quantified the amount of microplastics in sand samples from multiple coastal sites and developed a predictive model to understand the drift of plastics via ocean currents. Sand samples from eighteen National Park Service (NPS) beaches in the Southeastern Region were collected and microplastics were isolated from each sample. Microplastic counts were compared among sites and local geography was used to make inferences about sources and modes of distribution. Samples were analyzed to identify the composition of particles using Fourier transform infrared spectroscopy (FTIR). To predict the spatiotemporal distribution and movements of particles via coastal currents, a Regional Ocean Modeling System (ROMS) was applied. Microplastics were detected in each of the sampled sites although abundance among sites was highly variable. Approximately half of the samples were dominated by thread-like and fibrous materials as opposed to beads and particles. Results of FTIR suggested that 24% consisted of polyethylene terephthalate (PET), while about 68% of the fibers tested were composed of man-made cellulosic materials such as rayon. Based on published studies examining sources of microplastics, the shape of the particles found here (mostly fibers) and the presence of PET, we infer the source of microplastics in coastal areas is mainly from urban areas, such as wastewater discharge, rather than breakdown of larger marine debris drifting in the ocean. Local geographic features, e.g., the nearness of sites to large rivers and urbanized areas, explain variance in amount of microplastics among sites. Additionally, the distribution of simulated particles is explained by ocean current patterns; computer simulations were correlated with field observations, reinforcing the idea that ocean currents can be a good predictor of the fate and distribution of microplastics

  3. Overview about polluted sites management by mining activities in coastal-desertic zones

    Science.gov (United States)

    Reyes, Arturo; Letelier, María Victoria; Arenas, Franko; Cuevas, Jacqueline; Fuentes, Bárbara

    2016-04-01

    In Chile the main mining operations as well as artisanal and small-scale mining (copper, gold and silver) are located in desert areas. A large number of abandoned polluted sites with heavy metals and metalloids (Hg, Pb, Cu, Sb, As) remain in coastal areas close to human centers. The aim of this work was to identify the best remediation alternatives considering the physic-chemical characteristics of the coastal-desertic soils. The concentrations of above mentioned pollutants as well as soil properties were determined. The results showed variable concentration of the pollutants, highest detected values were: Hg (46.5 mg kg-1), Pb (84.7 mg kg-1), Cu (283.0 mg kg-1), Sb (90 mg kg-1), As (2,691 mg kg-1). The soils characteristic were: high alkalinity with pH: 7.75-9.66, high electric conductivity (EC: 1.94-118 mScm-1), sodium adsorption ratio (SAR: 5.07-8.22) and low permeability of the soils. Coastal-desertic sites are potential sources of pollution for population, and for terrestrial and marine ecosystems. Exposure routes of pollution for the population include: primary, by incidental ingestion and inhalation of soil and dust and secondary, by the ingestion of marine sediments, sea food and seawater. Rehabilitation of coastal-desertic sites, by using techniques like soil washing in situ, chemical stabilization, or phytostabilization, is conditioned by physic-chemical properties of the soils. In these cases the recommendation for an appropriate management, remediation and use of the sites includes: 1) physic chemical characterization of the soils, 2) evaluation of environmental risk, 3) education of the population and 3) application of a remediation technology according to soil characteristic and the planned use of the sites. Acknowledgments: Funding for this study was supported by the Regional Council of Antofagasta under Project Estudio de ingeniería para la remediación de sitios abandonados con potencial presencia de contaminantes identificados en la comuna de

  4. Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA)

    Science.gov (United States)

    Sutula, Martha A.; Perez, Brian C.; Reyes, Enrique; Childers, Daniel L.; Davis, Steve; Day, John W.; Rudnick, David; Sklar, Fred

    2003-08-01

    Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km 2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m -2, 0.46 g N m -2, and 0.007 g P m -2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in

  5. Late Holocene vegetation, climate, and land-use impacts on carbon dynamics in the Florida Everglades

    Science.gov (United States)

    Jones, Miriam C.; Bernhardt, Christopher E.; Willard, Debra A.

    2014-01-01

    Tropical and subtropical peatlands are considered a significant carbon sink. The Florida Everglades includes 6000-km2 of peat-accumulating wetland; however, detailed carbon dynamics from different environments within the Everglades have not been extensively studied or compared. Here we present carbon accumulation rates from 13 cores and 4 different environments, including sawgrass ridges and sloughs, tree islands, and marl prairies, whose hydroperiods and vegetation communities differ. We find that the lowest rates of C accumulation occur in sloughs in the southern Everglades. The highest rates are found where hydroperiods are generally shorter, including near-tails of tree islands and drier ridges. Long-term average rates of 100 to >200 g C m−2 yr−1 are as high, and in some cases, higher than rates recorded from the tropics and 10–20 times higher than boreal averages. C accumulation rates were impacted by both the Medieval Climate Anomaly and the Little Ice Age, but the largest impacts to C accumulation rates over the Holocene record have been the anthropogenic changes associated with expansion of agriculture and construction of canals and levees to control movement of surface water. Water management practices in the 20th century have altered the natural hydroperiods and fire regimes of the Everglades. The Florida Everglades as a whole has acted as a significant carbon sink over the mid- to late-Holocene, but reduction of the spatial extent of the original wetland area, as well as the alteration of natural hydrology in the late 19th and 20th centuries, have significantly reduced the carbon sink capacity of this subtropical wetland.

  6. Call for information on coastal energy facility siting: an analysis of responses

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Call for Information issued by the New Jersey Department of Environmental Protection in December 1975 consisted of an eight page questionnaire which was sent to industries, government agencies, and private organizations. Its objective was to seek the help of these groups in plans for the siting of energy facilities in the coastal zone. Potential development of oil and gas from the Baltimore Canyon region adjacent to New Jersey has made planning for energy facilities a priority issue both at the state and federal level. The Call for Information invited government and the energy industry to submit (a) suggested criteria for locating energy and energy-related facilities within the New Jersey coastal zone, (b) analyses by governmental and private agencies or groups of the need to locate energy facilities in specific sites within New Jersey's coastal zone, or in generalized portions thereof, and (c) identification of the land-use parameters, appropriate to the various types of facilities which may be proposed, now or later, for coastal siting. The findings obtained from the draft call and the final call issued seven months later are presented. The results of the industries' responses show that the electric and gas utilities gave some useful information while this was true of only a few of the oil companies. The reluctance to give informatign was perhaps aggravated by lack of clear state and federal policies. The appendices illustrate specific information on manpower, cost and facility requirements to develop oil refineries, establish a gas processing plant as well as information from the US Coast Guard and the Environmental Protection Agency. There is also a listing of the companies that bid in the August 1976 lease sale indicating which bids were accepted, a map of the offshore tracts, and a list of which companies responded to the Call for Information

  7. Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Directory of Open Access Journals (Sweden)

    Su Yean Teh

    2015-09-01

    Full Text Available Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM is integrated into the USGS groundwater model (SUTRA to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  8. Isotopic evidence for the source and fate of phosphorus in Everglades wetland ecosystems

    International Nuclear Information System (INIS)

    Li Xin; Wang Yang; Stern, Jennifer; Gu Binhe

    2011-01-01

    Research highlights: → Oxygen isotopic analysis of phosphate is a useful tool for studying source and degree of microbial cycling of phosphorus (P) in freshwater ecosystems. → P was quickly cycled in the water column and the dissolved inorganic phosphate (DIP) pool consisted entirely of biologically cycled P in relatively pristine areas of the Everglades wetland ecosystem. →In wetland areas highly impacted by agricultural runoff, biological cycling of P was not rapid enough to completely remove the fertilizer δ 18 O signature. →DIP pool in these areas consisted of biologically cycled P as well as fertilizer P, with fertilizer P accounting for about 15-100% of the total DIP. - Abstract: Phosphorus has historically been a limiting nutrient in the Florida Everglades. Increased P loading to the Everglades over the past several decades has led to significant changes in water quality and plant communities. Stormwater runoff that drains agricultural lands and enters the Water Conservation Areas (WCAs) are known to contain elevated levels of P, but the exact source of this P has not been fully determined. Here the results of an O isotope study of dissolved inorganic phosphate (DIP) in both polluted and relatively pristine (or reference) areas of the Everglades are reported. The data reveal spatial and temporal variations in the δ 18 O signature of DIP, reflecting the source and the degree of cycling of P. The δ 18 O values of DIP collected from the Everglades National Park were close or equal to the predicted δ 18 O values of DIP formed in situ in equilibrium with ambient water, indicating that P is quickly cycled in the water column in oligotrophic ecosystems with very low P concentrations. However, most DIP samples collected from areas impacted by agricultural runoff yielded δ 18 O values that deviated from the predicted equilibrium DIP-δ 18 O values based on the δ 18 O of water and water temperature, suggesting that biological cycling of P was not rapid

  9. Predicting ecological responses of the Florida Everglades to possible future climate scenarios: Introduction

    Science.gov (United States)

    Aumen, Nicholas G.; Havens, Karl E; Best, G. Ronnie; Berry, Leonard

    2015-01-01

    Florida’s Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50 % reduction of the ecosystem’s spatial extent and significant changes in ecological function in the remaining portion. One of the world’s largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.

  10. A rop net and removable walkway used to quantitatively sample fishes over wetland surfaces in the dwarf mangrove of the Southern Everglades

    Science.gov (United States)

    Lorenz, J.J.; McIvor, C.C.; Powell, G.V.N.; Frederick, P.C.

    1997-01-01

    We describe a 9 m2 drop net and removable walkways designed to quantify densities of small fishes in wetland habitats with low to moderate vegetation density. The method permits the collection of small, quantitative, discrete samples in ecologically sensitive areas by combining rapid net deployment from fixed sites with the carefully contained use of the fish toxicant rotenone. This method requires very little contact with the substrate, causes minimal alteration to the habitat being sampled, samples small fishes in an unbiased manner, and allows for differential sampling of microhabitats within a wetland. When used in dwarf red mangrove (Rhizophora mangle) habitat in southern Everglades National Park and adjacent areas (September 1990 to March 1993), we achieved high recovery efficiencies (78–90%) for five common species <110 mm in length. We captured 20,193 individuals of 26 species. The most abundant fishes were sheepshead minnowCyprinodon variegatus, goldspotted killifishFloridichthys carpio, rainwater killifishLucania parva, sailfin mollyPoecilia latipinna, and the exotic Mayan cichlidCichlasoma urophthalmus. The 9 m2 drop net and associated removable walkways are versatile and can be used in a variety of wetland types, including both interior and coastal wetlands with either herbaceous or woody vegetation.

  11. Assessment of the peat resources of Florida, with a detailed survey of the northern everglades

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.M.; Wieland, C.C.; Hood, L.Q.; Goode, R.W. III; Sawyer, R.K.; McNeill, D.F.

    1982-01-01

    Available data, including previous publications, modern soil surveys, and detailed coring in the Northern Everglades for this project have been used to update information on Florida's peat resources. It is now estimated that Florida could, if no other constraints existed, produce 606 million tons of moisture-free fuel-grade peat, which may yield approximately 10.0 x 10/sup 15/ Btu of energy. These estimates are much lower than previously published projections for the state. The principal effort of this survey was in the largest peat region of the state, the Northern Everglades of Palm Beach and adjacent counties, where more than 800 core holes were drilled. Based on analyses of these cores, the Northern Everglades is now estimated to contain 191 million tons of moisture-free peat, with a potential energy yield of 2.98 x 10/sup 15/ Btu. These values are considerably less than previously published estimates, probably due to bacterial oxidation and other forms of drainage-induced subsidence in the Everglades agricultural areas. The present fuel-peat resources of the Northern Everglades occur in 19 separate deposits. Of these, the deposits in the Port Mayaca, Bryant, Six Mile Bend, and Loxahatchee Quadrangles comprise the highest concentration of the resource. These lands are generally privately owned and used for sugar cane and other crops, and the conversion of these lands to peat removal seems unlikely. It seems even less likely that the extensive peat deposits within the Loxahatchee National Wildlife Refuge will be available for fuel use, barring a dire national emergency. The utilization of peat as a fuel must be approached with caution and careful study; large scale use may require state or federal action. 34 references.

  12. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the

  13. Project Summary (2012-2015) – Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, Ross [University of Central Florida; Benscoter, Brian [Florida Atlantic University; Comas, Xavier [Florida Atlantic University; Sumner, David [USGS; DeAngelis, Donald [USGS

    2015-04-07

    Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regional carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.

  14. Coastal flooding as a parameter in multi-criteria analysis for industrial site selection

    Science.gov (United States)

    Christina, C.; Memos, C.; Diakoulaki, D.

    2014-12-01

    Natural hazards can trigger major industrial accidents, which apart from affecting industrial installations may cause a series of accidents with serious impacts on human health and the environment far beyond the site boundary. Such accidents, also called Na-Tech (natural - technical) accidents, deserve particular attention since they can cause release of hazardous substances possibly resulting in severe environmental pollution, explosions and/or fires. There are different kinds of natural events or, in general terms, of natural causes of industrial accidents, such as landslides, hurricanes, high winds, tsunamis, lightning, cold/hot temperature, floods, heavy rains etc that have caused accidents. The scope of this paper is to examine the coastal flooding as a parameter in causing an industrial accident, such as the nuclear disaster in Fukushima, Japan, and the critical role of this parameter in industrial site selection. Land use planning is a complex procedure that requires multi-criteria decision analysis involving economic, environmental and social parameters. In this context the parameter of a natural hazard occurrence, such as coastal flooding, for industrial site selection should be set by the decision makers. In this paper it is evaluated the influence that has in the outcome of a multi-criteria decision analysis for industrial spatial planning the parameter of an accident risk triggered by coastal flooding. The latter is analyzed in the context of both sea-and-inland induced flooding.

  15. Pink shrimp as an indicator for restoration of everglades ecosystems

    Science.gov (United States)

    Browder, Joan A.; Robblee, M.B.

    2009-01-01

    The pink shrimp, Farfantepenaeus duorarum, familiar to most Floridians as either food or bait shrimp, is ubiquitous in South Florida coastal and offshore waters and is proposed as an indicator for assessing restoration of South Florida's southern estuaries: Florida Bay, Biscayne Bay, and the mangrove estuaries of the lower southwest coast. Relationships between pink shrimp and salinity have been determined in both field and laboratory studies. Salinity is directly relevant to restoration because the salinity regimes of South Florida estuaries, critical nursery habitat for the pink shrimp, will be altered by changes in the quantity, timing, and distribution of freshwater inflow planned as part of the Comprehensive Everglades Restoration Project (CERP). Here we suggest performance measures based on pink shrimp density (number per square meter) in the estuaries and propose a restoration assessment and scoring scheme using these performance measures that can readily be communicated to managers, policy makers, and the interested public. The pink shrimp is an appropriate restoration indicator because of its ecological as well as its economic importance and also because scientific interest in pink shrimp in South Florida has produced a wealth of information about the species and relatively long time series of data on both juveniles in estuarine nursery habitats and adults on the fishing grounds. We suggest research needs for improving the pink shrimp performance measure.

  16. Using Stable Isotopes to Link Nutrient Sources in the Everglades and Biological Sinks in Florida Bay: A Biogeochemical Approach to Evaluate Ecosystem Response to Changing Nutrient Regimes

    Science.gov (United States)

    Hoare, A. M.; Hollander, D. J.; Heil, C.; Glibert, P.; Murasko, S.; Revilla, M.; Alexander, J.

    2005-05-01

    Anthropogenic influences in South Florida have led to deterioration of its two major ecosystems, the Everglades wetlands and the Florida Bay estuary. Consequently, the Comprehensive Everglades Restoration Plan has been proposed to restore the Everglades ecosystem; however, restoration efforts will likely exert new ecological changes in the Everglades and ultimately Florida Bay. The success of the Florida Everglades restoration depends on our understanding and ability to predict how regional changes in the distribution and composition of dissolved organic and inorganic nutrients will direct the downstream biogeochemical dynamics of Florida Bay. While the transport of freshwater and nutrients to Florida Bay have been studied, much work remains to directly link nutrient dynamics in Florida Bay to nutrient sources in the Everglades. Our study uses stable C and N isotopic measurements of chemical and biological materials from the Everglades and Florida Bay as part of a multi-proxy approach to link nutrient sources in the Everglades to biological sinks in Florida Bay. Isotopic analyses of dissolved and particulate species of water, aquatic vegetation and sedimentary organic matter show that the watersheds within the Everglades are chemically distinct and that these signatures are also reflected in the bay. A large east-west gradient in both carbon and nitrogen (as much as 10‰ for δ15N POM) reflect differing nutrient sources for each region of Florida Bay and is strongly correlated with upstream sources in the Everglades. Isotopic signatures also reflect seasonal relationships associated with wet and dry periods. High C and N measurements of DOM and POM measurements suggest significant influence from waste water in Canal C-111 in eastern Florida Bay, particularly during the dry season. These observations show that nutrients from the Everglades watersheds enter Florida Bay and are important in controlling biogeochemical processes in the bay. This study proves that

  17. Evaluating the effect of salinity on a simulated American crocodile (Crocodylus acutus) population with applications to conservation and Everglades restoration

    NARCIS (Netherlands)

    Richards, P.M.; Mooij, W.M.; DeAngelis, D.L.

    2004-01-01

    Everglades restoration will alter the hydrology of South Florida, affecting both water depth and salinity levels in the southern fringes of the Everglades, the habitat of the endangered American crocodile (Crocodylus acutus). A key question is what the effects of these hydrologic changes will be on

  18. The seasonal characteristics of the breeze circulation at a coastal Mediterranean site in South Italy

    DEFF Research Database (Denmark)

    Federico, S.; Pasqualoni, L.; Sempreviva, Anna Maria

    2010-01-01

    We present a study on the characteristics of the sea breeze flow at a coastal site located in the centre of the Mediterranean basin at the southern tip of Italy. This study is finalized to add new data on breeze circulations over a narrow peninsula and present a unique experimental coastal site...... at about 600 m from the coastline in a flat open area at the foot of a mountain chain located in a region of complex orography. We study the seasonal behaviour of the sea-land breeze circulation by analysing two years of hourly data of wind speed and direction, temperature, radiation and relative humidity...

  19. Ecosystem resistance in the face of climate change: A case study from the freshwater marshes of the Florida Everglades

    Science.gov (United States)

    Sparkle L. Malone; Cynthia Keough; Christina L. Staudhammer; Michael G. Ryan; William J. Parton; Paulo Olivas; Steven F. Oberbauer; Jessica Schedlbauer; Gregory Starr

    2015-01-01

    Shaped by the hydrology of the Kissimmee-Okeechobee-Everglades watershed, the Florida Everglades is composed of a conglomerate of wetland ecosystems that have varying capacities to sequester and store carbon. Hydrology, which is a product of the region’s precipitation and temperature patterns combined with water management policy, drives community composition...

  20. Everglades Depth Estimation Network (EDEN)—A decade of serving hydrologic information to scientists and resource managers

    Science.gov (United States)

    Patino, Eduardo; Conrads, Paul; Swain, Eric; Beerens, James M.

    2017-10-30

    IntroductionThe Everglades Depth Estimation Network (EDEN) provides scientists and resource managers with regional maps of daily water levels and depths in the freshwater part of the Greater Everglades landscape. The EDEN domain includes all or parts of five Water Conservation Areas, Big Cypress National Preserve, Pennsuco Wetlands, and Everglades National Park. Daily water-level maps are interpolated from water-level data at monitoring gages, and depth is estimated by using a digital elevation model of the land surface. Online datasets provide time series of daily water levels at gages and rainfall and evapotranspiration data (https://sofia.usgs.gov/eden/). These datasets are used by scientists and resource managers to guide large-scale field operations, describe hydrologic changes, and support biological and ecological assessments that measure ecosystem response to the implementation of the Comprehensive Everglades Restoration Plan. EDEN water-level data have been used in a variety of biological and ecological studies including (1) the health of American alligators as a function of water depth, (2) the variability of post-fire landscape dynamics in relation to water depth, (3) the habitat quality for wading birds with dynamic habitat selection, and (4) an evaluation of the habitat of the Cape Sable seaside sparrow.

  1. Ecological implications of Laurel Wilt infestation on Everglades Tree Islands, southern Florida

    Science.gov (United States)

    Snyder, James R.

    2014-01-01

    , laurel wilt disease also kills other native trees that are members of the laurel family, including swamp bay (Persea palustris), silk bay (Persea borbonia var. humilis), and sassafras (Sassafras albidum), as well as the economically important cultivated avocado (Persea americana) (Fraedrich and others, 2008). This paper is concerned primarily with swamp bay, an important component of Everglades tree islands.The spread of the redbay ambrosia beetle and its fungal symbiont has been very rapid, exceeding model predictions (Koch and Smith, 2008); by 2011, laurel wilt disease was found from the southern coastal plain of North Carolina to southern peninsular Florida. The first redbay ambrosia beetle was trapped in Miami-Dade County in March 2010, and laurel wilt disease was discovered in swamp bays in February 2011 and in commercial avocado groves about a year later (Kendra and others, 2013). By 2013, laurel wilt disease was seen in swamp bays throughout the southern Everglades in Everglades National Park, Big Cypress National Preserve, and Water Conservation Areas (WCAs) 3A and 3B (Rodgers and others, 2014).

  2. Response of the everglades ridge and slough landscape to climate variability and 20th-century water management

    Science.gov (United States)

    Bernhardt, C.E.; Willard, D.A.

    2009-01-01

    The ridge and slough landscape of the Florida Everglades consists of a mosaic of linear sawgrass ridges separated by deeper-water sloughs with tree islands interspersed throughout the landscape. We used pollen assemblages from transects of sediment cores spanning sawgrass ridges, sloughs, and ridge-slough transition zones to determine the timing of ridge and slough formation and to evaluate the response of components of the ridge and slough landscape to climate variability and 20th-century water management. These pollen data indicate that sawgrass ridges and sloughs have been vegetationally distinct from one another since initiation of the Everglades wetland in mid-Holocene time. Although the position and community composition of sloughs have remained relatively stable throughout their history, modern sawgrass ridges formed on sites that originally were occupied by marshes. Ridge formation and maturation were initiated during intervals of drier climate (the Medieval Warm Period and the Little Ice Age) when the mean position of the Intertropical Convergence Zone shifted southward. During these drier intervals, marsh taxa were more common in sloughs, but they quickly receded when precipitation increased. Comparison with regional climate records suggests that slough vegetation is strongly influenced by North Atlantic Oscillation variability, even under 20th-century water management practices. ?? 2009 by the Ecological Society of America.

  3. Tsunamis effects at coastal sites due to offshore faulting

    International Nuclear Information System (INIS)

    Miloh, T.; Striem, H.L.

    1976-07-01

    Unusual waves (tsunamis) triggered by submarine tectonic activity such as a fault displacement in the sea bottom may have considerable effect on a coastal site. The possiblity of such phenomena to occur at the southern coast of Israel due to a series of shore-parallel faults, about twenty kilometers offshore, is examined in this paper. The analysis relates the energy or the momentum imparted to the body of water due to a fault displacement of the sea bottom to the energy or the momentum of he water waves thus created. The faults off the Ashdod coast may cause surface waves with amplitudes of about five metres and periods of about one third of an hour. It is also considered that because of the downward movement of the faulted blocks a recession of the sea level rather than a flooding would be the first and the predominant effect at the shore, and this is in agreement with some historical reports. The analysis here presented might be of interest to those designing coastal power plants. (author)

  4. Alternative energy facility siting policies for urban coastal areas: executive summary of findings and policy recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Morell, D; Singer, G

    1980-11-01

    An analysis was made of siting issues in the coastal zone, one of the nation's most critical natural resource areas and one which is often the target for energy development proposals. The analysis addressed the changing perceptions of citizens toward energy development in the coastal zone, emphasizing urban communities where access to the waterfront and revitalization of waterfront property are of interest to the citizen. The findings of this analysis are based on an examination of energy development along New Jersey's urban waterfront and along the Texas-Louisiana Gulf Coast, and on redevelopment efforts in Seattle, San Francisco, Boston, and elsewhere. The case studies demonstrate the significance of local attitudes and regional cooperation in the siting process. In highly urbanized areas, air quality has become a predominant concern among citizen groups and an influential factor in development of alternative energy facility siting strategies, such as consideration of inland siting connected by pipeline to a smaller coastal facility. The study addresses the economic impact of the permitting process on the desirability of energy facility investments, and the possible effects of the location selected for the facility on the permitting process and investment economics. The economic analysis demonstrates the importance of viewing energy facility investments in a broad perspective that includes the positive or negative impacts of various alternative siting patterns on the permitting process. Conclusions drawn from the studies regarding Federal, state, local, and corporate politics; regulatory, permitting, licensing, environmental assessment, and site selection are summarized. (MCW)

  5. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    Energy Technology Data Exchange (ETDEWEB)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  6. Tree island pattern formation in the Florida Everglades

    Science.gov (United States)

    Carr, Joel; D'Odorico, P.; Engel, Victor C.; Redwine, Jed

    2016-01-01

    The Florida Everglades freshwater landscape exhibits a distribution of islands covered by woody vegetation and bordered by marshes and wet prairies. Known as “tree islands”, these ecogeomorphic features can be found in few other low gradient, nutrient limited freshwater wetlands. In the last few decades, however, a large percentage of tree islands have either shrank or disappeared in apparent response to altered water depths and other stressors associated with human impacts on the Everglades. Because the processes determining the formation and spatial organization of tree islands remain poorly understood, it is still unclear what controls the sensitivity of these landscapes to altered conditions. We hypothesize that positive feedbacks between woody plants and soil accretion are crucial to emergence and decline of tree islands. Likewise, positive feedbacks between phosphorus (P) accumulation and trees explain the P enrichment commonly observed in tree island soils. Here, we develop a spatially-explicit model of tree island formation and evolution, which accounts for these positive feedbacks (facilitation) as well as for long range competition and fire dynamics. It is found that tree island patterns form within a range of parameter values consistent with field data. Simulated impacts of reduced water levels, increased intensity of drought, and increased frequency of dry season/soil consuming fires on these feedback mechanisms result in the decline and disappearance of tree islands on the landscape.

  7. Potential impacts of sea level rise on native plant communities and associated cultural sites in coastal areas of the main Hawaiian Islands

    Science.gov (United States)

    Jacobi, James D.; Warshauer, Frederick R.

    2017-01-01

    Hawaiian coastal vegetation is comprised of plant species that are adapted to growing in extremely harsh conditions (salt spray, wave wash, wind, and substrates with limited nutrients) found in this habitat zone. Prior to human colonization of Hawai‘i coastal vegetation extended as a continuous ring around each of the islands, broken only by stretches of recent lava flows or unstable cliff faces. However, since humans arrived in Hawai‘i many areas that originally supported native coastal plant communities have been highly altered or the native vegetation totally removed for agriculture, housing, or resort development, destroyed by fire, displaced by invasive plants, eaten by introduced mammals, or damaged by recreational use. This study was focused on identifying sites that still retain relatively intact and highly diverse native coastal plant communities throughout the main Hawaiian Islands that may be further impacted by projected sea level rise. Approximately 40 percent of Hawai‘i’s coastlines were found to still contain high quality native coastal plant communities. Most of these sites were located in areas where the coastal vegetation can still migrate inshore in response to rising sea level and associated inundation by waves. However, six sites with high-quality native coastal vegetation were found on low-lying offshore islets that will be totally inundated with a one meter increase in sea level and thirty sites were found to have some type of fixed barrier, such as a paved road or structure, which would restrict the plants from colonizing the adjacent inland areas. Many of these sites also have other cultural resources that are fixed in place and will definitely be impacted by rising sea level. The results of this study can help refine our understanding of Hawai‘i’s remaining native coastal vegetation and aid with the development of management and restoration strategies to ensure the long-term survival of these unique plant communities.

  8. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    International Nuclear Information System (INIS)

    Sonesten, Lars

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  9. Chemical characteristics of surface waters in the Forsmark area. Evaluation of data from lakes, streams and coastal sites

    Energy Technology Data Exchange (ETDEWEB)

    Sonesten, Lars [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Environmental Assessment

    2005-06-01

    This report is an evaluation of the chemical composition of surface water in lakes, streams, and at coastal sampling sites in the Forsmark area. The aim with this study is to characterise the surface water systems in the area, and the further aim with this characterisation is to be used as input material to the safety analyses and environmental impact assessments for the potential deep repository of used nuclear fuels. The data used consist of water chemical composition of lakes, streams and coastal sites from the period March 2002 - April 2004. The sampling has been performed predominantly on a monthly basis. The emphasis of the assessment has been on surface waters (0.5 m), as the water depth at all sampling locations is limited, and thereby the water systems are rarely stratified for prolonged periods. The characterisations have been restricted to the most commonly measured chemical parameters.The assessment has been divided into three parts: Comparisons within and between the lakes, streams, and coastal sites, respectively; Temporal and spatial variation, predominantly within lakes and stream sites; and Relationships between the various chemical parameters. Beside comparisons between the sampling sites within the Forsmark area, comparisons have also been made with regional and national data from the latest Swedish National Survey (2000). The analyses of temporal and spatial variation have been concentrated on the freshwater systems in the Norra Bassaengen catchment area. This catchment area is the most comprehensively investigated, and it also includes the Bolundsfjaerden sub-catchment, which is the area where the continued site investigations will be concentrated. The relationships among the sampling sites, the catchment areas, as well as the chemical parameters investigated, were examined by applying PCA analyses on the lake and stream data. In general, the freshwater systems in the Forsmark area are characterised by small and shallow oligotrophic hardwater

  10. Comparison of the South Florida Natural System Model with Pre-canal Everglades Hydrology Estimated from Historical Sources

    Science.gov (United States)

    McVoy, Christopher; Park, Winifred A.; Obeysekera, Jayantha

    1996-01-01

    Preservation and restoration of the remaining Everglades ecosystem is focussed on two aspects: improving upstream water quality and improving 'hydropatterns' - the timing, depth and flow of surface water. Restoration of hydropatterns requires knowledge of the original pre-canal drainage conditions as well as an understanding of the soil, topo-graphic, and vegetation changes that have taken place since canal drainage began in the 1880's. The Natural System Model (NSM), developed by the South Florida Water Management District (SFWMD) and Everglades National Park, uses estimates of pre-drainage vegetation and topography to estimate the pre-drainage hydrologic response of the Everglades. Sources of model uncertainty include: (1) the algorithms, (2) the parameters (particularly those relating to vegetation roughness and evapotranspiration), and (3) errors in the assumed pre-drainage vegetation distribution and pre-drainage topography. Other studies are concentrating on algorithmic and parameter sources of uncertainty. In this study we focus on the NSM output -- predicted hydropattern -- and evaluate this by comparison with all available direct and indirect information on pre-drainage hydropatterns. The unpublished and published literature is being searched exhaustively for observations of water depth, flow direction, flow velocity and hydroperiod, during the period prior and just after drainage (1840-1920). Additionally, a comprehensive map of soils in the Everglades region, prepared in the 1940's by personnel from the University of Florida Agricultural Experiment Station, the U.S. Soil Conservation Service, the U.S. Geological Survey, and the Everglades Drainage District, is being used to identify wetland soils and to infer the spatial distribution of pre-drainage hydrologic conditions. Detailed study of this map and other early soil and vegetation maps in light of the history of drainage activities will reveal patterns of change and possible errors in the input to the

  11. Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary

    Science.gov (United States)

    Langevin, C.; Swain, E.; Wolfert, M.

    2005-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. A sequentially coupled time-lagged approach was implemented, based on a variable-density form of Darcy's Law, to couple the surface and subsurface systems. The integrated code also represents the advective transport of salt mass between the surface and subsurface. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Model results confirm several important observations about the coastal wetland: (1) the coastal embankment separating the wetland from the estuary is overtopped only during tropical storms, (2) leakage between the surface and subsurface is locally important in the wetland, but submarine ground-water discharge does not contribute large quantities of freshwater to the estuary, and (3) coastal wetland salinities increase to near seawater values during the dry season, and the wetland flushes each year with the onset of the wet season. ?? 2005 Elsevier B.V. All rights reserved.

  12. 78 FR 27364 - Reorganization of Foreign-Trade Zone 241 Under Alternative Site Framework Fort Lauderdale, Florida

    Science.gov (United States)

    2013-05-10

    ... Zone 241 Under Alternative Site Framework Fort Lauderdale, Florida Pursuant to its authority under the...-48-2012, docketed 6/27/2012) for authority to reorganize under the ASF with a service area comprised... Everglades Customs and Border Protection port of entry, to modify Site 1 by removing acreage, to expand Sites...

  13. Geophysical Characterization Of Groundwater in the Mangrove Lakes Region of Everglades National Park.

    Science.gov (United States)

    Kiflai, M. E.; Whitman, D.; Price, R.; Frankovich, T.; Allen, J.

    2017-12-01

    Everglades National Park has been adversely impacted by past human activities that altered freshwater flow through the system. The Comprehensive Everglades Restoration Plan (CERP) makes an effort to increase the flow of fresh water and modify the groundwater chemistry in Everglades National Park (ENP). This paper aims to present the changes in surface and ground water chemistry in response to CERP project. Electromagnetic (EM) surveys were conducted in Alligator Creek (West Lake) and McCormick Creek (Seven Palm) from 2013 to 2017. During the survey a GSSI Profiler EMP-400, multi- frequency Electromagnetic (EM) conductivity meter was deployed in a flat bottomed plastic kayak towed behind a motorized skiff. An inverse model of the data is performed by constraining the resistivity value of the surface water fixed. Then, the salinity of the groundwater is estimated by assuming a formation factor of 5. In the McCormick Creek system, between January 2016 and February 2017 the salinity of the groundwater shows a considerable decreases. In the northern end of Seven Palm, the salinity decreases from 3.64 PSU in 2016 to 2.5 PSU in 2017. In the southern end the salinity decreases from 8.05 PSU in 2016 to 3.05 in 2017. This demonstrates how the salinity of the groundwater increase from north to south and decreases yearly. Future work will integrate the EM data with DC resistivity measurements collected from a floating Schlumberger array.

  14. Everglades: The Catalyst to Combat the World Water Crisis

    Science.gov (United States)

    2009-02-27

    Everglades is a river, but also, a rich ecosystem that supports a multitude of life to include vast flora and algae, mangroves , wading birds, shrimp and...the first project ever for environmental concerns.98 As an indicator of the international 22 water crisis and a sign for hope, officials from Brazil ...Mississippi River nationally and the Danube and Nile Rivers, Aral, Baltic, and Black Seas, Pantanal wetlands of Brazil , and the Okavango Delta of

  15. Impact of offshore nuclear generating stations on recreational behavior at adjacent coastal sites

    International Nuclear Information System (INIS)

    Baker, E.J.; West, S.G.; Moss, D.J.; Weyant, J.K.

    1977-10-01

    A multi-faceted investigation was undertaken to project the impact of offshore nuclear power plants on beach visitation at adjacent beaches. Related literature was reviewed concerning human adjustment to natural hazards, risk-taking behavior, and public attitudes toward nuclear power. Approximately 2400 people were interviewed at beaches in three states with respect to: intended avoidance of beaches near a hypothetical floating nuclear plant (FNP), relative importance of proximity to a FNP, when compared to other beach attributes, onshore-offshore preference for coastal nuclear plant location, behavioral impact of NRC licensing of FNPs, relative tourism impact of coastal nuclear plant compared to coastal coal-fired plant, public concerns about nuclear safety, public attitudes toward alternative energy sources, public confidence in sources of information about nuclear power, visual impact of a FNP, and knowledge about nuclear power. Four beach areas near currently operating coastal nuclear power plants were studied to assess impacts on tourism resulting from plant construction. Data suggest that proximity of a FNP is less important than other beach attributes in determining beach attractiveness, probably no more than (and perhaps less than) 5% to 10% of current beach patrons would avoid a beach after FNP siting three miles directly offshore, and impact of a FNP would decrease exponentially as distance away increased

  16. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    Science.gov (United States)

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction

  17. Annual low-cost monitoring of a coastal site in Greece by an unmanned aerial vehicle

    Science.gov (United States)

    Hoffmeister, Dirk; Bareth, Georg

    2016-04-01

    Coastal areas are under permanent change and are also the result of past processes. These processes are for example sediment transport, accumulation and erosion by normal and extreme waves (storms or tsunamis). As about 23% of the World's population lives within a 100 km distance of coasts, knowledge about coastal processes is important, in particular for possible changes in the nearby future. The past devastating tsunami events demonstrated profoundly the high vulnerability of coastal areas. In order to estimate the different effects, coastal monitoring approaches are of interest. Several different methods exist in order to determine changes in the sedimentary budget and coastline configuration. In order to estimate constant annual changes, we have applied terrestrial laser scanning (TLS) in an annual monitoring approach (2009-2011). In 2014, we changed to an approach based on dense imaging and structure-from-motion, applying an unmanned aerial vehicle (UAV) in order to conduct an annual monitoring of a coastal site in western Greece. Therefore, a GoPro Hero 3+ and a Canon PowerShot S110 mounted on a DJI-Phantom 2 were used. All surveys were conducted in a manually structured image acquisition with a huge overlap. Ground control points (GCP) were measured by tachymetric surveying. This successful approach was repeated again in 2015 with the Canon camera. The measurements of 2014 were controlled by an additional TLS survey, which revealed the high accuracy and more suitable coverage for the UAV-based data. Likewise, the large picture datasets were artificially reduced in order to estimate the most efficient number of images for dense point cloud processing. In addition, also the number of GCPs was decreased for one dataset. Overall, high-resolution digital elevation models with a ground resolution of 10 mm and an equal accuracy were achieved with this low-cost equipment. The data reveals the slight changes on this selected site.

  18. Diurnal variations in personal care products in seawater and mussels at three Mediterranean coastal sites.

    Science.gov (United States)

    Picot-Groz, Marina; Fenet, Hélène; Martinez Bueno, Maria Jesus; Rosain, David; Gomez, Elena

    2018-03-01

    The presence of personal care products (PCPs) in the marine environment is of major concern. PCPs, UV filters, and musks can enter the marine environment indirectly through wastewater or directly via recreational activities. We conducted this study to document patterns in the occurrence of seven PCPs at three coastal sites impacted by recreational activities during 1 day. The study focused on diurnal variations in these seven PCPs in seawater and indigenous mussels. In seawater, UV filters showed diurnal variations that mirrored variations in recreational activities at the sites. Ethylhexyl methoxycinnamate (EHMC) and octocrylene (OC) water concentrations increased from under the limit of quantification in the morning to 106 and 369 ng/L, respectively, when recreational activities were the highest. In mussels, diurnal variations in OC were observed, with the lowest concentrations recorded in the morning and then increasing throughout the day. As Mytilus spp. are widely used as sentinels in coastal pollution monitoring programs (mussel watch), our findings on diurnal variations could enhance sampling recommendations for recreational sites impacted by PCPs.

  19. From Site Data to Safety Assessment: Analysis of Present and Future Hydrological Conditions at a Coastal Site in Sweden

    International Nuclear Information System (INIS)

    Berglund, Sten; Bosson, Emma; Sassner, Mona

    2013-01-01

    This paper presents an analysis of present and future hydrological conditions at the Forsmark site in Sweden, which has been proposed as the site for a geological repository for spent nuclear fuel. Forsmark is a coastal site that changes in response to shoreline displacement. In the considered time frame (until year 10 000 ad), the hydrological system will be affected by landscape succession associated with shoreline displacement and changes in vegetation, regolith stratigraphy, and climate. Based on extensive site investigations and modeling of present hydrological conditions, the effects of different processes on future site hydrology are quantified. As expected, shoreline displacement has a strong effect on local hydrology (e.g., groundwater flow) in areas that change from sea to land. The comparison between present and future land areas emphasizes the importance of climate variables relative to other factors for main hydrological features such as water balances

  20. Wind-direction analysis in coastal mountainous sites: An experimental study within the Gulf of Corinth, Greece

    International Nuclear Information System (INIS)

    Xydis, G.

    2012-01-01

    Highlights: ► Focus was given to the forced airflow around mountains and the effect on wind profile. ► WAsP model correlated measured and predicted wind directions in 4 coastal areas. ► The difference between simulated and measured values was always less than 8.35%. ► The clear forefront, distance from the mast and the shore influences the wind rose. - Abstract: The wind potential around several coastal areas within the Gulf of Corinth has been studied and an experimental analysis implemented accentuates the level of significance that local winds have in wind farm development and planning. The purpose of this study was to examine wind direction of coastal areas based on field measurements and correlate the results with ruggedness and distance. Four coastal mountainous areas, situated within the Gulf of Corinth, were examined and simulated results were compared to measurements aiming in explaining substantially the wind direction profile. Understanding wind flow interdependent not only from local wind, but also in the wider area of large mountains masses is of great importance for estimating wind resource in rough coastal terrain. In the present paper wind resource analysis results impose new views on the relation among masts’ horizontal distance, difference of ruggedness index, and wind direction in coastal sites.

  1. Results of time-domain electromagnetic soundings in Everglades National Park, Florida

    Science.gov (United States)

    Fitterman, D.V.; Deszcz-Pan, Maria; Stoddard, C.E.

    1999-01-01

    This report describes the collection, processing, and interpretation of time-domain electromagnetic soundings from Everglades National Park. The results are used to locate the extent of seawater intrusion in the Biscayne aquifer and to map the base of the Biscayne aquifer in regions where well coverage is sparse. The data show no evidence of fresh, ground-water flows at depth into Florida Bay.

  2. Black and Brown Bear Activity at Selected Coastal Sites in Glacier Bay National Park and Preserve, Alaska: A Preliminary Assessment Using Noninvasive Procedures

    Science.gov (United States)

    Partridge, Steve; Smith, Tom; Lewis, Tania

    2009-01-01

    A number of efforts in recent years have sought to predict bear activity in various habitats to minimize human disturbance and bear/human conflicts. Alaskan coastal areas provide important foraging areas for bears (Ursus americanus and U. arctos), particularly following den emergence when there may be no snow-free foraging alternatives. Additionally, coastal areas provide important food items for bears throughout the year. Glacier Bay National Park and Preserve (GLBA) in southeastern Alaska has extensive coastal habitats, and the National Park Service (NPS) has been long interested in learning more about the use of these coastal habitats by bears because these same habitats receive extensive human use by park visitors, especially kayaking recreationists. This study provides insight regarding the nature and intensity of bear activity at selected coastal sites within GLBA. We achieved a clearer understanding of bear/habitat relationships within GLBA by analyzing bear activity data collected with remote cameras, bear sign mapping, scat collections, and genetic analysis of bear hair. Although we could not quantify actual levels of bear activity at study sites, agreement among measures of activity (for example, sign counts, DNA analysis, and video record) lends support to our qualitative site assessments. This work suggests that habitat evaluation, bear sign mapping, and periodic scat counts can provide a useful index of bear activity for sites of interest.

  3. Model calculating annual mean atmospheric dispersion factor for coastal site of nuclear power plant

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an atmospheric dispersion field experiment performed on the coastal site of nuclear power plant in the east part of China during 1995 to 1996. The three-dimension joint frequency are obtained by hourly observation of wind and temperature on a 100m high tower; the frequency of the “event day of land and sea breezes” are given by observation of surface wind and land and sea breezes; the diffusion parameters are got from measurements of turbulent and wind tunnel simulation test.A new model calculating the annual mean atmospheric dispersion factor for coastal site of nuclear power plant is developed and established.This model considers not only the effect from mixing release and mixed layer but also the effect from the internal boundary layer and variation of diffusion parameters due to the distance from coast.The comparison between results obtained by the new model and current model shows that the ratio of annual mean atmospheric dispersion factor gained by the new model and the current one is about 2.0.

  4. Lower lethal temperatures for nonnative freshwater fishes in Everglades National Park, Florida

    Science.gov (United States)

    Schofield, Pam; Kline, Jeffrey L.

    2018-01-01

    Temperature is an important factor that shapes biogeography and species composition. In southern Florida, the tolerance of nonnative freshwater fishes to low temperatures is a critical factor in delineating their geographic spread. In this study, we provide empirical information on experimentally derived low-temperature tolerance limits of Banded Cichlid Heros severus and Spotfin Spiny Eel Macrognathus siamensis, two nonnative Everglades fishes that were lacking data, and African Jewelfish Hemichromis letourneuxi and Mayan Cichlid Cichlasoma urophthalmus, species for which previous results were derived from studies with small sample sizes. We also provide a literature review summarizing the current state of knowledge of low-temperature tolerances for all 17 nonnative freshwater fishes that have been found in Everglades National Park. Mean lower lethal temperature tolerances ranged from 4°C (Orinoco Sailfin Catfish Pterygoplichthys multiradiatus) to 16.1°C (Butterfly Peacock Bass Cichla ocellaris). These low-temperature limits may inform the understanding of the ecological role or influence of nonnative fishes and may lead to potential management opportunities and applications.

  5. TBT and its metabolites in sediments: Survey at a German coastal site and the central Baltic Sea.

    Science.gov (United States)

    Abraham, Marion; Westphal, Lina; Hand, Ines; Lerz, Astrid; Jeschek, Jenny; Bunke, Dennis; Leipe, Thomas; Schulz-Bull, Detlef

    2017-08-15

    Since the 1950s the organotin compound tributyltin (TBT) was intensively used in antifouling paints for marine vessels and it became of concern for the marine environment. Herein, we report on a study from 2015 on TBT and its metabolites monobutyltin (MBT) and dibutyltin (DBT) in sediments from the central Baltic Sea and a Baltic Sea coastal site with strong harbor activities (Warnemünde). Sublayers from a sediment core from the Arkona Basin were analyzed to investigate the long term organotin pressure for the Baltic Sea. For the central Baltic Sea total organotin (MBT+DBT+TBT) ranged from 100 to 500ng/g TOC with distinct areas of high organotin content probably due to historical inputs. For the coastal site total organotin ranged from 10,000 to 60,000ng/g TOC. MBT and DBT were the predominant organotin species detected. Overall, the data obtained indicate the progress of TBT degradation at the investigated sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 77 FR 21448 - Security Zone; 2012 Fleet Week, Port Everglades, Fort Lauderdale, FL

    Science.gov (United States)

    2012-04-10

    ... Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may disproportionately affect children...-AA87 Security Zone; 2012 Fleet Week, Port Everglades, Fort Lauderdale, FL AGENCY: Coast Guard, DHS...

  7. Water Source Utilization of Hammock and Pine Rockland Plant Communities in the Everglades, USA.

    Science.gov (United States)

    Saha, A. K.; Sternberg, L.; Miralles-Wilhelm, F.

    2007-12-01

    South Florida has a mosaic of plant communities resulting from topographical differences, spatially varying hydroperiods and fire. The only plant communities not flooded in the wet season are hardwood hammocks and often pine rocklands. Natural fires burn off litter accumulated in pine rocklands, with the exception of organic matter in sinkholes in the limestone bedrock. This relative lack of soil is thought to constrain pineland plants in the Everglades to depend upon groundwater that is typically low in nutrients. In contrast, adjoining hardwood hammocks have accumulated an organic soil layer that traps rainwater and nutrients. Plants in hammocks may be able to utilize this water and thereby access nutrients present in the litter. Hammocks are thus viewed as localized areas of high nutrients and instances of vegetation feedback upon the oligotrophic everglades landscape enabling establishment and survival of flood-intolerant tropical hardwood species. This study examines water source use and couples it to foliar nutrient concentrations of plants found in hammocks and pinelands. We examined the δ2H and δ18O of stem waters in plants in Everglades National Park and compared those with the δ2H and δ18O of potential water sources. In the wet season hammock plants accessed both groundwater and water in the surface organic soil layer while in the dry season they relied more on groundwater. A similar seasonal shift was observed in pineland plants; however groundwater constituted a much higher proportion of total water uptake throughout the year under observation. Concomitant with differential water utilization by hammock and pineland plant communities, we observed hammock plants having a significantly higher annual mean foliar N and P concentration than pineland plants. Most hammock species are intolerant of flooded soils and are thus constrained by the high water table in the wet season, yet access the lowered groundwater table in the dry season due to drying up of

  8. Northern Everglades, Florida, satellite image map

    Science.gov (United States)

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  9. Compartment-based hydrodynamics and water quality modeling of a NorthernEverglades Wetland, Florida, USA

    Science.gov (United States)

    The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km c...

  10. Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades.

    Science.gov (United States)

    Gao, Min; Simoneit, Bernd R T; Gantar, Miroslav; Jaffé, Rudolf

    2007-12-01

    A high abundance of isoprenoid hydrocarbons, the botryococcenes, with carbon numbers from 32 to 34 were detected in the Florida Everglades freshwater wetlands. These compounds were present in varying amounts up to 106microg/gdw in periphyton, 278microg/gdw in floc, and 46microg/gdw in soils. Their structures were determined based on comparison to standards, interpretation of their mass spectra and those of their hydrogenation products, and comparison of Kovats indexes to those reported in the literature. A total of 26 cyclic and acyclic botryococcenes with 8 skeletons were identified, including those with fewer degrees of unsaturation, which are proposed as early diagenetic derivatives from the natural products. This is the first report that botryococcenes occur in the Everglades freshwater wetlands. Their potential biogenetic sources from green algae and cyanobacteria were examined, but neither contained botryococcenes. Thus, the source implication of botryococcenes in this ecosystem needs further study.

  11. An analysis of attitudes towards the comprehensive Everglades Restoration Plan using market segmentation

    Science.gov (United States)

    Jeffrey J. Bransford; Robert D. Bixler; William E. Hammitt

    2006-01-01

    Manipulation of water systems in south Florida have created hundreds of miles of canals, dams, and other diversions. These efforts significantly altered the region?s hydrology and introduced unanticipated changes into the ecosystem. In 2000, the Comprehensive Everglades Restoration Plan (CERP) was authorized to restore, protect, and preserve these wetlands....

  12. Environmental planning and the siting of nuclear facilities: the integration of water, air, coastal, and comprehensive planning into the nuclear siting process. Improving regulatory effectiveness in federal/state siting actions

    International Nuclear Information System (INIS)

    Noble, J.B.; Epting, J.T.; Blumm, M.C.; Ackerman, S.; Laist, D.W.

    1977-02-01

    The National Environmental Policy Act, the Coastal Zone Management Act, the Federal Water Pollution Control Act, the Clean Air Act Amendments, and the Housing and Urban 701 Comprehensive Planning Assistance Program are discussed in relation to the planning and siting of nuclear facilities

  13. Water Quality in Big Cypress National Preserve and Everglades National Park - Trends and Spatial Characteristics of Selected Constituents

    Science.gov (United States)

    Miller, Ronald L.; McPherson, Benjamin F.; Sobczak, Robert; Clark, Christine

    2004-01-01

    and because of differences in water management and land use. Nutrient concentrations are relatively low in BICY and EVER compared with concentrations in parts of the northern Everglades that are near agricultural and urban lands. Concentrations of total phosphorus generally are higher in BICY (median values, 1991-2000, were mostly greater than 0.015 mg/L) than in EVER (median values, 1991-2000, less than 0.01 mg/L), probably because of higher phosphorus in natural sources such as shallow soils, rocks, and ground water in the Big Cypress region than in the Everglades region. Conversely, concentrations of chloride and sulfate are higher in EVER (median values in Shark River Slough, 1991-2000, mostly greater than 2 mg/L sulfate and 50 mg/L chloride) than in BICY (median values, 1991-2000, less than 1 mg/L sulfate and at most sites less than 20 mg/L chloride), probably because of the canal transport system, which conveys more water from an agricultural source into EVER than into BICY. Trace elements and contaminants such as pesticides and other toxic organic compounds are in relatively low concentrations in BICY and EVER compared with concentrations in parts of the northern Everglades near agricultural and urban sources. Concentrations rarely exceeded aquatic life criteria in BICY and EVER. Atrazine was the only pesticide found in water that exceeded the criteria (in 2 out of 304 samples). The pesticides heptachlor expoxide, lindane, and p,p?-DDE exceeded criteria in canal bed sediments in 1, 2, and 16 percent of the samples, respectively.

  14. Using Remote Sensing Data for Integrating different Renewable Energy Sources at Coastal Site in South Italy

    DEFF Research Database (Denmark)

    Calaudi, Rosamaria; Feudo, Teresa Lo; Calidonna, Claudia Roberta

    2016-01-01

    Italian coastal sites have the advantage of favorable climatic conditions to use mixed renewable energy sources, such as solar and wind. Harbors are safe places to install wind turbines where wind conditions are almost offshore. Space-borne remote sensing can provide information to determine solar...

  15. Response of Competing Vegetation to Site Preparation on West Gulf Coastal Plain Commercial Forest Land

    Science.gov (United States)

    Gale L. Wolters; Henry A. Pearson; Ronald E. Thill; V. Clark Baldwin; Alton Martin

    1995-01-01

    The response of woody and herbaceous vegetation to site preparation, subsoil texture, and fertilization was measured on the West Gulf Coastal Plain. The influences of these treatments on competing vegetation were short-term. Drastic soil disturbance and fertilization briefly increased herbage production. Shear-windrow and shear-disk were generally the most effective...

  16. Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan

    Science.gov (United States)

    Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro

    2017-01-01

    Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal

  17. Impact of anthropogenic development on coastal ground-water hydrology in southeastern Florida, 1900-2000

    Science.gov (United States)

    Renken, Robert A.; Dixon, Joann; Koehmstedt, John A.; Ishman, Scott; Lietz, A.C.; Marella, Richard L.; Telis, Pamela A.; Rodgers, Jeff; Memberg, Steven

    2005-01-01

    Southeastern Florida is an area that has been subject to widely conflicting anthropogenic stress to the Everglades and coastal ecosystems. This stress is a direct consequence of the 20th century economic competition for limited land and water resources needed to satisfy agricultural development and its expansion, its displacement by burgeoning urban development, and the accompanying growth of the limestone mining industry. The development of a highly controlled water-management system designed to reclaim land for urban and agricultural development has severely impacted the extent, character, and vitality of the historic Everglades and coastal ecosystems. An extensive conveyance system of canals, levees, impoundments, surface- water control structures, and numerous municipal well fields are used to sustain the present-day Everglades hydrologic system, prevent overland flow from moving eastward and flooding urban and agricultural areas, maintain water levels to prevent saltwater intrusion, and provide an adequate water supply. Extractive mining activities expanded considerably in the latter part of the 20th century, largely in response to urban construction needs. Much of the present-day urban-agricultural corridor of southeastern Florida lies within an area that is no more than 15 feet above NGVD 1929 and formerly characterized by freshwater marsh, upland, and saline coastal wetland ecosystems. Miami- Dade, Broward, and Palm Beach Counties have experienced explosive population growth, increasing from less than 4,000 inhabitants in 1900 to more than 5 million in 2000. Ground-water use, the principal source of municipal supply, has increased from about 65 Mgal/d (million gallons per day) obtained from 3 well fields in 1930 to more than 770 Mgal/d obtained from 65 well fields in 1995. Water use for agricultural supply increased from 505 Mgal/d in 1953 to nearly 1,150 Mgal/d in 1988, but has since declined to 764 Mgal/d in 1995, partly as a result of displacement of the

  18. Landscape factors and hydrology influence mercury concentrations in wading birds breeding in the Florida Everglades, USA.

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T; Gawlik, Dale E; Beerens, James M

    2013-08-01

    The hydrology of wetland ecosystems is a key driver of both mercury (Hg) methylation and waterbird foraging ecology, and hence may play a fundamental role in waterbird exposure and risk to Hg contamination. However, few studies have investigated hydrological factors that influence waterbird Hg exposure. We examined how several landscape-level hydrological variables influenced Hg concentrations in great egret and white ibis adults and chicks in the Florida Everglades. The great egret is a visual "exploiter" species that tolerates lower prey densities and is less sensitive to hydrological conditions than is the white ibis, which is a tactile "searcher" species that pursues higher prey densities in shallow water. Mercury concentrations in adult great egrets were most influenced by the spatial region that they occupied in the Everglades (higher in the southern region); whereas the number of days a site was dry during the previous dry season was the most important factor influencing Hg concentrations in adult ibis (Hg concentrations increased with the number of days dry). In contrast, Hg concentrations in egret chicks were most influenced by calendar date (increasing with date), whereas Hg concentrations in ibis chicks were most influenced by chick age, region, and water recession rate (Hg concentrations decreased with age, were higher in the southern regions, and increased with positive water recession rates). Our results indicate that both recent (preceding two weeks) hydrological conditions, and those of the prior year, influence Hg concentrations in wading birds. Further, these results suggest that Hg exposure in wading birds is driven by complex relationships between wading bird behavior and life stage, landscape hydrologic patterns, and biogeochemical processes. Published by Elsevier B.V.

  19. Wetland fire scar monitoring and analysis using archival Landsat data for the Everglades

    Science.gov (United States)

    Jones, John W.; Hall, Annette E.; Foster, Ann M.; Smith, Thomas J.

    2013-01-01

    The ability to document the frequency, extent, and severity of fires in wetlands, as well as the dynamics of post-fire wetland land cover, informs fire and wetland science, resource management, and ecosystem protection. Available information on Everglades burn history has been based on field data collection methods that evolved through time and differ by land management unit. Our objectives were to (1) design and test broadly applicable and repeatable metrics of not only fire scar delineation but also post-fire land cover dynamics through exhaustive use of the Landsat satellite data archives, and then (2) explore how those metrics relate to various hydrologic and anthropogenic factors that may influence post-fire land cover dynamics. Visual interpretation of every Landsat scene collected over the study region during the study time frame produced a new, detailed database of burn scars greater than 1.6 ha in size in the Water Conservation Areas and post-fire land cover dynamics for Everglades National Park fires greater than 1.6 ha in area. Median burn areas were compared across several landscape units of the Greater Everglades and found to differ as a function of administrative unit and fire history. Some burned areas transitioned to open water, exhibiting water depths and dynamics that support transition mechanisms proposed in the literature. Classification tree techniques showed that time to green-up and return to pre-burn character were largely explained by fire management practices and hydrology. Broadly applicable as they use data from the global, nearly 30-year-old Landsat archive, these methods for documenting wetland burn extent and post-fire land cover change enable cost-effective collection of new data on wetland fire ecology and independent assessment of fire management practice effectiveness.

  20. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    Science.gov (United States)

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  1. Environmental effects of cooling system alternatives at inland and coastal sites

    International Nuclear Information System (INIS)

    Miner, R.M.; Warrick, J.W.

    1975-01-01

    The environmental effects of alternative cooling systems for power plants in California were analyzed. At inland sites evaporative cooling systems must be used, with fresh water or waste water used as makeup. Because fresh water is scarce, most new plants would need to use agricultural or municipal waste waters. For agricultural waste water systems, disposing of the blowdown and dispersion of drift containing total dissolved solids are two significant problems requiring resolution. At coastal sites, once-through cooling systems or recirculating systems could be used. Once--through cooling causes fewer effects on the marine environment than do recirculating systems on the air and marine environment when oceans water makeup is used. In general, for a recirculating system, dispersing high-salinity blowdown in marine waters and the effects of salt water drift on the terrestrial ecology outweigh the effects of once-through warm water on marine life. (U.S.)

  2. Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades.

    Science.gov (United States)

    Chauhan, Ashvini; Ogram, Andrew

    2006-04-01

    The Florida Everglades is one of the largest freshwater marshes in North America and has been subject to eutrophication for decades. A gradient in P concentrations extends for several kilometers into the interior of the northern regions of the marsh, and the structure and function of soil microbial communities vary along the gradient. In this study, stable isotope probing was employed to investigate the fate of carbon from the fermentation products propionate and butyrate in soils from three sites along the nutrient gradient. For propionate microcosms, 16S rRNA gene clone libraries from eutrophic and transition sites were dominated by sequences related to previously described propionate oxidizers, such as Pelotomaculum spp. and Syntrophobacter spp. Significant representation was also observed for sequences related to Smithella propionica, which dismutates propionate to butyrate. Sequences of dominant phylotypes from oligotrophic samples did not cluster with known syntrophs but with sulfate-reducing prokaryotes (SRP) and Pelobacter spp. In butyrate microcosms, sequences clustering with Syntrophospora spp. and Syntrophomonas spp. dominated eutrophic microcosms, and sequences related to Pelospora dominated the transition microcosm. Sequences related to Pelospora spp. and SRP dominated clone libraries from oligotrophic microcosms. Sequences from diverse bacterial phyla and primary fermenters were also present in most libraries. Archaeal sequences from eutrophic microcosms included sequences characteristic of Methanomicrobiaceae, Methanospirillaceae, and Methanosaetaceae. Oligotrophic microcosms were dominated by acetotrophs, including sequences related to Methanosarcina, suggesting accumulation of acetate.

  3. Accounting for the Impact of Management Scenarios on Typha Domingensis (Cattail) in an Everglades Wetland.

    Science.gov (United States)

    Lagerwall, Gareth; Kiker, Gregory; Muñoz-Carpena, Rafael; Wang, Naiming

    2017-01-01

    The coupled regional simulation model, and the transport and reaction simulation engine were recently adapted to simulate ecology, specifically Typha domingensis (Cattail) dynamics in the Everglades. While Cattail is a native Everglades species, it has become invasive over the years due to an altered habitat over the last few decades, taking over historically Cladium jamaicense (Sawgrass) areas. Two models of different levels of algorithmic complexity were developed in previous studies, and are used here to determine the impact of various management decisions on the average Cattail density within Water Conservation Area 2A in the Everglades. A Global Uncertainty and Sensitivity Analysis was conducted to test the importance of these management scenarios, as well as the effectiveness of using zonal statistics. Management scenarios included high, medium and low initial water depths, soil phosphorus concentrations, initial Cattail and Sawgrass densities, as well as annually alternating water depths and soil phosphorus concentrations, and a steadily decreasing soil phosphorus concentration. Analysis suggests that zonal statistics are good indicators of regional trends, and that high soil phosphorus concentration is a pre-requisite for expansive Cattail growth. It is a complex task to manage Cattail expansion in this region, requiring the close management and monitoring of water depth and soil phosphorus concentration, and possibly other factors not considered in the model complexities. However, this modeling framework with user-definable complexities and management scenarios, can be considered a useful tool in analyzing many more alternatives, which could be used to aid management decisions in the future.

  4. Levels of mercury in alligators (Alligator mississippiensis) collected along a transect through the Florida Everglades

    Science.gov (United States)

    Rumbold, D.G.; Fink, L.E.; Laine, K.A.; Niemczyk, S.L.; Chandrasekhar, T.; Wankel, Scott D.; Kendall, C.

    2002-01-01

    As part of a multi-agency study of alligator health, 28 American alligators (Alligator mississippiensis) were captured along a transect through the Florida Everglades in 1999. Liver and tail muscle tissues were sampled and analyzed on a wet weight basis for total mercury (THg) using cold-vapor atomic absorption spectrophotometry. All tissues had detectable concentrations of THg that ranged from 0.6 to 17 mg/kg in liver and from 0.1 to 1.8 mg/kg in tail muscle. THg was more concentrated in liver tissue than tail muscle, but levels were highly correlated between tissues. THg concentrations in tissue differed significantly among locations, with animals from Everglades National Park (ENP) having mean concentrations of THg in liver (10.4 mg/kg) and tail muscle (1.2 mg/kg) that were two-fold higher than basin-wide averages (4.9 and 0.64 mg/kg, respectively). The reasons for higher contamination of ENP alligators were unclear and could not be explained by differences in sex, length, weight or animal age. While ??15N values were positively correlated with THg concentrations in tail muscle, spatial patterns in isotopic composition did not explain the elevated THg levels in ENP alligators. Therefore, it appears that ENP alligators were more highly exposed to mercury in their environment than individuals in other areas. Comparisons to a previous survey by Yanochko et al. [Arch Environ Contam Toxicol 32 (1997) 323] suggest that mercury levels have declined in some Everglades alligators since 1994. ?? 2002 Elsevier Science B.V. All rights reserved.

  5. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  6. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  7. South Florida Everglades: satellite image map

    Science.gov (United States)

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  8. Assessing the Nation's Coastal Waters....Better

    Science.gov (United States)

    The USEPA has been assessing estuarine and coastal condition in the United States since 1999 via the National Coastal Assessment (NCA) and National Aquatic Resources Surveys (NARS) programs. Approximately 1500 randomly selected coastal sites were surveyed annually during summers ...

  9. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  10. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  11. Impact of offshore nuclear generating stations on recreational behavior at adjacent coastal sites. Technical report

    International Nuclear Information System (INIS)

    Baker, E.J.; Moss, D.J.; West, S.G.; Weyant, J.K.

    1977-12-01

    A multi-faceted investigation was undertaken to project the impact of offshore nuclear power plants on beach visitation at adjacent beaches. 1. Related literature was reviewed concerning human adjustment to natural hazards, risk-taking behavior, and public attitudes toward nuclear power. 2. Approximately 2400 people were interviewed at beaches in three states with respect to: (a) intended avoidance of beaches near a hypothetical floating nuclear plant (FNP), (b) relative importance of proximity to a FNP, when compared to other beach attributes, (c) onshore-offshore preference for coastal nuclear plant location, (d) behavioral impact of NRC licensing of FNP's, (e) relative tourism impact of coastal nuclear plant compared to coastal coal-fired plant, (f) public concerns about nuclear safety, (g) public attitudes toward alternative energy sources, (h) public confidence in sources of information about nuclear power, (i) visual impact of a FNP, and (j) knowledge about nuclear power. 3. Four beach areas near currently operating coastal nuclear power plants were studied to assess impacts on tourism resulting from plant construction. Data suggest that proximity of a FNP is less important than other beach attributes in determining beach attractiveness, probably no more than (and perhaps less than) 5% to 10% of current beach patrons would avoid a beach after FNP siting three miles directly offshore, and impact of a FNP would decrease exponentially as distance away increased

  12. Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades

    Energy Technology Data Exchange (ETDEWEB)

    Irick, Daniel L. [University of Florida, Soil and Water Science Department, Tropical Research and Education Center, 18905 SW 280th St., Homestead, FL 33031 (United States); Gu, Binhe [University of Florida, Soil and Water Science Department, 2181 McCarty Hall, Gainesville, FL 32611 (United States); Li, Yuncong C., E-mail: yunli@ufl.edu [University of Florida, Soil and Water Science Department, Tropical Research and Education Center, 18905 SW 280th St., Homestead, FL 33031 (United States); Inglett, Patrick W. [University of Florida, Soil and Water Science Department, 2181 McCarty Hall, Gainesville, FL 32611 (United States); Frederick, Peter C. [University of Florida, Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall, PO Box 110430, Gainesville, FL 32611 (United States); Ross, Michael S. [Florida International University, Department of Earth and Environment, Southeast Environmental Research Center, 11200 SW 8th St, Miami, FL 33199 (United States); Wright, Alan L. [University of Florida, Soil and Water Science Department, Everglades Research and Education Center, 3200 E. Palm Beach Rd., Belle Glade, FL 33430 (United States); Ewe, Sharon M.L. [Ecology and Environment, Inc., 12300 South Shore Blvd, Wellington, FL 33414 (United States)

    2015-11-01

    Differential distribution of nutrients within an ecosystem can offer insight of ecological and physical processes that are otherwise unclear. This study was conducted to determine if enrichment of phosphorus (P) in tree island soils of the Florida Everglades can be explained by bird guano deposition. Concentrations of total carbon, nitrogen (N), and P, and N stable isotope ratio (δ{sup 15}N) were determined on soil samples from 46 tree islands. Total elemental concentrations and δ{sup 15}N were determined on wading bird guano. Sequential chemical extraction of P pools was also performed on guano. Guano contained between 53.1 and 123.7 g-N kg{sup −1} and 20.7 and 56.7 g-P kg{sup −1}. Most of the P present in guano was extractable by HCl, which ranged from 82 to 97% of the total P. Total P of tree islands classified as having low or high P soils averaged 0.71 and 40.6 g kg{sup −1}, respectively. Tree island soil with high total P concentration was found to have a similar δ{sup 15}N signature and total P concentration as bird guano. Phosphorus concentrations and δ{sup 15}N were positively correlated in tree island soils (r = 0.83, p < 0.0001). Potential input of guano with elevated concentrations of N and P, and {sup 15}N enriched N, relative to other sources suggests that guano deposition in tree island soils is a mechanism contributing to this pattern. - Highlights: • Tree island soil P concentration and δ{sup 15}N values exceed other Everglades soils. • Characteristics of Everglades tree island soil may indicate guano deposition. • Deposition of stable guano P can exceed other P sources to tree island soil.

  13. Hydrological and Biogeochemical Controls on Seasonal and Spatial Differences in Food Webs in the Everglades

    Science.gov (United States)

    Kendall, C.; Wankel, S. D.; Bemis, B. E.; Rawlik, P. S.; Krabbenhoft, D. P.; Lange, T.

    2002-05-01

    Stable isotopes can be used to determine the relative trophic positions of biota within a food web, and to improve our understanding of the biomagnification of contaminants. Plants at the base of the food web uptake dissolved organic carbon (DIC) and nitrogen (DIN) for growth, and their tissue reflects the isotopic composition of these sources. Animals then mirror the isotopic composition of the primary producers, as modified by consumer-diet fractionations at successive trophic steps. During 1995-99, we collected algae, macrophyte, invertebrate, and fish samples from 15 USGS sites in the Everglades and analyzed them for d13C and d15N with the goal of characterizing seasonal and spatial differences in food web relations. Carbon isotopes effectively distinguish between two main types of food webs: ones where algae is the dominant base of the food web, which are characteristic of relatively pristine marsh sites with long hydroperiods, and ones where macrophyte debris appears to be a significant source of nutrients, which are apparently characteristic of shorter hydroperiod sites, and nutrient-impacted marshes and canals. There usually is an inverse relation between d13C and d15N of organisms over time, especially in more pristine environments, reflecting seasonal changes in the d13C of DIC and the d15N of DIN. The d13C and d15N of algae also show strong positive correlations with seasonal changes in water levels. This variability is substantially damped up the food chain, probably because of the longer integration times of animals vs. plants. We speculate that these seasonal shifts in water level result in changes in biogeochemical reactions and nutrient levels, with corresponding variations in the d15N and d13C of biota. For example, small changes in water level may change the balance of photosynthesis, bacterial respiration, and atmospheric exchange reactions that control the d13C of DIC. Such changes will probably also affect the d15N of dissolved inorganic N (DIN

  14. Flow Velocity Water Temperature, and Conductivity in Shark River Slough, Everglades National Park, Florida: August 2001-June 2002

    National Research Council Canada - National Science Library

    Riscassi, Ami L; Schaffranek, Raymond W

    2003-01-01

    ...." Data collected at four locations in Shark River Slough, Everglades National Park during the 2001 -2002 wet season are documented in the report and methods used to process the data are described...

  15. Weibull Wind-Speed Distribution Parameters Derived from a Combination of Wind-Lidar and Tall-Mast Measurements Over Land, Coastal and Marine Sites

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Floors, Rogier Ralph; Peña, Alfredo

    2016-01-01

    Wind-speed observations from tall towers are used in combination with observations up to 600 m in altitude from a Doppler wind lidar to study the long-term conditions over suburban (Hamburg), rural coastal (Høvsøre) and marine (FINO3) sites. The variability in the wind field among the sites is ex...... of the vertical profile of the shape parameter fits well with observations over land, coastal regions and over the sea. An applied model for the dependence of the reversal height on the surface roughness is in good agreement with the observations over land....

  16. Composition of methane-oxidizing bacterial communities as a function of nutrient loading in the Florida everglades.

    Science.gov (United States)

    Chauhan, Ashvini; Pathak, Ashish; Ogram, Andrew

    2012-10-01

    Agricultural runoff of phosphorus (P) in the northern Florida Everglades has resulted in several ecosystem level changes, including shifts in the microbial ecology of carbon cycling, with significantly higher methane being produced in the nutrient-enriched soils. Little is, however, known of the structure and activities of methane-oxidizing bacteria (MOB) in these environments. To address this, 0 to 10 cm plant-associated soil cores were collected from nutrient-impacted (F1), transition (F4), and unimpacted (U3) areas, sectioned in 2-cm increments, and methane oxidation rates were measured. F1 soils consumed approximately two-fold higher methane than U3 soils; additionally, most probable numbers of methanotrophs were 4-log higher in F1 than U3 soils. Metabolically active MOB containing pmoA sequences were characterized by stable-isotope probing using 10 % (v/v) (13)CH(4). pmoA sequences, encoding the alpha subunit of methane monooxygenase and related to type I methanotrophs, were identified from both impacted and unimpacted soils. Additionally, impacted soils also harbored type II methanotrophs, which have been shown to exhibit preferences for high methane concentrations. Additionally, across all soils, novel pmoA-type sequences were also detected, indicating presence of MOB specific to the Everglades. Multivariate statistical analyses confirmed that eutrophic soils consisted of metabolically distinct MOB community that is likely driven by nutrient enrichment. This study enhances our understanding on the biological fate of methane being produced in productive wetland soils of the Florida Everglades and how nutrient-enrichment affects the composition of methanotroph bacterial communities.

  17. (abstract) Seasonal Variability in Coastal Upwelling: A Comparison of Four Coastal Upwelling Sites from Space

    Science.gov (United States)

    Carr, Mary-Elena

    1996-01-01

    Coastal upwelling of subsurface nutrient-rich water occurs along the eastern boundary of the ocean basins and leads to high primary production and fish catches. In this study satellite observations are used to compare the seasonal cycle in wind forcing and in the oceanic and biological response of the major coastal upwelling regions associated with the Canary, Benguela, California, and Humboldt Currents.

  18. Flow Velocity Water Temperature, and Conductivity in Shark River Slough, Everglades National Park, Florida: August 2001-June 2002

    National Research Council Canada - National Science Library

    Riscassi, Ami L; Schaffranek, Raymond W

    2003-01-01

    The data-collection effort described in this report is in support of the U.S. Geological Survey (USGS) Place-Based Studies project investigating "Forcing Effects on Flow Structure in Vegetated Wetland of the Everglades...

  19. Coastal debris analysis in beaches of Chonburi Province, eastern of Thailand as implications for coastal conservation

    International Nuclear Information System (INIS)

    Thushari, Gajahin Gamage Nadeeka; Chavanich, Suchana; Yakupitiyage, Amararatne

    2017-01-01

    This study quantified coastal debris along 3 beaches (Angsila, Bangsaen, Samaesarn) in eastern coast of Thailand. Debris samples were collected from lower and upper strata of these beaches during wet and dry seasons. The results showed that Bangsaen had the highest average debris density (15.5 m −2 ) followed by Samaesarn (8.10 m −2 ), and Angsila (5.54 m −2 ). Among the 12 debris categories, the most abundant debris type was plastics (> 45% of the total debris) in all beach locations. Coastal debris distribution was related to economic activities in the vicinity. Fishery and shell-fish aquaculture activities were primary sources of debris in Angsila while tourism activities were main sources in Bangsaen and Samaesarn. Site-specific pollution control mechanisms (environmental awareness, reuse and recycling) are recommended to reduce public littering. Management actions in Angsila should focus on fishery and shell-fish culture practices, while Bangsaen and Samaesarn should be directed toward leisure activities promoting waste management. - Highlights: • Beach debris assessment was conducted in Chonburi Province, the eatern part of Thailand. • Coastal debris accumulation rates and sizes in the study sites depended on beach characteristics and seasons. • Anthropogenic sources were major contributors of coastal debris in the study sites. • Debris control programs need to focus on site specific coastal pollution issues for effective pollution management actions.

  20. Coastal-inland solar radiation difference study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bach, W.D. Jr.; Vukovich, F.M.

    1980-04-01

    The purpose of this study was to quantify the characteristics of solar insolation in the coastal zone and to determine the effect of the sea breeze circulation on the global insolation. In order to satisfy these objectives, a six station sampling network was established in the coastal plain of southeastern North Carolina, where previous evidence has indicated that the sea breeze circulation is almost a daily occurrence from late May through October. Three sites (Sloop Point, Onslow Beach, and Cape Fear Technical Institute (CFTI)) were located near the coast (coastal sites) to assess the insolation at the coast. A site (Clinton) was located in an area seldom affected by the sea breeze (about 100 km from the coast). Two additional sites, Wallace and Ellis Airport, located between the coastal sites and the control site, were to be used to assess the transient impact of the sea breeze upon the insolation. Pyranometers were located at each site to measure the global insolation. Direct normal insolation measured by a pyrheliometer and ultraviolet radiation measured by uv radiometers were observed at the Sloop Point and Clinton sites only. Data were collected during the calendar year 1978. The results of the study indicated that the global insolation had greater variability over the network during the summer season (June, July, and August). During the summer, there was a systematicdiurnal variation of the difference in global insolation between the inland and the coastal sites.

  1. Soil recovery across a chronosequence of restored wetlands in the Florida Everglades

    OpenAIRE

    Qibing Wang; Yuncong Li; Min Zhang

    2015-01-01

    The restoration project in the Hole-in-the-Donut of Everglades National Park in Florida, USA is to reestablish native wetlands by complete removal of the invasive plants and the associated soil. However, there is little information available about changes in properties of the newly formed Marl soils in restored wetlands. In this study, we measured soil physicochemical properties, soil enzymatic activities, and stable isotopes of carbon (?13C) in plants and soil organic carbon (SOC) in an undi...

  2. Soil Salinity Mapping in Everglades National Park Using Remote Sensing Techniques

    Science.gov (United States)

    Su, H.; Khadim, F. K.; Blankenship, J.; Sobhan, K.

    2017-12-01

    The South Florida Everglades is a vast subtropical wetland with a globally unique hydrology and ecology, and it is designated as an International Biosphere Reserve and a Wetland of International Importance. Everglades National Park (ENP) is a hydro-ecologically enriched wetland with varying salinity contents, which is a concern for terrestrial ecosystem balance and sustainability. As such, in this study, time series soil salinity mapping was carried out for the ENP area. The mapping first entailed a maximum likelihood classification of seven land cover classes for the ENP area—namely mangrove forest, mangrove scrub, low-density forest, sawgrass, prairies and marshes, barren lands with woodland hammock and water—for the years 1996, 2000, 2006, 2010 and 2015. The classifications for 1996-2010 yielded accuracies of 82%-94%, and the 2015 classification was supported through ground truthing. Afterwards, electric conductivity (EC) tolerance thresholds for each vegetation class were established,which yielded soil salinity maps comprising four soil salinity classes—i.e., the non- (EC = 0 2 dS/m), low- (EC = 2 4 dS/m), moderate- (EC = 4 8 dS/m) and high-saline (EC = >8 dS/m) areas. The soil salinity maps visualized the spatial distribution of soil salinity with no significant temporal variations. The innovative approach of "land cover identification to salinity estimation" used in the study is pragmatic and application oriented, and the study upshots are also useful, considering the diversifying ecological context of the ENP area.

  3. Local scale atmospheric diffusion at a coastal site in the presence of breeze effect (Phase I and II: data collection at a coastal site and off shore)

    International Nuclear Information System (INIS)

    Cagnetti, P.; Ferrara, V.; Pellegrini, A.

    1985-01-01

    The aim of this contract is the characterization, from the thermal and anemological point of view of the lower layers of the atmosphere at a coastal site, affected by breeze circulation. Data are utilized to set up diffusion models for accidental releases of airborne materials, both of short and prolonged duration. Five inland meteorological campaigns, starting from Jan. 82 (Jan., Apr., Jul., Oct. 1982, Jan. 1983), have been carried out; an appropriate extension of the contract allowed the execution of two more campaigns in the open sea (Apr., Jul. 1983), utilizing the oceanographic ship ''Bannock'' kindly supplied by CNR. The analysis of the data showed the development of a well defined IBL during on-shore flow only in Spring and Summer, while an inversion layer was detectable aloft independently of the season (provided that an anticyclonic situation was present). According to those relevant features a simple diffusion model has been developed for short duration releases at local scale. Finally, the analysis and elaboration of the data, collected on site by a meteorological automatic station, allowed the extension of the model to prolonged releases

  4. Do recreational activities affect coastal biodiversity?

    Science.gov (United States)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors (;diving; and ;fishing;). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  5. Using scenario planning to evaluate the impacts of climate change on wildlife populations and communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-01-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  6. Using Scenario Planning to Evaluate the Impacts of Climate Change on Wildlife Populations and Communities in the Florida Everglades

    Science.gov (United States)

    Catano, Christopher P.; Romañach, Stephanie S.; Beerens, James M.; Pearlstine, Leonard G.; Brandt, Laura A.; Hart, Kristen M.; Mazzotti, Frank J.; Trexler, Joel C.

    2015-04-01

    It is uncertain how climate change will impact hydrologic drivers of wildlife population dynamics in freshwater wetlands of the Florida Everglades, or how to accommodate this uncertainty in restoration decisions. Using projections of climate scenarios for the year 2060, we evaluated how several possible futures could affect wildlife populations (wading birds, fish, alligators, native apple snails, amphibians, threatened and invasive species) across the Everglades landscape and inform planning already underway. We used data collected from prior research and monitoring to parameterize our wildlife population models. Hydrologic data were simulated using a spatially explicit, regional-scale model. Our scenario evaluations show that expected changes in temperature, precipitation, and sea level could significantly alter important ecological functions. All of our wildlife indicators were negatively affected by scenarios with less rainfall and more evapotranspiration. Under such scenarios, habitat suitability was substantially reduced for iconic animals such as wading birds and alligators. Conversely, the increased rainfall scenario benefited aquatic prey productivity and apex predators. Cascading impacts on non-native species is speculative, but increasing temperatures could increase the time between cold events that currently limit expansion and abundance of non-native fishes, amphibians, and reptiles with natural ranges in the tropics. This scenario planning framework underscored the benefits of proceeding with Everglades restoration plans that capture and clean more freshwater with the potential to mitigate rainfall loss and postpone impacts of sea level rise.

  7. The Fall River Long-Term Site Productivity study in coastal Washington: site characteristics, methods, and biomass and carbon and nitrogen stores before and after harvest.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Kathryn B. Piatek; Robert B. Harrison; Richard E. Miller; Barry L. Flaming; ChristopherW Licata; Brian D. Strahm; Constance A. Harrington; Rodney Meade; Harry W. Anderson; Leslie C. Brodie; Joseph M. Kraft

    2007-01-01

    The Fall River research site in coastal Washington is an affiliate installation of the North American Long-Term Soil Productivity (LTSP) network, which constitutes one of the world’s largest coordinated research programs addressing forest management impacts on sustained productivity. Overall goals of the Fall River study are to assess effects of biomass removals, soil...

  8. Detrital floc and surface soil microbial biomarker responses to active management of the nutrient impacted Florida everglades.

    Science.gov (United States)

    Bellinger, Brent J; Hagerthey, Scot E; Newman, Susan; Cook, Mark I

    2012-11-01

    Alterations in microbial community composition, biomass, and function in the Florida Everglades impacted by cultural eutrophication reflect a new physicochemical environment associated with monotypic stands of Typha domingensis. Phospholipid fatty acid (PLFA) biomarkers were used to quantify microbial responses in detritus and surface soils in an active management experiment in the eutrophic Everglades. Creation of open plots through removal of Typha altered the physical and chemical characteristics of the region. Mass of PLFA biomarkers increased in open plots, but magnitude of changes differed among microbial groups. Biomarkers indicative of Gram-negative bacteria and fungi were significantly greater in open plots, reflective of the improved oxic environment. Reduction in the proportion of cyclopropyl lipids and the ratio of Gram-positive to Gram-negative bacteria in open plots further suggested an altered oxygen environment and conditions for the rapid growth of Gram-negative bacteria. Changes in the PLFA composition were greater in floc relative to soils, reflective of rapid inputs of new organic matter and direct interaction with the new physicochemical environment. Created open plot microbial mass and composition were significantly different from the oligotrophic Everglades due to differences in phosphorus availability, plant community structure, and a shift to organic peat from marl-peat soils. PLFA analysis also captured the dynamic inter-annual hydrologic variability, notably in PLFA concentrations, but to a lesser degree content. Recently, use of concentration has been advocated over content in studies of soil biogeochemistry, and our results highlight the differential response of these two quantitative measures to similar pressures.

  9. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  10. Escaping a Rigidity Trap; Governance and Adaptive Capacity to Climate Change in the Everglades Social Ecological System

    Science.gov (United States)

    The Everglades is perhaps one of the most recognized ecosystems on the planet. Its international reputation arose in part because of the writings of Marjory Stoneman Douglas, who wove together a rich, natural, social, and cultural depiction of the area entitled River of Grass. 1 ...

  11. Polychlorinated biphenyls in sediments of selected sites of the Moroccan coastal zone

    Energy Technology Data Exchange (ETDEWEB)

    Piazza, R.; Ferrari, S.; Moret, I.; Gambaro, A. [Univ. Ca Foscari, Venezia (Italy). Dept. of Environmental Sciences; Le Moumni, B. [Univ. Abdelmaleck Essaadi, Tangier (Morocco). Dept. of Earth Sciences and Oceanology; Bellucci, L.G.; Frignani, M. [ISMAR-CNR, Sezione di Geologia Marina, Bologna (Italy); Zangrando, R. [IDPA-CNR, Venezia (Italy)

    2004-09-15

    A good knowledge of sources of contaminants, distribution mechanisms, sites where chemicals tend to accumulate, potential risk and actual danger to the human and environmental health is fundamental to design a policy for the environment. In this respect, it is important to recognize that sediments can keep a record of the conditions of the environment at the time of their deposition and accumulation and hence can be used to reconstruct history and trends of contamination processes. Furthermore, actively accreting salt marshes, due to the lack of sediment reworking, may provide a relatively high resolution record of atmospheric fluxes. On the other hand, transition coastal environments are of particular importance because of their position between the inland sources and the sea, which is the final repository of all the materials mobilized from the continent. In order to assess the level of PCB contamination in key areas of coastal Morocco we chose to analyse sediments from the Nador (NAD) and the Moulay Bousselham (MB) lagoons, the terminal tract of the Martil River (MR), the port of Tangier (TG) and a soil taken close to the industrial town of Tetouan (TS). The first two were chosen because of their high environmental value, the others as representative of zones potentially contaminated.

  12. River of Interests: Water Management in South Florida and the Everglades, 1948-2010

    Science.gov (United States)

    2011-07-01

    influencing hundreds of people to write letters to the secretary of the interior about the project. In this essay , entitled "Rape of the Oklawaha...as "the prospect of helter-skelter development around the airport.ඏ Look issued a photo essay depicting "the assault on the Everglades,ඐ while...the town of Kissimmee, meandered along a 92-mile course through central Florida, eventu- ally reaching Lake Okeechobee. A lyrical description of the

  13. Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: A radioisotope tracing study

    Science.gov (United States)

    Noe, G.B.; Scinto, L.J.; Taylor, J.; Childers, D.L.; Jones, R.D.

    2003-01-01

    1. Our goal was to quantify short-term phosphorus (P) partitioning and identify the ecosystem components important to P cycling in wetland ecosystems. To do this, we added P radiotracer to oligotrophic, P-limited Everglades marshes. 32PO4 was added to the water column in six 1-m2 enclosed mesocosms located in long-hydroperiod marshes of Shark River Slough, Everglades National Park. Ecosystem components were then repeatedly sampled over 18 days. 2. Water column particulates (>0.45 ??m) incorporated radiotracer within the first minute after dosing and stored 95-99% of total water column 32P activity throughout the study. Soluble (<0.45 ??m) 32P in the water column, in contrast, was always <5% of the 32P in surface water. Periphyton, both floating and attached to emergent macrophytes, had the highest specific activity of 32P (Bq g-131P) among the different ecosystem components. Fish and aquatic macroinvertebrates also had high affinity for P, whereas emergent macrophytes, soil and flocculent detrital organic matter (floc) had the lowest specific activities of radiotracer. 3. Within the calcareous, floating periphyton mats, 81% of the initial 32P uptake was associated with Ca, but most of this 32P entered and remained within the organic pool (Ca-associated = 14% of total) after 1 day. In the floc layer, 32P rapidly entered the microbial pool and the labile fraction was negligible for most of the study. 4. Budgeting of the radiotracer indicated that 32P moved from particulates in the water column to periphyton and floc and then to the floc and soil over the course of the 18 days incubations. Floc (35% of total) and soil (27%) dominated 32P storage after 18 days, with floating periphyton (12%) and surface water (10%) holding smaller proportions of total ecosystem 32P. 5. To summarise, oligotrophic Everglades marshes exhibited rapid uptake and retention of labile 32P. Components dominated by microbes appear to control short-term P cycling in this oligotrophic ecosystem.

  14. Everglades Ecosystem Assessment: Water Management and Quality, Eutrophication, Mercury Contamination, Soils and Habitat - EPA 904-R-07-001, August 2007

    Science.gov (United States)

    This report summarizes the results for the Program and 2005 Phase III biogeochemical sampling. This survey documented ecological condition for the 2,063-square-mile freshwater portion of the Everglades Protection Area.

  15. Zooplankton composition and diversity at different location along Kalpakkam coastal sites

    International Nuclear Information System (INIS)

    Das, Subhashree; Ponnusamy, K.; Verma, Amrata; Munilkumar, S.; Rajaram, S.; Lakra, W.S.; Pal, Asim K.; Sreedevi, K.R.

    2015-01-01

    Zooplanktons are the base of aquatic food web which constitutes the most vital biological component in an aquatic ecosystem. They form an important link in the food chain from primary to tertiary level leading to the production of fishery and are known to serve as a food for larger organisms such as bivalves, crustaceans and fish. The present study was aimed to assess the composition and diversity among the different species of zooplankton in Kalpakkam coastal sites within 30 kms around Madras Atomic Power Station. Samples were collected using plankton net (mesh size 63 μm, mouth area 20 inch dia) from stations which were fixed using the GPS coordinates. The results of the present studies showed maximum zoo planktonic diversity in station N15 i.e. 15 km away from MAPS (Madras Atomic Power Station), as compared to the other selected sampling stations. Regarding composition of zooplankton at different sites along the MAPS, it was found Copepods dominated among the zooplankton forming up to 60% of total species composition which indicate that copepod species are likely to be good indicators of water-mass influence and changes. (author)

  16. Artificial coastal lagoons at solar salt-working sites: A network of habitats for specialised, protected and alien biodiversity

    Science.gov (United States)

    Herbert, Roger J. H.; Broderick, Lee G.; Ross, Kathryn; Moody, Chris; Cruz, Tamira; Clarke, Leo; Stillman, Richard A.

    2018-04-01

    There are concerns that novel structures might displace protected species, facilitate the spread of non-indigenous species, or modify native habitats. It is also predicted that ocean warming and the associated effects of climate change will significantly increase biodiversity loss within coastal regions. Resilience is to a large extent influenced by the magnitude of dispersal and level of connectivity within and between populations. Therefore it is important to investigate the distribution and ecological significance of novel and artificial habitats, the presence of protected and alien species and potential vectors of propagule dispersal. The legacy of solar salt-making in tropical and warm temperate regions is regionally extensive areas of artificial hypersaline ponds, canals and ditches. Yet the broad-scale contribution of salt-working to a network of benthic biodiversity has not been fully established. Artisanal, abandoned and historic salt-working sites were investigated along the Atlantic coast of Europe between southern England (50°N) and Andalucía, Spain (36°N). Natural lagoons are scarce along this macrotidal coast and are vulnerable to environmental change; however it is suspected that avian propagule dispersal is important in maintaining population connectivity. During bird migration periods, benthic cores were collected for infauna from 70 waterbodies across 21 salt-working sites in 5 coastal regions. Bird ringing data were used to investigate potential avian connectivity between locations. Lagoonal specialist species, some of international conservation importance, were recorded across all regions in the storage reservoirs and evaporation ponds of continental salinas, yet few non-indigenous species were observed. Potential avian propagule transport and connectivity within and between extant salt-working sites is high and these artificial habitats are likely to contribute significantly to a network of coastal lagoon biodiversity in Europe.

  17. The relationship between Holocene cultural site distribution and marine terrace uplift on the coast fringing Coastal Range, Taiwan

    Science.gov (United States)

    Yang, Hsiaochin; Chen, Wenshan

    2013-04-01

    According to the collision of Philippine Sea plate and Eurasia plate, a series of left-lateral active faults with reverse sense exists in the Longitudinal Valley of east Taiwan. The Holocene marine terraces along the east coast of the Coastal Range in Taiwan are well known for their very rapid uplift and record tectonic history of this active collision boundary. The Holocene marine terrace sequence resulting from successive sea level change and tectonic activation is subdivided into several steps where the highest and oldest terrace, back to ca 13,000yr BP, reaches up to ca 80 m above sea level, and the lower terraces are mostly erosional ones, overlain by less than 1m thick coral beds in situ. The uplift of the coast is very high, ranging from 5 to 10 m/ka. According to the fabrics of potsherds and geochronological data, the prehistoric cultures in eastern Taiwan could be classified into three stages: Fushan (ca 5000-3500yr BP), Peinan/Chilin (ca3500-2000yr BP), Kweishan (ca2000-1000 yr BP) and Jinpu (ca 1000-400yr BP) cultural assemblages respectively. A great difference exists between the various cultural stage, not only the pottery making techniques, but also the distributions of archaeological sites. Combined with the dynamic geomorphic evolution of marine terraces and the distribution of prehistoric culture sites on the east coast of the Coastal Range, a coastal migration trend could be established.

  18. Determining the Role of Sediment Deposition and Transport in the Formation and Maintenance of Tree Islands in the Florida Everglades

    Science.gov (United States)

    Mitchell-Bruker, S.; Childers, D.; Ross, M.; Leonard, L.; Solo-Gabriel, H.; Stothoff, S.

    2002-05-01

    Tree islands are a prominent feature in the Everglades ridge and slough wetlands. These tree islands are believed to be a remnant of the historical pre-drainage flow system. Within Everglades National Park, hardwood hammock and bayhead tree islands commonly form as teardrop-shaped mounds, rising above the sawgrass marsh. These tree islands are usually oriented along the direction of surface water flow, with the highest elevation and widest part of the island at the upstream head. The island narrows as it descends into the marsh at the downstream end, terminating in a tail that sometimes includes a zone of dead or dying sawgrass. The shape and orientation of the tree islands suggests that surface water flow has been instrumental in their formation, however occasional flow measurements indicate that the slow moving water of the Everglades does not provide sufficient energy to transport even moderate amounts of suspended sediment. This low flow velocity, coupled with the extremely low turbidity of the Everglades water suggests that if sediment transport and deposition processes are instrumental in forming tree islands, the process is probably occurring over short distances and long time intervals. It is also possible that concentration and transport of nutrients is an important element in tree island formation. Because the Everglades marsh is a low nutrient environment, processes that create areas of increased phosphorous concentration result in changes in the vegetation. Because many hardwood hammock and bayhead tree islands have heads that are situated on bedrock highs, the higher and drier elevation of the head allows for trees to grow. These trees could concentrate phosphorous either by acting as wildlife attractors, or by acting as \\x8Dphosphorous pumpsŒ, transporting groundwater with high concentrations of phosphorous through the roots to the tree. We are characterizing vegetation, litter fall, sediments, surface water flow, hydrologic gradients and nutrient

  19. Copepod communities from surface and ground waters in the everglades, south Florida

    Science.gov (United States)

    Bruno, M.C.; Cunningham, K.J.; Perry, S.A.

    2003-01-01

    We studied species composition and individual abundance of copepods in the surficial aquifer northeast of Everglades National Park. We identified the spatial distribution of subsurface habitats by assessing the depth of the high porosity layers in the limestone along a canal system, and we used copepods to assess the exchange between surface water and ground water along canal banks, at levels in the wells where high porosity connections to the canals exist. Surface- and ground-water taxa were defined, and species composition was related to areal position, sampling depth, and time. Subsurface copepod communities were dominated by surface copepods that disperse into the aquifer following the groundwater seepage along canal L-31N. The similarities in species composition between wells along canal reaches, suggest that copepods mainly enter ground water horizontally along canals via active and passive dispersal. Thus, the copepod populations indicate continuous connections between surface- and ground waters. The most abundant species were Orthocyclops modestus, Arctodiaptomus floridanus, Mesocyclops edax, and Thermocyclops parvus, all known in literature from surface habitats; however, these species have been collected in ground water in ENP. Only two stygophiles were collected: Diacylcops nearcticus and Diacyclops crassicaudis brachycercus. Restoration of the Everglades ecosystem requires a mosaic of data to reveal a complete picture of this complex system. The use of copepods as indicators of seepage could be a tool in helping to assess the direction and the duration of surface and ground water exchange.

  20. Hypoxia is increasing in the coastal zone of the Baltic Sea.

    Science.gov (United States)

    Conley, Daniel J; Carstensen, Jacob; Aigars, Juris; Axe, Philip; Bonsdorff, Erik; Eremina, Tatjana; Haahti, Britt-Marie; Humborg, Christoph; Jonsson, Per; Kotta, Jonne; Lännegren, Christer; Larsson, Ulf; Maximov, Alexey; Medina, Miguel Rodriguez; Lysiak-Pastuszak, Elzbieta; Remeikaité-Nikiené, Nijolé; Walve, Jakob; Wilhelms, Sunhild; Zillén, Lovisa

    2011-08-15

    Hypoxia is a well-described phenomenon in the offshore waters of the Baltic Sea with both the spatial extent and intensity of hypoxia known to have increased due to anthropogenic eutrophication, however, an unknown amount of hypoxia is present in the coastal zone. Here we report on the widespread unprecedented occurrence of hypoxia across the coastal zone of the Baltic Sea. We have identified 115 sites that have experienced hypoxia during the period 1955-2009 increasing the global total to ca. 500 sites, with the Baltic Sea coastal zone containing over 20% of all known sites worldwide. Most sites experienced episodic hypoxia, which is a precursor to development of seasonal hypoxia. The Baltic Sea coastal zone displays an alarming trend with hypoxia steadily increasing with time since the 1950s effecting nutrient biogeochemical processes, ecosystem services, and coastal habitat.

  1. Coastal resuspension

    International Nuclear Information System (INIS)

    Garland, J.A.

    1991-11-01

    There are several potential mechanisms for the suspension in air of radioactive or other pollutants from coastal sea water, beaches, mud banks and salt marshes. Available measurements rarely allow these mechanisms to be distinguished. The limited data show a broad spread of results. When normalised by the concentration of radionuclides in beach sediments most of the data indicate concentrations equivalent to 1 to 30 μg m -3 of sediment suspended in air, both for sampling sites on open coasts and near estuaries. Limited evidence for sampling sites located on salt marshes indicates about 0.2 μg m -3 of suspended sediment. These values represent the aggregate effect of the mechanisms that operate at a limited number of coastal locations. At other locations it is possible that additional mechanisms will contribute to the suspension of sediment. (Author)

  2. Ecologically least vulnerable sites for exploration drilling in the Wadden Sea and the North Sea coastal area

    International Nuclear Information System (INIS)

    Lindeboom, H.J.; Bergman, M.J.N.; De Gee, A.

    1996-01-01

    The Dutch Oil Company (NAM, abbreviated in Dutch) applied for a number of exploration drilling in the Dutch part of the Wadden Sea and the North Sea coastal area. NAM is obliged to draft a so-called MER (environmental impact report) to indicate the most environment-friendly alternative for the test drilling. By order of NAM, NIOZ and the IBN-DLO (Institute for Research on Forests and Nature) analyzed samples of the animal life in all the potential sites. Based on the results of the analyses, literature and expert knowledge the ecologically least vulnerable sites and the ecologically least vulnerable season were selected during a workshop. In this report the results are given of the workshop, the field sample analyses and a sailing trip along the sites

  3. Towards sustainable coexistence of aquaculture and fisheries in the coastal zone

    DEFF Research Database (Denmark)

    Bergh, Øjvind; Gomez, Emma Bello; Børsheim, Knut Yngve

    2012-01-01

    Globally, coastal areas are subject to an increase in competing activities. Coastal fisheries and aquaculture are highly dependent on availability and accessibility of appropriate sites. Aquaculture production is increasing, whereas fisheries are at best stagnant. Coastal activities also include ......, both industries represent human activities strongly influencing, and influenced by, the environment. Management of aquaculture and fisheries, as well as other uses of the coastal zone, should be considered integral parts with local variations in their respective importance.......Globally, coastal areas are subject to an increase in competing activities. Coastal fisheries and aquaculture are highly dependent on availability and accessibility of appropriate sites. Aquaculture production is increasing, whereas fisheries are at best stagnant. Coastal activities also include...

  4. Age, growth, and mortality of the Mayan cichlid (Cichlasoma urophthalmus) from the southeastern Everglades

    OpenAIRE

    Faunce, Craig H.; Patterson, Heather M.; Lorenz, Jerome J.

    2002-01-01

    Mayan cichlids (Cichlasoma urophthalmus) were collected monthly from March 1996 to October 1997 with hook-and-line gear at Taylor River, Florida, an area within the Crocodile Sanctuary of Everglades National Park, where human activities such as fishing are prohibited. Fish were aged by examining thin-sectioned otoliths, and past size-at-age information was generated by using back-calculation techniques. Marginal increment analysis showed that opaque growth zones were annuli deposited between ...

  5. Inter-annual variability of surface ozone at coastal (Dumont d'Urville, 2004–2014 and inland (Concordia, 2007–2014 sites in East Antarctica

    Directory of Open Access Journals (Sweden)

    M. Legrand

    2016-07-01

    Full Text Available Surface ozone has been measured since 2004 at the coastal East Antarctic site of Dumont d'Urville (DDU, and since 2007 at the Concordia station located on the high East Antarctic plateau. This paper discusses long-term changes, seasonal and diurnal cycles, as well as inter-annual summer variability observed at these two East Antarctic sites. At Concordia, near-surface ozone data were complemented by balloon soundings and compared to similar measurements done at the South Pole. The DDU record is compared to those obtained at the coastal site of Syowa, also located in East Antarctica, as well as the coastal sites of Neumayer and Halley, both located on the coast of the Weddell Sea in West Antarctica. Surface ozone mixing ratios exhibit very similar seasonal cycles at Concordia and the South Pole. However, in summer the diurnal cycle of ozone is different at the two sites with a drop of ozone in the afternoon at Concordia but not at the South Pole. The vertical distribution of ozone above the snow surface also differs. When present, the ozone-rich layer located near the ground is better mixed and deeper at Concordia (up to 400 m than at the South Pole during sunlight hours. These differences are related to different solar radiation and wind regimes encountered at these two inland sites. DDU appears to be the coastal site where the impact of the late winter/spring bromine chemistry is the weakest, but where the impact of elevated ozone levels caused by NOx snow emissions from the high Antarctic plateau is the highest. The highest impact of the bromine chemistry is seen at Halley and Neumayer, and to a lesser extent at Syowa. These three sites are only weakly impacted by the NOx chemistry and the net ozone production occurring on the high Antarctic plateau. The differences in late winter/spring are attributed to the abundance of sea ice offshore from the sites, whereas those in summer are related to the topography of East Antarctica that promotes

  6. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Flats Wetlands in the Everglades

    Science.gov (United States)

    2002-07-01

    cylindrica Cogon grass lnamoea aouatica Water spinach Jasminum dichotomum Gold Coast jasmine Jasminum fluminense, Brazilian jasmine Jasminum sambac...dominated by Cladiumjamaicense (saw grass ) ............................................... 51 Figure 23. Relationship between percent concurrence of strata...Reference standard Marl Flats Everglades wetland dominated by Cladiumjamaicense (saw grass ), Spartina alterniflora (smooth cordgrass), Rhynchospora

  7. User’s manual for the Automated Data Assurance and Management application developed for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The generation of Everglades Depth Estimation Network (EDEN) daily water-level and water-depth maps is dependent on high quality real-time data from over 240 water-level stations. To increase the accuracy of the daily water-surface maps, the Automated Data Assurance and Management (ADAM) tool was created by the U.S. Geological Survey as part of Greater Everglades Priority Ecosystems Science. The ADAM tool is used to provide accurate quality-assurance review of the real-time data from the EDEN network and allows estimation or replacement of missing or erroneous data. This user’s manual describes how to install and operate the ADAM software. File structure and operation of the ADAM software is explained using examples.

  8. The use of passive membrane samplers to assess organic contaminant inputs at five coastal sites in west Maui, Hawaii

    Science.gov (United States)

    Campbell, Pamela L.; Prouty, Nancy G.; Storlazzi, Curt; D'antonio, Nicole

    2017-07-26

    Five passive membrane samplers were deployed for 28 continuous days at select sites along and near the west Maui coastline to assess organic compounds and contaminant inputs to diverse, shallow coral reef ecosystems. Daily and weekly fluctuations in such inputs were captured on the membranes using integrative sampling. The distribution of organic compounds observed at these five coastal sites showed considerable variation; with high concentrations of terrestrially sourced organic compounds such as C29 sterols and high molecular weight n-alkanes at the strongly groundwater-influenced Kahekili vent site. In comparison, the coastal sites were presumably influenced more by seasonal surface and stream water runoff and therefore had marine-sourced organic compounds and fewer pharmaceuticals and personal care products. The direct correlation to upstream land-use practices was not obvious and may require additional wet-season sampling. Pharmaceuticals and personal care products as well as flame retardants were detected at all sites, and the Kahekili vent site had the highest number of detections. Planned future work must also determine the organic compound and contaminant concentrations adsorbed onto water column particulate matter, because it may also be an important vector for contaminant transport to coral reef ecosystems. The impact of contaminants per individual (such as fecundity and metabolism) as well as per community (such as species abundance and diversity) is necessary for an accurate assessment of environmental stress. Results presented herein provide current contaminant inputs to select nearshore environments along the west Maui coastline captured during the dry season, and they can be useful to aid potential future evaluations and (or) comparisons.

  9. Adaptation to Sea Level Rise in Coastal Units of the National Park Service (Invited)

    Science.gov (United States)

    Beavers, R. L.

    2010-12-01

    83 National Park Service (NPS) units contain nearly 12,000 miles of coastal, estuarine and Great Lakes shoreline and their associated resources. Iconic natural features exist along active shorelines in NPS units, including, e.g., Cape Cod, Padre Island, Hawaii Volcanoes, and the Everglades. Iconic cultural resources managed by NPS include the Cape Hatteras Lighthouse, Fort Sumter, the Golden Gate, and heiaus and fish traps along the coast of Hawaii. Impacts anticipated from sea level rise include inundation and flooding of beaches and low lying marshes, shoreline erosion of coastal areas, and saltwater intrusion into the water table. These impacts and other coastal hazards will threaten park beaches, marshes, and other resources and values; alter the viability of coastal roads; and require the NPS to re-evaluate the financial, safety, and environmental implications of maintaining current projects and implementing future projects in ocean and coastal parks in the context of sea level rise. Coastal erosion will increase as sea levels rise. Barrier islands along the coast of Louisiana and North Carolina may have already passed the threshold for maintaining island integrity in any scenario of sea level rise (U.S. Climate Change Science Program Synthesis and Assessment Program Report 4.1). Consequently, sea level rise is expected to hasten the disappearance of historic coastal villages, coastal wetlands, forests, and beaches, and threaten coastal roads, homes, and businesses. While sea level is rising in most coastal parks, some parks are experiencing lower water levels due to isostatic rebound and lower lake levels. NPS funded a Coastal Vulnerability Project to evaluate the physical and geologic factors affecting 25 coastal parks. The USGS Open File Reports for each park are available at http://woodshole.er.usgs.gov/project-pages/. These reports were designed to inform park planning efforts. NPS conducted a Storm Vulnerability Project to provide ocean and coastal

  10. Coastal Risk Management in a Changing Climate

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Zanuttigh, Barbara; Andersen, Thomas Lykke

    2014-01-01

    Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, Coastal Risk...... Management in a Changing Climate provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments...

  11. Summertime OH reactivity from a receptor coastal site in the Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    N. Zannoni

    2017-10-01

    Full Text Available Total hydroxyl radical (OH reactivity, the total loss frequency of the hydroxyl radical in ambient air, provides the total loading of OH reactants in air. We measured the total OH reactivity for the first time during summertime at a coastal receptor site located in the western Mediterranean Basin. Measurements were performed at a temporary field site located in the northern cape of Corsica (France, during summer 2013 for the project CARBOSOR (CARBOn within continental pollution plumes: SOurces and Reactivity–ChArMEx (Chemistry and Aerosols Mediterranean Experiment. Here, we compare the measured total OH reactivity with the OH reactivity calculated from the measured reactive gases. The difference between these two parameters is termed missing OH reactivity, i.e., the fraction of OH reactivity not explained by the measured compounds. The total OH reactivity at the site varied between the instrumental LoD (limit of detection  =  3 s−1 to a maximum of 17 ± 6 s−1 (35 % uncertainty and was 5 ± 4 s−1 (1σ SD – standard deviation on average. It varied with air temperature exhibiting a diurnal profile comparable to the reactivity calculated from the concentration of the biogenic volatile organic compounds measured at the site. For part of the campaign, 56 % of OH reactivity was unexplained by the measured OH reactants (missing reactivity. We suggest that oxidation products of biogenic gas precursors were among the contributors to missing OH reactivity.

  12. The global coastal hazards data base

    International Nuclear Information System (INIS)

    Gornitz, V.; White, T.W.

    1989-01-01

    A rise of sea level between 0.5 and 1.5 m, caused by predicted climate warming in the next century, could jeopardize low-lying radioactive waste disposal sites near the coast, due to permanent and episodic inundation, increased shoreline retreat, and changes in the water table. The effects of global sea level rise on the shoreline will not be spatially uniform. Therefore, site selection will depend on assessment of these differential vulnerabilities, in order to avoid high-risk coasts. The coastal hazards data base described here could provide an appropriate framework. The coastal hazards data base integrates relevant topographic, geologic, geomorphologic, erosional and subsidence information in a Geographic Information System (GIS), to identify high-risk shorelines characterized by low coastal relief, an erodible substrate, present and past evidence of subsidence, extensive shoreline retreat, and high wave/tide energies. Data for seven variables relating to inundation and erosion hazards are incorporated into the ORNL ARC/INFO Geographic Information System (GIS). Data compilation has been completed for the US and is being extended to North America, and ultimately the world. A coastal vulnerability index (CVI) has been designed to flag high risk coastal segments. 17 refs., 2 figs., 2 tabs

  13. The near coastal environment monitored from space

    International Nuclear Information System (INIS)

    Szekielda, K.H.

    1977-01-01

    The optical information required for monitoring the marine environment from space is discussed and applied for the near coastal area. By categorizing coastal features it is possible to recognize coastal regions to a high degree and to indentify water masses derived from land sources and sewage dumping sites. It is concluded that monitoring from space can be used as a tool in environmental planning. (orig.) [de

  14. Long-term Bat Monitoring on Islands, Offshore Structures, and Coastal Sites in the Gulf of Maine, mid-Atlantic, and Great Lakes—Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Trevor [Stantec Consulting Services Inc., Topsham, ME (United States); Pelletier, Steve [Stantec Consulting Services Inc., Topsham, ME (United States); Giovanni, Matt [Stantec Consulting Services Inc., Topsham, ME (United States)

    2016-01-15

    This report summarizes results of a long-term regional acoustic survey of bat activity at remote islands, offshore structures, and coastal sites in the Gulf of Maine, Great Lakes, and mid-Atlantic coast.

  15. Using remote sensing data for exploitation of integrated renewable energy at coastal site in South Italy

    Science.gov (United States)

    Calaudi, Rosamaria; Lo Feudo, Teresa; Calidonna, Claudia Roberta; Sempreviva, Anna Maria

    2016-04-01

    Renewable energy sources are major components of the strategy to reduce harmful emissions and to replace depleting fossil energy resources. Data from Remote Sensing can provide detailed information for analysis for sources of renewable energy and to determine the potential energy and socially acceptability of suggested location. Coastal sites of Southern Italy have the advantage of favorable climatic conditions to use renewable energy, such us cloud free days and local breeze phenomena. Many ports are located where they have opportunities for exploitation of renewable energy, by using existing port area and by taking advantage of their coastal locations. Policies of European-Committee and Global-Navigation-PIANC for a better use of energy and an efficient supply from renewable sources are also focused on the construction of port facilities in zero emissions. Using data from Remote Sensing, can reduce the financial resources currently required for finding and assessing suitable areas, we defined an integrated methodology for potential wind and solar energy in harbor areas. In this study we compared the hourly solar power energy using MSG-SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared) data products DSSF (Down-welling Surface Short-wave-Flux), and PV-Plant measurements with Nominal Power Peak of 19,85 kWp. The PV Plant is situated at a coastal site in Calabrian region, located near Vibo Valentia harbor area. We estimate potential energy by using input solar radiation of Satellite data, with same characteristics of the PV-plant. The RMSE and BIAS for hourly averaged solar electrical reproducibility are estimated including clear and sky conditions. Comparison between energy reproducibility by using DSSF product and PV-plant measurements, made over the period October 2013-June 2014, showed a good agreement in our costal site and generally overestimate (RMSE(35W/m2) and BIAS(4W/m2)) electrical reproducibility from a PV-plant. For wind resource

  16. Sunburn risk among children and outdoor workers in South Africa and Reunion Island coastal sites.

    Science.gov (United States)

    Wright, Caradee Y; Brogniez, Colette; Ncongwane, Katlego P; Sivakumar, Venkataraman; Coetzee, Gerrie; Metzger, Jean-Marc; Auriol, Frédérique; Deroo, Christine; Sauvage, Béatrice

    2013-01-01

    To estimate potential sunburn risk for schoolchildren and outdoor workers, ground-based ambient solar ultraviolet radiation (UVR) measurements were converted into possible child (5% of ambient solar UVR) and outdoor worker (20% of ambient solar UVR) solar UVR exposures by skin type and season for three coastal sites: Durban, Cape Point (South Africa) and Saint Denis (Reunion Island, France). Cumulative daily ambient solar UVR levels were relatively high at all sites, especially during summer, with maximum values of about 67, 57 and 74 Standard Erythemal Dose (SED) (1 SED = 100 J m(-2)) at Durban, Cape Point and Saint Denis respectively. Sunburn risk was evident for both children and outdoor workers, especially those with skin types I and II (extremely to moderately sensitive) during summer, early autumn and/or late spring at all three sites. Although results need to be verified with real-time, instantaneous and nonintegrated personal solar UVR measurements, this understanding of sunburn risk is useful for initiating the development skin cancer prevention and sun protection awareness campaigns in both countries. © 2013 The American Society of Photobiology.

  17. Limited impact of beach nourishment on macrofaunal recruitment/settlement in a site of community interest in coastal area of the Adriatic Sea (Mediterranean Sea).

    Science.gov (United States)

    Danovaro, Roberto; Nepote, Ettore; Martire, Marco Lo; Ciotti, Claudia; De Grandis, Gianluca; Corinaldesi, Cinzia; Carugati, Laura; Cerrano, Carlo; Pica, Daniela; Di Camillo, Cristina Gioia; Dell'Anno, Antonio

    2018-03-01

    Beach nourishment is a widely utilized solution to counteract the erosion of shorelines, and there is an active discussion on its possible consequences on coastal marine assemblages. We investigated the impact caused by a small-scale beach nourishment carried out in the Western Adriatic Sea on macrofaunal recruitment and post-settlement events. Artificial substrates were deployed in proximity of nourished and non-manipulated beaches and turbidity and sedimentation rates were measured. Our results indicate that sedimentation rates in the impacted site showed a different temporal change compared to the control sites, suggesting potential modifications due to the beach nourishment. The impact site was characterized by subtle changes in terms of polychaete abundance and community structure when compared to controls, possibly due to beach nourishment, although the role of other factors cannot be ruled out. We conclude that small-scale beach nourishments appear to be an eco-sustainable approach to contrast coastal erosion. Copyright © 2018. Published by Elsevier Ltd.

  18. Physiological responses of red mangroves to the climate in the Florida Everglades

    Science.gov (United States)

    Barr, Jordan G.; Fuentes, Jose D.; Engel, Vic; Zieman, Joseph C.

    2009-06-01

    This manuscript reports the findings of physiological studies of red mangrove (Rhizophora mangle L.) conducted from June to August 2001 and from May to June 2003 in the Florida Everglades. In situ physiological measurements were made using environmentally controlled gas exchange systems. The field investigations were carried out to define how regional climate constrains mangrove physiology and ecosystem carbon assimilation. In addition, maximum carboxylation and photosynthetic active radiation (PAR) limited carbon assimilation capacities were investigated during the summer season to evaluate whether ecophysiological models developed for mesophyte plant species can be applied to mangroves. Under summertime conditions in the Florida Everglades, maximum foliar carbon dioxide (CO2) assimilation rates reached 18 μmol CO2 m-2 s-1. Peak molar stomatal conductance to water vapor (H2O) diffusion reached 300 mmol H2O m-2 s-1. Maximum carboxylation and PAR-limited carbon assimilation rates at the foliage temperature of 30°C attained 76.1 ± 23.4 μmol CO2 m-2 s-1 and 128.1 ± 32.9 μmol (e-) m-2 s-1, respectively. Environmental stressors such as the presence of hypersaline conditions and high solar irradiance loading (>500 W m-2 or >1000 μmoles of photons m-2 s-1 of PAR) imposed sharp reductions in carbon assimilation rates and suppressed stomatal conductance. On the basis of both field observations and model analyses, it is also concluded that existing ecophysiological models need to be modified to consider the influences of hypersaline and high radiational loadings on the physiological responses of red mangroves.

  19. Chemometrics methods for the investigation of methylmercury and total mercury contamination in mollusks samples collected from coastal sites along the Chinese Bohai Sea.

    Science.gov (United States)

    Yawei, Wang; Lina, Liang; Jianbo, Shi; Guibin, Jiang

    2005-06-01

    The development and application of chemometrics methods, principal component analysis (PCA), cluster analysis and correlation analysis for the determination of methylmercury (MeHg) and total mecury (HgT) in gastropod and bivalve species collected from eight coastal sites along the Chinese Bohai Sea are described. HgT is directly determined by atomic fluorescence spectrometry (AFS), while MeHg is measured by a laboratory established high performance liquid chromatography-atomic fluorescence spectrometry system (HPLC-AFS). One-way ANOVA and cluster analysis indicated that the bioaccumulation of Rap to accumulate Hg was significantly (P<0.05) different from other mollusks. Correlation analysis shows that there is linear relationship between MeHg and HgT in mollusks samples collected from coastal sites along the Chinese Bohai Sea, while in mollusks samples collected from Hongqiao market in Beijing City, there is not any linear relationship.

  20. Research objectives to support the South Florida Ecosystem Restoration initiative-Water Conservation Areas, Lake Okeechobee, and the East/West waterways

    OpenAIRE

    Kitchens, Wiley M.

    1994-01-01

    The South Florida Ecosystem encompasses an area of approximately 28,000 km2 comprising at least 11 major physiographic provinces, including the Kissimmee River Valley, Lake Okeechobee, the Immokalee Rise, the Big Cypress, the Everglades, Florida Bay, the Atlantic Coastal Ridge, Biscayne Bay, the Florida Keys, the Florida Reef Tract, and nearshore coastal waters. South Florida is a heterogeneous system of wetlands, uplands, coastal areas, and marine areas, dominated by the watershe...

  1. A contribution to late Middle Paleolithic chronology of the Levant: New luminescence ages for the Atlit Railway Bridge site, Coastal Plain, Israel

    DEFF Research Database (Denmark)

    Porat, N.; Jain, Mayank; Ronen, A.

    2018-01-01

    The Atlit Railway Bridge (ARB) prehistoric site is located on the northern coastal plain of Israel, within natural caves which formed in calcareous aeolianites (kurkar), perhaps during a high sea-stand. Flint artifacts belonging to the Levantine later Mousterian tradition and faunal remains were ...

  2. Mangrove forests: a potent nexus of coastal biogeochemical cycling

    Science.gov (United States)

    Barr, J. G.; Fuentes, J. D.; Shoemaker, B.; O'Halloran, T. L.; Lin, G., Sr.; Engel, V. C.

    2014-12-01

    Mangrove forests cover just 0.1% of the Earth's terrestrial surface, yet they provide a disproportionate source (~10 % globally) of terrestrially derived, refractory dissolved organic carbon to the oceans. Mangrove forests are biogeochemical reactors that convert biomass into dissolved organic and inorganic carbon at unusually high rates, and many studies recognize the value of mangrove ecosystems for the substantial amounts of soil carbon storage they produce. However, questions remain as to how mangrove forest ecosystem services should be valuated and quantified. Therefore, this study addresses several objectives. First, we demonstrate that seasonal and annual net ecosystem carbon exchange in three selected mangrove forests, derived from long-term eddy covariance measurements, represent key quantities in defining the magnitude of biogeochemical cycling and together with other information on carbon cycle parameters serves as a proxy to estimate ecosystem services. Second, we model ecosystem productivity across the mangrove forests of Everglades National Park and southern China by relating net ecosystem exchange values to remote sensing data. Finally, we develop a carbon budget for the mangrove forests in the Everglades National Park for the purposes of demonstrating that these forests and adjacent estuaries are sites of intense biogeochemical cycling. One conclusion from this study is that much of the carbon entering from the atmosphere as net ecosystem exchange (~1000 g C m-2 yr-1) is not retained in the net ecosystem carbon balance. Instead, a substantial fraction of the carbon entering the system as net ecosystem exchange is ultimately exported to the oceans or outgassed as reaction products within the adjacent estuary.

  3. Speciated mercury at marine, coastal, and inland sites in New England – Part 1: Temporal variability

    Directory of Open Access Journals (Sweden)

    H. Mao

    2012-06-01

    Full Text Available A comprehensive analysis was conducted using long-term continuous measurements of gaseous elemental mercury (Hg0, reactive gaseous mercury (RGM, and particulate phase mercury (HgP at coastal (Thompson Farm, denoted as TF, marine (Appledore Island, denoted as AI, and elevated inland (Pac Monadnock, denoted as PM sites from the AIRMAP Observatories in southern New Hampshire, USA. Decreasing trends in background Hg0 were identified in the 7.5- and 5.5-yr records at TF and PM with decline rates of 3.3 parts per quadrillion by volume (ppqv yr−1 and 6.3 ppqv yr−1, respectively. Common characteristics at these sites were the reproducible annual cycle of Hg0 with its maximum in winter-spring and minimum in fall, comprised of a positive trend in the warm season (spring – early fall and a negative one in the cool season (late fall – winter. Year-to-year variability was observed in the warm season decline in Hg0 at TF varying from a minimum total (complete seasonal loss of 43 ppqv in 2009 to a maximum of 92 ppqv in 2005, whereas variability remained small at AI and PM. The coastal site TF differed from the other two sites with its exceptionally low levels (as low as below 50 ppqv in the nocturnal inversion layer possibly due to dissolution in dew water. Measurements of Hg0 at PM exhibited the smallest diurnal to annual variability among the three environments, where peak levels rarely exceeded 250 ppqv and the minimum was typically 100 ppqv. It should be noted that summertime diurnal patterns at TF and AI were opposite in phase indicating strong sink(s for Hg0 during the day in the marine boundary layer, which was consistent with the hypothesis of Hg0 oxidation by halogen radicals there. Mixing ratios of RGM in the coastal and marine boundary layers reached annual maxima in spring and minima in fall, whereas at PM levels were generally

  4. Phosphorus fractionation and distribution in sediments from wetlands and canals of a water conservation area in the Florida Everglades

    Science.gov (United States)

    Qingren Wang; Yuncong Li; Ying. Ouyang

    2011-01-01

    Phosphorus (P) fractionation and distribution in sediments are of great concern in the Florida Everglades ecosystem because potential eutrophication of surface waters usually results from P external loading and stability. Intact core sediment samples were collected to a depth of 35 cm from wetlands and canals across Water Conservation Area 3 (WCA‐3) of the Florida...

  5. Coastal Risk Management in a Changing Climate

    DEFF Research Database (Denmark)

    Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, "Coastal Risk...... Management in a Changing Climate" provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments...... such as deltas, estuaries and wetlands, where many large cities and industrial areas are located. Integrated risk assessment tools for considering the effects of climate change and related uncertainties. Presents latest insights on coastal engineering defenses. Provides integrated guidelines for setting up...

  6. Hydrologic measurements and implications for tree island formation within Everglades National Park

    Science.gov (United States)

    Bazante, Jose; Jacobi, Gary; Solo-Gabriele, Helena M.; Reed, David; Mitchell-Bruker, Sherry; Childers, Daniel L.; Leonard, Lynn; Ross, Michael

    2006-10-01

    SummaryTree islands in the Shark River Slough of the Everglades National Park (ENP), in the southern state of Florida in the United States, are part of a wetland system of densely vegetated ridges interspersed within relatively open sloughs. Human alteration of this system has had dramatic negative effects on the landscape of the region and restoration efforts will require adjusting the hydrology of the region to assure the preservation of these important ecologic features. The primary objectives of this study were to document the hydrology in the vicinity of tree islands in ENP by measuring velocities in time and space and by characterizing suspended sediments. The results of such measurements were interpreted with respect to factors that may limit tree island growth. The measurements were conducted in the vicinity of three tree islands known as Black Hammock (BH), Gumbo Limbo (GL), and an unnamed island that was named for this study as Satin Leaf (SL). Acoustical Doppler Velocity (ADV) meters were used for measuring the low velocities of the Everglades water flow. Properties of suspended sediments were characterized through measurements of particle size distribution, turbidity, concentration and particle density. Mean velocities observed at each of the tree islands varied from 0.9 to 1.4 cm/s. Slightly higher mean velocities were observed during the wet season (1.2-1.6 cm/s) versus the dry season (0.8-1.3 cm/s). Maximum velocities of more than 4 cm/s were measured in areas of Cladium jamaicense die-off and at the hardwood hammock (head) of the islands. At the island's head, water is channelized around obstructions such as tree trunks in relatively rapid flow, which may limit the lateral extent of tree island growth. Channelization is facilitated by shade from the tree canopy, which limits the growth of underwater vegetation thereby minimizing the resistance to flow and limiting sediment deposition. Suspended sediment concentrations were low (0.5-1.5 mg/L) at all

  7. Hydrodynamics and sediment transport at Muria Peninsula NPP Site

    International Nuclear Information System (INIS)

    Heni Susiati; Berni A Subki; Harman A

    2011-01-01

    Coastal along the coast of the Muria Peninsula, particularly the location of the Muria NPP site candidate is a dynamic region, the interaction between physical oceanographic factors such as currents, waves and tides in the coastal sediments cause abrasion or accretion. Interactions have resulted in coastal dynamics needs to be considered in siting NPP is essential in order to plan. Capacity of hydro-oceanographic data is essential in order to plan the development of the Muria NPP. The process of selecting a safe site for hydro-oceanographic aspects carried out according to IAEA safety standards on site selection. For the evaluation stage of hydro oceanographic potential site (site survey stage), the analysis is more focused on the tidal along the northern coast, bathymetry, potential water resources and hydrologic systems in the Muria NPP siting locations, Jepara. The method used is a secondary, confirmation of field data collection and interpretation of modeling results. The results showed that the preparation for the construction of NPP need to be evaluated further to coastal conditions with respect to the increase coastal erosion in the area of prospective NPP siting. (author)

  8. Long term effects of wet site timber harvesting and site preparation on soil properties and loblolly pine (Pinus taeda L.) productivity in the lower Atlantic Coastal Plain

    OpenAIRE

    Neaves III, Charles Mitchell

    2017-01-01

    Short term studies have suggested that ground based timber harvesting on wet sites can alter soil properties and inhibit early survival and growth of seedlings. Persistence of such negative effects may translate to losses in forest productivity over a rotation. During the fall and winter of 1989, numerous salvage logging operations were conducted during high soil moisture conditions on wet pine flats in the lower coastal plain of South Carolina following Hurricane Hugo. A long-term experim...

  9. Chemometrics methods for the investigation of methylmercury and total mercury contamination in mollusks samples collected from coastal sites along the Chinese Bohai Sea

    International Nuclear Information System (INIS)

    Wang Yawei; Liang Lina; Shi Jianbo; Jiang Guibin

    2005-01-01

    The development and application of chemometrics methods, principal component analysis (PCA), cluster analysis and correlation analysis for the determination of methylmercury (MeHg) and total mercury (HgT) in gastropod and bivalve species collected from eight coastal sites along the Chinese Bohai Sea are described. HgT is directly determined by atomic fluorescence spectrometry (AFS), while MeHg is measured by a laboratory established high performance liquid chromatography-atomic fluorescence spectrometry system (HPLC-AFS). One-way ANOVA and cluster analysis indicated that the bioaccumulation of Rap to accumulate Hg was significantly (P<0.05) different from other mollusks. Correlation analysis shows that there is linear relationship between MeHg and HgT in mollusks samples collected from coastal sites along the Chinese Bohai Sea, while in mollusks samples collected from Hongqiao market in Beijing City, there is not any linear relationship. - Rapana venosa might be used as a potential biomonitor for Hg pollution in the Bohai Sea, China

  10. A comparison of the bacterial microflora between coastal sites in Qingdao, P. R. China and Loch Fyne, Scotland

    Science.gov (United States)

    Macinnes, J.; Robertson, P. A. W.; Austin, B.

    2002-10-01

    Aerobic, heterotrophic bacteria, recovered from two sites located on the west coast of Scotland, were compared to cultures obtained in a similar way from industrial, aquacultural and clean sites in the vicinity of Qingdao, Shandong, P. R. China. Gram-negative bacterial cultures were examined by BIOLOG-GN, and the data analysed by the simple matching (SSM) and Jaccard coefficients (SJ) and unweighted average linkage clustering using NTSys. The output revealed that 20% of the bacteria, namely, Acinetobacter johnsonii, Aquaspirillum dispar, Pseudomonas spp. (two groups), Sphingobacterium sp., Vibrio, sp., V. campbellii, V. mimicus and V. hollisae, were common between the two geographical locations. However, the study revealed shortcomings with the BIOLOG-GN system for the study of coastal Gram-negative bacteria.

  11. Copper desorption in flooded agricultural soils and toxicity to the Florida apple snail (Pomacea paludosa): Implications in Everglades restoration

    International Nuclear Information System (INIS)

    Hoang, Tham C.; Rogevich, Emily C.; Rand, Gary M.; Gardinali, Piero R.; Frakes, Robert A.; Bargar, Timothy A.

    2008-01-01

    Copper (Cu) desorption and toxicity to the Florida apple snail were investigated from soils obtained from agricultural sites acquired under the Comprehensive Everglades Restoration Plan. Copper concentrations in 11 flooded soils ranged from 5 to 234 mg/kg on day 0 and from 6.2 to 204 mg/kg on day 28 (steady-state). The steady-state Cu concentration in overlying water ranged from 9.1 to 308.2 μg/L. In a 28-d growth study, high mortality in snails occurred within 9 to 16 d in two of three soil treatments tested. Growth of apple snails over 28 d was affected by Cu in these two treatments. Tissue Cu concentrations by day 14 were 12-23-fold higher in snails exposed to the three soil treatments compared to controls. The endangered Florida snail kite and its main food source, the Florida apple snail, may be at risk from Cu exposure in these managed agricultural soil-water ecosystems. - Copper desorbs from agricultural soils and is toxic to the Florida apple snail

  12. Genetic isolation between coastal and fishery-impacted, offshore bottlenose dolphin (Tursiops spp.) populations.

    Science.gov (United States)

    Allen, Simon J; Bryant, Kate A; Kraus, Robert H S; Loneragan, Neil R; Kopps, Anna M; Brown, Alexander M; Gerber, Livia; Krützen, Michael

    2016-06-01

    The identification of species and population boundaries is important in both evolutionary and conservation biology. In recent years, new population genetic and computational methods for estimating population parameters and testing hypotheses in a quantitative manner have emerged. Using a Bayesian framework and a quantitative model-testing approach, we evaluated the species status and genetic connectedness of bottlenose dolphin (Tursiops spp.) populations off remote northwestern Australia, with a focus on pelagic 'offshore' dolphins subject to incidental capture in a trawl fishery. We analysed 71 dolphin samples from three sites beyond the 50 m depth contour (the inshore boundary of the fishery) and up to 170 km offshore, including incidentally caught and free-ranging individuals associating with trawl vessels, and 273 dolphins sampled at 12 coastal sites inshore of the 50 m depth contour and within 10 km of the coast. Results from 19 nuclear microsatellite markers showed significant population structure between dolphins from within the fishery and coastal sites, but also among dolphins from coastal sites, identifying three coastal populations. Moreover, we found no current or historic gene flow into the offshore population in the region of the fishery, indicating a complete lack of recruitment from coastal sites. Mitochondrial DNA corroborated our findings of genetic isolation between dolphins from the offshore population and coastal sites. Most offshore individuals formed a monophyletic clade with common bottlenose dolphins (T. truncatus), while all 273 individuals sampled coastally formed a well-supported clade of Indo-Pacific bottlenose dolphins (T. aduncus). By including a quantitative modelling approach, our study explicitly took evolutionary processes into account for informing the conservation and management of protected species. As such, it may serve as a template for other, similarly inaccessible study populations. © 2016 John Wiley & Sons Ltd.

  13. Influence of Sea-Level Rise and Storms on Soil Accretion Rates in the Mangrove Forests of Everglades National Park, USA

    Science.gov (United States)

    Smoak, J. M.; Breithaupt, J.; Smith, T., III; Sanders, C. J.; Peterson, L. C.

    2014-12-01

    Mangrove forests provide a range of valuable ecosystem services including sequestering large quantities of organic carbon (OC) in their soils at rates higher than other forests. Whether or not mangrove soils continue to be a sink for OC will be determined by the mangrove ecosystems' response to climate change-induced stressors. The threats of rising sea level outpacing mangrove forest soil accretion and increased wave energy associated with this rise may become the primary climate change-induced stressors on mangrove ecosystems. The threat from wave energy is amplified during storm events, which could increasingly damage mangrove forests along the coastline. However, storms may enhance accretion rates at some sites due to delivery of storm surge material, which could increase the system's ability to keep pace with sea-level rise (SLR). To investigate these processes we measure soil accretion rates over the last 100 years (via 210Pb dating) within the mangrove forests of Everglades National Park, which are situated within the largest contiguous mangrove forest in North America. Accretion rates range from 2 to 2.8 mm per year for sites within 10 km of the Gulf of Mexico. These rates match (within error) or exceed SLR over the last 100 years. Sites farther inland than 10 km have slightly lower accretion rates. Throughout the system organic matter accumulation is the most important source material contributing to accretion. The more seaward sites also show an important contribution from carbonate material. Soil cores from the most seaward sites exhibited visual laminations and Ca peaks (determined via x-ray fluorescence). These are indicators of storm surge deposits. While higher sea level might produce more damage and loss of mangrove forest along open water (e.g., Gulf of Mexico), our findings suggest some sites will have enhanced accretion rates due to supplementation with storm surge material.

  14. Attempted eradication of Porphyrio porphyrio Linnaeus in the Florida Everglades

    Directory of Open Access Journals (Sweden)

    Dave EGGEMAN

    2011-01-01

    Full Text Available Porphyrio porphyrio (Fulica porphyrio Linnaeus was reported to the South Florida Water Management District in a Water Conservation Area and in constructed wetlands in the Everglades in 2006. A rapid assessment, including casual observations and surveys of land managers, indicated a limited number of P. porphyrio (~300 birds was present, and an eradication attempt was initiated. From 2006 – 2008, more than 3100 P. porphyrio were killed by shotgun from airboats during 73 hunts, suggesting the initial population assessment was severely underestimated. After removing nearly 1500 P. porphyrio in 2008, we concluded that eradication was not possible. Failure of this eradication attempt is attributed to P. porphyrio’s affinity with dense emergent vegetation, which greatly limited shooting effectiveness. Further, the failed eradication underscores the importance of a reporting network to improve early detection and the chance to eliminate naturalized or feral populations of non‐native species.

  15. The Role of Created and Restored Wetlands in Mitigating N and P Pollutants in Agricultural Landscapes: Case Studies in the Florida Everglades, Mississippi-Ohio-Missouri Basin, and Laurentian Great Lakes

    Science.gov (United States)

    Mitsch, W. J.

    2016-12-01

    On a global scale, we have lost half of our original wetlands to our current extent of 8 to 12 million km2, with most of that loss in the 20th century. In the United States, we lost 50% of our wetlands by the beginning of the 1970s. I am proposing here a sizeable increase in our wetland resources for solving the diminishing wetland habitat problem, but with the strategic purpose of minimizing the excess phosphorus and nitrogen in our aquatic ecosystems, with the added benefit of sometimes sequesting carbon from the atmosphere, in our rural, urban, and coastal landscapes in a sustainable fashion. Examples include attempts to minimize phosphorus inflows to the Florida Everglades with wetlands to quite low concentrations and a proposal to restore parts of the Black Swamp in NW Ohio to minimize eutrophication of Lake Erie in the Laurentian Great Lakes. Nitrogen retention by wetlands and riparian forests in the Mississippi-Ohio-Missouri Basin, especially in Midwestern USA, has been proposed for 15 years as a solution and endorsed by the Federal government to solve the seasonal hypoxia in the northern portion of the Gulf of Mexico, but there has been little if any progress over those 15 years. Solutions to recycle the nutrients retained in the wetlands back to agriculture to decrease fertilizer use will be presented as a solution to the multiple problems of wetland habitat loss, downstream lake, reservoir, river, and coastal nutrient pollution, diminishing supplies of phosphorus fertilizer, and fertilizer costs.

  16. Study of coastal line change modelling around the NPP site of Muria Peninsula

    International Nuclear Information System (INIS)

    Tumpal Pahala Tua Sinaga; Henu Susiati

    2007-01-01

    Coastal areas always changing due to two energies coming sea and land congregate. The changes are the forward-backward coastal lines alteration. The coastal lines alteration is caused by coastal sediment transport such as Long shore Sediment Transport and Cross-shore Sediment Transport. This research was aimed to model the sediment transport rate, direction and sediment transport volume and also to investigate the abrasion and accretion areas in Muria Peninsula. The method used in this sampling was purposive sampling method and data processing using NEMOS software. Overall result from the sediment transport model in Semenanjung Muria, the sediment transport rate were Q + =2471331.00 m 3 /year, Q - =-1325456.80 m 3 /year, Q gs =3796792.60 m 3 /year and Q net =1145874.40 m 3 /year; average abrasion and accretion distance were -0.982 m/year and 0.770 m/year, transport volume to right = 13431.15 m 3 /year and to left = -7203.53 m 3 /year. (author)

  17. Wind direction dependent vertical wind shear and surface roughness parameter in two different coastal environments

    International Nuclear Information System (INIS)

    Bagavathsingh, A.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.; Sardar Maran, P.

    2016-01-01

    Atmospheric boundary layer parameters and surface layer parameterizations are important prerequisites for air pollution dispersion analysis. The turbulent flow characteristics vary at coastal and inland sites where the nuclear facilities are situated. Many pollution sources and their dispersion occur within the roughness sub layer in the lower atmosphere. In this study analysis of wind direction dependence vertical wind shear, surface roughness lengths and surface layer wind condition has been carried out at a coastal and the urban coastal site for the different wind flow regime. The differential response of the near coastal and inland urban site SBL parameters (wind shear, roughness length, etc) was examined as a function of wind direction

  18. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2008-05-01

    The ability to map the relationship between ecological outcomes and hydrologic conditions in the Everglades National Park is a key building block for the restoration program, a primary goal of which is to improve habitat for wading bird species and to promote nesting. This paper reports on a model linking wading bird foraging numbers to hydrologic conditions in the Park We demonstrate that seasonal hydrologic statistics derived from a single water level recording site are a) well correlated with water depths throughout most areas of the Park, and b) are effective as predictors of Great Egret and White Ibis foraging numbers at the end of the nesting season when using a nonlinear Bayesian Hierarchical model that permits the estimation of a conditional distribution of bird populations given the seasonal statistics of stage at the index location. Model parameters are estimated using a Markov Chain Monte Carlo procedure. Parameter and model uncertainty are both assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the recession rate, and the numbers of reversals in the recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the seasonal production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of wading bird foraging numbers showing low frequency oscillations in response to decadal and multi-decadal fluctuations in hydroclimatic conditions.

  19. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2007-12-01

    A goal of the Everglades National Park (ENP) restoration project is to ensure that the ecological health of the ENP improves as a direct result of management activities. Achieving hydrologic targets through the proper timing and amount of releases from control structures is a first step in the management process. Significant climate and weather variations in the region influence the ability to make releases and also determine the ecological outcomes. An assessment of the relative impact of climate variations and water releases to ENP in determining ecological outcomes is consequently a key to the evaluation of the success or failure of any restoration plan. Seasonal water depths in ENP depend on managed surface water releases from control structures and on direct rainfall. Here we link wading bird foraging patterns - a fundamental aspect of Everglades' ecology - to hydrologic management and climate variability in the National Park. Our objective is multifold. First, we relate the water levels at P33 and Shark Slough to the synoptic hydrologic conditions. Second, we develop a statistical model relating water levels at a station in central Shark Slough (P33) to wading birds foraging patterns throughout ENP. We attempt to apply a Hierarchical Bayesian scheme to a time series of wading bird to provide an uncertainty distribution of the population over specified time periods given hydrologic condition. Third, we develop a set of hydrologic index derived by recorded water level at P33 for a use of the statistical model of wading birds as an input. Our study will focus on great egret and white ibis that are major species among wading birds in the ENP. The great egret and white ibis prediction predicted by the model using the proposed predictors exhibits strong correlation with the observed streamflow, with an correlation 0.8.

  20. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China

    Science.gov (United States)

    Wang, Zhanghua; Ryves, David B.; Lei, Shao; Nian, Xiaomei; Lv, Ye; Tang, Liang; Wang, Long; Wang, Jiehua; Chen, Jie

    2018-05-01

    Coastal flooding catastrophes have affected human societies on coastal plains around the world on several occasions in the past, and are threatening 21st century societies under global warming and sea-level rise. However, the role of coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower Yangtze valley, East China coast has been long contested. In this study, we used a well-dated Neolithic site (the Yushan site) close to the present coastline to demonstrate a marine drowning event at the terminal stage of the Liangzhu culture and discuss its linkage to relative sea-level rise. We analysed sedimentology, chronology, organic elemental composition, diatoms and dinoflagellate cysts for several typical profiles at the Yushan site. The field and sedimentary data provided clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ∼2560 BCE, which heralded a period of marine inundation and ecological deterioration at the site. We also infer an acceleration in sea-level rise at 2560-2440 BCE from the sedimentary records at Yushan, which explains the widespread signatures of coastal flooding across the south Yangtze coastal plain at that time. The timing of this mid-Holocene coastal flooding coincided with the sudden disappearance of the advanced and widespread Liangzhu culture along the lower Yangtze valley. We infer that extreme events and flooding accompanying accelerated sea-level rise were major causes of vulnerability for prehistoric coastal societies.

  1. Seasonal variations in 228Ra/226Ra ratio within coastal waters of the Sea of Japan: implications for water circulation patterns in coastal areas

    International Nuclear Information System (INIS)

    Inoue, M.; Tanaka, K.; Watanabe, S.; Kofuji, H.; Yamamoto, M.; Komura, K.

    2006-01-01

    In this study, low-background γ-spectrometry was used to determine the 228 Ra/ 226 Ra ratio of 131 coastal water samples from various environments around Honshu Island, Japan (mainly around Noto Peninsula) at 1-3 month intervals from April 2003 until September 2005. Spatial variation in 228 Ra/ 226 Ra ratios was also assessed by analyzing 34 coastal water samples from five areas within the Sea of Japan during May and June 2004. The 228 Ra/ 226 Ra ratio of coastal water from all sites around Noto Peninsula shows seasonal variation, with minimum values during summer ( 228 Ra/ 226 Ra = 0.7) and maximum values during autumn-winter ( 228 Ra/ 226 Ra = 1.7-2). This seasonal variation is similar to that recorded for coastal water between Tsushima Strait and Noto Peninsula. The measured lateral variation in 228 Ra/ 226 Ra ratios within coastal water between Tsushima Strait and Noto Peninsula is only minor (0.5-0.7; May-June 2004). Coastal waters from two other sites (Pacific shore and Tsugaru Strait, north Honshu) show no clear seasonal variation in 228 Ra/ 226 Ra ratio. These measured variations in 228 Ra/ 226 Ra ratio, especially the temporal variations, have important implications for seasonal changes in patterns of coastal water circulation within the Sea of Japan

  2. Wading bird guano contributes to Hg accumulation in tree island soils in the Florida Everglades

    International Nuclear Information System (INIS)

    Zhu, Yingjia; Gu, Binhe; Irick, Daniel L.; Ewe, Sharon; Li, Yuncong; Ross, Michael S.; Ma, Lena Q.

    2014-01-01

    Tree islands are habitat for wading birds and a characteristic landscape feature in the Everglades. A total of 93 surface soil and 3 soil core samples were collected from 7 degraded/ghost and 34 live tree islands. The mean Hg concentration in surface soils of ghost tree islands was low and similar to marsh soil. For live tree islands, Hg concentrations in the surface head region were considerably greater than those in mid and tail region, and marsh soils. Hg concentrations in bird guano (286 μg kg −1 ) were significantly higher than those in mammal droppings (105 μg kg −1 ) and plant leaves (53 μg kg −1 ). In addition, Hg concentrations and δ 15 N values displayed positive correlation in soils influenced by guano. During 1998–2010, estimated annual Hg deposition by guano was 148 μg m −2 yr −1 and ∼8 times the atmospheric deposition. Highlights: • Hg concentrations in the head region of tree islands were the highest. • Hg concentrations in bird guano (286 μg kg −1 ) were significantly higher than those in mammal droppings and plant leaves. • Hg concentrations and δ 15 N values showed positive correlation in soils influenced by guano. • Estimated annual Hg deposition by guano was 148 μg m −2 yr −1 , ∼8 times the atmospheric deposition. -- The annual Hg deposition by bird guano to tree island soils in the Everglades was ∼8 times the atmospheric deposition

  3. Physico-Chemical behaviour analysis of air pollutants in a complex coastal site: Castellon

    International Nuclear Information System (INIS)

    Andres, M. D.; Martin, M.; Plaza, J.; Millan, M.

    1989-01-01

    In January, July and August 1988 two experimental campaigns were launched in the surroundings of the Castellon industrial area located at the Spanish East coast and considered as a complex coastal site. The objective was to complement the mosaic on meso-scale flows on the pollutants concentration fields. A careful study of pollutants concentration cycles related to meteorological parameters, enables the characterization of concentration patterns at the chosen location. Surface atmospheric dynamic in this area in controlled by local cycles of NW nocturnal drainage and E-SSE diumal sea-breeze lows. These cycles are also affected by the formation of thermal low over the center of thee peninsula on summer days. Large scale synoptic conditions appear more frequently during the winter. A transportable laboratory was used to register ten minutes averaged values of O 3 , NO, HO 2 and SO 2 . This unit was placed in the zone of influence of the coastal industries during the sea-breeze regime. The temporal evolution of the pollutant concentrations was analyzed and shows the existence of repeated patters of ground level concentrations under similar meteorological conditions. High ozone values have been detected to be associated with the sea-breeze onset. On the basis of short-term backward trajectories, it has been possible to identity the source of the SO 2 and NO 2 peaks. The obtained concentration values can have a broad origin: rural, marine, traffic, oil fired power plant and refinery emissions, and urban plume. Summer and winder data obtained under similar meteorological conditions have been compared. The temporal evolution of the pollutant concentrations is very similar. (Author) 15 refs

  4. Physico-chemical behaviour analysis of air pollutants in a complex coastal site: Castellon

    International Nuclear Information System (INIS)

    Andres, M.D.; Martin, M.; Plaza, J.; Millan, M.

    1989-01-01

    In Jaunary, July and August 1988 two experimental campaigns were launched in the surroundings of the Castellon industrial area located at the Spanish East coast and considered as a complex coastal site. The objetive was to complement the mosaic on meso-scale flows on the pollutants concentration fields. A careful study of pollutants concentration cycles related to meteorological parameters, enables the characterization of concentration patterns at the chose location. Surface atmospheric dynamic in this area in controlled by local cycles of NW nocturnal drainage and E-SSE diumal sea-breeze flows. These cycles arae also affected by the formation of thermal low over the center of the peninsula on summer days. Large scale synoptic conditions appear more frequently during the winter. A transportable laboratory was used to register ten minutes averaged values of O 3 , NO, NO 2 and SO 2 . This unit was placed in the zone of influence of the coastal industries during the sea-breeze regime. The temporal evolution of the pollutant concentrations was analyzed and shows the existence of repeated patterns of ground level concentrations under similar meteorological conditions. High ozone values have been detected to be associated with the sea-breeze onset. On the basis of short-term backward trajectories, it has been possible ot identify the source of the SO 2 and NO 2 peaks. The obtained concentration values can have a broad origin: rural, marine, traffic, oil fired power plant and refinery emissions, and urban plume. Summer and winter data obtained under similar meteorological conditions have been compared. The temporal evolution of the pollutant concentrations is very similar. (Author)

  5. Coastal erosion and accretion rates in Greece

    Science.gov (United States)

    Foteinis, Spyros; Papadopoulos, Costas; Koutsogiannaki, Irini; Synolakis, Costas

    2010-05-01

    Erosion threatens many coastal regions of Greece. Anthropogenic changes of landforms such as coastal roads built on even narrow beaches, sand mining for construction, poor design of coastal structures that interfere with sediment, and dams without sediment bypasses have significantly reduced beach widths. We present erosion rates for different beaches, some of which are in sensitive ecosystems, otherwise "protected" by local and EU ordinances. By comparing inferences of beach widths in varying intervals from 1933 to 2006, we infer that the construction of dams in Acheloos river in western Greece, built in a faraonic attempt to partially divert its flows to eastern Greece, this is responsible for up to 20m/year erosion rates observed in certain locales in the Acheloos delta. More characteristic erosion rates in the region are ~ 2m/year. By contrast, there appears rapid accretion of up to 4m/year in the beaches around the Nestos delta in northern Greece (Papadopoulos, 2009). In beaches that are not near large river deltas, erosion rates range from 0.5m/year to 1m/year. While we have not done comprehensive comparisons among coastlines with different levels of coastal development, it does appear that rapid coastal development correlates well with erosion rates. The underlying problem is the complete lack of any semblance of coastal zone management in Greece and substandard design of coastal structures, which are often sited without any measurements of waves and currents offshore (Synolakis et al, 2008). Beach maintenance remains an exotic concept for most local authorities, who invariably prefer to build hard coastal structures to "protect" versus nourish, siting lack of experience with nourishment and "environmental" concerns. In certain cases, choices are dictated by costs, the larger the cost the easier the project gets approved by regulatory authorities, hence the preference for concrete or rubble structures. We conclude that, unless urgent salvage measures are

  6. Control of pH of retained water in the coastal waste disposal site

    Directory of Open Access Journals (Sweden)

    Hem Ramrav

    2018-01-01

    Full Text Available After landfilling of wastes is completed, the stabilization of landfilled ground requires much time and cost. Therefore, this study aimed to control the pH of retained water in the coastal waste disposal sites during landfilling process, by conducting field surveys and laboratory experiments. In field surveys, we investigated the changes of retained water quality such as pH, salinity, and dissolved oxygen. The results show the pH of retained water has risen to about 10 when the volume of landfilled wastes reached about 25% of landfill capacity. In lowing the pH, we considered a low-cost method by pumping seawater from the adjacent sea into the landfill. The mechanism in this method is that, H+ dissociated from HCO3- in the fresh seawater react with OH- eluted from wastes would result in pH decrease. The laboratory experiments were conducted to verify the effect on pH change by adding fresh seawater to alkalized seawater. As a result, the effect of injecting fresh seawater into alkalized seawater with pH higher than 9 was confirmed. Therefore, this treatment method is suggested to enable the disposal sites to be used promptly after landfilling is completed, by adding fresh seawater to purify the retained water and waste at low cost during landfilling process.

  7. Comparison of PM2.5 carbonaceous pollutants between an urban site in Shanghai and a background site in a coastal East China Sea island in summer: concentration, composition and sources.

    Science.gov (United States)

    Wang, Fengwen; Lin, Tian; Li, Yuanyuan; Guo, Zhigang; Rose, Neil L

    2017-06-21

    Nine paired samples of atmospheric particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM 2.5 ) were collected concurrently from an urban site in Shanghai, China and a background site in Huaniao Island (HNI) in the coastal East China Sea (ECS) between July 21 and 29, 2011. The samples were analyzed for 16 United States Environmental Protection Agency (USEPA) priority polycyclic aromatic hydrocarbons (PAHs), n-alkanes (20 species, C 14 -C 33 ), hopanes (10 species, C 29 -C 32 ), and steranes (12 species, C 27 -C 29 ). These two sites, approximately 66 km apart, are both on the pathway of land-based pollutants as they are transported to the ECS by seasonal winds. As expected, concentrations in Shanghai were higher (average: 8.4 and 67.8 ng m -3 for the 16 PAHs and n-alkanes, respectively) than those in HNI (average: 1.8 and 8.5 ng m -3 , respectively). The dominant contributor to the 16 PAHs in Shanghai was 5-6-ring PAHs (60.0%), whereas 2-3-ring PAHs contributed the most (72.5%) in HNI. Plant waxes contributed 45.7% and 25.9% of the n-alkanes in Shanghai and HNI, respectively, implying a relatively greater contribution from petroleum residues to the n-alkanes in HNI. Principal component analysis (PCA) and the compositions of hopanes and steranes highlighted a prominent contribution from traffic emissions to carbonaceous PM 2.5 aerosols. This study provides comprehensive details about the sources, formation, and transport of pollutants from eastern China to the coastal ECS.

  8. 75 FR 51838 - Public Review of Draft Coastal and Marine Ecological Classification Standard

    Science.gov (United States)

    2010-08-23

    ... Web site. DATES: Comments on the draft Coastal and Marine Ecological Classification Standard must be... marine and coastal environments of the United States. It was developed to provide a common language that... existing classification standards. The CMECS domain extends from the coastal tidal splash zone to the deep...

  9. Declining coastal avifauna at a diamond-mining site in Namibia ...

    African Journals Online (AJOL)

    A review of Namibian shorebird densities over two decades and two additional visits to the coastal diamond-mining areas at Elizabeth Bay, southern Namibia, were undertaken to assess the long-term influence of mining activity on density of shorebirds (Charadrii) and particularly threatened African Black Oystercatchers ...

  10. Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades?

    Directory of Open Access Journals (Sweden)

    McKee Karen L

    2010-02-01

    Full Text Available Abstract Background Cattail (Typha domingensis has been spreading in phosphorus (P enriched areas of the oligotrophic Florida Everglades at the expense of sawgrass (Cladium mariscus spp. jamaicense. Abundant evidence in the literature explains how the opportunistic features of Typha might lead to a complete dominance in P-enriched areas. Less clear is how Typha can grow and acquire P at extremely low P levels, which prevail in the unimpacted areas of the Everglades. Results Apparent P uptake kinetics were measured for intact plants of Cladium and Typha acclimated to low and high P at two levels of oxygen in hydroponic culture. The saturated rate of P uptake was higher in Typha than in Cladium and higher in low-P acclimated plants than in high-P acclimated plants. The affinity for P uptake was two-fold higher in Typha than in Cladium, and two- to three-fold higher for low-P acclimated plants compared to high-P acclimated plants. As Cladium had a greater proportion of its biomass allocated to roots, the overall uptake capacity of the two species at high P did not differ. At low P availability, Typha increased biomass allocation to roots more than Cladium. Both species also adjusted their P uptake kinetics, but Typha more so than Cladium. The adjustment of the P uptake system and increased biomass allocation to roots resulted in a five-fold higher uptake per plant for Cladium and a ten-fold higher uptake for Typha. Conclusions Both Cladium and Typha adjust P uptake kinetics in relation to plant demand when P availability is high. When P concentrations are low, however, Typha adjusts P uptake kinetics and also increases allocation to roots more so than Cladium, thereby improving both efficiency and capacity of P uptake. Cladium has less need to adjust P uptake kinetics because it is already efficient at acquiring P from peat soils (e.g., through secretion of phosphatases, symbiosis with arbuscular mycorrhizal fungi, nutrient conservation growth

  11. Interaction between ground water and surface water in Taylor Slough and vicinity, Everglades National Park, South Florida; study methods and appendixes

    Science.gov (United States)

    Harvey, Judson W.; Jackson, J.M.; Mooney, R.H.; Choi, Jungyill

    2000-01-01

    The data presented in this report are products of an investigation that quantified interactions between ground water and surface water in Taylor Slough in Everglades National Park. Determining the extent of hydrologic interactions between wetland surface water and ground water in Taylor Slough is important because the balance of freshwater flow in the lower part of the Slough is uncertain. Although freshwater flows through Taylor Slough are quite small in comparison to Shark Slough (the larger of the two major sloughs in Everglades National Park), flows through Taylor Slough are especially important to the ecology of estuarine mangrove embayments of northeastern Florida Bay. Also, wetland and ground- water interactions must be quantified if their role in affecting water quality is to be determined. In order to define basic hydrologic characteristics of the wetland, depth of wetland peat was mapped, and hydraulic conductivity and vertical hydraulic gradients in peat were determined. During specific time periods representing both wet and dry conditions in the area, the distribution of major ions, nutrients, and water stable isotopes throughout the slough were determined. The purpose of chemical measurements was to identify an environmental tracer could be used to quantify ground-water discharge.

  12. Genetic diversity in Monoporeia affinis at polluted and reference sites of the Baltic Bothnian Bay.

    Science.gov (United States)

    Guban, Peter; Wennerström, Lovisa; Elfwing, Tina; Sundelin, Brita; Laikre, Linda

    2015-04-15

    The amphipod Monoporeia affinis plays an important role in the Baltic Sea ecosystem as prey and as detritivore. The species is monitored for contaminant effects, but almost nothing is known about its genetics in this region. A pilot screening for genetic variation at the mitochondrial COI gene was performed in 113 individuals collected at six sites in the northern Baltic. Three coastal sites were polluted by pulp mill effluents, PAHs, and trace metals, and two coastal reference sites were without obvious connection to pollution sources. An off-coastal reference site was also included. Contaminated sites showed lower levels of genetic diversity than the coastal reference ones although the difference was not statistically significant. Divergence patterns measured as ΦST showed no significant differentiation within reference and polluted groups, but there was significant genetic divergence between them. The off-coastal sample differed significantly from all coastal sites and also showed lower genetic variation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characteristics, sources and evolution of fine aerosol (PM1) at urban, coastal and forest background sites in Lithuania

    Science.gov (United States)

    Masalaite, A.; Holzinger, R.; Remeikis, V.; Röckmann, T.; Dusek, U.

    2017-01-01

    The chemical and isotopic composition of organic aerosol (OA) samples collected on PM1 filters was determined as a function of desorption temperature to investigate the main sources of organic carbon and the effects of photochemical processing on atmospheric aerosol. The filter samples were collected at an urban (54°38‧ N, 25°18‧ E), coastal (55°55‧ N, 21°00‧ E) and forest (55°27‧ N, 26°00' E) site in Lithuania in March 2013. They can be interpreted as winter-time samples because the monthly averaged temperature was -4 °C. The detailed chemical composition of organic compounds was analysed with a thermal desorption PTR-MS. The mass concentration of organic aerosol at the forest site was roughly by a factor of 30 lower than at the urban and coastal site. This fact could be an indication that in this cold month the biogenic secondary organic aerosol (SOA) formation was very low. Moreover, the organic aerosol collected at the forest site was more refractory and contained a larger fraction of heavy molecules with m/z > 200. The isotopic composition of the aerosol was used to differentiate the two main sources of organic aerosol in winter, i.e. biomass burning (BB) and fossil fuel (FF) combustion. Organic aerosol from biomass burning is enriched in 13C compared to OA from fossil fuel emissions. δ13COC values of the OA samples showed a positive correlation with the mass fraction of several individual organic compounds. Most of these organic compounds contained nitrogen indicating that organic nitrogen compounds formed during the combustion of biomass may be indicative of BB. Other compounds that showed negative correlations with δ13COC were possibly indicative of FF. These compounds included heavy hydrocarbons and were on the average less oxidized than the bulk organic carbon. The correlation of δ13COC and the O/C ratio was positive at low but negative at high desorption temperatures at the forest site. We propose that this might be due to

  14. Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands.

    Science.gov (United States)

    Pacheco, Arturo; Camarero, J Julio; Ribas, Montse; Gazol, Antonio; Gutierrez, E; Carrer, Marco

    2018-02-15

    Mediterranean climate promotes two distinct growth peaks separated by summer quiescence in trees. This bimodal pattern has been associated to favourable growing conditions during spring and autumn when mild temperatures and soil-water availability enhance cambial activity. Climatic models predict progressive warming and drying for the Mediterranean Basin, which could shorten or shift the spring and autumn growing seasons. We explored this idea by comparing two sites with different Mediterranean climate types (continental/dry and coastal/wet) and studied how climate drives the bimodal growth pattern in Aleppo pine (Pinus halepensis). Specifically we investigated the intra-annual changes in wood anatomy and the corresponding formation of density fluctuations (IADF). Trees on both sites were analyzed by dendrometer monitoring and by developing chronologies of wood anatomical traits. Radial-increment dynamics followed a similar bimodal pattern in both sites but coastal trees showed higher increments during the spring and autumn growth peaks, especially in autumn. The summer rest of cambium activity occurs almost one month earlier in the coastal than in the inland site. Lumen area and cell-wall thickness were significantly smaller in the continental site, while the increment rate of cell-wall thickness during an IADF event was much higher in the coastal pines. The accumulated soil moisture deficit was the main climatic constraint of tracheid enlargement in continental pines. Intra-annual density fluctuations were more frequent in the coastal trees where wood anatomy features recover to average values after such events, meanwhile inland trees presented a much lower recovery rate. Growth bimodality and the formation of density fluctuations were linked, but mild climate of the coastal site allows a longer growing season, which explains why trees in this area showed higher and more variable growth rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. An integrated study of spatial multicriteria analysis and mathematical modelling for managed aquifer recharge site suitability mapping and site ranking at Northern Gaza coastal aquifer.

    Science.gov (United States)

    Rahman, Mohammad Azizur; Rusteberg, Bernd; Uddin, Mohammad Salah; Lutz, Annegret; Saada, Muath Abu; Sauter, Martin

    2013-07-30

    This paper describes an integrated approach of site suitability mapping and ranking of the most suitable sites, for the implementation of Managed Aquifer Recharge (MAR) projects, using spatial multicriteria decision analysis (SMCDA) techniques and mathematical modelling. The SMCDA procedure contains constraint mapping, site suitability analysis with criteria standardization and weighting, criteria overlay by analytical hierarchy process (AHP) combined with weighted linear combination (WLC) and ordered weighted averaging (OWA), and sensitivity analysis. The hydrogeological impacts of the selected most suitable sites were quantified by using groundwater flow and transport modelling techniques. Finally, ranking of the selected sites was done with the WLC method. The integrated approach is demonstrated by a case study in the coastal aquifer of North Gaza. Constraint mapping shows that 50% of the total study area is suitable for MAR implementation. About 25% of the total area is "very good" and 25% percent is "good" for MAR, according to the site suitability analysis. Six locations were selected and ranked against six representative decision criteria. Long term (year 2003 to year 2040) groundwater flow and transport simulations were performed to quantify the selected criteria under MAR project operation conditions at the selected sites. Finally, the suitability mapping and hydrogeological investigation recommends that the location of the existing infiltration ponds, constructed near the planned North Gaza Wastewater Treatment Plant (NGWWTP) is most suitable for MAR project implementation. This paper concludes that mathematical modelling should be combined with the SMCDA technique in order to select the best location for MAR project implementation. Besides MAR project implementation, the generalised approach can be applicable for any other water resources development project that deals with site selection and implementation. Copyright © 2013 Elsevier Ltd. All rights

  16. Coastal Morphology and Coastal Protection

    NARCIS (Netherlands)

    Van de Graaff, J.

    2009-01-01

    Lecture notes ct5309. Tides, currents and water; coastal problems; sediment transport processes; coastal transport modes; longshore transport; cross-shore transport; fundamentals of mud; channels and trenches; coastal protection; application of structures; application of nourishments.

  17. The Potential Effect of Sea Level Rise on Coastal Property Values

    Science.gov (United States)

    O'Donnell, J.

    2015-12-01

    It is well established that one consequence of increasing global sea level is that the frequency of flooding at low-lying coastal sites will increase. We review recent evidence that the effects coastal geometry will create substantial spatial variations in the changes in flooding frequency with scales of order 100km. Using a simple model of the evolution of coastal property values we demonstrate that a consequence of sea level rise is that the appreciation of coastal properties will peak, and then decline relative to higher properties. The time when the value reach a maximum is shown to depend upon the demand for the coastal property, and the local rate of change of flooding frequency due to sea level rise. The simple model is then extended to include, in an elementary manner, the effects on the value of adjacent but higher properties. We show that the effect of increased flooding frequency of the lower properties leads to an accelerated appreciation of the value of upland properties and an accelerated decline in the value of the coastal properties. We then provide some example calculations for selected sites. We conclude with a discussion of comparisons of the prediction of the analyses to recent data, and then comments on the impact of sea level rise on tax base of coastal communities.

  18. Changes in soil organic carbon fractions after remediation of a coastal floodplain soil.

    Science.gov (United States)

    Wong, V N L; McNaughton, C; Pearson, A

    2016-03-01

    Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise to form coastal acid sulfate soils (CASS) and contain high concentrations of acidity and trace metals. CASS are found on every continent globally except Antarctica. When sulfidic sediments are oxidised, scalds can form, which are large bare patches without vegetation. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a CASS scald. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m (426 Mg C/ha, 478 Mg C/ha and 473 Mg C/ha at sites C, LO and LM, respectively). The particulate organic C (POC) fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Reformation of acid volatile sulfide (AVS) occurred throughout the profile at site LM, whereas only limited AVS reformation occurred at sites LO and C. Higher AVS at site LM may be linked to the additional source of organic matter provided by the mulch. POC can also potentially contribute to decreasing acidity as a labile SOC source for Fe(3+) and SO4(2-) reduction. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production. These results highlight the importance of maintaining vegetation cover in coastal floodplains and wetlands for

  19. Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica

    Science.gov (United States)

    Quesada, A.; Camacho, A.; Rochera, C.; Velázquez, D.

    2009-11-01

    This article describes the development of an international and multidisciplinary project funded by the Spanish Polar Programme on Byers Peninsula (Livingston Island, South Shetlands). The project adopted Byers Peninsula as an international reference site for coastal and terrestrial (including inland waters) research within the framework of the International Polar Year initiative. Over 30 scientists from 12 countries and 26 institutions participated in the field work, and many others participated in the processing of the samples. The main themes investigated were: Holocene changes in climate, using both lacustrine sediment cores and palaeo-nests of penguins; limnology of the lakes, ponds, rivers and wetlands; microbiology of microbial mats, ecology of microbial food webs and viral effects on aquatic ecosystems; ornithology, with investigations on a Gentoo penguin rookery ( Pygoscelis papua) as well as the flying ornithofauna; biocomplexity and life cycles of species from different taxonomic groups; analysis of a complete watershed unit from a landscape perspective; and human impacts, specifically the effect of trampling on soil characteristics and biota. Byers Peninsula offers many features as an international reference site given it is one of the largest ice-free areas in the Antarctic Peninsula region, it has a variety of different landscape units, and it hosts diverse aquatic ecosystems. Moreover, the Byers Peninsula is a hotspot for Antarctic biodiversity, and because of its high level of environmental protection, it has been very little affected by human activities. Finally, the proximity to the Spanish polar installations on Livingston Island and the experience derived from previous expeditions to the site make it logistically feasible as a site for ongoing monitoring and research.

  20. Use of Tritium and Helium to Define Groundwater Flow Conditions in a Coastal Aquifer Influenced by Seawater Intrusion: Everglades National Park

    Science.gov (United States)

    Price, R. M.; Top, Z.; Happell, J. D.; Swart, P. K.

    2002-05-01

    The concentrations of tritium (3H) and helium isotopes (3He, 4He) were used as tracers of groundwater flow in Everglades National Park, South Florida (USA). Both fresh and brackish groundwaters were collected from 47 wells completed at depths ranging from 2 m to 73 m within the Surficial Aquifer System (SAS). Ages as determined by 3H/3He techniques indicate that groundwater within the upper 28 m originated after the nuclear era (within the last 42 yr) and below 28 m before then with evidence of some mixing at the interface. Inter-annual variation of the 3H/3He ages within the upper 28 m was significant throughout the three year investigation, suggesting varying hydrologic conditions. The age of the shallow groundwater in the southern regions of ENP (Rocky Glades and Taylor Slough) tended to be younger following times of high water level when the dominant direction of groundwater flow water was to the southeast. In the same region, significantly older groundwater was observed following times of low water levels and a shift in the groundwater flow direction toward the southwest. Near the canals, the reverse occurred with the ages of shallow groundwater tending to be younger following times of low water levels, suggesting a greater influence of recharge water from the canals to the surrounding aquifer. Although water levels and the direction of hydrologic gradients vary greatly within a 3-month time period, the average age of the shallow (Aquifer suggesting a preferential flow path to the deeper formation. An increase in 4He with depth suggests that radiogenic 4He produced in the underlying Hawthorn Group is dispersed into the SAS. Higher Δ 4He values in brackish groundwaters compared to fresh waters from similar depths indicate an enhanced vertical transport of 4He in the seawater mixing zone. Seawater intrudes at distances of 6 to 28 km at shallow depths (Florida Bay and the Gulf of Mexico over an approximately 6 to 28 km wide strip that parallels the coastline.

  1. Coastal Ecosystem Assessment, Development and Creation of a Policy Tool using Unmanned Aerial Vehicles (UAVs) for: A Case Study of Western Puerto Rico Coastal Region

    Science.gov (United States)

    Munoz Barreto, J.; Pillich, J.; Aponte Bermúdez, L. D.; Torres Pagan, G.

    2017-12-01

    This project utilizes low-cost Unmanned Aerial Vehicles (UAVs) based systems for different applications, such as low-altitude (high resolution) aerial photogrammetry for aerial analysis of vegetation, reconstruction of beach topography and mapping coastal erosion to understand, and estimated ecosystem values. As part of this work, five testbeds coastal sites, designated as the Caribbean Littoral Aerial Surveillance System (CLASS), were established. The sites are distributed along western Puerto Rico coastline where population and industry (tourism) are very much clustered and dense along the coast. Over the past year, rapid post-storm deployment of UAV surveying has been successfully integrated into the CLASS sites, specifically at Rincon (Puerto Rico), where coastal erosion has raised the public and government concern over the past decades. A case study is presented here where we collected aerial photos before and after the swells caused by Hurricane Mathew (October 2016). We merged the point cloud obtained from the UAV photogrammetric assessment with topo-bathymetric data, to get a complete beach topography. Using the rectified and georeferenced UAV orthophotos, we identified the maximum wave runup for the pre-swell and post-swell events. Also, we used numerical modeling (X-Beach) to simulate the rate-of-change dynamics of the coastal zones and compare the model results to observed values (including multiple historic shoreline positions). In summary, our project has accomplished the first milestone which is the Development and Implementation of an Effective Shoreline Monitoring Program using UAVs. The activities of the monitoring program have enabled the collection of crucial data for coastal mapping along Puerto Rico's shorelines with emphasis on coastal erosion hot spots zones and ecosystem values. Our results highlight the potential of the synergy between UAVs, photogrammetry, and Geographic Information Systems to provide faster and low-cost reliable

  2. Developing and applying a site-specific multimedia fate model to address ecological risk of oxytetracycline discharged with aquaculture effluent in coastal waters off Jangheung, Korea.

    Science.gov (United States)

    Kim, Woojung; Lee, Yunho; Kim, Sang Don

    2017-11-01

    The overuse of oxytetracycline (OTC) in aquaculture has become a problem because of its chronic toxic effects on marine ecosystems. The present study assessed the ecological risk of OTC in the coastal waters near the Jangheung Flatfish Farm using a site-specific multimedia fate model to analyze exposure. Before the model was applied, its performance was validated by comparing it with field data. The coastal waters in the testbed were sampled and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by solid-phase extraction (SPE). The concentrations of OTC measured varied from 7.05 to 95.39ng/L. The results of validating the models showed that the site-specific multimedia fate model performed better (root mean square error (RMSE): 24.217, index of agreement (IOA): 0.739) than conventional fugacity approaches. This result demonstrated the utility of this model in supporting effective future management of aquaculture effluent. The results of probabilistic risk assessment indicated that OTC from aquaculture effluent did not cause adverse effects, even in a maximum-use scenario. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Sustainable Land-Use Planning to Improve the Coastal Resilience of the Social-Ecological Landscape

    Directory of Open Access Journals (Sweden)

    Min Kim

    2017-06-01

    Full Text Available The dynamics of land-use transitions decrease the coastal resilience of the social-ecological landscape (SEL, particularly in light of the fact that it is necessary to analyze the causal relationship between the two systems because operations of the social system and the ecological system are correlated. The purpose of this study is to analyze the dynamics of the coastal SEL and create a sustainable land-use planning (SLUP strategy to enhance coastal resilience. The selected study site was Shindu-ri, South Korea, where land-use transitions are increasing and coastal resilience is therefore decreasing. Systems thinking was used to analyze the study, which was performed in four steps. First, the issues affecting the coastal area in Shindu-ri were defined as coastal landscape management, the agricultural structure, and the tourism industry structure. Second, the main variables for each issue were defined, and causal relationships between the main variables were created. Third, a holistic causal loop diagram was built based on both dynamic thinking and causal thinking. Fourth, five land-uses, including those of the coastal forest, the coastal grassland, the coastal dune, the agricultural area, and developed sites, were selected as leverage points for developing SLUP strategies to increase coastal resilience. The results show that “decrease in the size of the coastal forest”, “decrease in the size of the coastal dune”, and “increase in the size of the coastal grasslands” were considered parts of a land-use plan to enhance the resilience of the Shindu-ri SEL. This study developed integrated coastal land-use planning strategies that may provide effective solutions for complex and dynamic issues in the coastal SEL. Additionally, the results may be utilized as basic data to build and implement coastal land-use planning strategies.

  4. One Year of Vertical Wind Profiles Measurements at a Mediterranean Coastal Site of South Italy

    DEFF Research Database (Denmark)

    Calidonna, Claudia Roberta; Gullì, Daniel; Avolio, Elenio

    2015-01-01

    To exploit wind energy both onshore and offshore in coastal area the effect of the coastal discontinuity is important. The shape of the vertical wind profiles and the related c parameter of the Weibull distribution are impacted by the atmospheric internal boundary layers developing from the coast...

  5. Are the traditional large-scale drought indices suitable for shallow water wetlands? An example in the Everglades.

    Science.gov (United States)

    Zhao, Dehua; Wang, Penghe; Zuo, Jie; Zhang, Hui; An, Shuqing; Ramesh, Reddy K

    2017-08-01

    Numerous drought indices have been developed over the past several decades. However, few studies have focused on the suitability of indices for studies of ephemeral wetlands. The objective is to answer the following question: can the traditional large-scale drought indices characterize drought severity in shallow water wetlands such as the Everglades? The question was approached from two perspectives: the available water quantity and the response of wetland ecosystems to drought. The results showed the unsuitability of traditional large-scale drought indices for characterizing the actual available water quantity based on two findings. (1) Large spatial variations in precipitation (P), potential evapotranspiration (PE), water table depth (WTD) and the monthly water storage change (SC) were observed in the Everglades; notably, the spatial variation in SC, which reflects the monthly water balance, was 1.86 and 1.62 times larger than the temporal variation between seasons and between years, respectively. (2) The large-scale water balance measured based on the water storage variation had an average indicating efficiency (IE) of only 60.01% due to the redistribution of interior water. The spatial distribution of variations in the Normalized Different Vegetation Index (NDVI) in the 2011 dry season showed significantly positive, significantly negative and weak correlations with the minimum WTD in wet prairies, graminoid prairies and sawgrass wetlands, respectively. The significant and opposite correlations imply the unsuitability of the traditional large-scale drought indices in evaluating the effect of drought on shallow water wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Persistent differences between coastal and offshore kelp forest communities in a warming Gulf of Maine.

    Directory of Open Access Journals (Sweden)

    Jon D Witman

    Full Text Available Kelp forests provide important ecosystem services, yet coastal kelp communities are increasingly altered by anthropogenic impacts. Kelp forests in remote, offshore locations may provide an informative contrast due to reduced impacts from local stressors. We tested the hypothesis that shallow kelp assemblages (12-15 m depth and associated fish and benthic communities in the coastal southwest Gulf of Maine (GOM differed significantly from sites on Cashes Ledge, 145 km offshore by sampling five coastal and three offshore sites at 43.0 +/- 0.07° N latitude. Offshore sites on Cashes Ledge supported the greatest density (47.8 plants m2 and standing crop biomass (5.5 kg m2 fresh weight of the foundation species Saccharina latissima kelp at this depth in the Western North Atlantic. Offshore densities of S. latissima were over 150 times greater than at coastal sites, with similar but lower magnitude trends for congeneric S. digitata. Despite these differences, S. latissima underwent a significant 36.2% decrease between 1987 and 2015 on Cashes Ledge, concurrent with a rapid warming of the GOM and invasion by the kelp-encrusting bryozoan Membranipora membranacea. In contrast to kelp, the invasive red alga Dasysiphonia japonica was significantly more abundant at coastal sites, suggesting light or dispersal limitation offshore. Spatial differences in fish abundance mirrored those of kelp, as the average biomass of all fish on Cashes Ledge was 305 times greater than at the coastal sites. Remote video censuses of cod (Gadus morhua, cunner (Tautaogolabrus adspersus, and pollock (Pollachius virens corroborated these findings. Understory benthic communities also differed between regions, with greater abundance of sessile invertebrates offshore. Populations of kelp-consuming sea urchins Stronglyocentrotus droebachiensis, were virtually absent from Cashes Ledge while small urchins were abundant onshore, suggesting recruitment limitation offshore. Despite

  7. Persistent differences between coastal and offshore kelp forest communities in a warming Gulf of Maine.

    Science.gov (United States)

    Witman, Jon D; Lamb, Robert W

    2018-01-01

    Kelp forests provide important ecosystem services, yet coastal kelp communities are increasingly altered by anthropogenic impacts. Kelp forests in remote, offshore locations may provide an informative contrast due to reduced impacts from local stressors. We tested the hypothesis that shallow kelp assemblages (12-15 m depth) and associated fish and benthic communities in the coastal southwest Gulf of Maine (GOM) differed significantly from sites on Cashes Ledge, 145 km offshore by sampling five coastal and three offshore sites at 43.0 +/- 0.07° N latitude. Offshore sites on Cashes Ledge supported the greatest density (47.8 plants m2) and standing crop biomass (5.5 kg m2 fresh weight) of the foundation species Saccharina latissima kelp at this depth in the Western North Atlantic. Offshore densities of S. latissima were over 150 times greater than at coastal sites, with similar but lower magnitude trends for congeneric S. digitata. Despite these differences, S. latissima underwent a significant 36.2% decrease between 1987 and 2015 on Cashes Ledge, concurrent with a rapid warming of the GOM and invasion by the kelp-encrusting bryozoan Membranipora membranacea. In contrast to kelp, the invasive red alga Dasysiphonia japonica was significantly more abundant at coastal sites, suggesting light or dispersal limitation offshore. Spatial differences in fish abundance mirrored those of kelp, as the average biomass of all fish on Cashes Ledge was 305 times greater than at the coastal sites. Remote video censuses of cod (Gadus morhua), cunner (Tautaogolabrus adspersus), and pollock (Pollachius virens) corroborated these findings. Understory benthic communities also differed between regions, with greater abundance of sessile invertebrates offshore. Populations of kelp-consuming sea urchins Stronglyocentrotus droebachiensis, were virtually absent from Cashes Ledge while small urchins were abundant onshore, suggesting recruitment limitation offshore. Despite widespread warming of

  8. Coastal Geographic Structures in Coastal-Marine Environmental Management

    Science.gov (United States)

    Baklanov, P. Ya.; Ganzei, K. S.; Ermoshin, V. V.

    2018-01-01

    It has been proposed to distinguish the coastal geographic structures consisting of a spatial combination of three interconnected and mutually conditioned parts (coastal-territorial, coastal, coastal-marine), which are interlinked with each other by the cumulative effect of real-energy flows. Distinguishing specific resource features of the coastal structures, by which they play a connecting role in the complex coastalmarine management, has been considered. The main integral resource feature of the coastal structures is their connecting functions, which form transitional parts mutually connecting the coastal-territorial and coastalmarine environmental management.

  9. THE INNOVATIVE POLICY OPTIONS FOR COASTAL FISHERIES ECONOMIC DEVELOPMENT: A CASE OF KWANDANG BAY COASTAL ECOSYSTEM

    Directory of Open Access Journals (Sweden)

    Noel Taylor Moore

    2017-07-01

    Full Text Available Socio-environmental problems, such as climate change, pollution and habitat destruction, present serious challenges for fisheries economic development. The integration of interventions or investments within a coastal marine ecosystem, a defined spatial area, is considered important in the economic development of local communities leading to the planned outcomes of livelihoods, food security and conservation The coastal marine ecosystem, is the provider of products and services to the local economy adjacent to the ecosystem where the benefit flows, within that area, are interconnected. The roles of science, technology and innovation (STI are an integral part of these multi-dimensional interventions. Hence the need for an integrated approach for these interventions by government and/or through donor funded projects to enhance economic development of coastal communities. The policy framework proposed is therefore an STI perspective of the links between these intervention and investment options, based on a ‘fisheries economic development Hub’ (Hub and discussed using the multi-level perspective (MLP. The policy innovation proposal suggests an implementation strategy of a pilot project and analyses the selection and implications of a potential Indonesian site for the application of the Hub. This paper aims to introduce the MLP into the framework of coastal community-based fisheries economic development.   Key words: policy innovation. coastal marine ecosystem, fisheries economic development Hub, value chains, multi-level perspective (MLP

  10. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  11. An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid Environment.

    KAUST Repository

    Yadav, Brijesh Kumar; Hassanizadeh, S Majid

    2011-01-01

    environmental variables, and their remediation favoring customization requires a sound understanding of their integrated behavior on fate and transport of LNAPLs under site-specific conditions. The arid and semi-arid coastal sites are characterized by specific

  12. Spatial variation in polycyclic aromatic hydrocarbon exposure in Barrow's goldeneye (Bucephala islandica) in coastal British Columbia.

    Science.gov (United States)

    Willie, Megan; Esler, Daniel; Boyd, W Sean; Molloy, Philip; Ydenberg, Ronald C

    2017-05-15

    Barrow's goldeneyes are sea ducks that winter throughout coastal British Columbia (BC). Their diet consists primarily of intertidal blue mussels, which can accumulate PAHs; accordingly, goldeneyes may be susceptible to exposure through contaminated prey. In 2014/15, we examined total PAH concentrations in mussels from undeveloped and developed coastal areas of BC. At those same sites, we used EROD to measure hepatic CYP1A induction in goldeneyes. We found higher mussel PAH concentrations at developed coastal sites. Regionally, goldeneyes from southern BC, which has relatively higher coastal development, had higher EROD activity compared to birds from northern BC. Our results suggest goldeneyes wintering in coastal BC were exposed to PAHs through diet, with higher exposure among birds wintering in coastal areas with greater anthropogenic influence. These results suggest the mussel-goldeneye system is suitable as a natural, multi-trophic-level indicator of contemporary hydrocarbon contamination occurrence and exposure useful for establishing oil spill recovery endpoints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Spatial and stage-structured population model of the American crocodile for comparison of comprehensive Everglades Restoration Plan (CERP) alternatives

    Science.gov (United States)

    Green, Timothy W.; Slone, Daniel H.; Swain, Eric D.; Cherkiss, Michael S.; Lohmann, Melinda; Mazzotti, Frank J.; Rice, Kenneth G.

    2010-01-01

    As part of the U.S. Geological Survey Priority Ecosystems Science (PES) initiative to provide the ecological science required during Everglades restoration, we have integrated current regional hydrologic models with American crocodile (Crocodylus acutus) research and monitoring data to create a model that assesses the potential impact of Comprehensive Everglades Restoration Plan (CERP) efforts on the American crocodile. A list of indicators was created by the Restoration Coordination and Verification (RECOVER) component of CERP to help determine the success of interim restoration goals. The American crocodile was established as an indicator of the ecological condition of mangrove estuaries due to its reliance upon estuarine environments characterized by low salinity and adequate freshwater inflow. To gain a better understanding of the potential impact of CERP restoration efforts on the American crocodile, a spatially explicit crocodile population model has been created that has the ability to simulate the response of crocodiles to various management strategies for the South Florida ecosystem. The crocodile model uses output from the Tides and Inflows in the Mangroves of the Everglades (TIME) model, an application of the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator. TIME has the capability to link to the South Florida Water Management Model (SFWMM), which is the primary regional tool used to assess CERP restoration scenarios. A crocodile habitat suitability index and spatial parameter maps that reflect salinity, water depth, habitat, and nesting locations are used as driving functions to construct crocodile finite rate of increase maps under different management scenarios. Local stage-structured models are integrated with a spatial landscape grid to display crocodile movement behavior in response to changing environmental conditions. Restoration efforts are expected to affect salinity levels throughout the habitat of

  14. Individual-based ecology of coastal birds.

    Science.gov (United States)

    Stillman, Richard A; Goss-Custard, John D

    2010-08-01

    Conservation objectives for non-breeding coastal birds (shorebirds and wildfowl) are determined from their population size at coastal sites. To advise coastal managers, models must predict quantitatively the effects of environmental change on population size or the demographic rates (mortality and reproduction) that determine it. As habitat association models and depletion models are not able to do this, we developed an approach that has produced such predictions thereby enabling policy makers to make evidence-based decisions. Our conceptual framework is individual-based ecology, in which populations are viewed as having properties (e.g. size) that arise from the traits (e.g. behaviour, physiology) and interactions of their constituent individuals. The link between individuals and populations is made through individual-based models (IBMs) that follow the fitness-maximising decisions of individuals and predict population-level consequences (e.g. mortality rate) from the fates of these individuals. Our first IBM was for oystercatchers Haematopus ostralegus and accurately predicted their density-dependent mortality. Subsequently, IBMs were developed for several shorebird and wildfowl species at several European sites, and were shown to predict accurately overwinter mortality, and the foraging behaviour from which predictions are derived. They have been used to predict the effect on survival in coastal birds of sea level rise, habitat loss, wind farm development, shellfishing and human disturbance. This review emphasises the wider applicability of the approach, and identifies other systems to which it could be applied. We view the IBM approach as a very useful contribution to the general problem of how to advance ecology to the point where we can routinely make meaningful predictions of how populations respond to environmental change.

  15. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    Science.gov (United States)

    ,

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  16. AN OBJECTIVE CLIMATOLOGY OF CAROLINA COASTAL FRONTS

    Science.gov (United States)

    This study describes a simple objective method to identify cases of coastal frontogenesis offshore of the Carolinas and to characterize the sensible weather associated with frontal passage at measurement sites near the coast. The identification method, based on surface hourly d...

  17. Coastal Dump Sites in the Lagos lagoon and toxicity of their ...

    African Journals Online (AJOL)

    An assessment of the coastal dumpsites and their impacts on shrimp mortality in the Lagos lagoon was investigated. The study involved a census of dumpsites in the major sections of the coastline associated with anthropogenic activities, followed by specific bioassay to determine the acute toxicity of leachates from one of ...

  18. Vegetation Structure, Tree Volume and Biomass Estimation using Terrestrial Laser Scanning Remote Sensing: A Case Study of the Mangrove Forests in the Everglades National Park

    Science.gov (United States)

    Feliciano, E. A.; Wdowinski, S.; Potts, M. D.

    2012-12-01

    Mangrove forests are being threatened by accelerated climate change, sea level rise and coastal projects. Carbon/above ground biomass (AGB) losses due to natural or human intervention can affect global warming. Thus, it is important to monitor AGB fluctuations in mangrove forests similar to those inhabiting the Everglades National Park (ENP). Tree volume and tree wood specific density are two important measurements for the estimation of AGB (mass = volume * density). Wood specific density is acquired in the laboratory by analyzing stem cores acquired in the field. However, tree volume is a challenging task because trees resemble tapered surfaces. The majority of published studies estimate tree volume and biomass using allometric equations, which describe the size, shape, volume or AGB of a given population of trees. However, these equations can be extremely general and might not give a representative value of volume or AGB for a specific tree species. In order to have precise biomass estimations, other methodologies for tree volume estimation are needed. To overcome this problem, we use a state-of-the-art remote sensing tool known as ground-based LiDAR a.k.a Terrestrial Laser Scanner (TLS), which can be used to precisely measure vegetation structure and tree volume from its 3-D point cloud. We surveyed three mangrove communities: (Rhizophora mangle, Laguncuria racemosa and Avicennia germinans) in three different sites along Shark River Slough (SRS), which is the primary source of water to the ENP. Our sites included: small-, intermediate- and tall- size mangroves. Our ground measurements included both: traditional forestry surveys and TLS surveys for tree attributes (tree height and diameter at breast height (DBH)) comparison. These attributes are used as input to allometric equations for the estimation of tree volume and AGB. A total of 25 scans were collected in 2011 with a Leica ScanStation C10 TLS. The 3-D point cloud acquired from the TLS data revealed that

  19. Observed 1970-2005 cooling of summer daytime temperatures in coastal California

    Energy Technology Data Exchange (ETDEWEB)

    Lebassi, B.; Gonzalez, J.; Fabris, D.; Maurer, E.; Miller, N.; Milesi, C.; Bornstein, R.

    2009-05-15

    The study evaluated 1948-2004 summer (JJA) mean monthly air temperatures for two California air basins: SoCAB and SFBA. The study focuses on the more rapid post-1970 warming period, and its daily T{sub min} and T{sub max} values were used to produce average monthly values and spatial distributions of trends for each air basins. Additional analyses included T{sub D} values at two NWS sites, SSTs, NCEP reanalysis sea-level pressures, and GCM T{sub ave}-values. Results for all California COOP sites together showed increased JJA T{sub ave}-values; asymmetric warming, as T{sub min}-values increase faster than T{sub max}-values; and thus decreased DTR values. The spatial distribution of observed SoCAB and SFBA T{sub max} values exhibited a complex pattern, with cooling in low-elevation coastal-areas open to marine air penetration and warming at inland areas. Results also showed that decreased DTR values in the valleys arose from small increases at 'inland' sites combined with large decreases at 'coastal' sites. Previous studies suggest that cooling JJA T{sub max}-values in coastal California were due to increased irrigation, coastal upwelling, or cloud cover, while the current hypothesis is that they arises from GHG-induced global-warming of 'inland' areas, which results in increased sea breeze flow activity. Sea level pressure trends showed increases in the oceanic Pacific High and decreases in the central-California Thermal Low. The corresponding gradient thus showed a trend of 0.02 hPa 100-km{sup -1} decade{sup -1}, supportive of the hypothesis of increased sea breeze activity. Trends in T{sub D} values showed a larger value at coastal SFO than at inland SEC, which indicative of increased sea breeze activity; calculated SST trends (0.15 C decade{sup -1}) could also have increase T{sub D}-values. GCM model Tave-values showed warming that decreases from 0.13 C decade{sup -1} at inland California to 0.08 C decade{sup -1} at coastal areas

  20. Rapid sewage pollution assessment by means of the coverage of epilithic taxa in a coastal area in the SW Atlantic.

    Science.gov (United States)

    Becherucci, M E; Jaubet, M L; Saracho Bottero, M A; Llanos, E N; Elías, R; Garaffo, G V

    2018-07-01

    The sewage pollution impact over coastal environment represents one of the main reasons explaining the deterioration of marine coastal ecosystems around the globe. This paper aims to detect promptly a putative sewage pollution impact in a Southwestern Atlantic coastal area of Argentina as well as to identify a straightforward way for monitoring, based on the relative abundance coverage of the intertidal epilithic taxa. Four sampling sites were distributed at increased distances from the sewage outfall where the cover of individual epilithic species was visually estimated. The surrounded outfall area (i.e. outfall site) resulted polluted with high percentages of organic matter in sediment and Enterococcus concentration in seawater. The structure of the community showed a remarkable difference between the polluted site (outfall site) and the unpolluted sites. The polychaete Boccardia proboscidea dominated the outfall site with variable abundances of the green algae Ulva sp. during the period of study, decreasing the diversity of the community, while the mussel Brachidontes rodriguezii and variable abundances of several algae species dominated the unpolluted sites. The monitoring of the benthic community represents an effective, non-destructive, relative inexpensive and rapid method to assess the health of the coastal environment in the study area. The large abundance of B. proboscidea along with the absence of B. rodriguezii individuals at coastal ecosystem with certain gradient of pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A Key to the Pupal Exuviae of the Midges (Diptera: Chironomidae) of Everglades National Park, Florida

    Science.gov (United States)

    Jacobsen, Richard E.

    2008-01-01

    A key has been developed for identifying the pupal exuviae of 132 taxa of chironomid midges collected in Everglades National Park, as well as 18 additional species from freshwater habitats adjacent to the Park. Descriptions and illustrations are based upon voucher specimens from extensive collections of chironomid pupal exuviae for faunal surveys and biomonitoring research conducted in ENP and surrounding freshwater areas from 1998 to 2007. The key includes taxonomic comments for confirming identifications, as well as brief summaries of the distribution and ecology of each species in southern Florida waters. Information is also provided on the morphology of chironomid pupal exuviae, recommended references for identifying pupal exuviae, techniques for making slides, and methods to confirm proper identification.

  2. Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia

    Directory of Open Access Journals (Sweden)

    Aliashim Albani

    2017-03-01

    Full Text Available This paper investigated the wind energy potential by analysing a certain amount of gathered 10-min measured data at four stations located at coastal sites in Malaysia, i.e., Kudat, Mersing, Kijal, and Langkawi. The wind data are collected from a total of four new wind measurement masts with sensors mounted at various heights on the tower. The measured data have enabled the establishment of wind resource maps and the power law indexes (PLIs analysis. In addition, the dependence of PLI upon surface temperature and terrain types is studied, as they are associated to the form of exponential fits. Moreover, the accuracy of exponential fits is assessed by comparing the results with the 1/7 law via the capacity factor (CF discrepancies. In order to do so, the wind turbine with a hub-height similar to the maximum height of the measured data at each site is selected to simulate energy production. Accordingly, the discrepancy of CF based on the extrapolated data by employing 1/7 laws and exponential fits, in spite of being computed using measured data, is determined as well. Furthermore, the large discrepancy of the wind data and the CF, which has been determined with the application of 1/7, is compared to the exponential fits. This is because; discrepancy in estimation of vertical wind speed could lead to inaccurate CF computation. Meanwhile, from the energy potential analysis based on the computed CF, only Kudat and Mersing display a promising potential to develop a medium capacity of wind turbine power, while the other sites may be suitable for wind turbines at a small scale.

  3. Coastal leatherback turtles reveal conservation hotspot

    Science.gov (United States)

    Robinson, Nathan J.; Morreale, Stephen J.; Nel, Ronel; Paladino, Frank V.

    2016-01-01

    Previous studies have shown that the world’s largest reptile – the leatherback turtle Dermochelys coriacea – conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot. PMID:27886262

  4. Predicting bed shear stress and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems

    Science.gov (United States)

    Larsen, Laurel G.; Harvey, Judson; Crimaldi, John P.

    2009-01-01

    Entrainment of sediment by flowing water affects topography, habitat suitability, and nutrient cycling in vegetated floodplains and wetlands, impacting ecosystem evolution and the success of restoration projects. Nonetheless, restoration managers lack simple decision-support tools for predicting shear stresses and sediment redistribution potential in different vegetation communities. Using a field-validated numerical model, we developed state-space diagrams that provide these predictions over a range of water-surface slopes, depths, and associated velocities in Everglades ridge and slough vegetation communities. Diminished bed shear stresses and a consequent decrease in bed sediment redistribution are hypothesized causes of a recent reduction in the topographic and vegetation heterogeneity of this ecosystem. Results confirmed the inability of present-day flows to entrain bed sediment. Further, our diagrams showed bed shear stresses to be highly sensitive to emergent vegetation density and water-surface slope but less sensitive to water depth and periphyton or floating vegetation abundance. These findings suggested that instituting a pulsing flow regime could be the most effective means to restore sediment redistribution to the Everglades. However, pulsing flows will not be sufficient to erode sediment from sloughs with abundant spikerush, unless spikerush density first decreases by natural or managed processes. Our methods provide a novel tool for identifying restoration parameters and performance measures in many types of vegetated aquatic environments where sediment erosion and deposition are involved.

  5. Coastal sediment elevation change following anthropogenic mangrove clearing

    Science.gov (United States)

    Hayden, Heather L.; Granek, Elise F.

    2015-11-01

    Coastal mangrove forests along tropical shorelines serve as an important interface between land and sea. They provide a physical buffer protecting the coastline from erosion and act as sediment "traps" catching terrestrial sediment, thus preventing smothering of subtidal coral reefs. Coastal development that removes mangrove habitat may impact adjacent nearshore coral reefs through sedimentation and nutrient loading. We examined differences in sediment elevation change between patches of open-coast intact and anthropogenically cleared red mangroves (Rhizophora mangle) on the east side of Turneffe Atoll, Belize, to quantify changes following mangrove clearing. Samples were collected over a 24 month period at five study sites, each containing paired intact (+mangrove) and cleared (-mangrove) plots. Five sediment elevation pins were deployed in each plot: behind areas cleared of mangroves (-mangrove) and behind adjacent intact mangroves (+mangrove). Sediment elevation increased at intact mangrove sites (M = +3.83 mm, SE = 0.95) whereas cleared mangrove areas suffered elevation loss (M = -7.30 mm, SE = 3.38). Mangroves inshore of partial or continuous gaps in the adjacent fringing reefs had higher rates of elevation loss (M = -15.05 mm) than mangroves inshore of continuous fringing reefs (M = -1.90 mm). Our findings provide information on potential effects of mangrove clearing and the role of offshore habitat characteristics on coastal sediment trapping and maintenance of sediment elevation by mangroves. With implications for coastline capacity to adjust to sea level rise, these findings are relevant to management of coastal fringing mangrove forests across the Caribbean.

  6. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida

    Science.gov (United States)

    Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.

    2005-01-01

    Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant‐rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open‐ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one‐dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the “main flow zone”). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h−1, respectively. Storage processes decreased the depth‐averaged velocity of surface water by 50% relative to the water velocity in the open part of the water

  7. Classifications for Coastal Wetlands Planning, Protection and Restoration Act site-specific projects: 2008 and 2009

    Science.gov (United States)

    Jones, William R.; Garber, Adrienne

    2012-01-01

    The Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) funds over 100 wetland restoration projects across Louisiana. Integral to the success of CWPPRA is its long-term monitoring program, which enables State and Federal agencies to determine the effectiveness of each restoration effort. One component of this monitoring program is the analysis of high-resolution, color-infrared aerial photography at the U.S. Geological Survey's National Wetlands Research Center in Lafayette, Louisiana. Color-infrared aerial photography (9- by 9-inch) is obtained before project construction and several times after construction. Each frame is scanned on a photogrametric scanner that produces a high-resolution image in Tagged Image File Format (TIFF). By using image-processing software, these TIFF files are then orthorectified and mosaicked to produce a seamless image of a project area and its associated reference area (a control site near the project that has common environmental features, such as marsh type, soil types, and water salinities.) The project and reference areas are then classified according to pixel value into two distinct classes, land and water. After initial land and water ratios have been established by using photography obtained before and after project construction, subsequent comparisons can be made over time to determine land-water change. Several challenges are associated with the land-water interpretation process. Primarily, land-water classifications are often complicated by the presence of floating aquatic vegetation that occurs throughout the freshwater systems of coastal Louisiana and that is sometimes difficult to differentiate from emergent marsh. Other challenges include tidal fluctuations and water movement from strong winds, which may result in flooding and inundation of emergent marsh during certain conditions. Compensating for these events is difficult but possible by using other sources of imagery to verify marsh conditions for other

  8. Two centuries of coastal change at Caesarea, Israel: natural processes vs. human intervention

    Science.gov (United States)

    Shtienberg, Gilad; Zviely, Dov; Sivan, Dorit; Lazar, Michael

    2014-08-01

    The coast at Caesarea, Israel, has been inhabited almost continuously for the last 2,400 years, and the archeological sites are today a major international tourist attraction. Because the sites straddle the shoreline, they are subject to constant damage by wave action, and must therefore be frequently restored. In this paper, local shoreline migrations over the last 200 years are investigated with the aim of distinguishing between natural and man-made coastal changes. In order to assess these changes accurately, geomorphological and sedimentological data were examined based on detailed beach profile measurements, bathymetric surveys, and grain-size analyses. In addition, series of old aerial photographs, as well as historical topographic maps and nautical charts were consulted. The results show that shoreline changes can be grouped into two main time periods. During the first period from 1862 to 1949 before the expansion of modern settlements, the position of the shoreline changed irregularly by up to 30 m. In the second period from 1949 onward, numerous coastal structures have been erected, and various coastal modifications have been carried out. The evaluation of the data suggests that human interventions have had relatively little effect on the overall position of the shoreline, as displacements ranged only from 5 to 18 m. Thus, coastal changes at Caesarea are predominantly due to natural wave action reflected in the heterogeneous geomorphological and sedimentological characteristics of the shore. This contradicts the common assumption that human activities are always mainly responsible for large-scale shoreline modifications in the region. It is concluded that, in order to implement meaningful mitigating countermeasures, coastal archeological sites need to be individually assessed with respect to the dominant factors causing local coastal change.

  9. Status of coastal forests of the Northern Sumatra in 2005 (after 2004’s tsunami catastrophe

    Directory of Open Access Journals (Sweden)

    ONRIZAL

    2016-04-01

    Full Text Available Abstract. Onrizal, Mansor M. 2015. Status of coastal forests of the Northern Sumatra in 2005 (after 2004’s tsunami catastrophe. Biodiversitas 17: 44-54. The first intensive ecological study of coastal vegetation including mangrove, littoral and peat swamp forests after the 2004 tsunami catastrophe in Northern Sumatra was conducted from January to December 2005 where 16 sampling sites along 2960km coastline in Northern Sumatra were selected. In each site, one quadrat of 100 m x 100 m was established and divided into 10 m x 10 m subplots where all standing trees of ≥ 2 cm diameter at breast height (DBH were identified to species level and measured. Overall 54,871 standing trees were recorded in 16 sites comprising 84 species in 65 genera and 37 families. Mangrove trees Rhizophora apiculata and R. mucronata were widely distributed and are dominant in most of the sampling sites. This indicated that these species have stronger resilient compared to other species. The highest value of Shannon-Wiener index of species and Evenness index of species was 3.03 and 0.85, respectively. It means that some sites were rich in biodiversity which harbors various species of plants. Subsequently, undisturbed coastal forests including mangroves, littoral forests and peat swamp forests characterized by dense stands, mixed species and structures play an important role in coastal protection against tsunami. Therefore, the coastal vegetation is needed to conserve the biodiversity and to maintain the production capacity as part of sustainable and longlasting vegetation bioshield.

  10. Using genetic information to inform Redbay restoration in Laurel Wilt epidemic areas

    Science.gov (United States)

    K.E. Smith; M.A. Hughes; C.S. Echt; S.A. Josserand; C.D. Nelson; J.M. Davis; J.A. Smith

    2017-01-01

    Laurel wilt disease is incited by the exotic fungus Raffaelea lauricola and transmitted by the Asian redbay ambrosia beetle (Xyleborus glabratus). The disease has spread from Savannah, Georgia in 2002 across the coastal southeast as far south as the Everglades, and in 2014 was discovered as far west as Texas. Mortality is severe, with locations in...

  11. Efficient phosphorus management practices in the Everglades Agricultural Area

    Science.gov (United States)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.; Alvarez, O.; Tootoonchi, M.; Capasso, J.

    2016-12-01

    In the 450,000 acres of the Everglades Agricultural Area (EAA) of South Florida, farming practices have long been mindful of phosphorus (P) management as it relates to sufficiency and efficiency of P utilization. Over two decades of P best management practices have resulted in 3001 metric-ton of P load reduction from the EAA to downstream ecosystems. During the summer, more than 50,000 acres of fallow sugarcane land is available for rice production. The net value of growing flooded rice in the EAA as a rotational crop with sugarcane far exceeds its monetary return. Soil conservation, improvement in tilth and P load reduction are only some of the benefits. With no P fertilizer applied, a two-year field trial on flooded rice showed improved outflow P concentrations by up to 40% as a result of particulate setting and plant P uptake. Harvested whole grain rice can effectively remove a significant amount of P from a rice field per growing season. In parts of the EAA where soils are sandy, the application of using locally derived organic amendments as potential P fertilizer has gained interest over the past few years. The use of local agricultural and urban organic residues as amendments in sandy soils of South Florida provide options to enhance soil properties and improve sugarcane yields, while reducing waste and harmful effects of agricultural production on the environment. A lysimeter study conducted to determine the effect of mill ash and three types of biochar (rice hulls, yard waste, horse bedding) on sugarcane yields, soil properties, and drainage water quality in sandy soils showed that mill ash and rice hull biochar increased soil TP, Mehlich 3-P (M3-P), and cation exchange capacity (CEC) compared to the control. TP and M3-P content remained constant after 9 months, CEC showed a significant increase over time with rich hull biochar addition. Future projects include the utilization of aquatic vegetation, such as chara and southern naiad as bio-filters in farm

  12. Government conservation policies on Mexican coastal areas: is "top-down" management working?

    Directory of Open Access Journals (Sweden)

    Héctor Nava

    2011-12-01

    Full Text Available Marine and terrestrial ecosystems are declining globally due to environmental degradation and poorly planned resource use. Traditionally, local government agencies have been responsible of the management of natural reserves to preserve biodiversity. Nonetheless, much of these approaches have failed, suggesting the development of more integrative strategies. In order to discuss the importance of a holistic approach in conservation initiatives, coastal and underwater landscape value and biological/environmental indicators of coral reef degradation were assessed using the study case of Zihuatanejo, Guerrero coastal area. This area shelters representative coral reef structures of the Eastern Pacific coast and its terrestrial biodiversity and archaeology enhance the high value of its coastal area. This study explored the landscape value of both terrestrial and marine ecosystems using the geomorphosite approach in two sites on the Zihuatanejo coastal area: Caleta de Chon and Manzanillo Beach. Sedimentation rate, water transparency, chlorophyll and total suspended solids were recorded underwater in each site for environmental characterization. 50 photo-quadrants on five transects were surveyed between 3-4m depth to record coverage (% of living corals, dead corals, algae, sand and rocks. The conservation status of coral reefs was assessed by the coral mortality index (MI. Landscape values showed that both terrestrial and marine ecosystems had important scientific and aesthetic values, being Manzanillo Beach the site with the highest potential for conservation initiatives (TtV=14.2. However, coral reefs face elevated sedimentation rates (up to 1.16kg/m2d and low water transparency (less of 5m generated by coastal land use changes that have increased soil erosion in the adjacent coastal area. High coverage of dead corals (23.6% and algae (up to 29% confirm the low values in conservation status of coral reefs (MI=0.5, reflecting a poorly-planned management

  13. Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration

    Science.gov (United States)

    Smith, T. J.; Whelan, K.R.T.

    2006-01-01

    Mathematical relations that use easily measured variables to predict difficult-to-measure variables are important to resource managers. In this paper we develop allometric relations to predict total aboveground biomass and individual components of biomass (e.g., leaves, stems, branches) for three species of mangroves for Everglades National Park, Florida, USA. The Greater Everglades Ecosystem is currently the subject of a 7.8-billion-dollar restoration program sponsored by federal, state, and local agencies. Biomass and production of mangroves are being used as a measure of restoration success. A technique for rapid determination of biomass over large areas is required. We felled 32 mangrove trees and separated each plant into leaves, stems, branches, and for Rhizophora mangle L., prop roots. Wet weights were measured in the field and subsamples returned to the laboratory for determination of wet-to-dry weight conversion factors. The diameter at breast height (DBH) and stem height were also measured. Allometric equations were developed for each species for total biomass and components of biomass. We compared our equations with those from the same, or similar, species from elsewhere in the world. Our equations explained ???93% of the variance in total dry weight using DBH. DBH is a better predictor of dry weight than is stem height and DBH is much easier to measure. Furthermore, our results indicate that there are biogeographic differences in allometric relations between regions. For a given DBH, stems of all three species have less mass in Florida than stems from elsewhere in the world. ?? Springer 2006.

  14. Sedimentological techniques applied to the hydrology of the Atlantic coastal plain in South Carolina and Georgia near the Savannah River Site

    International Nuclear Information System (INIS)

    Falls, F.W.; Baum, J.S.; Edwards, L.E.

    1994-01-01

    Potential for migration of contaminants in ground water under the Savannah River from South Carolina into Georgia near the US Department of Energy (DOE) Savannah River Site (SRS). The SRS is located in the inner Atlantic Coastal Plain of South Carolina and is underlain by 200 to more than 300 meters of permeable, unconsolidated to poorly consolidated sediments of Cretaceous and Tertiary age. The US Geological Survey, in cooperation with the US Department of Energy and the Georgia Department of Natural Resources, is evaluating ground-water flow through the Coastal Plain sediments in the area. Preliminary hydrologic studies conducted to provide the data needed for digital modeling of the ground-water flow system identified the need for more extensive investigation into the influence of the geologic complexities on that flow system. The Coastal Plain physiographic province in South Carolina and Georgia is comprised of a complex wedge of fluvial, deltaic, and marine sedimentary deposits locally modified by faulting. Several techniques commonly used in petroleum basin analysis (sequence stratigraphy, biostratigraphy, detailed core description, and geophysical well log analysis), were used together with water-level measurements, aquifer-test data, and geochemical data to identify six regional aquifers. Hydraulic conductivity distribution maps within each of these aquifers were constructed using textural analysis of core materials, aquifer test data, and depositional system reconstruction. Sedimentological techniques were used to improve understanding of the depositional system and the ground-water flow system dynamics, and to help focus research in areas where additional hydrologic, geologic, and aquifer-test data are needed

  15. Near Surface Geophysical Investigations of Potential Direct Recharge Zones in the Biscayne Aquifer within Everglades National Park, Florida.

    Science.gov (United States)

    Mount, G.; Comas, X.

    2017-12-01

    The karstic Miami Limestone of the Biscayne aquifer is characterized as having water flow that is controlled by the presence of dissolution enhanced porosity and mega-porous features. The dissolution features and other high porosity areas create horizontal preferential flow paths and high rates of ground water velocity, which may not be accurately conceptualized in groundwater flow models. In addition, recent research suggests the presence of numerous vertical dissolution features across Everglades National Park at Long Pine Key Trail, that may act as areas of direct recharge to the aquifer. These vertical features have been identified through ground penetrating radar (GPR) surveys as areas of velocity pull-down which have been modeled to have porosity values higher than the surrounding Miami Limestone. As climate change may induce larger and longer temporal variability between wet and dry times in the Everglades, a more comprehensive understanding of preferential flow pathways from the surface to the aquifer would be a great benefit to modelers and planners. This research utilizes near surface geophysical techniques, such as GPR, to identify these vertical dissolution features and then estimate the spatial variability of porosity using petrophysical models. GPR transects that were collected for several kilometers along the Long Pine Key Trail, show numerous pull down areas that correspond to dissolution enhanced porosity zones within the Miami Limestone. Additional 3D GPR surveys have attempted to delineate the boundaries of these features to elucidate their geometry for future modelling studies. We demonstrate the ability of near surface geophysics and petrophysical models to identify dissolution enhanced porosity in shallow karstic limestones to better understand areas that may act as zones of direct recharge into the Biscayne Aquifer.

  16. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa

    International Nuclear Information System (INIS)

    Polidoro, Beth A.; Comeros-Raynal, Mia T.; Cahill, Thomas; Clement, Cassandra

    2017-01-01

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. - Highlights: • Several coastal stream sediments in American Samoa are high in lead and mercury. • Organophosphate pesticides, including Parathion, are present in coastal streams. • More research is needed on the sources, fate and impacts of these contaminants.

  17. Issues in clustered nuclear siting: a comparison of a hypothetical nuclear energy center in New Jersey with dispersed nuclear siting

    International Nuclear Information System (INIS)

    Meier, P.M.; Morell, D.

    1976-09-01

    The report is an analysis of a hypothetical nuclear energy center (NEC) conducted in support of the recently completed study by the Nuclear Regulatory Commission, mandated by the Congress in the Energy Reorganization Act of 1974. The intent of the analysis of the hypothetical, or ''surrogate'', site was to inject a local and regional perspective into the assessment of technical, environmental, institutional, and socioeconomic issues which could be adequately addressed only by reference to a specific site. The hypothetical NEC site in Ocean County, New Jersey, was chosen to illustrate the problems and impacts of potential energy centers in coastal and near-coastal sites in relatively close proximity to large metropolitan areas. Earlier studies of hypothetical energy centers on the Mississippi River at River Bend, La., and on the Columbia River near Hanford, Washington, were also re-examined for their relevance to this new study effort. Neither Ocean County, nor any of the other surrogate sites, have been considered for actual construction of an NEC, nor does their selection for study purposes imply any judgement of desirability. Indeed, the major finding of the report presented is that Ocean County is a relatively poor location for an energy center, and this may well be true of many coastal locations similar to the Jersey shore. The objective in selecting surrogate sites, then, was not to find the best locations, but to select sites that would illustrate the broadest range of potential public policy and siting issues

  18. Immediate supervision of the coastal site at the La Hague centre

    International Nuclear Information System (INIS)

    Scheidhauer, J.

    1968-01-01

    The disposal into the sea of the residual waters from a plant processing irradiated fuels means that a very close watch has to be kept on the corresponding coastal zone. The material organisation of such a supervision, and the sampling techniques, are described. These latter concern: flora, fauna, sediments and sea-water. Results obtained using various analytical and routine measurement methods are presented. (author) [fr

  19. Gulf Atlantic Coastal Plain Long Term Agroecosystem Research site, Tifton, GA

    Science.gov (United States)

    Timothy Strickland; David D. Bosch; Dinku M. Endale; Thomas L. Potter

    2016-01-01

    The Gulf-Atlantic Coastal Plain (GACP) physiographic region is an important agricultural production area within the southeastern U.S. that extends from Delaware in the Northeast to the Gulf Coast of Texas. The region consists mainly of low-elevation flat to rolling terrain with numerous streams, abundant rainfall, a complex coastline, and many wetlands. The GACP Long ...

  20. Estuaries of the Greater Everglades Ecosystem: Laboratories of Long-term Change

    Science.gov (United States)

    Wingard, G.L.; Hudley, J.W.; Marshall, F.E.

    2010-01-01

    Restoring the greater Everglades ecosystem of south Florida is arguably the largest ecosystem restoration effort to date. A critical goal is to return more natural patterns of flow through south Florida wetlands and into the estuaries, but development of realistic targets requires acknowledgement that ecosystems are constantly evolving and changing in response to a variety of natural and human-driven stressors. Examination of ecosystems over long periods of time requires analysis of sedimentary records, such as those deposited in the wetlands and estuaries of south Florida. As sediment accumulates, it preserves information about the animals and plants that lived in the environment and the physical, chemical, and climatic conditions present. One of the methods used to interpret this information is paleoecology-the study of the ecology of previously living organisms. Paleoecologic investigations of south Florida estuaries provide quantitative data on historical variability of salinity and trends that may be applied to statistical models to estimate historical freshwater flow. These data provide a unique context to estimate future ecosystem response to changes related to restoration activities and predicted changes in sea level and temperature, thus increasing the likelihood of successful and sustainable ecosystem restoration.

  1. Spatial distribution of juvenile fish along an artificialized seascape, insights from common coastal species in the Northwestern Mediterranean Sea.

    Science.gov (United States)

    Mercader, Manon; Rider, Mary; Cheminée, Adrien; Pastor, Jérémy; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Verdoit-Jarraya, Marion; Lenfant, Philippe

    2018-06-01

    Along the littoral, a growing number of anthropogenic structures have caused substantial habitat destruction. Despite their detrimental impact, these constructions could play a role in the functioning of coastal ecosystems. The objective of this work was to assess the distribution of juvenile coastal fish along a seascape composed of various natural and artificial habitats in order to determine the potential role of coastal infrastructures as juvenile habitat. We surveyed juvenile populations on various infrastructures and natural sites along a 100 km shoreline of the French Mediterranean coast. Juvenile densities varied according to the level of artificialization of the sites. Densities were the highest on coastal defense structures, intermediate in natural sites and lowest in harbors. Focusing inside harbors revealed highly variable densities depending on the type of habitat, with densities on ripraps or jetties that were equivalent to those of natural sites. Our results underline the importance of anthropogenic structures as potential juvenile habitats, which is too often not considered in management plans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Evaluation of Landfill Cover Design Options for Waste Disposal Sites in the Coastal Regions of Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2015-01-01

    Full Text Available Uncontrolled leachate generation from operational and closed waste disposal sites is a major environmental concern in the coastal regions of Ghana which have abundant surface water and groundwater resources. The Ghana Landfill Guidelines requires the provision of a final cover or capping system as part of a final closure plan for waste disposal sites in the country as a means of minimizing the harmful environmental effects of these emissions. However, this technical manual does not provide explicit guidance on the material types or configuration for landfill covers that would be suitable for the different climatic conditions in the country. Four landfill cover options which are based on the USEPA RCRA-type and evapotranspirative landfill cover design specifications were evaluated with the aid of the HELP computer program to determine their suitability for waste disposal sites located in the Western, Central and Greater Accra regions. The RCRA Subtitle C cover which yielded flux rates of less than 0.001 mm/yr was found to be suitable for the specific climatic conditions. The RCRA Subtitle D cover was determined to be unsuitable due to the production of very large flux rates in excess of 200 mm/yr. The results for the anisotropic barrier and capillary barrier covers were inconclusive. Recommendations for further study include a longer simulation period as well the study of the combined effects of different topsoil vegetative conditions and evaporative zone depths on the landfill water balance. The use of other water balance models such as EPIC, HYDRUS-2D and UNSAT-H for the evaluation of the evapotranspirative landfill cover design options should also be considered.

  3. Learning from Loss: Eroding Coastal Heritage in Scotland

    Directory of Open Access Journals (Sweden)

    Ellie Graham

    2017-11-01

    Full Text Available Heritage sites are constantly changing due to natural processes, and this change can happen fastest at the coast. Much legislation has been enacted to protect sites of historic interest, but these do not protect sites from natural processes. Change is already happening, and climate change predictions suggest that the pace will accelerate in the future. Instead of seeing the potential destruction of heritage sites as a disaster, we should embrace the opportunity that they can provide for us to learn about the past and to plan for the future. Heritage laws often enshrine a policy of preservation in situ, meaning that our most spectacular sites are preserved in a state of equilibrium, with a default position of no permitted intervention. However, the options for threatened coastal sites mirror those of shoreline management plans, which usually recommend either the construction of a coastal defence or, more likely, a strategy of managed retreat, where erosion is allowed to take its course after appropriate mitigations strategies have been enacted. Managed retreat can lead to a range of research projects, some of which would not normally be possible at similar, unthreatened and legally protected monuments. Such research also has the potential to involve members of the public, who can help in the discovery process, and cascade what they have learned through their communities. Information shared can be about the heritage site itself, including how communities in the past coped at times of climatic stress; and also about the processes that are now threatening the monument, thus helping teach about present day climate change.

  4. Development of a coastal drought index using salinity data

    Science.gov (United States)

    Conrads, Paul; Darby, Lisa S.

    2017-01-01

    A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

  5. GIS-based multi-criteria site selection for zebra mussel cultivation: Addressing end-of-pipe remediation of a eutrophic coastal lagoon ecosystem.

    Science.gov (United States)

    Bagdanavičiūtė, Ingrida; Umgiesser, Georg; Vaičiūtė, Diana; Bresciani, Mariano; Kozlov, Igor; Zaiko, Anastasija

    2018-04-11

    Farming of shellfish and seaweeds is a tested tool for mitigating eutrophication consequences in coastal environments, however as many other marine economic activities it should be a subject of marine spatial planning for designating suitable sites. The present study proposes site selection framework for provisional zebra mussel farming in a eutrophic lagoon ecosystem, aimed primarily at remediation purposes. GIS-based multi-criteria approach was applied, combining data from empirical maps, numerical models and remote sensing to estimate suitability parameters. Site selection and prioritisation of suitable areas considered 15 environmental and socio-economic criteria, which contributed to 4 optimisation models (settlement, growth and survival of mussels, environmental and socio-economic) and 3 predefined scenarios representing provisional goals of mussel cultivation: spat production, biomass production and bioremediation. The relative importance of each criterion was assessed utilizing the Analytical Hierarchy Process. Site suitability index was calculated and the final result of the site selection analysis was summarized for 3 scenarios and overall suitability map. Four suitability classes (unsuitable, least, moderately and most suitable) were applied, and 3 most suitable zones for provisional zebra mussel cultivation with 12 candidate sites were selected accordingly. The integrated approach presented in this study can be adjusted for designating zebra mussel farming sites in other estuarine lagoon ecosystems, or cultivation of other mussel species for bioremediation purposes. The analytical framework and the workflow designed in this study are also adoptable for addressing other aquaculture-related spatial planning issues. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Everglades Research and Education Center, Belle Glade, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States); McCray, J. Mabry [Univ. of Florida, Gainesville, FL (United States)

    2012-07-01

    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrient requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  7. Devil's Slide: An evolving feature of California's coastal landscape

    Science.gov (United States)

    Thomas, M.; Loague, K.

    2013-12-01

    Coastal landslides in the United States remain a persistent threat to human life and urban development. The focus of this study is a landslide-prone section of the central California coastline, approximately 20 km south of San Francisco, known as Devil's Slide. This investigation employs an extensive aerial image inventory, digital elevation models (DEMs), and a water balance / limit-equilibrium approach to better understand the spatial and temporal characteristics of deep-seated bedrock slides at the site. Photographic surveys of the area reveal nearly three kilometers of headscarp and a complex network of slope failures that respond to hydrologic, seismic, and anthropogenic perturbations. DEM analysis suggests that, for a 145-year period (1866 to 2010), the study area experienced an average coastal retreat rate of 0.14 m yr-1 and an average volumetric loss of 11,216 m3 yr-1. At least 38% of the landscape evolution in the steep coastal terrain has been driven by slope failure events. A loosely coupled water balance / limit-equilibrium analysis quantitatively illustrates the precarious nature of the active landslide zone at the site. The slope is shown to be unstable for a large suite of equally-likely scenarios. The analyses presented herein suggest that future work should include a rigorous characterization of pore-water pressure development, driven by comprehensive simulations of subsurface hydrologic response, to improve our understanding of slope failure initiation at the Devil's Slide site.

  8. Managing the visual effects of outer continental shelf and other petroleum-related coastal development

    Science.gov (United States)

    Philip A. Marcus; Ethan T. Smith

    1979-01-01

    Five petroleum-related facilities often sited in the coastal zone during development of Outer Continental oil and gas can change the visual appearance of coastal areas. These facilities are service bases, platform fabrication yards, marine terminals and associated storage facilities, oil and gas processing facilities, and liquified natural gas terminals. Examples of...

  9. The structural evolution of the coastal area between Danger Point and Struisbaai in the southern Cape Fold Belt, with implications for the siting of a nuclear power station

    International Nuclear Information System (INIS)

    Andersen, N.J.B.; Andreoli, M.A.G.

    1990-01-01

    A structural analysis of the coastal area between Danger Point and Struisbaai in the Southern Cape has been undertaken, using the technique of structural domain analysis coupled with geophysical interpretation and geological mapping. This study forms part of the country-wide geological investigations that are being carried out for the purpose of siting South Africa's future nuclear power stations. 30 refs., 18 figs

  10. Coastal ecosystems, productivity and ecosystem protection: Coastal ecosystem management

    International Nuclear Information System (INIS)

    Ngoile, M.A.K.; Horrill, C.J.

    1993-01-01

    The coastal zone is a complex ecosystem under the influence of physical, chemical and biological processes. Under natural conditions these processes interact and maintain an equilibrium in the coastal ecosystem. Man makes a variety of important uses of coastal resources, ranging from harvesting of living resources, extraction of nonliving resources, and recreation, to the disposal of wastes. Man's extensive use of the oceans introduces factors which bring about an imbalance in the natural processes, and may result in harmful and hazardous effects to life hindering further use. Man's pressure on the resources of the coastal zone is already manifest and will increase manifold. This calls for an immediate solution to the protection and sustainable use of coastal resources. The current sectorized approach to the management of human activities will not solve the problem because the different resources of the coastal zone interact in such a manner that disturbances in one cause imbalance in the others. This is further complicated by the sectorized approach to research and limited communication between policy makers, managers, and scientists. This paper discusses strategies for managing coastal-resources use through an integrated approach. The coastal zone is presented as a unified ecosystem in equilibrium and shows that man's extensive use of the coastal resources destabilizes this equilibrium. Examples from the East Africa Region are presented. 15 refs, 2 figs, 3 tabs

  11. The tides and inflows in the mangroves of the Everglades (TIME) interdisciplinary project of the South Florida Ecosystem Program

    Science.gov (United States)

    Schaffranek, R.W.

    2001-01-01

    The U. S. Geological Survey (USGS) has a prominent role in the Federal Government's comprehensive restoration plan for the south Florida ecosystem encompassing the Everglades-the largest remaining subtropical wilderness in the continental United States. USGS scientists, in collaboration with researchers from the National Park Service (NPS), other governmental agencies, and academia, are providing scientific information to land and resource managers for planning, executing, and evaluating restoration actions. One major thrust of the restoration effort is to restore the natural functioning of the ecosystem to predrainage conditions, an objective that requires knowledge of the hydrologic and hydraulic factors that affect the flow of water. A vast network of interlaced canals, rimmed with levees and fitted with hydraulic control structures, and highways, built on elevated embankments lined by borrow ditches and undercut by culverts, now act to control and direct the flow of water through the shallow low-gradient wetlands. As water flows south from Lake Okeechobee past the city of Miami and through Everglades National Park (ENP), it is diminished by canal diversions, augmented by seasonably variable precipitation, and depleted through evapotranspiration. Along its path, the shallow flowing water, referred to as sheet flow, interacts with surficial aquifers and is subject to the resistance effects of variably dense vegetation and forcing effects of winds. New scientific investigations are providing additional insight into the hydrologic and hydraulic processes governing the flow, and recent data-collection efforts are supplying more comprehensive data describing the flow behavior, both of which are benefiting development of improved numerical models to evaluate and restore the natural functioning of the ecosystem.

  12. Do trans-Pacific air masses deliver PBDEs to coastal British Columbia, Canada?

    International Nuclear Information System (INIS)

    Noel, Marie; Dangerfield, Neil; Hourston, Roy A.S.; Belzer, Wayne; Shaw, Pat; Yunker, Mark B.; Ross, Peter S.

    2009-01-01

    In order to distinguish between 'local' and 'background' sources of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in coastal British Columbia (Canada) air, we collected samples from two sites: a remote site on western Vancouver Island, and a near-urban site in the Strait of Georgia. Seasonally-integrated samples of vapor, particulate, and rain were collected continuously during 365 days for analysis of 275 PCB and PBDE congeners. While deposition of the legacy PCBs was similar at both sampling sites, deposition of PBDEs at the remote site amounted to 42% (10.4 mg/ha/year) of that at the near-urban site. Additional research into atmospheric circulation in the NE Pacific Ocean will provide more insight into the transport and fate of priority pollutants in this region, but trans-Pacific delivery of PBDEs to the west coast of North America may underlie in part our observations. For example, approximately 40% of >12,000 ten-day back trajectories calculated for the remote site originated over Asia, compared to only 2% over North America. - Legacy PCBs and current-use PBDEs are dispersed through atmospheric processes in coastal British Columbia, Canada.

  13. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Switchgrass (Panicum virgatum L. Genotypes Differ between Coastal Sites and Inland Road Corridors in the Northeastern US.

    Directory of Open Access Journals (Sweden)

    Geoffrey Ecker

    Full Text Available Switchgrass (Panicum virgatum L. is a North American grass that exhibits vast genetic diversity across its geographic range. In the Northeastern US, local switchgrass populations were restricted to a narrow coastal zone before European settlement, but current populations inhabit inland road verges raising questions about their origin and genetics. These questions are important because switchgrass lines with novel traits are being cultivated as a biofuel feedstock, and gene flow could impact the genetic integrity and distribution of local populations. This study was designed to determine if: 1 switchgrass plants collected in the Long Island Sound Coastal Lowland coastal Level IV ecoregion represented local populations, and 2 switchgrass plants collected from road verges in the adjacent inland regions were most closely related to local coastal populations or switchgrass from other geographic regions. The study used 18 microsatellite markers to infer the genetic relationships between 122 collected switchgrass plants and a reference dataset consisting of 28 cultivars representing ecotypes, ploidy levels, and lineages from North America. Results showed that 84% of 88 plants collected in the coastal plants were most closely aligned with the Lowland tetraploid genetic pool. Among this group, 61 coastal plants were similar to, but distinct from, all Lowland tetraploid cultivars in the reference dataset leading to the designation of a genetic sub-population called the Southern New England Lowland Tetraploids. In contrast, 67% of 34 plants collected in road verges in the inland ecoregions were most similar to two Upland octoploid cultivars; only 24% of roadside plants were Lowland tetraploid. These results suggest that cryptic, non-local genotypes exist in road verges and that gene flow from biofuels plantations could contribute to further changes in switchgrass population genetics in the Northeast.

  15. NOAA's Coastal Protection and Restoration Division: Watershed Database and Mapping Projects

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Protection and restoration of coastal watersheds requires the synthesis of complex environmental issues. Contaminated site remediation, dredging and disposal of...

  16. Salinity effects on behavioural response to hypoxia in the non-native Mayan cichlid Cichlasoma urophthalmus from Florida Everglades wetlands.

    Science.gov (United States)

    Schofield, P J; Loftus, W F; Fontaine, J A

    2009-04-01

    This study quantified the hypoxia tolerance of the Mayan cichlid Cichlasoma urophthalmus over a range of salinities. The species was very tolerant of hypoxia, using aquatic surface respiration (ASR) and buccal bubble holding when oxygen tensions dropped to <20 mmHg (c. 1.0 mg l(-1)) and 6 mmHg, respectively. Salinity had little effect on the hypoxia tolerance of C. urophthalmus, except that bubble holding was more frequent at the higher salinities tested. Levels of aggression were greatest at the highest salinity. The ASR thresholds of C. urophthalmus were similar to native centrarchid sunfishes from the Everglades, however, aggression levels for C. uropthalmus were markedly higher.

  17. Patterns of Arbuscular Mycorrhizal Fungal Distribution on Mainland and Island Sandy Coastal Plain Ecosystems in Brazil.

    Science.gov (United States)

    da Silva, Iolanda Ramalho; de Souza, Francisco Adriano; da Silva, Danielle Karla Alves; Oehl, Fritz; Maia, Leonor Costa

    2017-10-01

    Although sandy coastal plains are important buffer zones to protect the coast line and maintain biological diversity and ecosystem services, these ecosystems have been endangered by anthropogenic activities. Thus, information on coastal biodiversity and forces shaping coastal biological diversity are extremely important for effective conservation strategies. In this study, we aimed to compare arbuscular mycorrhizal (AM) fungal communities from soil samples collected on the mainland and nearby islands located in Brazilian sandy coastal plain ecosystems (Restingas) to get information about AM fungal biogeography and identify factors shaping these communities. Soil samples were collected in 2013 and 2014 on the beachfront of the tropical sandy coastal plain at six sites (three island and three mainland locations) across the northeast, southeast, and south regions of Brazil. Overall, we recorded 53 AM fungal species from field and trap culture samples. The richness and diversity of AM fungal species did not differ between mainland and island locations, but AM fungal community assemblages were different between mainland and island environments and among most sites sampled. Glomeromycota communities registered from island samples showed higher heterogeneity than communities from mainland samples. Sandy coastal plains harbor diverse AM fungal communities structured by climatic, edaphic, and spatial factors, while the distance from the colonizing source (mainland environments) does not strongly affect the AM fungal communities in Brazilian coastal environments.

  18. Visual Assessment on Coastal Cruise Tourism: A Preliminary Planning Using Importance Performance Analysis

    Science.gov (United States)

    Trisutomo, S.

    2017-07-01

    Importance-Performance Analysis (IPA) has been widely applied in many cases. In this research, IPA was applied to measure perceive on coastal tourism objects and its possibility to be developed as coastal cruise tourism in Makassar. Three objects, i.e. Akkarena recreational site, Losari public space at waterfront, and Paotere traditional Phinisi ships port, were selected and assessed visually from water area by a group of purposive resource persons. The importance and performance of 10 attributes of each site were scored using Likert scale from 1 to 5. Data were processed by SPSS-21 than resulted Cartesian graph which the scores were divided in four quadrants: Quadrant I concentric here, Quadrant II keep up the good work, Quadrant III low priority, and Quadrant IV possible overkill. The attributes in each quadrant could be considered as the platform for preliminary planning of coastal cruise tour in Makassar

  19. Development of a Coastal Drought Index Using Salinity Data

    Science.gov (United States)

    Conrads, P. A.; Darby, L. S.

    2014-12-01

    The freshwater-saltwater interface in surface-water bodies along the coast is an important factor in the ecological and socio-economic dynamics of coastal communities. It influences community composition in freshwater and saltwater ecosystems, determines fisheries spawning habitat, and controls freshwater availability for municipal and industrial water intakes. These dynamics may be affected by coastal drought through changes in Vibrio bacteria impacts on shellfish harvesting and occurrence of wound infection, fish kills, harmful algal blooms, hypoxia, and beach closures. There are many definitions of drought, with most describing a decline in precipitation having negative impacts on water supply and agriculture. Four general types of drought are recognized: hydrological, agricultural, meteorological, and socio-economic. Indices have been developed for these drought types incorporating data such as rainfall, streamflow, soil moisture, groundwater levels, and snow pack. These indices were developed for upland areas and may not be appropriate for characterizing drought in coastal areas. Because of the uniqueness of drought impacts on coastal ecosystems, a need exists to develop a coastal drought index. The availability of real-time and historical salinity datasets provides an opportunity to develop a salinity-based coastal drought index. The challenge of characterizing salinity dynamics in response to drought is excluding responses attributable to occasional saltwater intrusion events. Our approach to develop a coastal drought index modified the Standardized Precipitation Index and applied it to sites in South Carolina and Georgia, USA. Coastal drought indices characterizing 1-, 3-, 6-, 9-, and12-month drought conditions were developed. Evaluation of the coastal drought index indicates that it can be used for different estuary types, for comparison between estuaries, and as an index for wet conditions (high freshwater inflow) in addition to drought conditions.

  20. Assessing the recovery of coastal wetlands from oil spills

    International Nuclear Information System (INIS)

    Mendelssohn, I.A.; Hester, M.W.; Hill, J.M.

    1993-01-01

    The impact of oil spills on coastal environments and the ability of these systems to exhibit long-term recovery has received increased attention in recent years. Although oil spills can have significant short-term impacts on coastal marshes, the long-term effects and eventual recovery are not well documented. Estuarine marshes have sometimes been reported to exhibit slow recovery after oil spills, whereas in other instances they appear to have great resiliency, with complete recovery after one or two years. To document and understand this phenomenon better, we have investigated the long-term recovery of a south Louisiana estuarine marsh exposed to an accidental spill of crude oil. Although a pipeline rupture releasing Louisiana crude oil caused the near complete mortality of a brackish marsh dominated by Spartina patens and S. alterniflora, this marsh completely recovered four years after the spill with no differences in plant species cover between oiled and reference marshes. Remotely sensed imagery of the study site confirmed the relatively rapid recovery demonstrated by the ground truth data. Louisiana's coastal marshes are naturally experiencing rapid rates of deterioration. Land loss rates, determined from aerial imagery, at the spill site and adjacent reference areas before and after the spill demonstrated that the long-term loss rates were not affected by the spill event

  1. Proceedings of the Meeting of the Coastal Engineering Research Board (46th) Held in Vicksburg, Mississippi on 21-22 October 1986.

    Science.gov (United States)

    1987-06-01

    to conduct site visits and review the use of ACE and other coastal microcomputer applications within the Corps coastal community . Meetings for the...that endeavor may be useful towards expediting the establishment of a similar network for the Corps coastal community . Several attendees at this

  2. Shoreline changes and its impact on archaeological sites in West Greenland

    Science.gov (United States)

    Fenger-Nielsen, R.; Kroon, A.; Elberling, B.; Hollesen, J.

    2017-12-01

    Coastal erosion is regarded as a major threat to archaeological sites in the Arctic region. The problem arises because the predominantly marine-focused lifeways of Arctic people means that the majority of archaeological sites are found near the coast. On a Pan-Arctic scale, coastal erosion is often explained by long-term processes such as sea level rise, lengthening of open water periods due to a decline in sea ice, and a predicted increase in the frequency of major storms. However, on a local scale other short-term processes may be important parameters determining the coastal development. In this study, we focus on the Nuuk fjord system in West Greenland, which has been inhabited over the past 4000 years by different cultures and holds around 260 registered archaeological settlements. The fjord is characterized by its large branching of narrow deep-water and well-shaded water bodies, where tidal processes and local sources of sediment supply by rivers are observed to be the dominant factors determining the coastal development. We present a regional model showing the vulnerability of the shoreline and archeological sites due to coastal processes. The model is based on a) levelling surveys and historical aerial photographs of nine specific sites distributed in the region, b) water level measurements at three sites representing the inner-, middle- and outer fjord system, c) aerial photographs, satellite images and meteorological data of the entire region used to up-scale our local information at a specific settlement scale towards a regional scale. This deals with spatial and temporal variability in erosion and accumulation patterns along the shores in fjords and open seas.

  3. An assessment of the radiological consequences of disposal of high-level waste in coastal geologic formations

    International Nuclear Information System (INIS)

    Hill, M.D.; Lawson, G.

    1980-11-01

    This study was carried out with the objectives of assessing the potential radiological consequences of entry of circulating ground-water into a high-level waste repository sited on the coast; and comparing the results with those of previous assessments for a repository sited inland. Mathematical models are used to calculate the rate of release of radioactivity into ground-water by leaching, the rates of migration of radionuclides with ground-water from the repository to the sea and the concentrations of radionuclides in sea-water and sea-food as a function of time. Estimates are made of the peak annual collective doses and collective dose commitments which could be received as a result of sea-food consumption. Since there are considerable uncertainties associated with the values of many of the parameters used in the calculations the broad features of the results are more significant than the numerical values of predicted annual doses and collective dose commitments. The results of the assessment show that the rates of migration of radionuclides with ground-water are of primary importance in determining the radiological impact of ground-water ingress. The implications of this result for selection of coastal sites and allocation of research effort are discussed. The comparison of coastal and inland sites suggest that coastal siting may have substantial advantages in terms of the radiological consequences to the public after disposal and that a significant fraction of available research effort should therefore be directed towards investigation of coastal sites. This study has been carried out under contract to the United Kingdom Atomic Energy Authority, Harwell, on behalf of the Commission of the European Communities. (author)

  4. Multiple technologies applied to characterization of the porosity and permeability of the Biscayne aquifer, Florida

    Science.gov (United States)

    Cunningham, K.J.; Sukop, M.C.

    2011-01-01

    Research is needed to determine how seepage-control actions planned by the Comprehensive Everglades Restoration Plan (CERP) will affect recharge, groundwater flow, and discharge within the dual-porosity karstic Biscayne aquifer where it extends eastward from the Everglades to Biscayne Bay. A key issue is whether the plan can be accomplished without causing urban flooding in adjacent populated areas and diminishing coastal freshwater flow needed in the restoration of the ecologic systems. Predictive simulation of groundwater flow is a prudent approach to understanding hydrologic change and potential ecologic impacts. A fundamental problem to simulation of karst groundwater flow is how best to represent aquifer heterogeneity. Currently, U.S. Geological Survey (USGS) researchers and academic partners are applying multiple innovative technologies to characterize the spatial distribution of porosity and permeability within the Biscayne aquifer.

  5. Temporal and Spatial Diversity of Bacterial Communities in Coastal Waters of the South China Sea

    Science.gov (United States)

    Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining

    2013-01-01

    Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns. PMID:23785512

  6. Impact of wildfires on size-resolved aerosol composition at a coastal California site

    Science.gov (United States)

    Maudlin, L. C.; Wang, Z.; Jonsson, H. H.; Sorooshian, A.

    2015-10-01

    Size-resolved aerosol composition measurements were conducted at a coastal site in central California during the Nucleation in California Experiment (NiCE) between July and August of 2013. The site is just east of ship and marine emission sources and is also influenced by continental pollution and wildfires, such as those near the California-Oregon border which occurred near the end of NiCE. Two micro-orifice uniform deposit impactors (MOUDIs) were used, and water-soluble and elemental compositions were measured. The five most abundant water-soluble species (in decreasing order) were chloride, sodium, non-sea salt (nss) sulfate, ammonium, and nitrate. During wildfire periods, nss K mass concentrations were not enhanced as strongly as other species in the sub-micrometer stages and even decreased in the super-micrometer stages; species other than nss K are more reliable tracers for biomass burning in this region. Chloride levels were reduced in the fire sets likely due to chloride depletion by inorganic and organic acids that exhibited elevated levels in transported plumes. During wildfire periods, the mass size distribution of most dicarboxylic acids changed from unimodal to bimodal with peaks in the 0.32 μm and 1.0-1.8 μm stages. Furthermore, sulfate's peak concentration shifted from the 0.32 μm to 0.56 μm stage, and nitrate also shifted to larger sizes (1.0 μm to 1.8-3.2 μm stages). Mass concentrations of numerous soil tracer species (e.g., Si, Fe) were strongly enhanced in samples influenced by wildfires, especially in the sub-micrometer range. Airborne cloud water data confirm that soil species were associated with fire plumes transported south along the coast. In the absence of biomass burning, cloud condensation nuclei (CCN) composition is dominated by nss sulfate and ammonium, and the water-soluble organic fraction is dominated by methanesulfonate, whereas for the samples influenced by wildfires, ammonium becomes the dominant overall species, and

  7. On the evaluation of global sea-salt aerosol models at coastal/orographic sites

    Science.gov (United States)

    Spada, M.; Jorba, O.; Pérez García-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2015-01-01

    Sea-salt aerosol global models are typically evaluated against concentration observations at coastal stations that are unaffected by local surf conditions and thus considered representative of open ocean conditions. Despite recent improvements in sea-salt source functions, studies still show significant model errors in specific regions. Using a multiscale model, we investigated the effect of high model resolution (0.1° × 0.1° vs. 1° × 1.4°) upon sea-salt patterns in four stations from the University of Miami Network: Baring Head, Chatam Island, and Invercargill in New Zealand, and Marion Island in the sub-antarctic Indian Ocean. Normalized biases improved from +63.7% to +3.3% and correlation increased from 0.52 to 0.84. The representation of sea/land interfaces, mesoscale circulations, and precipitation with the higher resolution model played a major role in the simulation of annual concentration trends. Our results recommend caution when comparing or constraining global models using surface concentration observations from coastal stations.

  8. Coastal Innovation Imperative

    Directory of Open Access Journals (Sweden)

    Bruce C. Glavovic

    2013-03-01

    Full Text Available This is the second of two articles that explores the coastal innovation paradox and imperative. Paradoxically, innovation is necessary to escape the vulnerability trap created by past innovations that have degraded coastal ecosystems and imperil coastal livelihoods. The innovation imperative is to reframe and underpin business and technology with coherent governance innovations that lead to social transformation for coastal sustainability. How might coastal management help to facilitate this transition? It is argued that coastal management needs to be reconceptualised as a transformative practice of deliberative coastal governance. A foundation comprising four deliberative or process outcomes is posited. The point of departure is to build human and social capital through issue learning and improved democratic attitudes and skills. Attention then shifts to facilitating community-oriented action and improving institutional capacity and decision-making. Together, these endeavours enable improved community problem-solving. The ultimate process goal is to build more collaborative communities. Instituting transformative deliberative coastal governance will help to stimulate innovations that chart new sustainability pathways and help to resolve the coastal problems. This framework could be adapted and applied in other geographical settings.

  9. Nitrogen source tracking with δ15N content of coastal wetland plants in Hawaii

    Science.gov (United States)

    Gregory L. Bruland; Richard A.. Mackenzie

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared δ15N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of δ15N with...

  10. Applicability of the grounded-source airborne electromagnetics to coastal areas

    International Nuclear Information System (INIS)

    Ito, Hisatoshi; Tsukuda, Kazuhiro; Suzuki, Koichi; Kaieda, Hideshi; Kiho, Kenzo; Mogi, Toru

    2012-01-01

    Understanding geological and hydrogeological characteristics in coastal areas is an issue of paramount importance especially with regard to siting of geological disposal of nuclear wastes, whereas conventional airborne electromagnetic (AEM) surveys can reveal an electrical resistivity structure to a depth of only ∼200 m. In order to enhance the depth of investigation, we have developed a new type of AEM, grounded-electrical-source airborne transient electromagnetics (GREATEM). Here we have applied GREATEM to two coastal areas in Japan; Kujukuri, an alluvial coastal plain where thick Quaternary sediments prevail, and northwestern part of Awaji Island, where granitic rocks are dominant. It was found that the GREATEM system can reveal resistivity structure to a depth of ∼500 m and also high quality data are available just beneath the shoreline where shallow water prevails. (author)

  11. Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations.

    Science.gov (United States)

    Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae

    2018-01-15

    Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (fraction were much higher than those in the fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    Science.gov (United States)

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  13. Stakeholder involvement for management of the coastal zone.

    Science.gov (United States)

    Oen, Amy Mp; Bouma, Geiske M; Botelho, Maria; Pereira, Patrícia; Haeger-Eugensson, Marie; Conides, Alexis; Przedrzymirska, Joanna; Isaksson, Ingela; Wolf, Christina; Breedveld, Gijs D; Slob, Adriaan

    2016-10-01

    The European Union (EU) has taken the lead to promote the management of coastal systems. Management strategies are implemented by the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), as well as the recent Maritime Spatial Planning (MSP) Directive. Most EU directives have a strong focus on public participation; however, a recent review found that the actual involvement of stakeholders was variable. The "Architecture and roadmap to manage multiple pressures on lagoons" (ARCH) research project has developed and implemented participative methodologies at different case study sites throughout Europe. These cases represent a broad range of coastal systems, and they highlight different legislative frameworks that are relevant for coastal zone management. Stakeholder participation processes were subsequently evaluated at 3 case study sites in order to assess the actual implementation of participation in the context of their respective legislative frameworks: 1) Byfjorden in Bergen, Norway, in the context of the WFD; 2) Amvrakikos Gulf, Greece, in the context of the MSFD; and 3) Nordre Älv Estuary, Sweden, in the context of the MSP Directive. An overall assessment of the evaluation criteria indicates that the ARCH workshop series methodology of focusing first on the current status of the lagoon or estuary, then on future challenges, and finally on identifying management solutions provided a platform that was conducive for stakeholder participation. Results suggest that key criteria for a good participatory process were present and above average at the 3 case study sites. The results also indicate that the active engagement that was initiated at the 3 case study sites has led to capacity building among the participants, which is an important intermediary outcome of public participation. A strong connection between participatory processes and policy can ensure the legacy of the intermediary outcomes, which is an important and necessary

  14. Multi-tissue stable isotope analysis and acoustic telemetry reveal seasonal variability in the trophic interactions of juvenile bull sharks in a coastal estuary.

    Science.gov (United States)

    Matich, Philip; Heithaus, Michael R

    2014-01-01

    Understanding how natural and anthropogenic drivers affect extant food webs is critical to predicting the impacts of climate change and habitat alterations on ecosystem dynamics. In the Florida Everglades, seasonal reductions in freshwater flow and precipitation lead to annual migrations of aquatic taxa from marsh habitats to deep-water refugia in estuaries. The timing and intensity of freshwater reductions, however, will be modified by ongoing ecosystem restoration and predicted climate change. Understanding the importance of seasonally pulsed resources to predators is critical to predicting the impacts of management and climate change on their populations. As with many large predators, however, it is difficult to determine to what extent predators like bull sharks (Carcharhinus leucas) in the coastal Everglades make use of prey pulses currently. We used passive acoustic telemetry to determine whether shark movements responded to the pulse of marsh prey. To investigate the possibility that sharks fed on marsh prey, we modelled the predicted dynamics of stable isotope values in bull shark blood and plasma under different assumptions of temporal variability in shark diets and physiological dynamics of tissue turnover and isotopic discrimination. Bull sharks increased their use of upstream channels during the late dry season, and although our previous work shows long-term specialization in the diets of sharks, stable isotope values suggested that some individuals adjusted their diets to take advantage of prey entering the system from the marsh, and as such this may be an important resource for the nursery. Restoration efforts are predicted to increase hydroperiods and marsh water levels, likely shifting the timing, duration and intensity of prey pulses, which could have negative consequences for the bull shark population and/or induce shifts in behaviour. Understanding the factors influencing the propensity to specialize or adopt more flexible trophic interactions

  15. An Investigation of Momentum Exchange Parameterizations and Atmospheric Forcing for the Coastal Mixing and Optics Program

    Science.gov (United States)

    1998-09-01

    Stenner , 1996.] Figure 2.2. Coastal Mixing and Optics central 3 m discus buoy. [From Baumgartner and Anderson, 1997 (Figure 4).] 12 2.2.2. SoNIC...Meteorology, 78, 247-290. Stenner , R., 1996: Coastal Mixing and Optics Experimental Site (http://wavelet.apl.washington.edu/CMO/CMO_bath.html). Thiermann

  16. Application of Long Distance Conveyance (LDC) of Dredged Sediments to Louisiana Coastal Restoration

    Science.gov (United States)

    2011-01-01

    generally use some type of bucket for digging the sediment, then hoist or boom the load to the surface. Most common hydraulic methods use a centrifugal...sediment. The loaded bucket is hoisted to the surface and side dumped into a transportation unit, or into the disposal site. Transportation units are...Conveyance (LDC) of Dredged Sediments to Louisiana Coastal Restoration Timothy Welp Coastal and Hydraulics Laboratory U.S. Army Engineer Research

  17. Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system.

    Science.gov (United States)

    Cianelli, Daniela; D'Alelio, Domenico; Uttieri, Marco; Sarno, Diana; Zingone, Adriana; Zambianchi, Enrico; d'Alcalà, Maurizio Ribera

    2017-11-20

    This proof-of-concept study integrates the surface currents measured by high-frequency coastal radars with plankton time-series data collected at a fixed sampling point from the Mediterranean Sea (MareChiara Long Term Ecological Research site in the Gulf of Naples) to characterize the spatial origin of phytoplankton assemblages and to scrutinize the processes ruling their dynamics. The phytoplankton community generally originated from the coastal waters whereby species succession was mainly regulated by biological factors (life-cycle processes, species-specific physiological performances and inter-specific interactions). Physical factors, e.g. the alternation between coastal and offshore waters and the horizontal mixing, were also important drivers of phytoplankton dynamics promoting diversity maintenance by i) advecting species from offshore and ii) diluting the resident coastal community so as to dampen resource stripping by dominant species and thereby increase the numerical importance of rarer species. Our observations highlight the resilience of coastal communities, which may favour their persistence over time and the prevalence of successional events over small time and space scales. Although coastal systems may act differently from one another, our findings provide a conceptual framework to address physical-biological interactions occurring in coastal basins, which can be generalised to other areas.

  18. Large-scale coastal behaviour in relation to coastal zone management

    NARCIS (Netherlands)

    Stive, M.J.F.

    1990-01-01

    The development of coastal erosion management - addressing typical traditional erosion problems - towards coastal zone management addressing the evaluation of alternative solutions to guarantee a variety of coastal zone functions on their economic time scale - has necessitated the formulation of

  19. A study on the influence of tides on the water table conditions of the shallow coastal aquifers

    Science.gov (United States)

    Singaraja, C.; Chidambaram, S.; Jacob, Noble

    2018-03-01

    Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.

  20. Evaluation and Numerical Simulation of Tsunami for Coastal Nuclear Power Plants of India

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Singh, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-01-01

    Recent tsunami generated on December 26, 2004 due to Sumatra earthquake of magnitude 9.3 resulted in inundation at the various coastal sites of India. The site selection and design of Indian nuclear power plants demand the evaluation of run up and the structural barriers for the coastal plants: Besides it is also desirable to evaluate the early warning system for tsunami-genic earthquakes. The tsunamis originate from submarine faults, underwater volcanic activities, sub-aerial landslides impinging on the sea and submarine landslides. In case of a submarine earthquake-induced tsunami the wave is generated in the fluid domain due to displacement of the seabed. There are three phases of tsunami: generation, propagation, and run-up. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC), Trombay has initiated computational simulation for all the three phases of tsunami source generation, its propagation and finally run up evaluation for the protection of public life, property and various industrial infrastructures located on the coastal regions of India. These studies could be effectively utilized for design and implementation of early warning system for coastal region of the country apart from catering to the needs of Indian nuclear installations. This paper presents some results of tsunami waves based on different analytical/numerical approaches with shallow water wave theory. (authors)

  1. Egyptian coastal regions development through economic diversity for its coastal cities

    Directory of Open Access Journals (Sweden)

    Tarek AbdeL-Latif

    2012-12-01

    This study examines the structure of the coastal cities industry, the main types, the impacts (economic, environmental, and social of coastal cities, and the local trends in development in the Egyptian coastal cities and its regions. It will also analyze coastal and marine tourism in several key regions identified because of the diversity of life they support, and the potential destruction they could face. This paper confirms that economic diversification in coastal cities is more effective than developments in only one economic sector, even if this sector is prominent and important.

  2. Coastal Seabed Mapping with Hyperspectral and Lidar data

    Science.gov (United States)

    Taramelli, A.; Valentini, E.; Filipponi, F.; Cappucci, S.

    2017-12-01

    A synoptic view of the coastal seascape and its dynamics needs a quantitative ability to dissect different components over the complexity of the seafloor where a mixture of geo - biological facies determines geomorphological features and their coverage. The present study uses an analytical approach that takes advantage of a multidimensional model to integrate different data sources from airborne Hyperspectral and LiDAR remote sensing and in situ measurements to detect antropogenic features and ecological `tipping points' in coastal seafloors. The proposed approach has the ability to generate coastal seabed maps using: 1) a multidimensional dataset to account for radiometric and morphological properties of waters and the seafloor; 2) a field spectral library to assimilate the high environmental variability into the multidimensional model; 3) a final classification scheme to represent the spatial gradients in the seafloor. The spatial pattern of the response to anthropogenic forcing may be indistinguishable from patterns of natural variability. It is argued that this novel approach to define tipping points following anthropogenic impacts could be most valuable in the management of natural resources and the economic development of coastal areas worldwide. Examples are reported from different sites of the Mediterranean Sea, both from Marine Protected and un-Protected Areas.

  3. COASTAL, Pacific, Washington

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study data as defined in FEMA Guidelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a coastal study.

  4. Piping Plover response to coastal storms occurring during the nonbreeding season

    Directory of Open Access Journals (Sweden)

    Nadine R. Bourque

    2015-06-01

    Full Text Available The increase in coastal storm frequency and intensity expected under most climate change scenarios is likely to substantially modify beach configuration and associated habitats. This study aimed to analyze the impact of coastal storms on a nesting population of the endangered Piping Plover (Charadrius melodus melodus in southeastern New Brunswick, Canada. Previous studies have shown that numbers of nesting Piping Plovers may increase following storms that create new nesting habitat at individual beaches. However, to our knowledge, no test of this pattern has been conducted over a regional scale. We hypothesized that Piping Plover abundance would increase after large coastal storms occurring during the nonbreeding season. However, we expected a delay in the colonization of newly created habitat owing to low-density populations, combined with high site fidelity of adults and high variability in survival rate of subadults. We tested this hypothesis using a 27-year (1986-2012 data set of Piping Plover abundance and productivity (nesting pairs and fledged young collected at five sites in eastern New Brunswick. We identified 11 major storms that could potentially have modified Piping Plover habitat over the study period. The number of fledged young increased three years after a major storm, but the relationship was much weaker for the number of nesting pairs. These findings are consistent with the hypothesized increase in suitable habitat after coastal storms. Including storm occurrence with other factors influencing habitat quality will enhance Piping Plover conservation strategies.

  5. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    Science.gov (United States)

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical

  6. The coastal landscape of the river of silver basis for management

    International Nuclear Information System (INIS)

    Martinez, A.; Fernandez, E.; Cendom, A.; Vila, L.

    2013-01-01

    A complex of morphogenic, ecologic and cultural factors converge in coastal landscape modelling. The goal of this research is to identify the coastal environment as a water-land interphase in the Rio de la Plata, Uruguay. The area of work is within Punta Gorda, Colonia Department, and Maldonado River, in the Maldonado Department. An integrated landscape approach is used to interpret the complex of natural areas. The knowledge of natural complex is the goal of this research using the vegetation dynamic as an expression of site condition. Cartography at scale 1:50.000, colour composition of Landsat images at scale 1:100.000 (1994), aerial photographs at scale 1:10.000 (1994), are the source of information. A methodology of three components was organized: a typology of the coastal border, scale 1:500.000, a littoral morphology analysis using maps and aerial photographs, scale 1:10.000 and the coastal landscape, scale 1:100.000. A land cover legend was organized to integrate: geomorphology, vegetation and human intervention. It has 12 classes y 4 subclasses of land cover. This information was integrated in an analysis of an ideal coastal outline that represents the ideal disposition of the landscape elements in a cross and vertical perspective. The final goal of this research is an inventory of coastal uniform sectors. The research was performed within an approach of environmental factors equilibrium, such as geomorphology, environment, biologic and anthropogenic, and natural’s process in progress. Specific and general coastal problems are identified. A conceptual coastal landscape approach, a coastal cartography and setting of landscape units are the final products

  7. Role of a naturally varying flow regime in Everglades restoration

    Science.gov (United States)

    Harvey, Judson; Wetzel, Paul R.; Lodge, Thomas E.; Engel, Victor C.; Ross, Michael S.

    2017-01-01

    The Everglades is a low-gradient floodplain predominantly on organic soil that undergoes seasonally pulsing sheetflow through a network of deepwater sloughs separated by slightly higher elevation ridges. The seasonally pulsing flow permitted the coexistence of ridge and slough vegetation, including the persistence of productive, well-connected sloughs that seasonally concentrated prey and supported wading bird nesting success. Here we review factors contributing to the origin and to degradation of the ridge and slough ecosystem in an attempt to answer “How much flow is needed to restore functionality”? A key restoration objective is to increase sheetflow lost during the past century to reestablish interactions between flow, water depth, vegetation production and decomposition, and transport of flocculent organic sediment that build and maintain ridge and slough distinctions. Our review finds broad agreement that perturbations of water level depth and its fluctuations were primary in the degradation of landscape functions, with critical contributions from perturbed water quality, and flow velocity and direction. Whereas water levels are expected to be improved on average across a range of restoration scenarios that replace between 79 and 91% of predrainage flows, the diminished microtopography substantially decreases the probability of timely improvements in some areas whereas others that retain microtopographic differences are poised for restoration benefits. New advances in predicting restoration outcomes are coming from biophysical modeling of ridge–slough dynamics, system-wide measurements of landscape functionality, and large-scale flow restoration experiments, including active management techniques to kick-start slough regeneration.

  8. The initial investigation of Fatu-ma-Futi : an ancient coastal village site, Tutuila Island, Territory of American Samoa

    International Nuclear Information System (INIS)

    Addison, D.J.; Walter, G.; Morrison, A.

    2007-01-01

    Results of inital excavations at Fatu-ma-Futi Village are reported. Stratigraphy in two test pits was similar, with compacted surface layers of a car-parking lot underlain by a layer of clayey sand, fire-affected rock and ancient pebble-gravel paving, which slowly graded into the original beach surface. Post-moulds, shell midden, and basalt flakes were found in both units and human remains in one. Near-basal radiocarbon dates on charcoal suggest initial occupation of a newly formed littoral environment in the period of about 1600 to 1300 cal BP. Permanent habitation came later, with evidence of large-scale basalt tool manufacture towards the end of the sequence. This site is important for understanding current topics in Samoan prehistory, including settlement pattern and coastal geomorphology, marine exploitation and reef health, human lifestyle, health and burial practices, domestic architectural morphology; and the Tutuila basal export industry. (author). 37 refs., 8 figs., 7 tabs

  9. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zullo, V.A.; Harris, W.B.; Price, V. [eds.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  10. Development of Generic Tools for Coastal Early Warning and Decision Support

    Directory of Open Access Journals (Sweden)

    Bogaard Tom

    2016-01-01

    Full Text Available Recent and historic high-impact events demonstrated coastal risk (Xynthia, Europe, 2010; Katrina, USA, 2005. This is only to get worse, because risk is increasing due to increase in both hazard intensity, frequency and increase in consequences (increased coastal development. Adaptation requires a re-evaluation of coastal disaster risk reduction (DRR strategies and a new mix of prevention, mitigation (e.g. limiting construction in flood-prone areas and preparedness (e.g. Early warning systems, EWS measures. Within the EU funded project RISC-KIT the focus is on preparedness measures and its aim is to demonstrate robustness and applicability of coastal EWS (Early Warning Systems and DSS (Decision Support Systems. Delft-FEWS, a generic tool for Early Warning Systems has been extended, to be applied at sites all across Europe. The challenges for developing a modern EWS are found in the integration of large data sets, specialised modules to process the data, and open interfaces to allow easy integration of existing modelling capacities. In response to these challenges, Delft-FEWS provides a state of the art EWS framework, which is highly customizable to the specific requirements of an individual organisation. For ten case study sites on all EU regional seas a EWS has been developed, to provide real-time (short-term forecasts and early warnings. The EWS component is a 2D model framework of hydro-meteo and morphological models which computes hazard intensities. The total expected impact of a hazard can be obtained by using a Bayesian network DSS. This DSS, which is incorporated in the Delft-FEWS platform is a tool that links coastal multi-hazards to their socioeconomic and environmental consequences. An important innovation of the EWS/DSS lies in its application in dual mode: as a forecast and warning system and as a consistent ex-ante planning tool to evaluate the long-term vulnerability due to multiple (low-frequency coastal hazards, under various

  11. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

    Science.gov (United States)

    2013-09-30

    site, compared with WaveCIS site in Gulf of Mexico . Two Neural Networks (NN) approaches are explored for the retrieval of chlorophyll concentration...AERONET-OC sites (Long Island Sound and Gulf of Mexico respectively) as well as OC retrievals of the MODIS sensor. The underlying cause of the...cases of water conditions ranging from clear oceanic waters to turbid coastal waters, while ξ for both types of particles is fixed at 4.0, and for

  12. Contamination of diuron in coastal waters around Malaysian Peninsular.

    Science.gov (United States)

    Ali, Hassan Rashid; Arifin, Marinah Mohd; Sheikh, Mohammed Ali; Shazili, Noor Azhar Mohamed; Bakari, Said Suleiman; Bachok, Zainudin

    2014-08-15

    The use of antifouling paints to the boats and ships is one among the threats facing coastal resources including coral reefs in recent decades. This study reports the current contamination status of diuron and its behaviour in the coastal waters of Malaysia. The maximum concentration of diuron was 285 ng/L detected at Johor port. All samples from Redang and Bidong coral reef islands were contaminated with diuron. Temporal variation showed relatively high concentrations but no significant difference (P>0.05) during November and January (North-East monsoon) in Klang ports (North, South and West), while higher levels of diuron were detected during April, 2012 (Inter monsoon) in Kemaman, and Johor port. Although no site has shown concentration above maximum permissible concentration (430 ng/L) as restricted by the Dutch Authorities, however, long term exposure studies for environmental relevance levels of diuron around coastal areas should be given a priority in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Characteristics of coastal sage scrub in relation to fire history and use by California gnatcatchers

    Science.gov (United States)

    Jan L. Beyers; Ginger C. Pena

    1995-01-01

    Abstract: Plant cover and vegetation structure were examined at two inland coastal sage scrub sites differing in fire history and use by California gnatcatchers. Salvia mellifera and Eriogonum fasciculatum dominated one site; shrub cover on gnatcatcher occupied plots averaged 50 percent greater than on unoccupied plots. At the other site, gnatcatcher-occupied plots had...

  14. Occurrence and distribution of monomethylalkanes in the freshwater wetland ecosystem of the Florida Everglades.

    Science.gov (United States)

    He, Ding; Simoneit, Bernd R T; Jara, Blanca; Jaffé, Rudolf

    2015-01-01

    A series of mono-methylalkanes (MMAs) with carbon numbers from C10 to C23 and C29 were detected in freshwater wetlands of the Everglades. A decrease in concentration and molecular complexity was observed in the order from periphyton and floc, to surface soil and deeper soil horizons. These compounds were present in varying amounts up to 27 μg gdw(-1) in periphyton, 74 μg gdw(-1) in floc, 1.8 μg gdw(-1) in surface soil, <0.03 μg gdw(-1) in deeper soils (12-15 cm). A total of 46 MMAs, including three iso and three anteiso-alkanes, were identified. Compound specific carbon isotopes values were determined for some dominant MMAs, and suggest that they originate from microbial sources, including cyanobacteria. Potential decarboxylation from fatty acids could also potentially contribute to the MMAs detected. Early diagenetic degradation was suggested to affect the accumulation of MMAs in soils and further studies are needed to address their applications as biomarkers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. 75 FR 44938 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery

    Science.gov (United States)

    2010-07-30

    ... Coastal Fisheries Cooperative Management Act Provisions; Atlantic Coastal Shark Fishery AGENCY: National... moratorium on fishing for Atlantic coastal sharks in the State waters of New Jersey. NMFS canceled the... Fisheries Commission's (Commission) Interstate Fishery Management Plan for Atlantic Coastal Sharks (Coastal...

  16. Coastal debris analysis in beaches of Chonburi Province, eastern of Thailand as implications for coastal conservation.

    Science.gov (United States)

    Thushari, Gajahin Gamage Nadeeka; Chavanich, Suchana; Yakupitiyage, Amararatne

    2017-03-15

    This study quantified coastal debris along 3 beaches (Angsila, Bangsaen, Samaesarn) in eastern coast of Thailand. Debris samples were collected from lower and upper strata of these beaches during wet and dry seasons. The results showed that Bangsaen had the highest average debris density (15.5m -2 ) followed by Samaesarn (8.10m -2 ), and Angsila (5.54m -2 ). Among the 12 debris categories, the most abundant debris type was plastics (>45% of the total debris) in all beach locations. Coastal debris distribution was related to economic activities in the vicinity. Fishery and shell-fish aquaculture activities were primary sources of debris in Angsila while tourism activities were main sources in Bangsaen and Samaesarn. Site-specific pollution control mechanisms (environmental awareness, reuse and recycling) are recommended to reduce public littering. Management actions in Angsila should focus on fishery and shell-fish culture practices, while Bangsaen and Samaesarn should be directed toward leisure activities promoting waste management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Egyptian Red Sea coastal microbiome: A study revealing differential microbial responses to diverse anthropogenic pollutants.

    Science.gov (United States)

    Mustafa, Ghada A; Abd-Elgawad, Amr; Ouf, Amged; Siam, Rania

    2016-07-01

    The Red Sea is considered one of the youngest oceanic systems, with unique physical, geochemical and biological characteristics. Tourism, industrialization, extensive fishing, oil processing and shipping are extensive sources of pollution in the Red Sea. We analyzed the geochemical characteristics and microbial community of sediments along the Egyptian coast of the Red Sea. Our sites mainly included 1) four ports used for shipping aluminum, ilmenite and phosphate; 2) a site previously reported to have suffered extensive oil spills; and 3) a site impacted by tourism. Two major datasets for the sediment of ten Red Sea coastal sites were generated; i) a chemical dataset included measurements of carbon, hydrogen, nitrogen and sulfur, metals and selected semi-volatile oil; and ii) a 16S rRNA Pyrotags bacterial metagenomic dataset. Based on the taxonomic assignments of the 16S rRNA Pyrotags to major bacterial groups, we report 30 taxa constituting an Egyptian Red Sea Coastal Microbiome. Bacteria that degrade hydrocarbons were predominant in the majority of the sites, particularly in two ports where they reached up to 76% of the total identified genera. In contrast, sulfate-reducing and sulfate-oxidizing bacteria dominated two lakes at the expense of other hydrocarbon metabolizers. Despite the reported "Egyptian Red Sea Coastal Microbiome," sites with similar anthropogenic pollutants showed unique microbial community abundances. This suggests that the abundance of a specific bacterial community is an evolutionary mechanism induced in response to selected anthropogenic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Bataan Coastal Resource Management Programs: Environmental, Socio-Economic, and Implementation Issues from Stakeholders’ Views

    Directory of Open Access Journals (Sweden)

    Alvin B. Cervania

    2018-02-01

    Full Text Available A study on the status of Bataan’s coastal zones, and the issues on the province’s coastal resource management (CRM programs under an integrated framework was commissioned by the Department of Science and Technology-Region III in the Philippines. Twenty-eight representative coastal villages and 11 water testing sites served as study areas. The research participants totalled to 1,300. Focused group discussions, survey and interviews, laboratory testing, documentary analysis, and literature review were used in the data gathering. It was concluded that the province’s coastal zones are in a disturbed state, which has negative implications to its already subsistent coastal population and important coastal economic activities. The province’s CRM projects have been arbitrary and intermittent. There are too few conservation initiatives due to scarcity of baseline data necessary for more methodical CRM programs. There is poor grassroots level involvement in CRM decision-making processes as well which clearly defeats the essence of integrated coastal management. A coordinated effort to strengthen stakeholder participation in critical CRM stages, and to conduct more comprehensive profilings and assessments of the province’s coastal environment involving the government, academics, and scientists are recommended to substantiate stakeholder involvement and increase the quality of data for CRM projects.

  19. Working group 4a: Regional aspects. Nuclear power plants siting in the dutch speaking part of the country

    International Nuclear Information System (INIS)

    Willems, M.; Medart, R.; Vanneste, O.

    1976-01-01

    The problems due to nuclear plant siting in the northern region of Belgium are reviewed with an emphasis on economical, environmental and esthetical aspects. Three types of sitings were analysed: inland, coastal and off-shore. For the in-land siting, Doel, where already two units are in operation (780 MWe) and a third in construction (900 MWe), is supposed to be able to receive a fourth unit of 1000 MWe. The coastal siting is practically impossible for two reasons: the lack of cooling water when a coastal inland region of 5 km is considered and the strong density of tourists on the 66 km coast. For artificial island siting the different aspects are considered: type of soil, marine environment, construction factors, security, construction time, costs, etc. A comparative study for 9 off-shore sites is presented. (A.F.)

  20. Coastal Engineering

    NARCIS (Netherlands)

    Van der Velden, E.T.J.M.

    1989-01-01

    Introduction, waves, sediment transport, littoral transport, lonshore sediment transport, onshore-offshore sediment transport, coastal changes, dune erosion and storm surges, sedimentation in channels and trenches, coastal engineering in practice.

  1. Characteristics and environmental carrying capacities of coastal area in Yogyakarta Special Region for aquaculture

    Science.gov (United States)

    Triyatmo, B.; Rustadi; Priyono, S. B.

    2018-03-01

    The purpose of this study were to determine characteristics and environmental carrying capacities of coastal area in Yogyakarta Special Region for aquaculture. This study was conducted in 2015 by characterizing land and water dynamics, land use, and the suitability of coastal environments for aquaculture. Evaluation on the coastal environments suitability for aquaculture ponds was based on the landforms, soil properties, water quality and land. Selection of coastal locations for aquaculture development was based on the level of suitability of coastal environment. The results showed that the coastal in Kulon Progo and Bantul Regencies were characterized by sand dune and beach ridge with sandy soil texture, while in Gunungkidul Regency was characterized by limestone hill with rocky texture. Water sources of the coastal area were the sea, river, and ground water with the salinity of 31–37, 7–11, 7–31 ppt and pH of 7.4–8.4 7.0–8.2 and 7.4–9.9, respectively. The coastal lands were used for seasonal/annual planting, ponds, fish landing sites, tourism areas and conservation areas. The coastal carrying capacity was rather suitable for aquaculture, especially in the sandy soil area. Aquaculture in that area can be done intensively for shrimp (Litopenaeus vannamei), using biocrete (biological material) or plastic sheet.

  2. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    Science.gov (United States)

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.

  3. DNA damage, acetylcholinesterase activity and lysosomal stability in native and transplanted mussels (Mytilus edulis) in areas close to coastal chemical dumping sites in Denmark

    DEFF Research Database (Denmark)

    Rank, J.; Lehtonen, K. K.; Strand, J.

    2007-01-01

    of chemical pollution complex, as seen especially in the variability in results on DNA damage, and also in regard to AChE activity. These investigations further stress the importance of understanding the effects of natural factors (salinity, temperature, water levels, rain and storm events) in correct......Biomarkers of genotoxicity (DNA damage, measured as tail moment in the Comet assay), neurotoxicity (acetylcholinesterase inhibition, AChE) and general stress (lysosomal membrane stability, LMS) were studied in native and transplanted blue mussels (Mytilus edulis) in coastal areas of western Denmark...... potentially affected by anthropogenic pollution originating from chemical dumping sites. The results indicate responses to pollution in all the biomarkers applied at the suspected areas, but the results were not consistent. Seasonal fluctuations in exposure situations at the study sites make interpretation...

  4. 75 FR 9158 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery

    Science.gov (United States)

    2010-03-01

    ... Coastal Fisheries Cooperative Management Act Provisions; Coastal Sharks Fishery AGENCY: National Marine... Commission's Interstate Fishery Management Plan (ISFMP) for Coastal Sharks. Subsequently, the Commission... New Jersey failed to carry out its responsibilities under the Coastal Sharks ISFMP, and if the...

  5. Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species

    Science.gov (United States)

    Carstensen, Jacob; Klais, Riina; Cloern, James E.

    2015-01-01

    Phytoplankton blooms are dynamic phenomena of great importance to the functioning of estuarine and coastal ecosystems. We analysed a unique (large) collection of phytoplankton monitoring data covering 86 coastal sites distributed over eight regions in North America and Europe, with the aim of investigating common patterns in the seasonal timing and species composition of the blooms. The spring bloom was the most common seasonal pattern across all regions, typically occurring early (February–March) at lower latitudes and later (April–May) at higher latitudes. Bloom frequency, defined as the probability of unusually high biomass, ranged from 5 to 35% between sites and followed no consistent patterns across gradients of latitude, temperature, salinity, water depth, stratification, tidal amplitude or nutrient concentrations. Blooms were mostly dominated by a single species, typically diatoms (58% of the blooms) and dinoflagellates (19%). Diatom-dominated spring blooms were a common feature in most systems, although dinoflagellate spring blooms were also observed in the Baltic Sea. Blooms dominated by chlorophytes and cyanobacteria were only common in low salinity waters and occurred mostly at higher temperatures. Key bloom species across the eight regions included the diatoms Cerataulina pelagica and Dactyliosolen fragilissimus and dinoflagellates Heterocapsa triquetra and Prorocentrum cordatum. Other frequent bloom-forming taxa were diatom genera Chaetoceros, Coscinodiscus, Skeletonema, and Thalassiosira. Our meta-analysis shows that these 86 estuarine-coastal sites function as diatom-producing systems, the timing of that production varies widely, and that bloom frequency is not associated with environmental factors measured in monitoring programs. We end with a perspective on the limitations of conclusions derived from meta-analyses of phytoplankton time series, and the grand challenges remaining to understand the wide range of bloom patterns and

  6. The Civitavecchia Coastal Environment Monitoring System (C-CEMS): a new tool to analyze the conflicts between coastal pressures and sensitivity areas

    Science.gov (United States)

    Bonamano, S.; Piermattei, V.; Madonia, A.; Paladini de Mendoza, F.; Pierattini, A.; Martellucci, R.; Stefanì, C.; Zappalà, G.; Caruso, G.; Marcelli, M.

    2016-01-01

    The understanding of the coastal environment is fundamental for efficiently and effectively facing the pollution phenomena as expected by the Marine Strategy Framework Directive, and for limiting the conflicts between anthropic activities and sensitivity areas, as stated by Maritime Spatial Planning Directive. To address this, the Laboratory of Experimental Oceanology and Marine Ecology developed a multi-platform observing network that has been in operation since 2005 in the coastal marine area of Civitavecchia (Latium, Italy) where multiple uses and high ecological values closely coexist. The Civitavecchia Coastal Environment Monitoring System (C-CEMS), implemented in the current configuration, includes various components allowing one to analyze the coastal conflicts by an ecosystem-based approach. The long-term observations acquired by the fixed stations are integrated with in situ data collected for the analysis of the physical, chemical and biological parameters of the water column, sea bottom and pollution sources detected along the coast. The in situ data, integrated with satellite observations (e.g., temperature, chlorophyll a and TSM), are used to feed and validate the numerical models, which allow the analysis and forecasting of the dynamics of pollutant dispersion under different conditions. To test the potential capabilities of C-CEMS, two case studies are reported here: (1) the analysis of fecal bacteria dispersion for bathing water quality assessment, and (2) the evaluation of the effects of the dredged activities on Posidonia meadows, which make up most of the two sites of community importance located along the Civitavecchia coastal zone. The simulation outputs are overlapped by the thematic maps showing bathing areas and Posidonia oceanica distribution, thus giving a first practical tool that could improve the resolution of the conflicts between coastal uses (in terms of stress produced by anthropic activities) and sensitivity areas.

  7. Magnitude and variability of methane production and concentration in tropical coastal lagoons sediments

    Directory of Open Access Journals (Sweden)

    Antonella Petruzzella

    Full Text Available AIM: Coastal wetlands are potential zones for methane (CH4 production. The present study aims to evaluate the spatial variation of CH4 production and concentration in ten tropical coastal lagoons, the influence of aquatic macrophytes on the sediment CH4 concentration and how the magnitude of these potential CH4 production rates compare to those in other ecosystems. METHODS: Sediments were sampled in ten coastal lagoons, with one site in the limnetic region and another site in aquatic macrophyte stands when they were present in the littoral region. We measured the CH4 production as a potential rate, and CH4 concentration was directly measured from sediment samples. RESULTS: The highest potential CH4 production (PMP rates were found in alkaline and hypersaline lagoons. However, Cabiúnas, which is a freshwater lagoon densely colonized by aquatic macrophytes, also exhibited a high PMP rate. We also observed that the sediment CH4 concentration in the littoral region was higher than in the limnetic region in all of the investigated lagoons except Paulista, which presented the opposite pattern. The PMP rates observed in the studied lagoons were low compared to other aquatic ecosystems. CONCLUSION: Our results suggest that the sediments of saline lagoons are important CH4 production sites, and in general, aquatic macrophytes have a positive influence on methanogenesis, which was evident based on the CH4 concentrations present in the sediments of these lagoons. Further studies should focus on the processes underlying the CH4 patterns observed in the tropical coastal lagoons, especially concerning the coupling between CH4 production and concentration.

  8. Pollutant dispersion studies - An update on the problems in Indian coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.

    Pollutant dispersion problems along the Indian coastal waters are characterisEd. by site-specificity, as a result of seasonal and physiographic variabilities. Presence of large rivers, estuaries and backwaters add to the problems of waste disposal...

  9. Do ENSO and Coastal Development Enhance Coastal Burial of Terrestrial Carbon?

    Science.gov (United States)

    Macreadie, Peter I; Rolph, Timothy C; Boyd, Ron; Schröder-Adams, Claudia J; Skilbeck, Charles G

    2015-01-01

    Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Niño-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity ("super-ENSO") and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Niña), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensification--both of which are predicted to increase over the coming century--can enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial-marine carbon connectivity into global carbon budgets.

  10. Multi-temporal Linkages of Net Ecosystem Exchanges (NEE) with the Climatic and Ecohydrologic Drivers in a Florida Everglades Short-hydroperiod Freshwater Marsh

    Science.gov (United States)

    Zaki, M. T.; Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2017-12-01

    Wetlands are considered one of the most productive and ecologically valuable ecosystems on earth. We investigated the multi-temporal linkages of net ecosystem exchange (NEE) with the relevant climatic and ecohydrological drivers for a Florida Everglades short-hydroperiod freshwater wetland. Hourly NEE observations and the associated driving variables during 2008-12 were collected from the AmeriFlux and EDEN databases, and then averaged for the four temporal scales (1-day, 8-day, 15-day, and 30-day). Pearson correlation and factor analysis were employed to identify the interrelations and grouping patterns among the participatory variables for each time scale. The climatic and ecohydrological linkages of NEE were then reliably estimated using bootstrapped (1000 iterations) partial least squares regressions by resolving multicollinearity. The analytics identified four bio-physical components exhibiting relatively robust interrelations and grouping patterns with NEE across the temporal scales. In general, NEE was most strongly linked with the `radiation-energy (RE)' component, while having a moderate linkage with the `temperature-hydrology (TH)' and `aerodynamic (AD)' components. However, the `ambient atmospheric CO2 (AC)' component was very weakly linked to NEE. Further, RE and TH had a decreasing trend with the increasing time scales (1-30 days). In contrast, the linkages of AD and AC components increased from 1-day to 8-day scales, and then remained relatively invariable at the longer scales of aggregation. The estimated linkages provide insights into the dominant biophysical process components and drivers of ecosystem carbon in the Everglades. The invariant linking pattern and linkages would help to develop low-dimensional models to reliably predict CO2 fluxes from the tidal freshwater wetlands.

  11. Selection of site coolant intake and discharge of shore based power stations - coastal oceanographic considerations

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.; Krishnakumar, V.

    Many new nuclear power plants, reactors are proposed along coastal area of Indian coastline apart from the existing ones. All these, being ultimately a heat exchange process, necessitate enormous quantity of cooling water drawn from the sea...

  12. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya.

    Directory of Open Access Journals (Sweden)

    Bryson Alberto Ndenga

    Full Text Available Aedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo and two coastal (urban Ukunda and rural Msambweni sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2% by human landing catches, 459 (20.6% by Prokopack aspiration and 985 (44.2% by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579. Comparable numbers were collected in western (1,196 and coastal (1,033 sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (P<0.001, outdoors than indoors (P<0.001 and in urban than rural sites (P = 0.008. Significantly more Ae. aegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (P<0.001 and in urban than rural areas (P<0.001. Significantly more mosquitoes were collected using Biogents-sentinel traps in urban than rural areas (P = 0.008 and in western than coastal sites (P = 0.006. The probability of exposure to Ae. aegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral

  13. Coastal erosion and mass wasting along the Canadian Beaufort Sea based on annual airborne LiDAR elevation data

    Science.gov (United States)

    Obu, Jaroslav; Lantuit, Hugues; Grosse, Guido; Günther, Frank; Sachs, Torsten; Helm, Veit; Fritz, Michael

    2017-09-01

    Erosion of permafrost coasts has received increasing scientific attention since 1990s because of rapid land loss and the mobilisation potential of old organic carbon. The majority of permafrost coastal erosion studies are limited to time periods from a few years to decades. Most of these studies emphasize the spatial variability of coastal erosion, but the intensity of inter-annual variations, including intermediate coastal aggradation, remains poorly documented. We used repeat airborne Light Detection And Ranging (LiDAR) elevation data from 2012 and 2013 with 1 m horizontal resolution to study coastal erosion and accompanying mass-wasting processes in the hinterland. Study sites were selected to include different morphologies along the coast of the Yukon Coastal Plain and on Herschel Island. We studied elevation and volume changes and coastline movement and compared the results between geomorphic units. Results showed simple uniform coastal erosion from low coasts (up to 10 m height) and a highly diverse erosion pattern along coasts with higher backshore elevation. This variability was particularly pronounced in the case of active retrogressive thaw slumps, which can decrease coastal erosion or even cause temporary progradation by sediment release. Most of the extremes were recorded in study sites with active slumping (e.g. 22 m of coastline retreat and 42 m of coastline progradation). Coastline progradation also resulted from the accumulation of slope collapse material. These occasional events can significantly affect the coastline position on a specific date and can affect coastal retreat rates as estimated in long term by coastline digitalisation from air photos and satellite imagery. These deficiencies can be overcome by short-term airborne LiDAR measurements, which provide detailed and high-resolution information about quickly changing elevations in coastal areas.

  14. Genotoxicity Biomonitoring Along a Coastal Zone Under Influence of Offshore Petroleum Exploration (Southeastern Brazil).

    Science.gov (United States)

    Gutiérrez, Juan Manuel; da Conceição, Moisés Basilio; Molisani, Mauricio Mussi; Weber, Laura Isabel

    2018-03-01

    Offshore oil exploration creates threats to coastal ecosystems, including increasing urbanization and associated effluent releases. Genotoxicity biomarkers in mussels were determined across a gradient of coastal zone influences of offshore petroleum exploration in southeastern Brazil. Coastal ecosystems such as estuaries, beaches and islands were seasonally monitored for genotoxicity evaluation using the brown mussel Perna perna. The greatest DNA damage (5.2% ± 1.9% tail DNA and 1.5‰  ± 0.8‰ MN) were observed in urban estuaries, while Santana Archipelago showed levels of genotoxicity near zero and is considered a reference site. Mussels from urban and pristine beaches showed intermediate damage levels, but were also influenced by urbanization. Thus, mussel genotoxicity biomarkers greatly indicated the proposed oil exploration and urbanization scenarios that consequently are genetically affecting coastal organisms.

  15. Extreme wind conditions for a Danish offshore site

    DEFF Research Database (Denmark)

    Hansen, Kurt S.

    2000-01-01

    This paper presents an analysis of extreme wind speed gust values measured at a shallow water offshore site and at a coastal onshore site in Denmark. An estimate of 50-year extreme values has been evaluated using a new statistical method. In addition a mean gust shape is determined, based on a la...

  16. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades

    Science.gov (United States)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.

    2014-10-01

    The objective of this research was to measure temporal variability in accretion and mass sedimentation rates (including organic carbon (OC), total nitrogen (TN), and total phosphorous (TP)) from the past century in a mangrove forest on the Shark River in Everglades National Park, USA. The 210Pb Constant Rate of Supply model was applied to six soil cores to calculate annual rates over the most recent 10, 50, and 100 year time spans. Our results show that rates integrated over longer timeframes are lower than those for shorter, recent periods of observation. Additionally, the substantial spatial variability between cores over the 10 year period is diminished over the 100 year record, raising two important implications. First, a multiple-decade assessment of soil accretion and OC burial provides a more conservative estimate and is likely to be most relevant for forecasting these rates relative to long-term processes of sea level rise and climate change mitigation. Second, a small number of sampling locations are better able to account for spatial variability over the longer periods than for the shorter periods. The site average 100 year OC burial rate, 123 ± 19 (standard deviation) g m-2 yr-1, is low compared with global mangrove values. High TN and TP burial rates in recent decades may lead to increased soil carbon remineralization, contributing to the low carbon burial rates. Finally, the strong correlation between OC burial and accretion across this site signals the substantial contribution of OC to soil building in addition to the ecosystem service of CO2 sequestration.

  17. San Diego Littoral Cell CRSMP Receiver Sites 2009

    Data.gov (United States)

    California Natural Resource Agency — A total of 27 possible placement sites (some with multiple placement footprints) are incorporated into this San Diego Coastal Regional Sediment Management Plan to...

  18. San Diego Littoral Cell CRSMP Receiver Sites 2009

    Data.gov (United States)

    California Department of Resources — A total of 27 possible placement sites (some with multiple placement footprints) are incorporated into this San Diego Coastal Regional Sediment Management Plan to...

  19. Tenneco and Greenwood Islands Disposal Sites (Mississippi) 2004 Lidar Coverage, USACE National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico coastline of MS in 2004. The data...

  20. Promoting innovative stormwater solutions for coastal plain communities

    OpenAIRE

    Drescher, Sadie

    2010-01-01

    In 2008, the Center for Watershed Protection (CWP) surveyed seventy-three coastal plain communities to determine their current practices and need for watershed planning and low impact development (LID). The survey found that communities had varying watershed planning effectiveness and need better stormwater management, land use planning, and watershed management communication. While technical capacity is improving, stormwater programs are under staffed and innovative site designs ...

  1. Surface and airborne measurements of organosulfur and methanesulfonate over the western United States and coastal areas

    Science.gov (United States)

    Sorooshian, Armin; Crosbie, Ewan; Maudlin, Lindsay C.; Youn, Jong-Sang; Wang, Zhen; Shingler, Taylor; Ortega, Amber M.; Hersey, Scott; Woods, Roy K.

    2015-08-01

    This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur is also highest at coastal sites, with increasing values as a function of normalized difference vegetation index and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements, and the resulting data support the case for vanadium's catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32-0.56 µm at a desert and coastal site with nearly all MSA mass (≥84%) in submicrometer sizes; MSA:non-sea-salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed.

  2. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone.

    Science.gov (United States)

    Weinke, Anthony D; Kendall, Scott T; Kroll, Daniel J; Strickler, Eric A; Weinert, Maggie E; Holcomb, Thomas M; Defore, Angela A; Dila, Deborah K; Snider, Michael J; Gereaux, Leon C; Biddanda, Bopaiah A

    2014-11-01

    During the summers of 2002-2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L -1 day -1 , respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and -33 ± 15 µg C L -1 day -1 , respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles.

  3. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Adame

    Full Text Available Coastal wetlands can have exceptionally large carbon (C stocks and their protection and restoration would constitute an effective mitigation strategy to climate change. Inclusion of coastal ecosystems in mitigation strategies requires quantification of carbon stocks in order to calculate emissions or sequestration through time. In this study, we quantified the ecosystem C stocks of coastal wetlands of the Sian Ka'an Biosphere Reserve (SKBR in the Yucatan Peninsula, Mexico. We stratified the SKBR into different vegetation types (tall, medium and dwarf mangroves, and marshes, and examined relationships of environmental variables with C stocks. At nine sites within SKBR, we quantified ecosystem C stocks through measurement of above and belowground biomass, downed wood, and soil C. Additionally, we measured nitrogen (N and phosphorus (P from the soil and interstitial salinity. Tall mangroves had the highest C stocks (987±338 Mg ha(-1 followed by medium mangroves (623±41 Mg ha(-1, dwarf mangroves (381±52 Mg ha(-1 and marshes (177±73 Mg ha(-1. At all sites, soil C comprised the majority of the ecosystem C stocks (78-99%. Highest C stocks were measured in soils that were relatively low in salinity, high in P and low in N∶P, suggesting that P limits C sequestration and accumulation potential. In this karstic area, coastal wetlands, especially mangroves, are important C stocks. At the landscape scale, the coastal wetlands of Sian Ka'an covering ≈172,176 ha may store 43.2 to 58.0 million Mg of C.

  4. Coastal Inlet Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Coastal Inlet Model Facility, as part of the Coastal Inlets Research Program (CIRP), is an idealized inlet dedicated to the study of coastal inlets and equipped...

  5. Preliminary Evaluation of Critical Wave Energy Thresholds at Natural and Created Coastal Wetlands

    National Research Council Canada - National Science Library

    Shafer, Deborah

    2003-01-01

    This technical note presents an evaluation of the wave climate at eight natural and created coastal wetland sites in an effort to identify the existence of critical wave energy thresholds for long-term marsh stability...

  6. Bacterial abundance, communities and heterotrophic activities in the coastal waters off Tamil Nadu

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Raghukumar, C.; Sheelu, G.; Chandramohan, D.

    Culturable aerobic heterotrophic bacterial (CAHB) numbers, total direct counts (TDC), bacterial generic composition and uptake of labelled glucose by natural microbial assemblages were studied from a few selected coastal sites off Tamil Nadu. A high...

  7. Management of moderate wind energy coastal resources

    International Nuclear Information System (INIS)

    Karamanis, D.

    2011-01-01

    Research highlights: → Life cycle analysis reveals the viability of moderate wind fields utilization. → Wind turbine is the greenest electricity generator at a touristic site. → Wind parks should be collective applications of small hotel-apartments owners. -- Abstract: The feasibility of wind energy utilization at moderate wind fields was investigated for a typical touristic coastal site in Western Greece. Initially, the wind speed and direction as well as its availability, duration and diurnal variation were assessed. For an analysis period of eight years, the mean wind speed at ten meters was determined as 3.8 m s -1 with a small variation in monthly average wind speeds between 3.0 (January) and 4.4 m s -1 (October). The mean wind power density was less than 200 W m -2 at 10 m indicating the limiting suitability of the site for the usual renewable energy applications. However, life cycle analysis for wind turbine generators with lower cut-in, cut-out, and rated speeds revealed that the energy yield ratio can reach a value of six for a service life of 20 years while the energy pay-back period can be 3 years with 33 kt CO 2 -e of avoided greenhouse emissions. Therefore, the recent technological turbine improvements make wind power viable even at moderate wind fields. Moreover, the study of electricity supply of typical small hotel-apartments in the region of Western Greece indicated that the installation of 300 wind turbine generators in these moderate wind fields would cover the total consumption during the open touristic period with profits during the rest of the year. According to these results, wind turbine generators are the 'greenest' way of generating electricity in touristic coastal sites, even of moderate wind speeds.

  8. Desalination Brine Discharge Impacts on Coastal Biology and Water Chemistry - A Case Study from Carlsbad Southern California

    Science.gov (United States)

    Petersen, K. L.; Heck, N.; Potts, D. C.; Paytan, A.

    2017-12-01

    Fresh water demand is increasing world-wide due to on-going droughts, climate change and increasing human population and associated demand for food and water. Desalination of seawater is a reliable source of potable water; however the effects of byproduct brine discharge from desalination plants on coastal areas have not been thoroughly assessed. Here we report results from in-situmeasurements of the effects of brine discharge on water chemistry and coastal biology from a desalination plant in Carlsbad, Southern California. We compared select parameters in the coastal zone around the discharge site before and after operation began and conducted additional controlled laboratory incubations with key coastal species and brine effluent. Our in-situ data shows differences in salinity and temperature between the discharge area and a control site both before and after the desalination plant started operation. The discharge water is warmer by 3-5 Co than the ambient seawater and a temperature gradient is seen around the discharge channel. This is likely a result of mixing of the desalination brine with power plant cooling water for dilution prior to discharge and the higher temperatures are not directly attributed to the desalination. Our post-discharge results show a decipherable salinity plume at the bottom of the water column ( 6 m depth) reaching up to 600 m offshore from the discharge site. This indicates inefficient mixing of the brine in the coastal discharge zone. No significant differences are found in nutrient levels, organic carbon or chlorophyll a concentrations around the discharge. The benthic biology assemblage post-discharge is significantly different from the pre-discharge organisms' assemblage. However, the role of seasonal changes in temperature may also have impacted the data as the sampling was conducted during different seasons. Controlled incubation experiments of brittle stars (Ophiothrix spiculata) shows no significant difference in growth or

  9. A Systems Approach Framework for Coastal Zones

    Directory of Open Access Journals (Sweden)

    Tom S. Hopkins

    2011-12-01

    Full Text Available This Special Feature Volume examines the potential value of the Systems Approach Framework (SAF as a methodological framework for the transition to sustainable development in coastal zones. This article provides insight on the Systems Approach, the theory behind it, and how its practical application to coastal zone systems (CZSs was developed. The SAF is about information for management through a focus on how to generate a higher, dynamic level of information about complex CZSs and how to render this information more useful to end users through a participatory suite of communication methods. The SAF is an open research methodology that investigates the function of systems in order to simulate specific issues or questions concerning their function. The research articles that are included in this Volume demonstrate examples of coupled multidisciplinary methods integrated into SAF simulations appropriate to a selected policy issue and to the social-environmental conditions of each Study Site Application. Their findings are not the result of funded research projects; instead, they are by-products of pilot applications conducted to develop and improve the SAF methodology. The final article of this Volume synthesizes these results in the context of the SAF as a higher level instrument for integrated coastal zone management.

  10. Predictive occurrence models for coastal wetland plant communities: Delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-02-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007-Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  11. Phytoplankton community structure in local water types at a coastal site in north-western Bay of Bengal.

    Science.gov (United States)

    Baliarsingh, S K; Srichandan, Suchismita; Lotliker, Aneesh A; Sahu, K C; Srinivasa Kumar, T

    2016-07-01

    A comprehensive analysis on seasonal distribution of phytoplankton community structure and their interaction with environmental variables was carried out in two local water types (type 1  30 m isobath) at a coastal site in north-western Bay of Bengal. Phytoplankton community was represented by 211 taxa (146 marine, 37 fresh, 2 brackish, 20 marine-fresh, and 6 marine-brackish-fresh) belonging to seven major groups including 45 potential bloom forming and 22 potential toxin producing species. The seasonal variability depicted enrichment of phytoplankton during pre-monsoon in both water types. Total phytoplankton abundance pattern observed with inter-annual shift during monsoon and post-monsoon period at both water types. In both water types, diatom predominance was observed in terms of species richness and abundance comprising of centric (82 sp.) and pennate (58 sp.) forms. Pennate diatoms, Thalassiothrix longissima and Skeletonema costatum preponderated in both the water types. The diatom abundance was higher in type 1 in comparison to type 2. In general, SiO4 found to fuel growth of the dominant phytoplankton group, diatom in both the water types despite comparative lower concentration of other macronutrients in type 2.

  12. Coastal Analysis, Nassau,NY

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study as defined in FEMA Guides and Specifications, Appendix D: Guidance for coastal Flooding Analyses and Mapping submitted as a result of a coastal study....

  13. Coastal Dynamics

    NARCIS (Netherlands)

    Roelvink, J.A.; Steetzel, H.J.; Bliek, A.; Rakhorst, H.D.; Roelse, P.; Bakker, W.T.

    1998-01-01

    This book deals on "Coastal Dynamics", which will be defined in a narrow sense as a mathematical theory, which starts from given equations of motion for the sediment, which leads with the continuity equation and given boundary conditions to a calculated (eventually schematized) coastal topography,

  14. Local scale atmospheric diffusion at a coastal site in the presence of breeze effect (phase III: data elaboration and model development). Volume 1

    International Nuclear Information System (INIS)

    Cagnetti, P.; Ferrara, V.; Pellegrini, A.

    1985-01-01

    The aim of this contract is the characterization, from the thermal and anemological point of view, of the lower layers of the atmosphere at a coastal site, affected by breeze circulation. Data are utilized to set up diffusion models for accidental releases of airborne materials, both of short and prolonged duration. Five inland meteorological campaigns, starting from Jan. 82 (Jan., Apr., Jul., Oct. 1982, Jan. 1983), have been carried out; an appropriate extension of the contract allowed the execution of two more campaigns in the open sea (Apr., Jul. 1983), utilizing the oceanographic ship ''Bannock'' kindly supplied by CNR. The analysis of the data showed the development of a well defined IBL during on-shore flow only in Spring and Summer, while an inversion layer was detectable aloft independently of the season (provided that an anticyclonic situation was present). According to those relevant features a simple diffusion model has been developed for short duration releases at local scale. Finally, the analysis and elaboration of the data, collected on site by a meteorological automatic station, allowed the extension of the model to prolonged releases

  15. High 210Po atmospheric deposition flux in the subtropical coastal area of Japan

    International Nuclear Information System (INIS)

    Tateda, Yutaka; Iwao, Kenji

    2008-01-01

    Bulk atmospheric deposition fluxes of 210 Po and 210 Pb were measured at three coastal regions of Japan, the Pacific Ocean coastal area of the Japanese mainland (Odawa Bay), the Chinese continental side of Japanese coastal area (Tsuyazaki), and an isolated island near Okinawa (Akajima). Wet and dry fallout collectors were continuously deployed from September 1997 through August 1998 for periods of 3 to 31 days depending on the frequency of precipitation events. Annual 210 Pb deposition fluxes at Odawa Bay (35 o N 139 o E), Tsuyazaki (33 o N 130 o E) and Akajima (26 o N 127 o E) were 73.3 ± 8.0, 197 ± 35 and 78.5 ± 8.0 Bq m -2 y -1 , respectively. Higher 210 Pb deposition was observed at the Chinese continental side of Japanese coast than at the Pacific Ocean coastal site. The high 210 Pb atmospheric flux at the Chinese continental side coast was thought to be attributable to 222 Rn-rich air-mass transport from the Chinese continent during the winter monsoon. In contrast, the annual 210 Po deposition fluxes at the three study sites were 13.0 ± 2.3 (Odawa Bay), 21.9 ± 4.4 (Tsuyazaki) and 58.4 ± 7.7 (Akajima) Bq m -2 y -1 , respectively, indicating unusual high 210 Po deposition at Akajima during winter. Anomalous unsupported 210 Po input was observed during summer 1997, suggesting unknown source of 210 Po at this area

  16. Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: Concentrations, composition, and associated risks to protected sea otters

    International Nuclear Information System (INIS)

    Harris, Kate A.; Yunker, Mark B.; Dangerfield, Neil; Ross, Peter S.

    2011-01-01

    Sediment-associated hydrocarbons can pose a risk to wildlife that rely on benthic marine food webs. We measured hydrocarbons in sediments from the habitat of protected sea otters in coastal British Columbia, Canada. Alkane concentrations were dominated by higher odd-chain n-alkanes at all sites, indicating terrestrial plant inputs. While remote sites were dominated by petrogenic polycyclic aromatic hydrocarbons (PAHs), small harbour sites within sea otter habitat and sites from an urban reference area reflected weathered petroleum and biomass and fossil fuel combustion. The partitioning of hydrocarbons between sediments and adjacent food webs provides an important exposure route for sea otters, as they consume ∼25% of their body weight per day in benthic invertebrates. Thus, exceedences of PAH sediment quality guidelines designed to protect aquatic biota at 20% of the sites in sea otter habitat suggest that sea otters are vulnerable to hydrocarbon contamination even in the absence of catastrophic oil spills. - Highlights: → Sediment hydrocarbon signatures differed between remote and impacted coastal sites. → A natural background comprised terrestrial plant alkanes and petrogenic PAHs. → Impacted sites reflected a history of petrogenic and pyrogenic hydrocarbon inputs. → Hydrocarbons at some sites exceeded guidelines for the protection of aquatic life. → Protected sea otters may thus be at risk as they rely primarily on benthic prey. - Anthropogenically-derived hydrocarbons in coastal sediments in British Columbia may pose a risk to protected sea otters.

  17. Preliminary assessment of coastal erosion and local community adaptation in Sayung coastal area, central Java – Indonesia

    OpenAIRE

    Marfai, Muh Aris

    2012-01-01

    Dynamic environment in coastal area, especially due to coastal erosion process, has negative impact on human environment. Sayung coastal area, located in Central Java-Indonesia, has experienced severe impact of coastal erosion. As the result of the coastal erosion, hundreds of settlement located in coastal area has been destructed. Moreover, fishponds as the land use dominated in the coastal area also has been severely destroyed. Besides the coastal erosion, increasing of inundated area due t...

  18. Southern African Coastal vulnerability assessment

    CSIR Research Space (South Africa)

    Rautenbach, C

    2015-10-01

    Full Text Available or business. The CSIR coastal systems group uses specialist skills in coastal engineering, geographic engineering systems and numerical modelling to assess and map vulnerable coastal ecosystems to develop specific adaptation measures and coastal protection...

  19. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    Eden, H.F.; Mooers, C.N.K.

    1990-06-01

    The goal of COPS is to couple a program of regular observations to numerical models, through techniques of data assimilation, in order to provide a predictive capability for the US coastal ocean including the Great Lakes, estuaries, and the entire Exclusive Economic Zone (EEZ). The objectives of the program include: determining the predictability of the coastal ocean and the processes that govern the predictability; developing efficient prediction systems for the coastal ocean based on the assimilation of real-time observations into numerical models; and coupling the predictive systems for the physical behavior of the coastal ocean to predictive systems for biological, chemical, and geological processes to achieve an interdisciplinary capability. COPS will provide the basis for effective monitoring and prediction of coastal ocean conditions by optimizing the use of increased scientific understanding, improved observations, advanced computer models, and computer graphics to make the best possible estimates of sea level, currents, temperatures, salinities, and other properties of entire coastal regions

  20. Comparison of the seasonal variability in abundance of the copepod Pseudocalanus newmani in Lagoon Notoro-ko and a coastal area of the southwestern Okhotsk Sea

    Science.gov (United States)

    Kitamura, Mitsuaki; Nakagawa, Yoshizumi; Nishino, Yasuto; Segawa, Susumu; Shiomoto, Akihiro

    2018-03-01

    Replacement of the warm water of the Soya Warm Current (SWC) and the cold water of the East Sakhalin Current (ESC) occurs seasonally along the coast of the southwestern Okhotsk Sea, and sea ice covers the surface during winter. Pseudocalanus newmani is one of the dominant copepods in coastal waters of the northern hemisphere. To better understand the population dynamics of the copepod P. newmani in coastal areas of the southwestern Okhotsk Sea, this study compared the seasonal variation in P. newmani abundance in Lagoon Notoro-ko and a coastal area of the Okhotsk Sea with regard to developmental stage. We sampled P. newmani in the lagoon, including during the ice cover season, and the coastal waters. Pseudocalanus newmani was abundant at both sites in spring. During summer-fall, adults disappeared from the populations at both sites, whereas the early developmental stages were abundant and dominated the population. Total length of adult females decreased toward summer at both sites. Pseudocalanus newmani abundance in the lagoon increased in early winter, and larger females were found in the populations at both sites. These phenomena at both sites corresponded with seasonal variation in water temperature caused by seasonal water-mass replacement and sea ice.

  1. Sediment quality in the north coastal basin of Massachusetts, 2003

    Science.gov (United States)

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston

  2. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area.

    Science.gov (United States)

    Lee, Mi-Ri-Nae; Kim, Un-Jung; Lee, In-Seok; Choi, Minkyu; Oh, Jeong-Eun

    2015-10-15

    Twelve organotins (methyl-, octyl-, butyl-, and phenyl-tin), and eight tin-free antifouling paints and their degradation products were measured in marine sediments from the Korean coastal area, and Busan and Ulsan bays, the largest harbor area in Korea. The total concentration of tin-free antifouling paints was two- to threefold higher than the total concentration of organotins. Principal component analysis was used to identify sites with relatively high levels of contamination in the inner bay area of Busan and Ulsan bays, which were separated from the coastal area. In Busan and Ulsan bays, chlorothalonil and DMSA were more dominant than in the coastal area. However, Sea-Nine 211 and total diurons, including their degradation products, were generally dominant in the Korean coastal area. The concentrations of tin and tin-free compounds were significantly different between the east and west coasts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Soil recovery across a chronosequence of restored wetlands in the Florida Everglades

    Science.gov (United States)

    Wang, Qibing; Li, Yuncong; Zhang, Min

    2015-12-01

    The restoration project in the Hole-in-the-Donut of Everglades National Park in Florida, USA is to reestablish native wetlands by complete removal of the invasive plants and the associated soil. However, there is little information available about changes in properties of the newly formed Marl soils in restored wetlands. In this study, we measured soil physicochemical properties, soil enzymatic activities, and stable isotopes of carbon (δ13C) in plants and soil organic carbon (SOC) in an undisturbed natural wetland (UNW) and three wetlands restored respectively in 1989, 1996 and 1999 (WR89, WR96 and WR99). The older restored wetlands (WR89 and WR96) are characterized by greater SOC and mineral nitrogen. The values of soil dehydrogenase and phosphatase activities in the four wetlands follow the order: UNW > WR89 > WR96 > WR99, and are consistent with changes in vegetation coverage. The principal component analysis shows that dehydrogenase and phosphatase activities are the vital variables contributing to the soil of UNW. The similar δ13C values of SOC and plants in the restored wetlands suggest the formation of SOC during restoration is mainly derived from the associated plants. These results indicate that the newly restored soils develop toward the soil in the UNW with time since restoration.

  4. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities.

    Directory of Open Access Journals (Sweden)

    John F Grider

    Full Text Available Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis and tricolored bat (Perimyotis subflavus, were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus

  5. Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities.

    Science.gov (United States)

    Grider, John F; Larsen, Angela L; Homyack, Jessica A; Kalcounis-Rueppell, Matina C

    2016-01-01

    Across the entire distribution of a species, populations may have variable responses to environmental perturbations. Many bat species experience mortality in large portions of their range during hibernation and along migratory paths to and from wintering grounds, from White-nose syndrome (WNS) and wind energy development, respectively. In some areas, warm temperatures may allow bats to remain active through winter, thus decreasing their susceptibility to WNS and/or mortality associated with migration to wintering grounds. These areas could act as a refugia and be important for the persistence of local populations. To determine if warmer temperatures affect bat activity, we compared year-round activity of bat populations in the Coastal Plain and Piedmont of North Carolina, USA, two regions that differ in winter temperature. We established six recording stations, four along a 295-kilometer north-south transect in the Coastal Plain, and two in the Piedmont of North Carolina. We recorded bat activity over two years. We supplemented our recordings with mist-net data. Although bat activity was lower during winter at all sites, the odds of recording a bat during winter were higher at Coastal Plain sites when compared with Piedmont sites. Further, bats in the Piedmont had a lower level of winter activity compared to summer activity than bats in the Coastal Plain that had more similar levels of activity in the winter and summer. We found high bat species richness on the Coastal Plain in winter, with winter-active species including those known to hibernate throughout most of their range and others known to be long distance migrants. In particular, two species impacted by WNS, the northern long-eared bat (Myotis septentrionalis) and tricolored bat (Perimyotis subflavus), were present year round in the Coastal Plain. The tricolored bat was also present year-round in the Piedmont. In the Coastal Plain, the long distance migratory hoary bat (Lasiurus cinereus) was active in the

  6. Resilience from coastal protection.

    Science.gov (United States)

    Ewing, Lesley C

    2015-10-28

    Coastal areas are important residential, commercial and industrial areas; but coastal hazards can pose significant threats to these areas. Shoreline/coastal protection elements, both built structures such as breakwaters, seawalls and revetments, as well as natural features such as beaches, reefs and wetlands, are regular features of a coastal community and are important for community safety and development. These protection structures provide a range of resilience to coastal communities. During and after disasters, they help to minimize damages and support recovery; during non-disaster times, the values from shoreline elements shift from the narrow focus on protection. Most coastal communities have limited land and resources and few can dedicate scarce resources solely for protection. Values from shore protection can and should expand to include environmental, economic and social/cultural values. This paper discusses the key aspects of shoreline protection that influence effective community resilience and protection from disasters. This paper also presents ways that the economic, environmental and social/cultural values of shore protection can be evaluated and quantified. It presents the Coastal Community Hazard Protection Resilience (CCHPR) Index for evaluating the resilience capacity to coastal communities from various protection schemes and demonstrates the use of this Index for an urban beach in San Francisco, CA, USA. © 2015 The Author(s).

  7. Predicting impact of SLR on coastal flooding in Banda Aceh coastal defences

    Science.gov (United States)

    Al'ala, Musa; Syamsidik, Kato, Shigeru

    2017-10-01

    Banda Aceh is a low-lying city located at the northern tip of Sumatra Island and situated at the conjuncture of Malacca Strait and the Andaman Sea. A Sea Level Rise (SLR) rate at 7 mm/year has been observed around this region. In the next 50 years, this city will face a serious challenge to encounter impacts of the sea level rise, such as frequent coastal floodings. This study is aimed at estimating impacts of the sea level rise induced coastal floodings on several types of coastal structures and city drainage system. Numerical simulations of Delft3D were applied to investigate the influence of the gradual sea level rise in 50 years. The hydrodynamic process of coastal flooding and sediment transport were simulated by Delft3D-Flow. Topography and bathymetry data were collected from GEBCO and updated with the available nautical chart (DISHIDROS, JICA, and field measurements). Hydrodynamic process gains the flow process revealing the level of the sea water intrusion also observed in the model. Main rivers (Krueng Aceh, Krueng Neng, and Alue Naga Flood Canal) and the drainage system were observed to see the tides effects on coastal structures and drainage system. The impact on coastal community focusing on affected area, shoreline retreat, the rate of sea intrusion was analyzed with spatial tools. New coastal line, coastal flooding vulnerable area, and the community susceptibility properties map influenced by 50 years sea level rise is produced. This research found that the city needs to address strategies to anticipate the exacerbating impacts of the sea level rise by managing its coastal spatial planning and modify its drainage system, especially at the drainage outlets.

  8. Biodiversity studies in three Coastal Wetlands in Ghana, West Africa ...

    African Journals Online (AJOL)

    Plant biodiversity studies of three coastal wetlands in Ghana were made. The wetlands are the Sakumo, Muni-Pomadze and Densu Delta Ramsar sites. Each wetland is made up of a flood plain which consists of salt marsh (about 20%), mangrove swamps (between 15 and 30%), fresh water swamp (about 40 - 45%), and in ...

  9. Modelling coastal processes and morphological changes of the UK east coast in support of coastal decision-making

    Science.gov (United States)

    Li, Xiaorong; Leonardi, Nicoletta; Brown, Jennifer; Plater, Andy

    2017-04-01

    The coastline of Eastern England is home to about one quarter of the UK's coastal habitats, including intertidal salt marshes, tidal flats and sand dunes. These geomorphic features are of great importance to the local wildlife, global biodiversity, marine environment and human society and economy. Due to sea-level rise and the occurrence of extreme weather conditions, the coastline of Eastern England is under high risk of erosion and recession, which could lead to tidal inundation of sites such as the RSPB Minsmere Reserve and power generation infrastructure at Sizewell. This research responds to the need for sustainable shoreline management plans of the UK east coast through sensitivity studies at the Dunwich-Sizewell area, Suffolk, UK. Particular interest is on the long-term morphodynamic response of the study area to possible environmental variations associated with global climate change. Key coastal processes, i.e. current, waves and sediment transport, and morphological evolution are studied using a process-based numerical model under the following scenarios: current mean sea level + calm wave conditions, current mean sea level + storms, sea level rise + calm wave conditions, and sea level rise + storms, all with a 'do nothing' management plan which allows the coastal environment to exist and respond dynamically. As a further aspect of this research, rules will be generalized for reduced-complexity, system-based modelling. Alternative management plans, including 'managed realignment' and 'advance the line', are also investigated in this research under the same environmental forcing scenarios, for the purposes of protection of infrastructure of national importance and conservation of wetland habitats. Both 'hard' and 'soft' engineering options, such as groynes and beach nourishment respectively, are considered. A more ecohydrological option which utilizes aquatic plant communities for wave energy dissipation and sediment trapping is also studied. The last

  10. Results of hydrologic monitoring on landslide-prone coastal bluffs near Mukilteo, Washington

    Science.gov (United States)

    Smith, Joel B.; Baum, Rex L.; Mirus, Benjamin B.; Michel, Abigail R.; Stark, Ben

    2017-08-31

    A hydrologic monitoring network was installed to investigate landslide hazards affecting the railway corridor along the eastern shore of Puget Sound between Seattle and Everett, near Mukilteo, Washington. During the summer of 2015, the U.S. Geological Survey installed monitoring equipment at four sites equipped with instrumentation to measure rainfall and air temperature every 15 minutes. Two of the four sites are installed on contrasting coastal bluffs, one landslide scarred and one vegetated. At these two sites, in addition to rainfall and air temperature, volumetric water content, pore pressure, soil suction, soil temperature, and barometric pressure were measured every 15 minutes. The instrumentation was designed to supplement landslide-rainfall thresholds developed by the U.S. Geological Survey with a long-term goal of advancing the understanding of the relationship between landslide potential and hydrologic forcing along the coastal bluffs. Additionally, the system was designed to function as a prototype monitoring system to evaluate criteria for site selection, instrument selection, and placement of instruments. The purpose of this report is to describe the monitoring system, present the data collected since installation, and describe significant events represented within the dataset, which is published as a separate data release. The findings provide insight for building and configuring larger, modular monitoring networks.

  11. 76 FR 39857 - Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under...

    Science.gov (United States)

    2011-07-07

    ... DEPARTMENT OF COMMERCE National Oceanic Atmospheric Administration Alaska Coastal Management Program Withdrawal From the National Coastal Management Program Under the Coastal Zone Management Act (CZMA) AGENCY: Office of Ocean and Coastal Resource Management (OCRM), National Ocean Service (NOS...

  12. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  13. NOAA Water Level Predictions Stations for the Coastal United States and Other Non-U.S. Sites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Ocean Service (NOS) maintains a long-term database containing water level measurements and derived tidal data for coastal waters of the United States...

  14. Formulating a coastal zone health metric for landuse impact management in urban coastal zones.

    Science.gov (United States)

    Anilkumar, P P; Varghese, Koshy; Ganesh, L S

    2010-11-01

    The need for ICZM arises often due to inadequate or inappropriate landuse planning practices and policies, especially in urban coastal zones which are more complex due to the larger number of components, their critical dimensions, attributes and interactions. A survey of literature shows that there is no holistic metric for assessing the impacts of landuse planning on the health of a coastal zone. Thus there is a need to define such a metric. The proposed metric, CHI (Coastal zone Health Indicator), developed on the basis of coastal system sustainability, attempts to gauge the health status of any coastal zone. It is formulated and modeled through an expert survey and pertains to the characteristic components of coastal zones, their critical dimensions, and relevant attributes. The proposed metric is applied to two urban coastal zones and validated. It can be used for more coast friendly and sustainable landuse planning/masterplan preparation and thereby for the better management of landuse impacts on coastal zones. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. POLLUTION OF SHOKARSKI STORMWATER CANAL AND ITS INFLUENCE ON THE QUALITY OF THE VARNA BLACK SEA COASTAL AREA, BULGARIA

    Directory of Open Access Journals (Sweden)

    Anna Simeonova

    2012-03-01

    Full Text Available Pollution of Shokarski stormwater canal and its influence on the quality of the Varna Black Sea coastal area, Bulgaria. In the present study was investigated the pollution of Shokаrski stormwater canal, discharging its water into the Varna Black Sea coastal area. Monitoring was carried out during 2011 year at 5 sites along the canal water flow. The pollution was determined by organoleptic and physico- chemical characteristics, nutrients concentrations and the organic load. Critical levels of dissolved oxygen were measured at some of the monitoring sites ranging from 0,65 to 2,79 mg/dm3. Ammonium and nitrite concentrations were above the threshold limits at all sites. The phosphates’ concentrations varied very dynamically ranging from 0,18 to 11,8 mg/dm3 and in most of the cases exceeded the threshold limit. Very high levels of biochemically degradable organic pollutants were determined with biochemical oxygen demand values reaching- 68,96 mg/dm3. The Shokarski canal pollution could be considered as a tremendous thread for the quality of the Varna Black Sea coastal area, Bulgaria.

  16. Spatial segregation of spawning habitat limits hybridization between sympatric native Steelhead and Coastal Cutthroat Trout

    Science.gov (United States)

    Buehrens, T.W.; Glasgow, J.; Ostberg, Carl O.; Quinn, T.P.

    2013-01-01

    Native Coastal Cutthroat Trout Oncorhynchus clarkii clarkii and Coastal Steelhead O. mykiss irideus hybridize naturally in watersheds of the Pacific Northwest yet maintain species integrity. Partial reproductive isolation due to differences in spawning habitat may limit hybridization between these species, but this process is poorly understood. We used a riverscape approach to determine the spatial distribution of spawning habitats used by native Coastal Cutthroat Trout and Steelhead as evidenced by the distribution of recently emerged fry. Molecular genetic markers were used to classify individuals as pure species or hybrids, and individuals were assigned to age-classes based on length. Fish and physical habitat data were collected in a spatially continuous framework to assess the relationship between habitat and watershed features and the spatial distribution of parental species and hybrids. Sampling occurred in 35 reaches from tidewaters to headwaters in a small (20 km2) coastal watershed in Washington State. Cutthroat, Steelhead, and hybrid trout accounted for 35%, 42%, and 23% of the fish collected, respectively. Strong segregation of spawning areas between Coastal Cutthroat Trout and Steelhead was evidenced by the distribution of age-0 trout. Cutthroat Trout were located farther upstream and in smaller tributaries than Steelhead were. The best predictor of species occurrence at a site was the drainage area of the watershed that contributed to the site. This area was positively correlated with the occurrence of age-0 Steelhead and negatively with the presence of Cutthroat Trout, whereas hybrids were found in areas occupied by both parental species. A similar pattern was observed in older juveniles of both species but overlap was greater, suggesting substantial dispersal of trout after emergence. Our results offer support for spatial reproductive segregation as a factor limiting hybridization between Steelhead and Coastal Cutthroat Trout.

  17. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound.

    Science.gov (United States)

    Lee, Timothy S; Toft, Jason D; Cordell, Jeffery R; Dethier, Megan N; Adams, Jeffrey W; Kelly, Ryan P

    2018-01-01

    Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic-terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness) from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  18. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound

    Directory of Open Access Journals (Sweden)

    Timothy S. Lee

    2018-02-01

    Full Text Available Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic–terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  19. Spatial variability of coastal wetland resilience to sea-level rise using Bayesian inference

    Science.gov (United States)

    Hardy, T.; Wu, W.

    2017-12-01

    The coastal wetlands in the Northern Gulf of Mexico (NGOM) account for 40% of coastal wetland area in the United States and provide various ecosystem services to the region and broader areas. Increasing rates of relative sea-level rise (RSLR), and reduced sediment input have increased coastal wetland loss in the NGOM, accounting for 80% of coastal wetland loss in the nation. Traditional models for predicting the impact of RSLR on coastal wetlands in the NGOM have focused on coastal erosion driven by geophysical variables only, and/or at small spatial extents. Here we developed a model in Bayesian inference to make probabilistic prediction of wetland loss in the entire NGOM as a function of vegetation productivity and geophysical attributes. We also studied how restoration efforts help maintain the area of coastal wetlands. Vegetation productivity contributes organic matter to wetland sedimentation and was approximated using the remotely sensed normalized difference moisture index (NDMI). The geophysical variables include RSLR, tidal range, river discharge, coastal slope, and wave height. We found a significantly positive relation between wetland loss and RSLR, which varied significantly at different river discharge regimes. There also existed a significantly negative relation between wetland loss and NDMI, indicating that in-situ vegetation productivity contributed to wetland resilience to RSLR. This relation did not vary significantly between river discharge regimes. The spatial relation revealed three areas of high RSLR but relatively low wetland loss; these areas were associated with wetland restoration projects in coastal Louisiana. Two projects were breakwater projects, where hard materials were placed off-shore to reduce wave action and promote sedimentation. And one project was a vegetation planting project used to promote sedimentation and wetland stabilization. We further developed an interactive web tool that allows stakeholders to develop similar wetland

  20. Culex coronator in coastal Georgia and South Carolina.

    Science.gov (United States)

    Moulis, Robert A; Russell, Jennifer D; Lewandowski, Henry B; Thompson, Pamela S; Heusel, Jeffrey L

    2008-12-01

    In 2007, adult Culex coronator were collected in Chatham County, Georgia, and Jasper County, South Carolina, during nuisance and disease vector surveillance efforts. A total of 75 specimens of this species were collected at 8 widely separated locations in Chatham County, Georgia, and 4 closely situated sites in Jasper County, South Carolina. These represent the first Atlantic coastal records of this species in Georgia and the first confirmed records of Cx. coronator in South Carolina.

  1. Predictive occurrence models for coastal wetland plant communities: delineating hydrologic response surfaces with multinomial logistic regression

    Science.gov (United States)

    Snedden, Gregg A.; Steyer, Gregory D.

    2013-01-01

    Understanding plant community zonation along estuarine stress gradients is critical for effective conservation and restoration of coastal wetland ecosystems. We related the presence of plant community types to estuarine hydrology at 173 sites across coastal Louisiana. Percent relative cover by species was assessed at each site near the end of the growing season in 2008, and hourly water level and salinity were recorded at each site Oct 2007–Sep 2008. Nine plant community types were delineated with k-means clustering, and indicator species were identified for each of the community types with indicator species analysis. An inverse relation between salinity and species diversity was observed. Canonical correspondence analysis (CCA) effectively segregated the sites across ordination space by community type, and indicated that salinity and tidal amplitude were both important drivers of vegetation composition. Multinomial logistic regression (MLR) and Akaike's Information Criterion (AIC) were used to predict the probability of occurrence of the nine vegetation communities as a function of salinity and tidal amplitude, and probability surfaces obtained from the MLR model corroborated the CCA results. The weighted kappa statistic, calculated from the confusion matrix of predicted versus actual community types, was 0.7 and indicated good agreement between observed community types and model predictions. Our results suggest that models based on a few key hydrologic variables can be valuable tools for predicting vegetation community development when restoring and managing coastal wetlands.

  2. Late quaternary sea level changes of Gabes coastal plain and shelf ...

    Indian Academy of Sciences (India)

    site to study coastal changes at time scale, rang- ing from ... regional shoreline during MIS 5c (100 ka) and MIS .... Remote sensing drainage network anal- ... Around Gabes city, the Pleistocene deposits are ... tems are well developed and fluvial discharges are ..... relative sea-level rise: A case study from trab el makhadha.

  3. Wintertime dynamics in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment

    Directory of Open Access Journals (Sweden)

    I. Vilibić

    2018-03-01

    Full Text Available The paper investigates the wintertime dynamics of the coastal northeastern Adriatic Sea and is based on numerical modelling and in situ data collected through field campaigns executed during the winter and spring of 2015. The data were collected with a variety of instruments and platforms (acoustic Doppler current profilers, conductivity–temperature–depth probes, glider, profiling float and are accompanied by the atmosphere–ocean ALADIN/ROMS modelling system. The research focused on the dense-water formation (DWF, thermal changes, circulation, and water exchange between the coastal and open Adriatic. According to both observations and modelling results, dense waters are formed in the northeastern coastal Adriatic during cold bora outbreaks. However, the dense water formed in this coastal region has lower densities than the dense water formed in the open Adriatic due to lower salinities. Since the coastal area is deeper than the open Adriatic, the observations indicate (i balanced inward–outward exchange at the deep connecting channels of denser waters coming from the open Adriatic DWF site and less-dense waters coming from the coastal region and (ii outward flow of less-dense waters dominating in the intermediate and surface layers. The latter phenomenon was confirmed by the model, even if it significantly underestimates the currents and transports in the connecting channels. The median residence time of the coastal area is estimated to be approximately 20 days, indicating that the coastal area may be renewed relatively quickly by the open Adriatic waters. The data that were obtained represent a comprehensive marine dataset that can be used to calibrate atmospheric and oceanic numerical models and point to several interesting phenomena to be investigated in the future.

  4. Wintertime dynamics in the coastal northeastern Adriatic Sea: the NAdEx 2015 experiment

    Science.gov (United States)

    Vilibić, Ivica; Mihanović, Hrvoje; Janeković, Ivica; Denamiel, Cléa; Poulain, Pierre-Marie; Orlić, Mirko; Dunić, Natalija; Dadić, Vlado; Pasarić, Mira; Muslim, Stipe; Gerin, Riccardo; Matić, Frano; Šepić, Jadranka; Mauri, Elena; Kokkini, Zoi; Tudor, Martina; Kovač, Žarko; Džoić, Tomislav

    2018-03-01

    The paper investigates the wintertime dynamics of the coastal northeastern Adriatic Sea and is based on numerical modelling and in situ data collected through field campaigns executed during the winter and spring of 2015. The data were collected with a variety of instruments and platforms (acoustic Doppler current profilers, conductivity-temperature-depth probes, glider, profiling float) and are accompanied by the atmosphere-ocean ALADIN/ROMS modelling system. The research focused on the dense-water formation (DWF), thermal changes, circulation, and water exchange between the coastal and open Adriatic. According to both observations and modelling results, dense waters are formed in the northeastern coastal Adriatic during cold bora outbreaks. However, the dense water formed in this coastal region has lower densities than the dense water formed in the open Adriatic due to lower salinities. Since the coastal area is deeper than the open Adriatic, the observations indicate (i) balanced inward-outward exchange at the deep connecting channels of denser waters coming from the open Adriatic DWF site and less-dense waters coming from the coastal region and (ii) outward flow of less-dense waters dominating in the intermediate and surface layers. The latter phenomenon was confirmed by the model, even if it significantly underestimates the currents and transports in the connecting channels. The median residence time of the coastal area is estimated to be approximately 20 days, indicating that the coastal area may be renewed relatively quickly by the open Adriatic waters. The data that were obtained represent a comprehensive marine dataset that can be used to calibrate atmospheric and oceanic numerical models and point to several interesting phenomena to be investigated in the future.

  5. Coastal Hazard Vulnerability Assessment: A Case Study of Erosion and Flooding on Herschel Island, Yukon Territory, Canada

    Science.gov (United States)

    Radosavljevic, B.; Lantuit, H.; Overduin, P. P.; Fritz, M.

    2015-12-01

    Coastal infrastructure, cultural, and archeological sites are increasingly vulnerable to erosion and flooding along permafrost coasts. Amplified warming of the Arctic, sea level rise, lengthening of the open water period, and a predicted increase in frequency of major storms compound these threats. Mitigation necessitates decision-making tools at an appropriate scale. We present a study of coastal erosion combining it with a flooding risk assessment for the culturally important historic settlement on Herschel Island, a UNESCO World Heritage candidate site. The resulting map may help local stakeholders devise management strategies to cope with rapidly changing environmental conditions. We analyzed shoreline movement using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, and 2011. Using these data, forecasts of shoreline positions were made for 20 and 50 years into the future. Flooding risk was assessed using a cost-distance map based on a high-resolution Light Detection and Ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement for different periods of the study ranges from -5.5 to 2.7 m·a-1 (mean -0.6 m·a-1). Mean coastal retreat decreased from -0.6 m·a-1 to -0.5 m·a-1, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a-1 in the period 2000-2011. Ice-rich coastal sections, and coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map resulting from shoreline projections and flood risk analysis indicates that most of the area occupied by the historic settlement is at extreme or very high risk of flooding, and some buildings are vulnerable to coastal erosion. The results of this study indicate a greater threat by coastal flooding than erosion. Our assessment may be applied in other locations where limited data are available.

  6. Coastal defence and societal activities in the coastal zone: Compatible or conflicting interests?

    NARCIS (Netherlands)

    van Vuren, Saskia; Kok, Matthijs; Jorissen, Richard E.

    2004-01-01

    World-wide coastal zones are subject to physical and societal changes. Due to climate change sea level is expected to rise and storm conditions may become more intensive. Both may lead to shore erosion intensification in the coastal zone. Moreover, the coastal zone is intensely used for societal

  7. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: SOCECON (Socioeconomic Resource Points and Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for Coastal Resource Service Area (CRSA) boundaries, mineral sites, airports, boat ramps, marinas, and Coast Guard...

  8. Are coastal lagoons physically or biologically controlled ecosystems? Revisiting r vs. K strategies in coastal lagoons and estuaries

    Science.gov (United States)

    Pérez-Ruzafa, Angel; Marcos, Concepción; Pérez-Ruzafa, Isabel María; Pérez-Marcos, María

    2013-11-01

    Environmental stress influences biological assemblages, with species responding to stress by adopting particular life-history strategies (e.g., r vs. K). Coastal lagoons and estuaries are considered naturally stressed and physically controlled systems with frequent environmental disturbances and fluctuations. At the same time, their transitional nature (between terrestrial, freshwater and marine) makes them especially vulnerable to human impacts and land and freshwater inputs. As a result, it is hypothesised that residents of coastal lagoons would display characteristics of r-selected species. The r-strategy involves increased reproductive effort through early reproduction, small and numerous offspring with a large dispersive capability, short lifespan and small adult body size. Together, these traits provide a selective advantage in such unpredictable or short-lived environments. Alternatively, immigrants to coastal lagoons should mostly be K-strategists, with a competitive advantage over the r-strategists, at least on a temporary time scale. These hypotheses were explored using a dataset from 73 Atlanto-Mediterranean sites: 27 estuaries, 42 coastal lagoons and 4 from the sea, obtained from published sources. A detailed analysis of the distributions of the different resident fish species according to lagoon characteristics indicated that in lagoons with a higher marine influence the families Gobiidae, Blenniidae and Syngnathidae were common, while lagoons with freshwater influence are characterized by Cyprinidae and other freshwater species. In analyzing the biological strategies of lagoon species we found that fish assemblages inhabiting marine influenced lagoons were characterized by solitary, necto-benthonic sedentary species. These species are often hermaphroditic, with benthic broods and many exhibit brooding behaviour. This suggests that marine influenced lagoons are dominated by K-strategist species, while r-strategy species will be more common in

  9. The value of carbon sequestration and storage in coastal habitats

    Science.gov (United States)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  10. Collaborative community hazard exposure mapping: Distant Early Warning radar sites in Alaska's North Slope

    Science.gov (United States)

    Brady, M.

    2015-12-01

    A method to produce hazard exposure maps that are developed in collaboration with local coastal communities is the focus of this research. Typically efforts to map community exposure to climate threats over large areas have limited consideration of local perspectives about associated risks, constraining their utility for local management. This problem is especially acute in remote locations such as the Arctic where there are unique vulnerabilities to coastal threats that can be fully understood only through inclusion of community stakeholders. Through collaboration with community members, this study identifies important coastal assets and places and surveys local perspectives of exposure to climate threats along Alaska's vast North Slope coastline spanning multiple municipalities. To model physical exposure, the study adapts the U.S. Geological Survey's (USGS) coastal vulnerability index (CVI) to the Arctic context by incorporating the effects of open water distance determined by sea ice extent, and assigning CVI values to coastal assets and places according to direction and proximity. The study found that in addition to concerns about exposed municipal and industrial assets, North Slope communities viewed exposure of traditional activity sites as presenting a particular risk for communities. Highly exposed legacy Cold War Distant Early Warning Line sites are of particular concern with impacts ranging from financial risk to contamination of sensitive coastal marine environments. This research demonstrates a method to collaboratively map community exposure to coastal climate threats to better understand local risks and produce locally usable exposure maps.

  11. Distribution characteristics of polychlorinated biphenyls (PCBs) in coastal areas of Okinawa Island, Japan

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface sediment and seawater samples were collected from coastal areas around Okinawa Island from September 2001 to May 2002. The samples were analyzed for total polychlorinated biphenyl (PCB) levels and homolog composition. The results show that total PCB levels ranged from 0.32 to 128.7 ng/g (dry wt.) in sediment and 1.59 to 2.48 ng/L in seawater. The levels exceed the Environmental Quality Standard (EQS) for water pollution of Japan. The distribution of PCB homolog showed different patterns in the sediments and seawaters. Penta-chlorobiphenyls (CBs) comprised the main congener group in seawater, while hexa-CBs were more abundant homologs in the sediments. The heavily contaminated sites featured higher CBs, including penta-CBs, hexa-CBs, and hepta-CBs, than those in less contaminated sites where tri-CBs dominated. This study provides current distribution and geochemical behavior of PCBs in the coastal areas around Okinawa Island.

  12. Wave model downscaling for coastal applications

    Science.gov (United States)

    Valchev, Nikolay; Davidan, Georgi; Trifonova, Ekaterina; Andreeva, Nataliya

    2010-05-01

    Downscaling is a suitable technique for obtaining high-resolution estimates from relatively coarse-resolution global models. Dynamical and statistical downscaling has been applied to the multidecadal simulations of ocean waves. Even as large-scale variability might be plausibly estimated from these simulations, their value for the small scale applications such as design of coastal protection structures and coastal risk assessment is limited due to their relatively coarse spatial and temporal resolutions. Another advantage of the high resolution wave modeling is that it accounts for shallow water effects. Therefore, it can be used for both wave forecasting at specific coastal locations and engineering applications that require knowledge about extreme wave statistics at or near the coastal facilities. In the present study downscaling is applied to both ECMWF and NCEP/NCAR global reanalysis of atmospheric pressure over the Black Sea with 2.5 degrees spatial resolution. A simplified regional atmospheric model is employed for calculation of the surface wind field at 0.5 degrees resolution that serves as forcing for the wave models. Further, a high-resolution nested WAM/SWAN wave model suite of nested wave models is applied for spatial downscaling. It aims at resolving the wave conditions in a limited area at the close proximity to the shore. The pilot site is located in the northern part the Bulgarian Black Sea shore. The system involves the WAM wave model adapted for basin scale simulation at 0.5 degrees spatial resolution. The WAM output for significant wave height, mean wave period and mean angle of wave approach is used in terms of external boundary conditions for the SWAN wave model, which is set up for the western Black Sea shelf at 4km resolution. The same model set up on about 400m resolution is nested to the first SWAN run. In this case the SWAN 2D spectral output provides boundary conditions for the high-resolution model run. The models are implemented for a

  13. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  14. The Rachel-B/coastal towing incident

    International Nuclear Information System (INIS)

    Fawn, D.R. Jr.

    1990-01-01

    On June 23, 1989, the outbound tanker ship Rachel-B and the towboat Gayolyn Ann Griffin, towing barges owned by Coastal Towing, collided in the northern end of the Houston Sip Channel near its confluence with the Bayport Channel. The collision resulted in a spill of approximately 6,000 barrels of slurry oil into upper Galveston Bay. This paper reports that the U.S. Coast Guard assumed the role of on-scene coordinator. Several State agencies were involved in the various on-site activities. The Texas Water Commission (TWC), as the State's lead agency in spill response, closely monitored the spill and cleanup activities. Despite the efforts of all the aforementioned agencies, the weather ultimately directed spill response activities as it became readily apparent that the eye of Tropical Storm Allison would pass near the site of the spill

  15. Experimental and numerical simulations of the hydrodynamic dispersion of a pollutant effluent in a estuarine coastal zone

    International Nuclear Information System (INIS)

    Gidas, N.K.; Koutitonsky, V.G.

    1996-01-01

    An experimental and numerical study was performed to measure and simulate the hydrodynamic dispersion of a pollutant effluent discharged by an outfall diffuser into an estuarine coastal zone near Rimouski, Canada. Field measurements of currents, tides, salinity, and winds were obtained in the vicinity of the injection site, and two tracer dispersion experiments were carried on in these coastal waters. The measurements were taken before and after the construction of the marine outfall diffuser. The similitude between the plume of a tracer (physical model) released into the coastal waters before construction and that of the real effluent (prototype) discharged at the same site was studied. A new coefficient of similitude was established, which allows to transpose the concentrations of the physical model tracer to the waste water concentrations of the prototype. The numerical simulation (2D) is performed with a hydrodynamic model and an advection-dispersion model of the MIKE21 system from the Danish Hydraulic Institute, using the so-called telescopic approach. The objective of these simulations was to predict, among other things, the pollutant effluent concentrations for critical hydrodynamic conditions relative to the aquatic ecosystem to be protected. The methodology elaborated was used for the management of the coastal environments subjected to pollution. (author). 28 refs., 2 tabs., 12 figs

  16. An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid Environment.

    KAUST Repository

    Yadav, Brijesh Kumar

    2011-02-22

    Contamination of soil and water due to the release of light non-aqueous phase liquids (LNAPLs) is a ubiquitous problem. The problem is more severe in arid and semi-arid coastal regions where most of the petroleum production and related refinery industries are located. Biological treatment of these organic contaminated resources is receiving increasing interests and where applicable, can serve as a cost-effective remediation alternative. The success of bioremediation greatly depends on the prevailing environmental variables, and their remediation favoring customization requires a sound understanding of their integrated behavior on fate and transport of LNAPLs under site-specific conditions. The arid and semi-arid coastal sites are characterized by specific environmental extremes; primarily, varying low and high temperatures, high salinity, water table dynamics, and fluctuating soil moisture content. An understanding of the behavior of these environmental variables on biological interactions with LNAPLs would be helpful in customizing the bioremediation for restoring problematic sites in these regions. Therefore, this paper reviews the microbial degradation of LNAPLs in soil-water, considering the influences of prevailing environmental parameters of arid and semi-arid coastal regions. First, the mechanism of biodegradation of LNAPLs is discussed briefly, followed by a summary of popular kinetic models used by researchers for describing the degradation rate of these hydrocarbons. Next, the impact of soil moisture content, water table dynamics, and soil-water temperature on the fate and transport of LNAPLs are discussed, including an overview of the studies conducted so far. Finally, based on the reviewed information, a general conclusion is presented with recommendations for future research subjects on optimizing the bioremediation technique in the field under the aforesaid environmental conditions. The present review will be useful to better understand the

  17. Agrochemical loading in drains and rivers and its connection with pollution in coastal lagoons of the Mexican Pacific.

    Science.gov (United States)

    Arellano-Aguilar, Omar; Betancourt-Lozano, Miguel; Aguilar-Zárate, Gabriela; Ponce de Leon-Hill, Claudia

    2017-06-01

    The state of Sinaloa in Mexico is an industrialized agricultural region with a documented pesticide usage of 700 t year -1 ; which at least 17 of the pesticides are classified as moderately to highly toxic. Pollutants in the water column of rivers and drains are of great concern because the water flows into coastal lagoons and nearshore waters and thereby affects aquatic organisms. This study was done in four municipalities in the state of Sinaloa that produce food intensively. To investigate the link between pollution in the lagoons and their proximity to agricultural sites, water was sampled in three coastal lagoons and in the rivers and drains that flow into them. Seawater from the Gulf of California, 10 km from the coast, was also analyzed. Concentrations of nutrients, organochlorines, and organophosphorus pesticides were determined. Nutrient determination showed an unhealthy environment with N/P ratios of pollution of the coastal lagoon of Pabellones could be traced mainly to the drains from the agricultural sites. Accumulation of OC pesticides was also observed in the Gulf of California. Tests for 22 organophosphates revealed only five (diazinon, disulfoton, methyl parathion, chlorpyrifos, and mevinphos); diazinon was detected at all the sites, although methyl parathion was present at some sites at concentrations one order of magnitude higher than diazinon.

  18. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    Science.gov (United States)

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  19. Monitoring coastal pollution associated with the largest oil refinery complex of Venezuela

    Directory of Open Access Journals (Sweden)

    Aldo Croquer

    2016-06-01

    Full Text Available This study evaluated pollution levels in water and sediments of Península de Paraguaná and related these levels with benthic macrofauna along a coastal area where the largest Venezuelan oil refineries have operated over the past 60 years. For this, the concentration of heavy metals, of hydrocarbon compounds and the community structure of the macrobenthos were examined at 20 sites distributed along 40 km of coastline for six consecutive years, which included windy and calm seasons. The spatial variability of organic and inorganic compounds showed considerably high coastal pollution along the study area, across both years and seasons. The southern sites, closest to the refineries, had consistently higher concentrations of heavy metals and organic compounds in water and sediments when compared to those in the north. The benthic community was dominated by polychaetes at all sites, seasons and years, and their abundance and distribution were significantly correlated with physical and chemical characteristics of the sediments. Sites close to the oil refineries were consistently dominated by families known to tolerate xenobiotics, such as Capitellidae and Spionidae. The results from this study highlight the importance of continuing long-term environmental monitoring programs to assess the impact of effluent discharge and spill events from the oil refineries that operate in the western coast of Paraguaná, Venezuela.

  20. Ozone pollution around a coastal region of South China Sea: interaction between marine and continental air

    Science.gov (United States)

    Wang, Hao; Lyu, Xiaopu; Guo, Hai; Wang, Yu; Zou, Shichun; Ling, Zhenhao; Wang, Xinming; Jiang, Fei; Zeren, Yangzong; Pan, Wenzhuo; Huang, Xiaobo; Shen, Jin

    2018-03-01

    Marine atmosphere is usually considered to be a clean environment, but this study indicates that the near-coast waters of the South China Sea (SCS) suffer from even worse air quality than coastal cities. The analyses were based on concurrent field measurements of target air pollutants and meteorological parameters conducted at a suburban site (Tung Chung, TC) and a nearby marine site (Wan Shan, WS) from August to November 2013. The observations showed that the levels of primary air pollutants were significantly lower at WS than those at TC, while the ozone (O3) value was greater at WS. Higher O3 levels at WS were attributed to the weaker NO titration and higher O3 production rate because of stronger oxidative capacity of the atmosphere. However, O3 episodes were concurrently observed at both sites under certain meteorological conditions, such as tropical cyclones, continental anticyclones and sea-land breezes (SLBs). Driven by these synoptic systems and mesoscale recirculations, the interaction between continental and marine air masses profoundly changed the atmospheric composition and subsequently influenced the formation and redistribution of O3 in the coastal areas. When continental air intruded into marine atmosphere, the O3 pollution was magnified over the SCS, and the elevated O3 ( > 100 ppbv) could overspread the sea boundary layer ˜ 8 times the area of Hong Kong. In some cases, the exaggerated O3 pollution over the SCS was recirculated to the coastal inshore by sea breeze, leading to aggravated O3 pollution in coastal cities. The findings are applicable to similar mesoscale environments around the world where the maritime atmosphere is potentially influenced by severe continental air pollution.

  1. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    Science.gov (United States)

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  2. Integrated approach for coastal hazards and risks in Sri Lanka

    Science.gov (United States)

    Garcin, M.; Desprats, J. F.; Fontaine, M.; Pedreros, R.; Attanayake, N.; Fernando, S.; Siriwardana, C. H. E. R.; de Silva, U.; Poisson, B.

    2008-06-01

    The devastating impact of the tsunami of 26 December 2004 on the shores of the Indian Ocean recalled the importance of knowledge and the taking into account of coastal hazards. Sri Lanka was one of the countries most affected by this tsunami (e.g. 30 000 dead, 1 million people homeless and 70% of the fishing fleet destroyed). Following this tsunami, as part of the French post-tsunami aid, a project to establish a Geographical Information System (GIS) on coastal hazards and risks was funded. This project aims to define, at a pilot site, a methodology for multiple coastal hazards assessment that might be useful for the post-tsunami reconstruction and for development planning. This methodology could be applied to the whole coastline of Sri Lanka. The multi-hazard approach deals with very different coastal processes in terms of dynamics as well as in terms of return period. The first elements of this study are presented here. We used a set of tools integrating a GIS, numerical simulations and risk scenario modelling. While this action occurred in response to the crisis caused by the tsunami, it was decided to integrate other coastal hazards into the study. Although less dramatic than the tsunami these remain responsible for loss of life and damage. Furthermore, the establishment of such a system could not ignore the longer-term effects of climate change on coastal hazards in Sri Lanka. This GIS integrates the physical and demographic data available in Sri Lanka that is useful for assessing the coastal hazards and risks. In addition, these data have been used in numerical modelling of the waves generated during periods of monsoon as well as for the December 2004 tsunami. Risk scenarios have also been assessed for test areas and validated by field data acquired during the project. The results obtained from the models can be further integrated into the GIS and contribute to its enrichment and to help in better assessment and mitigation of these risks. The coastal

  3. Integrated approach for coastal hazards and risks in Sri Lanka

    Directory of Open Access Journals (Sweden)

    M. Garcin

    2008-06-01

    Full Text Available The devastating impact of the tsunami of 26 December 2004 on the shores of the Indian Ocean recalled the importance of knowledge and the taking into account of coastal hazards. Sri Lanka was one of the countries most affected by this tsunami (e.g. 30 000 dead, 1 million people homeless and 70% of the fishing fleet destroyed. Following this tsunami, as part of the French post-tsunami aid, a project to establish a Geographical Information System (GIS on coastal hazards and risks was funded. This project aims to define, at a pilot site, a methodology for multiple coastal hazards assessment that might be useful for the post-tsunami reconstruction and for development planning. This methodology could be applied to the whole coastline of Sri Lanka.

    The multi-hazard approach deals with very different coastal processes in terms of dynamics as well as in terms of return period. The first elements of this study are presented here. We used a set of tools integrating a GIS, numerical simulations and risk scenario modelling. While this action occurred in response to the crisis caused by the tsunami, it was decided to integrate other coastal hazards into the study. Although less dramatic than the tsunami these remain responsible for loss of life and damage. Furthermore, the establishment of such a system could not ignore the longer-term effects of climate change on coastal hazards in Sri Lanka.

    This GIS integrates the physical and demographic data available in Sri Lanka that is useful for assessing the coastal hazards and risks. In addition, these data have been used in numerical modelling of the waves generated during periods of monsoon as well as for the December 2004 tsunami. Risk scenarios have also been assessed for test areas and validated by field data acquired during the project. The results obtained from the models can be further integrated into the GIS and contribute to its enrichment and to help in better assessment and mitigation

  4. Nutrient fluxes and net metabolism in a coastal lagoon SW peninsula of Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    Cervantes Duarte, R.

    2016-09-01

    Full Text Available Fluxes of nutrients and net metabolism were estimated in coastal lagoon Magdalena Bay using LOICZ biogeochemical model. In situ data were obtained from 14 sites in the lagoon and also from a fixed site in the adjacent ocean area. Intense upwelling (February to July and faint upwelling (August to January were analyzed from monthly time series. The Temperature, nitrite + nitrate, ammonium and phosphate within the lagoon showed significant differences (p<0.05 between the two periods. Salinity (p=0.408 was more homogeneous (no significantly different due to mixing processes. During the intense upwelling period, nutrients increased in and out of the lagoon due to the influence of Transitional Water and Subartic Water transported by the California Current. However, during the faint upwelling, from August to January, the Transition Water and Subtropical Surface Water were predominant. Magdalena Bay showed denitrification processes of throughout the year as it occurred in other semi-arid coastal lagoons. It also showed a net autotrophic metabolism during intense upwelling and heterotrophic metabolism during faint upwelling. Understanding nutrient flows and net metabolism through simple biogeochemical models can provide tools for better management of the coastal zone.

  5. Base-line data on everglades soil-plant systems: elemental composition, biomass, and soil depth

    International Nuclear Information System (INIS)

    Volk, B.G.; Schemnitz, S.D.; Gamble, J.F.; Sartain, J.B.

    1975-01-01

    Plants and soils from plots in the Everglades Wildlife Management Area, Conservation Area 3, were examined. Chemical composition (N, P, K, Ca, Mg, Na, Cu, Fe, Mn, Zn, Co, Sr, Pb, Ni, Cr, Al, and Si) of most plant and soil digests was determined. Cladium jamaicense was the predominant plant species contributing to biomass in all plots except the wet prairie, where Rhynchospora sp. and Panicum hemitomon were most common. The biomass of dead C. jamaicense was greater than that of the living plants in unburned saw-grass plots. The burned saw grass, muck burn, and wet prairie were characterized by a large number of plant species per square meter but smaller average biomass production than the unburned saw-grass locations. Levels of Cu, Mn, Ca, Mg, K, and N in C. jamaicense differed significantly across locations. Highly significant differences in elemental composition existed between plant species. Concentrations of several elements (particularly Zn, Ca, Mg, P, and N) were low in live C. jamaicense compared with other plant species. Cesium-137 levels ranged from 670 to 3100 pCi/kg in sandy and in organic soils, respectively. Polygonum had a 137 Cs level of 11,600 pCi/kg. Dead C. jamaicense indicated a rapid leaching loss of 137 Cs from dead tissue

  6. Coastal Analysis, Mathews County, VA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Coastal study as defined in FEMA Guides and Specifications, Appendix D: Guidance for coastal Flooding Analyses and Mapping submitted as a result of a coastal study....

  7. Coastal zones : shifting shores, sharing adaptation strategies for coastal environments

    Energy Technology Data Exchange (ETDEWEB)

    Hay, J.E. [Waikato Univ. (New Zealand); Morneau, F.; Savard, J.P. [Ouranos, Montreal, PQ (Canada); Madruga, R.P. [Centre of Investigation on the Global Economy (Cuba); Leslie, K.R. [Caribbean Community Climate Change Centre (Belize); Agricole, W. [Ministry of Environment and Natural Resources (Seychelles); Burkett, V. [United States Geological Survey (United States)

    2006-07-01

    A parallel event to the eleventh Conference of Parties (COP) to the United Nations Framework Convention of Climate Change was held to demonstrate examples of adaptation from around the world in the areas of food security, water resources, coastal zones, and communities/infrastructure. Panels on each theme presented examples from developing countries, countries in economic transition, and developed countries. These 4 themes were chosen because both mitigation and adaptation are essential to meeting the challenge of climate change. The objective of the event was to improve the knowledge of Canada's vulnerabilities to climate change, identify ways to minimize the negative effects of future impacts, and explore opportunities that take advantage of any positive impacts. This third session focused on how coastal communities are adapting to climate change in such places as Quebec, the Caribbean, and small Island States. It also presented the example of how a developed country became vulnerable to Hurricane Katrina which hit the coastal zone in the United States Gulf of Mexico. The presentations addressed the challenges facing coastal communities along with progress in risk assessment and adaptation both globally and in the Pacific. Examples of coastal erosion in Quebec resulting from climate change were presented along with climate change and variability impacts over the coastal zones of Seychelles. Cuba's vulnerability and adaptation to climate change was discussed together with an integrated operational approach to climate change, adaptation, biodiversity and land utilization in the Caribbean region. The lessons learned from around the world emphasize that adaptation is needed to reduce unavoidable risks posed by climate change and to better prepare for the changes ahead. refs., tabs., figs.

  8. Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment

    Science.gov (United States)

    Huizer, Sebastian; Radermacher, Max; de Vries, Sierd; Oude Essink, Gualbert H. P.; Bierkens, Marc F. P.

    2018-02-01

    For a large beach nourishment called the Sand Engine - constructed in 2011 at the Dutch coast - we have examined the impact of coastal forcing (i.e. natural processes that drive coastal hydro- and morphodynamics) and groundwater recharge on the growth of a fresh groundwater lens between 2011 and 2016. Measurements of the morphological change and the tidal dynamics at the study site were incorporated in a calibrated three-dimensional and variable-density groundwater model of the study area. Simulations with this model showed that the detailed incorporation of both the local hydro- and morphodynamics and the actual recharge rate can result in a reliable reconstruction of the growth in fresh groundwater resources. In contrast, the neglect of tidal dynamics, land-surface inundations, and morphological changes in model simulations can result in considerable overestimations of the volume of fresh groundwater. In particular, wave runup and coinciding coastal erosion during storm surges limit the growth in fresh groundwater resources in dynamic coastal environments, and should be considered at potential nourishment sites to delineate the area that is vulnerable to salinization.

  9. Going coastal: shared evolutionary history between coastal British Columbia and Southeast Alaska wolves (Canis lupus.

    Directory of Open Access Journals (Sweden)

    Byron V Weckworth

    2011-05-01

    Full Text Available Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest.By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves.We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species.

  10. 77 FR 40586 - Coastal Programs Division

    Science.gov (United States)

    2012-07-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Coastal Programs Division AGENCY: Coastal Programs Division, Office of Ocean and Coastal Resource Management, National Ocean.... FOR FURTHER INFORMATION CONTACT: Kerry Kehoe, Coastal Programs Division (NORM/3), Office of Ocean and...

  11. The coastal environment affects lead and sodium uptake by the moss Hypnum cupressiforme used as an air pollution biomonitor.

    Science.gov (United States)

    Renaudin, Marie; Leblond, Sébastien; Meyer, Caroline; Rose, Christophe; Lequy, Emeline

    2018-02-01

    Several studies suggest that potential competition exists between marine cations and heavy metals for binding sites on the cell wall of mosses. This competition would impact the heavy metal concentration measured in mosses by biomonitoring programs, which may underestimate air pollution by heavy metals in a coastal environment. In the present study, we aim to identify possible mechanisms affecting lead uptake by mosses in a coastal environment, specifically, the competition between lead (Pb 2+ ) and sodium (Na + ) for binding sites in Hypnum cupressiforme (Hc). We also compared the response of continental and coastal Hc populations to Pb 2+ exposure by immersing the moss samples in artificial solutions that comprised six experimental treatments and subsequently locating and quantifying Pb 2+ and Na + using the sequential elution technique and X-ray microanalyses with a scanning electron microscope. We demonstrated that high concentrations of Pb 2+ prevented Na + from binding to the cell wall. We also examined the effect of the salt acclimation of Hc on Pb 2+ and Na + accumulation. Coastal Hc populations accumulated more Na and less Pb than continental Hc populations in all treatments. Moreover, our results showed treatment effects on the intra/extracellular distribution of Na + , as well as site. This feedback on the influence of salt stress tolerance on Pb 2+ uptake by mosses requires further study and can be investigated for other heavy metals, leading to a better use of mosses as biomonitoring tools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Studies on Polonium-210 and Lead-210 aspects in a near shore coastal environment at Kalpakkam, Tamilnadu, India

    International Nuclear Information System (INIS)

    Iyengar, M.A.R.

    2013-01-01

    In the present study, an attempt has been made to summarize the findings from a comprehensive research investigation, related to polonium-210 and lead-210 aspects in a confined near shore coastal marine environment at the site of Kalpakkam nuclear complex. The site hosts some major nuclear installations, the main units being a nuclear power station, fast breeder reactor units, reprocessing facilities and supporting facilities. These investigation have been carried out to evaluate the natural radiation exposures of the resident human population in the neighbourhood of the site complex, and compute the additional potential doses to the community, arising from operation of nuclear facilities. An added significance, surfaced during the study, was the presence of a higher natural radiation background in the study area, due to the occurrence of monazite - a thorium mineral - bearing beach sands in vast stretches of the coastal areas

  13. Archaeological sites as indicators of ancient shorelines

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Gaur, A; Sundaresh; Tripati, S.

    and the event is dated to 2000 yrs BP. Chilika region in Orissa is a classic case where shore line shift is observed. Tranquebar, also on the east coast, is another site depicting drawn coast. Time has come to carry out systematic investigations of the coastal...

  14. Offshore wind resources at Danish measurement sites

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmie, R J; Courtney, M S; Lange, B; Nielsen, M; Sempreviva, A M [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark); Svenson, J; Olsen, F [SEAS, Haslev (Denmark); Christensen, T [Elsamprojekt, Fredericia (Denmark)

    1999-03-01

    In order to characterise wind and turbulence characteristics at prospective offshore wind energy sites, meteorological observations from a number of purpose-built offshore monitoring sites have been analyzed and compared with long wind speed time series. New analyses have been conducted on the data sets focussing on meteorology, turbulence, extreme winds and wind and wave interactions. Relationships between wind speed, turbulence and fetch are highly complex. Minimum turbulence intensity offshore is associated with wind speeds of about 12 m/s. At lower wind speeds, stability effects are important while at higher winds speeds wind and wave interactions appear to dominate. On average, turbulence intensity offshore at 48 m height is approximately 0.08 if no coastal effects are present. However, the effect of the coastal discontinuity persists in wind speed and turbulence characteristics for considerable distances offshore. The majority of the adjustment of appears to occur within 20 km of the coast. (au)

  15. Characteristics of Aedes aegypti adult mosquitoes in rural and urban areas of western and coastal Kenya

    Science.gov (United States)

    Ndenga, Bryson Alberto; Mutuku, Francis Maluki; Ngugi, Harun Njenga; Mbakaya, Joel Omari; Aswani, Peter; Musunzaji, Peter Siema; Vulule, John; Mukoko, Dunstan; Kitron, Uriel; LaBeaud, Angelle Desiree

    2017-01-01

    Aedes aegypti is the main vector for yellow fever, dengue, chikungunya and Zika viruses. Recent outbreaks of dengue and chikungunya have been reported in Kenya. Presence and abundance of this vector is associated with the risk for the occurrence and transmission of these diseases. This study aimed to characterize the presence and abundance of Ae. aegypti adult mosquitoes from rural and urban sites in western and coastal regions of Kenya. Presence and abundance of Ae. aegypti adult mosquitoes were determined indoors and outdoors in two western (urban Kisumu and rural Chulaimbo) and two coastal (urban Ukunda and rural Msambweni) sites in Kenya. Sampling was performed using quarterly human landing catches, monthly Prokopack automated aspirators and monthly Biogents-sentinel traps. A total of 2,229 adult Ae. aegypti mosquitoes were collected: 785 (35.2%) by human landing catches, 459 (20.6%) by Prokopack aspiration and 985 (44.2%) by Biogents-sentinel traps. About three times as many Ae. aegypti mosquitoes were collected in urban than rural sites (1,650 versus 579). Comparable numbers were collected in western (1,196) and coastal (1,033) sites. Over 80% were collected outdoors through human landing catches and Prokopack aspiration. The probability of collecting Ae. aegypti mosquitoes by human landing catches was significantly higher in the afternoon than morning hours (Paegypti mosquitoes were collected using Prokopack aspiration outdoors than indoors (Paegypti bites was highest in urban areas, outdoors and in the afternoon hours. These characteristics have major implications for the possible transmission of arboviral diseases and for the planning of surveillance and control programs. PMID:29261766

  16. 2011 Summary: Coastal wetland restoration research

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.; Carlson Mazur, Martha L.; Czayka, Alex; Dominguez, Andrea; Doty, Susan; Eggleston, Mike; Green, Sean; Sweetman, Amanda

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) projects currently taking place in Great Lakes coastal wetlands provide a unique opportunity to study ecosystem response to management actions as practitioners strive to improve wetland function and increase ecosystem services. Through a partnership between the U.S. Geological Survey – Great Lakes Science Center (GLSC), U.S. Fish and Wildlife Service (USFWS), and Ducks Unlimited, a GLRI-funded project has reestablished the hydrologic connection between an intensively managed impounded wetland (Pool 2B) and Crane Creek, a small Lake Erie tributary, by building a water-control structure that was opened in the spring of 2011. The study site is located within the USFWS Ottawa National Wildlife Refuge (ONWR) and lies within the boundaries of the U.S. Environmental Protection Agency (EPA)-designated Maumee River Area of Concern. The broad objective of the project is to evaluate how hydrologically reconnecting a previously diked wetland impacts fish, mollusks, and other biota and affects nutrient transport, nutrient cycling, water quality, flood storage, and many other abiotic conditions. The results from this project suggest large system-wide benefits from sustainable reestablishment of lake-driven hydrology in this and other similar systems. We comprehensively sampled water chemistry, fish, birds, plants, and invertebrates in Crane Creek coastal wetlands, Pool 2A (a reference diked wetland), and Pool 2B (the reconnected wetland) in 2010 and 2011 to: 1) Characterize spatial and seasonal patterns for these parameters. 2) Examine ecosystem response to the opening of a water-control structure that allows fish passage Our sampling efforts have yielded data that reveal striking changes in water quality, hydrology, and fish assemblages in our experimental unit (2B). Prior to the reconnection, the water chemistry in pools 2A and 2B were very similar. Afterwards, we found that the water chemistry in reconnected Pool 2B was more

  17. The influence of nest-site characteristics on the nesting success of ...

    African Journals Online (AJOL)

    Choice of nest site has important consequences for nest survival. We examined nest-site characteristics relative to nest success in Karoo Prinias breeding in coastal dwarf shrubland, where high nest predation is the main cause of nest failure. Initially, we compared nests that failed during the building, laying, incubation and ...

  18. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  19. Experimental study of a model and parameters calculating annual mean atmospheric dispersion factor for a nuclear power plant to be build in coastal site

    International Nuclear Information System (INIS)

    Hu Erbang; Chen Jiayi; Zhang Maoshuan; Gao Zhanrong; Yao Rentai; Jia Peirong; Qiao Qingdang

    1999-01-01

    The author tries to develop a new model calculating annual mean atmospheric dispersion factor for a nuclear power plant to be build in coastal site based on field experiments. This model considers not only the difference between shore ward and off-shore but also the comprehensive effect of following factors: mixed layer and thermal internal boundary layer, mixing release and variation of diffusion parameters due to the distance from coast and so on. The various parameters needed in the model are obtained from the field atmospheric experiments done on the NPP site during 1995∼1996. There dimension joint frequency is got from wind and temperature measurements at 4 heights of a tower of 100 m; diffusion parameters shore ward and off-shore from turbulent measurement and wind tunnel simulation test; the parameters relative to sea and land breeze and thermal internal boundary layer are obtained from tests with low altitude radiosonde and lost balloon at 3 sites during two periods of Summer and Winter. Finally a comparison of the results given by this model and commonly used model provided by relative guides is done. The comparison shows that about 1 times under estimation is found for the maximum of annual mean atmospheric dispersion factor in common model because the effect from thermal internal boundary layer and other factors are neglected

  20. Going coastal: Shared evolutionary history between coastal British Columbia and Southeast Alaska wolves (canis lupus)

    Science.gov (United States)

    Weckworth, B.V.; Dawson, N.G.; Talbot, S.L.; Flamme, M.J.; Cook, J.A.

    2011-01-01

    Background: Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest. Methodology/Principal Findings: By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves. Conclusions/Significance: We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species. ?? 2011 This is an open-access article.

  1. Temporal and spatial distribution of PM2.5 chemical composition in a coastal city of Southeast China.

    Science.gov (United States)

    Li, Mengren; Hu, Min; Du, Bohan; Guo, Qingfeng; Tan, Tianyi; Zheng, Jing; Huang, Xiaofeng; He, Lingyan; Wu, Zhijun; Guo, Song

    2017-12-15

    Rapid economic development and urbanization in China has been concentrated in coastal cities, resulting in haze and photochemical smog issues, especially in the densely-populated Yangtze River Delta. In this study, we explore particulate matter (specifically PM 2.5 ) pollution in a city in Zhejiang Province (Ningbo), chosen to represent a typical, densely-populated urban city with residential and industrial sections. PM 2.5 samples were collected at five sites in four seasons from Dec. 2012 to Nov. 2013. The annual average PM 2.5 mass concentration was 53.2±30.4μg/m 3 , with the highest concentration in winter and lowest in summer. Among the five sites, PM 2.5 concentration was highest in an urban residential site and lowest in a suburban site, due to effects of urbanization and the anthropogenic influences. The chemical components of PM 2.5 show significant seasonal variation. In addition, secondary transformation was high in Ningbo, with the highest proportion of secondary components found at a suburban site and the lowest at the industrial sites. Ningbo is controlled by five major air masses originating from inland China, from the Bohai Sea, offshore from the southeast, the Yellow Sea, and off the east coast of Korea. The relative contributions of these air masses differ, by season, with the Bohai Sea air mass dominating in winter and spring, the maritime southeast air mass in summer, and the Yellow Sea and coastal Korean air masses dominating in autumn. The continental air mass is associated with a high PM 2.5 concentration, indicating that it is primarily transports primary emissions. In contrast, the concentration ratios among secondary formed pollutants were higher in the maritime air masses, which suggests that sea breezes control temporal and spatial variations of air pollution over coastal cities. Copyright © 2017. Published by Elsevier B.V.

  2. Coastal structures, waste materials and fishery enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Collins, K.J.; Jensen, A.C.; Lockwood, A.P.M.; Lockwood, S.J. [University of Southampton, Southampton (United Kingdom). Dept. of Oceanography

    1994-09-01

    Current UK practice relating to the disposal of material at sea is reviewed. The use of stabilization technology relating to bulk waste materials, coal ash, oil ash and incinerator ash is discussed. The extension of this technology to inert minestone waste and tailings, contaminated dredged sediments and phosphogypsum is explored. Uses of stabilized wastes are considered in the areas of habitat restoration, coastal defense and fishery enhancement. It is suggested that rehabilitation of marine dump sites receiving loose waste such as pulverized fuel ash (PFA) could be enhanced by the continued dumping of the material but in a stabilized block form, so creating new habitat diversity. Global warming predictions include sea level rise and increased storm frequency. This is of particular concern along the southern and eastern coasts of the UK. The emphasis of coastal defense is changing from hard seawalls to soft options which include offshore barriers to reduce wave energy reaching the coast. Stabilized waste materials could be included in these and other marine constructions with possible economic benefit. Ministry of Agriculture, Fisheries and Food (MAFF), the regulatory authority in England and Wales for marine disposal/construction, policy regarding marine structures and fishery enhancement is outlined. A case is made for the inclusion of fishery enhancement features in future coastal structures. Examples of the productivity of man-made structures are given. Slight modification of planned structures and inclusion of suitable habitat niches could allow for the cultivation of kelp, molluscs, crustacea and fish.

  3. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences.

    Science.gov (United States)

    Narayan, Siddharth; Beck, Michael W; Reguero, Borja G; Losada, Iñigo J; van Wesenbeeck, Bregje; Pontee, Nigel; Sanchirico, James N; Ingram, Jane Carter; Lange, Glenn-Marie; Burks-Copes, Kelly A

    2016-01-01

    There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences-i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i) a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences) and (ii) analyses of the effectiveness of coastal habitats (natural defences) in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i) analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii) synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii) estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a) the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b) the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become more cost

  4. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences.

    Directory of Open Access Journals (Sweden)

    Siddharth Narayan

    Full Text Available There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences-i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences and (ii analyses of the effectiveness of coastal habitats (natural defences in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become

  5. The cost and feasibility of marine coastal restoration.

    Science.gov (United States)

    Bayraktarov, Elisa; Saunders, Megan I; Abdullah, Sabah; Mills, Morena; Beher, Jutta; Possingham, Hugh P; Mumby, Peter J; Lovelock, Catherine E

    2016-06-01

    Land-use change in the coastal zone has led to worldwide degradation of marine coastal ecosystems and a loss of the goods and services they provide. Restoration is the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. Uncertainties about restoration cost and feasibility can impede decisions on whether, what, how, where, and how much to restore. Here, we perform a synthesis of 235 studies with 954 observations from restoration or rehabilitation projects of coral reefs, seagrass, mangroves, salt-marshes, and oyster reefs worldwide, and evaluate cost, survival of restored organisms, project duration, area, and techniques applied. Findings showed that while the median and average reported costs for restoration of one hectare of marine coastal habitat were around US$80000 (2010) and US$1600000 (2010), respectively, the real total costs (median) are likely to be two to four times higher. Coral reefs and seagrass were among the most expensive ecosystems to restore. Mangrove restoration projects were typically the largest and the least expensive per hectare. Most marine coastal restoration projects were conducted in Australia, Europe, and USA, while total restoration costs were significantly (up to 30 times) cheaper in countries with developing economies. Community- or volunteer-based marine restoration projects usually have lower costs. Median survival of restored marine and coastal organisms, often assessed only within the first one to two years after restoration, was highest for saltmarshes (64.8%) and coral reefs (64.5%) and lowest for seagrass (38.0%). However, success rates reported in the scientific literature could be biased towards publishing successes rather than failures. The majority of restoration projects were short-lived and seldom reported monitoring costs. Restoration success depended primarily on the ecosystem, site selection, and techniques

  6. Hyperspectral Imaging Sensors and the Marine Coastal Zone

    Science.gov (United States)

    Richardson, Laurie L.

    2000-01-01

    Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.

  7. Physico-chemical and biological water quality of karachi coastal water

    International Nuclear Information System (INIS)

    Khalid, A.; Rahman, S.

    2009-01-01

    Physiochemical and biological techniques have been applied to investigate Karachi Coastal water pollution due to Layari and Malir rivers, which mainly carry Karachi Metropolitan domestic and industrial wastewater. In Manora channel, which receives domestic sewage through Layari river, pH and electrical conductivity (E.C.) of seawater were less in low tide conditions as compared to high tide condition, and except for Manora Lighthouse all sampling stations exhibit E.C. below normal values of seawater, indicating fair proportion of Layari river water mixing in seawater. Coliform contamination ranged from 156 - 542 per 100 ml ( high tide) and 132- 974 per 100 ml (low tide) with increased levels observed in sampling sites close to Layari river outfall zone. Along Southeast coast, a decrease in EC was recorded at Ghizri area and Ibrahim Haideri fish harbour in low tide which indicated Malir river water input. Coliform bacterial counts at these locations were also above WHO guidelines for seawater bathing. pH and electrical conductivity values of Northwest coastal water indicated that this coast is marginally polluted. The study revealed that Karachi Metropolitan domestic sewage and industrial effluents are main source of coastal water pollution. (author)

  8. Understanding human impacts to tropical coastal ecosystems through integrated hillslope erosion measurements, optical coastal waters characterization, watershed modeling, marine ecosystem assessments, and natural resource valuations in two constrasting watersheds in Puerto Rico.

    Science.gov (United States)

    Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.

    2017-12-01

    Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and

  9. Geologic Resource Evaluation of Pu'ukohola Heiau National Historic Site, Hawai'i: Part I, Geology and Coastal Landforms

    Science.gov (United States)

    Richmond, Bruce M.; Cochran, Susan A.; Gibbs, Ann E.

    2008-01-01

    Geologic resource inventories of lands managed by the National Park Service (NPS) are important products for the parks and are designed to provide scientific information to better manage park resources. Park-specific geologic reports are used to identify geologic features and processes that are relevant to park ecosystems, evaluate the impact of human activities on geologic features and processes, identify geologic research and monitoring needs, and enhance opportunities for education and interpretation. These geologic reports are planned to provide a brief geologic history of the park and address specific geologic issues forming a link between the park geology and the resource manager. The Kona coast National Parks of the Island of Hawai'i are intended to preserve the natural beauty of the Kona coast and protect significant ancient structures and artifacts of the native Hawaiians. Pu'ukohola Heiau National Historic Site (PUHE), Kaloko-Honokohau National Historical Park (KAHO), and Pu'uhonua O Honaunau National Historical Park (PUHO) are three Kona parks studied by the U.S. Geological Survey (USGS) Coastal and Marine Geology Team in cooperation with the National Park Service. This report is one of six related reports designed to provide geologic and benthic-habitat information for the three Kona parks. Each geology and coastal-landform report describes the regional geologic setting of the Hawaiian Islands, gives a general description of the geology of the Kona coast, and presents the geologic setting and issues for one of the parks. The related benthic-habitat mapping reports discuss the marine data and habitat classification scheme, and present results of the mapping program. Pu'ukohola Heiau National Historic Site (PUHE) is the smallest (~86 acres) of three National Parks located on the leeward Kona coast of the Island of Hawai'i. The main structure at PUHE, Pu'ukohola Heiau, is an important historical temple that was built during 1790-91 by King Kamehameha I

  10. A biomonitoring study: trace metals in algae and molluscs from Tyrrhenian coastal areas

    International Nuclear Information System (INIS)

    Conti, M.E.; Cecchetti, Gaetano

    2003-01-01

    Marine organisms were evaluated as possible biomonitors of heavy metal contamination in marine coastal areas. Concentrations of Cd, Cr, Cu, Pb, and Zn were measured in the green algae Ulva lactuca L., the brown algae Padina pavonica (L.) Thivy, the bivalve mollusc Mytilus galloprovincialis Lamarck, and the two gastropod molluscs Monodonta turbinata Born and Patella cerulea L. collected at six coastal stations in the area of the Gulf of Gaeta (Tyrrhenian Sea, central Italy). The coastal area of the Regional Park of Gianola and Monte di Scauri (a 'Protected Sea Park' area) was chosen as a control site. Seawater samples were also collected in each site to assess soluble and total metal concentrations and to gain additional information on both the environmental conditions of the area and possible bioaccumulation patterns. Metal concentrations detected in algae and molluscs did not show significant differences among all stations studied. Moreover, statistical analyses (ANOVA, multiple comparison tests, cluster analysis) showed that the Sea Park station was not significantly different from the others. The hypothesis that the Protected Sea Park would be cleaner than the others must therefore be reconsidered. Data from this study were also compared with those previously obtained from uncontaminated sites in the Sicilian Sea, Italy. The results show clearly differences between these two marine ecosystems. The species examined showed great accumulations of metals, with concentration factors (CFs) higher than 10,000 with respect to the concentrations (soluble fractions) in marine waters. Metal concentrations recorded in this area may be used for background levels for intraspecific comparison within the Tyrrhenian area, a body of water about which information is still very scarce

  11. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters.

    Science.gov (United States)

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain

    2008-07-10

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.

  12. 24 CFR 574.645 - Coastal barriers.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Coastal barriers. 574.645 Section....645 Coastal barriers. In accordance with the Coastal Barrier Resources Act, 16 U.S.C. 3501, no financial assistance under this part may be made available within the Coastal Barrier Resources System. ...

  13. Estimating Coastal Turbidity using MODIS 250 m Band Observations

    Science.gov (United States)

    Davies, James E.; Moeller, Christopher C.; Gunshor, Mathew M.; Menzel, W. Paul; Walker, Nan D.

    2004-01-01

    Terra MODIS 250 m observations are being applied to a Suspended Sediment Concentration (SSC) algorithm that is under development for coastal case 2 waters where reflectance is dominated by sediment entrained in major fluvial outflows. An atmospheric correction based on MODIS observations in the 500 m resolution 1.6 and 2.1 micron bands is used to isolate the remote sensing reflectance in the MODIS 25Om resolution 650 and 865 nanometer bands. SSC estimates from remote sensing reflectance are based on accepted inherent optical properties of sediment types known to be prevalent in the U.S. Gulf of Mexico coastal zone. We present our findings for the Atchafalaya Bay region of the Louisiana Coast, in the form of processed imagery over the annual cycle. We also apply our algorithm to selected sites worldwide with a goal of extending the utility of our approach to the global direct broadcast community.

  14. Microlevel mapping of coastal geomorphology and coastal resources of Rameswaram island, India: A remote sensing and GIS perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Nobi, E.P.; Shivaprasad, A.; Karikalan, R.; Dilipan, E.; Thangaradjou, T.; Sivakumar, K.

    Coastal areas are facing serious threats from both manmade and natural disturbances; coastal erosion, sea-level variation, and cyclones are the major factors that alter the coastal topography and coastal resources of the island ecosystems...

  15. [Identification of marine and coastal biodiversity conservation priorities in Costa Rica].

    Science.gov (United States)

    Alvarado, Juan José; Herrera, Bernal; Corrales, Lenin; Asch, Jenny; Paaby, Pía

    2011-06-01

    Costa Rica is recognized as one of the most diverse countries in species and ecosystems, in their terrestrial realm as well as in the marine. Besides this relevance, the country presents a delay on conservation and management of marine and coastal biodiversity, with respect to terrestrial. For 2006, the marine protected surface was 5,208.8 km2, with 331.5 km of coastline, in 20 protected areas. The country has made progress on the conservation priority sites identification for terrestrial and freshwater biodiversity, with few efforts on marine planning. This research presents the analysis and results of the gap identification process, for marine and coastal biodiversity conservation in the protected areas system of Costa Rica. The analysis was built with the spatial information available on the presence and distribution of coastal and marine biodiversity, the establishment of the conservation goals and a threat analysis over the ecological integrity of this biodiversity. The selection of high-priority sites was carried out using spatial optimization techniques and the superposition over the current shape of marine protected areas, in order to identify representation gaps. A total of 19,076 km2 of conservation gaps were indentified, with 1,323 km2 in the Caribbean and 17,753 km2 in the Pacific. Recommendations are aimed at planning and strengthening the marine protected areas system, using the gaps identified as a framework. It is expected that the results of this study would be the scientific base needed for planning and sustainable use of marine biodiversity in the country.

  16. Winter-summer nutrient composition linkage to algae-produced toxins in shellfish at a eutrophic coastal lagoon (Óbidos lagoon, Portugal)

    Science.gov (United States)

    Pereira, Patrícia; Botelho, Maria João; Cabrita, Maria Teresa; Vale, Carlos; Moita, Maria Teresa; Gonçalves, Célia

    2012-10-01

    The current work examines the linkage of pronounced winter-summer fluctuations on the nutrient composition with phytoplankton assemblages and mussel toxicity produced by the presence of toxic dinoflagellates. The work was performed at the Óbidos lagoon, a coastal eutrophic ecosystem that is permanently connected to an area characterized by frequent upwelling episodes. The lagoon and adjoining coastal area exhibit recurrent incidents of diarrhetic and paralytic shellfish poisoning. The conclusions are based on: (1) inorganic and organic nutrients at five sites of the lower, middle and upper Óbidos lagoon, and inorganic nutrients at two sites of the adjacent coastal area; biannual campaigns were performed in winter and summer between 2006 and 2010; (2) phytoplankton assemblages at three sites of the lagoon (located at lower and upper areas) in winter and summer of 2009; (3) algae-derived toxicity of wild mussels from the lower lagoon and coastal area, on a 1-2 week time scale, over 2006 and 2009. Nutrient molar ratios in Óbidos lagoon contrast between winter and summer. The lower median ratios DIN:P (31 and 0.8) and Si:P (11 and 3.3) in summer reflect the excess of phosphate. Excess was mainly attributed to phosphorus regeneration in sediments of the upper lagoon with accentuated symptoms of eutrophication. Dissolved organic nitrogen and dissolved organic phosphorus were also higher in summer, particularly in this area. No significant winter-summer differences were recorded for nutrient ratios in the adjacent coastal area. Phytoplankton assemblages pointed to a winter-summer contrast characterized by a shift of non-siliceous-based phytoplankton to diatoms. The toxic dinoflagellate species (Gymnodinium catenatum, Dinophysis cf. acuminata and Dinophysis acuta), presumably imported from the adjacent coast following upwelling episodes in summer, were observed in the lower lagoon. In summer of the two surveyed years, toxins produced by dinoflagellates occurred in

  17. Government conservation policies on Mexican coastal areas: is "top-down" management working?

    Directory of Open Access Journals (Sweden)

    Héctor Nava

    2011-12-01

    Full Text Available Marine and terrestrial ecosystems are declining globally due to environmental degradation and poorly planned resource use. Traditionally, local government agencies have been responsible of the management of natural reserves to preserve biodiversity. Nonetheless, much of these approaches have failed, suggesting the development of more integrative strategies. In order to discuss the importance of a holistic approach in conservation initiatives, coastal and underwater landscape value and biological/environmental indicators of coral reef degradation were assessed using the study case of Zihuatanejo, Guerrero coastal area. This area shelters representative coral reef structures of the Eastern Pacific coast and its terrestrial biodiversity and archaeology enhance the high value of its coastal area. This study explored the landscape value of both terrestrial and marine ecosystems using the geomorphosite approach in two sites on the Zihuatanejo coastal area: Caleta de Chon and Manzanillo Beach. Sedimentation rate, water transparency, chlorophyll and total suspended solids were recorded underwater in each site for environmental characterization. 50 photo-quadrants on five transects were surveyed between 3-4m depth to record coverage (% of living corals, dead corals, algae, sand and rocks. The conservation status of coral reefs was assessed by the coral mortality index (MI. Landscape values showed that both terrestrial and marine ecosystems had important scientific and aesthetic values, being Manzanillo Beach the site with the highest potential for conservation initiatives (TtV=14.2. However, coral reefs face elevated sedimentation rates (up to 1.16kg/m2d and low water transparency (less of 5m generated by coastal land use changes that have increased soil erosion in the adjacent coastal area. High coverage of dead corals (23.6% and algae (up to 29% confirm the low values in conservation status of coral reefs (MI=0.5, reflecting a poorly-planned management

  18. Low-water considerations for NPP sites

    International Nuclear Information System (INIS)

    Jensen, J.; Frank, T.; Wahl, T.

    2009-01-01

    In the frame of reactor safety considerations flood protection and the evaluation of low-water events are safety relevant issues. Therefore low-water statistics were performed for the coastal region Cuxhaven and the Elbe river estuary. The consideration of the longitudinal profile of water levels during low-tide in connection with surface water effects, morphodynamic changes of the river and anthropogenic modifications is of importance for conclusions concerning the NPP sites in some distance of the reference tide gauge. The authors performed a statistical low-tide analysis for the NPP sites Brunsbuettel and Brokdorf.

  19. Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

    Directory of Open Access Journals (Sweden)

    Barbara Neumann

    Full Text Available Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential

  20. Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

    Science.gov (United States)

    Neumann, Barbara; Vafeidis, Athanasios T; Zimmermann, Juliane; Nicholls, Robert J

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  1. Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment

    Science.gov (United States)

    Neumann, Barbara; Vafeidis, Athanasios T.; Zimmermann, Juliane; Nicholls, Robert J.

    2015-01-01

    Coastal zones are exposed to a range of coastal hazards including sea-level rise with its related effects. At the same time, they are more densely populated than the hinterland and exhibit higher rates of population growth and urbanisation. As this trend is expected to continue into the future, we investigate how coastal populations will be affected by such impacts at global and regional scales by the years 2030 and 2060. Starting from baseline population estimates for the year 2000, we assess future population change in the low-elevation coastal zone and trends in exposure to 100-year coastal floods based on four different sea-level and socio-economic scenarios. Our method accounts for differential growth of coastal areas against the land-locked hinterland and for trends of urbanisation and expansive urban growth, as currently observed, but does not explicitly consider possible displacement or out-migration due to factors such as sea-level rise. We combine spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development. Our scenarios show that the number of people living in the low-elevation coastal zone, as well as the number of people exposed to flooding from 1-in-100 year storm surge events, is highest in Asia. China, India, Bangladesh, Indonesia and Viet Nam are estimated to have the highest total coastal population exposure in the baseline year and this ranking is expected to remain largely unchanged in the future. However, Africa is expected to experience the highest rates of population growth and urbanisation in the coastal zone, particularly in Egypt and sub-Saharan countries in Western and Eastern Africa. The results highlight countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential. Furthermore, we

  2. Coastal Erosion Armoring 2005

    Data.gov (United States)

    California Natural Resource Agency — Coastal armoring along the coast of California, created to provide a database of all existing coastal armoring based on data available at the time of creation....

  3. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    Science.gov (United States)

    Hart, Kristen M.; Schofield, Pamela J.; Gregoire, Denise R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios.

  4. Remote sensing for nuclear power plant siting

    International Nuclear Information System (INIS)

    Siegal, B.S.; Welby, C.W.

    1981-01-01

    It is shown that satellite remote sensing provides timely and cost-effective information for siting and site evaluation of nuclear power plants. Side-looking airborne radar (SLAR) imagery is especially valuable in regions of prolonged cloud cover and haze, and provides additional assurance in siting and licensing. In addition, a wide range of enhancement techniques should be employed and different types of image should be color-combined to provide structural and lithologic information. Coastal water circulation can also be studied through repetitive coverage and the inherently synoptic nature of imaging satellites. Among the issues discussed are snow cover, sun angle, and cloud cover, and actual site evaluation studies in the Bataan peninsula of the Philippines and Laguna Verde, California

  5. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China

    Science.gov (United States)

    Chen, Kai; Ni, Minjie; Wang, Jun; Huang, Dongren; Chen, Huorong; Wang, Xiao; Liu, Mengyang

    2016-01-01

    Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO4-P) to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas. PMID:27777951

  6. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2016-01-01

    Full Text Available Environmental monitoring is fundamental in assessing environmental quality and to fulfill protection and management measures with permit conditions. However, coastal environmental monitoring work faces many problems and challenges, including the fact that monitoring information cannot be linked up with evaluation, monitoring data cannot well reflect the current coastal environmental condition, and monitoring activities are limited by cost constraints. For these reasons, protection and management measures cannot be developed and implemented well by policy makers who intend to solve this issue. In this paper, Quanzhou Bay in southeastern China was selected as a case study; and the Kriging method and a geographic information system were employed to evaluate and optimize the existing monitoring network in a semienclosed bay. This study used coastal environmental monitoring data from 15 sites (including COD, DIN, and PO4-P to adequately analyze the water quality from 2009 to 2012 by applying the Trophic State Index. The monitoring network in Quanzhou Bay was evaluated and optimized, with the number of sites increased from 15 to 24, and the monitoring precision improved by 32.9%. The results demonstrated that the proposed advanced monitoring network optimization was appropriate for environmental monitoring in Quanzhou Bay. It might provide technical support for coastal management and pollutant reduction in similar areas.

  7. Two-Dimensional Hydrodynamic Simulation of Surface-Water Flow and Transport to Florida Bay through the Southern Inland and Coastal Systems (SICS)

    Science.gov (United States)

    Swain, Eric D.; Wolfert, Melinda A.; Bales, Jerad D.; Goodwin, Carl R.

    2004-01-01

    Successful restoration of the southern Florida ecosystem requires extensive knowledge of the physical characteristics and hydrologic processes controlling water flow and transport of constituents through extremely low-gradient freshwater marshes, shallow mangrove-fringed coastal creeks and tidal embayments, and near-shore marine waters. A sound, physically based numerical model can provide simulations of the differing hydrologic conditions that might result from various ecosystem restoration scenarios. Because hydrology and ecology are closely linked in southern Florida, hydrologic model results also can be used by ecologists to evaluate the degree of ecosystem restoration that could be achieved for various hydrologic conditions. A robust proven model, SWIFT2D, (Surface-Water Integrated Flow and Transport in Two Dimensions), was modified to simulate Southern Inland and Coastal Systems (SICS) hydrodynamics and transport conditions. Modifications include improvements to evapotranspiration and rainfall calculation and to the algorithms that describe flow through coastal creeks. Techniques used in this model should be applicable to other similar low-gradient marsh settings in southern Florida and elsewhere. Numerous investigations were conducted within the SICS area of southeastern Everglades National Park and northeastern Florida Bay to provide data and parameter values for model development and testing. The U.S. Geological Survey and the National Park Service supported investigations for quantification of evapotranspiration, vegetative resistance to flow, wind-induced flow, land elevations, vegetation classifications, salinity conditions, exchange of ground and surface waters, and flow and transport in coastal creeks and embayments. The good agreement that was achieved between measured and simulated water levels, flows, and salinities through minimal adjustment of empirical coefficients indicates that hydrologic processes within the SICS area are represented properly

  8. Fine-scale hydrodynamics influence the spatio-temporal distribution of harbour porpoises at a coastal hotspot

    NARCIS (Netherlands)

    Jones, A.R.; Hosegood, P.; Wynn, R.B.; Boer, de M.N.; Butler-Cowdry, S.; Embling, C.B.

    2014-01-01

    The coastal Runnelstone Reef, off southwest Cornwall (UK), is characterised by complex topography and strong tidal flows and is a known high-density site for harbour porpoise (Phocoena phocoena); a European protected species. Using a multidisciplinary dataset including: porpoise sightings from a

  9. Early retreat of the Alaska Peninsula Glacier Complex and the implications for coastal migrations of First Americans

    Science.gov (United States)

    Misarti, Nicole; Finney, Bruce P.; Jordan, James W.; Maschner, Herbert D. G.; Addison, Jason A.; Shapley, Mark D.; Krumhardt, Andrea P.; Beget, James E.

    2012-01-01

    The debate over a coastal migration route for the First Americans revolves around two major points: seafaring technology, and a viable landscape and resource base. Three lake cores from Sanak Island in the western Gulf of Alaska yield the first radiocarbon ages from the continental shelf of the Northeast Pacific and record deglaciation nearly 17 ka BP (thousands of calendar years ago), much earlier than previous estimates based on extrapolated data from other sites outside the coastal corridor in the Gulf of Alaska. Pollen data suggest an arid, terrestrial ecosystem by 16.3 ka BP. Therefore glaciers would not have hindered the movement of humans along the southern edge of the Bering Land Bridge for two millennia before the first well-recognized “New World” archaeological sites were inhabited.

  10. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    This document is a compilation of summaries of papers presented at the Coastal Ocean Prediction Systems workshop. Topics include; marine forecasting, regulatory agencies and regulations, research and application models, research and operational observing, oceanic and atmospheric data assimilation, and coastal physical processes

  11. Diurnal changes in ocean color in coastal waters

    Science.gov (United States)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  12. Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Jason Magalen; Craig Jones

    2014-06-01

    This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of a wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.

  13. Shell alterations in limpets as putative biomarkers for multi-impacted coastal areas.

    Science.gov (United States)

    Begliomini, Felipe Nincao; Maciel, Daniele Claudino; de Almeida, Sérgio Mendonça; Abessa, Denis Moledo; Maranho, Luciane Alves; Pereira, Camilo Seabra; Yogui, Gilvan Takeshi; Zanardi-Lamardo, Eliete; Castro, Ítalo Braga

    2017-07-01

    During the last years, shell alterations in gastropods have been proposed as tools to be used in monitoring programs. However, no studies were so far performed investigating the relationships among shell parameters and classical biomarkers of damage. The relationship between shell alterations (biometrics, shape and elemental composition) and biomarkers (LPO and DNA strand break) was evaluated in the limpet L. subrugosa sampled along a contamination gradient in a multi-impacted coastal zone from southeastern Brazil. Statistically significant differences were detected among sites under different pollution levels. The occurrence of shell malformations was consistent with environmental levels of several hazardous substances reported for the studied area and related to lipid peroxidation and DNA damage. In addition, considering the low mobility, wide geographic distribution, ease of collection and abundance of limpets in coastal zones, this putative tool may be a cost-effective alternative to traditional biomarkers. Thus, shell alterations in limpets seem to be good proxies for assessing biological adverse effects in multi-impacted coastal zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Wetland Accretion Rates Along Coastal Louisiana: Spatial and Temporal Variability in Light of Hurricane Isaac’s Impacts

    Directory of Open Access Journals (Sweden)

    Thomas A. Bianchette

    2015-12-01

    Full Text Available The wetlands of the southern Louisiana coast are disappearing due to a host of environmental stressors. Thus, it is imperative to analyze the spatial and temporal variability of wetland vertical accretion rates. A key question in accretion concerns the role of landfalling hurricanes as a land-building agent, due to their propensity to deposit significant volumes of inorganic sediments. Since 1996, thousands of accretion measurements have been made at 390 sites across coastal Louisiana as a result of a regional monitoring network, called the Coastal Reference Monitoring System (CRMS. We utilized this dataset to analyze the spatial and temporal patterns of accretion by mapping rates during time periods before, around, and after the landfall of Hurricane Isaac (2012. This analysis is vital for quantifying the role of hurricanes as a land-building agent and for understanding the main mechanism causing heightened wetland accretion. The results show that accretion rates averaged about 2.89 cm/year from stations sampled before Isaac, 4.04 cm/year during the period encompassing Isaac, and 2.38 cm/year from sites established and sampled after Isaac. Accretion rates attributable to Isaac’s effects were therefore 40% and 70% greater than before and after the event, respectively, indicating the event’s importance toward coastal land-building. Accretion associated with Isaac was highest at sites located 70 kilometers from the storm track, particularly those near the Mississippi River and its adjacent distributaries and lakes. This spatial pattern of elevated accretion rates indicates that freshwater flooding from fluvial channels, rather than storm surge from the sea per se, is the main mechanism responsible for increased wetland accretion. This significance of riverine flooding has implications toward future coastal restoration policies and practices.

  15. Innovation in coastal risk management: An exploratory analysis of risk governance issues at eight THESEUS study sites

    NARCIS (Netherlands)

    Penning-Rowsell, E.C.; de Vries, W.S.; Parker, D.J.; Zanuttigh, B.; Simmonds, D.; Trifonova, E.; Hissel, F.; Monbaliu, J.; Lendzion, J.; Ohle, N.; Diaz, P.; Bouma, T.

    2014-01-01

    The nature of coastal risk management is changing, away from an engineering-dominated approach seeking to defend against the sea, to one where risks are managed using a portfolio of measures usually incorporating an acceptance of a finite standards of protection. Inherent in the modern approach is

  16. Environmental influences on fish assemblage distribution of an estuarine coastal lagoon, Ria de Aveiro (Portugal)

    OpenAIRE

    Pombo, L.; Elliott, M.; Rebelo, J. E.

    2005-01-01

    Fish assemblage was examined for patterns in spatial and seasonal structure within an estuarine coastal lagoon, Ria de Aveiro. Two years of variation in abiotic conditions were recorded to identify factors responsible for maintaining the structure of fish assemblages. Nine sites were sampled monthly with a traditional “chincha” beach-seine net between November 1998 and October 2000. Fish abundance and biomass changed significantly between sites. Temperature was found to be the most important ...

  17. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    Directory of Open Access Journals (Sweden)

    Alain Muñoz-Caravaca

    2008-07-01

    Full Text Available Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba, and sediment-rich waters in the Laucala Bay (Fiji. In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations. The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU. This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.

  18. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    Science.gov (United States)

    Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain

    2008-01-01

    Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach. PMID:27879929

  19. Coastal Economic Trends for Coastal Geographies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These market data provide a comprehensive set of measures of changes in economic activity throughout the coastal regions of the United States. In regard to the...

  20. Management Implications for the Most Attractive Scenic Sites along the Andalusia Coast (SW Spain

    Directory of Open Access Journals (Sweden)

    Alexis Mooser

    2018-04-01

    Full Text Available A coastal scenery assessment was carried out at 50 sites along the 910 km long Andalusia coast (SW Spain using a checklist of 26 natural and human parameters, parameter weighting matrices, and fuzzy logic. A scenic classification was utilised that can rate sites as Class I (natural areas of great scenic beauty to Class V (urbanised areas of poor scenic interest, but, for this study, only natural sites of great scenic value were investigated; 41 sites were included in Class I, 9 in Class II and, apart from four, all of the sites were under some feature of protection—managed by the Andalusia Environmental Agency (RENPA, in Spanish. Sites belong to the Natural Park Cabo de Gata-Nijar (24% of sites, the Natural Park of Gibraltar Strait (18%, the Natural Place Acantilado de Maro-Cerro Gordo (12%, and the Natural and National parks of Doñana (8%. Results obtained by means of scenic evaluation constitute a sound scientific basis for any envisaged management plan for investigated coastal areas preservation/conservation and responsible future developments, especially for natural protected areas, which represent the most attractive coastal tourist destinations. With respect to natural parameters, excellent scenic values appeared to be linked to the geological setting and the presence of mountainous landscapes related to the Betic Chain. Human parameters usually show good scores because null or extremely reduced human impacts are recorded, but, at places, conflicts arose between conservation and recreational activities because visitors are often interested in beach activities more so than ecotourism. Low scores of human parameters were often related to litter presence or the unsuitable emplacement of utilities, such as informative panels, litter bins, etc.

  1. The Coastal Hazard Wheel system for coastal multi-hazard assessment & management in a changing climate

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Halsnæs, Kirsten

    2015-01-01

    This paper presents the complete Coastal Hazard Wheel (CHW) system, developed for multi-hazard-assessment and multi-hazard-management of coastal areas worldwide under a changing climate. The system is designed as a low-tech tool that can be used in areas with limited data availability...... screening and management. The system is developed to assess the main coastal hazards in a single process and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The system was initially presented in 2012 and based on a range of test......-applications and feedback from coastal experts, the system has been further refined and developed into a complete hazard management tool. This paper therefore covers the coastal classification system used by the CHW, a standardized assessment procedure for implementation of multi-hazard-assessments, technical guidance...

  2. Siting of research reactors

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this document is to develop criteria for siting and the site-related design basis for research reactors. The concepts presented in this document are intended as recommendations for new reactors and are not suggested for backfitting purposes for facilities already in existence. In siting research reactors serious consideration is given to minimizing the effects of the site on the reactor and the reactor on the site and the potential impact of the reactor on the environment. In this document guidance is first provided on the evaluation of the radiological impact of the installation under normal reactor operation and accident conditions. A classification of research reactors in groups is then proposed, together with a different approach for each group, to take into account the relevant safety problems associated with facilities of different characteristics. Guidance is also provided for both extreme natural events and for man-induced external events which could affect the safe operation of the reactor. Extreme natural events include earthquakes, flooding for river or coastal sites and extreme meteorological phenomena. The feasibility of emergency planning is finally considered for each group of reactors

  3. Predicting coastal morphological changes with empirical orthogonal functionmethod

    Directory of Open Access Journals (Sweden)

    Fernando Alvarez

    2016-01-01

    Full Text Available In order to improve the accuracy of prediction when using the empirical orthogonal function (EOF method, this paper describes a novel approach for two-dimensional (2D EOF analysis based on extrapolating both the spatial and temporal EOF components for long-term prediction of coastal morphological changes. The approach was investigated with data obtained from a process-based numerical model, COAST2D, which was applied to an idealized study site with a group of shore-parallel breakwaters. The progressive behavior of the spatial and temporal EOF components, related to bathymetric changes over a training period, was demonstrated, and EOF components were extrapolated with combined linear and exponential functions for long-term prediction. The extrapolated EOF components were then used to reconstruct bathymetric changes. The comparison of the reconstructed bathymetric changes with the modeled results from the COAST2D model illustrates that the presented approach can be effective for long-term prediction of coastal morphological changes, and extrapolating both the spatial and temporal EOF components yields better results than extrapolating only the temporal EOF component.

  4. PENATAAN RUANG LAUT BERDASARKAN INTEGRATED COASTAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Dina Sunyowati

    2008-10-01

    Full Text Available The planning of coastal spatial arrangement must be put in the valid spatial planning system. Law Number 26 of 2007 on Spatial Planning and it is in fact related with land spatial planning, although that ocean and air spatial management will be arranged in separate law. The legal for coastal zone management is determined by using the principles of integrated coastal management by focusing on area or zone authority system. The integrated of coastal zones management regulations should be followed by the planning of coastal spatial arrange­ment. Therefore, certain synchronization at coastal zones governance is very important issue since by integrating and coordinating other related regulations and therefore conflict of norm can be minimized in the spatial planning coastal zone.

  5. Spatial and Temporal Variability in Biogenic Gas Accumulation and Release in The Greater Everglades at Multiple Scales of Measurement

    Science.gov (United States)

    McClellan, M. D.; Cornett, C.; Schaffer, L.; Comas, X.

    2017-12-01

    Wetlands play a critical role in the carbon (C) cycle by producing and releasing significant amounts of greenhouse biogenic gasses (CO2, CH4) into the atmosphere. Wetlands in tropical and subtropical climates (such as the Florida Everglades) have become of great interest in the past two decades as they account for more than 20% of the global peatland C stock and are located in climates that favor year-round C emissions. Despite the increase in research involving C emission from these types of wetlands, the spatial and temporal variability involving C production, accumulation and release is still highly uncertain, and is the focus of this research at multiple scales of measurement (i.e. lab, field and landscape). Spatial variability in biogenic gas content, build up and release, at both the lab and field scales, was estimated using a series of ground penetrating radar (GPR) surveys constrained with gas traps fitted with time-lapse cameras. Variability in gas content was estimated at the sub-meter scale (lab scale) within two extracted monoliths from different wetland ecosystems at the Disney wilderness Preserve (DWP) and the Blue Cypress Preserve (BCP) using high frequency GPR (1.2 GHz) transects across the monoliths. At the field scale (> 10m) changes in biogenic gas content were estimated using 160 MHz GPR surveys collected within 4 different emergent wetlands at the DWP. Additionally, biogenic gas content from the extracted monoliths was used to developed a landscape comparison of C accumulation and emissions for each different wetland ecosystem. Changes in gas content over time were estimated at the lab scale at high temporal resolution (i.e. sub-hourly) in monoliths from the BCP and Water Conservation Area 1-A. An autonomous rail system was constructed to estimate biogenic gas content variability within the wetland soil matrix using a series of continuous, uninterrupted 1.2 GHz GPR transects along the samples. Measurements were again constrained with an array

  6. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina: Chapter 9

    Science.gov (United States)

    Conner, William H.; Krauss, Ken W.; Doyle, Thomas W.

    2007-01-01

    Tidal freshwater swamps in the southeastern United States are subjected to tidal hydroperiods ranging in amplitude from microtidal (forests, scrub-shrub stands, marsh, or open water but are less likely to convert mesotidal swamps. Changes to hydrological patterns tend to be more noticeable in Louisiana than do those in South Carolina.The majority of Louisiana’s coastal wetland forests are found in the Mississippi River deltaic plain region. Coastal wetland forests in the deltaic plain have been shaped by the sediments, water, and energy of the Mississippi River and its major distributaries. Baldcypress (Taxodium distichum [L.] L.C. Rich.) and water tupelo (Nyssa aquatica L.) are the primary tree species in the coastal swamp forests of Louisiana. Sites where these species grow usually hold water for most of the year; however, some of the more seaward sites were historically microtidal, especially where baldcypress currently dominates. In many other locations, baldcypress and water tupelo typically grow in more or less pure stands or as mixtures of the two with common associates such as black willow (Salix nigra Marsh.), red maple (Acer rubrum L.), water locust (Gleditsia aquatic Marsh.), overcup oak (Quercus lyrata Walt.), water hickory (Carya aquatica [Michx. f.] Nutt.), green ash (Fraxinus pennsylvanica Marsh.), pumpkin ash (F. profunda Bush.), and redbay (Persea borbonia [L.] Sprengel) (Brown and Montz 1986).The South Carolina coastal plain occupies about two-thirds of the state and rises gently to 150 m from the Atlantic Ocean up to the Piedmont plateau. Many rivers can be found in the Coastal Plain with swamps near the coast that extend inland along the rivers. Strongly tidal freshwater forests occur along the lower reaches of redwater rivers (Santee, Great Pee Dee, and Savannah) that arise in the mountains and along the numerous blackwater rivers (Ashepoo, Combahee, Cooper, and Waccamaw) that arise in the coastal regions. Most of the tidal freshwater forests

  7. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    Science.gov (United States)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite

  8. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  9. Coastal and offshore wind energy generation: is it environmentally benign?

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J. C.; Elliott, M.; Cutts, N. D.; Mander, L.; Mendao, V.; Perez-Dominguez, R.; Phelps, A. [Institute of Estuarine and Coastal Studies, University of Hull, Hull, HU6 7RX (United Kingdom); Wilson, J. C. [Amec, Booths Park, Chelford Road, Knutsford, Cheshire, WA16 8QZ (United Kingdom); Mendao, V. [Projecto Delfim, Centro Portugues de Estudo dos Mamiferos Marinhos, Rua Alto do Duque, 45, 1400-009 Lisboa (Portugal)

    2010-07-15

    Offshore and coastal wind power is one of the fastest growing industries in many areas, especially those with shallow coastal regions due to the preferable generation conditions available in the regions. As with any expanding industry, there are concerns regarding the potential environmental effects which may be caused by the installation of the offshore wind turbines and their associated infrastructure, including substations and subsea cables. These include the potential impacts on the biological, physical and human environments. This review discusses in detail the potential impacts arising from offshore wind farm construction, and how these may be quantified and addressed through the use of conceptual models. It concludes that while not environmentally benign, the environmental impacts are minor and can be mitigated through good siting practices. In addition, it suggests that there are opportunities for environmental benefits through habitat creation and conservation protection areas. (authors)

  10. Site management plan: Douglas Point Ecological Laboratory

    International Nuclear Information System (INIS)

    Jensen, B.L.; Miles, K.J.; Strass, P.K.; McDonald, B.

    1979-01-01

    A portion of the Douglas Point Site has been set aside for use as an ecological monitoring facility (DPEL). Plans call for it to provide for long-term scientific study and analysis of specific terrestrial and aquatic ecological systems representative of the coastal plain region of the mid-Atlantic United States. Discussion of the program is presented under the following section headings: goals and objectives; management and organization of DPEL; laboratory director; site manager; monitoring manager; research manager; and, organizational chart. The seven appendixes are entitled: detailed site description; supplemental land use plan; contract between Potomac Electric Power Company and Charles County Community Collge (CCCC); research and monitoring projects initiated at the Douglas Point Power Plant site; advisory committees; facilities and equipment; and CCCC personnel resumes

  11. Trends and causes of historical wetland loss in coastal Louisiana

    Science.gov (United States)

    Bernier, Julie

    2013-01-01

    Wetland losses in the northern Gulf Coast region of the United States are so extensive that they represent critical concerns to government environmental agencies and natural resource managers. In Louisiana, almost 3,000 square kilometers (km2) of low-lying wetlands converted to open water between 1956 and 2004, and billions of dollars in State and Federal funding have been allocated for coastal restoration projects intended to compensate for some of those wetland losses. Recent research at the St. Petersburg Coastal and Marine Science Center (SPCMSC) focused on understanding the physical processes and human activities that contributed to historical wetland loss in coastal Louisiana and the spatial and temporal trends of that loss. The physical processes (land-surface subsidence and sediment erosion) responsible for historical wetland loss were quantified by comparing marsh-surface elevations, water depths, and vertical displacements of stratigraphic contacts at 10 study areas in the Mississippi River delta plain and 6 sites at Sabine National Wildlife Refuge (SNWR) in the western chenier plain. The timing and extent of land loss at the study areas was determined by comparing historical maps, aerial photographs, and satellite imagery; the temporal and spatial trends of those losses were compared with historical subsidence rates and hydrocarbon production trends.

  12. National Coastal Condition Report I Factsheet

    Science.gov (United States)

    The National Coastal Condition Report describes the ecological and environmental conditions in U.S. coastal waters. This first-of-its-kind Report, presents a broad baseline picture of the overall condition of U.S. coastal waters as fair to poor.

  13. Managing Data, Provenance and Chaos through Standardization and Automation at the Georgia Coastal Ecosystems LTER Site

    Science.gov (United States)

    Sheldon, W.

    2013-12-01

    Managing data for a large, multidisciplinary research program such as a Long Term Ecological Research (LTER) site is a significant challenge, but also presents unique opportunities for data stewardship. LTER research is conducted within multiple organizational frameworks (i.e. a specific LTER site as well as the broader LTER network), and addresses both specific goals defined in an NSF proposal as well as broader goals of the network; therefore, every LTER data can be linked to rich contextual information to guide interpretation and comparison. The challenge is how to link the data to this wealth of contextual metadata. At the Georgia Coastal Ecosystems LTER we developed an integrated information management system (GCE-IMS) to manage, archive and distribute data, metadata and other research products as well as manage project logistics, administration and governance (figure 1). This system allows us to store all project information in one place, and provide dynamic links through web applications and services to ensure content is always up to date on the web as well as in data set metadata. The database model supports tracking changes over time in personnel roles, projects and governance decisions, allowing these databases to serve as canonical sources of project history. Storing project information in a central database has also allowed us to standardize both the formatting and content of critical project information, including personnel names, roles, keywords, place names, attribute names, units, and instrumentation, providing consistency and improving data and metadata comparability. Lookup services for these standard terms also simplify data entry in web and database interfaces. We have also coupled the GCE-IMS to our MATLAB- and Python-based data processing tools (i.e. through database connections) to automate metadata generation and packaging of tabular and GIS data products for distribution. Data processing history is automatically tracked throughout the data

  14. Coastal remote sensing – towards integrated coastal research and management

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2012-10-01

    Full Text Available coastal resources and anthropogenic infrastructure for a safer future. What is the role of remote sensing? The coastal zone connects terrestrial biophysical systems with marine systems. Some marine ecosystems cannot function without intact inland... for the development of sound integrated management solutions. To date, however, remote sensing applications usually focus on areas landward from the highwater line (?terrestrial? remote sensing), while ?marine? remote sensing does not pay attention to the shallow...

  15. The new Euskalmet coastal-maritime warning system

    Science.gov (United States)

    Gaztelumendi, Santiago; Egaña, Joseba; Liria, Pedro; Gonzalez, Manuel; Aranda, José Antonio; Anitua, Pedro

    2016-06-01

    This work presents the main characteristics of the Basque Meteorology Agency (Euskalmet) maritime-coastal risk warning system, with special emphasis on the latest updates, including a clear differentiation on specific warning messages addressing sea conditions for navigation purposes in the first 2 nautical miles, and expected coastal impacts. Some details of the warning bulletin for maritime and coastal risk situations are also presented, together with other communication products and strategies used in coastal and maritime severe episodes at the Basque coast. Today, three different aspects are included in the coastal-maritime risk warning system in Basque Country, related to the main potential severe events that affecting coastal activities. - "Galerna" risk relates to a sudden wind reversal that can severely affect coastal navigation and recreational activities. - "Navigation" risk relates to severe sea state conditions for 0-2 miles, affecting different navigation activities. - "Coastal impact" risk relates to adverse wave characteristics and tidal surges that induce flooding events and different impacts in littoral areas.

  16. Risk Analysis of Coastal hazard Considering Sea-level Rise and Local Environment in Coastal Area

    Science.gov (United States)

    Sangjin, P.; Lee, D. K.; KIM, H.; Ryu, J. E.; Yoo, S.; Ryoo, H.

    2014-12-01

    Recently, natural hazards has been more unpredictable with increasing frequency and strength due to climate change. Especially, coastal areas would be more vulnerable in the future because of sea-level rise (SLR). In case of Korea, it is surrounded by oceans and has many big cities at coastal area, thus a hazard prevention plan in coastal area is absolutely necessary. However, prior to making the plan, finding areas at risk would be the first step. In order to find the vulnerable area, local characteristics of coastal areas should also be considered along with SLR. Therefore, the objective of the research is to find vulnerable areas, which could be damaged by coastal hazards considering local environment and SLR of coastal areas. Spatial scope of the research was set up as 1km from the coastline according to the 'coastal management law' in Korea. The assessment was done up to the year of 2050, and the highest sea level rise scenario was used. For risk analysis, biophysical and socioeconomic characteristics were considered as to represent local characteristics of coastal area. Risk analysis was carried out through the combination of 'possibility of hazard' and the 'level of damages', and both of them reflect the above-mentioned regional characteristics. Since the range of inundation was narrowed down to the inundation from typhoon in this research, the possibility of inundation caused by typhoon was estimated by using numerical model, which calculated the height of storm surge considering wave, tide, sea-level pressure and SLR. Also the level of damage was estimated by categorizing the socioeconomic character into four factors; human, infrastructure, ecology and socioeconomic. Variables that represent each factor were selected and used in damage estimation with their classification and weighting value. The result shows that the urban coastal areas are more vulnerable and hazardous than other areas because of socioeconomic factors. The east and the south coast are

  17. Seasonal variations of C1-C4 alkyl nitrates at a coastal site in Hong Kong: Influence of photochemical formation and oceanic emissions.

    Science.gov (United States)

    Song, Junwei; Zhang, Yingyi; Huang, Yu; Ho, Kin Fai; Yuan, Zibing; Ling, Zhenhao; Niu, Xiaojun; Gao, Yuan; Cui, Long; Louie, Peter K K; Lee, Shun-Cheng; Lai, Senchao

    2018-03-01

    Five C 1 -C 4 alkyl nitrates (RONO 2 ) were measured at a coastal site in Hong Kong in four selected months of 2011 and 2012. The total mixing ratios of C 1 -C 4 RONO 2 (Σ 5 RONO 2 ) ranged from 15.4 to 143.7 pptv with an average of 65.9 ± 33.0 pptv. C 3 -C 4 RONO 2 (2-butyl nitrate and 2-propyl nitrate) were the most abundant RONO 2 during the entire sampling period. The mixing ratios of C 3 -C 4 RONO 2 were higher in winter than those in summer, while the ones of methyl nitrate (MeONO 2 ) were higher in summer than those in winter. Source analysis suggests that C 2 -C 4 RONO 2 were mainly derived from photochemical formation along with biomass burning (58.3-71.6%), while ocean was a major contributor to MeONO 2 (53.8%) during the whole sampling period. The photochemical evolution of C 2 -C 4 RONO 2 was investigated, and found to be dominantly produced by the parent hydrocarbon oxidation. The notable enrichment of MeONO 2 over C 3 -C 4 RONO 2 was observed in a summer episode when the air masses originating from the South China Sea (SCS) and MeONO 2 was dominantly derived from oceanic emissions. In order to improve the accuracy of ozone (O 3 ) prediction in coastal environment, the relative contribution of RONO 2 from oceanic emissions versus photochemical formation and their coupling effects on O 3 production should be taken into account in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    Science.gov (United States)

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  19. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    Science.gov (United States)

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The Coastal Ocean Prediction Systems program: Understanding and managing our coastal ocean

    International Nuclear Information System (INIS)

    1990-01-01

    The proposed COPS (Coastal Ocean Prediction Systems) program is concerned with combining numerical models with observations (through data assimilation) to improve our predictive knowledge of the coastal ocean. It is oriented toward applied research and development and depends upon the continued pursuit of basic research in programs like COOP (Coastal Ocean Processes); i.e., to a significant degree it is involved with ''technology transfer'' from basic knowledge to operational and management applications. This predictive knowledge is intended to address a variety of societal problems: (1) ship routing, (2) trajectories for search and rescue operations, (3) oil spill trajectory simulations, (4) pollution assessments, (5) fisheries management guidance, (6) simulation of the coastal ocean's response to climate variability, (7) calculation of sediment transport, (8) calculation of forces on structures, and so forth. The initial concern is with physical models and observations in order to provide a capability for the estimation of physical forces and transports in the coastal ocean. For all these applications, there are common needs for physical field estimates: waves, tides, currents, temperature, and salinity, including mixed layers, thermoclines, fronts, jets, etc. However, the intent is to work with biologists, chemists, and geologists in developing integrated multidisciplinary prediction systems as it becomes feasible to do so. From another perspective, by combining observations with models through data assimilation, a modern approach to monitoring is provided through whole-field estimation