WorldWideScience

Sample records for coastal ecosystem health

  1. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.

    Science.gov (United States)

    Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen

    2016-02-15

    The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Hierarchical Synthesis of Coastal Ecosystem Health Indicators at Karimunjawa National Marine Park

    Science.gov (United States)

    Danu Prasetya, Johan; Ambariyanto; Supriharyono; Purwanti, Frida

    2018-02-01

    The coastal ecosystem of Karimunjawa National Marine Park (KNMP) is facing various pressures, including from human activity. Monitoring the health condition of coastal ecosystems periodically is needed as an evaluation of the ecosystem condition. Systematic and consistent indicators are needed in monitoring of coastal ecosystem health. This paper presents hierarchical synthesis of coastal ecosystem health indicators using Analytic Hierarchy Process (AHP) method. Hierarchical synthesis is obtained from process of weighting by paired comparison based on expert judgments. The variables of coastal ecosystem health indicators in this synthesis consist of 3 level of variable, i.e. main variable, sub-variable and operational variable. As a result of assessment, coastal ecosystem health indicators consist of 3 main variables, i.e. State of Ecosystem, Pressure and Management. Main variables State of Ecosystem and Management obtain the same value i.e. 0.400, while Pressure value was 0.200. Each main variable consist of several sub-variable, i.e. coral reef, reef fish, mangrove and seagrass for State of Ecosystem; fisheries and marine tourism activity for Pressure; planning and regulation, institutional and also infrastructure and financing for Management. The highest value of sub-variable of main variable State of Ecosystem, Pressure and Management were coral reef (0.186); marine tourism pressure (0.133) and institutional (0.171), respectively. The highest value of operational variable of main variable State of Ecosystem, Pressure and Management were percent of coral cover (0.058), marine tourism pressure (0.133) and presence of zonation plan, regulation also socialization of monitoring program (0.53), respectively. Potential pressure from marine tourism activity is the variable that most affect the health of the ecosystem. The results of this research suggest that there is a need to develop stronger conservation strategies to facing with pressures from marine tourism

  3. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    Science.gov (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  4. Coastal ecosystems, productivity and ecosystem protection: Coastal ecosystem management

    International Nuclear Information System (INIS)

    Ngoile, M.A.K.; Horrill, C.J.

    1993-01-01

    The coastal zone is a complex ecosystem under the influence of physical, chemical and biological processes. Under natural conditions these processes interact and maintain an equilibrium in the coastal ecosystem. Man makes a variety of important uses of coastal resources, ranging from harvesting of living resources, extraction of nonliving resources, and recreation, to the disposal of wastes. Man's extensive use of the oceans introduces factors which bring about an imbalance in the natural processes, and may result in harmful and hazardous effects to life hindering further use. Man's pressure on the resources of the coastal zone is already manifest and will increase manifold. This calls for an immediate solution to the protection and sustainable use of coastal resources. The current sectorized approach to the management of human activities will not solve the problem because the different resources of the coastal zone interact in such a manner that disturbances in one cause imbalance in the others. This is further complicated by the sectorized approach to research and limited communication between policy makers, managers, and scientists. This paper discusses strategies for managing coastal-resources use through an integrated approach. The coastal zone is presented as a unified ecosystem in equilibrium and shows that man's extensive use of the coastal resources destabilizes this equilibrium. Examples from the East Africa Region are presented. 15 refs, 2 figs, 3 tabs

  5. Ecological health status of the Lagos wetland ecosystems: Implications for coastal risk reduction

    Science.gov (United States)

    Agboola, Julius I.; Ndimele, Prince E.; Odunuga, Shakirudeen; Akanni, Adeniran; Kosemani, Bosede; Ahove, Michael A.

    2016-12-01

    Lagos, a major urban agglomeration in the world is characterized by wetlands and basin for upstream rivers such as Ogun, Oshun and Yewa Rivers. Ongoing environmental pressures exerted by large-scale land reclamation for residential quarters, refuse and sewage dumping, and other uses, however, are suspected to have had a substantial impact on ecological health of the Lagos wetland ecosystems over the last few decades. To determine the impact of these pressures, we examined spatial changes in three wetlands areas- Badore/Langbasa (BL), Festac/Iba/Ijegun (FI) and Ologe/Otto-Awori (OO) through field sample collection and analyses of surface water, sediments, air-water interface gas fluxes and vegetations. Surface water conductivity, total suspended solids (TSS), alkalinity, chloride, biological oxygen demand (BOD), nitrate, phosphate and heavy metals (Zn, Cu, Fe, Na, Mn, Pb, Cd, K and Ni) exhibited relative spatial stability while other water quality parameters varied significantly (P International Union for Conservation of Nature (IUCN). There are indications of steady rise in greenhouse gas levels in Lagos since air CO2 value at BL have reached global threshold of 400 ppm with OO and FI closely approaching. We conclude that the Lagos wetland ecosystems, especially OO and FI still have some semblance of natural habitat. However, further destruction and unwise use of the resources could cause damage to physical, chemical, geological and biological processes in nature, which could result to grave socio-economic and cultural consequences to the local communities whose livelihood and lifestyle depend on these valued wetlands.

  6. Reprint of Ecological health status of the Lagos wetland ecosystems: Implications for coastal risk reduction

    Science.gov (United States)

    Agboola, Julius I.; Ndimele, Prince E.; Odunuga, Shakirudeen; Akanni, Adeniran; Kosemani, Bosede; Ahove, Michael A.

    2016-12-01

    Lagos, a major urban agglomeration in the world is characterized by wetlands and basin for upstream rivers such as Ogun, Oshun and Yewa Rivers. Ongoing environmental pressures exerted by large-scale land reclamation for residential quarters, refuse and sewage dumping, and other uses, however, are suspected to have had a substantial impact on ecological health of the Lagos wetland ecosystems over the last few decades. To determine the impact of these pressures, we examined spatial changes in three wetlands areas- Badore/Langbasa (BL), Festac/Iba/Ijegun (FI) and Ologe/Otto-Awori (OO) through field sample collection and analyses of surface water, sediments, air-water interface gas fluxes and vegetations. Surface water conductivity, total suspended solids (TSS), alkalinity, chloride, biological oxygen demand (BOD), nitrate, phosphate and heavy metals (Zn, Cu, Fe, Na, Mn, Pb, Cd, K and Ni) exhibited relative spatial stability while other water quality parameters varied significantly (P International Union for Conservation of Nature (IUCN). There are indications of steady rise in greenhouse gas levels in Lagos since air CO2 value at BL have reached global threshold of 400 ppm with OO and FI closely approaching. We conclude that the Lagos wetland ecosystems, especially OO and FI still have some semblance of natural habitat. However, further destruction and unwise use of the resources could cause damage to physical, chemical, geological and biological processes in nature, which could result to grave socio-economic and cultural consequences to the local communities whose livelihood and lifestyle depend on these valued wetlands.

  7. Coastal ecosystems: Attempts to manage a threatened resource

    International Nuclear Information System (INIS)

    Lundin, C.G.; Linden, O.

    1993-01-01

    Tropical coastal zones are productive ecosystems that currently face severe environmental threats, particularly from organic pollution. The role of the coastal ecosystems is analyzed and the relationship between coastal ecosystem health and fisheries productivity is explained. Ecological disturbances from organic sources like sewage and siltation is highlighted. The issues of integrated coastal zone management (ICZM) are discussed, particularly in the context of conserving natural ecosystems or transforming them to managed systems. Issues of population density, management capacity, and socioeconomic conditions are discussed. The possibilities for closing carbon cycles currently leaking organic materials to the coastal waters are pursued. Finally, examples of ICZM initiatives in the ASEAN countries and East Africa are presented. 42 refs

  8. Evaluation of the ecological integrity and ecosystem health of three benthic networks influenced by coastal upwelling in the northern Chile

    Science.gov (United States)

    The ecological health of ecosystems relates to the maintenance or restoration of optimal system function when confronted with a disturbance. A healthy ecosystem is a prerequisite for ecological sustainability. Ecological integrity has been defined as an emergent property of ecosy...

  9. Evaluation of the health status of a coastal ecosystem in southeast Mexico: Assessment of water quality, phytoplankton and submerged aquatic vegetation.

    Science.gov (United States)

    Herrera-Silveira, Jorge A; Morales-Ojeda, Sara M

    2009-01-01

    The coastal environment of the Yucatan Peninsula (SE, Mexico) includes a wide variety of ecosystems ranging from mangroves to coral reefs, resulting in a heterogeneous landscape. Specifically, the marine system is characterized by environmental differences which respond to regional and local forcing functions such as marine currents and groundwater discharges (GD). Such functional characteristics were used here to define four subregions across the Yucatan coast and diagnose the health status of this coastal marine ecosystem. To achieve this goal, we conducted an analysis and integration of water quality variables, an eutrophic assessment, evaluated changes in submerged aquatic vegetation (SAV), and analyzed the community structure and distribution of harmful phytoplankton. The first step was to determine the reference values for each subregion based on data previously collected from 2002 to 2006 along the coast of Yucatan, 200m offshore. The trophic index (TRIX) and Canadian index for aquatic life (CCMEWQI) were used to diagnose each subregion and then the ASSETS approach was conducted for Dzilam and Progreso, sampling localities on each end of the health status continuum (those with the best and worst conditions). Overall, results indicated that the marine coastal ecosystem of Yucatan is in good condition; however, differences were observed between subregions that can be attributed to local forcing functions and human impacts. Specifically, the central region (zone HZII, Progreso-Telchac) showed symptoms of initial eutrophication due to nutrient inputs from human activities. The eastern region (zone HZ III, Dzilam-Las Bocas) showed a meso-eutrophic condition linked to natural groundwater discharges, while the other two subregions western (zone HZI Celestun-Palmar) and caribbean (zone HZ IV Ria Lagartos-El Cuyo) exhibited symptoms of oligo-mesotrophic condition. These findings may be considered baseline information for coastal ecosystem monitoring programs in

  10. Coastal wetlands: an integrated ecosystem approach

    Science.gov (United States)

    Perillo, G. M. E.; Wolanski, E.; Cahoon, D.R.; Brinson, M.M.

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  11. Ecosystem-based management of coastal eutrophication

    DEFF Research Database (Denmark)

    Andersen, Jesper H.

    This thesis focuses on Ecosystem-Based Management (EBM) of coastal eutrophication. Special attention is put on connections between science and decision-making in regard to development, implementation and revision of evidence-based nutrient management strategies. Two strategies are presented...... and analysed: the Danish Action Plans on the Aquatic Environment and the eutrophication segment of the Baltic Sea Action Plan. Similarities and differences are discussed and elements required for making nutrient management strategies successful are suggested. Key words: Eutrophication, marine, Danish...

  12. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies.

    Science.gov (United States)

    Hernández-Delgado, E A

    2015-12-15

    Climate change has significantly impacted tropical ecosystems critical for sustaining local economies and community livelihoods at global scales. Coastal ecosystems have largely declined, threatening the principal source of protein, building materials, tourism-based revenue, and the first line of defense against storm swells and sea level rise (SLR) for small tropical islands. Climate change has also impacted public health (i.e., altered distribution and increased prevalence of allergies, water-borne, and vector-borne diseases). Rapid human population growth has exacerbated pressure over coupled social-ecological systems, with concomitant non-sustainable impacts on natural resources, water availability, food security and sovereignty, public health, and quality of life, which should increase vulnerability and erode adaptation and mitigation capacity. This paper examines cumulative and synergistic impacts of climate change in the challenging context of highly vulnerable small tropical islands. Multiple adaptive strategies of coupled social-ecological ecosystems are discussed. Multi-level, multi-sectorial responses are necessary for adaptation to be successful. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Paradigms in the Recovery of Estuarine and Coastal Ecosystems

    OpenAIRE

    Duarte, Carlos M.; Borja, Ángel; Carstensen, Jacob; Elliott, Michael S.; Krause-Jensen, Dorte; Marbà, Núria

    2015-01-01

    © 2013, Coastal and Estuarine Research Federation. Following widespread deterioration of coastal ecosystems since the 1960s, current environmental policies demand ecosystem recovery and restoration. However, vague definitions of recovery and untested recovery paradigms complicate efficient stewardship of coastal ecosystems. We critically examine definitions of recovery and identify and test the implicit paradigms against well-documented cases studies based on a literature review. The study hi...

  14. Genetic Enhancement of Coastal Ecosystem (abstract)

    International Nuclear Information System (INIS)

    Parida, A.

    2005-01-01

    Coastal and marine areas contain some of the world's most diverse and productive biological systems. They are sensitive to human activities, impact and interventions. Pressures on these systems are growing more intense. As rapid development and population growth continue in coastal areas increasing demands are expected on natural resources and on remaining natural habitats along the coasts. The problem is more serious in Indian context that has a 7,500 km long coastline and is facing increasing soil erosion and water pollution. The prospects of sea level rise, expected to be in the order of 8-29 cm due to the global warming by 2025, necessitates immediate measures to foster the sustainable and equitable management of the coastal wetland ecosystems. Salinity is a significant limiting factor to agricultural productivity affecting about 9 x 10/sup 8/ha, worldwide. About one-third of all irrigated land is affected by salt due to secondary salinisation and it is estimated that 50% of the arable lands will be salinised by the year 2050. The problem of salinity is most acute in the coastal regions affecting the productivity of the agricultural system. Improving or maintaining yield potential of the crops under increased salinisation is of greater significance for the future. With a view to identify and isolate novel genetic combinations offering resistance to coastal salinity, MSSRF has initiated work on mangrove species. Mangroves are salt tolerant plant communities occupying the coastal estuarine regions of the tropics. They serve as a vital link between terrestrial and aquatic ecosystems and provide livelihood and ecological security for the coastal communities. MSSRF is the first institution worldwide to have undertaken modern molecular marker based analysis of mangroves. These studies have provided substantial information for developing unambiguous identification systems for individual species, elucidating nature and extent of genetic diversity at intra- and inter

  15. Regime shifts and resilience in China's coastal ecosystems.

    Science.gov (United States)

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.

  16. Sustainability Of Coastal Fringe Ecosystems Against Anthropogenic Chemical Stressors

    Science.gov (United States)

    Plant-dominated coastal ecosystems provide least 21 ecological services including shoreline protection, contaminant removal and nursery and breeding habitat for biota. The value of these ecological services is as great as $28000/h. These ecosystems which include intertidal wetl...

  17. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses

    NARCIS (Netherlands)

    Bouma, T.J.; Olenin, S.; Reise, K.; Ysebaert, T.

    2009-01-01

    Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and

  18. Global patterns of phytoplankton dynamics in coastal ecosystems

    Science.gov (United States)

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  19. Effects of Microbial and Heavy Metal Contaminants on Environmental/Ecological Health and Revitalization of Coastal Ecosystems in Delaware Bay

    Directory of Open Access Journals (Sweden)

    Gulnihal Ozbay

    2017-06-01

    Full Text Available The presence of heavy metals, excess nutrients, and microbial contaminants in aquatic systems of coastal Delaware has become a public concern as human population increases and land development continues. Delaware's coastal lagoons have been subjected to problems commonly shared by other coastal Mid-Atlantic states: turbidity, sedimentation, eutrophication, periodic hypoxic/anoxic conditions, toxic substances, and high bacterial levels. The cumulative impact of pollutants from run-off and point sources has degraded water quality, reduced the diversity and abundance of various fish species, invertebrates, and submerged aquatic vegetation. The effects are especially pronounced within the manmade dead end canal systems. In this article, we present selected case studies conducted in the Delaware Inland Bays. Due to the ecological services provided by bivalves, our studies in Delaware Inland Bays are geared toward oysters with special focus on the microbial loads followed by the water quality assessments of the bay. The relationships between oysters (Crassostrea virginica, microbial loads and nutrient levels in the water were investigated. The heavy metal levels monitored further away from the waste water treatment plant in the inland bays are marginally higher than the recommended EPA limits. Also, our studies confirmed that aerobic bacteria and Vibrionaceae levels are salinity dependent. Total bacteria in oysters increased when nitrate and total suspended solids increased in the waters. Studies such as these are important because every year millions of Americans consume raw oysters. Data collected over the last 10 years from our studies may be used to build a predictive index of conditions that are favorable for the proliferation of human pathogenic bacteria. Results from this study will benefit the local community by helping them understand the importance of oyster aquaculture and safe consumption of oysters while making them appreciate their

  20. Economic development and coastal ecosystem change in China

    Science.gov (United States)

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  1. Economic development and coastal ecosystem change in China.

    Science.gov (United States)

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-08-08

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  2. Some remarks on the functions of European coastal ecosystems

    NARCIS (Netherlands)

    van der Maarel, E

    2003-01-01

    Amongst the various functions of European coastal ecosystems the information functions are by far the most important. Information is provided mainly through the various aspects of biodiversity: taxon diversity, genetic diversity, community (P) diversity, phylogentic distinctiveness, rarity and

  3. GEO-CAPE Coastal Ecosystem Dynamics Imager (COEDI) Instrument Design

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this study is to build a breadboard instrument and prove the functionality of the optical-mechanical assembly for the Coastal Ecosystem Dynamics...

  4. Hurricanes Katrina and Rita and the Coastal Louisiana Ecosystem Restoration

    National Research Council Canada - National Science Library

    Zinn, Jeffrey

    2005-01-01

    ... for a $1.1 billion multiyear program to construct five projects that would help to restore portions of the coastal Louisiana ecosystem by slowing the rate of wetland loss and restoring some wetlands...

  5. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  6. Coastal ecosystems for protection against storm surge

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    and infrastructure in single catastrophe exceeded Rs. 2750 crore. Economic loss is thus prohibitive and hence unsustainable. This paper acknowledges the intrinsic protective value of coastal sand dunes, vegetation and wetlands as a functional natural defence...

  7. Ecosystem services as a common language for coastal ecosystem-based management.

    Science.gov (United States)

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  8. Study on water quality around mangrove ecosystem for coastal rehabilitation

    Science.gov (United States)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  9. Macroclimatic change expected to transform coastal wetland ecosystems this century

    Science.gov (United States)

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew S.; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  10. THE INNOVATIVE POLICY OPTIONS FOR COASTAL FISHERIES ECONOMIC DEVELOPMENT: A CASE OF KWANDANG BAY COASTAL ECOSYSTEM

    Directory of Open Access Journals (Sweden)

    Noel Taylor Moore

    2017-07-01

    Full Text Available Socio-environmental problems, such as climate change, pollution and habitat destruction, present serious challenges for fisheries economic development. The integration of interventions or investments within a coastal marine ecosystem, a defined spatial area, is considered important in the economic development of local communities leading to the planned outcomes of livelihoods, food security and conservation The coastal marine ecosystem, is the provider of products and services to the local economy adjacent to the ecosystem where the benefit flows, within that area, are interconnected. The roles of science, technology and innovation (STI are an integral part of these multi-dimensional interventions. Hence the need for an integrated approach for these interventions by government and/or through donor funded projects to enhance economic development of coastal communities. The policy framework proposed is therefore an STI perspective of the links between these intervention and investment options, based on a ‘fisheries economic development Hub’ (Hub and discussed using the multi-level perspective (MLP. The policy innovation proposal suggests an implementation strategy of a pilot project and analyses the selection and implications of a potential Indonesian site for the application of the Hub. This paper aims to introduce the MLP into the framework of coastal community-based fisheries economic development.   Key words: policy innovation. coastal marine ecosystem, fisheries economic development Hub, value chains, multi-level perspective (MLP

  11. Coastal biodiversity and ecosystem services flows at the landscape scale: The CBESS progamme.

    Science.gov (United States)

    Paterson, David; Bothwell, John; Bradbury, Richard; Burrows, Michael; Burton, Niall; Emmerson, Mark; Garbutt, Angus; Skov, Martin; Solan, Martin; Spencer, Tom; Underwood, Graham

    2015-04-01

    The health of the European coastline is inextricably linked to the economy and culture of coastal nations but they are sensitive to climate change. As global temperatures increase, sea levels will rise and the forces experienced where land meets sea will become more destructive. Salt marshes, mudflats, beaches will be affected. These landscapes support a wide range of economically valuable animal and plant species, but also act as sites of carbon storage, nutrient recycling, and pollutant capture and amelioration. Their preservation is of utmost importance. Our programme: "A hierarchical approach to the examination of the relationship between biodiversity and ecosystem service flows across coastal margins" (CBESS) is designed to understand the landscape-scale links between the functions that these systems provide (ecosystem service flows) and the organisms that provide these services (biodiversity stocks) and moves beyond most previous studies, conducted at smaller scales. Our consortium of experts ranges from microbial ecologists, through environmental economists, to mathematical modellers, and organisations (RSPB, BTO, CEFAS, EA) with vested interest in the sustainable use of coastal wetlands. CBESS spans the landscape scale, investigating how biodiversity stocks provide ecosystem services (cf. National Ecosystem Assessment: Supporting services; Provisioning services; Regulating services; and Cultural services). CBESS combined a detailed study of two regional landscapes with a broad-scale UK-wide study to allow both specific and general conclusions to be drawn. The regional study compares two areas of great UK national importance: Morecambe Bay on the west coast and the Essex coastline on the east. We carried out biological and physical surveys at more than 600 stations combined with in situ measures of ecosystem funtction to clarify how biodiversity can provide these important ecosystem functions across scales. This information will be shared with those

  12. Evaluating Satellite and Supercomputing Technologies for Improved Coastal Ecosystem Assessments

    Science.gov (United States)

    McCarthy, Matthew James

    Water quality and wetlands represent two vital elements of a healthy coastal ecosystem. Both experienced substantial declines in the U.S. during the 20th century. Overall coastal wetland cover decreased over 50% in the 20th century due to coastal development and water pollution. Management and legislative efforts have successfully addressed some of the problems and threats, but recent research indicates that the diffuse impacts of climate change and non-point source pollution may be the primary drivers of current and future water-quality and wetland stress. In order to respond to these pervasive threats, traditional management approaches need to adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and assessment. In this dissertation, I explored some of the applications possible with new, commercial satellite imagery to better assess the status of coastal ecosystems. Large-scale land-cover change influences the quality of adjacent coastal water. Satellite imagery has been used to derive land-cover maps since the 1960's. It provides multiple data points with which to evaluate the effects of land-cover change on water quality. The objective of the first chapter of this research was to determine how 40 years of land-cover change in the Tampa Bay watershed (6,500 km2) may have affected turbidity and chlorophyll concentration - two proxies for coastal water quality. Land cover classes were evaluated along with precipitation and wind stress as explanatory variables. Results varied between analyses for the entire estuary and those of segments within the bay. Changes in developed land percent cover best explained the turbidity and chlorophyll-concentration time series for the entire bay (R2 > 0.75, p Ocean-color satellite imagery was used to derive proxies for coastal water with near-daily satellite observations since 2000. The goal of chapter two was to identify drivers of turbidity variability for 11 National Estuary Program water bodies

  13. Payments for coastal and marine ecosystem services: prospects and principles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Essam Yassin

    2012-05-15

    Coastal and marine resources provide millions of impoverished people across the global South with livelihoods, and provide the world with a range of critical 'ecosystem services', from biodiversity and culture to carbon storage and flood protection. Yet across the world, these resources are fast-diminishing under the weight of pollution, land clearance, coastal development, overfishing, natural disasters and climate change. Traditional approaches to halt the decline focus on regulating against destructive practices, but to little effect. A more successful strategy could be to establish payments for ecosystem services (PES) schemes, or incorporate an element of PES in existing regulatory mechanisms. Examples from across the world suggest that PES can work to protect both livelihoods and environments. But to succeed, these schemes must be underpinned by robust research, clear property rights, equitable benefit sharing and sustainable finance.

  14. Historical overfishing and the recent collapse of coastal ecosystems.

    Science.gov (United States)

    Jackson, J B; Kirby, M X; Berger, W H; Bjorndal, K A; Botsford, L W; Bourque, B J; Bradbury, R H; Cooke, R; Erlandson, J; Estes, J A; Hughes, T P; Kidwell, S; Lange, C B; Lenihan, H S; Pandolfi, J M; Peterson, C H; Steneck, R S; Tegner, M J; Warner, R R

    2001-07-27

    Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

  15. Remote sensing and aerial photography for delineation and management of coastal ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.

    sensing data. may provide necessary information to the planners and researchers. interested in the 11 .. coastal ecosystems. Mismanagement or lack of management of coastal zones may result in the loss of marine ecosystems, influencing erosion and the sea..., topographic maps and other resources. The effective management and research of coastal zones, require information on coastal landforms, wetlands, shoreline changes, sediment and current pattern, which can easily be obtained from the satellite data. Coastal...

  16. Fate and effects of petroleum hydrocarbons in marine coastal ecosystems

    International Nuclear Information System (INIS)

    Vanderhorst, J.R.

    1977-01-01

    Preliminary results are reported from field and laboratory studies on the effects of petroleum hydrocarbons on marine organisms of Northwest Pacific coastal ecosystems. Chemical methods for the characterization of test solutions for specific hydrocarbons (benzene, toluene, xylene, and heptodecane) were developed concurrently with population and community studies of the effects of short-term and chronic exposures. Results are reported from studies on algae (Ulva), clams (protothaca staminea), crustaceans (Anomyx and Neomysis) and burrowing worms

  17. Including ecosystem dynamics in risk assessment of radioactive waste in coastal regions

    International Nuclear Information System (INIS)

    Kumblad, L.; Kautsky, U.; Gilek, M.

    2000-01-01

    Radiation protection has mainly focused on assessing and minimising risks of negative effects on human health. Although some efforts have been made to estimate effects on non-human populations, modelling of radiation risks to other components of the ecosystem have often lead to more or less disappointing results. In this paper an ecosystem approach is suggested and exemplified with a preliminary 14 C model of a coastal Baltic ecosystem. Advantages with the proposed ecosystem approach are for example the possibility to detect important but previously neglected pathways to humans since the whole ecosystem is analysed. The results from the model indicate that a rather small share of hypothetical released 14 C would accumulate in biota due to large water exchange in the modelled area. However, modelled future scenarios imply opposite results, i.e. relatively high doses in biota, due to changes of the physical properties in the area that makes a larger accumulation possible. (author)

  18. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    Science.gov (United States)

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.

  19. Temporal development of coastal ecosystems in the Baltic Sea over the past two decades

    DEFF Research Database (Denmark)

    Olsson, Jens; Tomczak, Maciej; Ojaveer, Henn

    2015-01-01

    Coastal areas are among the most biologically productive aquatic systems worldwide, but face strong and variable anthropogenic pressures. Few studies have, however, addressed the temporal development of coastal ecosystems in an integrated context. This study represents an assessment of the develo...... in the capacity of currently available monitoring data to support integrated assessments and the implementation of an integrated ecosystem-based approach to the management of the Baltic Sea coastal ecosystems......Coastal areas are among the most biologically productive aquatic systems worldwide, but face strong and variable anthropogenic pressures. Few studies have, however, addressed the temporal development of coastal ecosystems in an integrated context. This study represents an assessment...

  20. Towards a management perspective for coastal upwelling ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Howe, S.O.; Walsh, J.J.

    1976-01-01

    Data are reviewed from studies on the general distribution of upwelling of coastal waters, associated current patterns, and first order biological effects. Field observations and theory are discussed. Recent research has shown that variability and dynamism are the predominant characteristic features of these regions. Populations related by nonlinear interactions occur in constantly moving patches and swirls subjected to variability in the winds, currents, water chemistry, and solar insolation. Gross stationary features of upwelling communities have been described, but the responses of critical components and their relationships to human or natural perturbations remain poorly defined in this and other types of coastal ecosystems. Large scale research programs recognize that the continental shelf ecosystems are complex event-oriented phenomena. It is postulated that assessment of living resources in an environmental vacuum may lead to mismanagement and hindcasting rather than prescient management. A growing data base encourages the development of computer simulation models of ecosystem relationships and responses will lead to better understanding and management of these and other marine ecosystems in the future. 80 references.

  1. An invasive foundation species enhances multifunctionality in a coastal ecosystem.

    Science.gov (United States)

    Ramus, Aaron P; Silliman, Brian R; Thomsen, Mads S; Long, Zachary T

    2017-08-08

    While invasive species often threaten biodiversity and human well-being, their potential to enhance functioning by offsetting the loss of native habitat has rarely been considered. We manipulated the abundance of the nonnative, habitat-forming seaweed Gracilaria vermiculophylla in large plots (25 m 2 ) on southeastern US intertidal landscapes to assess impacts on multiple ecosystem functions underlying coastal ecosystem services. We document that in the absence of native habitat formers, this invasion has an overall positive, density-dependent impact across a diverse set of ecosystem processes (e.g., abundance and richness of nursery taxa, flow attenuation). Manipulation of invader abundance revealed both thresholds and saturations in the provisioning of ecosystem functions. Taken together, these findings call into question the focus of traditional invasion research and management that assumes negative effects of nonnatives, and emphasize the need to consider context-dependence and integrative measurements when assessing the impact of an invader, including density dependence, multifunctionality, and the status of native habitat formers. This work supports discussion of the idea that where native foundation species have been lost, invasive habitat formers may be considered as sources of valuable ecosystem functions.

  2. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach

    KAUST Repository

    Singh, Gerald G.; Sinner, Jim; Ellis, Joanne; Kandlikar, Milind; Halpern, Benjamin S.; Satterfield, Terre; Chan, Kai M.A.

    2017-01-01

    Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services

  3. Coastal Ocean Ecosystem Dynamics Imager Pointing Line-of-Sight Solution Development and Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A stable pointing line of sight solution is developed and tested in support of the Coastal Ocean Ecosystem Dynamics Imager for the GEOstationary Coastal and Air...

  4. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    Science.gov (United States)

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  5. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    International Nuclear Information System (INIS)

    Wijnbladh, Erik; Joensson, Bror Fredrik; Kumblad, Linda

    2006-01-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem

  6. Quantifying Economic Value of Coastal Ecosystem Services: A Review

    Directory of Open Access Journals (Sweden)

    Seyedabdolhossein Mehvar

    2018-01-01

    Full Text Available The complexity of quantifying ecosystem services in monetary terms has long been a challenging issue for economists and ecologists. Many case specific valuation studies have been carried out in various parts of the World. Yet, a coherent review on the valuation of coastal ecosystem services (CES, which systematically describes fundamental concepts, analyzes reported applications, and addresses the issue of climate change (CC impacts on the monetary value of CES is still lacking. Here, we take a step towards addressing this knowledge gap by pursuing a coherent review that aims to provide policy makers and researchers in multidisciplinary teams with a summary of the state-of-the-art and a guideline on the process of economic valuation of CES and potential changes in these values due to CC impacts. The article highlights the main concepts of CES valuation studies and offers a systematic analysis of the best practices by analyzing two global scale and 30 selected local and regional case studies, in which different CES have been valued. Our analysis shows that coral reefs and mangroves are among the most frequently valued ecosystems, while sea-grass beds are the least considered ones. Currently, tourism and recreation services as well as storm protection are two of the most considered services representing higher estimated value than other CES. In terms of the valuation techniques used, avoided damage, replacement and substitute cost method as well as stated preference method are among the most commonly used valuation techniques. Following the above analysis, we propose a methodological framework that provides step-wise guidance and better insight into the linkages between climate change impacts and the monetary value of CES. This highlights two main types of CC impacts on CES: one being the climate regulation services of coastal ecosystems, and the other being the monetary value of services, which is subject to substantial uncertainty. Finally, a

  7. The need for ecosystem-based coastal planning in Trabzon city

    OpenAIRE

    Mustafa Dihkan; Nilgün Güneroğlu; Abdülaziz Güneroğlu; Fevzi Karslı

    2017-01-01

    Coastal urbanization problem was emanated from willingness of coastal living. Urban sprawl is one of the most important coastal problems in Turkey as it is in Trabzon city which is known for its natural and historical assets. In order to ensure the sustainability and ecological continuity of the city, an ecosystem based coastal planning is an issue of high priority. Protection and usage balance of the coastal areas could also ensure transition of the natural values to future gener...

  8. Recreational impacts on the fauna of Australian coastal marine ecosystems.

    Science.gov (United States)

    Hardiman, Nigel; Burgin, Shelley

    2010-11-01

    This paper reviews recent research into the ecological impacts of recreation and tourism on coastal marine fauna in Australia. Despite the high and growing importance of water-based recreation to the Australian economy, and the known fragility of many Australian ecosystems, there has been relatively limited research into the effects of marine tourism and recreation, infrastructure and activities, on aquatic resources. In this paper we have reviewed the ecological impacts on fauna that are caused by outdoor recreation (including tourism) in Australian coastal marine ecosystems. We predict that the single most potentially severe impact of recreation may be the introduction and/or dispersal of non-indigenous species of marine organisms by recreational vessels. Such introductions, together with other impacts due to human activities have the potential to increasingly degrade recreation destinations. In response, governments have introduced a wide range of legislative tools (e.g., impact assessment, protected area reservation) to manage the recreational industry. It would appear, however, that these instruments are not always appropriately applied. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Impact of petroleum pollution on aquatic coastal ecosystems in Brazil

    International Nuclear Information System (INIS)

    Silva, E.M. da; Peso-Aguiar, M.C.; Navarro, M.F.T.; Chastinet, C.B.A.

    1997-01-01

    Although oil activities generate numerous forms of environmental impact on biological communities, studies of these impacts on Brazilian coastal ecosystems are rate. Results of tests for the content of oil in sediments and organisms indicate a substantially high rate of degradation. Results for uptake of polycyclic aromatic hydrocarbons in bivalves suggested the recent occurrence of oil spills and that these organisms differed in their capabilities to bioconcentrate oil. The mangrove community has suffered constant inputs of oil and has responded with increased numbers of aerial roots, generation of malformed leaves and fruits by plants, and a decrease in litter production. Studies of the impact of oil on rocky shore communities and the toxicity of oil and its by-products to marine organisms have confirmed the results reported in the literature. Presently most of the available studies deal with the macroscopic effects of oil on organisms and have indicated that the nature of oil, climate characteristics, the physical environment, and the structure of the community influence the symptoms of oil contamination in organisms of coastal waters. Long-term studies should be carried out to assess changes in community structure, sublethal effects in populations, and the resilience of contaminated ecosystems

  10. Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea.

    Science.gov (United States)

    Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas.

  11. Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea

    Science.gov (United States)

    Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas. PMID:26221950

  12. Using models in Integrated Ecosystem Assessment of coastal areas

    Science.gov (United States)

    Solidoro, Cosimo; Bandelj, Vinko; Cossarini, Gianpiero; Melaku Canu, Donata; Libralato, Simone

    2014-05-01

    Numerical Models can greatly contribute to integrated ecological assessment of coastal and marine systems. Indeed, models can: i) assist in the identification of efficient sampling strategy; ii) provide space interpolation and time extrapolation of experiemtanl data which are based on the knowedge on processes dynamics and causal realtionships which is coded within the model, iii) provide estimates of hardly measurable indicators. Furthermore model can provide indication on potential effects of implementation of alternative management policies. Finally, by providing a synthetic representation of an ideal system, based on its essential dynamic, model return a picture of ideal behaviour of a system in the absence of external perturbation, alteration, noise, which might help in the identification of reference behaivuor. As an important example, model based reanalyses of biogeochemical and ecological properties are an urgent need for the estimate of the environmental status and the assessment of efficacy of conservation and environmental policies, also with reference to the enforcement of the European MSFD. However, the use of numerical models, and particularly of ecological models, in modeling and in environmental management still is far from be the rule, possibly because of a lack in realizing the benefits which a full integration of modeling and montoring systems might provide, possibly because of a lack of trust in modeling results, or because many problems still exists in the development, validation and implementation of models. For istance, assessing the validity of model results is a complex process that requires the definition of appropriate indicators, metrics, methodologies and faces with the scarcity of real-time in-situ biogeochemical data. Furthermore, biogeochemical models typically consider dozens of variables which are heavily undersampled. Here we show how the integration of mathematical model and monitoring data can support integrated ecosystem

  13. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    Science.gov (United States)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; hide

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  14. Seal carrion is a predictable resource for coastal ecosystems

    Science.gov (United States)

    Quaggiotto, Maria-Martina; Barton, Philip S.; Morris, Christopher D.; Moss, Simon E. W.; Pomeroy, Patrick P.; McCafferty, Dominic J.; Bailey, David M.

    2018-04-01

    The timing, magnitude, and spatial distribution of resource inputs can have large effects on dependent organisms. Few studies have examined the predictability of such resources and no standard ecological measure of predictability exists. We examined the potential predictability of carrion resources provided by one of the UK's largest grey seal (Halichoerus grypus) colonies, on the Isle of May, Scotland. We used aerial (11 years) and ground surveys (3 years) to quantify the variability in time, space, quantity (kg), and quality (MJ) of seal carrion during the seal pupping season. We then compared the potential predictability of seal carrion to other periodic changes in food availability in nature. An average of 6893 kg of carrion •yr-1 corresponding to 110.5 × 103 MJ yr-1 was released for potential scavengers as placentae and dead animals. A fifth of the total biomass from dead seals was consumed by the end of the pupping season, mostly by avian scavengers. The spatial distribution of carcasses was similar across years, and 28% of the area containing >10 carcasses ha-1 was shared among all years. Relative standard errors (RSE) in space, time, quantity, and quality of carrion were all below 34%. This is similar to other allochthonous-dependent ecosystems, such as those affected by migratory salmon, and indicates high predictability of seal carrion as a resource. Our study illustrates how to quantify predictability in carrion, which is of general relevance to ecosystems that are dependent on this resource. We also highlight the importance of carrion to marine coastal ecosystems, where it sustains avian scavengers thus affecting ecosystem structure and function.

  15. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  16. Bioavailability and impact of effluents on coastal ecosystems

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The Bioavailability and Impact of Effluents on Coastal Ecosystems program was initiated in July 1974. The program's major objective was to bring together a multidisciplinary team of researchers to investigate the biogeochemical processes that control the transport, transfer, distribution, biological availability and toxicity of materials found in energy-related effluents. This year has been spent in planning the needed research tasks, assembling the necessary personnel and equipment, and initiating first stage research as defined by the program. The program is centered at the Marine Research Laboratory, Sequim, Washington, and involves scientists located at Sequim and Richland. The operating philosophy is to conduct the program at the Marine Research Laboratory and use equipment and expertise from Richland as a resource for studies that cannot be practically done at Sequim. The research described represents the first year's efforts by the investigators involved in the program

  17. Climate warming and estuarine and marine coastal ecosystems

    International Nuclear Information System (INIS)

    Kennedy, V.S.

    1994-01-01

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs

  18. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    Science.gov (United States)

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  19. Urgent and Compelling Need for Coastal and Inland Aquatic Ecosystem Research Using Space-Based Sensors

    Science.gov (United States)

    Otis, D. B.; Muller-Karger, F. E.; Hestir, E.; Turpie, K. R.; Roberts, D. A.; Frouin, R.; Goodman, J.; Schaeffer, B. A.; Franz, B. A.; Humm, D. C.

    2016-12-01

    Coastal and inland waters and associated aquatic habitats, including wetlands, mangroves, submerged grasses, and coral reefs, are some of the most productive and diverse ecosystems on the planet. They provide services critical to human health, safety, and prosperity. Yet, they are highly vulnerable to changes in climate and other anthropogenic pressures. With a global population of over seven billion people and climbing, and a warming atmosphere driven by carbon dioxide now in excess of 400 ppb, these services are at risk of rapidly diminishing globally. We know little about how these ecosystems function. We need to characterize short-term changes in the functional biodiversity and biogeochemical cycles of these coastal and wetland ecosystems, from canopy to benthos, and trace these changes to their underlying environmental influences. This requires an observation-based approach that covers coastal and inland aquatic ecosystems in a repeated, synoptic manner. Space-borne sensing systems can provide this capability, supported by coordinated in situ calibration and product validation activities. The design requires high temporal resolution (weekly or better), medium spatial resolution (30 m pixels at nadir to complement Landsat-class sensors), and highly sensitive, ocean-color radiometric quality, high resolution spectroscopy with Visible and Short-Wave IR bands (order of 10 nm or better) to assess both atmospheric correction parameters and land vegetation composition. The strategy needs to include sunglint avoidance schemes, and methods to maximize signal to noise ratios and temporal coverage of aquatic areas. We describe such a system, and urge the U.S. to implement such an observing strategy in the short-term and sustain it for the benefit of humankind.

  20. Exposure of coastal ecosystems to river plume spreading across a near-equatorial continental shelf

    Science.gov (United States)

    Tarya, A.; Hoitink, A. J. F.; Vegt, M. Van der; van Katwijk, M. M.; Hoeksema, B. W.; Bouma, T. J.; Lamers, L. P. M.; Christianen, M. J. A.

    2018-02-01

    The Berau Continental Shelf (BCS) in East Kalimantan, Indonesia, harbours various tropical marine ecosystems, including mangroves, seagrass meadows and coral reefs. These ecosystem are located partly within reach of the Berau River plume, which may affect ecosystem health through exposure to land-derived sediments, nutrients and pollutants carried by the plume. This study aims (1) to assess the exposure risk of the BCS coastal ecosystems to river plume water, measured as exposure time to three different salinity levels, (2) to identify the relationships between these salinity levels and the abundance and diversity of coral and seagrass ecosystems, and (3) to determine a suitable indicator for the impacts of salinity on coral reef and seagrass health. We analysed hydrodynamic models, classified salinity levels, and quantified the correlations between the salinity model parameters and ecological metrics for the BCS systems. An Empirical Orthogonal Functions (EOF) analysis revealed three modes of river plume dispersal patterns, which strongly reflect monsoon seasonality. The first mode, explaining 39% of the variability, was associated with the southward movement of the plume due to northerly winds, while the second and third modes (explaining 29% and 26% of the variability, respectively) were associated with the northeastward migration of the plume related to southwesterly and southerly winds. Exposure to low salinity showed higher correlations with biological indicators than mean salinity, indicating that low salinity is a more suitable indicator for coastal ecosystem health. Significant correlations (R2) were found between exposure time to low salinity (days with salinity values below 25 PSU) with coral cover, coral species richness, seagrass cover, the number of seagrass species, seagrass leaf phosphorus, nitrogen, C:N ratio and iron content. By comparing the correlation coefficients and the slopes of the regression lines, our study suggests that coral reefs are

  1. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability.

    Science.gov (United States)

    Lu, Yonglong; Yuan, Jingjing; Lu, Xiaotian; Su, Chao; Zhang, Yueqing; Wang, Chenchen; Cao, Xianghui; Li, Qifeng; Su, Jilan; Ittekkot, Venugopalan; Garbutt, Richard Angus; Bush, Simon; Fletcher, Stephen; Wagey, Tonny; Kachur, Anatolii; Sweijd, Neville

    2018-08-01

    Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Catchment2Coast: A systems approach to coupled river-coastal ecosystem science and management

    CSIR Research Space (South Africa)

    Monteiro, PMS

    2009-07-01

    Full Text Available Catchment2Coast was an interdisciplinary research and modelling project that aimed to improve understanding of the linkages between coastal ecosystems and the adjacent river catchments. The project involved nine partner organizations from three...

  3. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    Science.gov (United States)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  4. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    Science.gov (United States)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  5. Contribution of Cultural Ecosystem Services to Natural Capital in the coastal area of Civitavecchia (Latium, Italy)

    Science.gov (United States)

    Marcelli, Marco; Madonia, Alice; Tofani, Anna; Molino, Chiara; Manfredi Frattarelli, Francesco

    2017-04-01

    Natural Capital evaluation is emerging as a fundamental tool to support the management of natural resources. Indeed, the achievement of the compatibility among their multiple uses, often in conflict in coastal areas, is a priority to avoid the increasing undesirable effects which threat both ecosystems and human health and well-being. It represents the scientific basis for actions needed to enhance the conservation and sustainable use of those systems and their contribution to human well-being. Furthermore the Millennium Ecosystem Assessment (called by Kofi Annan in 2000), assessed the consequences of ecosystem change for human well-being, and in particular, the analysis method has been centered on the linkages between "ecosystem services" and human well-being. This "Ecosystem Approach" allows to evaluate the consequences of ecosystems changes on human well-being through the assessment of the Ecosystem Services (ES), which are defined as "the benefits that people obtain from ecosystems". These include provisioning services (food, water, timber, etc.), regulating services (climate, floods, disease, etc.); cultural services (recreational, aesthetic and spiritual benefits) and supporting services (soil formation, photosynthesis, nutrient cycling, etc.) Also the reference guidelines for European Environmental Policy (Marine Strategy Framework Directive 2008/56 / EC - MSFD; Maritime Spatial Planning Directive 2014/89 / EC - MSP) are based on the principle of the Ecosystem Approach to define the monitoring criteria of marine and maritime space management ecosystems. The assessment of ES provided by Natural Capital cannot overlook the integration of ecological data with economic and socio-cultural ones, since they are considered as the direct and indirect contributions to human well-being provided by ecosystems. Cultural Ecosystem Services (CES), often omitted in the cost-benefit impact studies, has been receiving increasing interest from the scientific community in order

  6. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  7. Predicting Disturbance-driven Impacts on Ecosystem Services in Coastal Wetlands

    Science.gov (United States)

    Rajan, S.; Crawford, P.; Kleinhuizen, A.; Mortazavi, B.; Sobecky, P.

    2017-12-01

    Natural and human-induced disturbances pose significant threats to the health and long-term productivity of Alabama coastal wetlands. As wetlands are a vital state resource, decisions on management, restoration, and remediation require actionable data if socio-economic demands are to be balanced with efforts to sustain these habitats. In 2010, the BP oil spill was a large and severe disturbance that threatened coastal Gulf ecosystem services. The largest marine oil spill to date served to highlight fundamental gaps in our knowledge of oil-induced disturbances and the resiliency and restoration of coastal Alabama wetland functions. To address these gaps, a year-long mesocosm study was conducted to investigate oil-induced effects on (i) plant-microbial interactions, (ii) microbial and plant biodiversity, and, (iii) the contributions of microbial genetic biodiversity to ecosystems services. In this study, Avicennia germinans (black mangrove), a C3 plant that grows from the tropics to warm temperate latitudes, were grown with or without mono- and polyculture mixtures of Spartina alterniflora, a C4 plant. At an interval of 3-months, oil was introduced as a pulse disturbance to achieve a concentration of 4000 ppm. Molecular-based analyses of microbial community biodiversity, genetic diversity, and functional metabolic genes were compared to controls (i.e., no oil disturbance). To assess the oil-induced effects on the nitrogen (N) cycle, measurements of denitrification and N fixation processes were conducted. Our results showed that community diversity and phylogenetic diversity significantly changed and that the oil disturbance contributed to the creation of niches for distinct microbial types. The abundance of N-fixing microbial types increased as the abundance of denitrifying microbial types decreased as a result of the oil disturbance. As denitrification is an ecosystem service that directly contributes to removing nitrate (NO3-) loading to coastal zones, impairment

  8. Modeling the Personal Health Ecosystem.

    Science.gov (United States)

    Blobel, Bernd; Brochhausen, Mathias; Ruotsalainen, Pekka

    2018-01-01

    Complex ecosystems like the pHealth one combine different domains represented by a huge variety of different actors (human beings, organizations, devices, applications, components) belonging to different policy domains, coming from different disciplines, deploying different methodologies, terminologies, and ontologies, offering different levels of knowledge, skills, and experiences, acting in different scenarios and accommodating different business cases to meet the intended business objectives. For correctly modeling such systems, a system-oriented, architecture-centric, ontology-based, policy-driven approach is inevitable, thereby following established Good Modeling Best Practices. However, most of the existing standards, specifications and tools for describing, representing, implementing and managing health (information) systems reflect the advancement of information and communication technology (ICT) represented by different evolutionary levels of data modeling. The paper presents a methodology for integrating, adopting and advancing models, standards, specifications as well as implemented systems and components on the way towards the aforementioned ultimate approach, so meeting the challenge we face when transforming health systems towards ubiquitous, personalized, predictive, preventive, participative, and cognitive health and social care.

  9. Will Global Change Effect Primary Productivity in Coastal Ecosystems?

    Science.gov (United States)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  10. Marine and coastal ecosystem services on the science-policy-practice nexus

    NARCIS (Netherlands)

    Drakou, Evangelia G.; Kermagoret, Charlène; Liquete, Camino; Ruiz-Frau, Ana; Burkhard, Kremena; Lillebø, Ana I.; Oudenhoven, van Alexander P.E.; Ballé-Béganton, Johanna; Rodrigues, João Garcia; Nieminen, Emmi; Oinonen, Soile; Ziemba, Alex; Gissi, Elena; Depellegrin, Daniel; Veidemane, Kristina; Ruskule, Anda; Delangue, Justine; Böhnke-Henrichs, Anne; Boon, Arjen; Wenning, Richard; Martino, Simone; Hasler, Berit; Termansen, Mette; Rockel, Mark; Hummel, Herman; Serafy, El Ghada; Peev, Plamen

    2017-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunities toward the operationalization of marine and coastal ecosystem service (MCES) assessments in Europe. This work is the output of a panel convened by the Marine Working Group of the Ecosystem Services

  11. Strategies of bioremediation of a contaminated coastal Ecosystem (Bolmon Lagoon, South-Easter Mediterranean Coast)

    International Nuclear Information System (INIS)

    Charpy-Roubaud, C.; Fayolle, S.; Franquet, E.; Pietri, L.; Anselmet, F.; Brun, L.; Roux, B.

    2009-01-01

    Bolmon ecosystem (Bouches du Rhone, South-easter France) is a coastal mediterranean lagoon. This ecosystem presents a great interest in terms of ecology, economy and cultural aspects. Bolmon is connected to the salty Berre pond, itself connected to Mediterranean sea, via tiny artificial channels and a main one (rove channel) that also bounds it to the South. (Author)

  12. Strategies of bioremediation of a contaminated coastal Ecosystem (Bolmon Lagoon, South-Easter Mediterranean Coast)

    Energy Technology Data Exchange (ETDEWEB)

    Charpy-Roubaud, C.; Fayolle, S.; Franquet, E.; Pietri, L.; Anselmet, F.; Brun, L.; Roux, B.

    2009-07-01

    Bolmon ecosystem (Bouches du Rhone, South-easter France) is a coastal mediterranean lagoon. This ecosystem presents a great interest in terms of ecology, economy and cultural aspects. Bomon is connected to the salty Berre pond, itself connected to Mediterranean sea, via tiny artificial channels and a main one (rove channel) that also bounds it to the South. (Author)

  13. Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem

    Science.gov (United States)

    O'Neel, Shad; Hood, Eran; Bidlack, Allison L.; Fleming, Sean W.; Arimitsu, Mayumi L.; Arendt, Anthony; Burgess, Evan W.; Sergeant, Christopher J.; Beaudreau, Anne E.; Timm, Kristin; Hayward, Gregory D.; Reynolds, Joel H.; Pyare, Sanjay

    2015-01-01

    Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual variability and long-term trends in key physical drivers and ecological responses. To advance our knowledge of the northern PCTR, we advocate for cross-disciplinary research bridging the icefield-to-ocean ecosystem that can be paired with long-term scientific records and designed to inform decisionmakers.

  14. Organic carbon sedimentation rates in Asian mangrove coastal ecosystems estimated by 210PB chronology

    International Nuclear Information System (INIS)

    Tateda, Y.; Wattayakorn, G.; Nhan, D.D.; Kasuya, Y.

    2004-01-01

    Organic carbon balance estimation of mangrove coastal ecosystem is important for understanding of Asian coastal carbon budget/flux calculation in global carbon cycle modelling which is powerful tool for the prediction of future greenhouse gas effect and evaluation of countermeasure preference. Especially, the organic carbon accumulation rate in mangrove ecosystem was reported to be important sink of carbon as well as that in boreal peat accumulation. For the estimation of 10 3 years scale organic carbon accumulation rates in mangrove coastal ecosystems, 14 C was used as long term chronological tracer, being useful in pristine mangrove forest reserve area. While in case of mangrove plantation of in coastal area, the 210 Pb is suitable for the estimation of decades scale estimation by its half-life. Though it has possibility of bio-/physical- turbation effect in applying 210 Pb chronology that is offset in case of 10 3 years scale estimation, especially in Asian mangrove ecosystem where the anthropogenic physical turbation by coastal fishery is vigorous.In this paper, we studied the organic carbon and 210 Pb accumulation rates in subtropical mangrove coastal ecosystems in Japan, Vietnam and Thailand with 7 Be analyses to make sure the negligible effect of above turbation effects on organic carbon accumulation. We finally concluded that 210 Pb was applicable to estimate organic carbon accumulation rates in these ecosystems even though the physical-/bio-turbation is expected. The measured organic carbon accumulation rates using 210 Pb in mangrove coastal ecosystems of Japan, Vietnam and Thailand were 0.067 4.0 t-C ha -1 y -1 . (author)

  15. A resilience framework for chronic exposures: water quality and ecosystem services in coastal social-ecological systems

    Science.gov (United States)

    We outline a tailored resilience framework that applies ecosystem service concepts to coastal social-ecological systems (SES) affected by water quality degradation. Unlike acute coastal disturbances such as hurricanes or oil spills, water quality issues, particularly those relate...

  16. A meta-analysis of coastal wetland ecosystem services in Liaoning Province, China

    Science.gov (United States)

    Sun, Baodi; Cui, Lijuan; Li, Wei; Kang, Xiaoming; Pan, Xu; Lei, Yinru

    2018-01-01

    Wetlands are impacted by economic and political initiatives, and their ecosystem services are attracting increasing public attention. It is crucial that management decisions for wetland ecosystem services quantify the economic value of the ecosystem services. In this paper, we aimed to estimate a monetary value for coastal wetland ecosystem services in Liaoning Province, China. We selected 433 observations from 85 previous coastal wetland economic evaluations (mostly in China) including detailed spatial and economic characteristics in each wetland, then used a meta-analysis scale transfer method to calculate the total value of coastal wetland ecosystem services in Liaoning Province. Our results demonstrated that, on average, the ecosystem services provided by seven different coastal wetland types were worth US40,648 per ha per year, and the total value was 28,990,439,041 in 2013. Shallow marine waters accounted for the largest proportion (83.97%). Variables with a significant positive effect on the ecosystem service values included GDP per capita, population density, distance from the wetland to the city center and the year of evaluation, while wetland size and latitude had negative relationships.

  17. Economic values, ethics, and ecosystem health

    Science.gov (United States)

    Thomas P. Holmes; Randall A. Kramer

    1995-01-01

    Economic valuations of changes in ecosystem health can provide quantitative information for social decisions. However, willingness to pay for ecosystem health may be motivated by an environmental ethic regarding the right thing to do. Counterpreferential choices based on an environmental ethic are inconsistent with the normative basis of welfare economics. In this...

  18. Coastal Plain Soil Fertility Degradation And Natural Forest Ecosystem Regeneration

    Science.gov (United States)

    Casagrande, J. C.; Sato, C. A.; Reis-Duarte, R. M.; Soares, M. R.; Galvão Bueno, M. S.

    2009-04-01

    The sand coastal plain vegetation (Restinga Forest) has been described as an ecosystem associated with the Atlantic Forest, constituted of mosaics, which occur in areas of great ecological diversity, particularly the features of the soil which mostly influence the forest, therefore assigned as edaphic community. The Restinga forest is one of the most fragile, showing low resilience to human damage This work was carried out in several points (14) of Restinga Forest (six low - trees from 3 to 10 m high - and eight high forest - trees from 10 to 15 m high) in the litoral coast of the state of São Paulo. Each sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. The vegetation physiognomies of Restinga forest (low and high) were associated with soil results and with the history of human occupation. The soils are sandy (2 to 4% of clay), resulting in a low capacity of nutrient retention. Soil fertility analysis to low and high Restinga forest were similar and showed very low contents of phosphorous, calcium and magnesium in all areas investigated. The base saturation was low due to low amounts of Na, K, Ca and Mg. Base saturation presents low level in all cases, less than 10, indicating low nutritional reserve in the soil. The aluminum saturation values varied from 58 to 69%. The level of calcium and magnesium were low in the subsurface soil layer mainly, associate with high aluminum saturation, representing an limiting factor for the root system development in depth. If soil fertility parameters do not show any significant difference between low and high Restinga physiognomy, what make distinction is the recuperation time. In the areas of high Forest can be note a too long time of recuperation

  19. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature.

    Science.gov (United States)

    Arkema, Katie K; Verutes, Gregory M; Wood, Spencer A; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M; Griffin, Robert; Guerry, Anne D

    2015-06-16

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize's coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions.

  20. Patterns of Arbuscular Mycorrhizal Fungal Distribution on Mainland and Island Sandy Coastal Plain Ecosystems in Brazil.

    Science.gov (United States)

    da Silva, Iolanda Ramalho; de Souza, Francisco Adriano; da Silva, Danielle Karla Alves; Oehl, Fritz; Maia, Leonor Costa

    2017-10-01

    Although sandy coastal plains are important buffer zones to protect the coast line and maintain biological diversity and ecosystem services, these ecosystems have been endangered by anthropogenic activities. Thus, information on coastal biodiversity and forces shaping coastal biological diversity are extremely important for effective conservation strategies. In this study, we aimed to compare arbuscular mycorrhizal (AM) fungal communities from soil samples collected on the mainland and nearby islands located in Brazilian sandy coastal plain ecosystems (Restingas) to get information about AM fungal biogeography and identify factors shaping these communities. Soil samples were collected in 2013 and 2014 on the beachfront of the tropical sandy coastal plain at six sites (three island and three mainland locations) across the northeast, southeast, and south regions of Brazil. Overall, we recorded 53 AM fungal species from field and trap culture samples. The richness and diversity of AM fungal species did not differ between mainland and island locations, but AM fungal community assemblages were different between mainland and island environments and among most sites sampled. Glomeromycota communities registered from island samples showed higher heterogeneity than communities from mainland samples. Sandy coastal plains harbor diverse AM fungal communities structured by climatic, edaphic, and spatial factors, while the distance from the colonizing source (mainland environments) does not strongly affect the AM fungal communities in Brazilian coastal environments.

  1. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems

    NARCIS (Netherlands)

    Ostman, Orjan; Eklof, Johan; Eriksson, Britas Klemens; Olsson, Jens; Moksnes, Per-Olav; Bergstrom, Ulf

    Seagrass and seaweed habitats constitute hotspots for diversity and ecosystem services in coastal ecosystems. These habitats are subject to anthropogenic pressures, of which eutrophication is one major stressor. Eutrophication favours fast-growing ephemeral algae over perennial macroalgae and

  2. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Linwood Pendleton

    Full Text Available Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'. Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

  3. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    Science.gov (United States)

    Wollheim, Wilfred M.; Mark B. Green,; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  4. Assessment of coastal management options by means of multilayered ecosystem models

    Science.gov (United States)

    Nobre, Ana M.; Ferreira, João G.; Nunes, João P.; Yan, Xiaojun; Bricker, Suzanne; Corner, Richard; Groom, Steve; Gu, Haifeng; Hawkins, Anthony J. S.; Hutson, Rory; Lan, Dongzhao; Silva, João D. Lencart e.; Pascoe, Philip; Telfer, Trevor; Zhang, Xuelei; Zhu, Mingyuan

    2010-03-01

    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%-28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of

  5. Concepts and theoretical specifications of a Coastal Vulnerability Dynamic Simulator (COVUDS): A multi-agent system for simulating coastal vulnerability towards management of coastal ecosystem services

    Science.gov (United States)

    Orencio, P. M.; Endo, A.; Taniguchi, M.

    2014-12-01

    Disaster-causing natural hazards such as floods, erosions, earthquakes or slope failures were particularly observed to be concentrated in certain geographical regions. In the Asia-pacific region, coastal ecosystems were suffering because of perennial threats driven by chronic fluctuations in climate variability (e.g., typhoons, ENSO), or by dynamically occurring events (e.g., earthquakes, tsunamis). Among the many people that were found prone to such a risky condition were the ones inhabiting near the coastal areas. Characteristically, aside from being located at the forefront of these events, the coastal communities have impacted the resource by the kind of behavioral patterns they exhibited, such as overdependence and overexploitation to achieve their wellbeing. In this paper, we introduce the development of an approach to an assessment of the coupled human- environment using a multi- agent simulation (MAS) model known as Coastal Vulnerability Dynamic Simulator (COVUDS). The COVUDS comprised a human- environmental platform consisting multi- agents with corresponding spatial- based dynamic and static variables. These variables were used to present multiple hypothetical future situations that contribute to the purpose of supporting a more rational management of the coastal ecosystem and their environmental equities. Initially, we present the theoretical and conceptual components that would lead to the development of the COVUDS. These consisted of the human population engaged in behavioral patterns affecting the conditions of coastal ecosystem services; the system of the biophysical environment and changes in patches brought by global environment and local behavioral variations; the policy factors that were important for choosing area- specific interventions; and the decision- making mechanism that integrates the first three components. To guide a future scenario-based application that will be undertaken in a coastal area in the Philippines, the components of the

  6. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

    Science.gov (United States)

    Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  7. Mapping health outcomes from ecosystem services

    NARCIS (Netherlands)

    Keune, Hans; Oosterbroek, Bram; Derkzen, Marthe; Subramanian, Suneetha; Payyappalimana, Unnikrishnan; Martens, Pim; Huynen, Maud; Burkhard, Benjamin; Maes, Joachim

    The practice of mapping ecosystem services (ES) in relation to health outcomes is only in its early developing phases. Examples are provided of health outcomes, health proxies and related biophysical indicators. This chapter also covers main health mapping challenges, design options and

  8. Ecosystem-based coastal defence in the face of global change.

    Science.gov (United States)

    Temmerman, Stijn; Meire, Patrick; Bouma, Tjeerd J; Herman, Peter M J; Ysebaert, Tom; De Vriend, Huib J

    2013-12-05

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

  9. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    Science.gov (United States)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite

  10. Research Award: Ecosystems and Human Health (Ecohealth ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Jean-Claude Dumais

    2012-09-12

    Sep 12, 2012 ... Research Award: Ecosystems and Human Health (Ecohealth) ... Your proposal should demonstrate an understanding of the ... demonstrated ability to work independently, and strong written and oral communications skills are ...

  11. Lake Naivasha Sustainability : Ecosystem Improvement for Health ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Lake Naivasha Sustainability : Ecosystem Improvement for Health and ... The overall goal is to make recommendations for the sustainable management of natural ... to improve livestock vaccine development and production to benefit farmers ...

  12. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  13. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    Science.gov (United States)

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    International Nuclear Information System (INIS)

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography

  15. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach

    KAUST Repository

    Singh, Gerald G.

    2017-05-23

    Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these. This study trials an approach for understanding the cumulative impacts of anthropogenic change, focusing on Tasman and Golden Bays, New Zealand. Using an expert elicitation procedure, we collected information on three aspects of cumulative impacts: the importance and magnitude of impacts by various activities and stressors on ecosystem services, and the causal processes of impact on ecosystem services. We assessed impacts to four ecosystem service benefits — fisheries, shellfish aquaculture, marine recreation and existence value of biodiversity—addressing three main research questions: (1) how severe are cumulative impacts on ecosystem services (correspondingly, what potential is there for restoration)?; (2) are threats evenly distributed across activities and stressors, or do a few threats dominate?; (3) do prominent activities mainly operate through direct stressors, or do they often exacerbate other impacts? We found (1) that despite high uncertainty in the threat posed by individual stressors and impacts, total cumulative impact is consistently severe for all four ecosystem services. (2) A subset of drivers and stressors pose important threats across the ecosystem services explored, including climate change, commercial fishing, sedimentation and pollution. (3) Climate change and commercial fishing contribute to prominent indirect impacts across ecosystem services by exacerbating regional impacts, namely sedimentation and pollution. The prevalence and magnitude of these indirect, networked impacts highlights the need for

  16. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach.

    Science.gov (United States)

    Singh, Gerald G; Sinner, Jim; Ellis, Joanne; Kandlikar, Milind; Halpern, Benjamin S; Satterfield, Terre; Chan, Kai M A

    2017-09-01

    Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these. This study trials an approach for understanding the cumulative impacts of anthropogenic change, focusing on Tasman and Golden Bays, New Zealand. Using an expert elicitation procedure, we collected information on three aspects of cumulative impacts: the importance and magnitude of impacts by various activities and stressors on ecosystem services, and the causal processes of impact on ecosystem services. We assessed impacts to four ecosystem service benefits - fisheries, shellfish aquaculture, marine recreation and existence value of biodiversity-addressing three main research questions: (1) how severe are cumulative impacts on ecosystem services (correspondingly, what potential is there for restoration)?; (2) are threats evenly distributed across activities and stressors, or do a few threats dominate?; (3) do prominent activities mainly operate through direct stressors, or do they often exacerbate other impacts? We found (1) that despite high uncertainty in the threat posed by individual stressors and impacts, total cumulative impact is consistently severe for all four ecosystem services. (2) A subset of drivers and stressors pose important threats across the ecosystem services explored, including climate change, commercial fishing, sedimentation and pollution. (3) Climate change and commercial fishing contribute to prominent indirect impacts across ecosystem services by exacerbating regional impacts, namely sedimentation and pollution. The prevalence and magnitude of these indirect, networked impacts highlights the need for approaches

  17. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NARCIS (Netherlands)

    Van Loon, W.M.G.M.; Boon, A.R.; Gittenberger, A.; Walvoort, D.J.J.; Lavaleye, M.S.S.; Duineveld, G.C.A.; Verschoor, A.J.

    2015-01-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI,

  18. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NARCIS (Netherlands)

    Loon, van W.M.G.M.; Boon, A.R.; Gittenberger, A.; Walvoort, D.J.J.; Lavaleye, M.; Duineveld, G.C.A.; Verschoor, A.J.

    2015-01-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and

  19. Integrating ecosystem services and climate change responses in coastal wetlands development plans for Bangladesh

    NARCIS (Netherlands)

    Sarwar, M.H.; Hein, L.G.; Rip, F.I.; Dearing, J.A.

    2015-01-01

    This study explores the integration of ecosystem services and climate change adaptation in development plans for coastal wetlands in Bangladesh. A new response framework for adaptation is proposed, based on an empirical analysis and consultations with stakeholders, using a modified version of the

  20. Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2011-01-01

    Full Text Available Widawati S (2011 Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem. Biodiversitas 12: 17-21. Soil, water, sand, and plant rhizosphere samples collected from coastal ecosystem of Laki Island-Jakarta were screened for phosphate solubilizing bacteria (PSB. While the population was dependent on the cultivation media and the sample type, the highest bacterial population was observed in the rhizosphere of Ipomea aquatica. The PSB strains isolated from the sample registered 18.59 g-1L-1, 18.31 g-1L-1, and 5.68 g-1L-1 of calcium phosphate (Ca-P, Al-P and rock phosphate solubilization after 7-days. Phosphate solubilizing capacity was the highest in the Ca-P medium. Two strains, 13 and 14, registered highest Phosphomonoesterase activities (2.01 µgNP.g-1.h-1 and 1.85NP µg.g-1.h-1 were identified as Serattia marcescens, and Pseudomonas fluorescense, respectively. Both strains were isolated from the crops of Amaranthus hybridus and I. aquatica, respectively, which are commonly observed in coastal ecosystems. The presence of phosphate solubilizing microorganisms and their ability to solubilize various types of phosphate species are indicative of the important role of both species of bacteria in the biogeochemical cycle of phosphorus and the plant growth in coastal ecosystems.

  1. Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems

    NARCIS (Netherlands)

    van de Koppel, J.; van der Heide, T.; Altieri, A.H.; Eriksson, B.K.; Bouma, T.J.; Olff, H.; Silliman, B.R.

    2015-01-01

    Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that

  2. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability

    NARCIS (Netherlands)

    Lu, Y.; Yuan, J.; Lu, X.; Su, Chao; Zhang, Y.; Wang, C.; Cao, X.; Li, Q.; Su, Jilan; Ittekkot, Venugopalan; Garbutt, Richard Angus; Bush, S.R.; Fletcher, Stephen; Wagey, Tonny; Kachur, Anatolii; Sweijd, Neville

    2018-01-01

    Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients,

  3. Impacts of shoreline erosion on coastal ecosystems in Songkhla Province

    Directory of Open Access Journals (Sweden)

    Nipaporn Chusrinuan

    2009-07-01

    Full Text Available Songkhla Province is located on the eastern coast of the southern Thai Peninsula, bordering the Gulf of Thailand for approximately 107 km. Most of the basin’s foreshores have been extensively developed for housing, tourism and shrimp farming. The beaches are under deteriorating impacts, often causing sediment transport which leads to an unnaturally high erosion rate. This natural phenomenon is considered to be a critical problem in the coastal areas affected by the hazard of coastal infrastructure and reduced beach esthetics for recreation. In this study, shoreline changes were compared between 1975 and 2006 using aerial photographs and Landsat imageries using Geographic Information System (GIS. The results revealed that 18.5 km2 of the coastal areas were altered during the period. Of this, 17.3 km2 suffered erosion and 1.2 km2were subjected to accretion. The most significant changes occurred between 1975-2006. Shoreline erosion was found at Ban Paktrae, Ranot District, with an average erosion rate of 5.3 m/year, while accretion occurred at Laem Samila, MuangSongkhla District with an average accretion rate of 2.04 m/year. The occurrences of shoreline erosion have contributed to the degradation of coastal soil and water quality, destruction of beach and mangrove forests, loss of human settlements and livelihood.These processes have led to deterioration of the quality of life of the residents. Prevention and mitigation measures to lessen economic and social impacts due to shoreline erosion are discussed.

  4. Coastal Zone Ecosystem Services: from science to values and decision making; a case study.

    Science.gov (United States)

    Luisetti, T; Turner, R K; Jickells, T; Andrews, J; Elliott, M; Schaafsma, M; Beaumont, N; Malcolm, S; Burdon, D; Adams, C; Watts, W

    2014-09-15

    This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  5. On dew and micrometeorology in an arid coastal ecosystem

    NARCIS (Netherlands)

    Heusinkveld, B.G.

    2008-01-01

    This study investigated intriguing aspects of dew within a sandy arid ecosystem situated in the NW Negev desert, Israel. The goal was to quantify dew formation and evaporation processes through sensor design, field measurements and modelling. To do this, two new sensors were developed. The first

  6. In hot water: the future of Australia's coastal and marine ecosystems

    International Nuclear Information System (INIS)

    Richardson, Anthony J; Poloczanska, Elvira

    2007-01-01

    Full text: Full text: Marine ecosystems are extremely important economically and ecologically to Australia in terms of tourism, coastal defence, resources, and ecosystem services such as nutrient cycling and waste disposal. Australia is also a globally important repository of biodiversity. Here we describe the observed and potential future impacts of climate change on Australia's marine diversity. Climate simulations project oceanic warming, an increase in stratification, a strengthening of the Eastern Australian Current, increased ocean acidification, a rise in sea level, and altered storm and rainfall regimes, which taken collectively will fundamentally change marine ecosystems. There has already been widespread bleaching of tropical corals, poleward shifts of temperate fish and plankton populations, and a decline in cold-water giant kelp off Tasmania. Future changes are likely to be even more dramatic and have considerable economic and ecological consequences, especially in 'hot spots' of climate change such as theTasman Sea and the Great Barrier Reef area. Corals are likely to bleach more frequently and decline in abundance in response to both warming and ocean acidification. Planktonic animals with calcium carbonate shells, such as winged pteropod snails and coccolithophorid phytoplankton, are likely to decline as increased ocean acidification impairs their ability to maintain carbonate body structures. The projected high warming off south-east Australia is of particular concern. Marine ecosystems in this region are already stressed by high metal concentrations, sewage pollution, and overfishing, and climate models project that this region will warm more than anywhere else in the Southern Hemisphere this century because of enhanced southerly penetration of the East Australian Current. Venomous jellyfish and harmful algal blooms, which are major threats to human health, will potentially extend further south and occur more frequently. Temperate species

  7. A conceptual approach to integrate management of ecosystem service and disservice in coastal wetlands

    Directory of Open Access Journals (Sweden)

    Jon Knight

    2017-04-01

    Full Text Available Management of coastal wetlands is increasingly difficult because of increasing pressure arising from anthropogenic causes. These include sea level and climate change as well as coastline development caused by population growth and demographic shifts, for example, amenity migration where people move to coastal communities for lifestyle reasons. Management of mangroves and salt marshes is especially difficult because maintaining ecosystem values, including the goods and services provided, is countered by the potential of enhancing or even creating ecosystem disservices, such as unpleasant odour and mosquito hazards. Here we present, explain and apply a conceptual model aimed at improving understanding of management choices that primarily focus on mitigation of disservice while enabling improvement in ecosystem services. The model was developed after more than 30 years of habitat management following modification of a salt marsh to control mosquito production. We discuss the application of the model in a mangrove forest known to produce mosquitoes and outline the benefits arising from using the model.

  8. Environmental contaminants, ecosystems and human health

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.K.; Miller, E.W.; Brenner, F.J. [eds.] [Lafayette College, Easton, PA (United States). Dept. of Biology

    1995-12-31

    The authors cover a variety of concerns regarding the adverse impacts of contaminants on ecosystems and human health. The twelve chapters in the first section of the text address the impact of contaminants on ecosystem function, and ten of the remaining twenty-two chapters are devoted to the effects of contaminants on human health. Part three presents eight case studies in humans, while the final four chapters provide the reader with an assessment of environmental problems and analyses. Two chapters, on the health effects of power plant generated air pollution and on black lung disease, have been abstracted separately for the IEA Coal Research CD-ROM.

  9. Ecosystem services provided by a complex coastal region: challenges of classification and mapping

    Science.gov (United States)

    Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.

    2016-03-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  10. Ecosystem services provided by a complex coastal region: challenges of classification and mapping.

    Science.gov (United States)

    Sousa, Lisa P; Sousa, Ana I; Alves, Fátima L; Lillebø, Ana I

    2016-03-11

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  11. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  12. Characterizing Coastal Ecosystem Service Trade-offs with Future Urban Development in a Tropical City.

    Science.gov (United States)

    Richards, Daniel R; Friess, Daniel A

    2017-11-01

    With rapid urbanization in the coastal zone and increasing habitat losses, it is imperative to understand how urban development affects coastal biodiversity and ecosystem service provision. Furthermore, it is important to understand how habitat fragments can best be incorporated into broader land use planning and coastal management, in order to maximize the environmental benefits they provide. In this study, we characterized the trade-offs between (a) urban development and individual mangrove environmental indicators (habitat quality and ecosystem services), and (b) between different environmental indicators in the tropical nation of Singapore. A range of biological, biophysical, and cultural indicators, including carbon, charcoal production, support for offshore fisheries, recreation, and habitat quality for a threatened species were quantified using field-based, remote sensing, and expert survey methods. The shape of the trade-off Pareto frontiers was analyzed to assess the sensitivity of environmental indicators for development. When traded off individually with urban development, four out of five environmental indicators were insensitive to development, meaning that relatively minor degradation of the indicator occurred while development was below a certain threshold, although indicator loss accelerated once this threshold was reached. Most of the pairwise relationships between the five environmental indicators were synergistic; only carbon storage and charcoal production, and charcoal production and recreational accessibility showed trade-offs. Trade-off analysis and land use optimization using Pareto frontiers could be a useful decision-support tool for understanding how changes in land use and coastal management will impact the ability of ecosystems to provide environmental benefits.

  13. Characterizing Coastal Ecosystem Service Trade-offs with Future Urban Development in a Tropical City

    Science.gov (United States)

    Richards, Daniel R.; Friess, Daniel A.

    2017-11-01

    With rapid urbanization in the coastal zone and increasing habitat losses, it is imperative to understand how urban development affects coastal biodiversity and ecosystem service provision. Furthermore, it is important to understand how habitat fragments can best be incorporated into broader land use planning and coastal management, in order to maximize the environmental benefits they provide. In this study, we characterized the trade-offs between (a) urban development and individual mangrove environmental indicators (habitat quality and ecosystem services), and (b) between different environmental indicators in the tropical nation of Singapore. A range of biological, biophysical, and cultural indicators, including carbon, charcoal production, support for offshore fisheries, recreation, and habitat quality for a threatened species were quantified using field-based, remote sensing, and expert survey methods. The shape of the trade-off Pareto frontiers was analyzed to assess the sensitivity of environmental indicators for development. When traded off individually with urban development, four out of five environmental indicators were insensitive to development, meaning that relatively minor degradation of the indicator occurred while development was below a certain threshold, although indicator loss accelerated once this threshold was reached. Most of the pairwise relationships between the five environmental indicators were synergistic; only carbon storage and charcoal production, and charcoal production and recreational accessibility showed trade-offs. Trade-off analysis and land use optimization using Pareto frontiers could be a useful decision-support tool for understanding how changes in land use and coastal management will impact the ability of ecosystems to provide environmental benefits.

  14. Emerging methods for the study of coastal ecosystem landscape structure and change

    Science.gov (United States)

    Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam

    2013-01-01

    Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.

  15. Assessing biomass of diverse coastal marsh ecosystems using statistical and machine learning models

    Science.gov (United States)

    Mo, Yu; Kearney, Michael S.; Riter, J. C. Alexis; Zhao, Feng; Tilley, David R.

    2018-06-01

    The importance and vulnerability of coastal marshes necessitate effective ways to closely monitor them. Optical remote sensing is a powerful tool for this task, yet its application to diverse coastal marsh ecosystems consisting of different marsh types is limited. This study samples spectral and biophysical data from freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops statistical and machine learning models to assess the marshes' biomass with combined ground, airborne, and spaceborne remote sensing data. It is found that linear models derived from NDVI and EVI are most favorable for assessing Leaf Area Index (LAI) using multispectral data (R2 = 0.7 and 0.67, respectively), and the random forest models are most useful in retrieving LAI and Aboveground Green Biomass (AGB) using hyperspectral data (R2 = 0.91 and 0.84, respectively). It is also found that marsh type and plant species significantly impact the linear model development (P biomass of Louisiana's coastal marshes using various optical remote sensing techniques, and highlights the impacts of the marshes' species composition on the model development and the sensors' spatial resolution on biomass mapping, thereby providing useful tools for monitoring the biomass of coastal marshes in Louisiana and diverse coastal marsh ecosystems elsewhere.

  16. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    Science.gov (United States)

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  17. Experimental and numerical analysis of coastal protection provided by natural ecosystems

    Science.gov (United States)

    Maza, M.; Lara, J. L.; Losada, I. J.; Nepf, H. M.

    2016-12-01

    The risk of flooding and erosion is increasing for many coastal areas owing to global and regional changes in climate conditions together with increasing exposure and vulnerability. After hurricane Katrina (2005) and Sandy (2012) and the tsunami in Indonesia (2004), coastal managers have become interested in low environmental impact alternatives, or nature-based solutions, to protect the coast. Although capacity for coastal ecosystems to damp flow energy has been widely recognized, they have not been firmly considered in the portfolio of coastal protection options. This is mainly due to the complexity of flow-vegetation interaction and of quantifying the value of coastal protection provided by these ecosystems. This complex problem involves different temporal and spatial scales and disciplines, such as engineering, ecology and economics. This work aims to make a step forward in better understanding the physics involved in flow-vegetation interaction leading to new formulations and parameterizations to address some unsolved questions in literature: the representation of plants and field properties; the influence of wave parameters on the relevant processes; the role of the combined effect of waves and currents and the effect of extreme events on vegetation elements. The three main coastal vegetated ecosystems (seagrasses, saltmarshes and mangroves) are studied with an experimental and numerical approach. Experimental analysis is carried out using mimics and real vegetation, considering different flow and vegetation parameters and characterizing flow energy attenuation for the different scenarios. Numerical simulations are performed using 2-D and 3-D Navier-Stokes models in which the effect of vegetation is implemented and validated. These models are used to extend experimental results by simulating different vegetation distributions and analyzing variables such as high-spatial-resolution free surface and velocity data and forces exerted on vegetation elements.

  18. Bioavailability of energy-effluent materials in coastal ecosystems

    International Nuclear Information System (INIS)

    Hardy, J.T.

    1987-01-01

    An attempt is made to study the long-term effects of effluents from coastal and offshore nuclear power plants. The original intent of the program was to integrate approaches in chemistry, ocean transport, and biological uptake to quantify the variables that regulate biological availability of energy-effluent materials. Initial work was focused on the fate and effects of copper. In later research, the authors examined the basic environmental variables controlling the bioavailability of energy-related contaminants. They investigated how factors such as dissolved organic compounds, suspended particles, and sediment binding affected chemical speciation and how chemical speciation, in turn, influenced the availability of metals and radionuclides to marine invertebrates. They developed a hydrodynamic model to predict sediment and contaminant transport, and they quantified the bioconcentration of synthetic-fuel residuals in plankton

  19. Function assessment of coastal ecosystem based on phytoplankton community structure

    DEFF Research Database (Denmark)

    Haraguchi, Lumi

    2018-01-01

    on phytoplankton community structure; and 3) investigating the role of planktonic communities on the cycling of dissolved organic matter. Those objectives were addressed focusing the temperate mesohaline estuary of Roskilde Fjord (Denmark). Paper I, explores the use of Pulse-shape recording flow cytometry (PFCM...... as an energy reservoir, buffering changes in the nutrient supply. Finally, the results embedded in this thesis demonstrate the importance of integrating different time scales to understand functioning of phytoplankton communities. Phytoplankton dynamics should not be regarded just in light of inorganic......This Ph.D. project aimed to improve the knowledge on phytoplankton community structure and its influence in the carbon transfer and nutrient cycling in coastal waters, by: 1) assessing the importance of phytoplankton

  20. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System.

    Science.gov (United States)

    Xiu, Peng; Chai, Fei; Curchitser, Enrique N; Castruccio, Frederic S

    2018-02-12

    Coastal upwelling ecosystems are among the most productive ecosystems in the world, meaning that their response to climate change is of critical importance. Our understanding of climate change impacts on marine ecosystems is largely limited to the open ocean, mainly because coastal upwelling is poorly reproduced by current earth system models. Here, a high-resolution model is used to examine the response of nutrients and plankton dynamics to future climate change in the California Current System (CCS). The results show increased upwelling intensity associated with stronger alongshore winds in the coastal region, and enhanced upper-ocean stratification in both the CCS and open ocean. Warming of the open ocean forces isotherms downwards, where they make contact with water masses with higher nutrient concentrations, thereby enhancing the nutrient flux to the deep source waters of the CCS. Increased winds and eddy activity further facilitate upward nutrient transport to the euphotic zone. However, the plankton community exhibits a complex and nonlinear response to increased nutrient input, as the food web dynamics tend to interact differently. This analysis highlights the difficulty in understanding how the marine ecosystem responds to a future warming climate, given to range of relevant processes operating at different scales.

  1. Green Infrastructure, Ecosystem Services, and Human Health.

    Science.gov (United States)

    Coutts, Christopher; Hahn, Micah

    2015-08-18

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture-in the form of a primer-of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being.

  2. Green Infrastructure, Ecosystem Services, and Human Health

    Science.gov (United States)

    Coutts, Christopher; Hahn, Micah

    2015-01-01

    Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture—in the form of a primer—of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being. PMID:26295249

  3. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems

    DEFF Research Database (Denmark)

    Giblin, Anne E.; Tobias, Craig R.; Song, Bongkeun

    2013-01-01

    Until recently, it was believed that biological assimilation and gaseous nitrogen (N) loss through denitrification were the two major fates of nitrate entering or produced within most coastal ecosystems. Denitrification is often viewed as an important ecosystem service that removes reactive N from...... the ecosystem. However, there is a competing nitrate reduction process, dissimilatory nitrate reduction to ammonium (DNRA), that conserves N within the ecosystem. The recent application of nitrogen stable isotopes as tracers has generated growing evidence that DNRA is a major nitrogen pathway that cannot...... of denitrification and DNRA, and how the balance changes with increased nitrogen loading, is of critical importance for predicting eutrophication trajectories. Recent improvements in methods for assessing rates of DNRA have helped refine our understanding of the rates and controls of this process, but accurate...

  4. Linking benthic biodiversity to the functioning of coastal ecosystems subjected to river runoff (NW Mediterranean

    Directory of Open Access Journals (Sweden)

    Harmelin–Vivien, M. L.

    2009-12-01

    Full Text Available Continental particulate organic matter (POM plays a major role in the functioning of coastal marine ecosystems as a disturbance as well as an input of nutrients. Relationships linking continental inputs from the Rhone River to biodiversity of the coastal benthic ecosystem and fishery production were investigated in the Golfe du Lion (NW Mediterranean Sea. Macrobenthic community diversity decreased when continen¬tal inputs of organic matter increased, whereas ecosystem production, measured by common sole (Solea solea fishery yields in the area, increased. Decreases in macrobenthic diversity were mainly related to an increasing abundance of species with specific functional traits, particularly deposit-feeding polychaetes. The decrease in macrobenthic diversity did not result in a decrease, but an increase in ecosystem production, as it enhanced the transfer of continental POM into marine food webs. The present study showed that it is necessary to consider functional traits of species, direct and indirect links between species, and feedback loops to understand the effects of biodiversity on ecosystem functioning and productivity.

  5. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    Science.gov (United States)

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  6. Capacity building for tropical coastal ecosystems management using a dynamic teaching model

    DEFF Research Database (Denmark)

    Lindberg, Annika Büchert; Nielsen, Thomas; Macintosh, Donald

    2008-01-01

    This learning opportunity illustrates effective capacity building through a dynamic teaching model that involves you and gives you personal experiences. The teaching model is easy to adapt to local environments and the learning opportunity is relevant to everyone working in coastal natural resource...... in combining knowledge and methods and applying these in a real life situation. Objectives: The participants will apply the acquired knowledge of ecosystems and project management tools when describing ecosystem services and when planning a project The participants will act as different stakeholders during...... the role play and hereby gain experience from a situation mimicking real life project situation.; The participants will experience how dynamic teaching can improve capacity building....

  7. Temporal development of coastal ecosystems in the Baltic Sea - an assessment of patterns and trends

    DEFF Research Database (Denmark)

    Olsson, Jens; Bergström, Lena; Tomczak, Maciej

    2014-01-01

    in the north, covers between two to five trophic levels per area, and include time series dating back to the early 1990s. Using multivariate analyses, we assess the temporal development of species abundance or biomass at different trophic levels in relation to the development of variables related to local...... and regional climate, hydrology, nutrient loading and fishing pressure. Our results highlight the relative timing of change in ecosystem structure and the development of key biological elements across areas. Besides describing the temporal development of coastal ecosystems in the Baltic Sea during the past two...

  8. Benthic macroinvertebrates as ecological indicators for estuarine and coastal ecosystems : assessment and intercalibration

    OpenAIRE

    Teixeira, Heliana Lilita Gonçalves

    2010-01-01

    Tese de doutoramento em Biologia (Ecologia) apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra The aim of the research work presented in this thesis is to be a contribution to the field of ecological assessment in coastal and transitional ecosystems. The main goals were: a) to present a method for the assessment of the ecological status of benthic macroinvertebrate communities in Portuguese transitional waters that would meet the requirements of the Eur...

  9. Integrating societal perspectives and values for improved stewardship of a coastal ecosystem engineer

    Directory of Open Access Journals (Sweden)

    Steven B. Scyphers

    2014-09-01

    Full Text Available Oyster reefs provide coastal societies with a vast array of ecosystem services, but are also destructively harvested as an economically and culturally important fishery resource, exemplifying a complex social-ecological system (SES. Historically, societal demand for oysters has led to destructive and unsustainable levels of harvest, which coupled with multiple other stressors has placed oyster reefs among the most globally imperiled coastal habitats. However, more recent studies have demonstrated that large-scale restoration is possible and that healthy oyster populations can be sustained with effective governance and stewardship. However, both of these require significant societal support or financial investment. In our study, we explored relationships among how coastal societies (1 perceive and value oyster ecosystem services, (2 recognize and define problems associated with oyster decline, and (3 perceive or support stewardship initiatives. We specifically focused on the SES of eastern oysters (Crassostrea virginica and coastal societies in the northern Gulf of Mexico, a region identified as offering among the last and best opportunities to sustainably balance conservation objectives with a wild fishery. We found that, in addition to harvest-related benefits, oysters were highly valued for providing habitat, mitigating shoreline erosion, and improving water quality or clarity. Our results also showed that although most respondents recognized that oyster populations have declined, many respondents characterized the problem differently than most scientific literature does. Among a variety of initiatives for enhancing sustainability, spawning sanctuaries and reef restoration were well supported in all states, but support for harvest reductions was less consistent. Our study suggests that public support for maintaining both harvest and ecosystem services exists at societal levels and that enhancing public awareness regarding the extent and causes

  10. Drought and coastal ecosystems: an assessment of decision maker needs for information

    Science.gov (United States)

    Kirsten Lackstrom; Amanda Brennan; Kirstin Dow

    2016-01-01

    The National Integrated Drought Information System (NIDIS) is in the process of developing drought early warning systems in areas of the U.S. where the development and coordination of drought information is needed. In summer 2012, NIDIS launched a pilot program in North and South Carolina, addressing the uniqueness of drought impacts on coastal ecosystems.

  11. A COMPARATIVE ANALYSIS OF SPECIES COMPOSITION OF GROUND BEETLES OF COASTAL AND ISLAND ECOSYSTEMS OF THE WESTERN CASPIAN

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2011-01-01

    Full Text Available For the first time studied the species composition of ground beetles of coastal and island ecosystems of the Western Caspian. The article provides a comparative analysis of species composition of ground beetles and adjacent areas.

  12. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, Liane; Kudela, Raphael; Hooker, Stanford; Morrow, John; Russell, Philip; Palacios, Sherry; Livingston, John M.; Negrey, Kendra; Torres-Perez, Juan; Broughton, Jennifer

    2014-01-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of

  13. A preliminary study of an eastern Mediterranean coastal ecosystem: Summer Resorts and Benthic ecosystems

    Directory of Open Access Journals (Sweden)

    S. REIZOPOULOU

    2006-06-01

    Full Text Available The present study investigates whether coastal benthic communities are affected by tourist activities along the coast, which persist for a limited time period. The analysis of benthic macrofauna is based on the ecological parameters (quantitative analyses as well as on the ecological identity of the species (qualitative analyses. Microbial contamination and some population statistics are correlated with ecological parameters. The disturbance of benthic communities in the vicinity of summer resorts is summarized by a reduction in species number and dominance of opportunistic species characteristic of disturbed and polluted environments. It is found that community diversity and evenness of distribution decrease with the deterioration of water quality, expressed as grade of microbial contamination, which implies that benthic community is also a significant element in assessing the quality of coastal waters. The above parameters were statistically negatively correlated with the number of tourists.

  14. Preliminary analysis of the Jimo coastal ecosystem with the ecopath model

    Science.gov (United States)

    Su, Meng

    2016-12-01

    The Jimo coast encompasses an area of 2157 km2, and the ecosystem is valuable both socially and economically with regional fisheries substantially contributing to the value. A mass-balanced trophic model consisting of 15 functional ecological groups was developed for the coastal ecosystem using the Ecopath model in Ecopath with Ecosim (EwE) software (version 6.4.3). The results of the model simulations indicated that the trophic levels of the functional groups varied between 1.0 and 3.76, and the total production of the system was estimated to be 5112.733 t km-2 yr-1 with a total energy transfer efficiency of 17.6%. The proportion of the total flow originating from detritus was estimated to be 48%, whereas that from primary producers was 52%, indicating that the grazing food chain dominated the energy flow. The ratio of total primary productivity to total respiration in the system was 3.78, and the connectivity index was 0.4. The fin cycling index and the mean path length of the energy flow were 4.92% and 2.57%, respectively, which indicated that the ecosystem exhibits relatively low maturity and stability. The mixed trophic impact (MTI) procedure suggested that the ecological groups at lower trophic levels dominated the feeding dynamics in the Jimo coastal ecosystem. Overfishing is thought to be the primary reason for the degeneration of the Jimo coastal ecosystem, resulting in a decline in the abundance of pelagic and demersal fish species and a subsequent shift to the predominance of lower-trophic-level functional groups. Finally, we offered some recommendations for improving current fishery management practices.

  15. Biological indication in aquatic ecosystems. Biological indication in limnic and coastal ecosystems - fundamentals, techniques, methodology

    International Nuclear Information System (INIS)

    Gunkel, G.

    1994-01-01

    Biological methods of water quality evaluation today form an integral part of environmental monitoring and permit to continuously monitor the condition of aquatic ecosystems. They indicate both improvements in water quality following redevelopment measures, and the sometimes insidious deterioration of water quality. This book on biological indication in aquatic ecosystems is a compendium of measurement and evaluation techniques for limnic systems by means of biological parameters. At present, however, an intense discussion of biological evaluation techniques is going on, for one thing as a consequence of the German reunification and the need to unify evaluation techniques, and for another because of harmonizations within the European Community. (orig./EF) [de

  16. Preface: Ecosystem services, ecosystem health and human communities

    Science.gov (United States)

    Plag, Hans-Peter

    2018-04-01

    This special issue contains a collection of manuscripts that were originally intended to be included in the special issue on "Physics and Economics of Ecosystem Services Flows" (Volume 101, guest editors H. Su, J. Dong and S. Nagarajan) and "Biogeochemical Processes in the Changing Wetland Environment" (Volume 103, guest editors J. Bai, L. Huang and H. Gao). All of them are addressing issues related to ecosystem services in different settings. Ecosystem services are of high value for both the ecosystems and human communities, and understanding the impacts of environmental processes and human activities on ecosystems is of fundamental importance for the preservation of these services.

  17. Exploratory analysis of atmospheric pollution in a coastal forest ecosystem in central Italy

    Directory of Open Access Journals (Sweden)

    Rita Aromolo

    2015-02-01

    Full Text Available Exploratory analysis of atmospheric pollution in a coastal forest ecosystem in central Italy - The study of spatial and temporal distribution of heavy metals in the atmosphere through the continuous assessment of deposition is of great interest for the analysis of anthropogenic pressure on the environment and the potential toxicity to humans and other living organisms. Information based on reliable estimates of heavy metals is therefore crucial for the evaluation of environmental quality. Trends in heavy metal concentration in atmospheric depositions on a coastal forest ecosystem (Castelporziano, Rome are analyzed in the present study based on a three-year monitoring field survey over three sites representative of different woodland characteristics in the area. Our results highlight both the influence of transportation processes in the short and medium distance based on the human pressure reflecting urban expansion and infrastructure development on the fringe of Castelporziano pristine forest. Further studies investigating the latent correlation with meteorological variables at various temporal scales are needed to provide a comprehensive picture of environmental conditions in a forest ecosystem subjected to increasing human pressure. Analysis of runoff water quality and the determination of other heavy metals, such as arsenic, may identify additional sources of pollution impacting soil and forest ecosystem.

  18. Case Study: Southwest Coastal Louisiana Conceptual Ecosystem Model Development

    Science.gov (United States)

    2014-08-01

    promoted the land-building process. Wave action and occasional storm events also deposited sand and shells onto the newly built land. Alteration of...water into impounded areas results in reduced biomass production and impaired health, which in turn causes increased vegetation mortality, decreased...and biomass in freshwater marshes (Smart and Barko 1980, Linthurst and Seneca 1981, Pezeshki et al 1987, McKee and Mendelssohn 1989, Spalding and

  19. A spatial analysis of cultural ecosystem service valuation by regional stakeholders in Florida: a coastal application of the social values for ecosystem services (SolVES) tool

    Science.gov (United States)

    Coffin, Alisa W.; Swett, Robert A.; Cole, Zachary D.

    2012-01-01

    Livelihoods and lifestyles of people throughout the world depend on essential goods and services provided by marine and coastal ecosystems. However, as societal demand increases and available ocean and coastal space diminish, better methods are needed to spatially and temporally allocate ocean and coastal activities such as shipping, energy production, tourism, and fishing. While economic valuation is an important mechanism for doing so, cultural ecosystem services often do not lend themselves to this method. Researchers from the U.S. Geological Survey are working collaboratively with the Florida Sea Grant College Program to map nonmonetary values of cultural ecosystem services for a pilot area (Sarasota Bay) in the Gulf of Mexico. The research seeks to close knowledge gaps about the attitudes and perceptions, or nonmonetary values, held by coastal residents toward cultural ecosystem services, and to adapt related, terrestrial-based research methods to a coastal setting. A critical goal is to integrate research results with coastal and marine spatial planning applications, thus making them relevant to coastal planners and managers in their daily efforts to sustainably manage coastal resources. Using information about the attitudes and preferences of people toward places and uses in the landscape, collected from value and preference surveys, the USGS SolVES 2.0 tool will provide quantitative models to relate social values, or perceived nonmonetary values, assigned to locations by survey respondents with the underlying environmental characteristics of those same locations. Project results will increase scientific and geographic knowledge of how Sarasota Bay residents value their area’s cultural ecosystem services.

  20. mHealth & Wellness Innovation Ecosystem (Section C: Implementation instance)

    CSIR Research Space (South Africa)

    Botha, Adele

    2016-12-01

    Full Text Available Against the background of the conceptualisation of a Digital Health Innovation Ecosystem within the South African context, this chapter will present a localised mHealth & Wellness Innovation Ecosystem. As outlined in the previous chapter, a...

  1. Climate change impacts on U.S. coastal and marine ecosystems

    Science.gov (United States)

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  2. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  3. FAUNA OF COLEPTERA,TENEBRIORIDAE OF ARID COASTAL AND ISLAND ECOSYSTEMS OF THE CASPIAN SEA.

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2014-01-01

    Full Text Available Aim. The aim of the given paper is to expose species structure and geographical distribution of Coleoptera, Tenebrioridae (C, T of coastal and island ecosystem of the Caspian Sea. The given report is compiled of the matcrials, collected in different periods by authors (1961-2013 in the Caucasian part of the Caspian Sea, in the south of the European part of the Russian Federation, Kazakhstan, islands (the Chechen island, the Nord island. The Tuleniyisland. The Kulaly island, collective materials (ZIN; RAS, museum of Zoology of MSU, Institute NAN of Azerbaijan, National museum of Georgia and materials published (Kryzhanovsky, 1965, Medvedev, 1987, 1990; Medvedev, Nepesova, 1990; Shuster, 1934; Kaluzhnaya, 1982; Arzanov and others, 2004, Egorov, 2006.Methods. We used the traditional methods of collecting (hand picking, traps soil, soil traps light amplification light traps, processing and material definition. List of species composition discussed fauna composed by modern taxonomy using directories. Location. Coastal and island ecosystems of the Caspian sea.Results. Species structure and data on general and regional distribution of C,T of coastal and island ecosystems of the Caspian Sea is represented in the paper. Faund discussed is widely represented in the fauna of arid regions of land, especially in the fauna of subtropical deserts and semideserts.Main conclusions. Results of the study will be a step in the determination of age of the islands through the biological diversity and the consequent level regime of the Caspian Sea, as well as possible changes in the population structure of darkling beetles (Coleoptera: Tenebrionidae on island ecosystems.

  4. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    Science.gov (United States)

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.

  5. The capacities of institutions for the integration of ecosystem services in coastal strategic planning: The case of Jiaozhou Bay

    NARCIS (Netherlands)

    Li, Ruiqian; Li, Yongfu; Woltjer, Johan; van den Brink, Margo

    2015-01-01

    This paper explains how the practice of integrating ecosystem-service thinking (i.e., ecological benefits for human beings) and institutions (i.e., organisations, policy rules) is essential for coastal spatial planning. Adopting an integrated perspective on ecosystem services (ESs) both helps

  6. Marine and coastal ecosystem services on the science–policy–practice nexus: challenges and opportunities from 11 European case studies

    NARCIS (Netherlands)

    Drakou, E.G.; Kermagoret, C.; Liquete, C.; Ruiz-Frau, A.; Burkhard, K.; Lillebø, A.I.; van Oudenhoven, A.P.E.; Ballé-Béganton, J.; Rodrigues, J.G.; Nieminen, E.; Oinonen, S.; Ziemba, A.; Gissi, E.; Depellegrin, D.; Veidemane, K.; Ruskule, A.; Delangue, J.; Böhnke-Henrichs, A.; Boon, A.; Wenning, R.; Martino, S.; Hasler, B.; Termansen, M.; Rockel, M.; Hummel, H.; El Serafy, G.; Peev, P.

    2017-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunitiestoward the operationalization of marine and coastal ecosystem service (MCES) assessments inEurope. This work is the output of a panel convened by the Marine Working Group of theEcosystemServices Partnership

  7. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    Science.gov (United States)

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  8. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    Science.gov (United States)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  9. Ecosystem-based management of coastal zones in face of climate change impacts: Challenges and inequalities.

    Science.gov (United States)

    Fernandino, Gerson; Elliff, Carla I; Silva, Iracema R

    2018-06-01

    Climate change effects have the potential of affecting both ocean and atmospheric processes. These changes pose serious threats to the millions of people that live by the coast. Thus, the objective of the present review is to discuss how climate change is altering (and will continue to alter) atmospheric and oceanic processes, what are the main implications of these alterations along the coastline, and which are the ecosystem-based management (EBM) strategies that have been proposed and applied to address these issues. While ocean warming, ocean acidification and increasing sea level have been more extensively studied, investigations on the effects of climate change to wind and wave climates are less frequent. Coastal ecosystems and their respective natural resources will respond differently according to location, environmental drivers and coastal processes. EBM strategies have mostly concentrated on improving ecosystem services, which can be used to assist in mitigating climate change effects. The main challenge for developing nations regards gaps in information and scarcity of resources. Thus, for effective management and adaptive EBM strategies to be developed worldwide, information at a local level is greatly needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Coastal livelihood transitions under globalization with implications for trans-ecosystem interactions.

    Science.gov (United States)

    Kramer, Daniel B; Stevens, Kara; Williams, Nicholas E; Sistla, Seeta A; Roddy, Adam B; Urquhart, Gerald R

    2017-01-01

    Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.

  11. Coastal livelihood transitions under globalization with implications for trans-ecosystem interactions.

    Directory of Open Access Journals (Sweden)

    Daniel B Kramer

    Full Text Available Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.

  12. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review.

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies.

  13. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080

  14. Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China

    Directory of Open Access Journals (Sweden)

    Caiyao Xu

    2016-08-01

    Full Text Available Urbanization, and the resulting land use/cover change, is a primary cause of the degradation of coastal wetland ecosystems. Reclamation projects are seen as a way to strike a balance between socioeconomic development and maintenance of coastal ecosystems. Our aim was to understand the ecological changes to Jiangsu’s coastal wetland resulting from land use change since 1977 by using remote sensing and spatial analyses. The results indicate that: (1 The area of artificial land use expanded while natural land use was reduced, which emphasized an increase in production-orientated land uses at the expense of ecologically important wetlands; (2 It took 34 years for landscape ecological security and 39 years for ecosystem services to regain equilibrium. The coastal reclamation area would recover ecological equilibrium only after a minimum of 30 years; (3 The total ecosystem service value decreased significantly from $2.98 billion per year to $2.31 billion per year from 1977 to 2014. Food production was the only one ecosystem service function that consistently increased, mainly because of government policy; (4 The relationship between landscape ecological security and ecosystem services is complicated, mainly because of the scale effect of landscape ecology. Spatial analysis of changing gravity centers showed that landscape ecological security and ecosystem service quality became better in the north than the south over the study period.

  15. Local ecological knowledge related with marine ecosystems in two coastal communities: El Valle and Sapzurro

    International Nuclear Information System (INIS)

    Correa, Sandra Liliana; Turbay, Sandra; Velez, Madelene

    2012-01-01

    The inhabitants of the Colombian coastal populations of El Valle, in the Pacific, and Sapzurro, in the Caribbean Darien, have ecological knowledge about coastal ecosystems that is a result of their constant relation with the sea, through fishing and navigation. The sea is a source of food and economical resources, but it is also the sphere where the male personality is forged. The accurate knowledge about mangrove, coral, coral reef, beaches and fishing grounds has been enriched through the dialog between local inhabitants and researchers in the conservation biology field. However, the tensions with researchers and environmental authorities still exist. The paper suggests that local ecological knowledge studies could be a starting point for maintaining a more horizontal dialogue between environmentalist and the populations with livelihoods derived of fishing.

  16. Formulating a coastal zone health metric for landuse impact management in urban coastal zones.

    Science.gov (United States)

    Anilkumar, P P; Varghese, Koshy; Ganesh, L S

    2010-11-01

    The need for ICZM arises often due to inadequate or inappropriate landuse planning practices and policies, especially in urban coastal zones which are more complex due to the larger number of components, their critical dimensions, attributes and interactions. A survey of literature shows that there is no holistic metric for assessing the impacts of landuse planning on the health of a coastal zone. Thus there is a need to define such a metric. The proposed metric, CHI (Coastal zone Health Indicator), developed on the basis of coastal system sustainability, attempts to gauge the health status of any coastal zone. It is formulated and modeled through an expert survey and pertains to the characteristic components of coastal zones, their critical dimensions, and relevant attributes. The proposed metric is applied to two urban coastal zones and validated. It can be used for more coast friendly and sustainable landuse planning/masterplan preparation and thereby for the better management of landuse impacts on coastal zones. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Science.gov (United States)

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  18. Coastal ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Madhupratap, M.

    stream_size 2 stream_content_type text/plain stream_name Biodiversity_Western_Ghats_Inf_Kit_1994_3.9_1.pdf.txt stream_source_info Biodiversity_Western_Ghats_Inf_Kit_1994_3.9_1.pdf.txt Content-Encoding ISO-8859-1 Content-Type text...

  19. North American coastal carbon stocks and exchanges among the coupled ecosystems of tidal wetlands and estuaries

    Science.gov (United States)

    Windham-Myers, L.; Cai, W. J.

    2017-12-01

    The development of the 2nd State of the Carbon Cycle Report (SOCCR-2) has recognized a significant role of aquatic ecosystems, including coastal zones, in reconciling some of the gaps associated with the North American carbon (C) budget. Along with a large community of coauthors, we report major C stocks and fluxes for tidal wetlands and estuaries of Canada, Mexico and the United States. We find divergent patterns between these coupled ecosystems, with tidal wetlands largely serving as CO2 sinks (net autotrophic), and open-water estuaries largely serving as CO2 sources (net heterotrophic). We summarized measurements across 4 continental regions - East Coast, Gulf of Mexico, West Coast, and High Latitudes - to assess spatial variability and datagaps in our understanding of coastal C cycling. Subtracting estuarine outgassing of 10 ± 10 Tg C yr-1 from the tidal wetland uptake of 23 ± 10 Tg C yr-1 leaves a net uptake of the combined system of 13 ± 14 Tg C yr-1. High uncertainty for net atmospheric C exchange in this combined coastal system is further complicated by spatially and temporally dynamic boundaries, as well as terrestrial C sources. Tidal wetlands are among the most productive ecosystems on earth and are capable of continuously accumulating organic C in their sediments as a result of environmental conditions that inhibit organic matter decomposition. Estuaries have more interannual variability in C dynamics than those of tidal wetlands, reflecting the estuarine balance of exchanges with terrestrial watersheds, tidal wetlands, and the continental shelf. Whereas tidal, subtidal and estuarine maps are of limited accuracy at larger scales, North America likely represents less than 1/10 of global distributions of coastal wetland habitats. Coupled land-ocean C flux models are increasingly robust but lacking much of the data needed for parameterization and validation. Accurate boundary maps and synoptic monitoring data on air-water CO2 exchange may be developed

  20. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...

  1. Risks for marine coastal ecosystems from anthropogenic loading in the Leningrad NPP environs

    International Nuclear Information System (INIS)

    Zimina, L.; Zimin, V.; Shchukina, T.; Pomiluiko, G.; Ryabova, V.

    1998-01-01

    Data on conditions and variations in phytoplankton, zooplankton and fish communities, chlorophyll 'a' and hydrochemical parameters in the coastal waters of Koporskaya Bay (cooling water body of the Leningrad NPP) were analyzed. The most significant anthropogenic factors issued from the Leningrad nuclear power plant activity are of non-radioactive character, as it was recognized during long-time (20 years) ecological monitoring. Main factors influenced ecosystem of the NPP cooling water body are thermal water discharge and nutrient outflows from the bay catchment area. (authors)

  2. The effects of spilled oil on coastal ecosystems: Lessons from the Exxon Valdez spill: Chapter 11

    Science.gov (United States)

    Bodkin, James L.; Esler, Daniel N.; Rice, Stanley D.; Matkin, Craig O.; Ballachey, Brenda E.; Maslo, Brooke; Lockwood, Julie L.

    2014-01-01

    Oil spilled from ships or other sources into the marine environment often occurs in close proximity to coastlines, and oil frequently accumulates in coastal habitats. As a consequence, a rich, albeit occasionally controversial, body of literature describes a broad range of effects of spilled oil across several habitats, communities, and species in coastal environments. This statement is not to imply that spilled oil has less of an effect in pelagic marine ecosystems, but rather that marine spills occurring offshore may be less likely to be detected, and associated effects are more difficult to monitor, evaluate, and quantify (Peterson et al., 2012). As a result, we have a much greater awareness of coastal pollution, which speaks to our need to improve our capacities in understanding the ecology of the open oceans. Conservation of coastal ecosystems and assessment of risks associated with oil spills can be facilitated through a better understanding of processes leading to direct and indirect responses of species and systems to oil exposure.It is also important to recognize that oil spilled from ships represents only ~9% of the nearly 700 000 barrels of petroleum that enter waters of North America annually from anthropogenic sources (NRC, 2003). The immediate effects of large spills can be defined as acute, due to the obvious and dramatic effects that are observed. In contrast, the remaining 625 000 barrels that are released each year can be thought of as chronic non-point pollution, resulting from oil entering the coastal ocean as runoff in a more consistent but much less conspicuous rate. In this chapter, we primarily address the effects of large oil spills that occur near coastlines and consider their potential for both acute and chronic effects on coastal communities. As described below, in some instances, the effects from chronic exposure may meet or exceed the more evident acute effects from large spills. Consequently, although quantifying chronic effects

  3. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    Science.gov (United States)

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  4. Understanding human impacts to tropical coastal ecosystems through integrated hillslope erosion measurements, optical coastal waters characterization, watershed modeling, marine ecosystem assessments, and natural resource valuations in two constrasting watersheds in Puerto Rico.

    Science.gov (United States)

    Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.

    2017-12-01

    Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and

  5. Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem.

    Science.gov (United States)

    Bracken, Matthew E S; Silbiger, Nyssa J; Bernatchez, Genevieve; Sorte, Cascade J B

    2018-01-01

    Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO 2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, p CO 2 , net ecosystem calcification ( NEC ), and O 2 concentrations were strongly related to rates of net community production ( NCP ). CO 2 was added to pools during daytime low tides, which should have reduced pH and enhanced p CO 2 . However, photosynthesis rapidly reduced p CO 2 and increased pH, so effects of CO 2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO 2 addition caused pH to decline by ∼0.6 units and p CO 2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO 2 addition declined because more CO 2 was absorbed due to photosynthesis. Effects of CO 2 addition were, therefore, modified by feedbacks between NCP , pH, p CO 2 , and NEC . Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification.

  6. Ecosystem resilience and threshold response in the Galápagos coastal zone.

    Directory of Open Access Journals (Sweden)

    Alistair W R Seddon

    Full Text Available BACKGROUND: The Intergovernmental Panel on Climate Change (IPCC provides a conservative estimate on rates of sea-level rise of 3.8 mm yr(-1 at the end of the 21(st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? METHODOLOGY/PRINCIPAL FINDINGS: Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ(13C were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. CONCLUSIONS/SIGNIFICANCE: Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast' and 'slow' environmental change between alternative stable states. This study

  7. Ecosystems and human well-being: health synthesis : a report of the Millennium Ecosystem Assessment

    National Research Council Canada - National Science Library

    Hales, Simon; Corvalan, Carlos; McMichael, Anthony (Tony) J

    2005-01-01

    ... 36 4 What actions are required to address the health consequences of ecosystem change? 4.1 Reducing vulnerability 4.2 The Millennium Development Goals 38 38 39 5 How can priorities be established for actions to address the health consequences of ecosystem change? 5.1 What considerations are important when setting priorities and what...

  8. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.

    Science.gov (United States)

    Govers, Laura L; Man In 't Veld, Willem A; Meffert, Johan P; Bouma, Tjeerd J; van Rijswick, Patricia C J; Heusinkveld, Jannes H T; Orth, Robert J; van Katwijk, Marieke M; van der Heide, Tjisse

    2016-08-31

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts. © 2016 The Author(s).

  9. Erosi Pantai, Ekosistem Hutan Bakau dan Adaptasi Masyarakat Terhadap Bencana Kerusakan Pantai Di negara Tropis (Coastal Erosion, Mangrove Ecosystems and Community Adaptation to Coastal Disasters in Tropical Countries

    Directory of Open Access Journals (Sweden)

    Aji Ali Akbar

    2017-05-01

    Full Text Available ABSTRAK   Tulisan ini bertujuan untuk mengkaji terjadinya kerusakan lingkungan pantai di negara tropis dan sebagian negara subtropis akibat perilaku manusia. Perilaku manusia yang menyebabkan kerusakan lingkungan adalah memanfaatkan sumberdaya alam pesisir tanpa memperhatikan keberlanjutan sumber daya alam dan daya dukung lingkungannya. Kerusakan lingkungan pantai yang umum terjadi di negara tropis dan sebagian subtropis adalah erosi pantai dan degradasi ekosistem hutan bakau. Kerusakan lingkungan pantai ini akibat alih fungsi lahan menjadi jaringan jalan, permukiman, lahan pertanian/ perkebunan, pertambakan, dan pertambangan pasir. Kerusakan lingkungan pantai mempengaruhi kondisi sosial ekonomi masyarakat setempat seperti hilangnya badan jalan, permukiman, lahan pertanian, dan fasilitas umum akibat abrasi pantai. Upaya penanggulangan kerusakan lingkungan pantai sebagai bagian dari adaptasi manusia mempertahankan kehidupannya berupa pembangunan pemecah gelombang (breakwaters dan rehabilitasi ekosistem hutan bakau. Upaya penanggulangan bencana tersebut tentunya membutuhkan biaya yang besar dan waktu lama daripada upaya pencegahan. Oleh karena itu, perubahan pola pikir baik pemerintah dan masyarakat dalam memanfaatkan, mengelola dan melestarikan sumber daya alam perlu ditingkatkan melalui perbaikan informasi, ilmu pengetahuan, dan strategi perencanaan yang holistik. Kata kunci: erosi pantai, kerusakan ekosistem hutan bakau, alih fungsi lahan, pemecah gelombang, rehabilitasi ABSTRACT This paper aims to assess the coastal degradation in tropical and subtropical countries in part due to human behavior. Human behavior is causing coastal degradation is to utilize natural resources without regard to the sustainability of coastal natural resources and the carrying capacity of the environment. Degradation of coastal common in most tropical and subtropical countries are coastal erosion and degradation of mangrove ecosystems. This coastal degradation as a

  10. Avian wildlife as sentinels of ecosystem health.

    Science.gov (United States)

    Smits, Judit E G; Fernie, Kimberly J

    2013-05-01

    Birds have been widely used as sentinels of ecosystem health reflecting changes in habitat quality, increased incidence of disease, and exposure to and effects of chemical contaminants. Numerous studies addressing these issues focus on the breeding period, since hormonal, behavioural, reproductive, and developmental aspects of the health can be observed over a relatively short time-span. Many body systems within individuals are tightly integrated and interdependent, and can be affected by contaminant chemicals, disease, and habitat changes in complex ways. Animals higher in the food web will reflect cumulative effects of multiple stressors. Such features make birds ideal indicators for assessing environmental health in areas of environmental concern. Five case studies are presented, highlighting the use of different species which have provided insight into ecosystem sustainability, including (i) the consequences of anthropogenic disturbances of sagebrush habitat on the greater northern sage grouse Centrocercus urophasianus; (ii) the high prevalence of disease in very specific passerine species in the Canary Islands closely paralleling deterioration of formerly productive desert habitat and ensuing interspecific stressors; (iii) fractures, abnormal bone structure, and associated biochemical aberrations in nestling storks exposed to acidic tailings mud from a dyke rupture at an iron pyrite mine near Sevilla, Spain; (iv) newly presented data demonstrating biochemical changes in nestling peregrine falcons Falco peregrinus and associations with exposure to major chemical classes in the Great Lakes Basin of Canada; and (v) the variability in responses of tree swallows Tachycineta bicolor to contaminants, biological and meteorological challenges when breeding in the Athabasca oil sands. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Supplementing forest ecosystem health projects on the ground

    Science.gov (United States)

    Cathy Barbouletos; Lynette Z. Morelan

    1995-01-01

    Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...

  12. SCOR Working Group 137: "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems": An introduction to the special issue of Estuarine, Coastal and Shelf Science

    Science.gov (United States)

    Paerl, Hans W.; Yin, Kedong; O'Brien, Todd D.

    2015-09-01

    Phytoplankton form the base of most aquatic food webs and play a central role in assimilation and processing of carbon and nutrients, including nitrogen, phosphorus, silicon, iron and a wide range of trace elements (Reynolds, 2006). In the marine environment, estuarine and coastal ecosystems (jointly termed coastal here) are among the most productive, resourceful and dynamic habitats on Earth (Malone et al., 1999; Day et al., 2012). These ecosystems constitute only ∼10% of the global oceans' surface, but account for over 30% of its primary production (Day et al., 2012). They process vast amounts of nutrients, sediments, carbonaceous, and xenobiotic compounds generated in coastal watersheds, in which approximately 70% of the world's human population resides (Nixon, 1995; Vitousek et al., 1997; NOAA, 2013). Estuarine and coastal ecosystems are also strongly influenced by localized nutrient enrichment from coastal upwelling, with major impacts on the structure and function of phytoplankton communities and the food webs they support (Legendre and Rassoulzadegan, 2012; Paerl and Justić, 2012). In addition, introductions and invasions of exotic plant and animal species have led to significant "top down" mediated changes in phytoplankton community structure and function (Carlton, 1999; Thompson, 2005). Lastly, the coastal zone is the "front line" of climatically-induced environmental change, including warming, altered rainfall patterns, intensities and magnitudes (Trenberth, 2005; IPCC, 2012), which jointly impact phytoplankton community structure and function (Cloern and Jassby, 2012; Hall et al., 2013). The combined effects of these pressures translate into a myriad of changes in phytoplankton production and community structure along geomorphological and geographic gradients (Fig. 1), with cascading quantitative and qualitative impacts on biogeochemical cycling, food web structure and function, water quality and overall resourcefulness and sustainability of these

  13. 7Be content in rainfall and soil deposition in South American coastal ecosystems

    International Nuclear Information System (INIS)

    Cardoso, R.; Ayub, J. Juri; Anjos, Roberto Meigikos dos; Cid, Alberto Silva; Velasco, H.

    2011-01-01

    soil deposition in a semiarid ecosystem at San Luis Province, central Argentina. Now, we are starting measurements in coastal ecosystems at Niteroi, southeastern Brazil. At this conference, we are going to present preliminary results on 7 Be content in rains, relationships with precipitation regime, and assess the 7 Be deposition in soil and its seasonality. (author)

  14. Introducing mixotrophy into a biogeochemical model describing an eutrophied coastal ecosystem: The Southern North Sea

    Science.gov (United States)

    Ghyoot, Caroline; Lancelot, Christiane; Flynn, Kevin J.; Mitra, Aditee; Gypens, Nathalie

    2017-09-01

    Most biogeochemical/ecological models divide planktonic protists between phototrophs (phytoplankton) and heterotrophs (zooplankton). However, a large number of planktonic protists are able to combine several mechanisms of carbon and nutrient acquisition. Not representing these multiple mechanisms in biogeochemical/ecological models describing eutrophied coastal ecosystems can potentially lead to different conclusions regarding ecosystem functioning, especially regarding the success of harmful algae, which are often reported as mixotrophic. This modelling study investigates the implications for trophic dynamics of including 3 contrasting forms of mixotrophy, namely osmotrophy (using alkaline phosphatase activity, APA), non-constitutive mixotrophy (acquired phototrophy by microzooplankton) and also constitutive mixotrophy. The application is in the Southern North Sea, an ecosystem that faced, between 1985 and 2005, a significant increase in the nutrient supply N:P ratio (from 31 to 81 mol N:P). The comparison with a traditional model shows that, when the winter N:P ratio in the Southern North Sea is above 22 molN molP-1 (as occurred from mid-1990s), APA allows a 3-32% increase of annual gross primary production (GPP). In result of the higher GPP, the annual sedimentation increases as well as the bacterial production. By contrast, APA does not affect the export of matter to higher trophic levels because the increased GPP is mainly due to Phaeocystis colonies, which are not grazed by copepods. Under high irradiance, non-constitutive mixotrophy appreciably increases annual GPP, transfer to higher trophic levels, sedimentation, and nutrient remineralisation. In this ecosystem, non-constitutive mixotrophy is also observed to have an indirect stimulating effect on diatoms. Constitutive mixotrophy in nanoflagellates appears to have little influence on this ecosystem functioning. An important conclusion from this work is that contrasting forms of mixotrophy have different

  15. Tracking the Fate of Explosive-Trinitrotriazine (RDX) in Coastal Marine Ecosystems Using Stable Isotopic Tracer

    Science.gov (United States)

    Ariyarathna, T. S.; Ballentine, M.; Vlahos, P.; Smith, R. W.; Bohlke, J. K.; Tobias, C. R.; Fallis, S.; Groshens, T.; Cooper, C.

    2017-12-01

    It has been estimated that there are hundreds of explosive-contaminated sites all over the world and managing these contaminated sites is an international challenge. As coastal zones and estuaries are commonly impacted zones, it is vital to understand the fate and transport of munition compounds in these environments. The demand for data on sorption, biodegradation and mineralization of trinitrotriazine (RDX) in coastal ecosystems is the impetus for this study using stable nitrogen isotopes to track its metabolic pathways. Mesocosm experiments representing subtidal vegetated, subtidal unvegetated and intertidal marsh ecocosms were conducted. Steady state concentrations of RDX were maintained in the systems throughout two-week time duration of experiments. Sediment, pore-water and overlying water samples were analyzed for RDX and degradation products. Isotope analysis of the bulk sediments revealed an initial rising inventory of 15N followed by a decay illustrating the role of sediments on sorption and degradation of RDX in anaerobic sediments respectively. Both pore-water and overlying water samples were analyzed for 15N inventories of different inorganic nitrogen pools including ammonium, nitrate, nitrite, nitrous oxide and nitrogen gases. RDX is mineralized to nitrogen gas through a series of intermediates leaving nitrous oxide as the prominent metabolite of RDX. Significant differences in RDX metabolism were observed in the three different ecosystems based on sediment characteristics and redox conditions in the systems. Fine grained organic carbon rich sediments show notably higher mineralization rates of RDX in terms of production of its metabolites. Quantification of degradation and transformation rates leads to mass balances of RDX in the systems. Further analysis of results provides insights for mineralization pathways of RDX into both organic and inorganic nitrogen pools entering the marine nitrogen cycle.

  16. Degradation State and Sequestration Potential of Carbon in Coastal Wetlands of Texas: Mangrove Vs. Saltmarsh Ecosystems

    Science.gov (United States)

    Sterne, A. M. E.; Kaiser, K.; Louchouarn, P.; Norwood, M. J.

    2015-12-01

    The estimated magnitude of the organic carbon (OC) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire OC stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of OC under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze the major classes of biochemicals including total hydrolysable neutral carbohydrates, enantiomeric amino acids, phenols, and cutins/suberins at two study sites located on the Texas coastline to investigate chemical composition and its controls on organic carbon preservation in mangrove (Avicennia germinans) and saltmarsh grass (Spartina alterniflora) dominated wetlands. Results show neutral carbohydrates and lignin contribute 30-70% and 10-40% of total OC, respectively, in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Contrasts in the compositions and relative abundances of all previously mentioned compound classes are further discussed to examine the role of litter biochemistry in OC preservation. For example, the selective preservation of cellulose over hemicellulose in sediments indicates macromolecular structure plays a key role in preservation between plant types. It is concluded that the chemical composition of litter material controls the composition and magnitude of OC stored in sediments. Ultimately, as these ecosystems transition from one dominant plant type to another, as is currently observed along the Texas coastline, there is the potential for OC sequestration efficiency to shift due to the changing composition of OC input to sediments.

  17. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem.

    Directory of Open Access Journals (Sweden)

    Eglė Jakubavičiūtė

    Full Text Available The three-spined stickleback (Gasterosteus aculeatus L., hereafter 'stickleback' is a common mesopredatory fish in marine, coastal and freshwater areas. In large parts of the Baltic Sea, stickleback densities have increased >10-fold during the last decades, and it is now one of the dominating fish species both in terms of biomass and effects on lower trophic levels. Still, relatively little is known about its diet-knowledge which is essential to understand the increasing role sticklebacks play in the ecosystem. Fish diet analyses typically rely on visual identification of stomach contents, a labour-intensive method that is made difficult by prey digestion and requires expert taxonomic knowledge. However, advances in DNA-based metabarcoding methods promise a simultaneous identification of most prey items, even from semi-digested tissue. Here, we studied the diet of stickleback from the western Baltic Sea coast using both DNA metabarcoding and visual analysis of stomach contents. Using the cytochrome oxidase (CO1 marker we identified 120 prey taxa in the diet, belonging to 15 phyla, 83 genera and 84 species. Compared to previous studies, this is an unusually high prey diversity. Chironomids, cladocerans and harpacticoids were dominating prey items. Large sticklebacks were found to feed more on benthic prey, such as amphipods, gastropods and isopods. DNA metabarcoding gave much higher taxonomic resolution (median rank genus than visual analysis (median rank order, and many taxa identified using barcoding could not have been identified visually. However, a few taxa identified by visual inspection were not revealed by barcoding. In summary, our results suggest that the three-spined stickleback feeds on a wide variety of both pelagic and benthic organisms, indicating that the strong increase in stickleback populations may affect many parts of the Baltic Sea coastal ecosystem.

  18. Valuing the risk reduction of coastal ecosystems in data poor environments: an application in Quintana Roo, Mexico

    Science.gov (United States)

    Reguero, B. G.; Toimil, A.; Escudero, M.; Menendez, P.; Losada, I. J.; Beck, M. W.; Secaira, F.

    2016-12-01

    Coastal risks are increasing from both economic growth and climate change. Understanding such risks is critical to assessing adaptation needs and finding cost effective solutions for coastal sustainability. Interest is growing in the role that nature-based measures can play in adapting to climate change. Here we apply and advance a framework to value the risk reduction potential of coastal ecosystems, with an application in a large scale domain, the coast of Quintana Roo, México, relevant for coastal policy and management, but with limited data. We build from simple to use open-source tools. We first assess the hazards using stochastic simulation of historical tropical storms and inferring two scenarios of future climate change for the next 20 years, which include the effect of sea level rise and changes in frequency and intensity of storms. For each storm, we obtain wave and surge fields using parametrical models, corrected with pre-computed static wind surge numerical simulations. We then assess losses on capital stock and hotels and calculate total people flooded, after accounting for the effect of coastal ecosystems in reducing coastal hazards. We inferred the location of major barrier reefs and dune systems using available satellite imagery, and sections of bathymetry and elevation data. We also digitalized the surface of beaches and location of coastal structures from satellite imagery. In a poor data environment, where there is not bathymetry data for the whole of the region, we inferred representative coastal profiles of coral reef and dune sections and validated at available sections with measured data. Because we account for the effect of reefs, dunes and mangroves in coastal profiles every 200 m of shoreline, we are able to estimate the value of such ecosystems by comparing with benchmark simulations when we take them out of the propagation and flood model. Although limited in accuracy in comparison to more complex modeling, this approach is able to

  19. Effluent Mixing Modeling for Liquefied Natural Gas Outfalls in a Coastal Ecosystem

    Directory of Open Access Journals (Sweden)

    Mustafa Samad

    2014-06-01

    Full Text Available Liquid Natural Gas (LNG processing facilities typically are located on ocean shores for easy transport of LNG by marine vessels. These plants use large quantities of water for various process streams. The combined wastewater effluents from the LNG plants are discharged to the coastal and marine environments typically through submarine outfalls. Proper disposal of effluents from an LNG plant is essential to retain local and regional environmental values and to ensure regulatory and permit compliance for industrial effluents. Typical outfall designs involve multi-port diffuser systems where the design forms a part of the overall environmental impact assessment for the plant. The design approach needs to ensure that both near-field plume dispersion and far-field effluent circulation meets the specified mixing zone criteria. This paper describes typical wastewater process streams from an LNG plant and presents a diffuser system design case study (for an undisclosed project location in a meso-tidal coast to meet the effluent mixing zone criteria. The outfall is located in a coastal and marine ecosystem where the large tidal range and persistent surface wind govern conditions for the diffuser design. Physical environmental attributes and permit compliance criteria are discussed in a generic format. The paper describes the design approach, conceptualization of numerical model schemes for near- and far-field effluent mixing zones, and the selected diffuser design.

  20. Ecomorphology of crabs and swimming crabs (Crustacea DecapodaBrachyura from coastal ecosystems

    Directory of Open Access Journals (Sweden)

    Murilo Zanetti Marochi

    Full Text Available Abstract Brachyuran crabs are one of the most diverse taxa of crustaceans, occurring in almost all coastal habitats. Due to their high morphological diversification, the authors sought to ascertain the existence of morphological patterns related to the habitat of coastal brachyuran crabs. We analyzed 17 species from mangrove forests, rocky shores, sandy beaches and exclusively aquatic marine/estuarine ecosystems. A total of 16 linear measurements of males and 17 of females were obtained for each habitat. We were able to discriminate three functional groups of crab species, based on their habitat: 1. Complex Substrates, 2. Semiterrestrial, 3. Exclusively Aquatic. The species belonging to the Complex Substrates group had long ambulatory legs, as well as being heteroquely related to uneven terrain. Semiterrestrial species showed ambulatory legs of different sizes, allowing them to walk easily on the terrestrial terrain due to the long fourth ambulatory leg, and long eyestalks which are important for visual communication. Exclusively Aquatic species showed the largest carapace widths and the shortest eyestalks. The presence of different crab lineages in the environments analyzed allows us to demonstrate the clear evolutionary convergence, by which the crabs adapted to their specific habitat and environment.

  1. Controls of Carbon Preservation in Coastal Wetlands of Texas: Mangrove vs. Saltmarsh Ecosystems

    Science.gov (United States)

    Sterne, A. M. E.; Louchouarn, P.; Norwood, M. J.; Kaiser, K.

    2014-12-01

    The estimated magnitude of the carbon (C) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire C stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of C under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze total hydrolysable carbohydrates, amino acids, phenols and stable isotopic data (δ13C) at two study sites located on the Texas coastline to investigate chemical compositions and the stage of decomposition in mangrove and marsh grass dominated wetlands. Carbohydrates are used as specific decomposition indicators of the polysaccharide component of wetland plants, whereas amino acids are used to identify the contribution of microbial biomass, and acid/aldehyde ratios of syringyl (S) and vanillyl (V) phenols (Ac/AlS,V) follow the decomposition of lignin. Preliminary results show carbohydrates account for 30-50 % of organic carbon in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Ecological differences (between marsh grass and mangrove dominated wetlands) are discussed to better constrain the role of litter biochemistry and ecological shifts on C preservation in these anoxic environments.

  2. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    Science.gov (United States)

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low-relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades leading to thawing of on-shore permafrost and the disappearance of sea ice at unprecedented rates. The U.S. Geological Survey’s (USGS) Changing Arctic Ecosystems (CAE) research initiative was developed to investigate and forecast these rapid changes in the physical environment of the Arctic, and the associated changes to wildlife populations, in order to inform key management decisions by the U.S. Department of the Interior and other agencies. Forecasting future wildlife responses to changes in the Arctic can benefit greatly from historical records that inform what changes have already occurred. Several Arctic wildlife and plant species have already responded to climatic and physical changes to the Arctic Coastal Plain of northern Alaska. Thus, we located historical aerial imagery to improve our understanding of recent habitat changes and the associated response to such changes by wildlife populations.

  3. Effects of Land Use Changes on the Ecosystem Service Values of Coastal Wetlands

    Science.gov (United States)

    Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A.; Nunes, Paulo A. L. D.

    2014-10-01

    Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from 215 to 233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions.

  4. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  5. FEGS at the inflection point: How linking Ecosystem Services to Human Benefit improves management of coastal ecosystems.

    Science.gov (United States)

    Final ecosystem goods and services (FEGS) are the connection between the ecosystem resources and human stakeholders that benefit from natural capital. The FEGS concept is an extension of the ecosystem services (ES) concept (e.g., Millennium Ecosystem Assessment) and results from...

  6. Coastal sand dune ecosystem services in metropolitan suburbs: effects on the sake brewery environment induced by changing social conditions

    Science.gov (United States)

    Kaneko, Korehisa; Matsushima, Hajime

    2017-12-01

    Chiba Prefecture, Japan, lies very near Tokyo, the capital city of Japan. It borders the sea on three sides and is banded by coastal dunes. Several sake breweries are located near these dunes. Although there are records of sake brewing along the coast of Tokyo Bay since 1925, sake breweries have completely disappeared in several areas. We believe that sake brewing in these areas benefited from the ecosystem services afforded them by their proximity to the coastal ecosystem. We investigated potential environmental factors (e.g., landscape, soil, and groundwater), as well as conditions that could have driven sake brewers away from the coastal area. Many of the sake breweries that no longer exist were located on coastal dunes (i.e., sand, sandbanks, and natural levees) and obtained their water from a freshwater layer located 3-10 m below the surface. We speculate that these sake breweries benefited from using natural ingredients found in the coastal zone. We also investigated the following factors that may have negatively impacted the breweries, driving them out of business: (1) bankruptcies and reconstruction difficulties that followed the destructive 1923 Great Kanto earthquake, (2) industrial wartime adjustments during World War II (1939-1945), (3) development of coastal industries during the period from 1960 to 1975, and (4) increasing choices for other alcoholic drinks (e.g., beer, wine, and whiskey) from the 1960s to the present.[Figure not available: see fulltext.

  7. Health of plants, animals and ecosystems

    International Nuclear Information System (INIS)

    Marwitz, P.A.; Weers, A.W. van

    1988-12-01

    This report makes part of a series of eight reports which have been drawn up in behalf of the Dutch Policy Notition Radiation Standards (BNS). It presents the elaboration of subproject 2 'Health of plants, animals and ecosystems'. The study had been based upon the following questions: Does the application of the radiation-protection principes, intended to the protection of man, offer sufficient protection for populations of plants and animals?; If that sufficient protection does exsist, are there situations imagible which are exceptions therefore?; Which studies should be made if the forementioned questions cannot be answered sufficiently? The gravity of radiation effects turns out to depend on the radiation dose an on the part of the population which is exposed. On the base of literature it is concluded that effects upon aquatic and terristric populations are excluded below radiation levels of 1 mGy/day. From the application of the generic models it appears that the radiation burden of organisms will remain below 1 mGy/day. Since the radiation burden of man in actual practice will be nearly always lower certainly no effects upon plants, animals and ecosystems are to be expected. An exception is possible for situations in which the distribution does not take place in the living environment of man; in that case protection of man is no need for limiting the radiation levels. Such locations do not exsist in the Netherlands. For the Dutch situation, in view of the actual and expected radiation levels, the in the report derived upper limits for the radiation levels will certainly be reached. It is recommended to make for the Netherlands, starting from concrete source terms, estimations which are based upon concrete situations, with the help of the generic models. In view of the foregoing the necessity therefore is small. Next it is recommeded to keep following the international developments in this area. (H.W.). 60 refs.; 8 figs.; 3 tabs

  8. A digital health innovation ecosystem for South Africa

    CSIR Research Space (South Africa)

    Herselman, Marlien

    2016-05-01

    Full Text Available The purpose of this paper is to provide an overview of how a digital health innovation ecosystem was conceptualised and validated for South Africa. Largely, we focus on defining strategies to build Digital Health Innovation Ecosystems in the context...

  9. Degradation of mangroves adversely affected ecosystem and rural inhabitant in the Sindh's coastal area

    International Nuclear Information System (INIS)

    Naqvi, S.R.; Inam, Z.

    2005-01-01

    Mangroves the ecological treasure of Sindh, are facing a steady decline due to in active Government policies and lack of interest of local people. Mangroves provide important breeding Zone of to the marine biodiversity because of the reduction of silt flows, the area of active growth of delta, has been reduced from an original estimate of 2600 sq km to about 260 sq km. Similarly, the area of Mangroves from 345,000 hectares, the area is now only 205000 hectares. Pakistani Mangroves rank 6th among the mangroves spread in 92 countries. Mangroves forests act as inter face b/w land and sea. It provides nutrients to marine fisheries and is vital healthy Ecosystem. During past 50 years, nearly 100,000 hectares have been destroyed. The destruction is quite high from 1975 to 1992. It is due to water shortage in the river Indus. Degradation of mangroves adversely affected ecosystem and rural inhabitant in the coastal area. Thus to find root causes of degradation and its effects this study was made. (author)

  10. Participation and Sustainable Management of Coastal Lagoon Ecosystems: The Case of the Fosu Lagoon in Ghana

    Directory of Open Access Journals (Sweden)

    Ernest K.A. Afrifa

    2010-01-01

    Full Text Available Participation as a tool has been applied as a social learning process and communication platform to create awareness among stakeholders in the context of resource utilisation. The application of participatory processes to aquatic ecosystem management is attracting a growing body of literature. However, the application of participation as a tool for sustainable management of coastal lagoon ecosystems is recent. This paper examines the context and the extent of participation of stakeholders in the management of the Fosu lagoon in Ghana. Six hundred individuals from twenty seven stakeholder groups were randomly selected for study. Both closed and open-ended questions were used in face-to-face interviews with stakeholders. The findings indicate that the stakeholder groups were not involved in decision-making regarding the conservation of the lagoon irrespective of their expertise in planning and/or their interest in lagoon resource utilisation. This situation has created apathy among some of the stakeholders who feel neglected in the decision-making process. There is scope for broadening the base of interest groups in decision-making processes regarding the lagoon and improving stakeholder participation in the management of the lagoon to ensure the sustainability of the management process.

  11. Coastal Ecosystem Assessment, Development and Creation of a Policy Tool using Unmanned Aerial Vehicles (UAVs) for: A Case Study of Western Puerto Rico Coastal Region

    Science.gov (United States)

    Munoz Barreto, J.; Pillich, J.; Aponte Bermúdez, L. D.; Torres Pagan, G.

    2017-12-01

    This project utilizes low-cost Unmanned Aerial Vehicles (UAVs) based systems for different applications, such as low-altitude (high resolution) aerial photogrammetry for aerial analysis of vegetation, reconstruction of beach topography and mapping coastal erosion to understand, and estimated ecosystem values. As part of this work, five testbeds coastal sites, designated as the Caribbean Littoral Aerial Surveillance System (CLASS), were established. The sites are distributed along western Puerto Rico coastline where population and industry (tourism) are very much clustered and dense along the coast. Over the past year, rapid post-storm deployment of UAV surveying has been successfully integrated into the CLASS sites, specifically at Rincon (Puerto Rico), where coastal erosion has raised the public and government concern over the past decades. A case study is presented here where we collected aerial photos before and after the swells caused by Hurricane Mathew (October 2016). We merged the point cloud obtained from the UAV photogrammetric assessment with topo-bathymetric data, to get a complete beach topography. Using the rectified and georeferenced UAV orthophotos, we identified the maximum wave runup for the pre-swell and post-swell events. Also, we used numerical modeling (X-Beach) to simulate the rate-of-change dynamics of the coastal zones and compare the model results to observed values (including multiple historic shoreline positions). In summary, our project has accomplished the first milestone which is the Development and Implementation of an Effective Shoreline Monitoring Program using UAVs. The activities of the monitoring program have enabled the collection of crucial data for coastal mapping along Puerto Rico's shorelines with emphasis on coastal erosion hot spots zones and ecosystem values. Our results highlight the potential of the synergy between UAVs, photogrammetry, and Geographic Information Systems to provide faster and low-cost reliable

  12. in_focus - Health: An Ecosystem Approach | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    It recognizes the inextricable links between humans and their biophysical, social, and economic ... Home · Resources · Publications ... Reconciling an ecosystem's health with the health of its human inhabitants is a new area of research, ...

  13. Ecosystem Approaches to Human Health Graduate Training Awards ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC's Ecosystem Approaches to Human Health (Ecohealth) program initiative ... Each grant will consist of CA $15 000 for field research and up to CA $4 000 for ... Nutrition, health policy, and ethics in the age of public-private partnerships.

  14. Large Plankton Enhance Heterotrophy Under Experimental Warming in a Temperate Coastal Ecosystem

    KAUST Repository

    Huete-Stauffer, Tamara Megan

    2017-12-15

    Microbes are key players in oceanic carbon fluxes. Temperate ecosystems are seasonally variable and thus suitable for testing the effect of warming on microbial carbon fluxes at contrasting oceanographic conditions. In four experiments conducted in February, April, August and October 2013 in coastal NE Atlantic waters, we monitored microbial plankton stocks and daily rates of primary production, bacterial heterotrophic production and respiration at in situ temperature and at 2 and 4°C over ambient values during 4-day incubations. Ambient total primary production (TPP) exceeded total community respiration (< 200 µm, TR) in winter and fall but not in spring and summer. The bacterial contribution to ecosystem carbon fluxes was low, with bacterial production representing on average 6.9 ± 3.2% of TPP and bacterial respiration (between 0.8 and 0.2 µm) contributing on average 35 ± 7% to TR. Warming did not result in a uniform increase in the variables considered, and most significant effects were found only for the 4°C increase. In the summer and fall experiments, under warm and nutrient-deficient conditions, the net TPP/TR ratio decreased by 39 and 34% in the 4°C treatment, mainly due to the increase in respiration of large organisms rather than bacteria. Our results indicate that the interaction of temperature and substrate availability in determining microbial carbon fluxes has a strong seasonal component in temperate planktonic ecosystems, with temperature having a more pronounced effect and generating a shift toward net heterotrophy under more oligotrophic conditions as found in summer and early fall.

  15. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    Science.gov (United States)

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-11-07

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  16. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Zhaoqin Li

    2014-11-01

    Full Text Available Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1 scale issue; (2 transportability issue; (3 data availability; and (4 uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  17. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    Science.gov (United States)

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-01-01

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759

  18. Are Seagrass effective Sentinels of Ecosystem Health in Port Phillip Bay, Australia?

    Science.gov (United States)

    Lee, R. S.; Cook, P. L. M.; Jenkins, G.; Nayar, S.; Hirst, A.; Keough, M. J.; Smith, T.; Ferguson, A.; Gay, J.; Longmore, A. R.; Macreadie, P.; Sherman, C.; Ross, J.; York, P.

    2016-02-01

    Seagrasses are an important part of many coastal systems, but are also under threat in many areas, as a result of a wide range of human activities, including habitat loss and changes to water quality. Due to these sensitivities seagrass are often selected as sentinels of change for coastal marine ecosystems, but could these sensitivities be too complex and varied to provide a clear or reliable measure of change? A recent three year study focused on the resilience of Zostera seagrasses in Port Phillip Bay, Southern Australia, where these ecosystem "engineers", have a dramatic influence on biodiversity and ecosystem function. This large temperate embayment experiences extreme climatic variability, significant loading from urbanized catchments and inflows from the largest sewage treatment facility in Australia, making it a challenging case study for assessing seagrass as a suitable ecosystem metric. Studies on the influence of nutrients, light and sediments using modelling, chemical analyses and field experiments assessed characteristics of Zostera habitat within the bay. Nutrients could be obtained directly in dissolved form from the water column, or sediment, or as atmospheric nitrogen fixed by bacteria associated with the root/rhizome system. Isotopic nutrients were traced to a variety of sources including river inflows, sewage discharges, groundwater, the open ocean, the atmosphere and indirectly via phytoplankton and detritus. Broad-scale seagrass coverage is often depth limited by light, however for regions of significant wave exposure deeper beds existed adjacent to less favorable shallows. Ephemeral beds in more exposed regions showed the greatest potential for responding to change. For these beds, resilience was dependent on bed architecture, connectivity to indirect nutrient sources, and genetic interactions with seagrass communities around the bay. While observed changes in seagrass cover may be a symptomatic trigger of ecosystem health, much as high blood

  19. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  20. Ecosystem Health Assessment of Mining Cities Based on Landscape Pattern

    Science.gov (United States)

    Yu, W.; Liu, Y.; Lin, M.; Fang, F.; Xiao, R.

    2017-09-01

    Ecosystem health assessment (EHA) is one of the most important aspects in ecosystem management. Nowadays, ecological environment of mining cities is facing various problems. In this study, through ecosystem health theory and remote sensing images in 2005, 2009 and 2013, landscape pattern analysis and Vigor-Organization-Resilience (VOR) model were applied to set up an evaluation index system of ecosystem health of mining city to assess the healthy level of ecosystem in Panji District Huainan city. Results showed a temporal stable but high spatial heterogeneity landscape pattern during 2005-2013. According to the regional ecosystem health index, it experienced a rapid decline after a slight increase, and finally it maintained at an ordinary level. Among these areas, a significant distinction was presented in different towns. It indicates that the ecosystem health of Tianjijiedao town, the regional administrative centre, descended rapidly during the study period, and turned into the worst level in the study area. While the Hetuan Town, located in the northwestern suburb area of Panji District, stayed on a relatively better level than other towns. The impacts of coal mining collapse area, land reclamation on the landscape pattern and ecosystem health status of mining cities were also discussed. As a result of underground coal mining, land subsidence has become an inevitable problem in the study area. In addition, the coal mining subsidence area has brought about the destruction of the farmland, construction land and water bodies, which causing the change of the regional landscape pattern and making the evaluation of ecosystem health in mining area more difficult. Therefore, this study provided an ecosystem health approach for relevant departments to make scientific decisions.

  1. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; hide

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  2. The New Seafloor Observatory (OBSEA) for Remote and Long-Term Coastal Ecosystem Monitoring

    Science.gov (United States)

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  3. The New Seafloor Observatory (OBSEA for Remote and Long-Term Coastal Ecosystem Monitoring

    Directory of Open Access Journals (Sweden)

    Albert Palanques

    2011-05-01

    Full Text Available A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA, located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET. OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration; a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and

  4. The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring.

    Science.gov (United States)

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  5. Satellite Sensor Requirements for Monitoring Essential Biodiversity Variables of Coastal Ecosystems

    Science.gov (United States)

    Muller-Karger, Frank E.; Hestir, Erin; Ade, Christiana; Turpie, Kevin; Roberts, Dar A.; Siegel, David; Miller, Robert J.; Humm, David; Izenberg, Noam; Keller, Mary; hide

    2018-01-01

    to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.

  6. Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica

    Science.gov (United States)

    Quesada, A.; Camacho, A.; Rochera, C.; Velázquez, D.

    2009-11-01

    This article describes the development of an international and multidisciplinary project funded by the Spanish Polar Programme on Byers Peninsula (Livingston Island, South Shetlands). The project adopted Byers Peninsula as an international reference site for coastal and terrestrial (including inland waters) research within the framework of the International Polar Year initiative. Over 30 scientists from 12 countries and 26 institutions participated in the field work, and many others participated in the processing of the samples. The main themes investigated were: Holocene changes in climate, using both lacustrine sediment cores and palaeo-nests of penguins; limnology of the lakes, ponds, rivers and wetlands; microbiology of microbial mats, ecology of microbial food webs and viral effects on aquatic ecosystems; ornithology, with investigations on a Gentoo penguin rookery ( Pygoscelis papua) as well as the flying ornithofauna; biocomplexity and life cycles of species from different taxonomic groups; analysis of a complete watershed unit from a landscape perspective; and human impacts, specifically the effect of trampling on soil characteristics and biota. Byers Peninsula offers many features as an international reference site given it is one of the largest ice-free areas in the Antarctic Peninsula region, it has a variety of different landscape units, and it hosts diverse aquatic ecosystems. Moreover, the Byers Peninsula is a hotspot for Antarctic biodiversity, and because of its high level of environmental protection, it has been very little affected by human activities. Finally, the proximity to the Spanish polar installations on Livingston Island and the experience derived from previous expeditions to the site make it logistically feasible as a site for ongoing monitoring and research.

  7. Biomonitoring study of an estuarine coastal ecosystem, the Sacca di Goro lagoon, using Ruditapes philippinarum (Mollusca: Bivalvia)

    International Nuclear Information System (INIS)

    Sacchi, Angela; Mouneyrac, Catherine; Bolognesi, Claudia; Sciutto, Andrea; Roggieri, Paola; Fusi, Marco; Beone, Gian Maria; Capri, Ettore

    2013-01-01

    Coastal lagoons are constantly subjected to releases of chemical pollutants, and so organisms may be exposed to such toxicants. This study investigated through a multivariate approach the physiological status of bivalve Ruditapes philippinarum, farmed in Sacca di Goro lagoon. Biomarkers at different levels of biological organization (catalase, superoxide dismutase, genotoxicity, reburrowing behavior) were evaluated at three sites exposed to different environmental conditions. A seasonal trend was observed, and micronucleus frequency was significantly lowest at the relatively pristine reference site. Enzymatic activity toward oxyradicals be quite efficient since variations in responsiveness were not consistent. However, behavioral impairment was observed in reburrowing rates. Sediment concentrations showed low PAH levels and high natural levels of trace metals Cr and Ni. DistLM statistical analysis revealed a non-significant relationship between selected biomarkers and xenobiotics. Therefore other potentially toxic compounds in admixture at low doses may be involved in driving differing spatial distribution of physiological impairment. -- Highlights: ► Health status assessment of bivalve Ruditapes philippinarum, from lagoon of Sacca di Goro. ► Multiparametric approach (chemical analysis, biochemical and behavioral biomarkers). ► Impairments of burrowing kinetics in the contaminated site. ► Micronucleus genotoxicity test to detect effects of contaminants complex mixture. ► Multiple stress of chemicals in estuarine costal ecosystem. -- The bivalve Ruditapes philippinarum as a bioindicator in monitoring pollution of estuaries

  8. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    Science.gov (United States)

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  9. SICS: the Southern Inland and Coastal System interdisciplinary project of the USGS South Florida Ecosystem Program

    Science.gov (United States)

    ,

    2011-01-01

    State and Federal agencies are working jointly on structural modifications and improved water-delivery strategies to reestablish more natural surface-water flows through the Everglades wetlands and into Florida Bay. Changes in the magnitude, duration, timing, and distribution of inflows from the headwaters of the Taylor Slough and canal C-111 drainage basins have shifted the seasonal distribution and extent of wetland inundation, and also contributed to the development of hypersaline conditions in nearshore embayments of Florida Bay. Such changes are altering biological and vegetative communities in the wetlands and creating stresses on aquatic habitat. Affected biotic resources include federally listed species such as the Cape Sable seaside sparrow, American crocodile, wood stork, and roseate spoonbill. The U.S. Geological Survey (USGS) is synthesizing scientific findings from hydrologic process studies, collecting data to characterize the ecosystem properties and functions, and integrating the results of these efforts into a research tool and management model for this Southern Inland and Coastal System(SICS). Scientists from all four disciplinary divisions of the USGS, Biological Resources, Geology, National Mapping, and Water Resources are contributing to this interdisciplinary project.

  10. Nutrient dynamics and primary production in a pristine coastal mangrove ecosystem: Andaman Islands, India

    Science.gov (United States)

    Jenkins, E. N.; Nickodem, K.; Siemann, A. L.; Hoeher, A.; Sundareshwar, P. V.; Ramesh, R.; Purvaja, R.; Banerjee, K.; Manickam, S.; Haran, H.

    2012-12-01

    Mangrove ecosystems play a key role in supporting coastal food webs and nutrient cycles in the coastal zone. Their strategic position between the land and the sea make them important sites for land-ocean interaction. As part of an Indo-US summer field course we investigated changes in the water chemistry in a pristine mangrove creek located at Wright Myo in the Andaman Islands, India. This study was conducted during the wet season (June 2012) to evaluate the influence of the coastal mangrove wetlands on the water quality and productivity in adjoining pelagic waters. Over a full tidal cycle spanning approximately 24 hrs, we measured nutrient concentrations and other ancillary parameters (e.g. dissolved oxygen, turbidity, salinity, etc.) hourly to evaluate water quality changes in incoming and ebbing tides. Nutrient analyses had the following concentration ranges (μM): nitrite 0.2-0.9, nitrate 2.0-11.5, ammonium 1.3-7.5, dissolved inorganic phosphate 0.7-2.8. The dissolved inorganic nitrogen to dissolved inorganic phosphate (DIN/DIP) ratio was very low relative to an optimal ratio, suggesting growth is nitrogen limited. In addition, we conducted primary production assays to investigate the factors that controlled primary production in this pristine creek. The experiment was carried out in situ using the Winkler method at low and high tide. Four-hour incubation of light and dark bottles representing a fixed control, non-fertilized, fertilized with nitrate, and fertilized with phosphate enabled the measurement of both net oxygen production and dark respiration. The low tide experiment suggests the ecosystem is heterotrophic because the oxygen measured in the light bottles was consistently less than that of the dark bottles. This result may be an experimental artifact of placing the glass bottles in the sun for too long prior to incubation, potentially leading to photolysis of large organic molecules in the light bottles. The high tide experiment also displayed

  11. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems.

    Science.gov (United States)

    Munier, B; Bendell, L I

    2018-01-01

    Nine urban intertidal regions in Burrard Inlet, Vancouver, British Columbia, Canada, were sampled for plastic debris. Debris included macro and micro plastics and originated from a wide diversity of uses ranging from personal hygiene to solar cells. Debris was characterized for its polymer through standard physiochemical characteristics, then subject to a weak acid extraction to remove the metals, zinc, copper, cadmium and lead from the polymer. Recently manufactured low density polyethylene (LDPE), nylon, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) were subject to the same extraction. Data was statistically analyzed by appropriate parametric and non-parametric tests when needed with significance set at P Plastic debris will affect metals within coastal ecosystems by; 1) providing a sorption site (copper and lead), notably for PVC 2) desorption from the plastic i.e., the "inherent" load (cadmium and zinc) and 3) serving as a point source of acute trace metal exposure to coastal ecosystems. All three mechanisms will put coastal ecosystems at risk to the toxic effects of these metals.

  12. The need for ecosystem-based coastal planning in Trabzon city

    OpenAIRE

    Dikhan, Mustafa; Güneroğlu, Nilgün; Güneroğlu, Abdülaziz; Karslı, Fevzi

    2017-01-01

    Coastalurbanization problem was emanated from willingness of coastal living. Urbansprawl is one of the most important coastal problems in Turkey as it is inTrabzon city which is known for its natural and historical assets. In order toensure the sustainability and ecological continuity of the city, an ecosystembased coastal planning is an issue of high priority. Protection and usagebalance of the coastal areas could also ensure transition of the natural valuesto future generations. Trabzon cit...

  13. Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula)

    KAUST Repository

    Saderne, Vincent; Cusack, Michael; Almahasheer, Hanan; Serrano, Oscar; Masqué , Pere; Arias-Ortiz, Ariane; Krishnakumar, Periyadan Kadinjappalli; Rabaoui, Lotfi; Qurban, Mohammad Ali; Duarte, Carlos M.

    2018-01-01

    Anthropogenic sea level rise (SLR) presents one of the greatest risks to human lives and infrastructures. Coastal vegetated ecosystems, that is, tidal marshes, seagrass meadows, and mangrove forests, elevate the seabed through soil accretion, providing a natural coastline protection against SLR. The soil accretion of these ecosystems has never been assessed in hot desert climate regions, where water runoff is negligible. However, tropical marine ecosystems are areas of intense calcification that may constitute an important source of sediment supporting seabed elevation, compensating for the lack of terrestrial inputs. We estimated the long-term (C-centennial) and short-term (Pb-20th century) soil accretion rates (SARs) and inorganic carbon (C) burial in coastal vegetated ecosystems of the Saudi coasts of the central Red Sea and the Arabian Gulf. Short-term SARs (±SE) in mangroves of the Red Sea (0.27 ± 0.22 cm/year) were twofold the SLR for that region since 1925 (0.13 cm/year). In the Arabian Gulf, only mangrove forest SAR is equivalent to local SLR estimates for the period 1979-2007 (0.21 ± 0.09 compared to 0.22 ± 0.05 cm/year, respectively). Long-term SARs are comparable or higher than the global estimates of SLR for the late Holocene (0.01 cm/year). In all habitats of the Red Sea and Arabian Gulf, SARs are supported by high carbonate accretion rates, comprising 40% to 60% of the soil volume. Further studies on the role of carbonates in coastal vegetated ecosystems are required to understand their role in adaptation to SLR.

  14. Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula)

    KAUST Repository

    Saderne, Vincent

    2018-04-12

    Anthropogenic sea level rise (SLR) presents one of the greatest risks to human lives and infrastructures. Coastal vegetated ecosystems, that is, tidal marshes, seagrass meadows, and mangrove forests, elevate the seabed through soil accretion, providing a natural coastline protection against SLR. The soil accretion of these ecosystems has never been assessed in hot desert climate regions, where water runoff is negligible. However, tropical marine ecosystems are areas of intense calcification that may constitute an important source of sediment supporting seabed elevation, compensating for the lack of terrestrial inputs. We estimated the long-term (C-centennial) and short-term (Pb-20th century) soil accretion rates (SARs) and inorganic carbon (C) burial in coastal vegetated ecosystems of the Saudi coasts of the central Red Sea and the Arabian Gulf. Short-term SARs (±SE) in mangroves of the Red Sea (0.27 ± 0.22 cm/year) were twofold the SLR for that region since 1925 (0.13 cm/year). In the Arabian Gulf, only mangrove forest SAR is equivalent to local SLR estimates for the period 1979-2007 (0.21 ± 0.09 compared to 0.22 ± 0.05 cm/year, respectively). Long-term SARs are comparable or higher than the global estimates of SLR for the late Holocene (0.01 cm/year). In all habitats of the Red Sea and Arabian Gulf, SARs are supported by high carbonate accretion rates, comprising 40% to 60% of the soil volume. Further studies on the role of carbonates in coastal vegetated ecosystems are required to understand their role in adaptation to SLR.

  15. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    Science.gov (United States)

    van Loon, W. M. G. M.; Boon, A. R.; Gittenberger, A.; Walvoort, D. J. J.; Lavaleye, M.; Duineveld, G. C. A.; Verschoor, A. J.

    2015-09-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI, as in the multivariate m-AMBI. The latter MMI has been adopted by several European countries in the context of WFD implementation. In contrast to m-AMBI, the BEQI2 calculation procedure has been strongly simplified and consists of two steps, i.e. the separate indicator values are normalized using their long-term reference values resulting in three Ecological Quality Ratios (EQRs), which are subsequently averaged to give one BEQI2 value. Using this method only small numbers of samples need to be analysed by Dutch benthos laboratories annually, without the necessity to co-analyse a larger historical dataset. BEQI2 EQR values appeared to correlate quantitatively very well with m-AMBI EQR values. In addition, a data pooling procedure has been added to the BEQI2 tool which enables the pooling of small core samples (0.01-0.025 m2) into larger standardized data pools of 0.1 m2 in order to meet the data requirements of the AMBI indicator and to obtain comparable reference values. Furthermore, the BEQI2 tool automatically and efficiently converts species synonym names into standardized species names. The BEQI2 tool has been applied to all Dutch benthos data monitored by Rijkswaterstaat in the period of 1991-2010 in the transitional and coastal waters and salt lakes and these results are reported here for the first time. Reference values for species richness and Shannon index (99 percentile values) and AMBI reference values (1 percentile values) were estimated for all water body-ecotopes and are discussed. BEQI2 results for all these water bodies are discussed in view of natural and human pressures. The pressure sensitivity of the BEQI2 for sewage and dredging/dumping, via the

  16. Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska.

    Science.gov (United States)

    Zona, D; Oechel, Walter C; Richards, James H; Hastings, Steven; Kopetz, Irene; Ikawa, Hiroki; Oberbauer, Steven

    2011-03-01

    The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.

  17. Body-size spectra of biofilm-dwelling protozoa and their seasonal shift in coastal ecosystems.

    Science.gov (United States)

    Zhao, Lu; Xu, Guangjian; Wang, Zheng; Xu, Henglong

    2016-10-01

    Community-based assessment of protozoa is usually performed at a taxon-dependent resolution. As an inherent 'taxon-free' trait, however, body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community in both community research and monitoring programs in aquatic ecosystems. To demonstrate the relationships between the taxon-free resolution of protozoan communities and water conditions, the body-size spectra of biofilm-dwelling protozoa and their seasonal shift and environmental drivers were explored based on an annual dataset collected monthly from coastal waters of the Yellow Sea, northern China. Body sizes were calculated in equivalent spherical diameter (ESD). Among a total of 8 body-size ranks, S2 (19-27μm), S3 (28-36μm), S4 (37-50μm) and S5 (53-71μm) were the top four levels in frequency of occurrence, while rank S1 (13-17μm), S2 and S4 were the dominant levels in abundance. These dominants showed a clear seasonal succession: S2/S4 (spring)→S2/S4 (summer)→S4 (autumn)→S2 (winter) in frequency of occurrence; S1 (spring)→S4 (summer)→S2 (autumn)→S1 (winter) in abundance. Bootstrapped average analysis showed a clear seasonal shift in body-size spectra of the protozoa during a 1-year cycle, and the best-matching analysis demonstrated that the temporal variations in frequency of occurrence and abundance were significantly correlated with water temperature, pH, dissolved oxygen (DO), alone or in combination with chemical oxygen demand (COD) and nutrients. Thus, the body-size spectra of biofilm-dwelling protozoa were seasonally shaped and might be used as a time and cost efficient bioindicator of water quality in marine ecosystems. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Biomagnification and debromination of polybrominated diphenyl ethers in a coastal ecosystem in Tokyo Bay

    Energy Technology Data Exchange (ETDEWEB)

    Mizukawa, Kaoruko; Yamada, Toshiko [Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509 (Japan); Matsuo, Hiroaki; Takeuchi, Ichiro [Department of Life Environment Conservation, Faculty of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime 790-8566 (Japan); Tsuchiya, Kotaro [Faculty of Marine Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477 (Japan); Takada, Hideshige, E-mail: shige@cc.tuat.ac.jp [Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509 (Japan)

    2013-04-01

    By field sampling and laboratory experiments we compared the mechanisms by which polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are biomagnified. We measured PBDEs and PCBs, together with stable carbon and nitrogen isotopes as an index of trophic level, in low-trophic-level organisms collected from a coastal area in Tokyo Bay. PBDEs were biomagnified to a lesser degree than PCBs. The more hydrophobic congeners of each were biomagnified more. However, the depletion of BDE congeners BDE99 and BDE153 from fish was suggested. To study congener-specific biotransformation of halogenated compounds, we conducted an in vitro experiment using hepatic microsomes of two species of fish and five BDE congeners (BDE47, 99, 100, 153, and 154) and five CB congeners with the same substitution positions as the PBDEs. BDE99 and 153 were partially debrominated, but BDE47 and 154 were not debrominated. This congener-specific debromination is consistent with the field results. Both in vitro and field results suggested selective debromination at the meta position. The CB congeners were not transformed in vitro. This result is also consistent with the field results, that PCBs were more biomagnified than PBDEs. We conclude that metabolizability is an important factor in the biomagnification of chemicals, but other factors must be responsible for the lower biomagnification of PBDEs in natural ecosystems. Highlights: ► PBDEs were less biomagnified than PCBs in low-trophic-level organisms in Tokyo Bay. ► Depletion of PBDE congeners BDE99 and BDE153 from fish was suggested. ► BDE99 and 153 were debrominated in in vitro experiment using hepatic microsomes of fish. ► BDE47, 100, and 154 as well as PCB congeners were not transformed in vitro. ► Both in vitro and field results suggested selective meta-protonation of PBDEs.

  19. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    Science.gov (United States)

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  20. Are coastal lagoons physically or biologically controlled ecosystems? Revisiting r vs. K strategies in coastal lagoons and estuaries

    Science.gov (United States)

    Pérez-Ruzafa, Angel; Marcos, Concepción; Pérez-Ruzafa, Isabel María; Pérez-Marcos, María

    2013-11-01

    Environmental stress influences biological assemblages, with species responding to stress by adopting particular life-history strategies (e.g., r vs. K). Coastal lagoons and estuaries are considered naturally stressed and physically controlled systems with frequent environmental disturbances and fluctuations. At the same time, their transitional nature (between terrestrial, freshwater and marine) makes them especially vulnerable to human impacts and land and freshwater inputs. As a result, it is hypothesised that residents of coastal lagoons would display characteristics of r-selected species. The r-strategy involves increased reproductive effort through early reproduction, small and numerous offspring with a large dispersive capability, short lifespan and small adult body size. Together, these traits provide a selective advantage in such unpredictable or short-lived environments. Alternatively, immigrants to coastal lagoons should mostly be K-strategists, with a competitive advantage over the r-strategists, at least on a temporary time scale. These hypotheses were explored using a dataset from 73 Atlanto-Mediterranean sites: 27 estuaries, 42 coastal lagoons and 4 from the sea, obtained from published sources. A detailed analysis of the distributions of the different resident fish species according to lagoon characteristics indicated that in lagoons with a higher marine influence the families Gobiidae, Blenniidae and Syngnathidae were common, while lagoons with freshwater influence are characterized by Cyprinidae and other freshwater species. In analyzing the biological strategies of lagoon species we found that fish assemblages inhabiting marine influenced lagoons were characterized by solitary, necto-benthonic sedentary species. These species are often hermaphroditic, with benthic broods and many exhibit brooding behaviour. This suggests that marine influenced lagoons are dominated by K-strategist species, while r-strategy species will be more common in

  1. Contrasting Patterns of Phytoplankton Assemblages in Two Coastal Ecosystems in Relation to Environmental Factors (Corsica, NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Marie Garrido

    2014-04-01

    Full Text Available Corsica Island is a sub-basin of the Northwestern Mediterranean Sea, with hydrological features typical of both oligotrophic systems and eutrophic coastal zones. Phytoplankton assemblages in two coastal ecosystems of Corsica (the deep Bay of Calvi and the shallow littoral of Bastia show contrasting patterns over a one-year cycle. In order to determine what drives these variations, seasonal changes in littoral phytoplankton are considered together with environmental parameters. Our methodology combined a survey of the physico-chemical structure of the subsurface water with a characterization of the phytoplankton community structure. Sampling provided a detailed record of the seasonal changes and successions that occur in these two areas. Results showed that the two sampled stations presented different phytoplankton abundance and distribution patterns, notably during the winter–spring bloom period. Successions in pico-, nano-, and microphytoplankton communities appeared mainly driven by differences in the ability to acquire nutrients, and in community-specific growth rates. Phytoplankton structure and dynamics are discussed in relation to available data on the Northwestern Mediterranean Sea. These results confirm that integrated monitoring of coastal areas is a requisite for gaining a proper understanding of marine ecosystems.

  2. Integrating Ecosystem Services Into Health Impact Assessment

    Science.gov (United States)

    Health Impact Assessment (HIA) provides a methodology for incorporating considerations of public health into planning and decision-making processes. HIA promotes interdisciplinary action, stakeholder participation, and timeliness and takes into account equity, sustainability, and...

  3. Reviewing the health of software ecosystems – a conceptual framework proposal

    DEFF Research Database (Denmark)

    Manikas, Konstantinos; Hansen, Klaus Marius

    2013-01-01

    The health of a software ecosystem is an indication of how well the ecosystem is functioning. The measurement of health can point to issues that need to be addressed in the ecosystem and areas for the ecosystem to improve. However, the software ecosystem field lacks an applicable way to measure a...... influenced by theories from natural ecosystems and open source, (ii) identify two areas where software ecosystems differ from business and natural ecosystems, and (iii) propose a conceptual framework for defining and measuring the health of software ecosystems....

  4. Ecosystem-based coastal defence in the face of global change

    NARCIS (Netherlands)

    Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; de Vriend, H.J.

    2013-01-01

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly

  5. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems

    Science.gov (United States)

    Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong

    2016-01-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  6. Managing Data, Provenance and Chaos through Standardization and Automation at the Georgia Coastal Ecosystems LTER Site

    Science.gov (United States)

    Sheldon, W.

    2013-12-01

    Managing data for a large, multidisciplinary research program such as a Long Term Ecological Research (LTER) site is a significant challenge, but also presents unique opportunities for data stewardship. LTER research is conducted within multiple organizational frameworks (i.e. a specific LTER site as well as the broader LTER network), and addresses both specific goals defined in an NSF proposal as well as broader goals of the network; therefore, every LTER data can be linked to rich contextual information to guide interpretation and comparison. The challenge is how to link the data to this wealth of contextual metadata. At the Georgia Coastal Ecosystems LTER we developed an integrated information management system (GCE-IMS) to manage, archive and distribute data, metadata and other research products as well as manage project logistics, administration and governance (figure 1). This system allows us to store all project information in one place, and provide dynamic links through web applications and services to ensure content is always up to date on the web as well as in data set metadata. The database model supports tracking changes over time in personnel roles, projects and governance decisions, allowing these databases to serve as canonical sources of project history. Storing project information in a central database has also allowed us to standardize both the formatting and content of critical project information, including personnel names, roles, keywords, place names, attribute names, units, and instrumentation, providing consistency and improving data and metadata comparability. Lookup services for these standard terms also simplify data entry in web and database interfaces. We have also coupled the GCE-IMS to our MATLAB- and Python-based data processing tools (i.e. through database connections) to automate metadata generation and packaging of tabular and GIS data products for distribution. Data processing history is automatically tracked throughout the data

  7. Plankton origin of particulate dimethylsulfoniopropionate in a Mediterranean oligotrophic coastal and shallow ecosystem

    Science.gov (United States)

    Jean, Natacha; Bogé, Gérard; Jamet, Jean-Louis; Jamet, Dominique; Richard, Simone

    2009-03-01

    We report here dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) levels as a function of plankton communities and abiotic factors over a 12-month cycle in the Mediterranean oligotrophic coastal and shallow ecosystem of Niel Bay (N.W. Mediterranean Sea, France). Total particulate DMSP (DMSP p) and DMS concentrations were highly seasonal, peaking during a spring (April) bloom at 8.9 nM and 73.9 nM, respectively. Significant positive correlations were found between total DMSP p concentration and the abundance or biomass of the dinoflagellate Prorocentrum compressum (Spearman's rank correlation test: r = 0.704; p = 0.011). Similarly, DMS concentrations peaked during the development of blooms of P. compressum and Gymnodinium sp. There seemed to be a positive relationship between the chlorophyll a to pheopigment ratio and DMS concentrations, suggesting that DMS was released during phytoplankton growth. High DMS levels recorded in the shallow Niel Bay may also result from the activity of benthic macroalgae, and/or macrophytes such as Posidonia spp., or the resuspension of sulfur species accumulating in sediments. The fractionation of particulate DMSP into three size classes (>90 μm, 5-90 μm and 0.2-5 μm) revealed that 5-90 μm DMSP-containing particles made the greatest contribution to the total DMSP p pool (annual mean contribution = 62%), with a maximal contribution in April (96%). This size class consisted mainly of dinoflagellates (annual mean contribution = 68%), with P. compressum and Gymnodinium sp. the predominant species, together accounting for up to 44% of the phytoplankton present. The positive correlation between DMSP concentration in the 5-90 μm size class and the abundance of P. compressum (Spearman's rank correlation test: r = 0.648; p = 0.023) suggests that this phytoplankton species would be the major DMSP producer in Niel Bay. The DMSP collected in the >90 μm fraction was principally associated with zooplankton organisms, dominated by

  8. Forest ecosystem health in the inland west

    Science.gov (United States)

    R. Neil Sampson; Lance R. Clark; Lynnette Z. Morelan

    1995-01-01

    For the past four years, American Forests has focused much of its policy attention on forest health, highlighted by a forest health partnership in southern Idaho. The partnership has been hard at work trying to better understand the forests of the Inland West. Our goal has been to identify what is affecting these forests, why they are responding differently to climate...

  9. Radiochronology of marine sediments and its application to the knowledge of the process of environmental pollution in coastal Cuban ecosystems

    International Nuclear Information System (INIS)

    Alonso-Hernández, Carlos M.; Díaz-Asencio, Misael; Gómez-Batista, Miguel; Bolaños-Alvares, Yoelvis; Muñoz-Caravaca, Alain; Morera-Gómez, Yasser

    2016-01-01

    The results achieved in the implementation of the radiochronology of marine sediments for the reconstruction of databases and knowledge of the evolution of environmental pollution in four coastal ecosystems of national significance are presented in this paper Fluxes of selected heavy metals and persistent organic compounds are discussed for the Cienfuegos and Havana bays and Sagua and La Coloma estuaries. Finally, is showed the effectiveness of radiochronology of sediments as a useful tool for environmental management and knowledge of temporal processes of pollution in the aquatic environment. (author)

  10. Spatial and temporal dynamics of multidimensional well-being, livelihoods and ecosystem services in coastal Bangladesh

    Science.gov (United States)

    Adams, Helen; Adger, W. Neil; Ahmad, Sate; Ahmed, Ali; Begum, Dilruba; Lázár, Attila N.; Matthews, Zoe; Rahman, Mohammed Mofizur; Streatfield, Peter Kim

    2016-01-01

    Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women’s empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries. PMID:27824340

  11. A marine eutrophication impacts assessment method in LCIA coupling coastal ecosystems exposure to nitrogen and species sensitivity to hypoxia

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Characterisation modelling in Life Cycle Impact Assessment (LCIA) aims at quantifying potential impacts of anthropogenic emissions. It delivers substance-specific Characterisation Factors (CF) expressing ecosystem responses to marginal increments in emitted quantities. Nitrogen (N) emissions from e.......g. agriculture and industry enrich coastal marine ecosystems. Excessive algal growth and dissolved oxygen (DO) depletion typify the resulting marine eutrophication. LCIA modelling frameworks typically encompass fate, exposure and effect in the environment. The present novel method couples relevant marine...... biological processes of ecosystem’s N exposure (Exposure Factor, XF) with the sensitivity of select species to hypoxia (Effect Factor, EF). The XF converts N-inputs into a sinking carbon flux from planktonic primary production and DO consumed by bacterial respiration in bottom waters, whereas EF builds...

  12. Impacts of the Nutrient Inputs from Riverine on the Dynamic and Community Structure of Fungal-like Protists in the Coastal Ocean Ecosystems

    Science.gov (United States)

    Duan, Y.; Wang, G.; Xie, N.

    2016-02-01

    The coastal ocean connects terrestrial (e.g., rivers and estuaries) with oceanic ecosystems and is considered as a major component of global carbon cycles and budgets. The coastal waters are featured with a high biodiversity and high primary production. Because of the excessive primary production, a large fraction of primary organic matter becomes available to consumers as detritus in the coastal waters. Bacterioplankton have long been known to play a key role in the degradation of this detritus, and export and storage of organic matter in the coastal ecosystems. However, the primary and secondary production and the carbon biogeochemical processes in the ecosystems are largely regulated by nutrient inputs from riverine and other anthropogenic activities through heterotrophic microbial communities. Thraustochytrids, commonly known as fungal-like protists, are unicellular heterotrophic protists and are recently acknowledged to play a significant role in ocean carbon cycling. Their abundance exceeds that of bacterioplankton in the most time of the year in the coastal waters of China. Also, their abundance and diversity are largely regulated by nutrients inputs from riverine and other anthropogenic activities. Our findings support that thraustochytrids are a dominant heterotrophic microbial group in the coastal waters. Evidently, thraustochytrids are an import, but neglected, component in microbial carbon biogeochemical processes of the coastal ocean.

  13. The Large Marine Ecosystem Approach for 21st Century Ocean Health and International Sustainable Development

    Science.gov (United States)

    Honey, K. T.

    2014-12-01

    The global coastal ocean and watersheds are divided into 66 Large Marine Ecosystems (LMEs), which encompass regions from river basins, estuaries, and coasts to the seaward boundaries of continental shelves and margins of major currents. Approximately 80% of global fisheries catch comes from LME waters. Ecosystem goods and services from LMEs contribute an estimated US 18-25 trillion dollars annually to the global economy in market and non-market value. The critical importance of these large-scale systems, however, is threatened by human populations and pressures, including climate change. Fortunately, there is pragmatic reason for optimism. Interdisciplinary frameworks exist, such as the Large Marine Ecosystem (LME) approach for adaptive management that can integrate both nature-centric and human-centric views into ecosystem monitoring, assessment, and adaptive management practices for long-term sustainability. Originally proposed almost 30 years ago, the LME approach rests on five modules are: (i) productivity, (ii) fish and fisheries, (iii) pollution and ecosystem health, (iv) socioeconomics, and (v) governance for iterative adaptive management at a large, international scale of 200,000 km2 or greater. The Global Environment Facility (GEF), World Bank, and United Nations agencies recognize and support the LME approach—as evidenced by over 3.15 billion in financial assistance to date for LME projects. This year of 2014 is an exciting milestone in LME history, after 20 years of the United Nations and GEF organizations adopting LMEs as a unit for ecosystem-based approaches to management. The LME approach, however, is not perfect. Nor is it immutable. Similar to the adaptive management framework it propones, the LME approach itself must adapt to new and emerging 21st Century technologies, science, and realities. The LME approach must further consider socioeconomics and governance. Within the socioeconomics module alone, several trillion-dollar opportunities exist

  14. [Multi-scenario simulation and prediction of ecosystem services as affected by urban expansion: A case study in coastal area of Tianjin, North China].

    Science.gov (United States)

    Huang, Huan-Chun; Yun, Ying-Xia; Miao, Zhan-Tang; Hao, Cui; Li, Hong-yuan

    2013-03-01

    Based on the modified Logistic-CA model, and taking the coastal area of Tianjin as a case, this paper simulated the spatial evolution patterns of ecosystem services as affected by the urban expansion in 2011-2020 under the scenarios of historical extrapolation, endogenous development, and exogenous development. Overall, the total ecosystem services of the study area under the three scenarios were generally the same, and the functional region with the lowest level ecosystem services had the identical spatial pattern. However, the spatial evolution patterns of the ecosystem services of the study area under the three scenarios had a great difference. The functional regions with lower-level ecosystem services grew in a cross-shaped pattern, with the Tanggu downtown as a center, and finally formed a full connectivity area along the Haihe River and coastal zone.

  15. Collaborative innovation developing health support ecosystems

    CERN Document Server

    Kodama, Mitsuru

    2015-01-01

    With the development of the aging society and the increased importance of emergency risk management in recent years, a large number of medical care challenges - advancing medical treatments, care & support, pharmacological treatments, greater health awareness, emergency treatments, telemedical treatment and care, the introduction of electronic charts, and rising costs - are emerging as social issues throughout the whole world. Hospitals and other medical institutions must develop and maintain superior management to achieve systems that can provide better medical care, welfare and health while enabling "support innovation." Key medical care, welfare and health industries play a crucial role in this, but also of importance are management innovation models that enable "collaborative innovation" by closely linking diverse fields such as ICT, energy, electric equipment, machinery and transport. Looking across different industries, Collaborative Innovation offers new knowledge and insights on the extraord...

  16. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    Science.gov (United States)

    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a sma...

  17. Hurricane Sandy science plan: impacts to coastal ecosystems, habitats, and fish and wildlife

    Science.gov (United States)

    Campbell, Warren H.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry

  18. A scoping review of digital health innovation ecosystems in developed and developing countries

    CSIR Research Space (South Africa)

    Iyawa, GE

    2017-05-01

    Full Text Available Digital health innovation ecosystems describe the need to incorporate the components of digital health, innovation and digital ecosystems in administering healthcare services. Reviewing the evidence of digital health, innovation and digital...

  19. Ecosystem Health Disorders - changing perspectives in clinical medicine and nutrition.

    Science.gov (United States)

    Wahlqvist, Mark L

    2014-01-01

    The inseparability of people from their ecosystem without biological change is increasingly clear. The discrete species concept is becoming more an approximation as the interconnectedness of all things, animate and inanimate, becomes more apparent. Yet this was evident even to our earliest Homo Sapiens sapiens ancestors as they hunted and gathered from one locality to another and migrated across the globe. During a rather short 150-200,000 years of ancestral history, we have changed the aeons-old planet and our ecology with dubious sustainability. As we have changed the ecosystems of which we are a part, with their opportunities for shelter, rest, ambulation, discourse, food, recreation and their sensory inputs, we have changed our shared biology and our health prospects. The rate of ecosystem change has increased quantitatively and qualitatively and so will that of our health patterns, depending on our resilience and how linear, non-linear or fractal-like the linkage. Our health-associated ecosystem trajectories are uncertain. The interfaces between us and our environment are blurred, but comprise time, biorhythms, prokaryotic organisms, sensory (auditory, visual, tactile, taste and smell), conjoint movement, endocrine with various external hormonal through food and contaminants, the reflection of soil and rock composition in the microbes, plants, insects and animals that we eat (our biogeology) and much more. We have sought ways to optimise our health through highly anthropocentric means, which have proven inadequate. Accumulated ecosystem change may now overwhelm our health. On these accounts, more integrative approaches and partnerships for health care practice are required.

  20. Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: an update

    Directory of Open Access Journals (Sweden)

    Lauren V Weatherdon

    2016-04-01

    uncertain, and may detrimentally affect human health. Climate change may also induce changes in tourism flows, leading to substantial geospatial shifts in economic costs and benefits associated with tourism revenue and coastal infrastructure protection and repairs. While promising, ecosystem-based coastal adaptation approaches are still emerging, and require an improved understanding of key ecosystem services and values for coastal communities in order to assess risk, aid coastal development planning, and build decision support systems.

  1. Tools and methods for evaluating and refining alternative futures for coastal ecosystem management—the Puget Sound Ecosystem Portfolio Model

    Science.gov (United States)

    Byrd, Kristin B.; Kreitler, Jason R.; Labiosa, William B.

    2011-01-01

    The U.S. Geological Survey Puget Sound Ecosystem Portfolio Model (PSEPM) is a decision-support tool that uses scenarios to evaluate where, when, and to what extent future population growth, urban growth, and shoreline development may threaten the Puget Sound nearshore environment. This tool was designed to be used iteratively in a workshop setting in which experts, stakeholders, and decisionmakers discuss consequences to the Puget Sound nearshore within an alternative-futures framework. The PSEPM presents three possible futures of the nearshore by analyzing three growth scenarios developed out to 2060: Status Quo—continuation of current trends; Managed Growth—adoption of an aggressive set of land-use management policies; and Unconstrained Growth—relaxation of land-use restrictions. The PSEPM focuses on nearshore environments associated with barrier and bluff-backed beaches—the most dominant shoreforms in Puget Sound—which represent 50 percent of Puget Sound shorelines by length. This report provides detailed methodologies for development of three submodels within the PSEPM—the Shellfish Pollution Model, the Beach Armoring Index, and the Recreation Visits Model. Results from the PSEPM identify where and when future changes to nearshore ecosystems and ecosystem services will likely occur within the three growth scenarios. Model outputs include maps that highlight shoreline sections where nearshore resources may be at greater risk from upland land-use changes. The background discussed in this report serves to document and supplement model results displayed on the PSEPM Web site located at http://geography.wr.usgs.gov/pugetSound/.

  2. Disrupted seasonal biology impacts health, food security and ecosystems

    NARCIS (Netherlands)

    Stevenson, T. J.; Visser, M. E.; Arnold, W.; Barrett, P.; Biello, S.; Dawson, A.; Denlinger, D. L.; Dominoni, D.; Ebling, F. J.; Elton, S.; Evans, N.; Ferguson, H. M.; Foster, R. G.; Hau, M.; Haydon, D. T.; Hazlerigg, D. G.; Heideman, P.; Hopcraft, J. G. C.; Jonsson, N. N.; Kronfeld-Schor, N.; Kumar, V.; Lincoln, G. A.; MacLeod, R.; Martin, S. A. M.; Martinez-Bakker, M.; Nelson, R. J.; Reed, T.; Robinson, J. E.; Rock, D.; Schwartz, W. J.; Steffan-Dewenter, I.; Tauber, E.; Thackeray, S. J.; Umstatter, C.; Yoshimura, T.; Helm, B.

    2015-01-01

    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for

  3. Reconstruction of metal pollution and recent sedimentation processes in Havana Bay (Cuba): A tool for coastal ecosystem management

    International Nuclear Information System (INIS)

    Díaz-Asencio, M.; Alvarado, J.A. Corcho; Alonso-Hernández, C.; Quejido-Cabezas, A.; Ruiz-Fernández, A.C.; Sanchez-Sanchez, M.; Gómez-Mancebo, M.B.; Froidevaux, P.; Sanchez-Cabeza, J.A.

    2011-01-01

    Highlights: ► Past metal pollution in the heavy polluted coastal ecosystem of Havana Bay. ► Effectiveness of pollution-reduction strategies. ► Dated environmental archives to reconstruct sedimentation and pollution trends. ► Impact of severe climatic events on sedimentation. - Abstract: Since 1998 the highly polluted Havana Bay ecosystem has been the subject of a mitigation program. In order to determine whether pollution-reduction strategies were effective, we have evaluated the historical trends of pollution recorded in sediments of the Bay. A sediment core was dated radiometrically using natural and artificial fallout radionuclides. An irregularity in the 210 Pb record was caused by an episode of accelerated sedimentation. This episode was dated to occur in 1982, a year coincident with the heaviest rains reported in Havana over the XX century. Peaks of mass accumulation rates (MAR) were associated with hurricanes and intensive rains. In the past 60 years, these maxima are related to strong El Niño periods, which are known to increase rainfall in the north Caribbean region. We observed a steady increase of pollution (mainly Pb, Zn, Sn, and Hg) since the beginning of the century to the mid 90s, with enrichment factors as high as 6. MAR and pollution decreased rapidly after the mid 90s, although some trace metal levels remain high. This reduction was due to the integrated coastal zone management program introduced in the late 90s, which dismissed catchment erosion and pollution.

  4. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.

    Science.gov (United States)

    Alleway, Heidi K; Connell, Sean D

    2015-06-01

    Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems. © 2015 Society for Conservation Biology.

  5. Connecting Ecosystem Service Production to Users as a Measure of Realized Benefits in Coastal Communities

    Science.gov (United States)

    Ecosystem goods and services are often produced in locations far away from where humans benefit from them. Human beneficiaries also use specific spatial pathways to access the Final Ecosystem Goods and Services (FEGS), the ecological endpoints directly beneficial to human well-b...

  6. Ecosystem change and human health: implementation economics and policy.

    Science.gov (United States)

    Pattanayak, S K; Kramer, R A; Vincent, J R

    2017-06-05

    Several recent initiatives such as Planetary Health , EcoHealth and One Health claim that human health depends on flourishing natural ecosystems. However, little has been said about the operational and implementation challenges of health-oriented conservation actions on the ground. We contend that ecological-epidemiological research must be complemented by a form of implementation science that examines: (i) the links between specific conservation actions and the resulting ecological changes, and (ii) how this ecological change impacts human health and well-being, when human behaviours are considered. Drawing on the policy evaluation tradition in public economics, first, we present three examples of recent social science research on conservation interventions that affect human health. These examples are from low- and middle-income countries in the tropics and subtropics. Second, drawing on these examples, we present three propositions related to impact evaluation and non-market valuation that can help guide future multidisciplinary research on conservation and human health. Research guided by these propositions will allow stakeholders to determine how ecosystem-mediated strategies for health promotion compare with more conventional biomedical prevention and treatment strategies for safeguarding health.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Authors.

  7. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes.

    Science.gov (United States)

    Davies, Thomas W; Jenkins, Stuart R; Kingham, Rachel; Kenworthy, Joseph; Hawkins, Stephen J; Hiddink, Jan G

    2011-01-01

    Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1:1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent "worst case scenarios" because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a "best case scenario" that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future.

  8. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes.

    Directory of Open Access Journals (Sweden)

    Thomas W Davies

    Full Text Available Key ecosystem processes such as carbon and nutrient cycling could be deteriorating as a result of biodiversity loss. However, currently we lack the ability to predict the consequences of realistic species loss on ecosystem processes. The aim of this study was to test whether species contributions to community biomass can be used as surrogate measures of their contribution to ecosystem processes. These were gross community productivity in a salt marsh plant assemblage and an intertidal macroalgae assemblage; community clearance of microalgae in sessile suspension feeding invertebrate assemblage; and nutrient uptake in an intertidal macroalgae assemblage. We conducted a series of biodiversity manipulations that represented realistic species extinction sequences in each of the three contrasting assemblages. Species were removed in a subtractive fashion so that biomass was allowed to vary with each species removal, and key ecosystem processes were measured at each stage of community disassembly. The functional contribution of species was directly proportional to their contribution to community biomass in a 1:1 ratio, a relationship that was consistent across three contrasting marine ecosystems and three ecosystem processes. This suggests that the biomass contributed by a species to an assemblage can be used to approximately predict the proportional decline in an ecosystem process when that species is lost. Such predictions represent "worst case scenarios" because, over time, extinction resilient species can offset the loss of biomass associated with the extinction of competitors. We also modelled a "best case scenario" that accounts for compensatory responses by the extant species with the highest per capita contribution to ecosystem processes. These worst and best case scenarios could be used to predict the minimum and maximum species required to sustain threshold values of ecosystem processes in the future.

  9. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    Science.gov (United States)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  10. Large Plankton Enhance Heterotrophy Under Experimental Warming in a Temperate Coastal Ecosystem

    KAUST Repository

    Huete-Stauffer, Tamara Megan; Arandia-Gorostidi, Nestor; Gonzá lez-Bení tez, Natalia; Dí az-Pé rez, Laura; Calvo-Dí az, Alejandra; Moran, Xose Anxelu G.

    2017-01-01

    in February, April, August and October 2013 in coastal NE Atlantic waters, we monitored microbial plankton stocks and daily rates of primary production, bacterial heterotrophic production and respiration at in situ temperature and at 2 and 4°C over ambient

  11. Coastal microbial mats: the physiology of a small-scale ecosystem

    NARCIS (Netherlands)

    Stal, L.J.

    2001-01-01

    Coastal inter-tidal sandy sediments, salt marshes and mangrove forests often support the development of microbial mats. Microbial mats are complex associations of one or several functional groups of microorganisms and their formation usually starts with the growth of a cyanobacterial population on a

  12. Development of human impact on suspension-feeding bivalves in coastal soft-bottom ecosystems

    NARCIS (Netherlands)

    Wolff, Wim J.; Dame, RF; Olenin, S

    2005-01-01

    Suspension-feeding bivalves often may occur in large concentrations ('beds') on tidal flats. This makes them attractive for human consumers and the archaeological record shows collection of bivalves by coastal populations already tens of thousands of years ago. In modem time human interference with

  13. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    B Munier

    . Plastic debris will affect metals within coastal ecosystems by; 1 providing a sorption site (copper and lead, notably for PVC 2 desorption from the plastic i.e., the "inherent" load (cadmium and zinc and 3 serving as a point source of acute trace metal exposure to coastal ecosystems. All three mechanisms will put coastal ecosystems at risk to the toxic effects of these metals.

  14. Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L

    2005-06-01

    Measurement of ecosystem health is a very important but often difficult and sometimes fractious topic for applied ecologists. It is important because it can provide information about effects of various external influences like chemical, nuclear, and physical disturbance, and invasive species. Ecosystem health is also a measure of the rate or trajectory of degradation or recovery of systems that are currently suffering impact or those where restoration or remediation have taken place. Further, ecosystem health is the single best indicator of the quality of long term environmental stewardship because it not only provides a baseline condition, but also the means for future comparison and evaluation. Ecosystem health is difficult to measure because there are a nearly infinite number of variables and uncertainty as to which suites of variables are truly indicative of ecosystem condition. It would be impossible and prohibitively expensive to measure all those variables, or even all the ones that were certain to be valid indicators. Measurement of ecosystem health can also be a fractious topic for applied ecologists because there are a myriad of opinions as to which variables are the most important, most easily measured, most robust, and so forth. What is required is an integrative means of evaluating ecosystem health. All ecosystems are dynamic and undergo change either stochastically, intrinsically, or in response to external influences. The basic assumption about change induced by exogenous antropogenic influences is that it is directional and measurable. Historically measurements of surrogate parameters have been used in an attempt to quantify these changes, for example extensive water chemistry data in aquatic systems. This was the case until the 1980's when the Index of Biotic Integrity (IBI) (Karr et al. 1986), was developed. This system collects an array of metrics and fish community data within a stream ecosystem and develops a score or rating for the

  15. Southern African Coastal vulnerability assessment

    CSIR Research Space (South Africa)

    Rautenbach, C

    2015-10-01

    Full Text Available or business. The CSIR coastal systems group uses specialist skills in coastal engineering, geographic engineering systems and numerical modelling to assess and map vulnerable coastal ecosystems to develop specific adaptation measures and coastal protection...

  16. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  17. Soil Carbon Inputs and Ecosystem Respiration: a Field Priming Experiment in Arctic Coastal Tundra

    Science.gov (United States)

    Vaughn, L. S.; Zhu, B.; Bimueller, C.; Curtis, J. B.; Chafe, O.; Bill, M.; Abramoff, R. Z.; Torn, M. S.

    2016-12-01

    In Arctic ecosystems, climate change is expected to influence soil carbon stocks through changes in both plant carbon inputs and organic matter decomposition. This study addresses the potential for a priming effect, an interaction between these changes in which root-derived carbon inputs alter SOM decomposition rates via microbial biomass increases, co-metabolism of substrates, induced nitrogen limitation, or other possible mechanisms. The priming effect has been observed in numerous laboratory and greenhouse experiments, and is increasingly included in ecosystem models. Few studies, however, have evaluated the priming effect with in situ field manipulations. In a two-year field experiment in Barrow, Alaska, we tested for a priming effect under natural environmental variability. In September 2014 and August 2015, we added 6.1g of 13C-labeled glucose to 25cm diameter mesocosms, 15cm below the soil surface in the mineral soil layer. Over the following month, we quantified effects on the rate and temperature sensitivity of native (non-glucose) ecosystem respiration and GPP. Following the 2014 treatment, soil samples were collected at 1 and 3 weeks for microbial biomass carbon and 13C/12C analysis, and ion exchange membranes were buried for one week to assess nitrate and ammonium availability. In contrast with many laboratory incubation studies using soils from a broad range of ecosystems, we observed no significant priming effect. In spite of a clear signal of 13C-glucose decomposition in respired CO2 and microbial biomass, we detected no treatment effect on background ecosystem respiration or total microbial biomass carbon. Our findings suggest that glucose taken up by microbes was not used for production of additional SOM-decomposing enzymes, possibly due to stoichiometric limitations on enzyme production. To best inform models representing complex and dynamic ecosystems, this study calls for further research relating theory, laboratory findings, and field

  18. Indicators of human health in ecosystems: what do we measure?

    International Nuclear Information System (INIS)

    Cole, D.C.; Eyles, J.; Gibson, B.L.

    1998-01-01

    Increasingly, scientists are being called upon to assist in the development of indicators for monitoring ecosystem health. For human health indicators, they may draw on environmental exposure, human morbidity/mortality or well-being and sustainability approaches. To improve the rigour of indicators, we propose six scientific criteria for indicator selection: (1) data availability, suitability and representativeness (of populations), (2) indicator validity (face, construct, predictive and convergent) and reliability; (3) indicator responsiveness to change; (4) indicator desegregation capability (across personal and community characteristics); (5) indicator comparability (across populations and jurisdictions); and (6) indicator representativeness (across important dimensions of concern). We comment on our current capacity to adhere to such criteria with examples of measures of environmental exposure, human health and sustainability. We recognize the considerable work still required on documenting environment-human health relationships and on monitoring potential indicators in similar ways over time. Yet we argue that such work is essential in order for science to inform policy decisions which affect the health of ecosystems and human health. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. A whole plant approach to evaluate the water use of mediterranean maquis species in a coastal dune ecosystem

    Science.gov (United States)

    Mereu, S.; Salvatori, E.; Fusaro, L.; Gerosa, G.; Muys, B.; Manes, F.

    2009-02-01

    An integrated approach has been used to analyse the water relations of three Mediterranean species, A. unedo L., Q. ilex L. and P. latifolia L. co-occurring in a coastal dune ecosystem. The approach considered leaf level gas exchange, sap flow measurements and structural adaptations between 15 May and 31 July 2007, and was necessary to capture the different response of the three species to the same environment. The complexity of the response was proportional to the complexity of the system, characterized by a sandy soil with a low water retention capacity and the presence of a water table. The latter did not completely prevent the development of a drought response, and species differences in this responses have been partially attributed to a different root distribution. Sap flow of A. unedo decreased rapidly in response to the decline of Soil Water Content, while that of Q. ilex decreased only moderately. Midday leaf water potential of P. latifolia and A. unedo was between 2.2 and 2.7 MPa through the measuring period, while in Q. ilex it reached a value of 3.4 MPa at the end of the season. A. unedo was the only species to decrease the leaf area to sapwood area ratio from 23.9±1.2 (May) to 15.2±1.5 (July), as a response to drought. A. unedo also underwent an almost stepwise loss on hydraulic conductivity, such a loss didn't occur for Q. ilex, while P. latifolia was able to slightly increase hydraulic conductivity, showing how different plant compartments coordinate differently between species as a response to drought. Such different coordination affects the gas exchange between vegetation and the atmosphere, and has implications for the response of the Mediterranean coastal dune ecosystems to climate change.

  20. A new framework to evaluate ecosystem health: a case study in the Wei River basin, China.

    Science.gov (United States)

    Wu, Wei; Xu, Zongxue; Zhan, Chesheng; Yin, Xuwang; Yu, Songyan

    2015-07-01

    Due to the rapid growth of the population and the development of economies in the Guanzhong district, central China, the river ecosystem is gradually deteriorating, which makes it important to assess the aquatic ecosystem health and take measures to restore the damaged ecosystem. An index of catchment ecosystem health has been developed to assist large-scale management of watersheds by providing an integrated measure of ecosystem health, including aquatic and terrestrial ecosystem. Most researches focus on aquatic ecosystem or terrestrial ecosystem, but little research integrates both of them to assess the catchment ecosystem health. In this paper, we combine these two aspects into catchment ecosystem health. Ecosystem indicators derived from field samples and modeling are identified to integrate into ecosystem health. These included indicators of ecological landscape pattern (based on normalized difference vegetation index (NDVI), vegetation cover, dominance index, Shannon's diversity index, Shannon's evenness index, and fragmentation index), hydrology regime (based on 33 hydrological parameters), physical form condition (based on substrate, habitat complexity, velocity/depth regimes, bank stability, channel alteration), water quality (based on electrical conductivity (Cond), dissolved oxygen (DO), NH3_N, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand-permanganate (CODMn)), and biological quality (based on fish abundance). The index of ecosystem health is applied in the Guanzhong district, and the ecosystem health was fair. The ecosystem health in the upstream to Linjiacun (U-L) and Linjiacun to Weijiabao (L-W) reaches was in good situation, while that in Weijiabao to Xianyang (W-X), Xianyang-Weijiabao (X-W), and Weijiabao to Tongguan (W-T) reaches was in fair situation. There is a trend that the ecosystem health in the upstream was better than that in the downstream. The ecosystem health assessment is expected to play a key role in future

  1. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems

    NARCIS (Netherlands)

    Govers, Laura L.; Man in 't Veld, Willem A.; Meffert, Johan P.; Bouma, Tjeerd J.; van Rijswick, Patricia C. J.; Heusinkveld, Jannes H. T.; Orth, Robert J.; van Katwijk, Marieke M.; van der Heide, Tjisse

    2016-01-01

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is

  2. Data from: How habitat-modifying organisms structure the food web of two coastal ecosystems

    NARCIS (Netherlands)

    Zee, van der Els M.; Angelini, Christine; Govers, Laura L.; Christianen, M.J.A.; Altieri, Andrew H.; Reijden, van der K.J.; Silliman, Brian R.; Koppel, van de Johan; Geest, van der Matthijs; Gils, van Jan A.; Veer, van der Henk W.; Piersma, Theunis; Ruiter, de P.C.; Olff, H.; Heide, van der Tjisse

    2016-01-01

    The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main

  3. How habitat-modifying organisms structure the food web of two coastal ecosystems

    NARCIS (Netherlands)

    Van der Zee, E.M.; Angelini, C.; Govers, L.; Christianen, M.J.A.; Altieri, A.H.; van der Reijden, K.J.; Silliman, B.R.; van de Koppel, J.; van der Geest, M.; van Gils, J.A.; van der Veer, H.W.; Piersma, T.; de Ruiter, P.C.; Olff, H.; van der Heide, T.

    2016-01-01

    The diversity and structure of ecosystems has been found to depend both ontrophic interactions in food webs and on other species interactions such ashabitat modification and mutualism that form non-trophic interactionnetworks. However, quantification of the dependencies between these twomain

  4. How habitat-modifying organisms structure the food web of two coastal ecosystems

    NARCIS (Netherlands)

    van der Zee, Els M; Angelini, Christine; Govers, Laura L; Christianen, Marjolijn J A; Altieri, Andrew H; van der Reijden, Karin J; Silliman, Brian R; van de Koppel, Johan; van der Geest, Matthijs; van Gils, Jan A; van der Veer, Henk W; Piersma, Theunis; de Ruiter, Peter C; Olff, Han; van der Heide, Tjisse

    2016-01-01

    The diversity and structure of ecosystems has been found to depend both on trophic interactions in food webs and on other species interactions such as habitat modification and mutualism that form non-trophic interaction networks. However, quantification of the dependencies between these two main

  5. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems

    NARCIS (Netherlands)

    De Wit, R.; Stal, L.J.; Lomstein, B.A.; Herbert, R.A.; van Gemerden, H.; Viaroli, P.; Cecherelli, V.U.; Rodriguez-Valera, F.; Bartoli, M.; Giordani, G.; Azzoni, R.; Schaub, B.; Welsh, D.T.; Donnelly, A.; Cifuentes, A.; Anton, J.; Finster, K.; Nielsen, L.P.; Pedersen, A.G.U.; Neubauer, A.T.; Colangelo, M.A.; Heijs, S.K.

    2001-01-01

    "Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities"

  6. ROBUST : The ROle of BUffering capacities in STabilising coastal lagoon ecosystems

    NARCIS (Netherlands)

    de Wit, R; Stal, LJ; Lomstein, BA; Herbert, RA; van Gemerden, H; Viaroli, P; Cecherelli, VU; Rodriguez-Valera, F; Bartoli, M; Giordani, G; Azzoni, R; Schaub, B; Welsh, DT; Donnelly, A; Cifuentes, A; Anton, J; Finster, K; Nielsen, LB; Pedersen, AGU; Neubauer, AT; Colangelo, MA; Heijs, SK

    2001-01-01

    "Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities"

  7. Goods and services provided by native plants in desert ecosystems: Examples from the northwestern coastal desert of Egypt

    Directory of Open Access Journals (Sweden)

    Laila M. Bidak

    2015-01-01

    Full Text Available About one third of the earth’s land surface is covered by deserts that have low and variable rainfall, nutrient-poor soils, and little vegetation cover. Here, we focus on the goods and services offered by desert ecosystems using the northwestern coastal desert of Egypt extending from Burg El-Arab to El-Salloum as an example. We conducted field surveys and collected other data to identify the goods services and provided by native plant species. A total of 322 native plant species were compiled. The direct services provided by these native plants included sources of food, medicine, and energy; indirect vegetation services included promotion of biodiversity, water storage, and soil fertility. The plant diversity in this ecosystem provided economic service benefits, such as sources of fodder, fuel-wood, and traditional medicinal plants. Changes in land use and recent ill-managed human activities may influence the availability of these services and strongly impact biodiversity and habitat availability. Although deserts are fragile and support low levels of productivity, they provide a variety of goods and services whose continuing availability is contingent upon the adoption of rational land management practices.

  8. Human Influences on Tree Diversity and Composition of a Coastal Forest Ecosystem: The Case of Ngumburuni Forest Reserve, Rufiji, Tanzania

    Directory of Open Access Journals (Sweden)

    J. Kimaro

    2013-01-01

    Full Text Available This paper reports on the findings of an ecological survey conducted in Ngumburuni Forest Reserve, a biodiversity rich forest reserve within the coastal forests of Tanzania. The main goal of this study was to determine the influence of uncontrolled anthropogenic activities on tree species diversity and composition within the forest ecosystem. It was revealed that economic activities including logging, charcoaling, and shifting cultivation were the most important disturbing activities affecting ecological functioning and biodiversity integrity of the forest. Further to this, we noted that the values of species diversity, composition, and regeneration potential within the undisturbed forest areas were significantly different from those in heavily disturbed areas. These observations confirm that the ongoing human activities have already caused size quality degradation of useful plants, enhanced species diversification impacts to the forest ecosystem, and possibly negatively affected the livelihoods of the adjacent local communities. Despite these disturbances, Ngumburuni forest reserve still holds important proportions of both endemic and threatened animal and plant species. The study suggests urgent implementation of several conservation measures in order to limit accessibility to the forest resources so as to safeguard the richness and abundance of useful biodiversity stocks in the reserve.

  9. Linking Activity and Function to Ecosystem Dynamics in a Coastal Bacterioplankton Community

    Directory of Open Access Journals (Sweden)

    Scott Michael Gifford

    2014-04-01

    Full Text Available For bacterial communities containing hundreds to thousands of distinct populations, connecting functional processes and environmental dynamics at high taxonomic resolution has remained challenging. Here we use the expression of ribosomal proteins (%RP as a proxy for in situ activity of 200 taxa within 20 metatranscriptomic samples in a coastal ocean time series encompassing both seasonal variability and diel dynamics. %RP patterns grouped the taxa into seven activity clusters with distinct profiles in functional gene expression and correlations with environmental gradients. Clusters 1-3 had their highest potential activity in the winter and fall, and included some of the most active taxa, while Clusters 4-7 had their highest potential activity in the spring and summer. Cluster 1 taxa were characterized by gene expression for motility and complex carbohydrate degradation (dominated by Gammaproteobacteria and Bacteroidetes, and Cluster 2 taxa by transcription of genes for amino acid and aromatic compound metabolism and aerobic anoxygenic phototrophy (Roseobacter. Other activity clusters were enriched in transcripts for proteorhodopsin and methylotrophy (Cluster 4; SAR11 and methylotrophs, photosynthesis and attachment (Clusters 5 and 7; Synechococcus, picoeukaryotes, Verucomicrobia, and Planctomycetes, and sulfur oxidation (Cluster 7; Gammaproteobacteria. The seasonal patterns in activity were overlain, and sometimes obscured, by large differences in %RP over shorter day-night timescales. Seventy-eight taxa, many of them heterotrophs, had a higher %RP activity index during the day than night, indicating strong diel activity at this coastal site. Emerging from these taxonomically- and time-resolved estimates of in situ microbial activity are predictions of specific ecological groupings of microbial taxa in a dynamic coastal environment.

  10. Merits and Limits of Ecosystem Protection for Conserving Wild Salmon in a Northern Coastal British Columbia River

    Directory of Open Access Journals (Sweden)

    Aaron C. Hill

    2010-06-01

    Full Text Available Loss and degradation of freshwater habitat reduces the ability of wild salmon populations to endure other anthropogenic stressors such as climate change, harvest, and interactions with artificially propagated fishes. Preservation of pristine salmon rivers has thus been advocated as a cost-effective way of sustaining wild Pacific salmon populations. We examine the value of freshwater habitat protection in conserving salmon and fostering resilience in the Kitlope watershed in northern coastal British Columbia - a large (3186 km2 and undeveloped temperate rainforest ecosystem with legislated protected status. In comparison with other pristine Pacific Rim salmon rivers we studied, the Kitlope is characterized by abundant and complex habitats for salmon that should contribute to high resilience. However, biological productivity in this system is constrained by naturally cold, light limited, ultra-oligotrophic growing conditions; and the mean (± SD density of river-rearing salmonids is currently low (0.32 ± 0.27 fish per square meter; n = 36 compared to our other four study rivers (grand mean = 2.55 ± 2.98 fish per square meter; n = 224. Existing data and traditional ecological knowledge suggest that current returns of adult salmon to the Kitlope, particularly sockeye, are declining or depressed relative to historic levels. This poor stock status - presumably owing to unfavorable conditions in the marine environment and ongoing harvest in coastal mixed-stock fisheries - reduces the salmon-mediated transfer of marine-derived nutrients and energy to the system's nutrient-poor aquatic and terrestrial food webs. In fact, Kitlope Lake sediments and riparian tree leaves had marine nitrogen signatures (δ15N among the lowest recorded in a salmon ecosystem. The protection of the Kitlope watershed is undoubtedly a conservation success story. However, "salmon strongholds" of pristine watersheds may not adequately sustain salmon populations and foster

  11. Enhanced metabolic versatility of planktonic sulfur-oxidizing γ-proteobacteria in an oxygen-deficient coastal ecosystem

    Directory of Open Access Journals (Sweden)

    Alejandro A. Murillo

    2014-07-01

    Full Text Available Sulfur-oxidizing Gamma-proteobacteria are abundant in marine oxygen-deficient waters, and appear to play a key role in a previously unrecognized cryptic sulfur cycle. Metagenomic analyses of members of the uncultured SUP05 lineage in the Canadian seasonally anoxic fjord Saanich Inlet (SI, hydrothermal plumes in the Guaymas Basin (GB and single cell genomics analysis of two ARCTIC96BD-19 representatives from the South Atlantic Sub-Tropical Gyre (SASG have shown them to be metabolically versatile. However, SI and GB SUP05 bacteria seem to be obligate chemolithoautotrophs, whereas ARCTIC96BD-19 has the genetic potential for aerobic respiration. Here, we present results of a metagenomic analysis of sulfur-oxidizing Gamma-proteobacteria (GSO, closely related to the SUP05/ARCTIC96BD-19 clade, from a coastal ecosystem in the eastern South Pacific (ESP. This ecosystem experiences seasonal anoxia and accumulation of nitrite and ammonium at depth, with a corresponding increase in the abundance of GSO representatives. The ESP-GSOs appear to have a significantly different gene complement than those from Saanich Inlet, Guaymas Basin and SASG. Genomic analyses of de novo assembled contigs indicate the presence of a complete aerobic respiratory complex based on the cytochrome bc1 oxidase. Furthermore, they appear to encode a complete TCA cycle and several transporters for dissolved organic carbon species, suggesting a mixotrophic lifestyle. Thus, the success of sulfur-oxidizing Gamma-proteobacteria in oxygen-deficient marine ecosystems appears due not only to their previously recognized anaerobic metabolic versatility, but also to their capacity to function under aerobic conditions using different carbon sources. Finally, members of ESP-GSO cluster also have the genetic potential for reducing nitrate to ammonium based on the nirBD genes, and may therefore facilitate a tighter coupling of the nitrogen and sulfur cycles in oxygen-deficient waters.

  12. Ecosystem-based management and refining governance of wind energy in the Massachusetts coastal zone: A case study approach

    Science.gov (United States)

    Kumin, Enid C.

    While there are as yet no wind energy facilities in New England coastal waters, a number of wind turbine projects are now operating on land adjacent to the coast. In the Gulf of Maine region (from Maine to Massachusetts), at least two such projects, one in Falmouth, Massachusetts, and another on the island of Vinalhaven, Maine, began operation with public backing only to face subsequent opposition from some who were initially project supporters. I investigate the reasons for this dynamic using content analysis of documents related to wind energy facility development in three case study communities. For comparison and contrast with the Vinalhaven and Falmouth case studies, I examine materials from Hull, Massachusetts, where wind turbine construction and operation has received steady public support and acceptance. My research addresses the central question: What does case study analysis of the siting and initial operation of three wind energy projects in the Gulf of Maine region reveal that can inform future governance of wind energy in Massachusetts state coastal waters? I consider the question with specific attention to governance of wind energy in Massachusetts, then explore ways in which the research results may be broadly transferable in the U.S. coastal context. I determine that the change in local response noted in Vinalhaven and Falmouth may have arisen from a failure of consistent inclusion of stakeholders throughout the entire scoping-to-siting process, especially around the reporting of environmental impact studies. I find that, consistent with the principles of ecosystem-based and adaptive management, design of governance systems may require on-going cycles of review and adjustment before the implementation of such systems as intended is achieved in practice. I conclude that evolving collaborative processes must underlie science and policy in our approach to complex environmental and wind energy projects; indeed, collaborative process is fundamental to

  13. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation.

    Science.gov (United States)

    Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli

    2014-06-01

    This paper focuses on the marine foundation eelgrass species, Zostera marina , along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km 2 eelgrass (maximum >2100 km 2 ), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4-6 spp.) of angiosperms overall, but eelgrass productivity is low (borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd.

  14. Oligotrophication and Metabolic Slowing-Down of a NW Mediterranean Coastal Ecosystem

    KAUST Repository

    Agusti, Susana

    2017-12-22

    Increased oligotrophication is expected for oligotrophic areas as a consequence of ocean warming, which reduces diffusive vertical nutrient supply due to strengthened stratification. Evidence of ocean oligotrophication has been, thus far, reported for the open ocean. Here we reported oligotrophication and associated changes in plankton community metabolism with warming in a pristine, oligotrophic Mediterranean coastal area (Cap Salines, Mallorca Island, Spain) during a 10 years time series. As a temperate area, there were seasonal patterns associated to changes in the broad temperature range (12.0–28.4°C), with a primary phytoplankton bloom in late winter and a secondary one in the fall. Community respiration (R) rates peaked during summers and showed higher rates relative to gross primary production (GPP) with a prevalence of heterotrophic metabolism (2/3\\'s of net community production (NCP) estimates). Chlorophyll a concentration significantly decreased with increasing water temperature in the coastal site at a rate of 0.014 ± 0.003 μg Chla L−1 °C−1 (P < 0.0001). The study revealed a significant decrease with time in Chlorophyll a concentration and nutrients concentration, indicating oligotrophication during the last decade. Community productivity consistently decreased with time as both GPP and R showed a significant decline. Warming of the Mediterranean Sea is expected to increase plankton metabolic rates, but the results indicated that the associated oligotrophication must lead to a slowing down of the community metabolism.

  15. Oligotrophication and Metabolic Slowing-Down of a NW Mediterranean Coastal Ecosystem

    Directory of Open Access Journals (Sweden)

    Susana Agusti

    2017-12-01

    Full Text Available Increased oligotrophication is expected for oligotrophic areas as a consequence of ocean warming, which reduces diffusive vertical nutrient supply due to strengthened stratification. Evidence of ocean oligotrophication has been, thus far, reported for the open ocean. Here we reported oligotrophication and associated changes in plankton community metabolism with warming in a pristine, oligotrophic Mediterranean coastal area (Cap Salines, Mallorca Island, Spain during a 10 years time series. As a temperate area, there were seasonal patterns associated to changes in the broad temperature range (12.0–28.4°C, with a primary phytoplankton bloom in late winter and a secondary one in the fall. Community respiration (R rates peaked during summers and showed higher rates relative to gross primary production (GPP with a prevalence of heterotrophic metabolism (2/3's of net community production (NCP estimates. Chlorophyll a concentration significantly decreased with increasing water temperature in the coastal site at a rate of 0.014 ± 0.003 μg Chla L−1 °C−1 (P < 0.0001. The study revealed a significant decrease with time in Chlorophyll a concentration and nutrients concentration, indicating oligotrophication during the last decade. Community productivity consistently decreased with time as both GPP and R showed a significant decline. Warming of the Mediterranean Sea is expected to increase plankton metabolic rates, but the results indicated that the associated oligotrophication must lead to a slowing down of the community metabolism.

  16. Introduction to the special issue on “Understanding and predicting change in the coastal ecosystems of the northern Gulf of Mexico”

    Science.gov (United States)

    Brock, John C.; Barras, John A.; Williams, S. Jeffress

    2013-01-01

    The coastal region of the northern Gulf of Mexico owes its current landscape structure to an array of tectonic, erosional and depositional, climatic, geochemical, hydrological, ecological, and human processes that have resulted in some of the world's most complex, dynamic, productive, and threatened ecosystems. Catastrophic hurricane landfalls, ongoing subsidence and erosion exacerbated by sea-level rise, disintegration of barrier island chains, and high rates of wetland loss have called attention to the vulnerability of northern Gulf coast ecosystems, habitats, built infrastructure, and economy to natural and anthropogenic threats. The devastating hurricanes of 2005 (Katrina and Rita) motivated the U.S. Geological Survey Coastal and Marine Geology Program and partnering researchers to pursue studies aimed at understanding and predicting landscape change and the associated storm hazard vulnerability of northern Gulf coast region ecosystems and human communities. Attaining this science goal requires increased knowledge of landscape evolution on geologic, historical, and human time scales, and analysis of the implications of such changes in the natural and built components of the landscape for hurricane impact susceptibility. This Special Issue of the Journal of Coastal Research communicates northern Gulf of Mexico research results that (1) improve knowledge of prior climates and depositional environments, (2) assess broad regional ecosystem structure and change over Holocene to human time scales, (3) undertake process studies and change analyses of dynamic landscape components, and (4) integrate framework, climate, variable time and spatial scale mapping, monitoring, and discipline-specific process investigations within interdisciplinary studies.

  17. An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem

    International Nuclear Information System (INIS)

    Gilbertson, Michael; Carpenter, D.O.

    2004-01-01

    New concerns about the global presence and human health significance of mercury have arisen as a result of recent epidemiological data demonstrating subtle neurological effects from consumption of mercury-contaminated fish. In the Great Lakes Basin, the complexity of the diverse sources, pools, and sinks of mercury and of the pathways of distribution, fate, and biotransformation requires an ecosystem approach to the assessment of exposures of Great Lakes' human populations. Further epidemiological research is needed to verify preliminary indications of harmful effects in people living near the Great Lakes. Great Lakes fish are valuable resources for subsistence nutrition, recreation, and commerce, but the benefits of fish consumption must be balanced by concern for the hazards from the contaminants that they may contain. The efficacy of fish consumption advisories in reducing exposures should continue to be evaluated while planning continues for remedial actions on contaminated sediments from historic industrial activities and for regulatory action to control sources

  18. Biological availability of energy related effluent material in the coastal ecosystem

    International Nuclear Information System (INIS)

    Gibson, C.I.; Abel, K.H.; Ahlstrom, S.W.; Crecelius, E.A.; Schmidt, R.L.; Thatcher, T.O.; Wildung, R.E.

    1977-01-01

    In order to make the predictions necessary to forecast the ecological consequences of an energy-related technology, there must be an understanding of: the biogeochemical processes involved in the natural system; the manner in which an energy technology affects these processes and how, in turn, this affects the ecosystem as a whole. Direct biological effects such as lethality, behavioral changes, and physiological changes, are being studied under the program previously discussed. The biological availability and impact studies are investigating: the chemical, physical, and biological processes that occur in the natural marine ecosystem; how energy effluents affect these processes; and the factors involved in regulating the bioavailability of effluent material. This past year's effort has centered on defining the quantities and forms of metals and radioisotopes in nuclear power plant effluent streams, the chemical forms present in bioassay systems, the chemical and microbial processes controlling the forms of metals available from the sediments, and the uptake and control of copper in shrimp. In addition, several sites in Sequim Bay have been monitored for potential use in field verification studies

  19. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic

    Science.gov (United States)

    Garneau, Marie-Ã. Ve; Roy, SéBastien; Lovejoy, Connie; Gratton, Yves; Vincent, Warwick F.

    2008-07-01

    The Canadian Arctic Shelf Exchange Study (CASES) included the overwintering deployment of a research platform in Franklin Bay (70°N, 126°W) and provided a unique seasonal record of bacterial dynamics in a coastal region of the Arctic Ocean. Our objectives were (1) to relate seasonal bacterial abundance (BA) and production (BP) to physico-chemical characteristics and (2) to quantify the annual bacterial carbon flux. BA was estimated by epifluorescence microscopy and BP was estimated from 3H-leucine and 3H-thymidine assays. Mean BA values for the water column ranged from 1.0 (December) to 6.8 × 105 cells mL-1 (July). Integral BP varied from 1 (February) to 80 mg C m-2 d-1 (July). During winter-spring, BP was uncorrelated with chlorophyll a (Chl a), but these variables were significantly correlated during summer-autumn (rs = 0.68, p winter, late winter-late spring, and summer. A baseline level of BB and BP was maintained throughout late winter-late spring despite the persistent cold and darkness, with irregular fluctuations that may be related to hydrodynamic events. During this period, BP rates were correlated with colored dissolved organic matter (CDOM) but not Chl a (rs BP.CDOM∣Chl a = 0.20, p < 0.05, N = 176). Annual BP was estimated as 6 g C m-2 a-1, implying a total BP of 4.8 × 1010 g C a-1 for the Franklin Bay region. These results show that bacterial processes continue throughout all seasons and make a large contribution to the total biological carbon flux in this coastal arctic ecosystem.

  20. How a clogged canal impacts ecological health in a tropical urban wetland ecosystem

    Science.gov (United States)

    The coastal city of San Juan, Puerto Rico is a tropical urban ecosystem interwoven among a series of interconnected bays, lagoons, canals, and mangrove wetlands. As the city has expanded, infilling and urban encroachment on what was previously mangrove wetland and open estuarine ...

  1. How a clogged canal effects ecological and human health in a tropical urban wetland ecosystem

    Science.gov (United States)

    The coastal city of San Juan, Puerto Rico is a tropical urban ecosystem interwoven among a series of interconnected bays, lagoons, canals, and mangrove wetlands. As the city has expanded, infilling and urban encroachment on what was previously mangrove wetland and open estuarine ...

  2. Poor livestock keepers: ecosystem-poverty-health interactions.

    Science.gov (United States)

    Grace, Delia; Lindahl, Johanna; Wanyoike, Francis; Bett, Bernard; Randolph, Tom; Rich, Karl M

    2017-07-19

    Humans have never been healthier, wealthier or more numerous. Yet, present success may be at the cost of future prosperity and in some places, especially in sub-Saharan Africa, poverty persists. Livestock keepers, especially pastoralists, are over-represented among the poor. Poverty has been mainly attributed to a lack of access, whether to goods, education or enabling institutions. More recent insights suggest ecosystems may influence poverty and the self-reinforcing mechanisms that constitute poverty traps in more subtle ways. The plausibility of zoonoses as poverty traps is strengthened by landmark studies on disease burden in recent years. While in theory, endemic zoonoses are best controlled in the animal host, in practice, communities are often left to manage disease themselves, with the focus on treatment rather than prevention. We illustrate this with results from a survey on health costs in a pastoral ecosystem. Epidemic zoonoses are more likely to elicit official responses, but these can have unintended consequences that deepen poverty traps. In this context, a systems understanding of disease control can lead to more effective and pro-poor disease management. We illustrate this with an example of how a system dynamics model can help optimize responses to Rift Valley fever outbreaks in Kenya by giving decision makers real-time access to the costs of the delay in vaccinating. In conclusion, a broader, more ecological understanding of poverty and of the appropriate responses to the diseases of poverty can contribute to improved livelihoods for livestock keepers in Africa.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  3. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  4. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California

    Science.gov (United States)

    Cloern, James E.

    1996-05-01

    Phytoplankton blooms are prominent features of biological variability in shallow coastal ecosystems such as estuaries, lagoons, bays, and tidal rivers. Long-term observation and research in San Francisco Bay illustrates some patterns of phytoplankton spatial and temporal variability and the underlying mechanisms of this variability. Blooms are events of rapid production and accumulation of phytoplankton biomass that are usually responses to changing physical forcings originating in the coastal ocean (e.g., tides), the atmosphere (wind), or on the land surface (precipitation and river runoff). These physical forcings have different timescales of variability, so algal blooms can be short-term episodic events, recurrent seasonal phenomena, or rare events associated with exceptional climatic or hydrologic conditions. The biogeochemical role of phytoplankton primary production is to transform and incorporate reactive inorganic elements into organic forms, and these transformations are rapid and lead to measurable geochemical change during blooms. Examples include the depletion of inorganic nutrients (N, P, Si), supersaturation of oxygen and removal of carbon dioxide, shifts in the isotopic composition of reactive elements (C, N), production of climatically active trace gases (methyl bromide, dimethylsulfide), changes in the chemical form and toxicity of trace metals (As, Cd, Ni, Zn), changes in the biochemical composition and reactivity of the suspended particulate matter, and synthesis of organic matter required for the reproduction and growth of heterotrophs, including bacteria, zooplankton, and benthic consumer animals. Some classes of phytoplankton play special roles in the cycling of elements or synthesis of specific organic molecules, but we have only rudimentary understanding of the forces that select for and promote blooms of these species. Mounting evidence suggests that the natural cycles of bloom variability are being altered on a global scale by human

  5. Radionuclide transfer in marine coastal ecosystems, a modelling study using metabolic processes and site data.

    Science.gov (United States)

    Konovalenko, L; Bradshaw, C; Kumblad, L; Kautsky, U

    2014-07-01

    This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water

  6. Radionuclide transfer in marine coastal ecosystems, a modelling study using metabolic processes and site data

    International Nuclear Information System (INIS)

    Konovalenko, L.; Bradshaw, C.; Kumblad, L.; Kautsky, U.

    2014-01-01

    This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water

  7. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    Science.gov (United States)

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  8. Distribution and behavior of radionuclides in the coastal ecosystem in Rokkasho Village

    International Nuclear Information System (INIS)

    Kondo, Kunio; Kawabata, Hitoshi; Ueda, Shinji; Hasegawa, Hidenao; Inaba, Jiro

    2001-01-01

    The aim of the present study was to elucidate, through both field studies and laboratory experiments, the mechanism for the elution of radionuclides and other materials from suspended organic matter that accompanies the decomposition of organic matter, consisting mainly of phytoplankton, in the coastal sea region off Rokkasho Village. The effect of water temperature on the decomposition rate of organic matter suspended in seawater was investigated in laboratory experiments. The results demonstrated that the decomposition process was divided into two steps for each of the items of dry weight (SS), particulate organic carbon (POC), and particulate organic nitrogen (PON). The first step in decomposition progressed rapidly over several days. The second step of decomposition occurred at a slower rate than the first step. The decomposition rate of organic material was found to be strongly dependent on temperature, with decomposition progressing faster the higher the temperature. The amounts of Mn, Zn, Cu, Pb, Sn, Ni, Be, V, Ti, Ba, Cr, Sr, and the radionuclides 232 Th and 238 Ur eluted from organic matter by decomposition (30 days) of suspended organic matter were in the range of 31-72% of the amounts contained in the organic matter. (author)

  9. Aquatic bird disease and mortality as an indicator of changing ecosystem health

    Science.gov (United States)

    Newman, Scott H.; Chmura, Aleksei; Converse, Kathy; Kilpatrick, A. Marm; Patel, Nikkita; Lammers, Emily; Daszak, Peter

    2007-01-01

    We analyzed data from pathologic investigations in the United States, collected by the USGS National Wildlife Health Center between 1971 and 2005, into aquatic bird mortality events. A total of 3619 mortality events was documented for aquatic birds, involving at least 633 708 dead birds from 158 species belonging to 23 families. Environmental causes accounted for the largest proportion of mortality events (1737 or 48%) and dead birds (437 258 or 69%); these numbers increased between 1971 and 2000, with biotoxin mortalities due to botulinum intoxication (Types C and E) being the leading cause of death. Infectious diseases were the second leading cause of mortality events (20%) and dead birds (20%), with both viral diseases, including duck plague (Herpes virus), paramyxovirus of cormorants (Paramyxovirus PMV1) and West Nile virus (Flavivirus), and bacterial diseases, including avian cholera (Pasteurella multocida), chlamydiosis (Chalmydia psittici), and salmonellosis (Salmonella sp.), contributing. Pelagic, coastal marine birds and species that use marine and freshwater habitats were impacted most frequently by environmental causes of death, with biotoxin exposure, primarily botulinum toxin, resulting in mortalities of both coastal and freshwater species. Pelagic birds were impacted most severely by emaciation and starvation, which may reflect increased anthropogenic pressure on the marine habitat from over-fishing, pollution, and other factors. Our study provides important information on broad trends in aquatic bird mortality and highlights how long-term wildlife disease studies can be used to identify anthropogenic threats to wildlife conservation and ecosystem health. In particular, mortality data for the past 30 yr suggest that biotoxins, viral, and bacterial diseases could have impacted >5 million aquatic birds.

  10. The presence of the Indo-Pacific symbiont-bearing foraminifer Amphistegina lobifera in Greek coastal ecosystems (Aegean Sea, Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    M.V. TRIANTAPHYLLOU

    2009-12-01

    Full Text Available During the last decades, hundreds of species of Indo-Pacific origin from the Red Sea have traversed the Suez Canal and settled in the Eastern Mediterranean. Nowadays, Amphistegina lobifera Larsen, is known to be a successful immigrant that is widely distributed in the coastal ecosystems of the Eastern Mediterranean Sea. Amphistegina is the most common epiphytic, symbiont- bearing large foraminifer. In this study we provide additional data on the presence of this species in the coastal ecosystems of Aegean Sea, Greece. The high relative abundance of A. lobifera is the result of very successful adaptation of this species to local conditions and suggests that it has become a significant part of the epiphytic foraminiferal fauna.

  11. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida’s Gulf Coast: Implications for Adaptation Planning

    Science.gov (United States)

    Birch, Anne P.; Brenner, Jorge; Gordon, Doria R.

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida’s Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  12. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco Bay

    Science.gov (United States)

    Cloern, J.E.; Jassby, A.D.

    2012-01-01

    Poised at the interface of rivers, ocean, atmosphere and dense human settlement, estuaries are driven by a large array of natural and anthropogenic forces. San Francisco Bay exemplifies the fast-paced change occurring in many of the world's estuaries, bays and inland seas in response to these diverse forces. We use observations from this particularly well-studied estuary to illustrate responses to six drivers that are common agents of change where land and sea meet: water consumption and diversion; human modification of sediment supply; introduction of non-native species; sewage input; environmental policy; and climate shifts. In San Francisco Bay, responses to these drivers include, respectively, shifts in the timing and extent of freshwater inflow and salinity intrusion; decreasing turbidity; restructuring of plankton communities; nutrient enrichment; elimination of hypoxia and reduced metal contamination of biota; and food web changes that decrease resistance of the estuary to nutrient pollution. Detection of these changes and discovery of their causes through environmental monitoring have been essential for establishing and measuring outcomes of environmental policies that aim to maintain high water quality and sustain services provided by estuarine-coastal ecosystems. The wide range of variability time scales and the multiplicity of interacting drivers place heavy demands on estuarine monitoring programs. But the San Francisco Bay case study illustrates why the imperative for monitoring has never been greater.

  13. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco Bay

    Science.gov (United States)

    Cloern, James E.; Jassby, Alan D.

    2012-12-01

    Poised at the interface of rivers, ocean, atmosphere and dense human settlement, estuaries are driven by a large array of natural and anthropogenic forces. San Francisco Bay exemplifies the fast-paced change occurring in many of the world's estuaries, bays, and inland seas in response to these diverse forces. We use observations from this particularly well-studied estuary to illustrate responses to six drivers that are common agents of change where land and sea meet: water consumption and diversion, human modification of sediment supply, introduction of nonnative species, sewage input, environmental policy, and climate shifts. In San Francisco Bay, responses to these drivers include, respectively, shifts in the timing and extent of freshwater inflow and salinity intrusion, decreasing turbidity, restructuring of plankton communities, nutrient enrichment, elimination of hypoxia and reduced metal contamination of biota, and food web changes that decrease resistance of the estuary to nutrient pollution. Detection of these changes and discovery of their causes through environmental monitoring have been essential for establishing and measuring outcomes of environmental policies that aim to maintain high water quality and sustain services provided by estuarine-coastal ecosystems. The many time scales of variability and the multiplicity of interacting drivers place heavy demands on estuarine monitoring programs, but the San Francisco Bay case study illustrates why the imperative for monitoring has never been greater.

  14. The role of pre-existing disturbances in the effect of marine reserves on coastal ecosystems: a modelling approach.

    Directory of Open Access Journals (Sweden)

    Marie Savina

    Full Text Available We have used an end-to-end ecosystem model to explore responses over 30 years to coastal no-take reserves covering up to 6% of the fifty thousand square kilometres of continental shelf and slope off the coast of New South Wales (Australia. The model is based on the Atlantis framework, which includes a deterministic, spatially resolved three-dimensional biophysical model that tracks nutrient flows through key biological groups, as well as extraction by a range of fisheries. The model results support previous empirical studies in finding clear benefits of reserves to top predators such as sharks and rays throughout the region, while also showing how many of their major prey groups (including commercial species experienced significant declines. It was found that the net impact of marine reserves was dependent on the pre-existing levels of disturbance (i.e. fishing pressure, and to a lesser extent on the size of the marine reserves. The high fishing scenario resulted in a strongly perturbed system, where the introduction of marine reserves had clear and mostly direct effects on biomass and functional biodiversity. However, under the lower fishing pressure scenario, the introduction of marine reserves caused both direct positive effects, mainly on shark groups, and indirect negative effects through trophic cascades. Our study illustrates the need to carefully align the design and implementation of marine reserves with policy and management objectives. Trade-offs may exist not only between fisheries and conservation objectives, but also among conservation objectives.

  15. Spread, Behavior, and Ecosystem Consequences of Conventional Munitions Compounds in Coastal Marine Waters

    Directory of Open Access Journals (Sweden)

    Aaron J. Beck

    2018-04-01

    Full Text Available Coastal marine environments are contaminated globally with a vast quantity of unexploded ordnance and munitions from intentional disposal. These munitions contain organic explosive compounds as well as a variety of metals, and represent point sources of chemical pollution to marine waters. Most underwater munitions originate from World Wars at the beginning of the twentieth century, and metal munitions housings have been impacted by extensive corrosion over the course of the following decades. As a result, the risk of munitions-related contaminant release to the water column is increasing. The behavior of munitions compounds is well-characterized in terrestrial systems and groundwater, but is only poorly understood in marine systems. Organic explosive compounds, primarily nitroaromatics and nitramines, can be degraded or transformed by a variety of biotic and abiotic mechanisms. These reaction products exhibit a range in biogeochemical characteristics such as sorption by particles and sediments, and variable environmental behavior as a result. The reaction products often exhibit increased toxicity to biological receptors and geochemical controls like sorption can limit this exposure. Environmental samples typically show low concentrations of munitions compounds in water and sediments (on the order of ng/L and μg/kg, respectively, and ecological risk appears generally low. Nonetheless, recent work demonstrates the possibility of sub-lethal genetic and metabolic effects. This review evaluates the state of knowledge on the occurrence, fate, and effect of munition-related chemical contaminants in the marine environment. There remain a number of knowledge gaps that limit our understanding of munitions-related contaminant spread and effect, and the need for additional work is made all the more urgent by increasing risk of release to the environment.

  16. Multisensor sampling of pelagic ecosystem variables in a coastal environment to estimate zooplankton grazing impact

    Science.gov (United States)

    Sutton, Tracey; Hopkins, Thomas; Remsen, Andrew; Burghart, Scott

    2001-01-01

    Sampling was conducted on the west Florida continental shelf ecosystem modeling site to estimate zooplankton grazing impact on primary production. Samples were collected with the high-resolution sampler, a towed array bearing electronic and optical sensors operating in tandem with a paired net/bottle verification system. A close biological-physical coupling was observed, with three main plankton communities: 1. a high-density inshore community dominated by larvaceans coincident with a salinity gradient; 2. a low-density offshore community dominated by small calanoid copepods coincident with the warm mixed layer; and 3. a high-density offshore community dominated by small poecilostomatoid and cyclopoid copepods and ostracods coincident with cooler, sub-pycnocline oceanic water. Both high-density communities were associated with relatively turbid water. Applying available grazing rates from the literature to our abundance data, grazing pressure mirrored the above bio-physical pattern, with the offshore sub-pycnocline community contributing ˜65% of grazing pressure despite representing only 19% of the total volume of the transect. This suggests that grazing pressure is highly localized, emphasizing the importance of high-resolution sampling to better understand plankton dynamics. A comparison of our grazing rate estimates with primary production estimates suggests that mesozooplankton do not control the fate of phytoplankton over much of the area studied (<5% grazing of daily primary production), but "hot spots" (˜25-50% grazing) do occur which may have an effect on floral composition.

  17. Biological responses of a tropical coastal ecosystem to releases from electro-nuclear installations

    International Nuclear Information System (INIS)

    Patel, B.; Patel, S.; Balani, M.C.

    1979-01-01

    The implications of low-level radioactive waste discharges from electronuclear installations on the biological responses of the arcid clam Anadara granosa have been studied. The rate of feeding, measured in terms of clearance of dye suspension, was not affected by exposure to acute doses of up to 5 R. Exposure to higher doses (up to 40 R) increased the rate by 70%. On further irradiation (100-700 R), however, it dropped significantly. The changes in the feeding rates following bioaccumulation of the fission product nuclides have also been studied. The effect of ionizing radiations at the cellular level was evaluated by studying the electrophoretic mobility of clam erythrocytes. The electrokinetic behaviour of erythrocytes was not affected following irradiation at low doses (0.1 kR), but on exposure to higher doses (1-8 kR) the EPM showed oscillatory behaviour. The paper also discusses the biological half-life of caesium-137, its localization in subcellular fractions of various tissues of A. granosa and the effects of low-level discharges on the intertidal ecosystem. (author)

  18. USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L; Doug Martin, D; Michael Paller, M; Eric Nelson, E

    2007-01-12

    Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here. This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.

  19. Sedimentary and Vegetative Impacts of Hurricane Irma to Coastal Wetland Ecosystems across Southwest Florida

    Science.gov (United States)

    Moyer, R. P.; Khan, N.; Radabaugh, K.; Engelhart, S. E.; Smoak, J. M.; Horton, B.; Rosenheim, B. E.; Kemp, A.; Chappel, A. R.; Schafer, C.; Jacobs, J. A.; Dontis, E. E.; Lynch, J.; Joyse, K.; Walker, J. S.; Halavik, B. T.; Bownik, M.

    2017-12-01

    Since 2014, our collaborative group has been working in coastal marshes and mangroves across Southwest Florida, including Tampa Bay, Charlotte Harbor, Ten Thousand Islands, Biscayne Bay, and the lower Florida Keys. All existing field sites were located within 50 km of Hurricane Irma's eye path, with a few sites in the Lower Florida Keys and Naples/Ten Thousand Islands region suffering direct eyewall hits. As a result, we have been conducting storm-impact and damage assessments at these locations with the primary goal of understanding how major hurricanes contribute to and/or modify the sedimentary record of mangroves and salt marshes. We have also assessed changes to the vegetative structure of the mangrove forests at each site. Preliminary findings indicate a reduction in mangrove canopy cover from 70-90% pre-storm, to 30-50% post-Irma, and a reduction in tree height of approximately 1.2 m. Sedimentary deposits consisting of fine carbonate mud up to 12 cm thick were imported into the mangroves of the lower Florida Keys, Biscayne Bay, and the Ten Thousand Islands. Import of siliciclastic mud up to 5 cm thick was observed in Charlotte Harbor. In addition to fine mud, all sites had imported tidal wrack consisting of a mixed seagrass and mangrove leaf litter, with some deposits as thick as 6 cm. In areas with newly opened canopy, a microbial layer was coating the surface of the imported wrack layer. Overwash and shoreline erosion were also documented at two sites in the lower Keys and Biscayne Bay, and will be monitored for change and recovery over the next few years. Because active research was being conducted, a wealth of pre-storm data exists, thus these locations are uniquely positioned to quantify hurricane impacts to the sedimentary record and standing biomass across a wide geographic area. Due to changes in intensity along the storm path, direct comparisons of damage metrics can be made to environmental setting, wind speed, storm surge, and distance to eyewall.

  20. [Health assessment of Qi'ao Island mangrove wetland ecosystem in Pearl River Estuary].

    Science.gov (United States)

    Wang, Shu-Gong; Zheng, Yao-Hui; Peng, Yi-Sheng; Chen, Gui-Zhu

    2010-02-01

    Based on the theories of wetland ecosystem health and by using "Pressure-State-Response" model, a health assessment indicator system for Qi' ao Island mangrove wetland ecosystem in Pearl River Estuary was built, and the assessment indices, assessment criteria, indices weighted values, assessment grades, and assessment methods were established to assess the health state of this ecosystem. In 2008, the overall health index of this ecosystem was 0.6580, health level was of grade II (healthy), and the pressure, state, and response indices were 0.3469, 0.8718, and 0.7754, respectively, suggesting that this ecosystem was good in state and response, but still had definite pressure. As a provincial nature reserve, this ecosystem was to be further improved in its health level. However, the research on the health assessment of mangrove wetland ecosystem was still young. Further studies should be made on the selection of assessment indices, long-term oriented monitoring of these indices, and quantification of the relations between ecosystem health level and ecosystem services.

  1. Integrated approach to assess ecosystem health in harbor areas.

    Science.gov (United States)

    Bebianno, M J; Pereira, C G; Rey, F; Cravo, A; Duarte, D; D'Errico, G; Regoli, F

    2015-05-01

    Harbors are critical environments with strategic economic importance but with potential environmental impact: health assessment criteria are a key issue. An ecosystem health status approach was carried out in Portimão harbor as a case-study. Priority and specific chemical levels in sediments along with their bioavailability in mussels, bioassays and a wide array of biomarkers were integrated in a biomarker index (IBR index) and the overall data in a weight of evidence (WOE) model. Metals, PAHs, PCBs and HCB were not particularly high compared with sediment guidelines and standards for dredging. Bioavailability was evident for Cd, Cu and Zn. Biomarkers proved more sensitive namely changes of antioxidant responses, metallothioneins and vittellogenin-like proteins. IBR index indicated that site 4 was the most impacted area. Assessment of the health status by WOE approach highlighted the importance of integrating sediment chemistry, bioaccumulation, biomarkers and bioassays and revealed that despite some disturbance in the harbor area, there was also an impact of urban effluents from upstream. Environmental quality assessment in harbors. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem

    Directory of Open Access Journals (Sweden)

    Maria W Smith

    2013-05-01

    Full Text Available The Columbia River (CR is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: 1 an estuarine turbidity maximum (ETM; 2 a chlorophyll maximum of the river plume; 3 an upwelling-associated hypoxic zone; and 4 the deep ocean bottom. Three size fractions, 0.1-0.8, 0.8-3 and 3-200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp. To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes, and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota. Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean, the most abundant bacterial taxa (≥40 % of prokaryotic peptides represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2-10X more abundant relative to the 0.1-μm metagenome, indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin.

  3. The Impacts Of The Indian Ocean Tsunami On Coastal Ecosystems And Resultant Effects On The Human Communities Of Sri Lanka

    Science.gov (United States)

    Ingram, J.; Rumbaitis-del Rio, C.; Franco, G.; Khazai, B.

    2005-12-01

    The devastating tsunami that hit Sri Lanka on December 26, 2004 has demonstrated vividly the inter-connections between social and ecological resilience. Before the tsunami, the coastal zone of Sri Lanka was inhabited by predominantly poor populations, most of whom were directly dependent upon coastal natural resources, such as fisheries and coconut trees, for supporting their livelihoods. Many of these people have now lost their livelihoods through the destruction of their boats and nets for fishing, the contamination of drinking sources, homes, family members and assets. This presentation focuses on observations of the tsunami impacts on both social and ecological communities made along the affected coastline of Sri Lanka in April-May 2005. This assessment recorded patterns of ecological resistance and damage resulting from the tsunami in relation to damage on the human environment, with an exploration of the physical factors that may have contributed to vulnerability or resistance. This work also involved a preliminary assessment of the resilience and recovery of different natural resource based livelihood strategies following the disaster and an exploration of livelihood possibilities in proposed resettlement sites. From observations made in this and other recent studies, it is apparent that intact ecosystems played a vital role in protection from the impact of the tsunami and are vital for supporting people as they seek to rebuild their livelihoods. However, certain structural and biological characteristics appear to offer certain tree species, such as coconut (Cocos nucifera), an advantage in surviving such events and have been important for providing food and drink to people in the days after the tsunami. Areas where significant environmental damage had occurred prior to the tsunami or where there were few natural defenses present to protect human communities, devastation of homes and lives was extremely high. Although, there is evidence that many previously

  4. Vancouver Coastal Health's Second Generation Health Strategy: A need for a reboot?

    Science.gov (United States)

    Masuda, Jeffrey R; Chan, Sophy

    2017-03-01

    In this commentary, we consider the motivations and implications of Vancouver Coastal Health's place-based population health strategy called the Downtown Eastside Second Generation Health Strategy (2GHS) in light of a broader historical view of shifting values in population and public health and structural health reforms in Canada over the past three decades. We argue that the tone and content of the 2GHS signals a shift towards a neoliberal clientelist model of health that treats people as patients and the DTES as a site of clinical encounter rather than as a community in its own right. In its clinical emphasis, the 2GHS fails to recognize the political dimension of health and well-being in the DTES, a community that faces compounding health risks associated with colonialism, gentrification, human displacement, the criminalization of poverty, sex work, and the street economy. Furthermore, we suggest that in its emphasis on allocating funding based on a rationalist model of health system access, the 2GHS undermines well-established insights and best practices from community-driven health initiatives. Our aim is to provide a provocation that will encourage public health policy-makers to embrace community-based leadership as well as the broader structural health determinants that are at the root of the current circumstances of people in the DTES and other marginalized communities in Canada.

  5. Linking restoration ecology with coastal dune restoration

    Science.gov (United States)

    Lithgow, D.; Martínez, M. L.; Gallego-Fernández, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L. L.

    2013-10-01

    Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and

  6. The potential of Tillandsia dune ecosystems for revealing past and present variations in advective fog along the coastal Atacama Desert, northern Chile

    Science.gov (United States)

    Latorre Hidalgo, C.; García, J. L.; Gonzalez, A. L.; Marquet, P. A.

    2015-12-01

    The coastal Atacama Desert is home to a complex geo-ecosystem supported by fog with multiple atmospheric and oceanic drivers. Fog collectors in place for the last 17 years reveal that monthly fog intensity and amount are significantly linked to the El Niño-Southern Oscillation (ENSO 1+2) with cold (warm) anomalies correlated to increased (decreased) fog (R2 = 0.41). Rainfall, however, can occur during extreme positive ENSO anomalies. Tillandsia landbeckii is an epiarenitic plant common to the coastal Atacama where fog is intercepted by the coastal escarpment between 950-1250 m.a.s.l. These plants possess multiple adaptations to survive exclusively on fog, including the construction of "dune" ecosystems known as "tillandsiales". Buried T. landbeckii layers in such dunes contain a record of past variations of fog over time (dunes can top 3 m in height) and alternating plant and sand layers are readily visible in dune stratigraphy. Stable N isotopes on modern plants and fog indicate that these plants reflect δ15N values of total N dissolved in fog. We measured δ15N values from buried T. landbeckii layers from five different tillandsiales found across c. 50 km the coastal escarpment. The isotope values in these buried plants indicate a prominent c. 8.0 ‰ shift towards more negative δ15N values on average over the last 3,200 years. Based on differences in δ15N between modern and more extensive "paleo" tillandsiales at one of our lowest elevation study sites, we interpret this shift as an increase in available moisture due to increased fog input during the late Holocene. Increased variability in ENSO as well as increased upwelling and southerly winds along the coastal Atacama would explain in part this increase. Clearly, the Atacama tillandsiales have considerable potential for monitoring past and present change of these large-scale ocean-atmosphere systems.

  7. An integrated approach shows different use of water resources from Mediterranean maquis species in a coastal dune ecosystem

    Science.gov (United States)

    Mereu, S.; Salvatori, E.; Fusaro, L.; Gerosa, G.; Muys, B.; Manes, F.

    2009-11-01

    An integrated approach has been used to analyse the dependence of three Mediterranean species, A. unedo L., Q. ilex L., and P. latifolia L. co-occurring in a coastal dune ecosystem on two different water resources: groundwater and rainfed upper soil layers. The approach included leaf level gas exchanges, sap flow measurements and structural adaptations between 15 May and 31 July 2007. During this period it was possible to capture different species-specific response patterns to an environment characterized by a sandy soil, with a low water retention capacity, and the presence of a water table. The latter did not completely prevent the development of a drought response and, combined with previous studies in the same area, response differences between species have been partially attributed to different root distributions. Sap flow of A. unedo decreased rapidly with the decline of soil water content, while that of Q. ilex decreased only moderately. Midday leaf water potential of P. latifolia and A. unedo ranged between -2.2 and -2.7 MPa throughout the measuring period, while in Q. ilex it decreased down to -3.4 MPa at the end of the season. A. unedo was the only species that responded to drought with a decrease of its leaf area to sapwood area ratio from 23.9±1.2 (May) to 15.2±1.5 (July). While A. unedo also underwent an almost stepwise loss on hydraulic conductivity, such a loss did not occur for Q. ilex, whereas P. latifolia was able to slightly increase its hydraulic conducitivity. These differences show how different plant compartments coordinate differently between species in their responses to drought. The different responses appear to be mediated by different root distributions of the species and their relative resistances to drought are likely to depend on the duration of the periods in which water remains extractable in the upper soil layers.

  8. Impacts of Climatic Hazards on the Small Wetland Ecosystems (ponds: Evidence from Some Selected Areas of Coastal Bangladesh

    Directory of Open Access Journals (Sweden)

    Lucy Faulkner

    2013-04-01

    Full Text Available Most climate related hazards in Bangladesh are linked to water. The climate vulnerable poor—the poorest and most marginalized communities living in remote villages along Bangladesh’s coastal zone that are vulnerable to climate change impacts and who possess low adaptive capacity are most affected by lack of access to safe water sources. Many climate vulnerable poor households depend on small isolated wetlands (ponds for daily drinking water needs and other domestic requirements, including cooking, bathing and washing. Similarly, the livelihoods of many of these households also depend on access to ponds due to activities of small-scale irrigation for rice farming, vegetable farming and home gardening. This is particularly true for those poorest and most marginalized communities living in Satkhira, one of the most vulnerable coastal districts in south-west Bangladesh. These households rely on pond water for vegetable farming and home gardening, especially during winter months. However, these pond water sources are highly vulnerable to climate change induced hazards, including flooding, drought, salinity intrusion, cyclone and storm surges, erratic rainfall patterns and variations in temperature. Cyclone Sidr and Cyclone Aila, which hit Bangladesh in 2007 and 2009 respectively, led to a significant number of such ponds being inundated with saline water. This impacted upon and resulted in wide scale implications for climate vulnerable poor households, including reduced availability of safe drinking water, and safe water for health and hygiene practices and livelihood activities. Those households living in remote areas and who are most affected by these climate impacts are dependent on water being supplied through aid, as well as travelling long distances to collect safe water for drinking purposes.

  9. Ecosystem Services

    Science.gov (United States)

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  10. Health impacts of ultraviolet radiation in urban ecosystems: a review

    Science.gov (United States)

    Heisler, Gordon M.

    2005-08-01

    This paper explores the literature on ultraviolet irradiance (UV) in urban ecosystems with respect to the likely effects on human health. The focus was the question of whether the health effects of UV radiation should be included in planning of landscape elements such as trees and shading structures. In examining the literature, special attention was given to seeking information on the question of whether it is important that shade be provided for elementary school play areas, and if so, how should it be accomplished? Before such practical questions could be dealt with, it became obvious that answers to several pertinent secondary questions had to be sought. Foremost of these was, what are the negative and positive health effects of UV exposure? Recent epidemiological findings of apparent benefits of sunlight because of vitamin-D photosynthesis and resulting anti-cancer effects make this highly relevant. Another basic question is that of trends in ozone depletion, which leads to interesting questions of long-term trends, short-term extremes, and urban influences on UV irradiance. A host of these and other pertinent questions, such as, "What is the relationship between climate of a location and dress," i.e., "How much exposure will people receive during time spent outdoors?" require much more study. Judging from current knowledge of typical spectra of solar radiation in tree shade and the difference between the action spectra for vitamin D synthesis and erythema in human skin, exposure to solar radiation in tree shade for a short period of time can be somewhat more beneficial for vitamin D synthesis and regulation than detrimental in producing sunburn.

  11. Eco-Health Linkages: Assessing the Role of Ecosystem Goods and Services on Human Health Using Causal Criteria Analysis

    Science.gov (United States)

    Objectives In the last decade, we saw an upsurge of studies evaluating the role of ecosystem goods and services (EGS) on human health (Eco-Health). Most of this work consists of observational research of intermediate processes and few address the full pathways from ecosystem to E...

  12. Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models

    DEFF Research Database (Denmark)

    Zhang, J.; Gürkan, Zeren; Jørgensen, S.E.

    2010-01-01

    are developed using eco-exergy as the goal function, have been applied in explaining and exploring ecosystem properties and changes in community structure driven by biotic and abiotic factors. In this paper, we review the application of eco-exergy for the assessment of ecosystem health and development......Eco-exergy has been widely used in the assessment of ecosystem health, parameter estimations, calibrations, validations and prognoses. It offers insights into the understanding of ecosystem dynamics and disturbance-cl riven changes. Particularly, structurally dynamic models (SDMs), which...

  13. Coastal marine contamination in Colombia

    International Nuclear Information System (INIS)

    Garay T, Jesus A; Marin Z, Bienvenido; Velez G, Ana Maria

    2002-01-01

    The paper tries about the problem of the marine contamination and their marked influence in the health of the coastal ecosystems, of their narrow relationship with the growing increase of the populations that they inhabit the coastal areas and of equal it forms, with the increment of the domestic, agricultural and industrial activities that, for the wrong handling and inadequate control of the solid and liquid waste, they affect the marine environment with significant implications at ecological, socioeconomic level and of health. Another component of the environmental problem of the marine ecosystems in the country, resides in that don't exist in general normative on the chemical quality and sanitary for its marine waters, that which limits the categorization of this agreement ecosystems with its environmental quality, conditioning this the lack of adequate mechanisms to mitigate the causes that originate the deterioration of the quality of the Colombian coasts

  14. Assessment of Urban Ecosystem Health Based on Entropy Weight Extension Decision Model in Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2016-08-01

    Full Text Available Urban ecosystem health evaluation can assist in sustainable ecological management at a regional level. This study examined urban agglomeration ecosystem health in the middle reaches of the Yangtze River with entropy weight and extension theories. The model overcomes information omissions and subjectivity problems in the evaluation process of urban ecosystem health. Results showed that human capital and education, economic development level as well as urban infrastructure have a significant effect on the health states of urban agglomerations. The health status of the urban agglomeration’s ecosystem was not optimistic in 2013. The majority of the cities were unhealthy or verging on unhealthy, accounting for 64.52% of the total number of cities in the urban agglomeration. The regional differences of the 31 cities’ ecosystem health are significant. The cause originated from an imbalance in economic development and the policy guidance of city development. It is necessary to speed up the integration process to promote coordinated regional development. The present study will aid us in understanding and advancing the health situation of the urban ecosystem in the middle reaches of the Yangtze River and will provide an efficient urban ecosystem health evaluation method that can be used in other areas.

  15. Quantitative Evaluation of Ecosystem Health in a Karst Area of South China

    Directory of Open Access Journals (Sweden)

    Shengzi Chen

    2016-10-01

    Full Text Available The purpose of this study is to propose a GIS-based mechanism for diagnosing karst rocky desertification (KRD ecosystem health. Using the Huajiang Demonstration Area in Guizhou Province as a case study, this research offers a multi-factor indicator system for diagnosing KRD ecosystem health. A set of geologic, environmental, and socio-economic health indicators were developed based on remote sensing images from field-investigation, hydrological, and meteorological monitoring data. With the use of grid GIS technology, this study gives an indicator for diagnosing the spatial expression of desertification at a 5 m × 5 m grid scale. Using spatial overlaying technology based on grid data, the temporal and spatial dynamics of ecosystem health in the Huajiang Demonstration Area were tracked over a 10 year time span. The results of the analysis indicate that ecosystem health in the Huajiang Demonstration Area varies regionally, and has overall improved over time. The proportion of healthy area increased from 3.7% in 2000 to 8.2% in 2010. However, unhealthy and middle-health areas still accounted for 78.7% of the total area by 2010. The most obvious improvement of ecosystem health was in an area where comprehensive control measures for curbing KRD were implemented. These results suggest that comprehensive control of KRD can effectively mitigate ecosystem deterioration and improve ecosystem health in karst regions of South China.

  16. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    Science.gov (United States)

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  17. Sensitive coastal marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    stream_size 1 stream_content_type text/plain stream_name Voices_Oceans_1996_95.pdf.txt stream_source_info Voices_Oceans_1996_95.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  18. Identifying essential components of a digital health innovation ecosystem for the Namibian context: findings from a Delphi study

    CSIR Research Space (South Africa)

    Iyawa, GE

    2017-01-01

    Full Text Available The concept of digital health innovation ecosystems is an emerging body of literature which suggests that components of digital health, innovation and digital ecosystems are important in the administration and delivery of healthcare services...

  19. An integrated approach shows different use of water resources from Mediterranean maquis species in a coastal dune ecosystem

    Directory of Open Access Journals (Sweden)

    F. Manes

    2009-11-01

    Full Text Available An integrated approach has been used to analyse the dependence of three Mediterranean species, A. unedo L., Q. ilex L., and P. latifolia L. co-occurring in a coastal dune ecosystem on two different water resources: groundwater and rainfed upper soil layers. The approach included leaf level gas exchanges, sap flow measurements and structural adaptations between 15 May and 31 July 2007. During this period it was possible to capture different species-specific response patterns to an environment characterized by a sandy soil, with a low water retention capacity, and the presence of a water table. The latter did not completely prevent the development of a drought response and, combined with previous studies in the same area, response differences between species have been partially attributed to different root distributions. Sap flow of A. unedo decreased rapidly with the decline of soil water content, while that of Q. ilex decreased only moderately. Midday leaf water potential of P. latifolia and A. unedo ranged between −2.2 and −2.7 MPa throughout the measuring period, while in Q. ilex it decreased down to −3.4 MPa at the end of the season. A. unedo was the only species that responded to drought with a decrease of its leaf area to sapwood area ratio from 23.9±1.2 (May to 15.2±1.5 (July. While A. unedo also underwent an almost stepwise loss on hydraulic conductivity, such a loss did not occur for Q. ilex, whereas P. latifolia was able to slightly increase its hydraulic conducitivity. These differences show how different plant compartments coordinate differently between species in their responses to drought. The different responses appear to be mediated by different root distributions of the species and their relative resistances to drought are likely to depend on the duration of the periods in which water remains extractable in the upper soil layers.

  20. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem

    Science.gov (United States)

    Gebremichael, Amanuel W.; Osborne, Bruce; Orr, Patrick

    2017-05-01

    Given their increasing trend in Europe, an understanding of the role that flooding events play in carbon (C) and nitrogen (N) cycling and greenhouse gas (GHG) emissions will be important for improved assessments of local and regional GHG budgets. This study presents the results of an analysis of the CO2 and N2O fluxes from a coastal grassland ecosystem affected by episodic flooding that was of either a relatively short (SFS) or long (LFS) duration. Compared to the SFS, the annual CO2 and N2O emissions were 1.4 and 1.3 times higher at the LFS, respectively. Mean CO2 emissions during the period of standing water were 144 ± 18.18 and 111 ± 9.51 mg CO2-C m-2 h-1, respectively, for the LFS and SFS sites. During the growing season, when there was no standing water, the CO2 emissions were significantly larger from the LFS (244 ± 24.88 mg CO2-C m-2 h-1) than the SFS (183 ± 14.90 mg CO2-C m-2 h-1). Fluxes of N2O ranged from -0.37 to 0.65 mg N2O-N m-2 h-1 at the LFS and from -0.50 to 0.55 mg N2O-N m-2 h-1 at the SFS, with the larger emissions associated with the presence of standing water at the LFS but during the growing season at the SFS. Overall, soil temperature and moisture were identified as the main drivers of the seasonal changes in CO2 fluxes, but neither adequately explained the variations in N2O fluxes. Analysis of total C, N, microbial biomass and Q10 values indicated that the higher CO2 emissions from the LFS were linked to the flooding-associated influx of nutrients and alterations in soil microbial populations. These results demonstrate that annual CO2 and N2O emissions can be higher in longer-term flooded sites that receive significant amounts of nutrients, although this may depend on the restriction of diffusional limitations due to the presence of standing water to periods of the year when the potential for gaseous emissions are low.

  1. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    Science.gov (United States)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; hide

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  2. Vaccination ecosystem health check: achieving impact today and sustainability for tomorrow.

    Science.gov (United States)

    Saadatian-Elahi, Mitra; Bloom, David; Plotkin, Stanley; Picot, Valentina; Louis, Jacques; Watson, Michael

    2017-01-01

    Vaccination is a complex ecosystem with several components that interact with one another and with the environment. Today's vaccine ecosystem is defined by the pursuit of polio eradication, the drive to get as many of the new vaccines to as many people as possible and the research and development against immunologically challenging diseases. Despite these successes, vaccine ecosystem is facing keys issues with regard to supply/distribution and cost/profitability asymmetry that risk slowing its global growth. The conference "Vaccination ecosystem health check: achieving impact today and sustainability for tomorrow" held in Annecy-France (January 19-21, 2015) took stock of the health of today's vaccination ecosystem and its ability to reliably and sustainably supply high-quality vaccines while investing in tomorrow's needed innovation. Small and decreasing numbers of suppliers/manufacturing facilities; paucity of research-driven companies; regulatory pressures; market uncertainties; political prioritization; anti-vaccine movements/complacency; and technological and programmatic issues were acknowledged as the major challenges that could weaken today's vaccination ecosystem. The expert panel discussed also drivers and barriers to a sustainable vaccination ecosystem; the metrics of a vaccination ecosystem; and what should be added, removed, increased, or reduced to maintain the health of the vaccination ecosystem.

  3. Identifying and defining the terms and elements related to a digital health innovation ecosystem

    CSIR Research Space (South Africa)

    Iyawa, G

    2016-12-01

    Full Text Available environment in which digital health systems have to be implemented in South Africa provides for specific challenges relating to environmental, community and physical challenges. By using an in-depth comparative case study within the design science..., Approaches and Experiences: Towards building a South African Digital Health Innovation Ecosystem 2 Strategies, Approaches and Experiences: Towards building a South African Digital Health Innovation Ecosystem First published in December 2016...

  4. The Contribution of Mosses to the Complex Pattern of Diurnal and Seasonal Metabolism the wet Coastal Tundra Ecosystems Near Barrow Alaska.

    Science.gov (United States)

    Zona, D.; Oechel, W.; Hastings, S.; Oberbauer, S.; Kopetz, I.; Ikawa, H.

    2006-12-01

    Despite the abundance and importance bryophytes in the Alaskan Arctic tundra there is relatively little information on the role of these plants in determining the CO2 fluxes of Arctic tundra and, in particular, the environmental controls and climate change sensitivities of current and future photosynthesis in Arctic mosses. Studies in the tundra biome during the IBP program implicated high light together with high temperature as causes of decreases in photosynthesis in arctic mosses. Several authors have reported midday depression of moss photosynthesis due to high irradiance, even under optimum temperature and fully hydrated conditions. The focus of this study is to understand the role of Sphagnum ssp. mosses of various species, the dominant moss in the Alaska coastal wet Tundra on the total ecosystem carbon exchange throughout the season and in particular soon after snowmelt when the ecosystem is a carbon source. Our hypothesis is that the ecosystem carbon source activity during this critical period may be a result of sensitivity of mosses to light and photoinhibition in the absence of the protective canopy layer of vascular plants. In this study we measured daily courses of photosynthesis and fluorescence in the moss layer and we compare it to the total ecosystem carbon fluxes determined by the eddy covariance technique. The measurements were conducted in wet coastal tundra from June 2006, right after the snow melt, to August 2006 in the Biological Experimental Observatory (BEO) in Barrow, Alaska. The photosynthesis in the moss layer was found to be strongly inhibited when the radiation exceeded 800 ìmol m-2 s-1. Mosses remained fully hydrated throughout the season, precluding drying as a cause of decreased photosynthesis. Dark-adapted fluorescence measurements (Fv/Fm) showed a relatively low value (0.6) right after the snow melt, and remained fairly stable throughout the season. This low value was previously reported as characteristic of photoinhibited

  5. Advancing sustainability through urban green space: cultural ecosystem services, equity, and social determinants of health

    Science.gov (United States)

    Viniece Jennings; Lincoln Larson; Jessica Yun

    2016-01-01

    Urban green spaces provide an array of benefits, or ecosystem services, that support our physical, psychological, and social health. In many cases, however, these benefits are not equitably distributed across diverse urban populations. In this paper, we explore relationships between cultural ecosystem services provided by urban green space and the social determinants...

  6. Understanding the links between ecosystem health and social system well-being: an annotated bibliography.

    Science.gov (United States)

    Dawn M. Elmer; Harriet H. Christensen; Ellen M. Donoghue; [Compilers].

    2002-01-01

    This bibliography focuses on the links between social system well-being and ecosystem health. It is intended for public land managers and scientists and students of social and natural sciences. Multidisciplinary science that addresses the interconnections between the social system and the ecosystem is presented. Some of the themes and strategies presented are policy...

  7. Advancing Sustainability through Urban Green Space: Cultural Ecosystem Services, Equity, and Social Determinants of Health

    Science.gov (United States)

    Jennings, Viniece; Larson, Lincoln; Yun, Jessica

    2016-01-01

    Urban green spaces provide an array of benefits, or ecosystem services, that support our physical, psychological, and social health. In many cases, however, these benefits are not equitably distributed across diverse urban populations. In this paper, we explore relationships between cultural ecosystem services provided by urban green space and the social determinants of health outlined in the United States Healthy People 2020 initiative. Specifically, we: (1) explore connections between cultural ecosystem services and social determinants of health; (2) examine cultural ecosystem services as nature-based health amenities to promote social equity; and (3) recommend areas for future research examining links between urban green space and public health within the context of environmental justice. PMID:26861365

  8. Ecosystem response to human- and climate-induced environmental stress on an anoxic coastal lagoon (Etoliko, Greece) since 1930 AD

    NARCIS (Netherlands)

    Koutsodendris, Andreas; Brauer, Achim; Zacharias, Ierotheos; Putyrskaya, Victoria; Klemt, Eckehard; Sangiorgi, Francesca; Pross, Jörg

    To better constrain the effects of anthropogenic impact on coastal wetlands with respect to natural variability, we here analyze annually laminated sediments from Etoliko lagoon (western Greece, Mediterranean Sea) spanning the last*80 years. Subdecadal- scale palynomorph (pollen and dinoflagellate

  9. Coastal nutrification and coral health at Porto Seguro reefs, Brazil

    Science.gov (United States)

    Costa, O.; Attrill, M.; Nimmo, M.

    2003-04-01

    Human activities have substantially increased the natural flux of nutrients to coastal systems worldwide. In Brazilian reefs, all major stresses (sedimentation, overfishing, tourism-related activities and nutrification) are human induced. To assess nutrification levels in Brazilian coastal reefs, measurements of the distribution patterns of nutrients and chlorophyll concentrations were conducted in three nearshore and offshore reefs with distinct nutrient inputs along the south coast of Bahia State. Seawater and porewater samples were analysed for soluble reactive phosphorus, total oxidised nitrogen and reactive silica. Benthic surveys were performed at all sites to investigate the relationships between benthic community composition and nutrient and chlorophyll concentrations. Sampling was undertaken in dry and rainy seasons. Results of both seawater and porewater nutrient measurements revealed the occurrence of consistent spatial and temporal patterns. An inshore-offshore gradient reflects the occurrence of land-based point sources, with significant amount of nutrients being delivered by human activities on the coast (untreated sewage and groundwater seepage). Another spatial gradient is related to distance from a localized source of pollution (an urban settlement without sewerage treatment) with two nearshore reefs presenting distinct nutrient and chlorophyll concentrations. Seasonal variations suggest that submarine groundwater discharge (SGD) is the primary source of nutrients for the coastal reefs during rainy season. The data also suggests that the SGD effect is not restricted to nearshore reefs, and may be an important factor controlling the differences between landward and seaward sides on the offshore reef. Benthic community assessment revealed that turf alga is the dominant group in all studied reefs and that zoanthids are the organisms most adapted to take advantage of nutrient increase in coastal areas. At nearshore reefs, there was a negative

  10. Comparative study of isotopic trends in two coastal ecosystems of North Biscay: A multitrophic spatial gradient approach

    Science.gov (United States)

    Mortillaro, J. M.; Schaal, G.; Grall, J.; Nerot, C.; Brind'Amour, A.; Marchais, V.; Perdriau, M.; Le Bris, H.

    2014-01-01

    In coastal estuarine embayments, retention of water masses due to coastal topography may result in an increased contribution of continental organic matter in food webs. However, in megatidal embayments, the effect of topography can be counterbalanced by the process of tidal mixing. Large amounts of continental organic matter are exported each year by rivers to the oceans. The fate of terrestrial organic matter in food webs of coastal areas and on neighboring coastal benthic communities was therefore evaluated, at multi-trophic levels, from primary producers to primary consumers and predators. Two coastal areas of the French Atlantic coast, differing in the contributions from their watershed, tidal range and aperture degree, were compared using carbon and nitrogen stable isotopes (δ13C and δ15N) during two contrasted periods. The Bay of Vilaine receives large inputs of freshwater from the Vilaine River, displaying 15N enriched and 13C depleted benthic communities, emphasizing the important role played by allochtonous inputs and anthropogenic impact on terrestrial organic matter in the food web. In contrast, the Bay of Brest which is largely affected by tidal mixing, showed a lack of agreement between isotopic gradients displayed by suspended particulate organic matter (SPOM) and suspension-feeders. Discrepancy between SPOM and suspension-feeders is not surprising due to differences in isotopes integration times. We suggest further that such a discrepancy may result from water replenishment due to coastal inputs, nutrient depletion by phytoplankton production, as well as efficient selection of highly nutritive phytoplanktonic particles by primary consumers.

  11. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment

    Directory of Open Access Journals (Sweden)

    Kathryn Lane

    2013-01-01

    Full Text Available Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  12. Health effects of coastal storms and flooding in urban areas: a review and vulnerability assessment.

    Science.gov (United States)

    Lane, Kathryn; Charles-Guzman, Kizzy; Wheeler, Katherine; Abid, Zaynah; Graber, Nathan; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  13. Application of macrobenthos functional groups to estimate the ecosystem health in a semi-enclosed bay.

    Science.gov (United States)

    Peng, Shitao; Zhou, Ran; Qin, Xuebo; Shi, Honghua; Ding, Dewen

    2013-09-15

    In this study, the functional group concept was first applied to evaluate the ecosystem health of Bohai Bay. Macrobenthos functional groups were defined according to feeding types and divided into five groups: a carnivorous group (CA), omnivorous group (OM), planktivorous group (PL), herbivorous group (HE), and detritivorous group (DE). Groups CA, DE, OM, and PL were identified, but the HE group was absent from Bohai Bay. Group DE was dominant during the study periods. The ecosystem health was assessed using a functional group evenness index. The functional group evenness values of most sampling stations were less than 0.40, indicating that the ecosystem health was deteriorated in Bohai Bay. Such deterioration could be attributed to land reclamation, industrial and sewage effluents, oil pollution, and hypersaline water discharge. This study demonstrates that the functional group concept can be applied to ecosystem health assessment in a semi-enclosed bay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Short- and longterm impacts of Acacia longifolia invasion on belowground processes of a Mediterranean coastal dune ecosystem

    DEFF Research Database (Denmark)

    Marchante, Elizabete; Kjøller, Annelise; Struwe, Sten

    2008-01-01

    to new areas, displacing the native vegetation. These invaded ecosystems contrast with the native dune ecosystems that are typically dominated by herb and shrub communities. This study characterizes belowground changes to the native environment as a result of recent (20 y...

  15. Compound-specific δ15N amino acid measurements in littoral mussels in the California upwelling ecosystem: a new approach to generating baseline δ15N Isoscapes for coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Natasha L Vokhshoori

    Full Text Available We explored δ(15N compound-specific amino acid isotope data (CSI-AA in filter-feeding intertidal mussels (Mytilus californianus as a new approach to construct integrated isoscapes of coastal primary production. We examined spatial δ(15N gradients in the California Upwelling Ecosystem (CUE, determining bulk δ(15N values of mussel tissue from 28 sites between Port Orford, Oregon and La Jolla, California, and applying CSI-AA at selected sites to decouple trophic effects from isotopic values at the base of the food web. Bulk δ(15N values showed a strong linear trend with latitude, increasing from North to South (from ∼ 7‰ to ∼ 12‰, R(2 = 0.759. In contrast, CSI-AA trophic position estimates showed no correlation with latitude. The δ(15N trend is therefore most consistent with a baseline δ(15N gradient, likely due to the mixing of two source waters: low δ(15N nitrate from the southward flowing surface California Current, and the northward transport of the California Undercurrent (CUC, with (15N-enriched nitrate. This interpretation is strongly supported by a similar linear gradient in δ(15N values of phenylalanine (δ(15NPhe, the best AA proxy for baseline δ(15N values. We hypothesize δ(15N(Phe values in intertidal mussels can approximate annual integrated δ(15N values of coastal phytoplankton primary production. We therefore used δ(15N(Phe values to generate the first compound-specific nitrogen isoscape for the coastal Northeast Pacific, which indicates a remarkably linear gradient in coastal primary production δ(15N values. We propose that δ(15N(Phe isoscapes derived from filter feeders can directly characterize baseline δ(15N values across major biochemical provinces, with potential applications for understanding migratory and feeding patterns of top predators, monitoring effects of climate change, and study of paleo- archives.

  16. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    Science.gov (United States)

    Larsen, Laurel G.; Moseman, Serena; Santoro, Alyson; Hopfensperger, Kristine; Burgin, Amy

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  17. Bridging the gap between policy and science in assessing the health status of marine ecosystems

    Directory of Open Access Journals (Sweden)

    Angel Borja

    2016-09-01

    Full Text Available Human activities, both established and emerging, increasingly affect the provision of marine ecosystem services that deliver societal and economic benefits. Monitoring the status of marine ecosystems and determining how human activities change their capacity to sustain benefits for society requires an evidence-based Integrated Ecosystem Assessment approach that incorporates knowledge of ecosystem functioning and services. Although there are diverse methods to assess the status of individual ecosystem components, none assesses the health of marine ecosystems holistically, integrating information from multiple ecosystem components. Similarly, while acknowledging the availability of several methods to measure single pressures and assess their impacts, evaluation of cumulative effects of multiple pressures remains scarce. Therefore, an integrative assessment requires us to first understand the response of marine ecosystems to human activities and their pressures and then develop innovative, cost-effective monitoring tools that enable collection of data to assess the health status of large marine areas. Conceptually, combining this knowledge of effective monitoring methods with cost-benefit analyses will help identify appropriate management measures to improve environmental status economically and efficiently. The European project DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status specifically addressed these topics in order to support policy makers and managers in implementing the European Marine Strategy Framework Directive. Here, we synthesize our main innovative findings, placing these within the context of recent wider research, and identifying gaps and the major future challenges.

  18. The Evolution of an Ecosystem Approach: the Diamond Schematic and an Adaptive Methodology for Ecosystem Sustainability and Health

    Directory of Open Access Journals (Sweden)

    David Waltner-Toews

    2005-06-01

    Full Text Available Over the past 15 yr, an international network of researchers has developed and tested a methodology for integrating complex systems theories into sustainable development projects. Drawing on our best theoretical understanding of complex systems and combining it with best practices of community engagement drawn from a wide variety of sources, we have developed a methodology that is theoretically sound and practically effective. AMESH, an Adaptive Methodology for Ecosystem Sustainability and Health, has emerged from, and been tested in, Nepal, Kenya, Canada, and Peru.

  19. Interagency Working Group on Ocean Social Science: Incorporating ecosystem services approaches into ocean and coastal decision-making and governance

    Science.gov (United States)

    The application of social science has been recognized as a priority for effective ocean and coastal management, driving much discussion and fostering emerging efforts in several areas. The Interagency Working Group on Ocean Social Science (IWG-OSS) is tasked with assisting the Su...

  20. Eco-Health Linkages: evidence base and socio-economic considerations for linking ecosystem goods and services to human health

    Science.gov (United States)

    Ecosystem goods and services (EGS) are thought to play a role in protecting human health, but the empirical evidence directly linking EGS to human health outcomes is limited, and our ability to detect Eco-Health linkages is confounded by socio-economic factors. These limitations ...

  1. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence

    Science.gov (United States)

    Brodie, Jon; Pearson, Richard G.

    2016-12-01

    The Great Barrier Reef (GBR) is a World Heritage site off the north-eastern coast of Australia. The GBR is worth A 15-20 billion/year to the Australian economy and provides approximately 64,000 full time jobs. Many of the species and ecosystems of the GBR are in poor condition and continue to decline. The principal causes of the decline are catchment pollutant runoff associated with agricultural and urban land uses, climate change impacts and the effects of fishing. Many important ecosystems of the GBR region are not included inside the boundaries of the World Heritage Area. The current management regime for catchment pollutant runoff and climate change is clearly inadequate to prevent further decline. We propose a refocus of management on a "Greater GBR" (containing not only the major ecosystems and species of the GBR, but also its catchment) and on a set of management actions to halt the decline of the GBR. Proposed actions include: (1) Strengthen management in the areas of the Greater GBR where ecosystems are in good condition, with Torres Strait, northern Cape York and Hervey Bay being the systems with highest current integrity; (2) Investigate methods of cross-boundary management to achieve simultaneous cost-effective terrestrial, freshwater and marine ecosystem protection in the Greater GBR; (3) Develop a detailed, comprehensive, costed water quality management plan for the Greater GBR; (4) Use the Great Barrier Reef Marine Park Act and the Environment Protection and Biodiversity Conservation Act to regulate catchment activities that lead to damage to the Greater GBR, in conjunction with the relevant Queensland legislation; (5) Fund catchment and coastal management to the required level to solve pollution issues for the Greater GBR by 2025, before climate change impacts on Greater GBR ecosystems become overwhelming; (6) Continue enforcement of the zoning plan; (7) Australia to show commitment to protecting the Greater GBR through greenhouse gas emissions

  2. Project on 'contaminations - radiation - ecosystems - health' in Russia

    International Nuclear Information System (INIS)

    Botov, N.G.; Kozulin, S.P.; Mironova, N.I.; Dubov, R.I.

    1993-01-01

    This project has two purposes: 1. To determine the influence of the radiation factor among other factors that are increasing human disease and death rate, and are determining industrial impacts to the environment, ecosystems, and people's lives; 2. To ascertain the ecological, medical and social wellbeing of certain contaminated areas in Russia, monitoring and management of radioactive pollution, radioactive waste storage, heavy metals and other contaminants. In our report we present the following: a few experimental data on radioactive contamination; problems of information, experiments and metrology; scientific and technical methods and approaches; financial, equipmental and other needs, that are necessary for successful completion of this Project

  3. Toward a conceptual approach for assessing risks from chemical mixtures and other stressors to coastal ecosystem services

    DEFF Research Database (Denmark)

    Syberg, Kristian; Backhaus, Thomas; Banta, Gary Thomas

    2017-01-01

    in Costa Rica) are provided; one focuses on chemicals that affect human food supply and the other addresses pesticide runoff and trade-offs among ES. The 2 cases are used to highlight challenges of such risk assessments, including use of standardized versus ES-relevant test species, data completeness......, translate impacts into ES units; step F, assess cumulative risk in ES units; step G, rank stressors based on their contribution to adverse effects on ES; and step H, implement regulation and management as appropriate and necessary. Two illustrative case studies (Swedish coastal waters and a coastal lagoon......, and trade-offs among ES. Lessons learned from the 2 case studies are discussed in relation to environmental risk assessment and management of chemical mixtures....

  4. Impact on a fish assemblage of the maintenance dredging of a navigation channel in a tropical coastal ecosystem

    OpenAIRE

    Demarques Ribeiro da Silva Junior; Sérgio Ricardo Santos; Marcelo Travassos; Marcelo Vianna

    2012-01-01

    Dredging and dredge-spoil disposal are among the major problems in coastal management. Many of the scientific contributions concerning the impacts of this practice are based on the study of sessile organisms and subtropical environments. We evaluated changes in the composition and abundance of a fish assemblage resulting from dredging and sediment disposal at the mouth and in the adjacent waters of the Caravelas River on the north-eastern coast of Brazil. Samples were collected in two directl...

  5. Spatial distribution in a temperate coastal ecosystem of the wild stock of the farmed oyster Crassostrea gigas (Thunberg)

    OpenAIRE

    Cognie, B; Haure, Joel; Barille, L

    2006-01-01

    The Pacific oyster, Crassostrea gigas, well known throughout the world because of its ability to adapt to a wide range of environmental conditions, was introduced for cultivation into France on a massive scale in the 1970s. With global warming, the reproductive population, confined at the beginning to the south of the French Atlantic coast, became established at more northern latitudes (above 45 degrees 58'N), and wild C gigas began to colonize coastal areas such as our study site, Bourgneuf ...

  6. Educating veterinarians for careers in free-ranging wildlife medicine and ecosystem health

    Science.gov (United States)

    Mazet, J.A.K.; Hamilton, G.E.; Dierauf, L.A.

    2006-01-01

    In the last 10 years, the field of zoological medicine has seen an expansive broadening into the arenas of free-ranging wildlife, conservation medicine, and ecosystem health. During the spring/summer of 2005, we prepared and disseminated a survey designed to identify training and educational needs for individuals entering the wildlife medicine and ecosystem health fields. Our data revealed that few wildlife veterinarians believe that the training they received in veterinary school adequately prepared them to acquire and succeed in their field. Wildlife veterinarians and their employers ranked mentorship with an experienced wildlife veterinarian, training in leadership and communication, courses and externships in wildlife health, and additional formal training beyond the veterinary degree as important in preparation for success. Employers, wildlife veterinarians, and job seekers alike reported that understanding and maintaining ecosystem health is a key component of the wildlife veterinarian's job description, as it is critical to protecting animal health, including human health. Today's wildlife veterinarians are a new type of transdisciplinary professional; they practice medicine in their communities and hold titles in every level of government and academia. It is time that we integrate ecosystem health into our curricula to nurture and enhance an expansive way of looking at veterinary medicine and to ensure that veterinary graduates are prepared to excel in this new and complex world, in which the health of wildlife, domestic animals, and people are interdependent.

  7. Content of short-lived radionuclides in the Kanevskoe water reservoir and its coastal ecosystems after the Chernobyl NPP accident

    International Nuclear Information System (INIS)

    Zarubin, O.L.

    2008-01-01

    The content of Te 132, Np 239, Ba 140, I 131 in components of ecosystem of Kanevskoe reservoir of river Dnepr and adjoining to it surface ecosystems studied in 1986. The maximal content of investigated radionuclides was registered in water and surface vegetation. Contamination of hydrobionts by Ba 140 and I 131 has been generated practically at once after fall-out of these radionuclides directly on a mirror of the reservoir during the period from 30.04.1986 to 02.05.1986. Cancers Astacus Leptodactilus Eichw. and fishes intensively accumulated Ba 140 and I 131. (authors)

  8. Microlevel mapping of coastal geomorphology and coastal resources of Rameswaram island, India: A remote sensing and GIS perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Nobi, E.P.; Shivaprasad, A.; Karikalan, R.; Dilipan, E.; Thangaradjou, T.; Sivakumar, K.

    Coastal areas are facing serious threats from both manmade and natural disturbances; coastal erosion, sea-level variation, and cyclones are the major factors that alter the coastal topography and coastal resources of the island ecosystems...

  9. SPATIAL AND TEMPORAL DISTRIBUTION OF COLOURED DISSOLVED ORGANIC MATTER (CDOM) IN NARRAGANSETT BAY, RI: IMPLICATIONS FOR PHYTOPLANKTON IN COASTAL WATERS

    Science.gov (United States)

    One indicator of health in estuarine and coastal ecosystems is the ability of local waters to transmit sunlight to planktonic, macrophytic, and other submerged vegetation for photosynthesis. The concentration of coloured dissolved organic matter (CDOM) is a primary factor affecti...

  10. Environmental drivers of heterogeneity in the trophic-functional structure of protozoan communities during an annual cycle in a coastal ecosystem.

    Science.gov (United States)

    Xu, Guangjian; Yang, Eun Jin; Xu, Henglong

    2017-08-15

    Trophic-functional groupings are an important biological trait to summarize community structure in functional space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental drivers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle. The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure may reflect water quality status in coastal ecosystems. Copyright © 2017. Published by Elsevier Ltd.

  11. Status of coral reefs of Upolu (Independent State of Samoa) in the South West Pacific and recommendations to promote resilience and recovery of coastal ecosystems

    KAUST Repository

    Ziegler, Maren; Qué ré , Gaë lle; Ghiglione, Jean-Franç ois; Iwankow, Guillaume; Barbe, Valé rie; Boissin, Emilie; Wincker, Patrick; Planes, Serge; Voolstra, Christian R.

    2018-01-01

    Coral reef ecosystems worldwide are immediately threatened by the impacts of climate change. Here we report on the condition of coral reefs over 83 km of coastline at the island of Upolu, Samoa in the remote South West Pacific in 2016 during the Tara Pacific Expedition. Despite the distance to large urban centers, coral cover was extremely low (<1%) at approximately half of the sites and below 10% at 78% of sites. Two reef fish species, Acanthurus triostegus and Zanclus cornutus, were 10% smaller at Upolu than at neighboring islands. Importantly, coral cover was higher within marine protected areas, indicating that local management action remains a useful tool to support the resilience of local reef ecosystems to anthropogenic impacts. This study may be interpreted as cautionary sign for reef ecosystem health in remote locations on this planet, reinforcing the need to immediately reduce anthropogenic impacts on a global scale.

  12. Status of coral reefs of Upolu (Independent State of Samoa) in the South West Pacific and recommendations to promote resilience and recovery of coastal ecosystems

    KAUST Repository

    Ziegler, Maren

    2018-03-23

    Coral reef ecosystems worldwide are immediately threatened by the impacts of climate change. Here we report on the condition of coral reefs over 83 km of coastline at the island of Upolu, Samoa in the remote South West Pacific in 2016 during the Tara Pacific Expedition. Despite the distance to large urban centers, coral cover was extremely low (<1%) at approximately half of the sites and below 10% at 78% of sites. Two reef fish species, Acanthurus triostegus and Zanclus cornutus, were 10% smaller at Upolu than at neighboring islands. Importantly, coral cover was higher within marine protected areas, indicating that local management action remains a useful tool to support the resilience of local reef ecosystems to anthropogenic impacts. This study may be interpreted as cautionary sign for reef ecosystem health in remote locations on this planet, reinforcing the need to immediately reduce anthropogenic impacts on a global scale.

  13. Spartina alterniflora alters ecosystem DMS and CH4 emissions and their relationship along interacting tidal and vegetation gradients within a coastal salt marsh in Eastern China

    Science.gov (United States)

    Wang, Jinxin; Wang, Jinshu

    2017-10-01

    Invasive Spartina alterniflora accumulates organic carbon rapidly and can utilize a wide range of potential precursors for dimethyl sulfide (DMS) production, as well as a wide variety of methanogenic substrates. Therefore, we predicted that S. alterniflora invasion would alter the relationships between DMS and methane (CH4) fluxes along the interacting gradients of tidal influence and vegetation, as well as the ecosystem-atmosphere exchange of DMS and CH4. In this study, we used static flux chambers to measure DMS and CH4 fluxes in August (growing season) and December (non-growing season) of 2013, along creek and vegetation transects in an Eastern Chinese coastal salt marsh. S. alterniflora invasion dramatically increased DMS and CH4 emission rates by 3.8-513.0 and 2.0-127.1 times the emission rates within non-vegetated regions and regions populated with native species, respectively, and significantly altered the spatial distribution of DMS and CH4 emissions. We also observed a substantial amount of variation in the DMS and CH4 fluxes along the elevation gradient in the salt marsh studied. A significant relationship between DMS and CH4 fluxes was observed, with the CH4 flux passively related to the DMS flux. The correlation between CH4 and DMS emissions along the vegetation transects was more significant than along the tidal creek. In the S. alterniflora salt marsh, the relationship between DMS and CH4 fluxes was more significant than within any other salt marsh. Additionally, CH4 emissions within the S. alterniflora salt marsh were more sensitive to the variation in DMS emissions than within any other vegetation zone. The spatial variability in the relationship observed between DMS and CH4 fluxes appears to be at least partly due to the alteration of substrates involved in DMS and CH4 by S. alterniflora invasion. In the S. alterniflora salt marsh, methanogenesis was more likely to be derived from non-competitive substrates than competitive substrates, but within

  14. Coastal proximity and physical activity: Is the coast an under-appreciated public health resource?

    Science.gov (United States)

    White, Mathew P; Wheeler, Benedict W; Herbert, Stephen; Alcock, Ian; Depledge, Michael H

    2014-12-01

    Recent findings suggest that individuals living near the coast are healthier than those living inland. Here we investigated whether this may be related to higher levels of physical activity among coastal dwellers in England, arising in part as a result of more visits to outdoor coastal settings. Participants (n=183,755) were drawn from Natural England's Monitor of Engagement with the Natural Environment Survey (2009-2012). Analyses were based on self-reported physical activity for leisure and transport. A small, but significant coastal proximity gradient was seen for the likelihood of achieving recommended guidelines of physical activity a week after adjusting for relevant area and individual level controls. This effect was statistically mediated by the likelihood of having visited the coast in the last seven days. Stratification by region, however, suggested that while the main effect was relatively strong for west coast regions, it was not significant for those in the east. In general, our findings replicate and extend work from Australia and New Zealand. Further work is needed to explain the marked regional differences in the relationship between coastal proximity and physical activity in England to better understand the coast's potential role as a public health resource. Copyright © 2014. Published by Elsevier Inc.

  15. GIS-based multi-criteria site selection for zebra mussel cultivation: Addressing end-of-pipe remediation of a eutrophic coastal lagoon ecosystem.

    Science.gov (United States)

    Bagdanavičiūtė, Ingrida; Umgiesser, Georg; Vaičiūtė, Diana; Bresciani, Mariano; Kozlov, Igor; Zaiko, Anastasija

    2018-04-11

    Farming of shellfish and seaweeds is a tested tool for mitigating eutrophication consequences in coastal environments, however as many other marine economic activities it should be a subject of marine spatial planning for designating suitable sites. The present study proposes site selection framework for provisional zebra mussel farming in a eutrophic lagoon ecosystem, aimed primarily at remediation purposes. GIS-based multi-criteria approach was applied, combining data from empirical maps, numerical models and remote sensing to estimate suitability parameters. Site selection and prioritisation of suitable areas considered 15 environmental and socio-economic criteria, which contributed to 4 optimisation models (settlement, growth and survival of mussels, environmental and socio-economic) and 3 predefined scenarios representing provisional goals of mussel cultivation: spat production, biomass production and bioremediation. The relative importance of each criterion was assessed utilizing the Analytical Hierarchy Process. Site suitability index was calculated and the final result of the site selection analysis was summarized for 3 scenarios and overall suitability map. Four suitability classes (unsuitable, least, moderately and most suitable) were applied, and 3 most suitable zones for provisional zebra mussel cultivation with 12 candidate sites were selected accordingly. The integrated approach presented in this study can be adjusted for designating zebra mussel farming sites in other estuarine lagoon ecosystems, or cultivation of other mussel species for bioremediation purposes. The analytical framework and the workflow designed in this study are also adoptable for addressing other aquaculture-related spatial planning issues. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effects of physical forcing on COastal ZOoplankton community structure: study of the unusual case of a MEDiterranean ecosystem under strong tidal influence (Project COZOMED-MERMEX)

    Science.gov (United States)

    Pagano, Marc

    2017-04-01

    Groupe COZOMED: R. Arfi (1), A. Atoui (2), H. Ayadi (6), B. Bejaoui (1), N. Bhairy (1), N. Barraj (2), M. Belhassen (2), S. Benismail (2), M.Y Benkacem (2), J. Blanchot (1), M. Cankovic(5), F. Carlotti (1), C. Chevalier (1), I Ciglenecki-Jusic (5), D. Couet (1), N. Daly Yahia (3), L. Dammak (2), J.-L. Devenon (1), Z. Drira (6), A. Hamza (2), S. Kmia (6), N. Makhlouf (3), M. Mahfoudi (2), M. Moncef (4), M. Pagano (1), C. Sammari (2), H. Smeti (2), A. Zouari (2) The COZOMED-MERMEX project aims at understanding how hydrodynamic forcing (currents, tides, winds) combine with anthropogenic forcing and climate to affect the variability of coastal Mediterranean zooplankton communities under contrasting tidal influence. This study includes (i) a zero state of knowledge via a literature review of existing data and (ii) a case study on the system Boughrara lagoon - Gulf of Gabes. This ecosystem gives major services for Tunisia (about 65% of national fish production) but is weakened by its situation in a heavily anthropized area and under influence of urban, industrial and agricultural inputs. Besides this region is subject to specific climate forcing (Sahelian winds, scorching heat, intense evaporation, flooding) which possible changes will be considered. The expected issues are (i) to improve our knowledge of hydrodynamic forcing on zooplankton and ultimately on the functioning of coastal Mediterranean ecosystems impacted by anthropogenic and climatic effects and (ii) to elaborate management tools to help preserving good ecological status of these ecosystems: hydrodynamic circulation model, mapping of isochrones of residence times, mapping of the areas of highest zooplankton abundances (swarms), and sensitive areas, etc. This project strengthens existing scientific collaborations within the MERMEX program (The MerMex Group, 2011) and in the frame of an international joint laboratory (COSYS-Med) created in 2014. A first field mulidisciplinary campaign was performed in October

  17. The nexus between climate change, ecosystem services and human health: Towards a conceptual framework.

    Science.gov (United States)

    Chiabai, Aline; Quiroga, Sonia; Martinez-Juarez, Pablo; Higgins, Sahran; Taylor, Tim

    2018-09-01

    This paper addresses the impact that changes in natural ecosystems can have on health and wellbeing focusing on the potential co-benefits that green spaces could provide when introduced as climate change adaptation measures. Ignoring such benefits could lead to sub-optimal planning and decision-making. A conceptual framework, building on the ecosystem-enriched Driver, Pressure, State, Exposure, Effect, Action model (eDPSEEA), is presented to aid in clarifying the relational structure between green spaces and human health, taking climate change as the key driver. The study has the double intention of (i) summarising the literature with a special emphasis on the ecosystem and health perspectives, as well as the main theories behind these impacts, and (ii) modelling these findings into a framework that allows for multidisciplinary approaches to the underlying relations between human health and green spaces. The paper shows that while the literature based on the ecosystem perspective presents a well-documented association between climate, health and green spaces, the literature using a health-based perspective presents mixed evidence in some cases. The role of contextual factors and the exposure mechanism are rarely addressed. The proposed framework could serve as a multidisciplinary knowledge platform for multi-perspecitve analysis and discussion among experts and stakeholders, as well as to support the operationalization of quantitative assessment and modelling exercises. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Downscaling the marine modelling effort: Development, application and assessment of a 3D ecosystem model implemented in a small coastal area

    Science.gov (United States)

    Kolovoyiannis, V. N.; Tsirtsis, G. E.

    2013-07-01

    The present study deals with the development, application and evaluation of a modelling tool, implemented along with a field sampling program, in a limited coastal area in the Northeast Aegean. The aim was to study, understand and quantify physical circulation and water column ecological processes in a high resolution simulation of a past annual cycle. The marine ecosystem model consists of a three dimensional hydrodynamic component suitable for coastal areas (Princeton Ocean Model) coupled to a simple ecological model of five variables, namely, phytoplankton, nitrate, ammonia, phosphate and dissolved organic carbon concentrations. The ecological parameters (e.g. half saturation constants and maximum uptake rates for nutrients) were calibrated using a specially developed automated procedure. Model errors were evaluated using qualitative, graphic techniques and were quantified with a number of goodness-of-fit measures. Regarding physical variables, the goodness-of-fit of model to field data varied from fairly to quite good. Indicatively, the cost function, expressed as mean value per sampling station, ranged from 0.15 to 0.23 for temperature and 0.81 to 3.70 for current speed. The annual cycle of phytoplankton biomass was simulated with sufficient accuracy (e.g. mean cost function ranging from 0.49 to 2.67), partly attributed to the adequate reproduction of the dynamics of growth limiting nutrients, nitrate, ammonia and the main limiting nutrient, phosphate, whose mean cost function ranged from 0.97 to 1.88. Model results and field data provided insight to physical processes such as the development of a wind-driven, coastal jet type of surface alongshore flow with a subsurface countercurrent flowing towards opposite direction and the formation of rotational flows in the embayments of the coastline when the offshore coastal current speed approaches values of about 0.1 m/s. The percentage of field measurements where the N:P ratio was found over 16:1 varied between

  19. Dew contribution to the water balance in a semiarid coastal steppe ecosystem (Cabo de Gata, SE Spain)

    International Nuclear Information System (INIS)

    Moro, M. J.; Were, A.; Morillas, L.; Villagarcia, L.; Canton, Y.; Lazaro, R.; Serrano-Ortiz, P.; Kowalski, A. S.; Domingo, F.

    2009-01-01

    Dewfall deposition can be a significant source of moisture in arid and semiarid ecosystems, thus contribution to improve daily and annual water balances. Occurrence, frequency and amount of dewfall were measured in the Balsa Blanca site (Cabo de Gata, Almeria, Spain) from January 2007 to May 2008. this area has a sparse vegetation cover dominated by Stipa tenacissima combined with bare soil and biological soil crusts. (Author) 3 refs.

  20. TNT Degradation by Natural Microbial Assemblages at Frontal Boundaries Between Water Masses in Coastal Ecosystems (ER-2124)

    Science.gov (United States)

    2017-06-20

    receptor protein) and reduce substrate mineralization depending on how long it would take to disassociate the humic from the substrate upon dilution...geochemical samples . Anal. Chem. 72:3116-3121. Han, L., Sun, K., Jin, J., and B. Xing. 2016. Some concepts of soil organic carbon characteristics and...capacity for energetics released into hydrodynamically similar, UXO-impacted ecosystems where access to site samples may be limited. During samplings in

  1. Albemarle Sound demonstration study of the national monitoring network for US coastal waters and their tributaries

    Science.gov (United States)

    Michelle Moorman; Sharon Fitzgerald; Keith Loftin; Elizabeth Fensin

    2016-01-01

    The U.S. Geological Survey’s (USGS) is implementing a demonstration project in the Albemarle Sound for the National Monitoring Network for U.S. coastal waters and their tributaries. The goal of the National Monitoring Network is to provide information about the health of our oceans and coastal ecosystems and inland influences on coastal waters for improved resource...

  2. Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management

    International Nuclear Information System (INIS)

    Su, Meirong; Fath, Brian D.; Yang, Zhifeng; Chen, Bin; Liu, Gengyuan

    2013-01-01

    The evaluation of ecosystem health in urban clusters will help establish effective management that promotes sustainable regional development. To standardize the application of emergy synthesis and set pair analysis (EM–SPA) in ecosystem health assessment, a procedure for using EM–SPA models was established in this paper by combining the ability of emergy synthesis to reflect health status from a biophysical perspective with the ability of set pair analysis to describe extensive relationships among different variables. Based on the EM–SPA model, the relative health levels of selected urban clusters and their related ecosystem health patterns were characterized. The health states of three typical Chinese urban clusters – Jing-Jin-Tang, Yangtze River Delta, and Pearl River Delta – were investigated using the model. The results showed that the health status of the Pearl River Delta was relatively good; the health for the Yangtze River Delta was poor. As for the specific health characteristics, the Pearl River Delta and Yangtze River Delta urban clusters were relatively strong in Vigor, Resilience, and Urban ecosystem service function maintenance, while the Jing-Jin-Tang was relatively strong in organizational structure and environmental impact. Guidelines for managing these different urban clusters were put forward based on the analysis of the results of this study. - Highlights: • The use of integrated emergy synthesis and set pair analysis model was standardized. • The integrated model was applied on the scale of an urban cluster. • Health patterns of different urban clusters were compared. • Policy suggestions were provided based on the health pattern analysis

  3. Preferred ecosystem characteristics: their food and health relevance to China's rapid urbanisation.

    Science.gov (United States)

    Gibson, Valerie; Zhu, Yong-Guan; Ge, Rubing; Wahlqvist, Mark L

    2015-01-01

    For most of its history, China has supported a growing population through food systems which have been mutually inclusive of people and their locality. This trajectory has required adequate ecosystem maintenance or humanised reformulation and a high degree of recyclable nutrient flow. The 'tipping point' in habitat sustainability has come with the size and demographic structure of China's population to one that is ageing, with modernisation of its infrastructure and increased expectations of better livelihoods, standards of living and health. In order to meet these expectations, China has embarked on rapid urbanisation for upwards of 300 million people over the next 15-20 years and to do so taking account of the environmental limitations. The process will radically change rural as well as urban China and the systems which connect them. Chief among these will be ecosystems in number and type along with the food and health systems integral to them. To minimise ecological damage and optimise the benefits to people and place, describing, monitoring and managing the process will be paramount. The present paper is a situational analysis of health as it may be ecologically favoured or disordered (Ecosystem Health Disorders) and of the food systems on which the environment and health depend. An effort is made to enumerate the current situation in China in a way that might enable the optimisation of humanised ecosystems.

  4. From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health.

    Science.gov (United States)

    Fock, Heino O; Kraus, Gerd

    2016-01-01

    Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR

  5. From Metaphors to Formalism: A Heuristic Approach to Holistic Assessments of Ecosystem Health

    Science.gov (United States)

    Kraus, Gerd

    2016-01-01

    Environmental policies employ metaphoric objectives such as ecosystem health, resilience and sustainable provision of ecosystem services, which influence corresponding sustainability assessments by means of normative settings such as assumptions on system description, indicator selection, aggregation of information and target setting. A heuristic approach is developed for sustainability assessments to avoid ambiguity and applications to the EU Marine Strategy Framework Directive (MSFD) and OSPAR assessments are presented. For MSFD, nineteen different assessment procedures have been proposed, but at present no agreed assessment procedure is available. The heuristic assessment framework is a functional-holistic approach comprising an ex-ante/ex-post assessment framework with specifically defined normative and systemic dimensions (EAEPNS). The outer normative dimension defines the ex-ante/ex-post framework, of which the latter branch delivers one measure of ecosystem health based on indicators and the former allows to account for the multi-dimensional nature of sustainability (social, economic, ecological) in terms of modeling approaches. For MSFD, the ex-ante/ex-post framework replaces the current distinction between assessments based on pressure and state descriptors. The ex-ante and the ex-post branch each comprise an inner normative and a systemic dimension. The inner normative dimension in the ex-post branch considers additive utility models and likelihood functions to standardize variables normalized with Bayesian modeling. Likelihood functions allow precautionary target setting. The ex-post systemic dimension considers a posteriori indicator selection by means of analysis of indicator space to avoid redundant indicator information as opposed to a priori indicator selection in deconstructive-structural approaches. Indicator information is expressed in terms of ecosystem variability by means of multivariate analysis procedures. The application to the OSPAR

  6. Increasing a Community's Knowledge about Drought, Watershed Ecosystems, and Water Quality Through Educational Activities Added to Coastal Cleanup Day Events

    Science.gov (United States)

    Brinker, R.; Allen, L.; Cole, P.; Rho, C.

    2016-12-01

    International Coastal Cleanup Day, held each September, is an effective campaign to bring volunteers together to clean trash from beaches and waterways and document results. Over 500,000 participants cleared over 9 million pounds of trash in 2015. To build on the enthusiasm for this event, the city of Livermore, California's Water Resource Department, the Livermore Valley Joint Unified School District, Livermore Area Recreation and Parks Department created a water education program to embed within the city's Coastal Cleanup Day events. Goals of the education program are to increase awareness of the local watershed and its geographic reach, impacts of climate change and drought on local water supplies, pollution sources and impacts of local pollution on the ocean, positive impacts of a recent plastic bag ban, water quality assessment, and action steps citizens can take to support a healthy watershed. Volunteers collect and test water samples (when water is in the creek) using modified GLOBE and World Water Monitoring Day protocols. Test results are uploaded to the World Water Monitoring Day site and documented on the program web site. Volunteers report that they did not know about watersheds, impacts of local pollution, and water quality components before the education program. Volunteers are encouraged to adopt a creek spot for one year, and continue to collect and document trash. High school and middle school science classes added the water quality testing into curriculum, and regularly visit creek sites to clean the spots and monitor habitats. Each year for the past five years, about 300 volunteers have worked on creek clean-up events, 20 have adopted creek sites, and collected over 4,000 gallons of trash annually. As a result of these efforts, sites have been downgraded from a trash hot spot of concern. Strategies will be shared to expand an established (or start a new) Coastal Cleanup Day event into a successful watershed and climate awareness citizen science

  7. Acid sulfate soils and human health--a Millennium Ecosystem Assessment.

    Science.gov (United States)

    Ljung, Karin; Maley, Fiona; Cook, Angus; Weinstein, Philip

    2009-11-01

    Acid sulfate soils have been described as the "nastiest soils on earth" because of their strong acidity, increased mobility of potentially toxic elements and limited bioavailability of nutrients. They only cover a small area of the world's total problem soils, but often have significant adverse effects on agriculture, aquaculture and the environment on a local scale. Their location often coincides with high population density areas along the coasts of many developing countries. As a result, their negative impacts on ecosystems can have serious implications to those least equipped for coping with the low crop yields and reduced water quality that can result from acid sulfate soil disturbance. The Millennium Ecosystem Assessment called on by the United Nations in 2000 emphasised the importance of ecosystems for human health and well-being. These include the service they provide as sources of food and water, through the control of pollution and disease, as well as for the cultural services ecosystems provide. While the problems related to agriculture, aquaculture and the environment have been the focus of many acid sulfate soil management efforts, the connection to human health has largely been ignored. This paper presents the potential health issues of acid sulfate soils, in relation to the ecosystem services identified in the Millennium Ecosystem Assessment. It is recognised that significant implications on food security and livelihood can result, as well as on community cohesiveness and the spread of vector-borne disease. However, the connection between these outcomes and acid sulfate soils is often not obvious and it is therefore argued that the impact of such soils on human well-being needs to be recognised in order to raise awareness among the public and decision makers, to in turn facilitate proper management and avoid potential human ill-health.

  8. A multidisciplinary approach for the characterization of the coastal marine ecosystems of Monte Di Procida (Campania, Italy).

    Science.gov (United States)

    Mangoni, Olga; Aiello, Giuseppe; Balbi, Simona; Barra, Diana; Bolinesi, Francesco; Donadio, Carlo; Ferrara, Luciano; Guida, Marco; Parisi, Roberta; Pennetta, Micla; Trifuoggi, Marco; Arienzo, Michele

    2016-11-15

    A multidisciplinary survey was carried out on the quality of water and sediments of a coastal protected marine area, embedded between the inputs from Bagnoli steel plant to the south and a sewage plant, Volturno River and Regi Lagni channel to the north. The study integrated chemical-sedimentological data with biological and ecotoxicological analyses to assess anthropogenic pressures and natural variability. Data reveal marked differences in anthropogenic pollution between southeastern and northwestern zone, with the north affected by both inorganic and organic flows and the south influenced by levels of As, Pb and Zn in the sediments above law limits, deriving from inputs of the Bagnoli brownfield site. Meiobenthic data revealed at south higher relative abundance of sensitive species to pollution and environmental stress to the south, i.e. Lobatula lobatula and Rosalina bradyi, whereas to the north relative abundance of stress tolerant Quinqueloculina lata, Quinqueloculina pygmaea and Cribroelphidium cuvilleri were determined. Copyright © 2016. Published by Elsevier Ltd.

  9. Organic Carbon Loading in Tropical Near-Shore Ecosystems: the Role of Mangrove Lagoons and Channels in Coastal Ocean Acidification

    Science.gov (United States)

    García, E.; Morell, J. M.

    2016-02-01

    Low energy tropical Caribbean shores are often dominated by highly productive mangrove ecosystems that thrive on land borne inorganic nutrient inputs and whose net production results in significant export of litter and dissolved organic compounds (DOC). These organic matrixes can be effectively transported to nearby ecosystems, including coral reefs whose vulnerability to excessive organic loading has been widely documented. This study documents the seaward transport and transformation of organic carbon from mangrove bays, trough near-shore reef ecosystems and out to open waters in the La Parguera Marine Reserve (LPMR). Considering in-situ colored dissolved organic matter (CDOM) as a tracer for DOC, absorption coefficient values (a350) were observed in the 6.13-0.02 m-1 and 14.08-0.06 m-1 during the dry (from 0 to 0.18 inches of rain) and wet seasons (from 0.68 to 4.76 inches of rain), respectively. Spectral properties (S275-295 and SR) calculations indicate that DOC is predominantly of terrestrial origin and found in high concentrations in enclosed mangrove bays and canals. Data evidences a strong gradient in CDOM concentration decreasing t from inshore to outer shelf waters. Rain precipitation correlated well with high CDOM values (aλ values doubled) and forced LPMR to behave similarly to a river influenced estuary as shown when CDOM is correlated with salinity, contrary to its predominant negative estuary profile. When correlating CDOM with pH and dissolved oxygen concentrations, it is evident that high organic matter content is driving ocean acidification in the nearshore areas. The non-conservative behavior of CDOM implies that other processes besides dilution may play a significant role in its spatial distribution.

  10. in_focus - Health: An Ecosystem Approach | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Côte d'Ivoire | Kenya | Brazil | Ecuador (Pesticides) | India | Ethiopia | Nepal | Mexico (Air Pollution) | Mexico (Malaria) | Cuba | Chile | Ecuador (Mining). Ecohealth Works Series: Agricultural Transformation · Environmental Pollution · Health in Urban Environments · Infectious Diseases. Lasting Impacts: Ecohealth: Improving ...

  11. Potential stakeholders and perceived benefits of a Digital Health Innovation Ecosystem for the Namibian context

    CSIR Research Space (South Africa)

    Iyawa, GE

    2017-10-01

    Full Text Available This paper presents the result of a study which aimed at identifying the potential stakeholders and perceived benefits of a digital health innovation ecosystem for the Namibian context as part of a larger study. Combining semi-structured interviews...

  12. Toward an integrated classification of ecosystems: Defining opportunities for managing fish and forest health

    Science.gov (United States)

    Bruce E. Rieman; Danny C. Lee; Russell F. Thurow; Paul F. Hessburg; James R. Sedell

    2000-01-01

    Many of the aquatic and terrestrial ecosystems of the Pacific Northwest United States have been simplified and degraded in part through past land-management activities. Recent listings of fishes under the Endangered Species Act and major new initiatives for the restoration of forest health have precipitated contentious debate among managers and conservation interests...

  13. Disrupted seasonal biology impacts health, food security, and ecosystems: a call for integrated research

    NARCIS (Netherlands)

    Stevenson, T.J.; Visser, M.E.; Arnold, W.; Barrett, P.; Biello, S.; Dawson, A.; Denlinger, D.L.; Dominoni, Davide; Ebling, F.J.; Elton, S.; Evans, N.; Ferguson, H.M.; Foster, R.G.; Hau, M.; Haydon, D.T.; Hazlerigg, D.G.; Heideman, P.; Hopcraft, J.G.C.; Jonsson, N.N.; Kronfeld-Schor, N.; Kumar, V.; Lincoln, G.A.; MacLeod, R.; Martin, S.A.M.; Martinez-Bakker, M.; Nelson, R.J.; Reed, T.; Robinso, J.E.; Rock, D.; Schwartz, W.J.; Steffan-Dewenter, I.; Tauber, E.; Thackeray, S.J.; Umstatter, C.; Yoshimura, T.; Helm, B.

    2015-01-01

    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for

  14. Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events-A microcosm experiment.

    Science.gov (United States)

    Wang, Hongjun; Richardson, Curtis J; Ho, Mengchi; Flanagan, Neal

    2016-10-01

    Over the past several decades there has been a massive increase in coastal eutrophication, which is often caused by increased runoff input of nitrogen from landscape alterations. Peatlands, covering 3% of land area, have stored about 12-21% of global soil organic nitrogen (12-20Pg N) around rivers, lakes and coasts over millennia and are now often drained and farmed. Their huge nitrogen pools may be released by intensified climate driven hydrologic events-prolonged droughts followed by heavy storms-and later transported to marine ecosystems. In this study, we collected peat monoliths from drained, natural, and restored coastal peatlands in the Southeastern U.S., and conducted a microcosm experiment simulating coupled prolonged-drought and storm events to (1) test whether storms could trigger a pulse of nitrogen export from drought-stressed peatlands and (2) assess how differentially hydrologic managements through shifting plant communities affect nitrogen export by combining an experiment of nitrogen release from litter. During the drought phase, we observed a significant temporal variation in net nitrogen mineralization rate (NMR). NMR spiked in the third month and then decreased rapidly. This pattern indicates that drought duration significantly affects nitrogen mineralization in peat. NMR in the drained site reached up to 490±110kgha(-1)year(-1), about 5 times higher than in the restored site. After the 14-month drought phase, we simulated a heavy storm by bringing peat monoliths to saturation. In the discharge waters, concentrations of total dissolved nitrogen in the monoliths from the drained site (72.7±16.3mgL(-1)) was about ten times as high as from the restored site. Our results indicate that previously drained peatlands under prolonged drought are a potent source of nitrogen export. Moreover, drought-induced plant community shifts to herbaceous plants substantially raise nitrogen release with lasting effects by altering litter quality in peatlands

  15. Approaching Environmental Health Disparities and Green Spaces: An Ecosystem Services Perspective

    Directory of Open Access Journals (Sweden)

    Viniece Jennings

    2015-02-01

    Full Text Available Health disparities occur when adverse health conditions are unequal across populations due in part to gaps in wealth. These disparities continue to plague global health. Decades of research suggests that the natural environment can play a key role in sustaining the health of the public. However, the influence of the natural environment on health disparities is not well-articulated. Green spaces provide ecosystem services that are vital to public health. This paper discusses the link between green spaces and some of the nation’s leading health issues such as obesity, cardiovascular health, heat-related illness, and psychological health. These associations are discussed in terms of key demographic variables—race, ethnicity, and income. The authors also identify research gaps and recommendations for future research.

  16. De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems

    Directory of Open Access Journals (Sweden)

    Zhang Xiaowen

    2012-10-01

    Full Text Available Abstract Background The green algal genus Ulva Linnaeus (Ulvaceae, Ulvales, Chlorophyta is well known for its wide distribution in marine, freshwater, and brackish environments throughout the world. The Ulva species are also highly tolerant of variations in salinity, temperature, and irradiance and are the main cause of green tides, which can have deleterious ecological effects. However, limited genomic information is currently available in this non-model and ecologically important species. Ulva linza is a species that inhabits bedrock in the mid to low intertidal zone, and it is a major contributor to biofouling. Here, we presented the global characterization of the U. linza transcriptome using the Roche GS FLX Titanium platform, with the aim of uncovering the genomic mechanisms underlying rapid and successful colonization of the coastal ecosystems. Results De novo assembly of 382,884 reads generated 13,426 contigs with an average length of 1,000 bases. Contiguous sequences were further assembled into 10,784 isotigs with an average length of 1,515 bases. A total of 304,101 reads were nominally identified by BLAST; 4,368 isotigs were functionally annotated with 13,550 GO terms, and 2,404 isotigs having enzyme commission (EC numbers were assigned to 262 KEGG pathways. When compared with four other full sequenced green algae, 3,457 unique isotigs were found in U. linza and 18 conserved in land plants. In addition, a specific photoprotective mechanism based on both LhcSR and PsbS proteins and a C4-like carbon-concentrating mechanism were found, which may help U. linza survive stress conditions. At least 19 transporters for essential inorganic nutrients (i.e., nitrogen, phosphorus, and sulphur were responsible for its ability to take up inorganic nutrients, and at least 25 eukaryotic cytochrome P450s, which is a higher number than that found in other algae, may be related to their strong allelopathy. Multi-origination of the stress related proteins

  17. Manatees as sentinels of marine ecosystem health: are they the 2000-pound canaries?

    Science.gov (United States)

    Bonde, R.K.; Aguirre, A.A.; Powell, J.

    2004-01-01

    The order Sirenia is represented by three species of manatees and one species of dugong distributed in tropical and subtropical regions of the world and considered vulnerable to extinction. The sentinel species concept is useful to identify indicators of the environment and may reflect the quality of health in marine ecosystems. The single species approach to evaluate ecological health may provide a series of “snap shots” of environmental changes to determine if animal, human, or ecosystem health may be affected. Under this concept, marine vertebrates may be good integrators of changes over space and time, and excellent sentinels of ecosystem health. Based on their life history, manatees may or may not be ideal sentinels, as they are robust, long-lived species and appear remarkably resilient to natural disease and the effects of human-related injury and trauma. These characteristics might be the result of an efficient and responsive immune system compared to other marine mammals. Although relatively immune to infectious agents, manatees face other potentially serious threats, including epizootic diseases and pollution while in large aggregations. Manatees can serve as excellent sentinels of harmful algal blooms due to their high sensitivity, specifically to brevetoxicosis, which has caused at least two major die-offs in recent times. Threats to manatees worldwide, such as illegal hunting and boat collisions, are increasing. Habitat is being lost at an alarming rate and the full effects of uncontrolled human population growth on the species are unknown. The manatee may serve as a sentinel species, prognosticating the deleterious effects of unhealthy marine and aquatic ecosystems on humans. We have identified a number of critical research needs and opportunities for transdisciplinary collaboration that could help advance the use of the sentinel species concept in marine ecosystem health and monitoring of disease emergence using our knowledge on these magnificent

  18. From Ecosystem-Scale to Litter Biochemistry: Controls on Carbon Sequestration in Coastal Wetlands of the Western Gulf of Mexico

    Science.gov (United States)

    Louchouarn, P.; Kaiser, K.; Norwood, M. J.; Sterne, A. M. E.; Armitage, A. R.; HighField, W.; Brody, S.

    2015-12-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the structure and services of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones of the U.S., where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. Here we present the synthesis of 3 years of multidisciplinary work to quantify ecosystem shifts at the regional scale, along the entire Texas (USA) coast of the western Gulf of Mexico, and transcribe these shifts into carbon (C) sequestration mass balances. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify shifts in areal coverage of black mangrove (Avicennia germinans) and salt marsh (Spartina alterniflora and other grass and forb species) over 20 years across the Texas Gulf coast. Between 1990 and 2010, mangrove area expanded by 74% (+16 km2). Concurrently, salt marsh area experienced a net loss of 24% (-78 km2). Most of that loss was due to conversion to tidal flats or water, likely a result of relative sea level rise, with only 6% attributable to mangrove expansion. Although relative carbon load (per surface area) are statistically larger for mangrove wetlands, total C loads are larger for salt marsh wetlands due to their greater aerial coverage. The entire loss of above ground C (~7.0·109 g), was offset by salt marsh expansion (2.0·109 g) and mangrove expansion (5.6·109 g) over the study period. Concurrently, the net loss in salt marsh coverage led to a loss in below ground C accumulation capacity of 2.0·109 g/yr, whereas the net expansion of mangrove wetlands led to an added below ground C accumulation capacity of 0.4·109 g/yr. Biomarker data show that neutral carbohydrates and lignin contributed 30-70% and 10-40% of total C, respectively, in plant litter and surface sediments. Sharp declines of carbohydrate yields with depth occur parallel to increases in lignin

  19. Impact on a fish assemblage of the maintenance dredging of a navigation channel in a tropical coastal ecosystem

    Directory of Open Access Journals (Sweden)

    Demarques Ribeiro da Silva Junior

    2012-03-01

    Full Text Available Dredging and dredge-spoil disposal are among the major problems in coastal management. Many of the scientific contributions concerning the impacts of this practice are based on the study of sessile organisms and subtropical environments. We evaluated changes in the composition and abundance of a fish assemblage resulting from dredging and sediment disposal at the mouth and in the adjacent waters of the Caravelas River on the north-eastern coast of Brazil. Samples were collected in two directly impacted and three adjacent areas. Differences among stations were not significant, but the dredged site had the least diverse station, as expected. The stations farthest from the directly impacted areas apparently were not influenced by the coastal work, thus suggesting localised effects. The contribution of the present study is particularly important because of the study area's proximity to others that have high conservation value such as mangrove forests and coral reefs, and the relevance of the subject given the continuing dredging activity.A dragagem e descarte de sedimento se destacam como atividades que geram grandes distúrbios aos ecossistemas marinhos e, consequentemente tornam-se um desafio ao manejo e ordenamento costeiro. Grande parte dos estudos que abordam seus impactos é baseada em pesquisas com organismos sésseis e em ambientes temperados, criando uma lacuna no entendimento de seus efeitos sobre a ictiofauna, principalmente nas regiões tropicais. No presente estudo foram avaliadas as alterações na composição e abundância da comunidade de peixes sob influência da dragagem e descarte de sedimento na foz do Rio Caravelas, costa da região Nordeste do Brasil. As amostras foram obtidas em duas estações diretamente afetadas e em três outras áreas adjacentes. Não houve diferença significativa na diversidade média obtida para cada estação, porém a estação correspondente à área dragada apresentou o menor valor dentre as

  20. Natural Ecosystem Surrounding a Conventional Banana Crop Improves Plant Health and Fruit Quality

    Directory of Open Access Journals (Sweden)

    Florence P. Castelan

    2018-06-01

    Full Text Available Natural ecosystems near agricultural landscapes may provide rich environments for growing crops. However, the effect of a natural ecosystem on crop health and fruit quality is poorly understood. In the present study, it was investigated whether the presence of a natural ecosystem surrounding a crop area influences banana plant health and fruit postharvest behavior. Plants from two conventional banana crop areas with identical planting time and cultural practices were used; the only difference between banana crop areas is that one area was surrounded by a natural forest (Atlantic forest fragment (Near-NF, while the other area was inserted at the center of a conventional banana crop (Distant-NF. Results showed that bananas harvested from Near-NF showed higher greenlife and a more homogeneous profile during ripening compared to fruits harvested from Distant-NF. Differences in quality parameters including greenlife, carbohydrate profile, and pulp firmness between fruits harvested from Near-NF and Distant-NF are explained, at least partly, by differences in the balance of plant growth regulators (indole-3-acetic acid and abscisic acid in bananas during ripening. Furthermore, plants from Near-NF showed a lower severity index of black leaf streak disease (BLSD and higher levels of phenolic compounds in leaves compared to plants from Distant-NF. Together, the results provide additional evidence on how the maintenance of natural ecosystems near conventional crop areas could be a promising tool to improve plant health and fruit quality.

  1. Estimation of net ecosystem metabolism of seagrass meadows in the coastal waters of the East Sea and Black Sea using the noninvasive eddy covariance technique

    Science.gov (United States)

    Lee, Jae Seong; Kang, Dong-Jin; Hineva, Elitsa; Slabakova, Violeta; Todorova, Valentina; Park, Jiyoung; Cho, Jin-Hyung

    2017-06-01

    We measured the community-scale metabolism of seagrass meadows in Bulgaria (Byala [BY]) and Korea (Hoopo Bay [HP]) to understand their ecosystem function in coastal waters. A noninvasive in situ eddy covariance technique was applied to estimate net O2 flux in the seagrass meadows. From the high-quality and high-resolution time series O2 data acquired over > 24 h, the O2 flux driven by turbulence was extracted at 15-min intervals. The spectrum analysis of vertical flow velocity and O2 concentration clearly showed well-developed turbulence characteristics in the inertial subrange region. The hourly averaged net O2 fluxes per day ranged from -474 to 326 mmol O2 m-2 d-1 (-19 ± 41 mmol O2 m-2 d-1) at BY and from -74 to 482 mmol O2 m-2 d-1 (31 ± 17 mmol O2 m-2 d-1) at HP. The net O2 production rapidly responded to photosynthetically available radiation (PAR) and showed a good relationship between production and irradiance (P-I curve). The hysteresis pattern of P-I relationships during daytime also suggested increasing heterotrophic respiration in the afternoon. With the flow velocity between 3.30 and 6.70 cm s-1, the community metabolism during daytime and nighttime was significantly increased by 20 times and 5 times, respectively. The local hydrodynamic characteristics may be vital to determining the efficiency of community photosynthesis. The net ecosystem metabolism at BY was estimated to be -17 mmol O2 m-2 d-1, which was assessed as heterotrophy. However, that at HP was 36 mmol O2 m-2 d-1, which suggested an autotrophic state.

  2. Single-cell vs. bulk activity properties of coastal bacterioplankton over an annual cycle in a temperate ecosystem.

    Science.gov (United States)

    Morán, Xosé Anxelu G; Calvo-Díaz, Alejandra

    2009-01-01

    The connections between single-cell activity properties of heterotrophic planktonic bacteria and whole community metabolism are still poorly understood. Here, we show flow cytometry single-cell analysis of membrane-intact (live), high nucleic acid (HNA) content and actively respiring (CTC+) bacteria with samples collected monthly during 2006 in northern Spain coastal waters. Bulk activity was assessed by measuring 3H-Leucine incorporation and specific growth rates. Consistently, different single-cell relative abundances were found, with 60-100% for live, 30-84% for HNA and 0.2-12% for CTC+ cells. Leucine incorporation rates (2-153 pmol L(-1) h(-1)), specific growth rates (0.01-0.29 day(-1)) and the total and relative abundances of the three single-cell groups showed marked seasonal patterns. Distinct depth distributions during summer stratification and different relations with temperature, chlorophyll and bacterial biovolume suggest the existence of different controlling factors on each single-cell property. Pooled leucine incorporation rates were similarly correlated with the abundance of all physiological groups, while specific growth rates were only substantially explained by the percentage of CTC+ cells. However, the ability to reduce CTC proved notably better than the other two single-cell properties at predicting bacterial bulk rates within seasons, suggesting a tight linkage between bacterial individual respiration and biomass production at the community level.

  3. A new framework for assessing river ecosystem health with consideration of human service demand.

    Science.gov (United States)

    Luo, Zengliang; Zuo, Qiting; Shao, Quanxi

    2018-06-01

    In order to study river health status from harmonic relationship between human and natural environment, a river health evaluation method was proposed from the aspects of ecosystem integrity and human service demand, and the understanding of river health connotation. The proposed method is based on the harmony theory and two types of river health assessment methods (the forecasting model and index evaluation). A new framework for assessing river water health was then formed from the perspective of harmony and dynamic evolution between human service demand and river ecosystem integrity. As a case study, the method and framework were applied to the Shaying River Basin, a tributary of the most polluted Huaihe River Basin in China. The health status of the river's ecosystem and its effect on the mainstream of Huaihe River were evaluated based on water ecological experiment. The results indicated that: (1) the water ecological environment in Shaying River was generally poor and showed a gradual changing pattern along the river. The river health levels were generally "medium" in the upstream but mostly "sub-disease" in the midstream and downstream, indicating that the water pollution in Shaying River were mainly concentrated in the midstream and downstream; (2) the water pollution of Shaying River had great influence on the ecosystem of Huaihe River, and the main influencing factors were TN, followed by TP and COD Mn ; (3) the natural attribute of river was transferring toward to the direction of socialization due to the increasing human activities. The stronger the human activity intervention is, the faster the transfer will be and the more river's attributes will match with human service demand. The proposed framework contributes to the research in water ecology and environment management, and the research results can serve as an important reference for basin management in Shaying River and Huaihe River. Copyright © 2018. Published by Elsevier B.V.

  4. A Model for Calculated Privacy and Trust in pHealth Ecosystems.

    Science.gov (United States)

    Ruotsalainen, Pekka; Blobel, Bernd

    2018-01-01

    A pHealth ecosystem is a community of service users and providers. It is also a dynamic socio-technical system. One of its main goals is to help users to maintain their personal health status. Another goal is to give economic benefit to stakeholders which use personal health information existing in the ecosystem. In pHealth ecosystems, a huge amount of health related data is collected and used by service providers such as data extracted from the regulated health record and information related to personal characteristics, genetics, lifestyle and environment. In pHealth ecosystems, there are different kinds of service providers such as regulated health care service providers, unregulated health service providers, ICT service providers, researchers and industrial organizations. This fact together with the multidimensional personal health data used raises serious privacy concerns. Privacy is a necessary enabler for successful pHealth, but it is also an elastic concept without any universally agreed definition. Regardless of what kind of privacy model is used in dynamic socio-technical systems, it is difficult for a service user to know the privacy level of services in real life situations. As privacy and trust are interrelated concepts, the authors have developed a hybrid solution where knowledge got from regulatory privacy requirements and publicly available privacy related documents is used for calculation of service providers' specific initial privacy value. This value is then used as an estimate for the initial trust score. In this solution, total trust score is a combination of recommended trust, proposed trust and initial trust. Initial privacy level is a weighted arithmetic mean of knowledge and user selected weights. The total trust score for any service provider in the ecosystem can be calculated deploying either a beta trust model or the Fuzzy trust calculation method. The prosed solution is easy to use and to understand, and it can be also automated. It is

  5. Conservation of Agroecosystem through Utilization of Parasitoid Diversity: Lesson for Promoting Sustainable Agriculture and Ecosystem Health

    Directory of Open Access Journals (Sweden)

    DAMAYANTI BUCHORI

    2008-12-01

    Full Text Available For many years, agricultural intensification and exploitation has resulted in biodiversity loss and threaten ecosystem functioning. Developing strategies to bridge human needs and ecosystem health for harmonization of ecosystem is a major concern for ecologist and agriculturist. The lack of information on species diversity of natural enemies and how to utilize them with integration of habitat management that can renovate ecological process was the main obstacle. Parasitoids, a group of natural enemies, play a very important role in regulating insect pest population. During the last ten years, we have been working on exploration of parasitoid species richness, how to use it to restore ecosystem functions, and identifying key factors influencing host-parasitoid interaction. Here, we propose a model of habitat management that is capable of maintaining agricultural biodiversity and ecosystem functions. We present data on parasitoid species richness and distribution in Java and Sumatera, their population structure and its impact toward biological control, relationship between habitat complexes and parasitoid community, spatial and temporal dynamic of parasitoid diversity, and food web in agricultural landscape. Implications of our findings toward conservation of agroecosystem are discussed.

  6. Activity concentration of 210Po and 210Pb, its contribution to the radiation dose and distribution coefficient in aquatic ecosystem of major rivers of coastal Karnataka

    International Nuclear Information System (INIS)

    Rajashekara, K.M.; Prakash, V.; Narayana, Y.

    2013-01-01

    Rivers are the major pathways for the transport of weathered materials from the land to the oceans. The geochemical studies on river waters provide an insight into the weathering process that control the distribution of elements in dissolved and particulate phases and their fluxes to the estuaries. Concentrations of natural series radionuclide in fresh water bodies are liable to be much more variable than those in the marine environment since they are heavily influenced by the local geochemistry of the watershed. The concentrations of radioactive materials vary from region to region and this variation is found to be significantly high in some areas. Some of the regions are rich with the flow of major rivers and estuaries of these rivers, and investigations of these riverine and estuarine aquatic environments would throw light on the transportation, distribution and enrichment mechanism of radionuclides. In this context, the activity of 210 Po and 210 Pb were measured in different matrices of aquatic ecosystem of the major rivers namely, Kali, Sharavathi and Netravathi river of Coastal Karnataka

  7. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    Science.gov (United States)

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  8. Effect of a long-term release of plutonium and americium into an estuarine-coastal sea ecosystem. 1. Development of an assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Murray, C N; Avogadro, A [Commission of the European Communities, Ispra (Italy). Joint Research Centre

    1979-05-01

    A method is developed for the assessment of the distribution and the associated hazard due to a long-term release of long-lived alpha-emitting radionuclides into surface waters of a marine ecosystem. The methodology is designed to identify various environmental compartments and the processes occurring within them, which are of importance in affecting the behaviour and thus the distribution of actinide elements in such systems. The compartment model system (box model) chosen is applied to an imaginary coastal area. Various processes in the environmental compartments are considered separately and then assembled to show their combined interactions. Using the concept of critical nuclide-pathway-group analysis, an attempt has been made to define a number of the most important pathways by which actinides released into the aquatic environment could return to man, and especially those related to the exploitation of aquatic food resources. The concentration levels for the example considered produce rather low dose rates to man of less than 3% of the maximum permissible intake. The low dose levels strongly depend upon the concentration factors of the various biological species, as well as upon source-term activities. The concentration factors used for the biological transfer of actinides relate to the water activity only. In the case where highly radioactive sediments or sedimentary-associated material were closely involved in the uptake pathway, actinide transfer to man could become more relevant. This study shows that sedimentation and bottom sediment absorption represent the major reconcentration processes for actinides released into surface waters.

  9. Temporal variability and phylogenetic characterization of planktonic anammox bacteria in the coastal upwelling ecosystem off central Chile

    Science.gov (United States)

    Galán, Alexander; Molina, Verónica; Belmar, Lucy; Ulloa, Osvaldo

    2012-01-01

    The phylogenetic affiliation and temporal variability in the abundance of planktonic anammox bacteria were studied at a time-series station above the continental shelf off central Chile (∼36°S; bottom depth 93 m), a wind-driven, seasonal upwelling area, between August 2006 and April 2008. The study was carried out by cloning and sequencing the 16S rRNA gene and by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Our results showed the presence of a single anammox bacteria-like ribotype during both upwelling and non-upwelling seasons, which was phylogenetically associated with a recently described oxygen-minimum-zone subcluster within the Candidatus Scalindua clade. Moreover, clear differences were observed in the temporal and vertical distribution of anammox cells. During the upwelling season (austral spring-summer), relatively high abundances (∼5500 cells mL -1) and large cells (0.8 μm 3-75.7 fg C cell -1) were found below 20 m depth. In contrast, during the non-upwelling season (austral fall-winter), lower abundances (∼600 cells mL -1) and smaller cells (0.1 μm 3-22.8 fg C cell -1) were found, predominantly associated with the bottom layer. Overall, our results indicate that the abundance and vertical distribution of anammox planktonic assemblages are related to the occurrence of seasonal, wind-driven, coastal upwelling, which in turn appears to offer favorable conditions for the development of these microorganisms. The dominance of a unique anammox bacteria-like ribotype could be related to the high environmental variability observed in the system, which prevents the establishment of other anammox lineages.

  10. CTD Niskin bottle data from the R/V WECOMA in the North Pacific Ocean in support of the National Science Foundation Coastal Ocean Processes program River Influences on Shelf Ecosystems (NSF CoOP RISE), cruise RISE05W3, from 20040708 to 20060613 (NODC Accession 0051411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CoOP RISE program was designed to determine the impact of large river discharge on coastal shelf ecosystems. Macronutrient and chlorophyll data were collected as...

  11. A Systems Approach to the Estimation of Ecosystem and Human Health Stressors in Air, Land and Water

    Science.gov (United States)

    Cooter, E. J.; Dennis, R. L.; Bash, J. O.

    2013-12-01

    Nitrogen (N) and sulfur oxides (SOx) in air, land and water media are parts of tightly coupled geophysical systems resulting in multiple routes for human and ecosystem exposure. For instance, excess forms of total reactive N in water can lead to harmful algal blooms, with the depletion of oxygen and adverse impacts to aquatic ecosystem productivity in coastal estuaries. Acidic deposition can result in lost forest productivity for terrestrial ecosystem and impacts to trout and other fishery resources in inland waters. Human pulmonary health can be impaired when N and SOx in the atmosphere lead to the generation of ozone and particulate matter (PM). Atmospheric N deposition can also contribute to eutrophication of drinking water sources. The U.S. Environmental Protection Agency (USEPA) Office of Research and Development (ORD) has embarked on the development of a multi-media 'one environment' systems approach to these issues to help develop management decisions that create win-win policies. The purpose of this project is to develop a 'one environment' set of models that can inform protection of ecosystems and human health in both the current state and under future climate scenarios. The research framework focuses on three interrelated themes; coupling air quality with land use and agricultural land management, connecting the hydrosphere (i.e., coupling meteorology and hydrology) and linking the air/land/hydrosphere with ecosystem models and benefits models. We will present an overall modeling framework and then move to the presentation of on-going research results related to direct linkage of air quality with land use and agricultural land management. A modeling interface system has been developed that facilitates the simulation of field-scale agricultural land management decisions over a gridded domain at multiple grid resolutions for the Contiguous United States (CONUS) using a modified version of the USDA EPIC (Environmental Policy Integrated Climate) model. EPIC

  12. Health status of school children in rural area of coastal Karnataka

    Directory of Open Access Journals (Sweden)

    Muralidhar M Kulkarni

    2016-01-01

    Full Text Available Introduction: Children are the foundation of a strong and healthy nation. Morbidity among school-going children adversely affects their normal growth and development and hence is a major public health concern. School health program was started as an important component of total health care delivery system in the country with a purpose of addressing the health needs of children. Aim: To assess the morbidity pattern and nutritional status among school children. Materials and Methods: Study design: A cross-sectional study. Study period: 1-year from 1 st July 2012 to 30 th June 2013. Study setting: 14 schools with a total strength of 909 children in a rural area of coastal Karnataka. Data collection: Health examination of the school children was carried out by a trained team. Data regarding anthropometric measurements, refractory error, medical problems and minor ailments were collected using a predesigned proforma. Results: A total of 797 children were examined. Dental caries was the most common ailment observed in 31.86% of children 43.32% of the children were underweight, 53.03% were normal, and 3.65% were overweight for age. Conclusion: The school health program provides a good opportunity to screen, identify and impart education regarding health related issues. The common morbidities found were dental caries, pallor, upper respiratory tract infection and refractory error. Overweight was also observed in the school children and needs to be addressed. There is a scope of providing comprehensive school health services by incorporating dental care.

  13. Coastal ecosystems on a tipping point: global warming and parasitism combine to alter community structure and function.

    Science.gov (United States)

    Mouritsen, Kim N; Sørensen, Mikkel M; Poulin, Robert; Fredensborg, Brian L

    2018-05-16

    Mounting evidence suggests that the transmission of certain parasites is facilitated by increasing temperatures, causing their host population to decline. However, no study has yet addressed how temperature and parasitism may combine to shape the functional structure of a whole host community in the face of global warming. Here, we apply an outdoor mesocosm approach supported by field surveys to elucidate this question in a diverse intertidal community of amphipods infected by the pathogenic microphallid trematode, Maritrema novaezealandensis. Under present temperature (17°C) and level of parasitism, the parasite had little impact on the host community. However, elevating the temperature to 21°C in presence of parasites induced massive structural changes: amphipod abundances decreased species-specifically, affecting epibenthic species but leaving infaunal species largely untouched. In effect, species diversity dropped significantly. In contrast, 4-degree higher temperatures in absence of parasitism had limited influence on the amphipod community. Further elevating temperatures (19-26°C) and parasitism, simulating a prolonged heat-wave scenario, resulted in an almost complete parasite-induced extermination of the amphipod community at 26°C. In addition, at 19°C, just two degrees above the present average, a similar temperature-parasite synergistic impact on community structure emerged as seen at 21°C under lower parasite pressure. The heat-wave temperature of 26°C per se affected the amphipod community in a comparable way: species diversity declined and the infaunal species were favoured at the expense of epibenthic species. Our experimental findings are corroborated by field data demonstrating a strong negative relationship between current amphipod species richness and the level of Maritrema parasitism across 12 sites. Hence, owing to the synergistic impact of temperature and parasitism, our study predicts that coastal amphipod communities will deteriorate

  14. Exploring Ecosystems and Health by Shifting to a Regional Focus: Perspectives from the Oceania EcoHealth Chapter

    Directory of Open Access Journals (Sweden)

    Jonathan Kingsley

    2015-10-01

    Full Text Available This article highlights contributions that can be made to the public health field by incorporating “ecosystem approaches to health” to tackle future environmental and health challenges at a regional level. This qualitative research reviews attitudes and understandings of the relationship between public health and the environment and the priorities, aspirations and challenges of a newly established group (the Oceania EcoHealth Chapter who are attempting to promote these principles. Ten semi-structured interviews with Oceania EcoHealth Chapter members highlighted the important role such groups can play in informing organisations working in the Oceania region to improve both public health and environmental outcomes simultaneously. Participants of this study emphasise the need to elevate Indigenous knowledge in Oceania and the role regional groups play in this regard. They also emphasis that regional advocacy and ecosystem approaches to health could bypass silos in knowledge and disciplinary divides, with groups like the Oceania EcoHealth Chapter acting as a mechanism for knowledge exchange, engagement, and action at a regional level with its ability to bridge the gap between environmental stewardship and public health.

  15. Exploring Ecosystems and Health by Shifting to a Regional Focus: Perspectives from the Oceania EcoHealth Chapter

    Science.gov (United States)

    Kingsley, Jonathan; Patrick, Rebecca; Horwitz, Pierre; Parkes, Margot; Jenkins, Aaron; Massy, Charles; Henderson-Wilson, Claire; Arabena, Kerry

    2015-01-01

    This article highlights contributions that can be made to the public health field by incorporating “ecosystem approaches to health” to tackle future environmental and health challenges at a regional level. This qualitative research reviews attitudes and understandings of the relationship between public health and the environment and the priorities, aspirations and challenges of a newly established group (the Oceania EcoHealth Chapter) who are attempting to promote these principles. Ten semi-structured interviews with Oceania EcoHealth Chapter members highlighted the important role such groups can play in informing organisations working in the Oceania region to improve both public health and environmental outcomes simultaneously. Participants of this study emphasise the need to elevate Indigenous knowledge in Oceania and the role regional groups play in this regard. They also emphasis that regional advocacy and ecosystem approaches to health could bypass silos in knowledge and disciplinary divides, with groups like the Oceania EcoHealth Chapter acting as a mechanism for knowledge exchange, engagement, and action at a regional level with its ability to bridge the gap between environmental stewardship and public health. PMID:26473903

  16. Efficiency comparisons of fish sampling gears for a lentic ecosystem health assessments in Korea

    Directory of Open Access Journals (Sweden)

    Jeong-Ho Han

    2016-12-01

    Full Text Available The key objective of this study was to analyze the sampling efficiency of various fish sampling gears for a lentic ecosystem health assessment. A fish survey for the lentic ecosystem health assessment model was sampled twice from 30 reservoirs during 2008–2012. During the study, fishes of 81 species comprising 53,792 individuals were sampled from 30 reservoirs. A comparison of sampling gears showed that casting nets were the best sampling gear with high species richness (69 species, whereas minnow traps were the worst gear with low richness (16 species. Fish sampling efficiency, based on the number of individual catch per unit effort, was best in fyke nets (28,028 individuals and worst in minnow traps (352 individuals. When we compared trammel nets and kick nets versus fyke nets and casting nets, the former were useful in terms of the number of fish individuals but not in terms of the number of fish species.

  17. Biological effects of anthropogenic chemical stress: Tools for the assessment of ecosystem health (BEAST)

    DEFF Research Database (Denmark)

    Lehtonen, Kari K.; Sundelin, Brita; Lang, Thomas

    : Tools for the Assessment of Ecosystem Health, 2009-2011), which is part of the Baltic Sea BONUS+ Programme funded jointly by national funding agencies and FP7 ERA-NET+ of the European Commission. The BEAST project consists of three workpackages (WP) with the following main tasks: WP1- Field studies...... and experiments in selected sub-regions of the Baltic Sea, WP2 - Application and validation of methods in monitoring and assessment in the Baltic Sea, and WP3 - Developing tools for ecosystem health assessment in the Baltic Sea. BEAST research activities are focused in the sub-regions of Gulf of Bothnia, Gulf...... of Finland, Gulf of Riga, Gulf of Gdansk and the Belt Sea, most of which are characterised by scarce data on biological effects of hazardous substances. The data acquired will be combined with previous data (e.g. national monitoring activities, case studies, EU BEEP project) to reach the goals of WP2 and WP3...

  18. The use of biomarkers to assess the health of aquatic ecosystems in Brazil: a review

    Directory of Open Access Journals (Sweden)

    Thaís Dalzochio

    2016-11-01

    Full Text Available Abstract Organisms in polluted environments are typically exposed to a complex mixture of chemical contaminants. The great concern about the health of aquatic ecosystems has led to the increased use of biomarkers over the past years. The aim of this work was to review the papers published from 2000 to 2015, which used biomarkers to assess the health of aquatic ecosystems in Brazil. A research resulted in 99 eligible papers. More than 80% of studies were conducted in the states of São Paulo and Rio Grande do Sul. Approximately 63% of studies used fish as bioindicator, whereas the micronucleus test and biochemical analyses were the most used biomarkers. A multibiomarker approach was used by 60.6% of studies, while 39.4% used one single biomarker. Furthermore, 68% were field studies and more than 75% of these used control animals sampled at reference sites. A relationship between the biomarker responses and pollution was reported by 87% of studies; however, 43.4% of studies analyzed only one sampling period, limiting comparisons and comprehension about possible seasonal variations. This review evidenced some weak points in studies using biomarkers in Brazil, especially related to the lack of studies in two important biomes (the Pantanal and the Amazon Rainforest and experimental designs (small sample size, sampling in one single period, use of one single biomarker. Thus, future studies should consider mainly the use of multiple biomarkers, greater sample size, seasonal sampling and water physicochemical parameters to better diagnose the health of aquatic ecosystems.

  19. Vulnerability assessment of urban ecosystems driven by water resources, human health and atmospheric environment

    Science.gov (United States)

    Shen, Jing; Lu, Hongwei; Zhang, Yang; Song, Xinshuang; He, Li

    2016-05-01

    As ecosystem management is a hotspot and urgent topic with increasing population growth and resource depletion. This paper develops an urban ecosystem vulnerability assessment method representing a new vulnerability paradigm for decision makers and environmental managers, as it's an early warning system to identify and prioritize the undesirable environmental changes in terms of natural, human, economic and social elements. The whole idea is to decompose a complex problem into sub-problem, and analyze each sub-problem, and then aggregate all sub-problems to solve this problem. This method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators, and socio-economic elements. Decision makers can find out relevant urban ecosystem vulnerability assessment results with different vulnerable attitude. To test the potential of the vulnerability methodology, it has been applied to a case study area in Beijing, China, where it proved to be reliable and consistent with the Beijing City Master Plan. The results of urban ecosystem vulnerability assessment can support decision makers in evaluating the necessary of taking specific measures to preserve the quality of human health and environmental stressors for a city or multiple cities, with identifying the implications and consequences of their decisions.

  20. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  1. Coastal estuaries and lagoons: The delicate balance at the edge of the sea

    Science.gov (United States)

    Conrads, Paul A.; Rodgers, Kirk D.; Passeri, Davina L.; Prinos, Scott T.; Smith, Christopher; Swarzenski, Christopher M.; Middleton, Beth A.

    2018-04-19

    Coastal communities are increasingly concerned about the dynamic balance between freshwater and saltwater because of its implications for societal, economic, and ecological resources. While the mixing of freshwater and saltwater sources defines coastal estuaries and lagoons, sudden changes in this balance can have a large effect on critical ecosystems and infrastructure. Any change to the delivery of water from either source has the potential to affect the health of both humans and natural biota and also to damage coastal infrastructure. This fact sheet discusses the potential of major shifts in the dynamic freshwater-saltwater balance to alter the environment and coastal stability.

  2. Dental health and alimentation among the Quintana Roo Mayas: coastal and inland sites of the classic-postclassic periods.

    Science.gov (United States)

    Ortega-Muñoz, Allan

    2015-01-01

    The goal of this study is to compare both dental and skeletal stress indicators of the Classic and Postclassic coastal and inland sites of the State of Quintana Roo, Mexico. The hypothesis is that coastal populations will show osteo and dental pathologies characteristic of a primarily marine food source combined with a diet of horticultural resources. This kind of alimentation provides people with less environmental stress and therefore a better health status. However, over time, in the Postclassic period, the health conditions deteriorated among both coastal and inland inhabitants, according to the hierarchization of the society, militarization, and commercial activities of all the coastal sites. The sample was drawn from 19 sites (196 individuals of both sexes) from the east coast of the Yucatan Peninsula, as well as from inland localities within the boundaries of Quintana Roo. Both dental and osteological stress indicators were analyzed, and crosstabs were applied for absolute and relative frequencies and their corresponding χ(2) and F Fisher analyses. The osteopathological index of the coastal and inland sites of the Classic period were compared over time between the Classic coastal inhabitants and the Postclassic coastal inhabitants so as to understand how life conditions changed over time. The Mantel-Haenszel odds ratio, with the crosstabs controlling for sex (males and females), was also carried out. There are low frequencies of dental pathologies and anemia present in both the coastal and inland populations of Quintana Roo in the Classic and Postclassic times. Only the presence of periostitis is highly common in both types of site, and this is the only indicator with significant differences. The dental pathologies, anemia and periostitis, in general, present a slight upward trend in both the coastal and inland populations over time. The coastal populations have fewer frequencies of the above than the inland sites whilst, in the Postclassic period, both the

  3. [Scientific basis of environmental health contingency planning for a coastal oil spill].

    Science.gov (United States)

    Kim, Young Min; Cheong, Hae Kwan; Kim, Jong Ho; Kim, Jong Hun; Ko, Kumsook; Ha, Mina

    2009-03-01

    This study presents a scientific basis for the establishment of an environmental health contingency plan for dealing with accidental coastal oil spills and suggests some strategies for use in an environmental health emergency. We reviewed the existing literature, and analyzed the various fundamental factors involved in response strategies for oil spill. Our analysis included data derived from Hebei Spirit oil spill and used air dispersion modeling. Spill amounts of more than 1,000 kl can affect the health of residents along the coast, especially those who belong to vulnerable groups. Almost 30% of South Korean population lives in the vicinity of the coast. The area that is at the highest risk for a spill and that has the greatest number of people at risk is the stretch of coastline from Busan to Tongyeong. The most prevalent types of oil spilt in Korean waters have been crude oil and bunker-C oil, both of which have relatively high specific gravity and contain volatile organic compounds, polycyclic aromatic hydrocarbons, and metals. In the case of a spill of more than 1,000 kl, it may be necessary to evacuate vulnerable and sensitive groups. The government should establish environmental health planning that considers the spill amount, the types of oil, and the distance between the spot of the accident and the coast, and should assemble a response team that includes environmental health specialists to prepare for the future oil spill.

  4. Integrated modelling for assessing the risk of groundwater contaminants to human health and surface water ecosystems

    DEFF Research Database (Denmark)

    McKnight, Ursula S.; Rasmussen, Jes; Funder, Simon G.

    2010-01-01

    for evaluating the impact of a TCE groundwater plume, located in an area with protected drinking water interests, to human health and surface water ecosystems. This is accomplished by coupling the system dynamicsbased decision support system CARO-Plus to the aquatic ecosystem model AQUATOX via an analytical......The practical implementation of the European Water Framework Directive has resulted in an increased focus on the groundwater-surface water interaction zone. A gap exists with respect to preliminary assessment methodologies that are capable of evaluating and prioritising point sources...... volatilisation model for the stream. The model is tested on a Danish case study involving a 750 m long TCE groundwater plume discharging into a stream. The initial modelling results indicate that TCE contaminant plumes with μgL-1 concentrations entering surface water systems do not pose a significant risk...

  5. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  6. Effects of Timber Harvesting with Best Management Practices on Ecosystem Metabolism of a Low Gradient Stream on the United States Gulf Coastal Plain

    Directory of Open Access Journals (Sweden)

    Abram DaSilva

    2013-06-01

    Full Text Available Stream metabolism can be used as a measure of freshwater ecosystem health because of its responsiveness to natural and anthropogenic changes. In this study, we used stream metabolic rates to test for the effects of a timber harvest with Louisiana’s current best management practices (BMPs. The study was conducted from 2006 to 2010 in a loblolly pine (Pinus taeda stand in north-central Louisiana, USA, 45 ha of which was clear cut harvested in the summer of 2007. Dissolved oxygen (DO, water temperature, and stream depth were recorded at a site upstream (serving as a reference and a site downstream of the harvested area. Using diurnal DO change and an open-system, single-station method at each site, we quantified rates of net ecosystem productivity (NEP, gross primary productivity (GPP, community respiration (CR, and the GPP/CR ratio. The system was predominately heterotrophic, with a GPP/CR ratio of less than one for 82% of the time at the upstream site. No calculated metabolic rate was significantly changed by the timber harvest (two-way ANOVA with interaction; p < 0.001. Overall, the results suggest that timber harvests of similar intensity with Louisiana’s current BMPs may not significantly impact stream biological conditions.

  7. An ecosystem approach to human health and the prevention of cutaneous leishmaniasis in Tumaco, Colombia

    Directory of Open Access Journals (Sweden)

    Rojas Carlos A.

    2001-01-01

    Full Text Available A study was conducted during 1996-1997 in 20 villages of Tumaco, Colombia, to evaluate the effectiveness of personal protective measures against cutaneous leishmaniasis (CL. The intervention was effective, but the high costs of the preventive measures and the lack of a more holistic approach hampered the intervention's sustainability. This paper analyzes the results using an ecosystem approach to human health. Using this approach, we found that CL has been present in the study area for a long time and affects farmers and those living closest to the forest. The forest constitutes the habitat for insect vectors (sandflies and parasite reservoirs (wild mammals. Four spatial scales were identified in this ecosystem: residential, village, regional, and global. From the ecosystem perspective, three interventions are proposed to prevent CL in the 20 villages: improve housing construction, organize village housing in clusters, and make diagnosis and treatment of CL more accessible. The design and implementation of these interventions require active involvement by people with the disease (village inhabitants and decision-makers (local authorities.

  8. [Ecosystemic and communicative approaches in the implementation of territorial agendas for sustainable development and health promotion].

    Science.gov (United States)

    Gallo, Edmundo; Setti, Andréia Faraoni Freitas

    2012-06-01

    This paper analyzes the sustainability of ecosystemic and communicative approaches in terms of strategic planning for the implementation of territorial agendas that seek to integrate the principles of Sustainable Development and Health Promotion. It takes the Sustainable Development and Health Promotion project: Implementation of the Healthy Cities Agenda integrated with Agenda 21 in Traditional Communities of Protected Areas of the Bocaina Region" as a point of reference. It involves action-research that strives to contribute to the promotion of quality of life by means of the implementation of a participative strategic agenda and the promotion of mutual economic sustainability. The work seeks to build theoretical/practical bridges between the approaches and the methodologies and technologies used, assessing their consistency and effectiveness in relation to the principles of sustainable development and health promotion, especially in the empowerment of the local population and the broadening of the autonomy of the community.

  9. Spatial patterns in the condition index of the wild Pacific oyster Crassostrea gigas in a macrotidal coastal ecosystem: Influence of tidal processes and beyond

    Science.gov (United States)

    Gasmi, Sonia; Bernard, Ismaël; Pouvreau, Stéphane; Maurer, Danièle; Schaal, Gauthier; Ganthy, Florian; Cominassi, Louise; Allain, Gwenhael; Sautour, Benoit; David, Valérie

    2017-01-01

    In macrotidal coastal ecosystems, spatial heterogeneity of the water column properties is induced by both oceanic and continental influences. Hydrodynamic processes generate a land-sea gradient of environmental conditions, affecting the biological performances of sedentary organisms. The aim of the present study is to establish an extensive spatial assessment in the reproductive investment of the wild Pacific oyster Crassostrea gigas in Arcachon Bay. This is done by looking for a relationship between the Lawrence and Scott condition index (LSCI) and two tidal processes: the immersion level (IL) and the local oceanic flushing time (LoFt). The LSCI of C. gigas was assessed, just before gamete release, at 68 sampling stations in Arcachon Bay. Oyster performance was overall low and spatially variable. Significant differences in the LSCI were detected between the outer and inner bay. Oyster reefs located toward the mouth of the bay exhibited high LSCI (between 9 and 11), while oyster reefs located in inner bay, especially in south-eastern part around the Eyre River, had low LSCI (below 6). Linear modelling allowed to highlight significant effects of both tidal processes IL and LoFt on the obtained LSCI gradient. IL, LoFt explained 33% of the spatial variability observed on LSCI (IL = 3%; LoFt = 17%; LoFt + IL: 13%), 6% were attributed to the intra-station variation (ISv). Thus, high IL and rapid LoFt favor a better development of somatic-gonadal volume, probably because of longer feeding time and higher supply of food from the ocean by tide flows. Disentangling the effects of IL and LoFt on LSCI allowed to describe the spatial pattern in 61% of variability not explained by both tidal factors. A residual gradient directed southeast-northwest highlighted that others factors, independent from IL and LoFt seems to hamper inner bay oyster reproductive performance. Consequently, investigating on the ecological functioning (Eyre influences), trophic potential and anthropogenic

  10. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  11. Modular System for Shelves and Coasts (MOSSCO v1.0 – a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    Directory of Open Access Journals (Sweden)

    C. Lemmen

    2018-03-01

    Full Text Available Shelf and coastal sea processes extend from the atmosphere through the water column and into the seabed. These processes reflect intimate interactions between physical, chemical, and biological states on multiple scales. As a consequence, coastal system modelling requires a high and flexible degree of process and domain integration; this has so far hardly been achieved by current model systems. The lack of modularity and flexibility in integrated models hinders the exchange of data and model components and has historically imposed the supremacy of specific physical driver models. We present the Modular System for Shelves and Coasts (MOSSCO; http://www.mossco.de, a novel domain and process coupling system tailored but not limited to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the Earth System Modeling Framework (ESMF and on the Framework for Aquatic Biogeochemical Models (FABM. It goes beyond existing technologies by creating a unique level of modularity in both domain and process coupling, including a clear separation of component and basic model interfaces, flexible scheduling of several tens of models, and facilitation of iterative development at the lab and the station and on the coastal ocean scale. MOSSCO is rich in metadata and its concepts are also applicable outside the coastal domain. For coastal modelling, it contains dozens of example coupling configurations and tested set-ups for coupled applications. Thus, MOSSCO addresses the technology needs of a growing marine coastal Earth system community that encompasses very different disciplines, numerical tools, and research questions.

  12. Modular System for Shelves and Coasts (MOSSCO v1.0) - a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    Science.gov (United States)

    Lemmen, Carsten; Hofmeister, Richard; Klingbeil, Knut; Hassan Nasermoaddeli, M.; Kerimoglu, Onur; Burchard, Hans; Kösters, Frank; Wirtz, Kai W.

    2018-03-01

    Shelf and coastal sea processes extend from the atmosphere through the water column and into the seabed. These processes reflect intimate interactions between physical, chemical, and biological states on multiple scales. As a consequence, coastal system modelling requires a high and flexible degree of process and domain integration; this has so far hardly been achieved by current model systems. The lack of modularity and flexibility in integrated models hinders the exchange of data and model components and has historically imposed the supremacy of specific physical driver models. We present the Modular System for Shelves and Coasts (MOSSCO; http://www.mossco.de), a novel domain and process coupling system tailored but not limited to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the Earth System Modeling Framework (ESMF) and on the Framework for Aquatic Biogeochemical Models (FABM). It goes beyond existing technologies by creating a unique level of modularity in both domain and process coupling, including a clear separation of component and basic model interfaces, flexible scheduling of several tens of models, and facilitation of iterative development at the lab and the station and on the coastal ocean scale. MOSSCO is rich in metadata and its concepts are also applicable outside the coastal domain. For coastal modelling, it contains dozens of example coupling configurations and tested set-ups for coupled applications. Thus, MOSSCO addresses the technology needs of a growing marine coastal Earth system community that encompasses very different disciplines, numerical tools, and research questions.

  13. GIS-based health assessment of the marine ecosystem in Laizhou Bay, China.

    Science.gov (United States)

    Song, Debin; Gao, Zhiqiang; Zhang, Hua; Xu, Fuxiang; Zheng, Xiangyu; Ai, Jinquan; Hu, Xiaoke; Huang, Guopei; Zhang, Haibo

    2017-12-15

    According to 2014-2016 monitoring data, an assessment index system including water quality, depositional environment and ecosystem was built to evaluate the health statue of marine ecosystem in the Laizhou Bay using analytic hierarchy process (AHP) method. The results, spatialized in ArcGIS software, show: while the comprehensive ecological health index is 0.62, the ecological environmental quality in the Laizhou Bay is in a sub-healthy state; the unhealthy area is mainly concentrated in southwestern inshore region, and impacted by serious environmental problems, such as water eutrophication and heavy metal pollution; the northwestern and southeastern inshore regions are in a sub-healthy state, while the eastern inshore and northern areas are in the healthiest state. The land-based pollutants that discharge into the sea may be the leading factors that are causing ecological environment deterioration in the Laizhou Bay, and the reclamation work ongoing around the port has exacerbated the ecological risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    Science.gov (United States)

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  15. Pacific connections for health, ecosystems and society: new approaches to the land-water-health nexus.

    Science.gov (United States)

    Parkes, Margot W

    2016-03-01

    Renewed effort to understand the social-ecological context of health is drawing attention to the dynamics of land and water resources and their combined influence on the determinants of health. A new area of research, education and policy is emerging that focuses on the land-water-health nexus: this orientation is applicable from small wetlands through to large-scale watersheds or river basins, and draws attention to the benefits of combined land and water governance, as well as the interrelated implications for health, ecological and societal concerns. Informed by research precedents, imperatives and collaborations emerging in Canada and parts of Oceania, this review profiles three integrative, applied approaches that are bringing attention to the importance the land-water-health nexus within the Pacific Basin: wetlands and watersheds as intersectoral settings to address land-water-health dynamics; tools to integrate health, ecological and societal dynamics at the land-water-health nexus; and indigenous leadership that is linking health and well-being with land and water governance. Emphasis is given to key characteristics of a new generation of inquiry and action at the land-water-health nexus, as well as capacity-building, practice and policy opportunities to address converging environmental, social and health objectives linked to the management and governance of land and water resources.

  16. Health and climate related ecosystem services provided by street trees in the urban environment.

    Science.gov (United States)

    Salmond, Jennifer A; Tadaki, Marc; Vardoulakis, Sotiris; Arbuthnott, Katherine; Coutts, Andrew; Demuzere, Matthias; Dirks, Kim N; Heaviside, Clare; Lim, Shanon; Macintyre, Helen; McInnes, Rachel N; Wheeler, Benedict W

    2016-03-08

    Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the

  17. Designing a post-genomics knowledge ecosystem to translate pharmacogenomics into public health action.

    Science.gov (United States)

    Dove, Edward S; Faraj, Samer A; Kolker, Eugene; Ozdemir, Vural

    2012-01-01

    Translation of pharmacogenomics to public health action is at the epicenter of the life sciences agenda. Post-genomics knowledge is simultaneously co-produced at multiple scales and locales by scientists, crowd-sourcing and biological citizens. The latter are entrepreneurial citizens who are autonomous, self-governing and increasingly conceptualizing themselves in biological terms, ostensibly taking responsibility for their own health, and engaging in patient advocacy and health activism. By studying these heterogeneous 'scientific cultures', we can locate innovative parameters of collective action to move pharmacogenomics to practice (personalized therapeutics). To this end, we reconceptualize knowledge-based innovation as a complex ecosystem comprising 'actors' and 'narrators'. For robust knowledge translation, we require a nested post-genomics technology governance system composed of first-order narrators (for example, social scientists, philosophers, bioethicists) situated at arm's length from innovation actors (for example, pharmacogenomics scientists). Yet, second-order narrators (for example, an independent and possibly crowd-funded think-tank of citizen scholars, marginalized groups and knowledge end-users) are crucial to prevent first-order narrators from gaining excessive power that can be misused in the course of steering innovations. To operate such 'self-calibrating' and nested innovation ecosystems, we introduce the concept of 'wiki-governance' to enable mutual and iterative learning among innovation actors and first- and second-order narrators. '[A] scientific expert is someone who knows more and more about less and less, until finally knowing (almost) everything about (almost) nothing.' [1] 'Ubuntu: I am because you are.' [2].

  18. USEtox: The UNEP-SETAC consensus model for life-cycle impacts on human health and ecosystems

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; McKone, Tom; Huijbregts, Mark A.J.

    2007-01-01

    Life cycle impact assessment (LCIA) characterizes emissions for the life-cycle assessment (LCA) of a product by translating these emissions into their potential impacts on human health, ecosystems, global climate and other resources. This process requires substance-specific characterization factors...... (CFs) that represent the relative potential of specific chemical emissions to impact human disease burden and ecosystem health. Within the Life Cycle Initiative, a joint initiative of the United Nations Environment Program (UNEP) and of the Society of Environmental Toxicology and Chemistry (SETAC...... and transparent tool for making human health and ecosystem CF estimates. The consensus model has now been used to calculate CFs for several thousand substances and is intended to form the basis of the recommendations from UNEP-SETAC‘s Life Cycle Initiative regarding characterization of toxic impacts in Life Cycle...

  19. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale.

    Science.gov (United States)

    Malaj, Egina; von der Ohe, Peter C; Grote, Matthias; Kühne, Ralph; Mondy, Cédric P; Usseglio-Polatera, Philippe; Brack, Werner; Schäfer, Ralf B

    2014-07-01

    Organic chemicals can contribute to local and regional losses of freshwater biodiversity and ecosystem services. However, their overall relevance regarding larger spatial scales remains unknown. Here, we present, to our knowledge, the first risk assessment of organic chemicals on the continental scale comprising 4,000 European monitoring sites. Organic chemicals were likely to exert acute lethal and chronic long-term effects on sensitive fish, invertebrate, or algae species in 14% and 42% of the sites, respectively. Of the 223 chemicals monitored, pesticides, tributyltin, polycyclic aromatic hydrocarbons, and brominated flame retardants were the major contributors to the chemical risk. Their presence was related to agricultural and urban areas in the upstream catchment. The risk of potential acute lethal and chronic long-term effects increased with the number of ecotoxicologically relevant chemicals analyzed at each site. As most monitoring programs considered in this study only included a subset of these chemicals, our assessment likely underestimates the actual risk. Increasing chemical risk was associated with deterioration in the quality status of fish and invertebrate communities. Our results clearly indicate that chemical pollution is a large-scale environmental problem and requires far-reaching, holistic mitigation measures to preserve and restore ecosystem health.

  20. Trade-offs Between Socio-economic Development and Ecosystem Health under Changing Water Availability

    Science.gov (United States)

    Nazemi, A.; Hassanzadeh, E.; Elshorbagy, A. A.; Wheater, H. S.; Gober, P.; Jardine, T.; Lindenschmidt, K. E.

    2017-12-01

    Natural and human water systems at regional scales are often developed around key characteristics of streamflow. As a result, changes in streamflow regime can affect both socio-economic activities and freshwater ecosystems. In addition to natural variability and/or climate change, extensive water resource management to support socio-economic growth has also changed streamflow regimes. This study aims at understanding the trade-offs between agricultural expansion in the province of Saskatchewan, Canada, and alterations in the ecohydrological characteristics of the Saskatchewan River Delta (SRD) located downstream. Changes in climate along with extensive water resource management have altered the upstream flow regime. Moreover, Saskatchewan is investigating the possible expansion of irrigated agriculture to boost the provincial economy. To evaluate trade-offs across a range of possible scenarios for streamflow changes, the potential increase in provincial net benefit versus potential vulnerability of the SRD was assessed using perturbed flow realizations along with scenarios of irrigation expansion as input to an integrated water resource system model. This study sheds light on the potential variability in trade-offs between economic benefits and ecosystem health under a range of streamflow conditions, with the aim of informing decisions that can benefit both natural and human water systems.

  1. Coastal Innovation Imperative

    Directory of Open Access Journals (Sweden)

    Bruce C. Glavovic

    2013-03-01

    Full Text Available This is the second of two articles that explores the coastal innovation paradox and imperative. Paradoxically, innovation is necessary to escape the vulnerability trap created by past innovations that have degraded coastal ecosystems and imperil coastal livelihoods. The innovation imperative is to reframe and underpin business and technology with coherent governance innovations that lead to social transformation for coastal sustainability. How might coastal management help to facilitate this transition? It is argued that coastal management needs to be reconceptualised as a transformative practice of deliberative coastal governance. A foundation comprising four deliberative or process outcomes is posited. The point of departure is to build human and social capital through issue learning and improved democratic attitudes and skills. Attention then shifts to facilitating community-oriented action and improving institutional capacity and decision-making. Together, these endeavours enable improved community problem-solving. The ultimate process goal is to build more collaborative communities. Instituting transformative deliberative coastal governance will help to stimulate innovations that chart new sustainability pathways and help to resolve the coastal problems. This framework could be adapted and applied in other geographical settings.

  2. Human health risk assessment of organochlorines associated with fish consumption in a coastal city in China

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.T. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lee, T.K.M. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Chen, K. [Department of Epidemiology and Health Statistics, School of Medicine, Zhejiang University, 353, Yan-an Road, Hangzhou, Zhejiang Province, 310031 (China); Wong, H.L. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zheng, J.S. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Giesy, J.P. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Department of Zoology, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824 (United States); Lo, K.K.W. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Yamashita, N. [National Institute of Advanced Industrial Science and Technology (AIST), EMTECH, 16-1 Onogawa, Tsukuba (Japan); Lam, P.K.S. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: bhpksl@cityu.edu.hk

    2005-07-15

    Food consumption is an important route of human exposure to organochlorines (OCs). In order to assess the potential health risks associated with these contaminants due to fish consumption, five species of fish were collected from a local market in Zhoushan City, an island in the East China Sea. Dioxin-like compounds, such as polychlorinated dibenzo-p-dioxins/ dibenzofurans, in the fish samples were screened by H4IIE-luc cell bioassay, and the concentrations of specific organochlorines were measured by gas chromatograph-electron capture detector (GC-ECD). The bioassay results indicated that concentrations of dioxin-like compounds in the fish samples were below detection limit (0.64 pg/mL). The concentrations of OC pesticides and PCBs ranged from 0.67 to 13 and 0.24 to 1.4 ng/g wet wt., respectively. Significantly, concentrations of p,p'-DDE in fish meat were comparatively high (average 3.9 ng/g wet wt.) compared with the other OC pesticides. The daily fish consumption, based on a dietary survey conducted among 160 local healthy residents, was determined to be 105 g/person. The relevant cancer benchmark concentrations of HCB, dieldrin, chlordane, DDTs and PCBs were 0.36, 0.04, 1.6, 1.7, and 0.29 ng/kg per day, respectively, based on the local diet. The hazard ratios (HRs), based on non-cancer endpoints were all less than 1.0, while the HRs based on cancer were greater than 1.0 for certain contaminants based on the 95th centile concentration in fish tissue. - Health risk assessment of organochlorines associated with fish consumption reveals potential cancer risks for some contaminants in a coastal population in China.

  3. Human health risk assessment of organochlorines associated with fish consumption in a coastal city in China

    International Nuclear Information System (INIS)

    Jiang, Q.T.; Lee, T.K.M.; Chen, K.; Wong, H.L.; Zheng, J.S.; Giesy, J.P.; Lo, K.K.W.; Yamashita, N.; Lam, P.K.S.

    2005-01-01

    Food consumption is an important route of human exposure to organochlorines (OCs). In order to assess the potential health risks associated with these contaminants due to fish consumption, five species of fish were collected from a local market in Zhoushan City, an island in the East China Sea. Dioxin-like compounds, such as polychlorinated dibenzo-p-dioxins/ dibenzofurans, in the fish samples were screened by H4IIE-luc cell bioassay, and the concentrations of specific organochlorines were measured by gas chromatograph-electron capture detector (GC-ECD). The bioassay results indicated that concentrations of dioxin-like compounds in the fish samples were below detection limit (0.64 pg/mL). The concentrations of OC pesticides and PCBs ranged from 0.67 to 13 and 0.24 to 1.4 ng/g wet wt., respectively. Significantly, concentrations of p,p'-DDE in fish meat were comparatively high (average 3.9 ng/g wet wt.) compared with the other OC pesticides. The daily fish consumption, based on a dietary survey conducted among 160 local healthy residents, was determined to be 105 g/person. The relevant cancer benchmark concentrations of HCB, dieldrin, chlordane, DDTs and PCBs were 0.36, 0.04, 1.6, 1.7, and 0.29 ng/kg per day, respectively, based on the local diet. The hazard ratios (HRs), based on non-cancer endpoints were all less than 1.0, while the HRs based on cancer were greater than 1.0 for certain contaminants based on the 95th centile concentration in fish tissue. - Health risk assessment of organochlorines associated with fish consumption reveals potential cancer risks for some contaminants in a coastal population in China

  4. Ecosystem health evaluation system of the water-fluctuating zone in the Three Gorges Area

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ao; YUAN Hui; ZHANG Yan-hui; HU Gang

    2004-01-01

    This paper discribes the definition of ecosystem health for the water-level flutuation zone of the Three Gorges Region and puts forward an evaluation system involving indicators in three groups: 1) structural indicators comprise slope, biodiversity,environmental capacity, stability, restoration ability and damage situation; 2) functional indicators including probability of geological hazard, erosion rate, habitat rate, land use intension and days of tourist season; 3) environmental indicatiors made up of population quality, potential intension of human, ground water quality, ambient air quality, wastewater treatment rate, pesticide use rate, fertilizer use rate, environmental management and public participation. In the design of the system, the subject zone is regarded as the type similar to wetland and the impacts of human activities on the zone are attached great importance to.

  5. A technology ecosystem perspective on hospital management information systems: lessons from the health literature.

    Science.gov (United States)

    Bain, Christopher A; Standing, Craig

    2009-01-01

    Hospital managers have a large range of information needs including quality metrics, financial reports, access information needs, educational, resourcing and decision support needs. Currently these needs involve interactions by managers with numerous disparate systems, both electronic such as SAP, Oracle Financials, PAS' (patient administration systems) like HOMER, and relevant websites; and paper-based systems. Hospital management information systems (HMIS) can be thought of sitting within a Technology Ecosystem (TE). In addition, Hospital Management Information Systems (HMIS) could benefit from a broader and deeper TE model, and the HMIS environment may in fact represents its own TE (the HMTE). This research will examine lessons from the health literature in relation to some of these issues, and propose an extension to the base model of a TE.

  6. Coupling habitat suitability and ecosystem health with AEHRA to estimate E-flows under intensive human activities

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.

    2017-08-01

    Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.

  7. Health status of the coastal waters of Mumbai and regions around

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Govindan, K.

    in the drainage zones also contribute to pollution loads. These inputs have affected the water quality, sediment quality and biological characteristics of receiving waters to varying degrees. BOD in coastal water is often high and water is enriched in dissolved...

  8. Social ecosystem health: confronting the complexity and emergence of infectious diseases

    Directory of Open Access Journals (Sweden)

    Cristina de Albuquerque Possas

    2001-02-01

    Full Text Available The emergence and re-emergence of infectious diseases and their rapid dissemination worldwide are challenging national health systems, particularly in developing countries affected by extreme poverty and environmental degradation. The expectations that new vaccines and drugs and global surveillance would help reverse these trends have been frustrated thus far by the complexity of the epidemiological transition, despite promising prospects for the near future in biomolecular research and genetic engineering. This impasse raises crucial issues concerning conceptual frameworks supporting priority-setting, risk anticipation, and the transfer of science and technology's results to society. This article discusses these issues and the limitations of social and economic sciences on the one hand and ecology on the other as the main theoretical references of the health sciences in confronting the complexity of these issues on their own. The tension between these historically dissociated paradigms is discussed and a transdisciplinary approach is proposed, that of social ecosystem health, incorporating these distinct perspectives into a comprehensive framework.

  9. An integrated approach to the assessment of the eastern Gulf of Finland health: A case study of coastal habitats

    Science.gov (United States)

    Berezina, Nadezhda A.; Gubelit, Yulia I.; Polyak, Yulia M.; Sharov, Andrey N.; Kudryavtseva, Valentina A.; Lubimtsev, Vasily A.; Petukhov, Vasily A.; Shigaeva, Tatyana D.

    2017-07-01

    Eutrophication and chemical pollution are typical threats to the ecosystem of the Gulf of Finland. This paper aims to make a comprehensive assessment of the environmental status of coastal habitats in the easternmost Gulf of Finland (Neva River estuary) by using different physical, chemical and biotic variables to find cost-effective indicators for further monitoring. During summers of 2014 and 2015 we measured water salinity, phosphorus (eutrophication marker), biomass of harmful filamentous macroalgae (coastline hypoxia inductor), sediment hazardous substances (trace metals, polycyclic aromatic hydrocarbons) and other concomitant characters at 12 sites in the gulf. Also, we analyzed responses of the phytoplankton and benthic organisms, including metal-tolerant and hydrocarbon-oxidizing bacteria, meio- and macrofauna, to these factors. We compared the indicative sensitivity and efficiency of several well-known biotic indices and methods, including a Saprobity system (basing on phytoplankton), Raffaelli and Mason index (meiobenthos), and two macrobenthic derived indices (Goodnight-Whitley Index and Benthic Quality Index). Also, we applied a new index - the embryo malformation frequency in benthic amphipods. To estimate the level of bottom hypoxia induced by the macroalgae blooms, we measured the algal cover and thickness of the algal mats. To verify our assessment, we tested correlations between all used variables. Biotic communities of these areas are subjected to high phosphorus and macroalgae blooms, toxic pollution, water salinity and other factors. We concluded that environmental state of coastal habitats at several southern sites (in Koporskaya Bay and near the developing port Bronka) and near port Primorsk in the north was bad, while the state of the rest of sites was moderate or good. The integrated approach for the assessment may be recommended for monitoring programs as an important tool for studying human-mediated and other effects on brackishwater

  10. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound.

    Science.gov (United States)

    Lee, Timothy S; Toft, Jason D; Cordell, Jeffery R; Dethier, Megan N; Adams, Jeffrey W; Kelly, Ryan P

    2018-01-01

    Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic-terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness) from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  11. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound

    Directory of Open Access Journals (Sweden)

    Timothy S. Lee

    2018-02-01

    Full Text Available Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic–terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  12. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    Science.gov (United States)

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal

  13. Uncertainty Analysis of Phytoplankton Dynamics in Coastal Waters

    NARCIS (Netherlands)

    Niu, L.

    2015-01-01

    There is an increasing concern about the interactions between phytoplankton and coastal ecosystems, especially on the negative effects from coastal eutrophication and phytoplankton blooms. As the key indicator of the coastal ecosystem, phytoplankton plays an important role in the whole impact-effect

  14. Ecosystem Health Assessment at County-Scale Using the Pressure-State-Response Framework on the Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    Delin Liu

    2016-12-01

    Full Text Available Assessing ecosystem health is helpful to determine reasonable eco-environmental restoration and resource management strategies. Based on a pressure-state-response (PSR framework, a set of comprehensive indicators including natural, social and economic aspects was proposed and applied for assessing the ecosystem health of Yuanzhou County, Loess Plateau, Ningxia Province, China. The basic data used to calculate the values of the assessment indicators include Landsat TM image and socio-economic data, and remote sensing (RS and the geographic information system (GIS were used to process image data. The results showed that the ecosystem health conditions of most townships in Yuanzhou County were at the moderately healthy level, three townships were at the healthy level, and only two townships were at the unhelathy level; the areas (percentage at the unhealthy, moderately healthy and healthy levels were 443.91 km2 (12.66%, 2438.75 km2 (69.54% and 624.50 km2 (17.81%, respectively. The results could provide useful information for local residents and the government to take measures to improve the health conditions of their township ecosystem.

  15. The value of co-creation through Design Science Research in developing a Digital Health Innovation Ecosystem for South Africa

    CSIR Research Space (South Africa)

    Herselman, Martha E

    2017-06-01

    Full Text Available The purpose of this paper is to indicate what value was co-created with various stakeholders when Design Science Research as a methodology was applied, to develop a Digital Health Innovation Ecosystem (DHIE) for South Africa. Design science research...

  16. Effects of Oxytetracycline Containing Feed on Pond Ecosystem and Health of Carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Z. Svobodová

    2006-01-01

    Full Text Available The aim of the present study was to assess the effects of medicated feed, Rupin Special gran. ad us. vet. with oxytetracyclini chloridum as active ingredient (5 g kg-1 feed, on physical and chemical characteristics of a pond ecosystem and the health of carp of two age groups in a pilot operation. The medicated feed was administered in 8 doses (15 g kg-1 live weight. In the study, temperature, oxygen concentration, pH, microbiological, hydrobiological and hydrochemical variables of pond water were monitored. The fish health assessment was based on clinical, pathological-morphological and haematological examinations of 80 individuals in total. The examinations were made before, during, immediately after and 15 days after the administration of medicated feed. No effects on water quality were found. An important histological change after the application of 8 doses was the loss of haematopoietic tissue from the spleen, and dystrophic changes in the renal duct epithelium. A decrease in leukocyte and lymphocyte counts and in total blood plasma protein concentrations (P < 0.05 were observed already after the 3rd dose of Rupin Special. It follows from the results of the study that Rupin Special should be used in only 4 (exceptionally 6 doses, compared to the originally recommended 8 doses.

  17. Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food.

    Science.gov (United States)

    Tsatsakis, Aristidis M; Nawaz, Muhammad Amjad; Tutelyan, Victor A; Golokhvast, Kirill S; Kalantzi, Olga-Ioanna; Chung, Duck Hwa; Kang, Sung Jo; Coleman, Michael D; Tyshko, Nadia; Yang, Seung Hwan; Chung, Gyuhwa

    2017-09-01

    Modern agriculture provides the potential for sustainable feeding of the world's increasing population. Up to the present moment, genetically modified (GM) products have enabled increased yields and reduced pesticide usage. Nevertheless, GM products are controversial amongst policy makers, scientists and the consumers, regarding their possible environmental, ecological, and health risks. Scientific-and-political debates can even influence legislation and prospective risk assessment procedure. Currently, the scientifically-assessed direct hazardous impacts of GM food and feed on fauna and flora are conflicting; indeed, a review of literature available data provides some evidence of GM environmental and health risks. Although the consequences of gene flow and risks to biodiversity are debatable. Risks to the environment and ecosystems can exist, such as the evolution of weed herbicide resistance during GM cultivation. A matter of high importance is to provide precise knowledge and adequate current information to regulatory agencies, governments, policy makers, researchers, and commercial GMO-releasing companies to enable them to thoroughly investigate the possible risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Long-term spatiotemporal trends and health risk assessment of oyster arsenic levels in coastal waters of northern South China Sea.

    Science.gov (United States)

    Wang, Xuefeng; Wang, Lifei; Jia, Xiaoping; Jackson, Donald A

    2017-09-01

    Long-term spatiotemporal trends and health risk assessment of oyster arsenic levels in the coastal waters of northern South China Sea were investigated in order to help improve the quality and safety control and sustainable aquaculture for mollusks in China. Cultured oysters (Crassostrea rivularis) collected from the waters of 23 bays, harbors, and estuaries along the coast of northern South China Sea from 1989 to 2012 were examined for spatial patterns and long-term temporal trends of oyster arsenic levels. Single-factor index and health risk assessment were used to quantify arsenic exposure to human health through oyster consumption. Overall, arsenic was detected in 97.4% of the oyster samples, and oyster arsenic levels were non-detectable-2.51 mg/kg with an average of 0.63 ± 0.54 mg/kg. Oyster arsenic levels in the coastal waters of northern South China Sea showed an overall decline from 1989 to 2012, remained relatively low since 2005, and slightly increased after 2007. Oyster arsenic levels in Guangdong coastal waters were much higher with more variation than in Guangxi and Hainan coastal waters, and the long-term trends of oyster arsenic levels in Guangdong coastal waters dominated the overall trends of oyster arsenic levels in the coastal waters of northern South China Sea. Within Guangdong Province, oyster arsenic levels were highest in east Guangdong coastal waters, followed by the Pearl River estuary and west Guangdong coastal waters. Single-factor index ranged between 0.27 and 0.97, and average health risk coefficient was 3.85 × 10 -5 , both suggesting that oyster arsenic levels in northern South China Sea are within the safe range for human consumption. However, long-term attention should be given to seafood market monitoring in China and the risk of arsenic exposure to human health through oyster consumption.

  19. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China.

    Science.gov (United States)

    Cheng, Xian; Chen, Liding; Sun, Ranhao; Kong, Peiru

    2018-03-01

    It is important to assess river ecosystem health in large-scale basins when considering the complex influence of anthropogenic activities on these ecosystems. This study investigated the river ecosystem health in the Haihe River Basin (HRB) by sampling 148 river sites during the pre- and post-rainy seasons in 2013. A model was established to assess the river ecosystem health based on water physicochemical, nutrient, and macroinvertebrate indices, and the health level was divided into "very poor," "poor," "fair," "good," and "excellent" according to the health score calculated from the assessment model. The assessment results demonstrated that the river ecosystem health of the HRB was "poor" overall, and no catchments were labeled "excellent." The percentages of catchments deemed to have "very poor," "poor," "fair," or "good" river ecosystem health were 12.88%, 40.91%, 40.15%, and 6.06%, respectively. From the pre- to the post-rainy season, the macroinvertebrate health levels improved from "poor" to "fair." The results of a redundancy analysis (RDA), path analysis of the structural equation model (SEM), and X-Y plots indicated that the land use types of forest land and grassland had positive relationships with river ecosystem health, whereas arable land, urban land, gross domestic product (GDP) per capita, and population density had negative relationships with river ecosystem health. The variance partitioning (VP) results showed that anthropogenic activities (including land use and socio-economy) together explained 30.9% of the variations in river ecosystem health in the pre-rainy season, and this value increased to 35.9% in the post-rainy season. Land use intensity was the first driver of river ecosystem health, and socio-economic activities was the second driver. Land use variables explained 20.5% and 25.7% of the variations in river ecosystem health in the pre- and post-rainy season samples, respectively, and socio-economic variables explained 12.3% and 17.2% of

  20. FUNCTIONAL ROLE OF SHRUB COMMUNITIES IN THE FORMATION OF MOSAIC ECOTONE COMMUNITIES OF COASTAL ECOSYSTEM OF NORTHWEST OF THE CASPIAN LOWLAND

    Directory of Open Access Journals (Sweden)

    M.-R. D. Magomedov

    2014-01-01

    Full Text Available Aim. Complex estimation of the ecological role of shrubs in the structure-functional relationships of arid complexes of the Northwest of the Caspian lowland. Location. Coastal ecosystems of the Northwest of the Caspian lowland.Methods. The complex of modern methods of studing soil samples for the seasonal dynamics of humidity is used, humus content ( for Tyrin ,dry salts of residue, chlorid ions (for Mour,sulfate ions of gravimetic method (arinushkina, 1971, ions of calcium and magnesium and the amount of sodium and potassium (workshop on soil science 1980,total alkali. To estimate the rate of decomposition of two methods: exposure in soil samples of filter paper and bags of hay (Wiegert and Evans, 1964; Schädler and Brandl, 2005 and atc. Soil respiration, reflecting its respiratory potential assessed in the laboratory on volumetric respirometer according to the procedure respirometry (Klekowski, 1975. Production plants was determined by standard methods of Geobotany and Ecology of Plants (Браун, 1957; Быков, 1952, 1978; Быков, Головина, 1965; Раменский, 1966, 1971 and atc. In the study or the animal population used a set of specific methods of quantitative and qualitative assessment of the number and diversity of species common to the sites (Бородин, Абатуров, Магомедов, 1981; Магомедов, Ахтаев, 1989 Чельцов-Бейбутов, Осадчая, 1960; Кудрин, 1971; Захаров, 1976; Постников, 1955; Тупикова, Емельянова,1975. Features of the use of these methods in detail in the literature(Кожанчиков,1961; Козлов, Нинбург, 1971;Фасулати, 1971; Мал-федьен, 1965; Walker, 1957. Results. Seasonal shows comparative characteristics of the dynamics of physical and chemical parameters of the soil horizons, the structure of the vegetation cover and composition of the population of

  1. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  2. Ecosystem Goods & Services and their Direct Linkages to Human Health & Well-Being

    Science.gov (United States)

    This presentation provides an overview of the SHC 2.61 Community-Based Final Ecosystem Goods and Services Project and other ecosystem services activities in the Office of Research and Development. Specifically, this presentation addressed a series of topics: Provide an overview ...

  3. Strengthening HIV health care services for men who have sex with men in coastal Kenya

    NARCIS (Netherlands)

    van der Elst, E.M.

    2015-01-01

    This thesis describes work with Kenyan men who have sex with men (MSM) who are highly stigmatized and discriminated against in society, and have not been targeted in HIV prevention programming until recently. Initial work included a size estimation of MSM who sell sex in coastal Kenya in 2006, and a

  4. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota.

    Science.gov (United States)

    Ismail, Nur Afifah Hanun; Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-12-01

    Fishes are a major protein food source for humans, with a high economic value in the aquaculture industry. Because endocrine disrupting compounds (EDCs) have been introduced into aquatic ecosystems, the exposure of humans and animals that depend on aquatic foods, especially fishes, should be seriously considered. EDCs are emerging pollutants causing global concern because they can disrupt the endocrine system in aquatic organisms, mammals, and humans. These pollutants have been released into the environment through many sources, e.g., wastewater treatment plants, terrestrial run-off (industrial activities, pharmaceuticals, and household waste), and precipitation. The use of pharmaceuticals, pesticides, and fertilizers for maintaining and increasing fish health and growth also contributes to EDC pollution in the water body. Human and animal exposure to EDCs occurs via ingestion of contaminated matrices, especially aquatic foodstuffs. This paper aims to review human EDC exposure via fish consumption. In respect to the trace concentration of EDCs in fish, types of instrument and clean-up method are of great concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health.

    Science.gov (United States)

    Anderson, Donald M; Alpermann, Tilman J; Cembella, Allan D; Collos, Yves; Masseret, Estelle; Montresor, Marina

    2012-02-01

    The dinoflagellate genus Alexandrium is one of the major harmful algal bloom (HAB) genera with respect to the diversity, magnitude and consequences of blooms. The ability of Alexandrium to colonize multiple habitats and to persist over large regions through time is testimony to the adaptability and resilience of this group of species. Three different families of toxins, as well as an as yet incompletely characterized suite of allelochemicals are produced among Alexandrium species. Nutritional strategies are equally diverse, including the ability to utilize a range of inorganic and organic nutrient sources, and feeding by ingestion of other organisms. Many Alexandrium species have complex life histories that include sexuality and often, but not always, cyst formation, which is characteristic of a meroplanktonic life strategy and offers considerable ecological advantages. Due to the public health and ecosystem impacts of Alexandrium blooms, the genus has been extensively studied, and there exists a broad knowledge base that ranges from taxonomy and phylogeny through genomics and toxin biosynthesis to bloom dynamics and modeling. Here we present a review of the genus Alexandrium, focusing on the major toxic and otherwise harmful species.

  6. The role of the local microbial ecosystem in respiratory health and disease.

    Science.gov (United States)

    de Steenhuijsen Piters, Wouter A A; Sanders, Elisabeth A M; Bogaert, Debby

    2015-08-19

    Respiratory tract infections are a major global health concern, accounting for high morbidity and mortality, especially in young children and elderly individuals. Traditionally, highly common bacterial respiratory tract infections, including otitis media and pneumonia, were thought to be caused by a limited number of pathogens including Streptococcus pneumoniae and Haemophilus influenzae. However, these pathogens are also frequently observed commensal residents of the upper respiratory tract (URT) and form-together with harmless commensal bacteria, viruses and fungi-intricate ecological networks, collectively known as the 'microbiome'. Analogous to the gut microbiome, the respiratory microbiome at equilibrium is thought to be beneficial to the host by priming the immune system and providing colonization resistance, while an imbalanced ecosystem might predispose to bacterial overgrowth and development of respiratory infections. We postulate that specific ecological perturbations of the bacterial communities in the URT can occur in response to various lifestyle or environmental effectors, leading to diminished colonization resistance, loss of containment of newly acquired or resident pathogens, preluding bacterial overgrowth, ultimately resulting in local or systemic bacterial infections. Here, we review the current body of literature regarding niche-specific upper respiratory microbiota profiles within human hosts and the changes occurring within these profiles that are associated with respiratory infections. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, G.V.M.; Sarma, V.V.S.S.; Robin, R.S.; Raman, A.V.; JaiKumar, M.; Rakesh, M.; Subramanian, B.R.

    in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (- 308 mmolC m sup(-2) d sup(-1) approx. equal to - 3...

  8. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health.

    Directory of Open Access Journals (Sweden)

    Vittoria Roncalli

    Full Text Available Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne'ohe Bay, Oahu, Hawai'i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length "giant" proteins (>4,000 amino acids, proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This

  9. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health

    Science.gov (United States)

    Christie, Andrew E.; Sommer, Stephanie A.; Cieslak, Matthew C.; Hartline, Daniel K.; Lenz, Petra H.

    2017-01-01

    Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne‘ohe Bay, Oahu, Hawai‘i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO) analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length “giant” proteins (>4,000 amino acids), proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This

  10. Coastal Morphology and Coastal Protection

    NARCIS (Netherlands)

    Van de Graaff, J.

    2009-01-01

    Lecture notes ct5309. Tides, currents and water; coastal problems; sediment transport processes; coastal transport modes; longshore transport; cross-shore transport; fundamentals of mud; channels and trenches; coastal protection; application of structures; application of nourishments.

  11. Sustainability of current agriculture practices, community perception, and implications for ecosystem health: an Indian study.

    Science.gov (United States)

    Sarkar, Atanu; Patil, Shantagouda; Hugar, Lingappa B; vanLoon, Gary

    2011-12-01

    In order to support agribusiness and to attain food security for ever-increasing populations, most countries in the world have embraced modern agricultural technologies. Ecological consequences of the technocentric approaches, and their sustainability and impacts on human health have, however, not received adequate attention particularly in developing countries. India is one country that has undergone a rapid transformation in the field of agriculture by adopting strategies of the Green Revolution. This article provides a comparative analysis of the effects of older and newer paradigms of agricultural practices on ecosystem and human health within the larger context of sustainability. The study was conducted in three closely situated areas where different agricultural practices were followed: (a) the head-end of a modern canal-irrigated area, (b) an adjacent dryland, and (c) an area (the ancient area) that has been provided with irrigation for some 800 years. Data were collected by in-depth interviews of individual farmers, focus-group discussions, participatory observations, and from secondary sources. The dryland, receiving limited rainfall, continues to practice diverse cropping centered to a large extent on traditional coarse cereals and uses only small amounts of chemical inputs. On the other hand, modern agriculture in the head-end emphasizes continuous cropping of rice supported by extensive and indiscriminate use of agrochemicals. Market forces have, to a significant degree, influenced the ancient area to abandon much of its early practices of organic farming and to take up aspects of modern agricultural practice. Rice cultivation in the irrigated parts has changed the local landscape and vegetation and has augmented the mosquito population, which is a potential vector for malaria, Japanese encephalitis and other diseases. Nevertheless, despite these problems, perceptions of adverse environmental effects are lowest in the heavily irrigated area.

  12. Mining in the Alligator Rivers Region, northern Australia: Assessing potential and actual effects on ecosystem and human health

    International Nuclear Information System (INIS)

    Dam, R.A. van; Humphrey, C.L.; Martin, P.

    2002-01-01

    This paper presents an overview of issues related to surface water contamination arising from uranium mining activities in the Alligator Rivers Region (ARR) of northern Australia, and a program of research and monitoring that must assess the potential and actual effects on ecosystem and human health. The program of assessing effects on aquatic ecosystems involves a four-tiered approach including the derivation of local water quality guideline trigger values, direct toxicity assessment of mine waters prior to their release, creekside or in situ monitoring for early warning of adverse effects during mine water release, and longer-term monitoring of macroinvertebrate and fish communities. Bioaccumulation in aquatic biota is also assessed, and is an issue of importance not only to ecosystem health, but also to the health of local Aboriginal people. The aquatic animals they consume represent potential sources of radiological dose, and as a result, a major component of the program to assess potential effects on human health is the prediction of doses to Aboriginal people living downstream of mining activities. Acknowledging the assumptions and uncertainties, the calculation of concentration factors for local aquatic (and other) food sources allows the prediction of potential radiological exposure to people following hypothetical mine water releases. The approaches described form the basis of best-practice protocols that are relevant at both regional and national levels

  13. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    Science.gov (United States)

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China. © 2014 John Wiley & Sons Ltd.

  14. Accelerating the development of an information ecosystem in health care, by stimulating the growth of safe intermediate processing of health information (IPHI

    Directory of Open Access Journals (Sweden)

    Harshana Liyanage

    2013-03-01

    Full Text Available Health care, in common with many other industries, is generating large amounts of routine data, data that are challenging to process, analyse or curate, so-called ‘big data’. A challenge for health informatics is to make sense of these data. Part of the answer will come from the development of ontologies that support the use of heterogeneous data sources and the development of intermediate processors of health information (IPHI. IPHI will sit between the generators of health data and information, often the providers of health care, and the managers, commissioners, policy makers, researchers, and the pharmaceutical and other healthcare industries. They will create a health ecosystem by processing data in a way that stimulates improved data quality and potentially health care delivery by providers of health care, and by providing greater insights to legitimate users of data. Exemplars are provided of how a health ecosystem might be encouraged and developed to promote patient safety and more efficient health care. These are in the areas of how to integrate data around the unsafe use of alcohol and to explore vaccine safety. A challenge for IPHI is how to ensure that their processing of data is valid, safe and maintains privacy. Development of the healthcare ecosystem and IPHI should be actively encouraged internationally. Governments, regulators and providers of health care should facilitate access to health data and the use of national and international comparisons to monitor standards. However, most importantly, they should pilot new methods of improving quality and safety through the intermediate processing of health data.

  15. Restoring the Mississippi River Basin from the Catchment to the Coast Defines Science and Policy Issues of Ecosystem Services Associated with Alluvial and Coastal Deltaic Floodplains: Soil Conservation, Nutrient Reduction, Carbon Sequestration, and Flood Control

    Science.gov (United States)

    Twilley, R.

    2014-12-01

    Large river systems are major economic engines that provide national economic wealth in transporting commerce and providing extensive agriculture production, and their coastal deltas are sites of significant ports, energy resources and fisheries. These coupled natural and social systems from the catchment to the coast depend on how national policies manage the river basins that they depend. The fundamental principle of the Mississippi River Basin, as in all basins, is to capitalize on the ability of fertile soil that moves from erosional regions of a large watershed, through downstream regions of the catchment where sediment transport and storage builds extensive floodplains, to the coastal region of deposition where deltas capture sediment and nutrients before exported to the oceans. The fate of soil, and the ability of that soil to do work, supports the goods and services along its path from the catchment to the coast in all large river basin and delta systems. Sediment is the commodity of all large river basin systems that together with the seasonal pulse of floods across the interior of continents provide access to the sea forming the assets that civilization and economic engines have tapped to build national and global wealth. Coastal landscapes represent some of the most altered ecosystems worldwide and often integrate the effects of processes over their entire catchment, requiring systemic solutions to achieve restoration goals from alluvial floodplains upstream to coastal deltaic floodplains downstream. The urgent need for wetland rehabilitation at landscape scales has been initiated through major floodplain reclamation and hydrologic diversions to reconnect the river with wetland processes. But the constraints of sediment delivery and nutrient enrichment represent some critical conflicts in earth surface processes that limit the ability to design 'self sustaining' public work projects; particularly with the challenges of accelerated sea level rise. Only

  16. The ecosystem approach to health is a promising strategy in international development: lessons from Japan and Laos.

    Science.gov (United States)

    Asakura, Takashi; Mallee, Hein; Tomokawa, Sachi; Moji, Kazuhiko; Kobayashi, Jun

    2015-02-16

    An ecological perspective was prominently present in the health promotion movement in the 1980s, but this seems to have faded. The burden of disease the developing world is facing cannot be addressed solely by reductionist approaches. Holistic approaches are called for that recognize the fundamentally interdependent nature of health and other societal, developmental, and ecosystem related factors in human communities. An ecosystem approach to human health (ecohealth) provides a good starting point to explore these interdependencies. Development assistance is often based on the assumption that developed countries can serve as models for developing ones. Japan has provided lavish assistance to Laos for example, much of it going to the development of transport networks. However, there is little sign that there is an awareness of the potentially negative environmental and health impacts of this assistance. We argue that the health consequences of environmental degradation are not always understood, and that developing countries need to consider these issues. The ecohealth approach is useful when exploring this issue. We highlight three implications of the ecohealth approach: (1) The WHO definition of health as a state of complete physical, mental and social well-being emphasized that health is more than the absence of disease. However, because this approach may involve an unattainable goal, we suggest that health should be defined in the ecosystem context, and the goal should be to attain acceptable and sustainable levels of health through enabling people to realize decent livelihoods, and to pursue their life purpose; (2) The increasing interconnectedness of ecosystems in a globalizing world requires an ethical approach that considers human responsibility for the global biosphere. Here, ecohealth could be a countervailing force to our excessive concentration on economy and technology; and (3) If ecohealth is to become a positive agent of change in the global health

  17. Mercury in Nordic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, John; Waengberg, Ingvar (IVL Swedish Environmental Research Inst., Stockholm (SE)); Rognerud, Sigurd; Fjeld, Eirik (Norwegian Inst. for Water Research (NIVA), Oslo (Norway)); Verta, Matti; Porvari, Petri (Finnish Environment Inst. (SYKE), Helsinki (Finland)); Meili, Markus (Inst. of Applied Environmental Research (ITM), Stockholm (Sweden))

    2007-12-15

    This report provides a first comprehensive compilation and assessment of available data on mercury in air, precipitation, sediments and fish in the Nordic countries. The main conclusion is that mercury levels in Nordic ecosystems continue to be affected by long-range atmospheric transport. The geographical patterns of mercury concentrations in both sediments and fish are also strongly affected by ecosystem characteristics and in some regions possibly by historical pollution. An evaluation of geographical variations in mercury concentrations in precipitation indicates that the influence from anthropogenic sources from Central European areas is still significant. The annual variability of deposition is large and dependant of precipitation amounts. An evaluation of data from stations around the North Sea has indicated a significant decrease in mercury concentrations in precipitation indicating a continuous decr