WorldWideScience

Sample records for coastal dune ecosystem

  1. Linking restoration ecology with coastal dune restoration

    Science.gov (United States)

    Lithgow, D.; Martínez, M. L.; Gallego-Fernández, J. B.; Hesp, P. A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L. L.

    2013-10-01

    Restoration and preservation of coastal dunes is urgently needed because of the increasingly rapid loss and degradation of these ecosystems because of many human activities. These activities alter natural processes and coastal dynamics, eliminate topographic variability, fragment, degrade or eliminate habitats, reduce diversity and threaten endemic species. The actions of coastal dune restoration that are already taking place span contrasting activities that range from revegetating and stabilizing the mobile substrate, to removing plant cover and increasing substrate mobility. Our goal was to review how the relative progress of the actions of coastal dune restoration has been assessed, according to the ecosystem attributes outlined by the Society of Ecological Restoration: namely, integrity, health and sustainability and that are derived from the ecological theory of succession. We reviewed the peer reviewed literature published since 1988 that is listed in the ISI Web of Science journals as well as additional references, such as key books. We exclusively focused on large coastal dune systems (such as transgressive and parabolic dunefields) located on natural or seminatural coasts. We found 150 articles that included "coastal dune", "restoration" and "revegetation" in areas such as title, keywords and abstract. From these, 67 dealt specifically with coastal dune restoration. Most of the studies were performed in the USA, The Netherlands and South Africa, during the last two decades. Restoration success has been assessed directly and indirectly by measuring one or a few ecosystem variables. Some ecosystem attributes have been monitored more frequently (ecosystem integrity) than others (ecosystem health and sustainability). Finally, it is important to consider that ecological succession is a desirable approach in restoration actions. Natural dynamics and disturbances should be considered as part of the restored system, to improve ecosystem integrity, health and

  2. Coastal sand dune ecosystem services in metropolitan suburbs: effects on the sake brewery environment induced by changing social conditions

    Science.gov (United States)

    Kaneko, Korehisa; Matsushima, Hajime

    2017-12-01

    Chiba Prefecture, Japan, lies very near Tokyo, the capital city of Japan. It borders the sea on three sides and is banded by coastal dunes. Several sake breweries are located near these dunes. Although there are records of sake brewing along the coast of Tokyo Bay since 1925, sake breweries have completely disappeared in several areas. We believe that sake brewing in these areas benefited from the ecosystem services afforded them by their proximity to the coastal ecosystem. We investigated potential environmental factors (e.g., landscape, soil, and groundwater), as well as conditions that could have driven sake brewers away from the coastal area. Many of the sake breweries that no longer exist were located on coastal dunes (i.e., sand, sandbanks, and natural levees) and obtained their water from a freshwater layer located 3-10 m below the surface. We speculate that these sake breweries benefited from using natural ingredients found in the coastal zone. We also investigated the following factors that may have negatively impacted the breweries, driving them out of business: (1) bankruptcies and reconstruction difficulties that followed the destructive 1923 Great Kanto earthquake, (2) industrial wartime adjustments during World War II (1939-1945), (3) development of coastal industries during the period from 1960 to 1975, and (4) increasing choices for other alcoholic drinks (e.g., beer, wine, and whiskey) from the 1960s to the present.[Figure not available: see fulltext.

  3. Fine-scale patterns of vegetation assembly in the monitoring of changes in coastal sand-dune landscapes

    Directory of Open Access Journals (Sweden)

    J. Honrado

    2010-02-01

    Full Text Available Understanding dune ecosystem responses to multi-scale environmental changes can provide the framework for reliable forecasts and cost-efficient protocols for detecting shifts in prevailing coastal dynamics. Based on the hypothesis that stress and disturbance interact as primary community controls in coastal dunes, we studied the fine-scale floristic assembly of foredune vegetation, in its relation to topography, along regional and local environmental gradients in the 200 km long coastline of northern Portugal, encompassing a major biogeographic transition in western Europe. Thirty topographic profiles perpendicular to the shoreline were recorded at ten sites along the regional climate gradient, and vegetation was sampled by recording the frequency of plant species along those profiles. Quantitative topographic attributes of vegetated dune profiles (e.g. length or height exhibited wide variations relatable to differences in prevailing coastal dynamics. Metrics of taxonomic diversity (e.g. total species richness and its additive beta component and of the functional composition of vegetation were highly correlated to attributes of dune topography. Under transgressive dynamics, vegetation profiles have fewer species, increased dominance, lower turnover rates, and lower total vegetation cover. These changes may drive a decrease in structural and functional diversity, with important consequences for resistance, resilience and other ecosystem properties. Moreover, differences in both vegetation assembly (in meta-stable dunes and response to increased disturbance (in eroding dunes between distinct biogeographic contexts highlight a possible decline in facilitation efficiency under extreme physical stress (i.e. under Mediterranean climate and support the significance of functional approaches in the study of local ecosystem responses to disturbance along regional gradients. Our results strongly suggest that assessing fine-scale community assembly can

  4. A native species with invasive behaviour in coastal dunes: evidence for progressing decay and homogenization of habitat types

    DEFF Research Database (Denmark)

    Nielsen, Knud Erik; Degn, Hans Jørgen; Damgaard, Christian

    2011-01-01

    A new species has recently invaded coastal dune ecosystems in North West Europe. The native and expansive inland grass, Deschampsia flexuosa, progressively dominating inland heaths, has recently invaded coastal dunes in Denmark, occasionally even as a dominant species. A total of 222 coastal loca...

  5. The role of the reef–dune system in coastal protection in Puerto Morelos (Mexico

    Directory of Open Access Journals (Sweden)

    G. L. Franklin

    2018-04-01

    Full Text Available Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef–dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH. Wave hindcast information, tidal level, and a measured beach profile of the reef–dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore

  6. The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico)

    Science.gov (United States)

    Franklin, Gemma L.; Torres-Freyermuth, Alec; Medellin, Gabriela; Allende-Arandia, María Eugenia; Appendini, Christian M.

    2018-04-01

    Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef-dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef-dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore reef slope) is warranted.

  7. The potential of Tillandsia dune ecosystems for revealing past and present variations in advective fog along the coastal Atacama Desert, northern Chile

    Science.gov (United States)

    Latorre Hidalgo, C.; García, J. L.; Gonzalez, A. L.; Marquet, P. A.

    2015-12-01

    The coastal Atacama Desert is home to a complex geo-ecosystem supported by fog with multiple atmospheric and oceanic drivers. Fog collectors in place for the last 17 years reveal that monthly fog intensity and amount are significantly linked to the El Niño-Southern Oscillation (ENSO 1+2) with cold (warm) anomalies correlated to increased (decreased) fog (R2 = 0.41). Rainfall, however, can occur during extreme positive ENSO anomalies. Tillandsia landbeckii is an epiarenitic plant common to the coastal Atacama where fog is intercepted by the coastal escarpment between 950-1250 m.a.s.l. These plants possess multiple adaptations to survive exclusively on fog, including the construction of "dune" ecosystems known as "tillandsiales". Buried T. landbeckii layers in such dunes contain a record of past variations of fog over time (dunes can top 3 m in height) and alternating plant and sand layers are readily visible in dune stratigraphy. Stable N isotopes on modern plants and fog indicate that these plants reflect δ15N values of total N dissolved in fog. We measured δ15N values from buried T. landbeckii layers from five different tillandsiales found across c. 50 km the coastal escarpment. The isotope values in these buried plants indicate a prominent c. 8.0 ‰ shift towards more negative δ15N values on average over the last 3,200 years. Based on differences in δ15N between modern and more extensive "paleo" tillandsiales at one of our lowest elevation study sites, we interpret this shift as an increase in available moisture due to increased fog input during the late Holocene. Increased variability in ENSO as well as increased upwelling and southerly winds along the coastal Atacama would explain in part this increase. Clearly, the Atacama tillandsiales have considerable potential for monitoring past and present change of these large-scale ocean-atmosphere systems.

  8. Natural and anthropogenic factors affecting freshwater lenses in coastal dunes of the Adriatic coast

    Science.gov (United States)

    Cozzolino, Davide; Greggio, Nicolas; Antonellini, Marco; Giambastiani, Beatrice Maria Sole

    2017-08-01

    This study characterizes the near-shore portion of the shallow coastal aquifer included in the Ravenna area (Northern Italy) with special attention to the roles of coastal dunes as freshwater reservoirs and their buffer on groundwater salinity. The paper focuses on the presence and evolution of freshwater lenses below coastal dunes and highlights the existing differences between preserved natural dunes and dunes strongly affected by human intervention. The influence that multiple natural and anthropogenic factors, such as land cover, local drainage network, and beach erosion have on the presence, size and evolution of the freshwater lenses in the aquifer is quantified and discussed. The methodology includes multiple seasonal monitoring and sampling campaigns of physical (water level, salinity, and temperature) and chemical (major cations and anions) groundwater parameters. Results indicate that freshwater lenses, where existing, are limited in thickness (about 1-2 m). Proximity to drainage ditches as well as limited dune elevation and size do not allow the formation and permanent storage of large freshwater lenses in the aquifer below the dunes. The pine forest land cover, that replaced the typical bush or sand cover, intensifies evapotranspiration reducing net infiltration and freshwater storage. The cation species distribution in the water shows that a freshening process is ongoing in preserved natural sites with stable or advancing beaches, whereas a salinization process is ongoing in anthropogenic-impacted areas with strongly-fragmented dune systems. Currently, the thin freshwater lenses in the shallow Ravenna coastal aquifer are limited in space and have no relevance for irrigation or any other human activity. The dune-beach system, however, is the recharge zone of the coastal aquifer and its protection is important to reduce water and soil salinization, which in turn control the health of the whole coastal ecosystem.

  9. Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea

    NARCIS (Netherlands)

    Remke, E.; Brouwer, E.; Kooijman, A.; Blindow, I.; Esselink, H.; Roelofs, J.G.M.

    2009-01-01

    Coastal dunes around the Baltic Sea have received small amounts of atmospheric nitrogen and are rather pristine ecosystems in this respect. In 19 investigated dune sites the atmospheric wet nitrogen deposition is 3-8 kg N ha−1 yr−1. The nitrogen content of Cladonia portentosa appeared to be a

  10. Mediterranean coastal dune systems: Which abiotic factors have the most influence on plant communities?

    Science.gov (United States)

    Ruocco, Matteo; Bertoni, Duccio; Sarti, Giovanni; Ciccarelli, Daniela

    2014-08-01

    Mediterranean coastal dunes are dynamic and heterogeneous ecosystems characterised by a strong interaction between abiotic and biotic factors. The present study aimed to adopt a multidisciplinary approach - integrating data on dune morphology, sediment texture and soil parameters as well as shoreline trend - in order to define which are the abiotic factors that most affect the distribution and composition of Mediterranean plant dune communities. The study was carried out in two protected areas, located in central Italy, subjected to different shoreline trends in recent years. 75 plots were identified along eleven randomly positioned cross-shore transects, starting from the beach continuing up to the plant communities of the backdunes. In each plot floristic and environmental data - such as distance to the coastline, plot altitude, inclination, shoreline trend, mean grain-size, sorting, pH, conductivity and organic matter concentration - were collected. The analyses revealed significant changes of vegetational cover, dune morphology and geopedological features along the coast-to-inland gradient. Relationships between vegetation composition and environmental factors were investigated through Canonical Correspondence Analysis (CCA). Four factors - distance to the coastline, mean grain-size, shoreline trend and organic matter - were found to be closely correlated with the floristic composition of plant communities. Finally, soil properties were highlighted as the most determinant factors of community zonation in these Mediterranean coastal dune ecosystems. These results could be taken into account by local managers in conservation actions such as protecting the eroding foredunes as well as in artificial dune reconstructions.

  11. Coastal Dunes of the Baltic Sea Shores: A Review

    Directory of Open Access Journals (Sweden)

    Łabuz Tomasz Arkadiusz

    2018-03-01

    Full Text Available The article summarises results of studies conducted along the Baltic Sea sandy coasts by scientists involved in coastal dune research, and presents an attempt to describe the types and distribution of dune coasts. The Baltic Sea coasts feature lower and higher foredunes. The lowland behind the coastal dune belt is covered by wandering or stabilised inland dunes – transgressive forms, mainly parabolic or barchans. The source of sediment for dune development includes fluvioglacial sands from eroded coasts, river-discharged sand, and older eroded dunes. Due to the ongoing erosion and coastal retreat, many dunes have been eroded, and some are withdrawing onto the adjacent land. There are visible differences between the south-eastern, western, and northern parts of the Baltic Sea coast with respect to dune development. The entire southern and eastern coast abounds in sand, so the coastal dunes are large, formerly or currently wandering formations. The only shifting dunes are found at the Polish and the Russian–Lithuanian coasts on the Łebsko Lake Sandbar as well as on the Vistula and Curonian Spits. The very diverse shoreline of the south-western coast experiences a scarcity of larger sandy formations. Substantial parts of the Baltic Sea sandy coasts have been eroded or transformed by humans. The northern part of the Baltic Sea coast features mainly narrow and low sandy coasts (e.g. in Estonia. Further north, sandy dunes are virtually absent.

  12. Effects of Trampling Limitation on Coastal Dune Plant Communities

    Science.gov (United States)

    Santoro, Riccardo; Jucker, Tommaso; Prisco, Irene; Carboni, Marta; Battisti, Corrado; Acosta, Alicia T. R.

    2012-03-01

    Sandy coastlines are sensitive ecosystems where human activities can have considerable negative impacts. In particular, trampling by beach visitors is a disturbance that affects dune vegetation both at the species and community level. In this study we assess the effects of the limitation of human trampling on dune vegetation in a coastal protected area of Central Italy. We compare plant species diversity in two recently fenced sectors with that of an unfenced area (and therefore subject to human trampling) using rarefaction curves and a diversity/dominance approach during a two year study period. Our results indicate that limiting human trampling seems to be a key factor in driving changes in the plant diversity of dune systems. In 2007 the regression lines of species abundance as a function of rank showed steep slopes and high Y-intercept values in all sectors, indicating a comparable level of stress and dominance across the entire study site. On the contrary, in 2009 the regression lines of the two fenced sectors clearly diverge from that of the open sector, showing less steep slopes. This change in the slopes of the tendency lines, evidenced by the diversity/dominance diagrams and related to an increase in species diversity, suggests the recovery of plant communities in the two fences between 2007 and 2009. In general, plant communities subject to trampling tended to be poorer in species and less structured, since only dominant and tolerant plant species persisted. Furthermore, limiting trampling appears to have produced positive changes in the dune vegetation assemblage after a period of only two years. These results are encouraging for the management of coastal dune systems. They highlight how a simple and cost-effective management strategy, based on passive recovery conservation measures (i.e., fence building), can be a quick (1-2 years) and effective method for improving and safeguarding the diversity of dune plant communities.

  13. Arbuscular mycorrhizal fungi associated with psammophilic vegetation in Mediterranean coastal sand dunes

    Energy Technology Data Exchange (ETDEWEB)

    Camprubi, A.; Calvet, C.; Cabot, P.; Pitet, M.; Estaun, V.

    2010-07-01

    This study was conducted in order to characterize the natural albacore's mycorrhizal (AM) biodiversity from Mediterranean sand dune ecosystems and to protect in a collection this biodiversity. The occurrence of AM fungi associated with sand dune plant species in three Mediterranean locations on the north-eastern coast of Spain was examined in one well preserved coastal sand dune and in two embrionary dunes recently protected from public access. Traditional taxonomy and molecular techniques were used to identify the AM fungal species present in these ecosystems. The species identified and isolated were: Scutellospora persica (Kiosk and Walker) Walker and Sanders, Glomus ambisporum Smith and Schenck, Glomus diaphanum Morton and Walker, Glomus clarum Nicolson and Schenck, Glomus intraradices Schenck and Smith, Glomus microaggregatum Koske, Gemma and Olexia and Gigaspora margarita Becker and Hall. Spores of Glomus were the most abundant in the direct soil extraction samples. The molecular analysis indicates that the most abundant fungi forming AM in the roots belonged to the Gigasporaceae group followed by fungi of Glomus group A and Glomus group B. The highest diversity of fungi and abundance of the AM fungal spores was found in the well preserved and undisturbed dune systems. (Author) 26 refs.

  14. A whole plant approach to evaluate the water use of mediterranean maquis species in a coastal dune ecosystem

    Science.gov (United States)

    Mereu, S.; Salvatori, E.; Fusaro, L.; Gerosa, G.; Muys, B.; Manes, F.

    2009-02-01

    An integrated approach has been used to analyse the water relations of three Mediterranean species, A. unedo L., Q. ilex L. and P. latifolia L. co-occurring in a coastal dune ecosystem. The approach considered leaf level gas exchange, sap flow measurements and structural adaptations between 15 May and 31 July 2007, and was necessary to capture the different response of the three species to the same environment. The complexity of the response was proportional to the complexity of the system, characterized by a sandy soil with a low water retention capacity and the presence of a water table. The latter did not completely prevent the development of a drought response, and species differences in this responses have been partially attributed to a different root distribution. Sap flow of A. unedo decreased rapidly in response to the decline of Soil Water Content, while that of Q. ilex decreased only moderately. Midday leaf water potential of P. latifolia and A. unedo was between 2.2 and 2.7 MPa through the measuring period, while in Q. ilex it reached a value of 3.4 MPa at the end of the season. A. unedo was the only species to decrease the leaf area to sapwood area ratio from 23.9±1.2 (May) to 15.2±1.5 (July), as a response to drought. A. unedo also underwent an almost stepwise loss on hydraulic conductivity, such a loss didn't occur for Q. ilex, while P. latifolia was able to slightly increase hydraulic conductivity, showing how different plant compartments coordinate differently between species as a response to drought. Such different coordination affects the gas exchange between vegetation and the atmosphere, and has implications for the response of the Mediterranean coastal dune ecosystems to climate change.

  15. Vegetative and reproductive phenological patterns in coastal dunes in S Spain

    Directory of Open Access Journals (Sweden)

    Rodríguez-Gallego, Carmen

    2015-06-01

    Full Text Available The phenology of Mediterranean plant species has been extensively studied in different types of ecosystems. However, very little research has been conducted on dune ecosystems. The aim of this research is the phenological characterization and comparison among phenological patterns in three coastal dunes areas in S Spain. For this purpose, we apply the methodology proposed by Orshan (1989 and NLPCA phenological indexes. Our results show that seasonality of species from coastal dunes in S Spain follows the pattern observed in dry and warm Mediterranean ecosystems. The maximum phenological activity occurs for a period of 7-9 months, mainly in spring and late winter, whereas summer is clearly the most inactive period of the year. Vegetative phenophases predominate over the reproductive. Flowering is mainly early (March-May, but it may extend to summer. Flowering duration has been identified as a key index in the differentiation among coastal dunes with different conditions of Mediterranean macroclimate, whereas the importance of the phenophase sequence index has been shown in order to discriminate sectors within dunes. Using the NLPCA analysis based on phenological indexes, four phenological groups of species have been determined. From a conservation perspective, the identification of these groups point out the utility of developing different strategies of management according to the high diversity of eco- and phenomorphological variability that characterize the coastal dunes.La fenología de las especies vegetales mediterráneas ha sido ampliamente estudiada en diferentes tipos de ecosistemas. Sin embargo, es poco lo que se conoce sobre fenología de dunas costeras. El objetivo del presente trabajo es la caracterización y comparación de patrones fenológicos en tres áreas de dunas costeras del Sur de España. Para ello, se ha aplicado la metodología propuesta por Orshan (1989 así como índices fenológicos NLPCA. Nuestros resultados muestran

  16. Application of the ERICA Integrated Approach to the Drigg coastal sand dunes

    International Nuclear Information System (INIS)

    Wood, M.D.; Marshall, W.A.; Beresford, N.A.; Jones, S.R.; Howard, B.J.; Copplestone, D.; Leah, R.T.

    2008-01-01

    The EC-funded project 'Environmental Risks from Ionising Contaminants: Assessment and Management' (ERICA) developed an 'Integrated Approach' for assessing the impact of ionising radiation on ecosystems. This paper presents the application of the ERICA Integrated Approach, supported by a software programme (the ERICA Tool) and guidance documentation, to an assessment of the Drigg coastal sand dunes (Cumbria, UK). Targeted sampling provided site-specific data for sand dune biota, including amphibians and reptiles. Radionuclides reported included 90 Sr, 99 Tc, 137 Cs, 238 Pu, 239+240 Pu and 241 Am. Site-specific data were compared to predictions derived using the ERICA Tool. Some under- and over-predictions of biota activity concentrations were identified but can be explained by the specific ecological characteristics and contamination mechanism of the dunes. Overall, the results indicated no significant impact of ionising radiation on the sand dune biota and the Integrated Approach was found to be a flexible and effective means of conducting a radiation impact assessment

  17. Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea

    International Nuclear Information System (INIS)

    Remke, Eva; Brouwer, Emiel; Kooijman, Annemieke; Blindow, Irmgard; Esselink, Hans; Roelofs, Jan G.M.

    2009-01-01

    Coastal dunes around the Baltic Sea have received small amounts of atmospheric nitrogen and are rather pristine ecosystems in this respect. In 19 investigated dune sites the atmospheric wet nitrogen deposition is 3-8 kg N ha -1 yr -1 . The nitrogen content of Cladonia portentosa appeared to be a suitable biomonitor of these low to medium deposition levels. Comparison with EMEP-deposition data showed that Cladonia reflects the deposition history of the last 3-6 years. With increasing nitrogen load, we observed a shift from lichen-rich short grass vegetation towards species-poor vegetation dominated by the tall graminoid Carex arenaria. Plant species richness per field site, however, does not decrease directly with these low to medium N deposition loads, but with change in vegetation composition. Critical loads for acidic, dry coastal dunes might be lower than previously thought, in the range of 4-6 kg N ha -1 yr -1 wet deposition. - Even low to medium nitrogen deposition impacts Baltic dune vegetation promoting a dominance of taller graminoids

  18. Changes of Bulgarian Coastal Dune Landscape under Anthropogenic Impact

    Science.gov (United States)

    Palazov, A.; Young, R.; Stancheva, M.; Stanchev, H.

    2012-04-01

    At one time large sand dune formations were widely distributed along the Bulgarian coast. However, due to increased urbanization in the coastal zone, the areas of total dune landscape has been constantly reduced. Dunes presently comprise only 10% of the entire 412 km long coastline of Bulgaria: they embrace a total length of 38.57 km and a total area of 8.78 km2 Important tasks in dune protection are identification of landscape changes for a certain period of time and accurate delineation of sand dune areas. The present research traces sand dune changes along the Bulgarian Black Sea coast over a 27 year period (1983-2010). This period includes also the time of expanded tourist boom and overbuilding of the coastal zone, and respectively presents the largest dune changes and reductions. Based on the landscape change analyst in GIS environment the study also aims to explore the importance of different natural and human factors in driving the observed dune alterations and destruction. To detect and assess dune changes during the last 3 decades, we used data for sand dunes derived from several sources at different time periods in order to compare changes in shoreline positions, dune contours and areas: i) Topographic maps in 1:5,000 scale from 1983; ii) Modern Very High Resolution orthophotographs from 2006 and 2010; iii) QuickBird Very High Resolution satellite images from 2009; iv) Statistical information for population and tourist infrastructure is also used to consider the influence of human pressure and hotel developments on the dune dynamics. In addition, for more detailed description and visualization of main dune types, digital photos have been taken at many parts of the Bulgarian coast. The study was performed in GIS environment. Based on the results obtained the dunes along the Bulgarian coast were divided into three main groups with relation to the general factors responsible for their alterations: i) Dunes that have decreased in result of shoreline retreat

  19. Short- and longterm impacts of Acacia longifolia invasion on belowground processes of a Mediterranean coastal dune ecosystem

    DEFF Research Database (Denmark)

    Marchante, Elizabete; Kjøller, Annelise; Struwe, Sten

    2008-01-01

    to new areas, displacing the native vegetation. These invaded ecosystems contrast with the native dune ecosystems that are typically dominated by herb and shrub communities. This study characterizes belowground changes to the native environment as a result of recent (20 y...

  20. Application of the ERICA Integrated Approach to the Drigg coastal sand dunes

    Energy Technology Data Exchange (ETDEWEB)

    Wood, M.D. [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER)/School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom)], E-mail: mwood@liv.ac.uk; Marshall, W.A. [Westlakes Scientific Consulting Ltd., Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3LN (United Kingdom); Beresford, N.A. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire LA1 4AP (United Kingdom); Jones, S.R. [Westlakes Scientific Consulting Ltd., Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3LN (United Kingdom); Howard, B.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire LA1 4AP (United Kingdom); Copplestone, D. [Environment Agency, P.O. Box 12, Richard Fairclough House, Knutsford Road, Latchford, Warrington, Cheshire WA4 1HG (United Kingdom); Leah, R.T. [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER)/School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom)

    2008-09-15

    The EC-funded project 'Environmental Risks from Ionising Contaminants: Assessment and Management' (ERICA) developed an 'Integrated Approach' for assessing the impact of ionising radiation on ecosystems. This paper presents the application of the ERICA Integrated Approach, supported by a software programme (the ERICA Tool) and guidance documentation, to an assessment of the Drigg coastal sand dunes (Cumbria, UK). Targeted sampling provided site-specific data for sand dune biota, including amphibians and reptiles. Radionuclides reported included {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am. Site-specific data were compared to predictions derived using the ERICA Tool. Some under- and over-predictions of biota activity concentrations were identified but can be explained by the specific ecological characteristics and contamination mechanism of the dunes. Overall, the results indicated no significant impact of ionising radiation on the sand dune biota and the Integrated Approach was found to be a flexible and effective means of conducting a radiation impact assessment.

  1. Probabilistic estimation of dune erosion and coastal zone risk

    NARCIS (Netherlands)

    Li, F.

    2014-01-01

    Coastal erosion has gained global attention and has been studied for many decades. As a soft sea defence structure, coastal sandy dunes protect coastal zones all over the world, which usually are densely populated areas with tremendous economic value. The coastal zone of the Netherlands, one of the

  2. Provenance of Coastal dune sands along Red Sea, Egypt

    Indian Academy of Sciences (India)

    26

    accumulation of sands behind vegetation or any other obstacles. ... The study areas Safaga (SF) and Quseir (QS) field dunes (Fig. 1) ..... coastal dune sands were deposited in a passive margin of a synrift .... Sed Petrol 63(6), 1110-1117.

  3. Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties.

    Science.gov (United States)

    Schulz, Karoline; Mikhailyuk, Tatiana; Dreßler, Mirko; Leinweber, Peter; Karsten, Ulf

    2016-01-01

    Biological soil crusts (BSCs) are known as "ecosystem-engineers" that have important, multifunctional ecological roles in primary production, in nutrient and hydrological cycles, and in stabilization of soils. These communities, however, are almost unstudied in coastal dunes of the temperate zone. Hence, for the first time, the biodiversity of cyanobacterial and algal dominated BSCs collected in five dunes from the southern Baltic Sea coast on the islands Rügen and Usedom (Germany) was investigated in connection with physicochemical soil parameters. The species composition of cyanobacteria and algae was identified with direct determination of crust subsamples, cultural methods, and diatom slides. To investigate the influence of soil properties on species composition, the texture, pH, electrical conductivity, carbonate content, total contents of carbon, nitrogen, phosphorus, and the bioavailable phosphorus-fraction (PO4 (3-)) were analyzed in adjacent BSC-free surface soils at each study site. The data indicate that BSCs in coastal dunes of the southern Baltic Sea represent an ecologically important vegetation form with a surprisingly high site-specific diversity of 19 cyanobacteria, 51 non-diatom algae, and 55 diatoms. All dominant species of the genera Coleofasciculus, Lyngbya, Microcoleus, Nostoc, Hydrocoryne, Leptolyngbya, Klebsormidium, and Lobochlamys are typical aero-terrestrial cyanobacteria and algae, respectively. This first study of coastal sand dunes in the Baltic region provides compelling evidence that here the BSCs were dominated by cyanobacteria, algae, or a mixture of both. Among the physicochemical soil properties, the total phosphorus content of the BSC-free sand was the only factor that significantly influenced the cyanobacterial and algal community structure of BSCs in coastal dunes.

  4. Valuing the risk reduction of coastal ecosystems in data poor environments: an application in Quintana Roo, Mexico

    Science.gov (United States)

    Reguero, B. G.; Toimil, A.; Escudero, M.; Menendez, P.; Losada, I. J.; Beck, M. W.; Secaira, F.

    2016-12-01

    Coastal risks are increasing from both economic growth and climate change. Understanding such risks is critical to assessing adaptation needs and finding cost effective solutions for coastal sustainability. Interest is growing in the role that nature-based measures can play in adapting to climate change. Here we apply and advance a framework to value the risk reduction potential of coastal ecosystems, with an application in a large scale domain, the coast of Quintana Roo, México, relevant for coastal policy and management, but with limited data. We build from simple to use open-source tools. We first assess the hazards using stochastic simulation of historical tropical storms and inferring two scenarios of future climate change for the next 20 years, which include the effect of sea level rise and changes in frequency and intensity of storms. For each storm, we obtain wave and surge fields using parametrical models, corrected with pre-computed static wind surge numerical simulations. We then assess losses on capital stock and hotels and calculate total people flooded, after accounting for the effect of coastal ecosystems in reducing coastal hazards. We inferred the location of major barrier reefs and dune systems using available satellite imagery, and sections of bathymetry and elevation data. We also digitalized the surface of beaches and location of coastal structures from satellite imagery. In a poor data environment, where there is not bathymetry data for the whole of the region, we inferred representative coastal profiles of coral reef and dune sections and validated at available sections with measured data. Because we account for the effect of reefs, dunes and mangroves in coastal profiles every 200 m of shoreline, we are able to estimate the value of such ecosystems by comparing with benchmark simulations when we take them out of the propagation and flood model. Although limited in accuracy in comparison to more complex modeling, this approach is able to

  5. Dating pleistocene fossil coastal sand dunes by thermoluminescence

    International Nuclear Information System (INIS)

    Poupeau, G.; Souza, J.H.; Soliani Junior, E.; Loss, E.L.

    1983-01-01

    It was shown recently that sunlight exposure is able to bleach most of the geological thermoluminescence (TL) of wind transported sediments. This property has been used in an attempt to date dunes from the well developed recent quaternary coastal dunes system of Rio Grande do Sul. Preliminary results presented here, show that TL dating on fossil sand dunes from Rio Grande do Sul should be possible in a time range from present to at least 50.000 yr and possibly more than 100.000 yr. (Author) [pt

  6. Coastal ecosystems, productivity and ecosystem protection: Coastal ecosystem management

    International Nuclear Information System (INIS)

    Ngoile, M.A.K.; Horrill, C.J.

    1993-01-01

    The coastal zone is a complex ecosystem under the influence of physical, chemical and biological processes. Under natural conditions these processes interact and maintain an equilibrium in the coastal ecosystem. Man makes a variety of important uses of coastal resources, ranging from harvesting of living resources, extraction of nonliving resources, and recreation, to the disposal of wastes. Man's extensive use of the oceans introduces factors which bring about an imbalance in the natural processes, and may result in harmful and hazardous effects to life hindering further use. Man's pressure on the resources of the coastal zone is already manifest and will increase manifold. This calls for an immediate solution to the protection and sustainable use of coastal resources. The current sectorized approach to the management of human activities will not solve the problem because the different resources of the coastal zone interact in such a manner that disturbances in one cause imbalance in the others. This is further complicated by the sectorized approach to research and limited communication between policy makers, managers, and scientists. This paper discusses strategies for managing coastal-resources use through an integrated approach. The coastal zone is presented as a unified ecosystem in equilibrium and shows that man's extensive use of the coastal resources destabilizes this equilibrium. Examples from the East Africa Region are presented. 15 refs, 2 figs, 3 tabs

  7. Erosion of Coastal Foredunes: A Review on the Effect of Dune Vegetation

    Science.gov (United States)

    2017-02-01

    inhabited by vegetation (Figure 2).The collision regime occurs when the total storm water level exceeds the elevation of the dune toe but is lower than the...of Dune Vegetation by Duncan B. Bryant, Mary A. Bryant, and Alison S. Grzegorzewski PURPOSE: The purpose of this Coastal and Hydraulics...Engineering Technical Note (CHETN) is to identify the potential roles of vegetation in mitigating coastal dune erosion during storm events by presenting a

  8. The role of dunes in contrasting saltwater intrusion in coastal areas; a case study in the southern Po Plain Adriatic coast (Ravenna, Northern Italy)

    Science.gov (United States)

    Marconi, V.; Antonellini, M.; Balugani, E.; Minchio, A.; Gabbianelli, G.

    2009-04-01

    Due to climate changes and to anthropogenic interventions, saltwater intrusion is affecting the aquifers and the surface water of the Po plain along the Adriatic coast. During the last decade, we recognized in this area a pattern of climate change: precipitations are less frequent and the yearly amount of rain is concentrated in a few strong storm events. This pattern results in an increase of gales strength during the winter, which causes shoreline retreat and an erosion of the coastal dunes. The coastal part of the Po plain consists of a low-lying and mechanically-drained farmland further from the sea and of a narrow belt of dunes and pine forests in the backshore area. The wide sandy beaches are now retreating and the dune system (only a few meters in height) is almoust destroyed, because of tourism development and of disaggregated rivers and shorelines management. A still active dune system is preserved in our study area, a coastal plain included between the Fiumi Uniti and Bevano rivers near the city of Ravenna. As a result of an intensive exploitation of coastal aquifers for agricultural, industrial, and civil uses, both the phreatic aquifer and the surface waters have been contaminated by seawater. Despite its value for the natural ecosystem and the agricultural soil, the phreatic aquifer is not considered of interest by the regional authorities responsible for water management. A detailed hydrogeological survey was performed by our research group during the Summer 2008 within the framework of the CIRCLE-ERANET project WATERKNOW on the effects of climate change on the mediterranean catchments. In this survey 29 auger holes with an average spacing of 350 m where drilled with the objective of determining the top groundwater quality in the coastal aquifer. At the same time, we measured the chemical and physical parameters of the surface waters. The data collected in the field show that a fresh groundwater lens is still present in the aquifer of the backshore

  9. A meta-analysis of plant facilitation in coastal dune systems: responses, regions, and research gaps.

    Science.gov (United States)

    Castanho, Camila de Toledo; Lortie, Christopher J; Zaitchik, Benjamin; Prado, Paulo Inácio

    2015-01-01

    Empirical studies in salt marshes, arid, and alpine systems support the hypothesis that facilitation between plants is an important ecological process in severe or 'stressful' environments. Coastal dunes are both abiotically stressful and frequently disturbed systems. Facilitation has been documented, but the evidence to date has not been synthesized. We did a systematic review with meta-analysis to highlight general research gaps in the study of plant interactions in coastal dunes and examine if regional and local factors influence the magnitude of facilitation in these systems. The 32 studies included in the systematic review were done in coastal dunes located in 13 countries around the world but the majority was in the temperate zone (63%). Most of the studies adopt only an observational approach to make inferences about facilitative interactions, whereas only 28% of the studies used both observational and experimental approaches. Among the factors we tested, only geographic region mediates the occurrence of facilitation more broadly in coastal dune systems. The presence of a neighbor positively influenced growth and survival in the tropics, whereas in temperate and subartic regions the effect was neutral for both response variables. We found no evidence that climatic and local factors, such as life-form and life stage of interacting plants, affect the magnitude of facilitation in coastal dunes. Overall, conclusions about plant facilitation in coastal dunes depend on the response variable measured and, more broadly, on the geographic region examined. However, the high variability and the limited number of studies, especially in tropical region, indicate we need to be cautious in the generalization of the conclusions. Anyway, coastal dunes provide an important means to explore topical issues in facilitation research including context dependency, local versus regional drivers of community structure, and the importance of gradients in shaping the outcome of net

  10. A meta-analysis of plant facilitation in coastal dune systems: responses, regions, and research gaps

    Directory of Open Access Journals (Sweden)

    Camila de Toledo Castanho

    2015-02-01

    Full Text Available Empirical studies in salt marshes, arid, and alpine systems support the hypothesis that facilitation between plants is an important ecological process in severe or ‘stressful’ environments. Coastal dunes are both abiotically stressful and frequently disturbed systems. Facilitation has been documented, but the evidence to date has not been synthesized. We did a systematic review with meta-analysis to highlight general research gaps in the study of plant interactions in coastal dunes and examine if regional and local factors influence the magnitude of facilitation in these systems. The 32 studies included in the systematic review were done in coastal dunes located in 13 countries around the world but the majority was in the temperate zone (63%. Most of the studies adopt only an observational approach to make inferences about facilitative interactions, whereas only 28% of the studies used both observational and experimental approaches. Among the factors we tested, only geographic region mediates the occurrence of facilitation more broadly in coastal dune systems. The presence of a neighbor positively influenced growth and survival in the tropics, whereas in temperate and subartic regions the effect was neutral for both response variables. We found no evidence that climatic and local factors, such as life-form and life stage of interacting plants, affect the magnitude of facilitation in coastal dunes. Overall, conclusions about plant facilitation in coastal dunes depend on the response variable measured and, more broadly, on the geographic region examined. However, the high variability and the limited number of studies, especially in tropical region, indicate we need to be cautious in the generalization of the conclusions. Anyway, coastal dunes provide an important means to explore topical issues in facilitation research including context dependency, local versus regional drivers of community structure, and the importance of gradients in shaping

  11. Climate sensibility and stability of coastal dunes. Final report; Klimasensibilitaet und Stabiltaet nicht regenerierbarer Oekosysteme: Kuestenduenen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Handelmann, D.; Klittmann, T.; Badenhop, J.; Folger, M.

    2000-07-01

    Coastal dunes have an important function as unique habitats for plants and animals as well as natural barriers against storm tides. Thus, they are of special value for nature conservation and coastal defence issues. Facing their potential endangering due to accelerated climate change profound knowledge of stabilty of coastal dunes is essential. In this context the presented study deals with the impact of climate change on biogenic sand stabilization in coastal dunes, which have to be conceived as an ecosystemic process. Questions of climate affected reactions of organism groups involved in this process (plants, soil microflora, soil fauna) and alterations in soil structure were followed up. Within the scope of a 2-years-lasting field experiment conducted on the Eastfrisian Island Norderney the microclimate near the soil surface was modified by gauze covering, which was set up on field plots. (orig.) [German] In ihrer Funktion als Lebensraum fuer Pflanzen und Tiere sowie als natuerlicher Schutzwall bei Sturmfluten wird den Kuestenduenen eine wichtige Bedeutung im Natur- und Kuestenschutz beigemessen. Angesichts ihrer potentiellen Gefaehrdung durch einen beschleunigten Klimawandel ist ein fundierter Kenntnisstand zur Stabilitaet von Kuestenduenen von elementarem Interesse. Vor diesem Hintergrund befasst sich die vorliegende Studie mit dem Einfluss von Klimaaenderungen auf die biogene Sandstabilisierung in Kuestenduenen, die aufgrund des bestehenden organismischen Beziehungsgeflechtes als oekosystemarer Prozess aufzufassen ist. Dabei wurden Fragen nach klimaabhaengigen Reaktionen der an diesem Prozess beteiligten Organismengruppen (Pflanzen, Bodenmikroflora, Bodenfauna) und Veraenderungen des Bodengefueges bearbeitet. Im Rahmen eines 2-jaehrigen Freilandexperimentes auf der Ostfriesischen Insel Norderney wurde das bodennahe Mikroklima mittels einer Gazeueberspannung auf 4 m{sup 2} grossen und mit Strandhafer (Calammophila baltica) bepflanzten Parzellen experimentell

  12. Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions

    Science.gov (United States)

    Mahdavi, P.; Bergmeier, E.

    2016-07-01

    Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.

  13. Quantifying energy and water fluxes in dry dune ecosystems of the Netherlands

    Science.gov (United States)

    Voortman, B. R.; Bartholomeus, R. P.; van der Zee, S. E. A. T. M.; Bierkens, M. F. P.; Witte, J. P. M.

    2015-09-01

    Coastal and inland dunes provide various ecosystem services that are related to groundwater, such as drinking water production and biodiversity. To manage groundwater in a sustainable manner, knowledge of actual evapotranspiration (ETa) for the various land covers in dunes is essential. Aiming at improving the parameterization of dune vegetation in hydrometeorological models, this study explores the magnitude of energy and water fluxes in an inland dune ecosystem in the Netherlands. Hydrometeorological measurements were used to parameterize the Penman-Monteith evapotranspiration model for four different surfaces: bare sand, moss, grass and heather. We found that the net longwave radiation (Rnl) was the largest energy flux for most surfaces during daytime. However, modeling this flux by a calibrated FAO-56 Rnl model for each surface and for hourly time steps was unsuccessful. Our Rnl model, with a novel submodel using solar elevation angle and air temperature to describe the diurnal pattern in radiative surface temperature, improved Rnl simulations considerably. Model simulations of evaporation from moss surfaces showed that the modulating effect of mosses on the water balance is species-dependent. We demonstrate that dense moss carpets (Campylopus introflexus) evaporate more (5 %, +14 mm) than bare sand (total of 258 mm in 2013), while more open-structured mosses (Hypnum cupressiforme) evaporate less (-30 %, -76 mm) than bare sand. Additionally, we found that a drought event in the summer of 2013 showed a pronounced delayed signal on lysimeter measurements of ETa for the grass and heather surfaces, respectively. Due to the desiccation of leaves after the drought event, and their feedback on the surface resistance, the potential evapotranspiration in the year 2013 dropped by 9 % (-37 mm) and 10 % (-61 mm) for the grass and heather surfaces, respectively, which subsequently led to lowered ETa of 8 % (-29 mm) and 7 % (-29 mm). These feedbacks are of importance for

  14. RIGED-RA project - Restoration and management of Coastal Dunes in the Northern Adriatic Coast, Ravenna Area - Italy

    Science.gov (United States)

    Giambastiani, Beatrice M. S.; Greggio, Nicolas; Sistilli, Flavia; Fabbri, Stefano; Scarelli, Frederico; Candiago, Sebastian; Anfossi, Giulia; Lipparini, Carlo A.; Cantelli, Luigi; Antonellini, Marco; Gabbianelli, Giovanni

    2016-10-01

    Coastal dunes play an important role in protecting the coastline. Unfortunately, in the last decades dunes have been removed or damaged by human activities. In the Emilia- Romagna region significant residual dune systems are found only along Ravenna and Ferrara coasts. In this context, the RIGED-RA project “Restoration and management of coastal dunes along the Ravenna coast” (2013-2016) has been launched with the aims to identify dynamics, erosion and vulnerability of Northern Adriatic coast and associated residual dunes, and to define intervention strategies for dune protection and restoration. The methodology is based on a multidisciplinary approach that integrates the expertise of several researchers and investigates all aspects (biotic and abiotic), which drive the dune-beach system. All datasets were integrated to identify test sites for applying dune restoration. The intervention finished in April 2016; evolution and restoration efficiency will be assessed.

  15. Linking marine resources to ecotonal shifts of water uptake by terrestrial dune vegetation.

    Science.gov (United States)

    Greaver, Tara L; Sternberg, Leonel L da S

    2006-09-01

    As evidence mounts that sea levels are rising, it becomes increasingly important to understand the role of ocean water within terrestrial ecosystem dynamics. Coastal sand dunes are ecosystems that occur on the interface of land and sea. They are classic ecotones characterized by zonal distribution of vegetation in response to strong gradients of environmental factors from the ocean to the inland. Despite the proximity of the dune ecosystem to the ocean, it is generally assumed that all vegetation utilizes only freshwater and that water sources do not change across the ecotone. Evidence of ocean water uptake by vegetation would redefine the traditional interpretation of plant-water relations in the dune ecosystem and offer new ideas for assessing maritime influences on function and spatial distribution of plants across the dune. The purpose of this study was to identify sources of water (ocean, ground, and rain) taken up by vegetation using isotopic analysis of stem water and to evaluate water uptake patterns at the community level based on the distribution and assemblage of species. Three coastal dune systems located in southern Florida, USA, and the Bahamian bank/platform system were investigated. Plant distributions across the dune were zonal for 61-94% of the 18 most abundant species at each site. Species with their highest frequency on the fore dune (nearest the ocean) indicate ocean water uptake as evidenced by delta 18O values of stem water. In contrast, species most frequent in the back dune show no evidence of ocean water uptake. Analysis of species not grouped by frequency, but instead sampled along a transect from the ocean toward the inland, indicates that individuals from the vegetation assemblage closest to the ocean had a mixed water-harvesting strategy characterized by plants that may utilize ocean, ground-, and/or rainwater. In contrast, the inland vegetation relies mostly on rainwater. Our results show evidence supporting ocean water use by dune

  16. Mineralogy and Genesis of Heavy Minerals in Coastal Dune Sands, South Eastern Qatar

    OpenAIRE

    Nasir, Sobhi J. [صبحي جابر نصر; El-Kassas, Ibrahim A.; Sadiq, A. Ali M.

    1999-01-01

    Large amounts of aeolian sand occur in the southeastern coastal zone of Qatar Peninsula as sand dunes accumulated in a vast sand field locally called " Niqyan Qatar ". The present work, carried out on a sand dune belt of this field near Mesaied Industrial City, revealed the distribution of heavy minerals shows a regional variability induced by provenance and local variability reflecting genetic differences. The studied dune sands are rich in shells of pelecypods, with the light mineral assemb...

  17. Conservation of Sand Dune Vegetation in Coastal areas of the Valencian Region (Spain); Estado de conservacion de la vegetacion dunar en las costas de la comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Albertos, B.; San Miguel, E.; Draper, I.; Garilleti, R.; Lara, F.; Varela, J. M.

    2010-07-01

    The state of conservation of the coastal dune vegetation in Valencia region has been assessed within a survey of the vegetal communities present in these systems.The conservation status has been evaluated through a qualitative scale which integrates criteria such as dune extension, structure and diversity of the vegetal communities, level of ruderalization, presence of invasive species, and floristic rarity. Special attention has been paid to the usual aggressions to this type of ecosystem and the situation of the most aggressive invasive plants. (Author) 15 refs.

  18. Characterization and Ecophysiological Observations on Coastal Sand Dune Vegetation from Goa, Central West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, R.S.

    Coastal Sand Dune flora (CSD) forms a specialized group of plants commonly referred as psammophytes. Goa has limited natural resources including beaches and sand dunes. The state is globally known for its tourism activities, which pressurize...

  19. Nutrient limitation and vegetation changes in a coastal dune slack

    NARCIS (Netherlands)

    Lammerts, EJ; Pegtel, DM; Grootjans, AP; van der Veen, A.

    Basiphilous pioneer species are among the most endangered plant species in The Netherlands. They find most of their refuges in young coastal dune slacks, especially on the Wadden Sea islands. For the purpose of nature management it is important to know which processes control the presence of

  20. UAV-imaging to model growth response of marram grass to sand burial: Implications for coastal dune development

    Science.gov (United States)

    Nolet, Corjan; van Puijenbroek, Marinka; Suomalainen, Juha; Limpens, Juul; Riksen, Michel

    2018-04-01

    Vegetated coastal dunes have the capacity to keep up with sea-level rise by accumulating and stabilizing wind-blown sand. In Europe, this is attributed to marram grass (Ammophila arenaria), a coastal grass species that combines two unique advantages for dune-building: (1) a very high tolerance to burial by wind-blown sand, and (2) more vigorous growth due to positive feedback to sand burial. However, while these vegetation characteristics have been demonstrated, observational data has not been used to model a function to describe the growth response of Ammophila to sand burial. Studies that model coastal dune development by incorporating positive feedback, as a result, may be hampered by growth functions that are unvalidated against field data. Therefore, this study aims to parameterize an empirical relationship to model the growth response of Ammophila to burial by wind-blown sand. A coastal foredune along a nourished beach in the Netherlands was monitored from April 2015 to April 2016. High-resolution geospatial data was acquired using an Unmanned Aerial Vehicle (UAV). Growth response of Ammophila, expressed by changes in Normalized Difference Vegetation Index (Δ NDVI) and vegetation cover (Δ Cover), is related to a sand burial gradient by fitting a Gaussian function using nonlinear quantile regression. The regression curves indicate an optimal burial rate for Ammophila of 0.31 m of sand per growing season, and suggest (by extrapolation of the data) a maximum burial tolerance for Ammophila between 0.78 (for Δ Cover) and 0.96 m (for Δ NDVI) of sand per growing season. These findings are advantageous to coastal management: maximizing the potential of Ammophila to develop dunes maximizes the potential of coastal dunes to provide coastal safety.

  1. Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession?

    Science.gov (United States)

    Ciccarelli, Daniela

    2015-11-01

    Plant communities of coastal dunes are distributed along a characteristic sea-inland gradient. Generally, there is a shift from annual and short height species with small leaves in the initial successional stages to perennial tall shrubs with tough leaves in later phases. Assessing the community-weighted mean (CWM) trait values is used in plant ecology to describe ecosystem properties especially during succession. In particular, CSR (Competitive, Stress-tolerant, and Ruderal strategy) classification allows us to explore community functional shifts in terms of disturbance, stress and competition selective forces. The functional basis of the psammophilous succession was studied based on the following questions: (1) Can we circumscribe different functional types among plant species of Mediterranean coastal dunes? (2) How do CWM trait values vary along the environmental sea-inland gradient? (3) What is the relative importance of competition, stress and disturbance in the processes of plant community assembling? (4) Can we postulate that along primary successions there is generally a shift from ruderality to stress-tolerance? An explorative analysis of functional groups was performed by Non-Metric Multidimensional Scaling (NMDS) analysing nine morpho-functional traits measured for 45 taxa from 880 dune plots localised in Tuscany (central Italy, Europe). NMDS ordination showed a scattered distribution of psammophytes that could not be delimited in precise plant functional types. The first NMDS axis has been interpreted as a leaf economics axis because it was correlated to leaf area (LA) and leaf dry matter content (LDMC), while the second one was a plant size axis because of its correlation with canopy height. Along the sea-inland gradient, pioneer plant communities of upper beach were dominated by ruderals (with the lowest values of LDMC and specific leaf area - SLA), well-adapted to the harsh environmental conditions of coastal dunes. More distant from the sea, where

  2. Coastal ecosystems for protection against storm surge

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    and infrastructure in single catastrophe exceeded Rs. 2750 crore. Economic loss is thus prohibitive and hence unsustainable. This paper acknowledges the intrinsic protective value of coastal sand dunes, vegetation and wetlands as a functional natural defence...

  3. 44 CFR 65.11 - Evaluation of sand dunes in mapping coastal flood hazard areas.

    Science.gov (United States)

    2010-10-01

    ... mapping coastal flood hazard areas. 65.11 Section 65.11 Emergency Management and Assistance FEDERAL... Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.11 Evaluation of sand dunes in mapping coastal flood hazard areas. (a) General conditions. For purposes of the NFIP, FEMA will consider...

  4. Construction of an Environmentally Sustainable Development on a Modified Coastal Sand Mined and Landfill Site—Part 2. Re-Establishing the Natural Ecosystems on the Reconstructed Beach Dunes

    Directory of Open Access Journals (Sweden)

    Anne-Laure Markovina

    2010-03-01

    Full Text Available Mimicking natural processes lead to progressive colonization and stabilization of the reconstructed beach dune ecosystem, as part of the ecologically sustainable development of Magenta Shores, on the central coast of New South Wales, Australia. The retained and enhanced incipient dune formed the first line of storm defence. Placement of fibrous Leptospermum windrows allowed wind blown sand to form crests and swales parallel to the beach. Burial of Spinifex seed head in the moist sand layer achieved primary colonization of the reconstructed dune and development of a soil fungal hyphae network prior to introduction of secondary colonizing species. Monitoring stakes were used as roosts by birds, promoting re-introduction of native plant species requiring germination by digestive tract stimulation. Bush regeneration reduced competition from weeds, allowing native vegetation cover to succeed. On-going weeding and monitoring are essential at Magenta Shores until bitou bush is controlled for the entire length of beach. The reconstructed dunes provide enhanced protection from sand movement and storm bite, for built assets, remnant significant vegetation and sensitive estuarine ecosystems.

  5. The Mediterranean Coastal Dunes in Egypt: An Endangered Landscape

    Science.gov (United States)

    Batanouny, K. H.

    1999-08-01

    The Mediterranean coast in Egypt extends almost 900 km, the major part of which is bordered by sand dunes of different natures and types. Along the coastline between Alexandria and El-Alamein, a distance of some 100 km, the sand dunes represent a particular landscape with special characteristics and features, and consequently plants with particular attributes. In this area, the belt of sand dunes has developed immediately south of the shore and these dunes may rise up to 10 m in height and extend about 0·5-1·5 km inland from the shore. These dunes are famous as a habitat for the fig (Ficus carica L.) cultivation depending on the irregular rainfall. They also represent a landing station and a cross-road for birds such as quail migrating from Europe in the north. In the past, summer resort areas were confined to limited areas with few people, these same areas support the growth of some important plant species, for example, sand binders, medicinal and range plants. For more than two decades, there has been considerable socio-economic change and an open-door policy in the economy of the country has been adopted. One of the consequences of this change is that a great part of the coastal dune belt west of Alexandria till El-Alamein, has been subjected to destruction, due to the continuous construction of summer resort villages. These were built at a distance of about 100 m of the shoreline, extending 400-600 m inland and a breadth of 400 m or more along the shoreline. The area already covered by the dunes is now almost occupied by new buildings, gardens and other infrastructure. The consequences of these human activities are numerous and include impacts on the soil, water resources, the flora and the fauna, migrating birds, trends of the indigenous people, and the cultural environment. The present paper gives a concise environmental setting of the dune belt before the advent of the new activities, and the socio-economic and political attitudes which threaten the dunes

  6. Late Pleistocene dune-sourced alluvial fans in coastal settings: Sedimentary facies and related processes (Mallorca, Western Mediterranean)

    Science.gov (United States)

    Pomar, F.; del Valle, L.; Fornós, J. J.; Gómez-Pujol, L.

    2018-05-01

    Aeolian-alluvial sedimentary interaction results in the formation of deposits characterized by typical alluvial sedimentary structures, but is composed of conspicuous amounts of aeolian sediments. The literature on this topic is limited and most works relate more with continental aeolian dunes or fluvial dune interference with fan bodies. Furthermore, there is a lack of examples of aeolian-alluvial sedimentary interference in coastal settings. In the western Mediterranean, there are many Pleistocene alluvial fan deposits built up partly by sediment originating from coastal dunes dismantled by alluvial streams. Very often, these deposits show a continuous sedimentary sequence through which we can derive the contribution and predominance of coastal, alluvial-colluvial and aeolian processes and their controls on landscape formation. This is an outstanding feature within coastal systems since it shows marine sediments reworked and integrated within coastal dune fields by aeolian transport, and the latter built up into alluvial fan bodies. In this sense, aeolian-alluvial interaction is the geomorphic-sedimentary expression of the coexistence and overlapping of alluvial and aeolian environments resulting in deposits sharing sedimentary features from both environments. The aim of this paper is to unravel the contribution of coastal dunes in the construction of alluvial fans bodies and identify the main sedimentary facies that constitute these deposits, as well as their climatic controls. For this reason, Es Caló fan (northern Mallorca) has been selected due to its well-exposed deposits exhibiting the alternation of aeolian, alluvial and colluvial deposits. Sedimentological and stratigraphic analyses based on 33 logs and complementary analyses demonstrate that most of the facies constituting the fan body are made up completely of marine bioclastic sands. These deposits record an alluvial fan sedimentary environment characterized by sediments inputs that do not proceed

  7. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    Science.gov (United States)

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T R

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.

  8. Regime shifts and resilience in China's coastal ecosystems.

    Science.gov (United States)

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.

  9. Coastal dunes of South Africa

    CSIR Research Space (South Africa)

    Tinley, KL

    1985-01-01

    Full Text Available . The descriptive section is divided into geographic setting, physical features, ecological features and dune dynamics. Emphasis is placed on the factors affecting dune formation and erosion and the biogeography and dynamics of dune vegetation. Current use...

  10. Occupancy dynamics of wild rabits (Oryctolagus cuniculus) in the coastal dunes of the Nederlands with imperfect detection

    NARCIS (Netherlands)

    Strien, van A.J.; Dekker, J.J.A.; Straver, M.; Meij, van der T.; Soldaat, L.L.; Ehrenburg, A.; Loon, van E.

    2011-01-01

    Context: Wild rabbits are considered a key species in the coastal dunes of the Netherlands, but populations have collapsed as a result of viral diseases. Aim: We studied to what extent population collapse led to local extinction and whether recolonisation of empty patches in the dunes happened.

  11. Occupancy dynamics of wild rabbits (Oryctolagus cuniculus) in the coastal dunes of the Netherlands with imperfect detection

    NARCIS (Netherlands)

    van Strien, A.J.; Dekker, J.J.A.; Straver, M.; van der Meij, T.; Soldaat, L.L.; Ehrenburg, A.; van Loon, E.

    2011-01-01

    Context: Wild rabbits are considered a key species in the coastal dunes of the Netherlands, but populations have collapsed as a result of viral diseases. Aim: We studied to what extent population collapse led to local extinction and whether recolonisation of empty patches in the dunes happened.

  12. Coastal ecosystems: Attempts to manage a threatened resource

    International Nuclear Information System (INIS)

    Lundin, C.G.; Linden, O.

    1993-01-01

    Tropical coastal zones are productive ecosystems that currently face severe environmental threats, particularly from organic pollution. The role of the coastal ecosystems is analyzed and the relationship between coastal ecosystem health and fisheries productivity is explained. Ecological disturbances from organic sources like sewage and siltation is highlighted. The issues of integrated coastal zone management (ICZM) are discussed, particularly in the context of conserving natural ecosystems or transforming them to managed systems. Issues of population density, management capacity, and socioeconomic conditions are discussed. The possibilities for closing carbon cycles currently leaking organic materials to the coastal waters are pursued. Finally, examples of ICZM initiatives in the ASEAN countries and East Africa are presented. 42 refs

  13. Invasive plants on disturbed Korean sand dunes

    Science.gov (United States)

    Kim, Kee Dae

    2005-01-01

    The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic

  14. Understanding the hydrochemical evolution of a coastal dune system in SW England using a multiple tracer technique

    International Nuclear Information System (INIS)

    Allen, Debbie; Darling, W. George; Williams, Peter J.; Stratford, Charlie J.; Robins, Nick S.

    2014-01-01

    Highlights: • Braunton Burrows is an alkaline rain-fed system with no saline intrusion. • Marine aerosols and shell dissolution dominate unsaturated zone water quality. • Hydrochemical evolution in the unsaturated zone is rapid. • Slower evolutionary processes contribute to water quality in the saturated zone. • High dune groundwaters were 13–16 yr old and dune slack groundwater 5–7 yr old. - Abstract: An improved knowledge of the hydrology of coastal dune systems is desirable for successful management of their diverse ecology under a changing climate. As a near-pristine coastal dune spit system, Braunton Burrows (SW England) is an ideal location for the study of the natural processes governing recharge to the dune groundwater system and the evolution of its water quality. Whereas previous investigations have tended to focus on inter-dune slacks, this study has also given attention to infiltration through the high dunes. Cores were taken through dunes and the resulting sand samples processed to provide information on grain size distribution and porewater chemistry. Groundwater samples were obtained from beneath dunes and slacks. A variety of geochemical techniques were applied including hydrochemistry, stable isotopes and residence time indicators. The unsaturated zone profiles indicate the existence of piston flow recharge with an infiltration rate of 0.75–1 m/yr, although faster rates probably also occur locally. Groundwater beneath the high dunes gave ages in the range 13–16 yr, compared to the dune slack groundwater ages of 5–7 yr, and an age of 22 yr for groundwater from the underlying mudstone aquifer. The chemistry of waters in both unsaturated and saturated zones is dominated by Ca and HCO 3 , supplemented by variable amounts of other ions derived from marine aerosols and limited reaction with sand grains and their coatings. The main chemical evolution of the porewaters occurs rapidly through the mobilisation of surface salt crusts and

  15. Coastal dune dynamics in response to excavated foredune notches

    Science.gov (United States)

    Ruessink, B. G.; Arens, S. M.; Kuipers, M.; Donker, J. J. A.

    2018-04-01

    Dune management along developed coasts has traditionally focussed on the suppression of the geomorphic dynamics of the foredune to improve its role in sea defence. Because a stabilized foredune acts as an almost total barrier to aeolian transport from the beach, the habitat diversity in the more landward dunes has degraded. With the overarching objective to mitigate this undesirable loss in biodiversity, dune management projects nowadays increasingly intend to restore aeolian dynamics by reconnecting the beach-dune system with notches excavated through the foredune. Here, we use repeat topographic survey data to examine the geomorphic response of a coastal dune system in the Dutch National Park Zuid-Kennemerland to five notches excavated in 2012-2013 within an 850-m stretch of the 20-m high established foredune. The notches were dug in a V-shape (viewed onshore), with a width between approximately 50 and 100 m at the top, a (cross-dune) length between 100 and 200 m, and excavation depths between 9 and 12.5 m. The 1 × 1 m digital terrain models, acquired with airborne Lidar and UAV photogrammetry, illustrate that during the 3-year survey period the notches developed into a U-shape because of wall deflation, and that up to 8-m thick and 150-m long depositional lobes formed landward of the notches. Sand budget computations showed that the sand volume of the entire study area increased by about 22,750 m3/year, which, given the 850-m width of the study area, corresponds to an aeolian input from the beach of approximately 26.5 m3/m/year. Between 2006 and 2012 all wind-blown beach sand deposited on the seaward side of the foredune; since 2013, the notches have caused 75% of the sand to be deposited landward of the foredune. This highlights that the notches are highly effective conduits for aeolian transport into the back dunes. Future monitoring is required to determine for how long the notches will stimulate aeolian dynamics and if (and when) vegetation eventually

  16. Global patterns of phytoplankton dynamics in coastal ecosystems

    Science.gov (United States)

    Paerl, H.; Yin, Kedong; Cloern, J.

    2011-01-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".

  17. Economic development and coastal ecosystem change in China

    Science.gov (United States)

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  18. Economic development and coastal ecosystem change in China.

    Science.gov (United States)

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-08-08

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  19. The impact of fire on sand dune stability: Surface coverage and biomass recovery after fires on Western Australian coastal dune systems from 1988 to 2016

    Science.gov (United States)

    Shumack, Samuel; Hesse, Paul; Turner, Liam

    2017-12-01

    This study aims to determine the common response of coastal sand dunes in Western Australia (WA) to fire on decadal time-scales, in terms of ecological-geomorphic-climatic interactions to test the hypothesis that fire plays a role in coastal dune destabilisation. Fires are commonly suggested to have contributed to widespread dune reactivation in Australia and globally, a hypothesis that is relatively untested. We used data from the Landsat Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational Land Imager missions to monitor changes in surface coverage on coastal sand dunes in south-west WA after fires. We analysed 31 fire scars from 1988 to 2016 in two Landsat scenes on the west and south coast of WA. Recovery ratios derived from the Normalised Difference Vegetation Index (NDVI) were used to monitor patterns in post-fire biomass and surface cover. Recovery ratios are correlated with indices of burn severity, and meteorological data to investigate relationships. We also used Maximum Likelihood Classification to monitor changes in bare sand area. Results suggest that recovery followed a strongly consistent pattern, and is characterised by rapid vegetation cover re-establishment within six to twelve months. Prior to this, some aeolian activity may have occurred but without substantial surface changes. Initial germination and/or resprouting were followed by steady growth up to seven years, where NDVI typically neared pre-fire values. Some variation in early recovery occurred between the west and south coast, possibly owing to relative proportions of reseeding and resprouting plants. A log regression explained 75% of the recovery pattern (79% on the south coast). Precipitation had some ability to explain recovery up to nine months post-fire (r2 = 0.29 to 0.54). No relationships were observed between estimates of burn severity and recovery. After nine months, the biggest cause of spatial variation in recovery was the pre-fire community composition and related

  20. Dynamic dune management, integrating objectives of nature development and coastal safety: Examples from the Netherlands

    Science.gov (United States)

    Arens, Sebastiaan M.; Mulder, Jan P. M.; Slings, Quirinus L.; Geelen, Luc H. W. T.; Damsma, Petra

    2013-10-01

    This paper discusses and compares results of management interventions to remobilise dunes and obtain more autonomous changes in foredunes resulting from a change in coastal defence policy. In recent decades, nature conservation managers tried to restore aeolian dynamics and dune mobility landward of foredunes to maintain threatened, rare pioneer species. Results indicate that destabilisation activities yielded an important increase of blowing sand and its effects on ecology but with a limited effect on the desired integral remobilization of dunes. Roots remaining in the sand after removal of vegetation and soil is one of the main problems. Follow up removal of roots for 3 to 5 years seems to be essential, but it is not clear whether the dunes will remain mobile in the long term. In 1990 the Dutch government decided to maintain the position of the coastline by artificial sand nourishment. An intensive management of the foredunes was no longer required. Consequently, natural processes in the foredunes revived, and the sediment budget of the beach-dune system changed. Two main types of responses are visible. In some areas, increased input of sand resulted in the development of embryonic dunes seaward of the former foredunes, leading to increased stabilisation of the former foredunes. In other areas, development of embryonic dunes was insignificant despite the increased sand input, but wind erosion features developed in the foredunes, and the environment was more dynamic. The reasons for the differences are not clear, and the interaction between shoreface, beach and dunes is still poorly understood. Until now, attempts to mobilise the inner dunes were independent of changes made to the foredunes. We argue that an integrated, dynamic approach to coastal management, taking account of all relevant functions (including safety and natural values) and the dune-beach system as a whole, may provide new and durable solutions. An integrated approach would ideally provide fresh

  1. Holocene coastal dune development and environmental changes in Helis area (NW Peloponnese, Greece

    Directory of Open Access Journals (Sweden)

    L. STAMATOPOULOS

    2017-12-01

    Full Text Available The coastal area of western Peloponnese is characterized by Pleistocene and Holocene marine deposits. The study area shows the effects of different phases of coastal morphology evolution and is located along a wave-dominated and microtidal coast in the northwestern Peloponnese, 40 km southwest of Patras city. Three significant morphogenetic phases occurred during the Holocene. The first was radiometrically aged from 7000 to 3810 years BP, marking the end of the rapid postglacial transgression. The second, between 3810 and 1400 years BP, was characterized by high rates of sedimentation, possibly because of the proximity of the mouth of the Peneus River, and resulted in the accumulation of predominantly fluvial sediments. During the third and younger phase, from 1400 years BP to the present, landward migration of the coast and deposition of aeolian sands occurred. Archaeological and morphological evidences suggest that this last phase should be related to a low sea-level stand followed by a slow sea-level rise, up to the present-day position and by humid-temperate climate. The collected data concerning the Holocene coastal dune belts, suggest that main phases of dune development could be related to the effects of sea-level changes, climatic conditions, and in a subordinate way, to human activity.

  2. Paradigms in the Recovery of Estuarine and Coastal Ecosystems

    OpenAIRE

    Duarte, Carlos M.; Borja, Ángel; Carstensen, Jacob; Elliott, Michael S.; Krause-Jensen, Dorte; Marbà, Núria

    2015-01-01

    © 2013, Coastal and Estuarine Research Federation. Following widespread deterioration of coastal ecosystems since the 1960s, current environmental policies demand ecosystem recovery and restoration. However, vague definitions of recovery and untested recovery paradigms complicate efficient stewardship of coastal ecosystems. We critically examine definitions of recovery and identify and test the implicit paradigms against well-documented cases studies based on a literature review. The study hi...

  3. How to integrate geology, biology, and modern wireless technologies to assess biotic-abiotic interactions on coastal dune systems: a new multidisciplinary approach

    Science.gov (United States)

    Sarti, Giovanni; Bertoni, Duccio; Bini, Monica; Ciccarelli, Daniela; Ribolini, Adriano; Ruocco, Matteo; Pozzebon, Alessandro; Alquini, Fernanda; Giaccari, Riccardo; Tordella, Stefano

    2014-05-01

    Coastal dune systems are arguably one of the most dynamic environments because their evolution is controlled by many factors, both natural and human-related. Hence, they are often exposed to processes leading to erosion, which in turn determine serious naturalistic and economic losses. Most recent studies carried out on different dune fields worldwide emphasized the notion that a better definition of this environment needs an approach that systematically involves several disciplines, striving to merge every data collected from any individual analyses. Therefore, a new multidisciplinary method to study coastal dune systems has been conceived in order to integrate geology, biology, and modern wireless technologies. The aim of the work is threefold: i) to check the reliability of this new approach; ii) to provide a dataset as complete as ever about the factors affecting the evolution of coastal dunes; and iii) to evaluate the influence of any biotic and abiotic factors on plant communities. The experimentation site is located along the Pisa coast within the Migliarino - S. Rossore - Massaciuccoli Regional Park, a protected area where human influence is low (Tuscany, Italy). A rectangle of 100 x 200 m containing 50 grids of 20 x 20 m was established along the coastal dune systems from the coastline to the pinewood at the landward end of the backdune area. Sampling from each grid determined grain-size analysis carried out on surface sediment samples such as geologic aspects; topographic surveys performed by means of DGPS-RTK instruments; geophysical surveys conducted with a GPR equipment, which will be matched with core drilling activities; digital image analysis of high definition pictures taken by means of a remote controlled aircraft drone flying over the study area; biological data obtained by percent cover of each vascular plant species recorded in the sampling unit. Along with geologic and biologic methodologies, this research implemented the use of informatics

  4. The role of vegetation in shaping dune morphology

    Science.gov (United States)

    Duran Vinent, O.; Moore, L. J.; Young, D.

    2012-12-01

    Aeolian dunes naturally emerge under strong winds and sufficient sand supply. They represent the most dynamical feature of the arid and/or coastal landscape and their evolution has the potential to either increase desertification or reduce coastal vulnerability to storms. Although large-scale dune morphology mainly depends on the wind regime and sand availability, vegetation plays an important role in semiarid and/or coastal areas. It is well known that under certain conditions vegetation is able to stabilize dunes, driving a morphological transformation from un-vegetated mobile crescent dunes to static vegetated "parabolic" dunes, de facto paralyzing desertification and initiating land recovery. Furthermore, vegetation is also the primary ingredient in the formation of coastal foredunes, which determine vulnerability to storms, as low dunes are prone to storm-induced erosion and overwash. In both cases, the coupling of biological and geomorphic (physical) processes, in particular vegetation growth and sand transport, governs the evolution of morphology. These processes were implemented in a computational model as part of a previous effort. It was shown that, for a migrating dune, this coupling leads to a negative feedback for dune motion, where an ever denser vegetation implies ever lesser sand transport. The model also predicted the existence of a "mobility index", defined by the vegetation growth rate to sand erosion rate ratio, that fully characterizes the morphological outcome: for indices above a certain threshold biological processes are dominant and dune motion slows after being covered by plants; for lower indices, the physical processes are the dominant ones and the dune remains mobile while vegetation is buried or rooted out. Here, we extend this model to better understand the formation of coastal dunes. We include new physical elements such as the shoreline and water table, as well as different grass species and potential competition among them

  5. Dune Ecosystem Management of the Razim-Sinoie Littoral Bar (Romania

    Directory of Open Access Journals (Sweden)

    Gheorghe ROMANESCU

    2010-12-01

    Full Text Available The Razim-Sinoie lagoon complex is located in the south-eastern part of Romania. It is bordered by the Dobrudja region to the west and north, the Danube Delta to the north-east and the Black Sea to the east. An assessment of the quality of dunes was made in that area and several conservation measures were proposed. The age of the Razim-Sinoie littoral bar cannot be older than 1500 - 2000 years, according to to the total closure of the Halmyris bay and the end of the harbour activities in Histria and, subsequently, in Enisala. Transversally, the littoral bar is quite symmetrical, with few differences between the part towards the sea, which is more abrupt, and the less abrupt part towards the lagoon. Most of the sediments that make up the littoral bar are of Danubian origin and the rest are of marine origin (bio-constructional, caused by the smashing of the empty shells. The materials get transported by the littoral stream and deposited by waves and wind. The average increase of the marine level is between 1 and 2 cm/year. Even if the transgressive phenomenon occurs along the entire bar, several sectors are slightly eroded (as in Portita, others are slightly progradated (as in Chituc-Capul Midia and the rest have a precarious relative equilibrium (Periboina, Periteasca. The reduced water transparency facilitates a good development of the shell population, and causes the terrigenic material/organogenic material ratio (T/O to be 50/50. As a result of the reduction of the Danube solid discharge which supplied the littoral bar, the whole alignment was affected, and, consequently, a generalized retreat of the shore line occurred. Under such circumstances, a supplementary sediment discharge was necessary, but without affecting the nearby ecosystems. Supplementary material can be brought from offshore, from the - 20m deep isobath or by building canals between the Sfantu Gheorghe arm of the Danube (the southernmost arm and the littoral nearby. In that

  6. Reconstruction of the coastal morphodynamics of the Fulong-beach dune field in north-eastern Taiwan

    Science.gov (United States)

    Dörschner, Nina; Böse, Margot; Frechen, Manfred

    2010-05-01

    The Fulong-beach dune field is located at the north-eastern coast of Taiwan. Built up of medium and fine grained quartz rich sand, it represents a unique feature of only few kilometres along the east coast of Taiwan. This unique sedimentological regime makes the area most perfectly suitable for age estimations by optically stimulated luminescence (OSL). The dune field is crossed by the Shuangsi-river, which flows into the Pacific Ocean. The coastal area is subjected to very dynamic conditions in the transition zone between land and sea. Due to the constant force of marine and aeolian processes from tides, weather and sediment accumulation by rivers, it is a continuously changing area. Taiwan is located in a very active tectonic zone with high elevation rates, which reach from 4 mm per year at the east coast up to 7 mm per year in the southern parts of the island. Furthermore Taiwan is affected by medial 3.8 typhoons per year and minor earthquakes nearly occur every day (LIN ET AL. 2006). The consequences are high rates of erosion and sediment transport during very short time periods. The Fulong-beach coastal area is densely populated and proud for being a tourism destination. At the northern end of the dune field the Lungmen nuclear power plant is currently under construction. Four separate dune ridges could be identified from a digital elevation model and from field mapping. During the field campaign in October and November 2009 17 samples were taken for OSL-dating (MURRAY ET AL. 1995) out of the four dune ridges as well as out of a more than 30 m high elevated outcrop cut by the Shuangsi-river. The measurement and the evaluation of the OSL-samples will provide us an insight into the duration and intensity of the processes affecting the coastal area of Taiwan during the Holocene. We will give an outline during the poster presentation of the methodical approach and the morphodynamical processes affecting the Fulong-beach dune field in north-eastern Taiwan

  7. Spring foraging resources and the behaviour of pollinating insects in fixed dune ecosystems

    Directory of Open Access Journals (Sweden)

    Aoife T. O'Rourke

    2014-08-01

    Full Text Available In temperate climates, foraging resources for pollinating insects are especially important in early spring when animals emerge from hibernation and initiate annual life cycles. One habitat, protected under EU law, which provides resources for a range of pollinating insects, but has received little research attention, is fixed (grey dunes. Fixed dunes often contain creeping willow (Salix repens, Salicaceae, which may be an important early season resource for obligate flower visitors. We examined the springtime activity of flower visitors in fixed dune ecosystems in relation to sugar concentration and composition in nectar, composition of essential amino acids in pollen, and floral abundance. We also investigated whether the presence or absence of S. repens influenced the abundance and species richness of three obligate flower visiting guilds (solitary bees, bumblebees and hoverflies in eight sites along the eastern and southern coasts of Ireland. Higher insect visitation rates were observed to species whose nectar contained greater concentrations of glucose and fructose. Solitary bee visitation rates were related to % Essential Amino Acid (EAA in pollen and floral species richness. Ulex europeaus, and S. repens were the most abundant flowering species, but visitation rates were not related to floral abundance. Higher abundances of bumblebees and hoverflies were discovered at sites where S. repens was present. This study raises further questions about the nutritional requirements and preferences of obligate flower visitors in fixed dune ecosystems in spring time.

  8. An evaluation of flora from coastal sand dunes of India: Rationale for conservation and management

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, R.S.; Mascarenhas, A.; Jagtap, T.G.

    stream_size 37100 stream_content_type text/plain stream_name Ocean_Coast_Manage_54_181a.pdf.txt stream_source_info Ocean_Coast_Manage_54_181a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 1... Author version: Ocean & Coastal Management, vol.54(2); 2011; 181-188 An evaluation of flora from coastal sand dunes of India: Rationale for conservation and management Rouchelle S. Rodrigues, Antonio Mascarenhas, Tanaji G. Jagtap * National...

  9. Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea.

    Science.gov (United States)

    Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas.

  10. Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea

    Science.gov (United States)

    Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas. PMID:26221950

  11. Sand fences: An environment-friendly technique to restore degraded coastal dunes

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    of prevailing winds (Matias et al. 2005). Our observations show that sand gets deposited 2 to 6 m downwind behind artificial barriers lying on the beach. A series of fences can therefore intercept wind-blown sand over a considerable area along the frontal beach..., but fashioned artificially; (e) Restoration of coastal dunes can be adopted wherever these features are damaged due to natural processes or human interference. Acknowledgements: The author is grateful to the Director, NIO, Goa, for permission to publish...

  12. Ecosystem services as a common language for coastal ecosystem-based management.

    Science.gov (United States)

    Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric

    2010-02-01

    Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.

  13. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses

    NARCIS (Netherlands)

    Bouma, T.J.; Olenin, S.; Reise, K.; Ysebaert, T.

    2009-01-01

    Coastal sediments in sheltered temperate locations are strongly modified by ecosystem engineering species such as marsh plants, seagrass, and algae as well as by epibenthic and endobenthic invertebrates. These ecosystem engineers are shaping the coastal sea and landscape, control particulate and

  14. Fungal symbiosis and precipitation alter traits and dune building by the ecosystem engineer, Ammophila breviligulata.

    Science.gov (United States)

    Emery, Sarah M; Bell-Dereske, Lukas; Rudgers, Jennifer A

    2015-04-01

    Ecosystem engineer species influence their community and ecosystem by creating or altering the physical structure of habitats. The function of ecosystem engineers is variable and can depend on both abiotic and biotic factors. Here we make use of a primary successional system to evaluate the direct and interactive effects of climate change (precipitation) and fungal endophyte symbiosis on population traits and ecosystem function of the ecosystem engineering grass species, Ammophila breviligulata. We manipulated endophyte presence in A. breviligulata in combination with rain-out shelters and rainfall additions in a factorial field experiment established in 2010 on Lake Michigan sand dunes. We monitored plant traits, survival, growth, and sexual reproduction of A. breviligulata from 2010-2013, and quantified ecosystem engineering as the sand accumulation rate. Presence of the endophyte in A. breviligulata increased vegetative growth by up to 19%, and reduced sexual reproduction by up to 46% across all precipitation treatments. Precipitation was a less significant factor than endophyte colonization for A. breviligulata growth. Reduced precipitation increased average leaf number per tiller but had no other effects on plant traits. Changes in A. breviligulata traits corresponded to increases in sand accumulation in plots with the endophyte as well as in plots with reduced precipitation. Sand accumulation is a key ecosystem function in these primary successional habitats, and so microbial symbiosis in this ecosystem engineer could lead to direct effects on the value of these dune habitats for humans.

  15. An integrated approach shows different use of water resources from Mediterranean maquis species in a coastal dune ecosystem

    Directory of Open Access Journals (Sweden)

    F. Manes

    2009-11-01

    Full Text Available An integrated approach has been used to analyse the dependence of three Mediterranean species, A. unedo L., Q. ilex L., and P. latifolia L. co-occurring in a coastal dune ecosystem on two different water resources: groundwater and rainfed upper soil layers. The approach included leaf level gas exchanges, sap flow measurements and structural adaptations between 15 May and 31 July 2007. During this period it was possible to capture different species-specific response patterns to an environment characterized by a sandy soil, with a low water retention capacity, and the presence of a water table. The latter did not completely prevent the development of a drought response and, combined with previous studies in the same area, response differences between species have been partially attributed to different root distributions. Sap flow of A. unedo decreased rapidly with the decline of soil water content, while that of Q. ilex decreased only moderately. Midday leaf water potential of P. latifolia and A. unedo ranged between −2.2 and −2.7 MPa throughout the measuring period, while in Q. ilex it decreased down to −3.4 MPa at the end of the season. A. unedo was the only species that responded to drought with a decrease of its leaf area to sapwood area ratio from 23.9±1.2 (May to 15.2±1.5 (July. While A. unedo also underwent an almost stepwise loss on hydraulic conductivity, such a loss did not occur for Q. ilex, whereas P. latifolia was able to slightly increase its hydraulic conducitivity. These differences show how different plant compartments coordinate differently between species in their responses to drought. The different responses appear to be mediated by different root distributions of the species and their relative resistances to drought are likely to depend on the duration of the periods in which water remains extractable in the upper soil layers.

  16. An integrated approach shows different use of water resources from Mediterranean maquis species in a coastal dune ecosystem

    Science.gov (United States)

    Mereu, S.; Salvatori, E.; Fusaro, L.; Gerosa, G.; Muys, B.; Manes, F.

    2009-11-01

    An integrated approach has been used to analyse the dependence of three Mediterranean species, A. unedo L., Q. ilex L., and P. latifolia L. co-occurring in a coastal dune ecosystem on two different water resources: groundwater and rainfed upper soil layers. The approach included leaf level gas exchanges, sap flow measurements and structural adaptations between 15 May and 31 July 2007. During this period it was possible to capture different species-specific response patterns to an environment characterized by a sandy soil, with a low water retention capacity, and the presence of a water table. The latter did not completely prevent the development of a drought response and, combined with previous studies in the same area, response differences between species have been partially attributed to different root distributions. Sap flow of A. unedo decreased rapidly with the decline of soil water content, while that of Q. ilex decreased only moderately. Midday leaf water potential of P. latifolia and A. unedo ranged between -2.2 and -2.7 MPa throughout the measuring period, while in Q. ilex it decreased down to -3.4 MPa at the end of the season. A. unedo was the only species that responded to drought with a decrease of its leaf area to sapwood area ratio from 23.9±1.2 (May) to 15.2±1.5 (July). While A. unedo also underwent an almost stepwise loss on hydraulic conductivity, such a loss did not occur for Q. ilex, whereas P. latifolia was able to slightly increase its hydraulic conducitivity. These differences show how different plant compartments coordinate differently between species in their responses to drought. The different responses appear to be mediated by different root distributions of the species and their relative resistances to drought are likely to depend on the duration of the periods in which water remains extractable in the upper soil layers.

  17. Dune management challenges on developed coasts

    Science.gov (United States)

    Elko, Nicole A.; Brodie, Kate; Stockdon, Hilary F.; Nordstrom, Karl F.; Houser, Chris; McKenna, Kim; Moore, Laura; Rosati, Julie D.; Ruggiero, Peter; Thuman, Roberta; Walker, Ian J.

    2015-01-01

    From October 26-28, 2015, nearly 100 members of the coastal management and research communities met in Kitty Hawk, NC, USA to bridge the apparent gap between the coastal dune research of scientists and engineers and the needs of coastal management practitioners. The workshop aimed to identify the challenges involved in building and managing dunes on developed coasts, assess the extent to which scientific knowledge can be applied to the management community, and identify approaches to provide means to bridge the gap between needs and potential solutions.

  18. Natural versus Urban dunes along the Emilia-Romagna coast, Northern Adriatic (Italy)

    Science.gov (United States)

    Corbau, Corinne; Simeoni, Umberto

    2014-05-01

    Beach-dune interaction models can be precious tools for land managers and policymakers. However, if the models are inaccurate, land use policies may be designed based on false pretences or assumptions leading to poor land management, long-term erosion and sustainability issues, and increased difficulties in maintaining the dynamic coastal systems. From the literature, it appears that even the most reliable beach-dunes interactions models are not applicable to all coastal systems (Short and Hesp, 1982; Psuty, 1988; Sherman and Bauer, 1993). The study aims to identify the morphological evolution of the Emilia-Romagna coastal dunes according to its natural and "human" characteristics and to classify groups of dunes with similar evolutionary patterns. The coastal area consists essentially of 130 km of low sandy coast, interrupted by vast lagoon areas, harbor jetties and numerous hard coastal defense structures that were built during the first half of the 20th century to protect the Emilia-Romagna coast against erosion. Today about 57% of the littoral is protected by hard defenses, which have modified the morphodynamic characteristics of the beach without inverting the negative coastal evolution's trend. From recent aerial photographs (2011), 62 coastal dunes have been identified and mapped. Furthermore, the dune analysis shows a variability of the "physical characteristics" of coastal-dune systems along the Emilia-Romagna coast. The dune height varies from 1 to 7 meters, the width of the beach and of the active dunes range respectively from 10 to 150 m and from 10 to 65 m. Three main factors may explain the variability of the "physical characteristics": 1- Firstly the frontal dunes may be of different states according to the classification of Hesp (2002) since they correspond to incipient foredunes, well-developed foredunes, blowouts, residual foredunes as well as reactivated relict foredunes, 2- This could also be related to a different orientation of the coastline

  19. What is a Dune: Developing AN Automated Approach to Extracting Dunes from Digital Elevation Models

    Science.gov (United States)

    Taylor, H.; DeCuir, C.; Wernette, P. A.; Taube, C.; Eyler, R.; Thopson, S.

    2016-12-01

    Coastal dunes can absorb storm surge and mitigate inland erosion caused by elevated water levels during a storm. In order to understand how a dune responds to and recovers from a storm, it is important that we can first identify and differentiate the beach and dune from the rest of the landscape. Current literature does not provide a consistent definition of what the dune features (e.g. dune toe, dune crest) are or how they can be extracted. The purpose of this research is to develop enhanced approaches to extracting dunes from a digital elevation model (DEM). Manual delineation, convergence index, least-cost path, relative relief, and vegetation abundance were compared and contrasted on a small area of Padre Island National Seashore (PAIS), Preliminary results indicate that the method used to extract the dune greatly affects our interpretation of how the dune changes. The manual delineation method was time intensive and subjective, while the convergence index approach was useful to easily identify the dune crest through maximum and minimum values. The least-cost path method proved to be time intensive due to data clipping; however, this approach resulted in continuous geomorphic landscape features (e.g. dune toe, dune crest). While the relative relief approach shows the most features in multi resolution, it is difficult to assess the accuracy of the extracted features because extracted features appear as points that can vary widely in their location from one meter to the next. The vegetation approach was greatly impacted by the seasonal and annual fluctuations of growth but is advantageous in historical change studies because it can be used to extract consistent dune formation from historical aerial imagery. Improving our ability to more accurately assess dune response and recovery to a storm will enable coastal managers to more accurately predict how dunes may respond to future climate change scenarios.

  20. A methodological approach to assess beach-dune system susceptibility to erosion. Cases studies from Valdelagrana spit (Spain) and Campomarino beach (Italy).

    Science.gov (United States)

    Rizzo, Angela; Aucelli, Pietro P. C.; Gracia, Javier F.; Anfuso, Giorgio; Rosskopf, Carmen M.

    2016-04-01

    Dunes provide many important services to coastal areas, such as coastal erosion mitigation, coastal flooding protection and biological diversity. Their dynamic equilibrium and geomorphological evolution are the result of the interaction between marine and aeolian processes. Moreover, coastal dunes are characterized by a high ecological value, being a narrow strip between marine and terrestrial ecosystems and are habitats considered of community interest by the Habitats Directive 92/43/EEC. In the meantime, the significant increase of human pressure on coastal environments during the last decades has caused a strong alteration and an increase of the fragility and fragmentation of these habitats. This paper presents a methodological approach for the assessment of the beach-dune system susceptibility to erosion. The aim is to identify, at the local scale, the degree of susceptibility of coastal stretches in order to evaluate the degree of exposure of human settlements and natural environments located behind the dune system and to support actuations to appropriately improve dune management and conservation. A coastal susceptibility matrix and a corresponding Coastal Susceptibility Index (CSI) are proposed. Following the assumption that a good index should be based on a minimum amount of essential information (Cooper and McLaughlin, 1998), possibly already available or easy to be obtained (Villa and McLeod, 2002), the proposed index consisted into eight variables concerning existing beach and dune conditions, covering geomorphological, physical and anthropogenic aspects. Each variable was inserted into a GIS system and overlapped with the others through a logical overlay operation. The resulting layer was reclassified according to the formula proposed by Rangel and Anfuso (2015) allowing to calculate the CSI, which ranged from 1 (null/very low susceptibility) to 5 (very high susceptibility). In a further step, the predominant processes occurred in the last decades were

  1. Sedimentary rhythms in coastal dunes as a record of intra-annual changes in wind climate (Łeba, Poland)

    Science.gov (United States)

    Ludwig, J.; Lindhorst, S.; Betzler, C.; Bierstedt, S. E.; Borówka, R. K.

    2017-08-01

    It is shown that coastal dunes bear a so far unread archive of annual wind intensity. Active dunes at the Polish coast near Łeba consist of two genetic units: primary dunes with up to 18 m high eastward-dipping foresets, temporarily superimposed by smaller secondary dunes. Ground-penetrating radar (GPR) data reveal that the foresets of the primary dunes are bundled into alternating packages imaged as either low- or high-amplitude reflections. High-amplitude packages are composed of quartz sand with intercalated heavy-minerals layers. Low-amplitude packages lack these heavy-mineral concentrations. Dune net-progradation is towards the east, reflecting the prevalence of westerly winds. Winds blowing parallel to the dune crest winnow the lee slope, leaving layers enriched in heavy minerals. Sediment transport to the slip face of the dunes is enhanced during the winter months, whereas winnowing predominantly takes place during the spring to autumn months, when the wind field is bi-directional. As a consequence of this seasonal shift, the sedimentary record of one year comprises one low- and one high-amplitude GPR reflection interval. This sedimentary pattern is a persistent feature of the Łeba dunes and recognized to resemble a sedimentary "bar code". To overcome hiatuses in the bar code of individual dunes and dune-to-dune variations in bar-code quality, dendrochronological methods were adopted to compile a composite bar code from several dunes. The resulting data series shows annual variations in west-wind intensity at the southern Baltic coast for the time period 1987 to 2012. Proxy-based wind data are validated against instrumental based weather observations.

  2. Hierarchical Synthesis of Coastal Ecosystem Health Indicators at Karimunjawa National Marine Park

    Science.gov (United States)

    Danu Prasetya, Johan; Ambariyanto; Supriharyono; Purwanti, Frida

    2018-02-01

    The coastal ecosystem of Karimunjawa National Marine Park (KNMP) is facing various pressures, including from human activity. Monitoring the health condition of coastal ecosystems periodically is needed as an evaluation of the ecosystem condition. Systematic and consistent indicators are needed in monitoring of coastal ecosystem health. This paper presents hierarchical synthesis of coastal ecosystem health indicators using Analytic Hierarchy Process (AHP) method. Hierarchical synthesis is obtained from process of weighting by paired comparison based on expert judgments. The variables of coastal ecosystem health indicators in this synthesis consist of 3 level of variable, i.e. main variable, sub-variable and operational variable. As a result of assessment, coastal ecosystem health indicators consist of 3 main variables, i.e. State of Ecosystem, Pressure and Management. Main variables State of Ecosystem and Management obtain the same value i.e. 0.400, while Pressure value was 0.200. Each main variable consist of several sub-variable, i.e. coral reef, reef fish, mangrove and seagrass for State of Ecosystem; fisheries and marine tourism activity for Pressure; planning and regulation, institutional and also infrastructure and financing for Management. The highest value of sub-variable of main variable State of Ecosystem, Pressure and Management were coral reef (0.186); marine tourism pressure (0.133) and institutional (0.171), respectively. The highest value of operational variable of main variable State of Ecosystem, Pressure and Management were percent of coral cover (0.058), marine tourism pressure (0.133) and presence of zonation plan, regulation also socialization of monitoring program (0.53), respectively. Potential pressure from marine tourism activity is the variable that most affect the health of the ecosystem. The results of this research suggest that there is a need to develop stronger conservation strategies to facing with pressures from marine tourism

  3. Remote sensing and aerial photography for delineation and management of coastal ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.

    sensing data. may provide necessary information to the planners and researchers. interested in the 11 .. coastal ecosystems. Mismanagement or lack of management of coastal zones may result in the loss of marine ecosystems, influencing erosion and the sea..., topographic maps and other resources. The effective management and research of coastal zones, require information on coastal landforms, wetlands, shoreline changes, sediment and current pattern, which can easily be obtained from the satellite data. Coastal...

  4. Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)

    Science.gov (United States)

    Guild, Liane

    2016-01-01

    Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.

  5. A meta-analysis of coastal wetland ecosystem services in Liaoning Province, China

    Science.gov (United States)

    Sun, Baodi; Cui, Lijuan; Li, Wei; Kang, Xiaoming; Pan, Xu; Lei, Yinru

    2018-01-01

    Wetlands are impacted by economic and political initiatives, and their ecosystem services are attracting increasing public attention. It is crucial that management decisions for wetland ecosystem services quantify the economic value of the ecosystem services. In this paper, we aimed to estimate a monetary value for coastal wetland ecosystem services in Liaoning Province, China. We selected 433 observations from 85 previous coastal wetland economic evaluations (mostly in China) including detailed spatial and economic characteristics in each wetland, then used a meta-analysis scale transfer method to calculate the total value of coastal wetland ecosystem services in Liaoning Province. Our results demonstrated that, on average, the ecosystem services provided by seven different coastal wetland types were worth US40,648 per ha per year, and the total value was 28,990,439,041 in 2013. Shallow marine waters accounted for the largest proportion (83.97%). Variables with a significant positive effect on the ecosystem service values included GDP per capita, population density, distance from the wetland to the city center and the year of evaluation, while wetland size and latitude had negative relationships.

  6. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    Science.gov (United States)

    Wollheim, Wilfred M.; Mark B. Green,; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  7. Temporal development of coastal ecosystems in the Baltic Sea over the past two decades

    DEFF Research Database (Denmark)

    Olsson, Jens; Tomczak, Maciej; Ojaveer, Henn

    2015-01-01

    Coastal areas are among the most biologically productive aquatic systems worldwide, but face strong and variable anthropogenic pressures. Few studies have, however, addressed the temporal development of coastal ecosystems in an integrated context. This study represents an assessment of the develo...... in the capacity of currently available monitoring data to support integrated assessments and the implementation of an integrated ecosystem-based approach to the management of the Baltic Sea coastal ecosystems......Coastal areas are among the most biologically productive aquatic systems worldwide, but face strong and variable anthropogenic pressures. Few studies have, however, addressed the temporal development of coastal ecosystems in an integrated context. This study represents an assessment...

  8. THE INNOVATIVE POLICY OPTIONS FOR COASTAL FISHERIES ECONOMIC DEVELOPMENT: A CASE OF KWANDANG BAY COASTAL ECOSYSTEM

    Directory of Open Access Journals (Sweden)

    Noel Taylor Moore

    2017-07-01

    Full Text Available Socio-environmental problems, such as climate change, pollution and habitat destruction, present serious challenges for fisheries economic development. The integration of interventions or investments within a coastal marine ecosystem, a defined spatial area, is considered important in the economic development of local communities leading to the planned outcomes of livelihoods, food security and conservation The coastal marine ecosystem, is the provider of products and services to the local economy adjacent to the ecosystem where the benefit flows, within that area, are interconnected. The roles of science, technology and innovation (STI are an integral part of these multi-dimensional interventions. Hence the need for an integrated approach for these interventions by government and/or through donor funded projects to enhance economic development of coastal communities. The policy framework proposed is therefore an STI perspective of the links between these intervention and investment options, based on a ‘fisheries economic development Hub’ (Hub and discussed using the multi-level perspective (MLP. The policy innovation proposal suggests an implementation strategy of a pilot project and analyses the selection and implications of a potential Indonesian site for the application of the Hub. This paper aims to introduce the MLP into the framework of coastal community-based fisheries economic development.   Key words: policy innovation. coastal marine ecosystem, fisheries economic development Hub, value chains, multi-level perspective (MLP

  9. Macroclimatic change expected to transform coastal wetland ecosystems this century

    Science.gov (United States)

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew S.; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  10. Reattachment Zone Characterisation Under Offshore Winds With Flow Separation On The Lee Side Of Coastal Dunes

    Science.gov (United States)

    Delgado-Fernandez, I.; Jackson, D.; Cooper, J. A.; Baas, A. C.; Lynch, K.; Beyers, M.

    2010-12-01

    Airflow separation, lee-side eddies and secondary flows play an essential role on the formation and maintenance of sand dunes. Downstream from dune crests the flow surface layer detaches from the ground and generates an area characterised by turbulent eddies in the dune lee slope (the wake). At some distance downstream from the dune crest, flow separates into a reversed component directed toward the dune toe and an offshore “re-attached” component. This reattachment zone (RZ) has been documented in fluvial and desert environments, wind tunnel experiments and numerical simulations, but not yet characterised in coastal dunes. This study examines the extent and temporal evolution of the RZ and its implications for beach-dune interaction at Magilligan, Northern Ireland. Wind parameters were measured over a profile extending from an 11 m height dune crest towards the beach, covering a total distance of 65 m cross-shore. Data was collected using an array of nine ultrasonic anemometers (UAs) deployed in April-May 2010, as part of a larger experiment to capture airflow data under a range of incident wind velocities and offshore directions. UAs were located along the profile (5 m tower spacing) over the beach, which allowed a detailed examination of the RZ with empirical data. Numerical modelling using Computational Fluid Dynamics (CFD) software was also conducted with input data from anemometer field measurements, running over a surface mesh generated from LiDAR and DGPS surveys. Results demonstrate that there is a wind threshold of approximately 5-6 ms-1 under which no flow separation exists with offshore winds. As wind speed increases over the threshold, a flow reversal area is quickly formed, with the maximum extent of the RZ at approximately 3.5 dune heights (h). The maximum extent of the RZ increases up to 4.5h with stronger wind speeds of 8-10 ms-1 and remains relatively constant as wind speed further increases. This suggests that the spatial extent of the RZ is

  11. Sensitivity Analysis of Dune Height Measurements Along Cross-shore Profiles Using a Novel Method for Dune Ridge Extraction

    Science.gov (United States)

    Hardin, E.; Mitasova, H.; Overton, M.

    2010-12-01

    In barrier islands where communities are subjected to hazards including storm surge and high wave height, coastal dunes offer the first line of defense to property and vital infrastructure. When dunes are over-washed, substantial damage, including complete destruction of buildings and roads can occur. For this reason, dunes are an integral aspect of coastal hazard management. As new, more efficient mapping and analysis technologies evolve, currently used methodologies should be regularly be reexamined in order to ensure the development of the most effective coastal management strategies. Currently, topographical parameters, such as dune height, are usually measured along evenly spaced, shore-perpendicular beach profiles. In previous studies, profile spacing has varied from 20m to over 500m, however, it has been shown that dune height can vary substantially over tens of meters. Profile spacing is a compromise between the resources needed to perform high-resolution measurements and ensuring the capture of meaningful dune features. While it is often clear how the choice of profile spacing will affect the resources needed to perform the analysis, it is often unclear how spacing affects the ability to capture significant dune variation and prevent omission of a narrow dune breach that can open the way for significant flooding. In this study, the structure of alongshore variation in dune height is investigated. The studied dune ridge is located in the Outer Banks, North Carolina, USA and stretches 18km from south of Oregon Inlet (75:31:19W, 35:46:03N) to Rodanthe (75:27:56W, 35:36:31N). The dune ridge is extracted from a 0.5m resolution Digital Elevation Model (DEM) that was interpolated from airborne lidar data using regularized spline with tension. The lidar data was collected in March 2008 by the National Oceanic and Atmospheric Administration. A dune ridge is usually identified as the highest elevation along a shore-perpendicular profile or where ocean-facing slope

  12. Assessment of coastal management options by means of multilayered ecosystem models

    Science.gov (United States)

    Nobre, Ana M.; Ferreira, João G.; Nunes, João P.; Yan, Xiaojun; Bricker, Suzanne; Corner, Richard; Groom, Steve; Gu, Haifeng; Hawkins, Anthony J. S.; Hutson, Rory; Lan, Dongzhao; Silva, João D. Lencart e.; Pascoe, Philip; Telfer, Trevor; Zhang, Xuelei; Zhu, Mingyuan

    2010-03-01

    This paper presents a multilayered ecosystem modelling approach that combines the simulation of the biogeochemistry of a coastal ecosystem with the simulation of the main forcing functions, such as catchment loading and aquaculture activities. This approach was developed as a tool for sustainable management of coastal ecosystems. A key feature is to simulate management scenarios that account for changes in multiple uses and enable assessment of cumulative impacts of coastal activities. The model was applied to a coastal zone in China with large aquaculture production and multiple catchment uses, and where management efforts to improve water quality are under way. Development scenarios designed in conjunction with local managers and aquaculture producers include the reduction of fish cages and treatment of wastewater. Despite the reduction in nutrient loading simulated in three different scenarios, inorganic nutrient concentrations in the bay were predicted to exceed the thresholds for poor quality defined by Chinese seawater quality legislation. For all scenarios there is still a Moderate High to High nutrient loading from the catchment, so further reductions might be enacted, together with additional decreases in fish cage culture. The model predicts that overall, shellfish production decreases by 10%-28% using any of these development scenarios, principally because shellfish growth is being sustained by the substances to be reduced for improvement of water quality. The model outcomes indicate that this may be counteracted by zoning of shellfish aquaculture at the ecosystem level in order to optimize trade-offs between productivity and environmental effects. The present case study exemplifies the value of multilayered ecosystem modelling as a tool for Integrated Coastal Zone Management and for the adoption of ecosystem approaches for marine resource management. This modelling approach can be applied worldwide, and may be particularly useful for the application of

  13. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    Science.gov (United States)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  14. Genetic Enhancement of Coastal Ecosystem (abstract)

    International Nuclear Information System (INIS)

    Parida, A.

    2005-01-01

    Coastal and marine areas contain some of the world's most diverse and productive biological systems. They are sensitive to human activities, impact and interventions. Pressures on these systems are growing more intense. As rapid development and population growth continue in coastal areas increasing demands are expected on natural resources and on remaining natural habitats along the coasts. The problem is more serious in Indian context that has a 7,500 km long coastline and is facing increasing soil erosion and water pollution. The prospects of sea level rise, expected to be in the order of 8-29 cm due to the global warming by 2025, necessitates immediate measures to foster the sustainable and equitable management of the coastal wetland ecosystems. Salinity is a significant limiting factor to agricultural productivity affecting about 9 x 10/sup 8/ha, worldwide. About one-third of all irrigated land is affected by salt due to secondary salinisation and it is estimated that 50% of the arable lands will be salinised by the year 2050. The problem of salinity is most acute in the coastal regions affecting the productivity of the agricultural system. Improving or maintaining yield potential of the crops under increased salinisation is of greater significance for the future. With a view to identify and isolate novel genetic combinations offering resistance to coastal salinity, MSSRF has initiated work on mangrove species. Mangroves are salt tolerant plant communities occupying the coastal estuarine regions of the tropics. They serve as a vital link between terrestrial and aquatic ecosystems and provide livelihood and ecological security for the coastal communities. MSSRF is the first institution worldwide to have undertaken modern molecular marker based analysis of mangroves. These studies have provided substantial information for developing unambiguous identification systems for individual species, elucidating nature and extent of genetic diversity at intra- and inter

  15. Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India.

    Science.gov (United States)

    Niveditha, Vedavyas R; Sridhar, Kandikere R

    2014-11-01

    The raw and processed (cooked and cooked + solid-state fermented with Rhizopus oligosporus) split beans of two landraces of coastal sand dune wild legumes (Canavalia cathartica and Canavalia maritima) of the southwest coast of India were examined for bioactive compounds (total phenolics, tannins and vitamin C) and antioxidant potential (total antioxidant activity, ferrous-ion chelating capacity, DPPH free radical-scavenging activity and reducing activity). One-way ANOVA revealed significant elevation of bioactive compounds as well as antioxidant activities in fermented beans compared to raw and cooked beans in both legumes (p beans of both legumes were significantly lowest compared to raw and cooked beans (p beans of C. cathartica, while total antioxidant and free radical-scavenging activities of fermented beans of C. maritima were clustered. The present study demonstrated that split beans of coastal sand dune Canavalia fermented by R. oligosporus endowed with high bioactive principles as well as antioxidant potential and thus serve as future nutraceutical source.

  16. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.

    Science.gov (United States)

    Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen

    2016-02-15

    The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Sustainability Of Coastal Fringe Ecosystems Against Anthropogenic Chemical Stressors

    Science.gov (United States)

    Plant-dominated coastal ecosystems provide least 21 ecological services including shoreline protection, contaminant removal and nursery and breeding habitat for biota. The value of these ecological services is as great as $28000/h. These ecosystems which include intertidal wetl...

  18. Does salt stress constrain spatial distribution of dune building grasses Ammophila arenaria and Elytrichia juncea on the beach?

    NARCIS (Netherlands)

    Puijenbroek, van M.E.B.; Teichmann, C.; Meijdam, Noortje; Oliveras Menor, I.; Berendse, F.; Limpens, J.

    2017-01-01

    Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea-level rise. In this study,

  19. Coastal erosion triggered by a shipwreck along the coast of Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.; Babu, M.T.; Mascarenhas, A.; Choudhary, R.; Sudheesh, K.; Vethamony, P.

    dunes and, as a consequence, has gradually become fragile due to severe erosion. Keywords: Coastal erosion, cyclone, remote sensing images, shipwreck. GOA is one of the most famous tourist coasts of the world. In general, the sea front of Goa... times due to the sudden boom of real estate sector, mushrooming of industries, inconsistent tourist flows, with a consequent impact on coastal ecosystems. Changes in the land-use/land-cover, geomorphology, ecology and sensitivity of coasts were...

  20. Towards a management perspective for coastal upwelling ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Howe, S.O.; Walsh, J.J.

    1976-01-01

    Data are reviewed from studies on the general distribution of upwelling of coastal waters, associated current patterns, and first order biological effects. Field observations and theory are discussed. Recent research has shown that variability and dynamism are the predominant characteristic features of these regions. Populations related by nonlinear interactions occur in constantly moving patches and swirls subjected to variability in the winds, currents, water chemistry, and solar insolation. Gross stationary features of upwelling communities have been described, but the responses of critical components and their relationships to human or natural perturbations remain poorly defined in this and other types of coastal ecosystems. Large scale research programs recognize that the continental shelf ecosystems are complex event-oriented phenomena. It is postulated that assessment of living resources in an environmental vacuum may lead to mismanagement and hindcasting rather than prescient management. A growing data base encourages the development of computer simulation models of ecosystem relationships and responses will lead to better understanding and management of these and other marine ecosystems in the future. 80 references.

  1. The need for ecosystem-based coastal planning in Trabzon city

    OpenAIRE

    Mustafa Dihkan; Nilgün Güneroğlu; Abdülaziz Güneroğlu; Fevzi Karslı

    2017-01-01

    Coastal urbanization problem was emanated from willingness of coastal living. Urban sprawl is one of the most important coastal problems in Turkey as it is in Trabzon city which is known for its natural and historical assets. In order to ensure the sustainability and ecological continuity of the city, an ecosystem based coastal planning is an issue of high priority. Protection and usage balance of the coastal areas could also ensure transition of the natural values to future gener...

  2. Organic carbon sedimentation rates in Asian mangrove coastal ecosystems estimated by 210PB chronology

    International Nuclear Information System (INIS)

    Tateda, Y.; Wattayakorn, G.; Nhan, D.D.; Kasuya, Y.

    2004-01-01

    Organic carbon balance estimation of mangrove coastal ecosystem is important for understanding of Asian coastal carbon budget/flux calculation in global carbon cycle modelling which is powerful tool for the prediction of future greenhouse gas effect and evaluation of countermeasure preference. Especially, the organic carbon accumulation rate in mangrove ecosystem was reported to be important sink of carbon as well as that in boreal peat accumulation. For the estimation of 10 3 years scale organic carbon accumulation rates in mangrove coastal ecosystems, 14 C was used as long term chronological tracer, being useful in pristine mangrove forest reserve area. While in case of mangrove plantation of in coastal area, the 210 Pb is suitable for the estimation of decades scale estimation by its half-life. Though it has possibility of bio-/physical- turbation effect in applying 210 Pb chronology that is offset in case of 10 3 years scale estimation, especially in Asian mangrove ecosystem where the anthropogenic physical turbation by coastal fishery is vigorous.In this paper, we studied the organic carbon and 210 Pb accumulation rates in subtropical mangrove coastal ecosystems in Japan, Vietnam and Thailand with 7 Be analyses to make sure the negligible effect of above turbation effects on organic carbon accumulation. We finally concluded that 210 Pb was applicable to estimate organic carbon accumulation rates in these ecosystems even though the physical-/bio-turbation is expected. The measured organic carbon accumulation rates using 210 Pb in mangrove coastal ecosystems of Japan, Vietnam and Thailand were 0.067 4.0 t-C ha -1 y -1 . (author)

  3. The use of time-series LIDAR to understand the role of foredune blowouts in coastal dune dynamics, Sefton, NW England.

    Science.gov (United States)

    O'Keeffe, Nicholas; Delgado-Fernandez, Irene; Aplin, Paul; Jackson, Derek; Marston, Christopher

    2017-04-01

    Coastal dunes are natural buffers against the threat of climate change-induced sea level rise. Their evolution is largely controlled by sediment exchanges between the geomorphic sub-units of the nearshore, beach, foredune and dune field. Coastlines characterised by multiple blowouts at the beach-dune interface may be more susceptible to coastline retreat through the enhanced landwards transport of beach and foredune sediment. This study, based in Sefton, north-west England, exploits an unprecedented temporal coverage of LIDAR surveys spanning 15 years (1999, 2008, 2010, 2013 and 2014). Established GIS techniques have been utilised to extract both the coastline (foredune toe) and the foredune crest from each LIDAR derived DTM (Digital Terrain Model). Migration of the foredune toe has been tracked over this period. Analysis of differentials between the height of the dune toe and dune crest have been used to locate the alongshore position of blowouts within the foredune. Dune sediment budgets have then been calculated for each DTM and analysis of the budgets conducted, with the coastline being compartmentalised alongshore, based on presence of blowouts within the foredune. Results indicate that sections of the coastline where blowouts are present within the foredune may be most vulnerable to coastline retreat. Temporal changes in the sediment budget within many of these sections also provides evidence that, if blowouts are present, coastline retreat continues to be a possibility even when the dune sediment budget remains positive.

  4. Effects of sand fences on coastal dune vegetation distribution

    Science.gov (United States)

    Grafals-Soto, Rosana

    2012-04-01

    Sand fences are important human adjustments modifying the morphology of developed shores. The effects of sand fences on sediment transport and deposition in their initial stages have been well studied, but little is known about the effect of deteriorated sand fences that have become partially buried low scale barriers within the dune, potentially benefiting vegetation growth by protecting it from onshore stress. Data on vegetation, topography and fence characteristics were gathered at three dune sites in Ocean City, New Jersey on September 2007 and March 2008 to evaluate the effect of fences within the dune on vegetation distribution. Variables include: distance landward of dune toe, degree of sheltering from onshore stressors, net change in surface elevation (deposition or erosion), vegetation diversity and density, presence of remnant fence, and distance landward of fence. Results for the studied environment reveal that 1) vegetation diversity or density does not increase near remnant fences because most remnants are lower than average vegetation height and can not provide shelter; but 2) vegetation distribution is related to topographic variables, such as degree of sheltering, that are most likely the result of sand accretion caused by fence deployment. Fence deployment that prioritizes the creation of topographically diverse dunes within a restricted space may increase the diversity and density of the vegetation, and the resilience and value of developed dunes. Managers should consider the benefits of using sand fences on appropriately wide beaches to create a protective dune that is also diverse, functional and better able to adapt to change.

  5. Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem

    Science.gov (United States)

    O'Neel, Shad; Hood, Eran; Bidlack, Allison L.; Fleming, Sean W.; Arimitsu, Mayumi L.; Arendt, Anthony; Burgess, Evan W.; Sergeant, Christopher J.; Beaudreau, Anne E.; Timm, Kristin; Hayward, Gregory D.; Reynolds, Joel H.; Pyare, Sanjay

    2015-01-01

    Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual variability and long-term trends in key physical drivers and ecological responses. To advance our knowledge of the northern PCTR, we advocate for cross-disciplinary research bridging the icefield-to-ocean ecosystem that can be paired with long-term scientific records and designed to inform decisionmakers.

  6. RPAS Monitoring of the Morphological Evolution of Coastal Foredunes

    Science.gov (United States)

    Taddia, Yuri; Corbau, Corinne; Elena, Zambello; Russo, Valentina; Pellegrinelli, Alberto; Simeoni, Umberto

    2016-04-01

    The coastal environment is in rapid and continuous evolution and it is easily affected by many natural and antropic factors. Beaches are often backed by vegetated dunes and fulfill many different valuable ecosystem functions. They act as protective buffers against storm surge, wave attack and erosion, providing a unique habitat for flora and fauna. Coastal embryo dunes, found above mean high water, are dynamic landform being able to supply sand to the beach when needed. They may form rapidly and may be rapidly destructed due to high tides and storm waves or human interferences. The southern part (3 km long) of Rosolina (Adriatic Sea, Italy) is characterized by a wide beach bordered by a complex dune system. The geomorphological characteristics of embryo dunes have been identified by using an RPAS in order to develop a fast and low-cost surveying technique. The aircraft has flown at a 50 meters altitude, taking photos with a 12Mpix RGB camera and a GSD of about 1 cm. The images overlap of 80% in the flight direction and 60% laterally. Fourteen targets have been collocated in the area as ground control points and were surveyed using Network Real Time Kinematic (NRTK) GNSS. Images and GCPs were elaborated in Agisoft PhotoScan to generate the model. A similar NRTK survey has been performed to integrate the wrong data (due to vegetation) for the creation of a digital elevation model (DEM) in a first step and finally to validate the model obtained through UAV photogrammetry through a comparison with specially surveyed points. The creation of a DEM from photos is one of main tasks and its accuracy is critical. A challenge in this work was to recognize the vegetation in the sand dunes area to exclude all the points not belonging to the ground. This was possible through a classification process based on slope detection. Finally, the suitable elevation accuracy has been reached and the survey has revealed a complex dune system characterized by: • on the upper part of the

  7. Coastal wetlands: an integrated ecosystem approach

    Science.gov (United States)

    Perillo, G. M. E.; Wolanski, E.; Cahoon, D.R.; Brinson, M.M.

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  8. Extraction of lidar-based dune-crest elevations for use in examining the vulnerability of beaches to inundation during hurricanes

    Science.gov (United States)

    Stockdon, H.F.; Doran, K.S.; Sallenger, A.H.

    2009-01-01

    The morphology of coastal sand dunes plays an important role in determining how a beach will respond to a hurricane. Accurate measurements of dune height and position are essential for assessing the vulnerability of beaches to extreme coastal change during future landfalls. Lidar topographic surveys provide rapid, accurate, high-resolution datasets for identifying the location, position, and morphology of coastal sand dunes over large stretches of coast. An algorithm has been developed for identification of the crest of the most seaward sand dune that defines the landward limit of the beach system. Based on changes in beach slope along cross-shore transects of lidar data, dune elevation and location can automatically be extracted every few meters along the coastline. Dune elevations in conjunction with storm-induced water levels can be used to predict the type of coastal response (e.g., beach erosion, dune erosion, overwash, or inundation) that may be expected during hurricane landfall. The vulnerability of the beach system at Fire Island National Seashore in New York to the most extreme of these changes, inundation, is assessed by comparing lidar-derived dune elevations to modeled wave setup and storm surge height. The vulnerability of the beach system to inundation during landfall of a Category 3 hurricane is shown to be spatially variable because of longshore variations in dune height (mean elevation 5.44 m, standard deviation 1.32 m). Hurricane-induced mean water levels exceed dune elevations along 70 of the coastal park, making these locations more vulnerable to inundation during a Category 3 storm. ?? 2009 Coastal Education and Research Foundation.

  9. Medium and large sized mammal assemblages in coastal dunes and adjacent marshes in southern Rio Grande do Sul State, Brazil - doi: 10.4025/actascibiolsci.v35i1.11705

    Directory of Open Access Journals (Sweden)

    Eduardo Resende Secchi

    2012-12-01

    Full Text Available This paper presents data on species composition and use of habitat of medium and large sized mammal assemblages in a coastal dunes segment and adjacent marshes at Rio Grande municipality, southern Rio Grande do Sul State, Brazil. Records were obtained through visualization of living animals and identification of footprints, feces and remains. From November 2007 to September 2008, nine 600 m long and 5 m wide linear transects were settled on coastal dunes segment (frontal and intermediate dunes and adjacent marshes, parallel to ocean shore on a 23 km section at Cassino Beach. Transects were settled in areas under high, medium and low levels of anthropic occupancy (A1, A2 and A3, respectively, being three transects on each area. Fourteen species were recorded, distributed in five orders and 10 families. Lepus europaeus was the most frequent species (81.9% of the transect walks, present in all areas and seasons, followed by Lycalopex gimnocercus (23.5% and Conepatus chinga (10.3%.  Five species were present on A1, seven on A2 and fourteen on A3. Seven species were recorded on frontal dunes, nine on intermediate dunes and 13 on adjacent marshes.  

  10. Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil.

    Science.gov (United States)

    Hagler, A N; Rosa, C A; Morais, P B; Mendonça-Hagler, L C; Franco, G M; Araujo, F V; Soares, C A

    1993-10-01

    Yeasts and coliform bacteria were isolated from water that accumulated in the central cups and adjacent leaf axilae of two bromeliads, Neoregelia cruenta of a coastal sand dune and Quesnelia quesneliana of a mangrove ecosystem near the city of Rio de Janeiro, Brazil. The mean total coliform counts were above 10,000 per 100 mL for waters of both plants, but the mean fecal coliform counts were only 74 per 100 mL for Q. quesneliana and mostly undetected in water from N. cruenta. Of 90 fecal coliform isolates, 51 were typical of Escherichia coli in colony morphology and indol, methyl red, Volges-Proskauer, and citrate (IMViC) tests. Seven representatives of the typical E. coli cultures were identified as this species, but the identifications of nine other coliform bacteria were mostly dubious. The yeast community of N. cruenta was typical of plant surfaces with basidiomycetous yeasts anamorphs, and the black yeast Aureobasidium pullulans was prevalent. Quesnelia quesneliana had a substantial proportion of ascomycetous yeasts and their anamorphs, including a probable new biotype of Saccharomyces unisporus. Our results suggested that the microbial communities in bromeliad waters are typically autochtonous and not contaminants.

  11. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    Linwood Pendleton

    Full Text Available Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'. Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this 'blue carbon' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation globally, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

  12. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Science.gov (United States)

    Máguas, C.; Rascher, K. G.; Martins-Loução, A.; Carvalho, P.; Pinho, P.; Ramos, M.; Correia, O.; Werner, C.

    2011-12-01

    In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW) availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels) in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader) and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy). Species comparison revealed that variability in pre-dawn water potential (Ψpre) and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya) and phreatophyte (Salix repens) species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic exploitation, in plant species from sand dunes, is variable, being particularly relevant for deep

  13. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability.

    Science.gov (United States)

    Lu, Yonglong; Yuan, Jingjing; Lu, Xiaotian; Su, Chao; Zhang, Yueqing; Wang, Chenchen; Cao, Xianghui; Li, Qifeng; Su, Jilan; Ittekkot, Venugopalan; Garbutt, Richard Angus; Bush, Simon; Fletcher, Stephen; Wagey, Tonny; Kachur, Anatolii; Sweijd, Neville

    2018-08-01

    Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients, increasing metals and persistent organic pollutants (POPs), and climate change have led to severe ecological degradation in the coastal zone, while few studies have focused on the combined impacts of pollution and climate change on the coastal ecosystems at the global level. A global overview of nutrients, metals, POPs, and major environmental changes due to climate change and their impacts on coastal ecosystems was carried out in this study. Coasts of the Eastern Atlantic and Western Pacific were hotspots of concentrations of several pollutants, and mostly affected by warming climate. These hotspots shared the same features of large populations, heavy industry and (semi-) closed sea. Estimation of coastal ocean capital, integrated management of land-ocean interaction in the coastal zone, enhancement of integrated global observation system, and coastal ecosystem-based management can play effective roles in promoting sustainable management of coastal marine ecosystems. Enhanced management from the perspective of mitigating pollution and climate change was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Coastal Engineering

    NARCIS (Netherlands)

    Van der Velden, E.T.J.M.

    1989-01-01

    Introduction, waves, sediment transport, littoral transport, lonshore sediment transport, onshore-offshore sediment transport, coastal changes, dune erosion and storm surges, sedimentation in channels and trenches, coastal engineering in practice.

  15. Study of Goa and its environment from space: A report on coastal sand dune ecosystems of Goa: Siginficance, uses and anthropogenic impacts

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.

    by regular tides which raise or lower water levels by 2 or 3 meters daily. It is these geomorphic features which support mangrove thickets which are today visible far into the hinterland along river banks, distributary channels, creeks and lagoons. Several... the maximum brunt of this "development". The beach - dune environment is a highly organized system. Sand dunes which generally back wide beaches, are features of extreme fragility and sensitive to anthropogenic stress. Sand dunes are Nature's line of defense...

  16. Food Web Response to Habitat Restoration in Various Coastal Wetland Ecosystems

    Science.gov (United States)

    James, W. R.; Nelson, J. A.

    2017-12-01

    Coastal wetland habitats provide important ecosystem services, including supporting coastal food webs. These habitats are being lost rapidly. To combat the effects of these losses, millions of dollars have been invested to restore these habitats. However, the relationship between restoring habitat and restoring ecosystem functioning is poorly understood. Analyzing energy flow through food web comparisons between restored and natural habitats can give insights into ecosystem functioning. Using published stable isotope values from organisms in restored and natural habitats, we assessed the food web response of habitat restoration in salt marsh, mangrove, sea grass, and algal bed ecosystems. We ran Bayesian mixing models to quantify resource use by consumers and generated habitat specific niche hypervolumes for each ecosystem to assess food web differences between restored and natural habitats. Salt marsh, mangrove, and sea grass ecosystems displayed functional differences between restored and natural habitats. Salt marsh and mangrove food webs varied in the amount of each resource used, while the sea grass food web displayed more variation between individual organisms. The algal bed food web showed little variation between restored and natural habitats.

  17. GEO-CAPE Coastal Ecosystem Dynamics Imager (COEDI) Instrument Design

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this study is to build a breadboard instrument and prove the functionality of the optical-mechanical assembly for the Coastal Ecosystem Dynamics...

  18. Establishment and formation of fog-dependent Tillandsia landbeckii dunes in the Atacama Desert: Evidence from radiocarbon and stable isotopes

    Science.gov (United States)

    Latorre, Claudio; GonzáLez, AngéLica L.; Quade, Jay; FariñA, José M.; Pinto, Raquel; Marquet, Pablo A.

    2011-09-01

    Extensive dune fields made up exclusively of the bromeliad Tillandsia landbeckii thrive in the Atacama Desert, one of the most extreme landscapes on earth. These plants survive by adapting exclusively to take in abundant advective fog and dew as moisture sources. Although some information has been gathered regarding their modern distribution and adaptations, very little is known about how these dune systems actually form and accumulate over time. We present evidence based on 20 radiocarbon dates for the establishment age and development of five different such dune systems located along a ˜215 km transect in northern Chile. Using stratigraphy, geochronology and stable C and N isotopes, we (1) develop an establishment chronology of these ecosystems, (2) explain how the unique T. landbeckii dunes form, and (3) link changes in foliar δ15N values to moisture availability in buried fossil T. landbeckii layers. We conclude by pointing out the potential that these systems have for reconstructing past climate change along coastal northern Chile during the late Holocene.

  19. SPINIFICI-SCAEVOLETEA SERICEAE, A NEW VEGETATION CLASS FOR PSAMMOPHYTIC DUNE VEGETATION IN THAILAND

    Directory of Open Access Journals (Sweden)

    S. PIGNATII

    1996-04-01

    Full Text Available This is a short account on the coastal dune vegetation of the Gulf of Siam in Thailand. Vegetation is mainly composed by succulent creeping plants with herbaceous habit as to Canavalia maritima (Papilionaceae and Iponwea pes-caprae (Convolvulaceae and the robust stoloniferous grass Spinijex littoreus, the last having an important function for the fonnation of coastal dunes.

  20. SPINIFICI-SCAEVOLETEA SERICEAE, A NEW VEGETATION CLASS FOR PSAMMOPHYTIC DUNE VEGETATION IN THAILAND

    Directory of Open Access Journals (Sweden)

    S. PIGNATII

    1996-01-01

    Full Text Available This is a short account on the coastal dune vegetation of the Gulf of Siam in Thailand. Vegetation is mainly composed by succulent creeping plants with herbaceous habit as to Canavalia maritima (Papilionaceae and Iponwea pes-caprae (Convolvulaceae and the robust stoloniferous grass Spinijex littoreus, the last having an important function for the fonnation of coastal dunes.

  1. Disturbance in dry coastal dunes in Denmark promotes diversity of plants and arthropods

    DEFF Research Database (Denmark)

    Brunbjerg, Ane Kirstine; Jørgensen, Gorm Pilgaard; Nielsen, Kristian Mandsberg

    2015-01-01

    of three disturbance types (burning, trampling and blowouts) on plant and arthropod species richness and composition in dry coastal dunes in Jutland, Denmark. Environmental variables, plant presence–absence and arthropod abundance were measured in 150 1 × 2 m plots along transects in blowouts, burned areas...... on plant and arthropod composition. Indicator species analysis revealed plant and arthropod species indicative for different disturbances. Plant and arthropod species richness and the number of annual plant species generally increased with disturbance, and plant and arthropod richness and composition...... responded differently to different disturbances. Arthropod communities were more diverse in disturbed plots and hosted species often found in early successional habitats of potential conservation value. Disturbance promoted β-diversity, but affected plants more than arthropods, likely because...

  2. Emerging methods for the study of coastal ecosystem landscape structure and change

    Science.gov (United States)

    Brock, John C.; Danielson, Jeffrey J.; Purkis, Sam

    2013-01-01

    Coastal landscapes are heterogeneous, dynamic, and evolve over a range of time scales due to intertwined climatic, geologic, hydrologic, biologic, and meteorological processes, and are also heavily impacted by human development, commercial activities, and resource extraction. A diversity of complex coastal systems around the globe, spanning glaciated shorelines to tropical atolls, wetlands, and barrier islands are responding to multiple human and natural drivers. Interdisciplinary research based on remote-sensing observations linked to process studies and models is required to understand coastal ecosystem landscape structure and change. Moreover, new techniques for coastal mapping and monitoring are increasingly serving the needs of policy-makers and resource managers across local, regional, and national scales. Emerging remote-sensing methods associated with a diversity of instruments and platforms are a key enabling element of integrated coastal ecosystem studies. These investigations require both targeted and synoptic mapping, and involve the monitoring of formative processes such as hydrodynamics, sediment transport, erosion, accretion, flooding, habitat modification, land-cover change, and biogeochemical fluxes.

  3. Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2011-01-01

    Full Text Available Widawati S (2011 Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem. Biodiversitas 12: 17-21. Soil, water, sand, and plant rhizosphere samples collected from coastal ecosystem of Laki Island-Jakarta were screened for phosphate solubilizing bacteria (PSB. While the population was dependent on the cultivation media and the sample type, the highest bacterial population was observed in the rhizosphere of Ipomea aquatica. The PSB strains isolated from the sample registered 18.59 g-1L-1, 18.31 g-1L-1, and 5.68 g-1L-1 of calcium phosphate (Ca-P, Al-P and rock phosphate solubilization after 7-days. Phosphate solubilizing capacity was the highest in the Ca-P medium. Two strains, 13 and 14, registered highest Phosphomonoesterase activities (2.01 µgNP.g-1.h-1 and 1.85NP µg.g-1.h-1 were identified as Serattia marcescens, and Pseudomonas fluorescense, respectively. Both strains were isolated from the crops of Amaranthus hybridus and I. aquatica, respectively, which are commonly observed in coastal ecosystems. The presence of phosphate solubilizing microorganisms and their ability to solubilize various types of phosphate species are indicative of the important role of both species of bacteria in the biogeochemical cycle of phosphorus and the plant growth in coastal ecosystems.

  4. Historical overfishing and the recent collapse of coastal ecosystems.

    Science.gov (United States)

    Jackson, J B; Kirby, M X; Berger, W H; Bjorndal, K A; Botsford, L W; Bourque, B J; Bradbury, R H; Cooke, R; Erlandson, J; Estes, J A; Hughes, T P; Kidwell, S; Lange, C B; Lenihan, H S; Pandolfi, J M; Peterson, C H; Steneck, R S; Tegner, M J; Warner, R R

    2001-07-27

    Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

  5. Marine and coastal ecosystem services on the science-policy-practice nexus

    NARCIS (Netherlands)

    Drakou, Evangelia G.; Kermagoret, Charlène; Liquete, Camino; Ruiz-Frau, Ana; Burkhard, Kremena; Lillebø, Ana I.; Oudenhoven, van Alexander P.E.; Ballé-Béganton, Johanna; Rodrigues, João Garcia; Nieminen, Emmi; Oinonen, Soile; Ziemba, Alex; Gissi, Elena; Depellegrin, Daniel; Veidemane, Kristina; Ruskule, Anda; Delangue, Justine; Böhnke-Henrichs, Anne; Boon, Arjen; Wenning, Richard; Martino, Simone; Hasler, Berit; Termansen, Mette; Rockel, Mark; Hummel, Herman; Serafy, El Ghada; Peev, Plamen

    2017-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunities toward the operationalization of marine and coastal ecosystem service (MCES) assessments in Europe. This work is the output of a panel convened by the Marine Working Group of the Ecosystem Services

  6. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  7. Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems

    Directory of Open Access Journals (Sweden)

    C. Máguas

    2011-12-01

    Full Text Available In spite of the relative importance of groundwater in costal dune systems, studies concerning the responses of vegetation to ground water (GW availability variations, particularly in Mediterranean regions, are scarce. Thus, the main purpose of this study is to compare the responses of co-occurring species possessing different functional traits, to changes in GW levels (i.e. the lowering of GW levels in a sand dune ecosystem. For that, five sites were established within a 1 km2 area in a meso-mediterranean sand dune ecosystem dominated by a Pinus pinaster forest. Due to natural topographic variability and anthropogenic GW exploitation, substantial variability in depth to GW between sites was found. Under these conditions it was possible to identify the degree of usage and dependence on GW of different plant species (two deep-rooted trees, a drought adapted shrub, a phreatophyte and a non-native woody invader and how GW dependence varied seasonally and between the heterogeneous sites. Results indicated that the plant species had differential responses to changes in GW depth according to specific functional traits (i.e. rooting depth, leaf morphology, and water use strategy. Species comparison revealed that variability in pre-dawn water potential (Ψpre and bulk leaf δ13C was related to site differences in GW use in the deep-rooted (Pinus pinaster, Myrica faya and phreatophyte (Salix repens species. However, such variation was more evident during spring than during summer drought. The exotic invader, Acacia longifolia, which does not possess a very deep root system, presented the largest seasonal variability in Ψpre and bulk leaf δ13C. In contrast, the response of Corema album, an endemic understory drought-adapted shrub, seemed to be independent of water availability across seasons and sites. Thus, the susceptibility to lowering of GW due to anthropogenic

  8. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems.

    Science.gov (United States)

    Zhou, Minghua; Butterbach-Bahl, Klaus; Vereecken, Harry; Brüggemann, Nicolas

    2017-03-01

    Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer-reviewed papers and conducted a meta-analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH 4 + (12%) and soil total N (210%), although it decreased soil NO 3 - (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N 2 O fluxes as well as hydrological NH 4 + and NO 2 - fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta-analysis. Overall, this meta-analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro-ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro-ecosystems can be maintained or improved and the N losses and pollution of the natural

  9. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

    Science.gov (United States)

    Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  10. Understanding human impacts to tropical coastal ecosystems through integrated hillslope erosion measurements, optical coastal waters characterization, watershed modeling, marine ecosystem assessments, and natural resource valuations in two constrasting watersheds in Puerto Rico.

    Science.gov (United States)

    Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.

    2017-12-01

    Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and

  11. Barrier island morphology and sediment characteristics affect the recovery of dune building grasses following storm-induced overwash.

    Science.gov (United States)

    Brantley, Steven T; Bissett, Spencer N; Young, Donald R; Wolner, Catherine W V; Moore, Laura J

    2014-01-01

    Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity. Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed) barrier islands on the Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by environmental characteristics, especially elevation and beach width. We sampled species composition and environmental characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to link community composition with environmental characteristics. Recovering and geomorphically stable dunes were dominated by Ammophila breviligulata Fernaud (Poaceae) on both islands while active overwash zones were dominated by Spartina patens (Aiton) Muhl. (Poaceae) on the frequently disturbed island and bare sand on the less disturbed island. Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005) where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less frequently disturbed island, time since disturbance was the only factor that affected community

  12. Barrier island morphology and sediment characteristics affect the recovery of dune building grasses following storm-induced overwash.

    Directory of Open Access Journals (Sweden)

    Steven T Brantley

    Full Text Available Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity. Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed barrier islands on the Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by environmental characteristics, especially elevation and beach width. We sampled species composition and environmental characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to link community composition with environmental characteristics. Recovering and geomorphically stable dunes were dominated by Ammophila breviligulata Fernaud (Poaceae on both islands while active overwash zones were dominated by Spartina patens (Aiton Muhl. (Poaceae on the frequently disturbed island and bare sand on the less disturbed island. Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005 where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less frequently disturbed island, time since disturbance was the only factor that affected

  13. Ecosystem-based coastal defence in the face of global change.

    Science.gov (United States)

    Temmerman, Stijn; Meire, Patrick; Bouma, Tjeerd J; Herman, Peter M J; Ysebaert, Tom; De Vriend, Huib J

    2013-12-05

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

  14. Coastal Ocean Ecosystem Dynamics Imager Pointing Line-of-Sight Solution Development and Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A stable pointing line of sight solution is developed and tested in support of the Coastal Ocean Ecosystem Dynamics Imager for the GEOstationary Coastal and Air...

  15. Some remarks on the functions of European coastal ecosystems

    NARCIS (Netherlands)

    van der Maarel, E

    2003-01-01

    Amongst the various functions of European coastal ecosystems the information functions are by far the most important. Information is provided mainly through the various aspects of biodiversity: taxon diversity, genetic diversity, community (P) diversity, phylogentic distinctiveness, rarity and

  16. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature.

    Science.gov (United States)

    Arkema, Katie K; Verutes, Gregory M; Wood, Spencer A; Clarke-Samuels, Chantalle; Rosado, Samir; Canto, Maritza; Rosenthal, Amy; Ruckelshaus, Mary; Guannel, Gregory; Toft, Jodie; Faries, Joe; Silver, Jessica M; Griffin, Robert; Guerry, Anne D

    2015-06-16

    Recent calls for ocean planning envision informed management of social and ecological systems to sustain delivery of ecosystem services to people. However, until now, no coastal and marine planning process has applied an ecosystem-services framework to understand how human activities affect the flow of benefits, to create scenarios, and to design a management plan. We developed models that quantify services provided by corals, mangroves, and seagrasses. We used these models within an extensive engagement process to design a national spatial plan for Belize's coastal zone. Through iteration of modeling and stakeholder engagement, we developed a preferred plan, currently under formal consideration by the Belizean government. Our results suggest that the preferred plan will lead to greater returns from coastal protection and tourism than outcomes from scenarios oriented toward achieving either conservation or development goals. The plan will also reduce impacts to coastal habitat and increase revenues from lobster fishing relative to current management. By accounting for spatial variation in the impacts of coastal and ocean activities on benefits that ecosystems provide to people, our models allowed stakeholders and policymakers to refine zones of human use. The final version of the preferred plan improved expected coastal protection by >25% and more than doubled the revenue from fishing, compared with earlier versions based on stakeholder preferences alone. Including outcomes in terms of ecosystem-service supply and value allowed for explicit consideration of multiple benefits from oceans and coasts that typically are evaluated separately in management decisions.

  17. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review.

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies.

  18. Experimental and numerical analysis of coastal protection provided by natural ecosystems

    Science.gov (United States)

    Maza, M.; Lara, J. L.; Losada, I. J.; Nepf, H. M.

    2016-12-01

    The risk of flooding and erosion is increasing for many coastal areas owing to global and regional changes in climate conditions together with increasing exposure and vulnerability. After hurricane Katrina (2005) and Sandy (2012) and the tsunami in Indonesia (2004), coastal managers have become interested in low environmental impact alternatives, or nature-based solutions, to protect the coast. Although capacity for coastal ecosystems to damp flow energy has been widely recognized, they have not been firmly considered in the portfolio of coastal protection options. This is mainly due to the complexity of flow-vegetation interaction and of quantifying the value of coastal protection provided by these ecosystems. This complex problem involves different temporal and spatial scales and disciplines, such as engineering, ecology and economics. This work aims to make a step forward in better understanding the physics involved in flow-vegetation interaction leading to new formulations and parameterizations to address some unsolved questions in literature: the representation of plants and field properties; the influence of wave parameters on the relevant processes; the role of the combined effect of waves and currents and the effect of extreme events on vegetation elements. The three main coastal vegetated ecosystems (seagrasses, saltmarshes and mangroves) are studied with an experimental and numerical approach. Experimental analysis is carried out using mimics and real vegetation, considering different flow and vegetation parameters and characterizing flow energy attenuation for the different scenarios. Numerical simulations are performed using 2-D and 3-D Navier-Stokes models in which the effect of vegetation is implemented and validated. These models are used to extend experimental results by simulating different vegetation distributions and analyzing variables such as high-spatial-resolution free surface and velocity data and forces exerted on vegetation elements.

  19. Effects of disturbance on vegetation by sand accretion and erosion across coastal dune habitats on a barrier island.

    Science.gov (United States)

    Miller, Thomas E

    2015-01-12

    Coastal geomorphology and vegetation are expected to be particularly sensitive to climate change, because of disturbances caused by sea-level rise and increased storm frequency. Dunes have critical reciprocal interactions with vegetation; dunes create habitats for plants, while plants help to build dunes and promote geomorphological stability. These interactions are also greatly affected by disturbances associated with sand movement, either in accretion (dune building) or in erosion. The magnitude and intensity of disturbances are expected to vary with habitat, from the more exposed and less stable foredunes, to low-lying and flood-prone interdunes, to the protected and older backdunes. Permanent plots were established at three different spatial scales on St George Island, FL, USA, where the vegetation and dune elevation were quantified annually from 2011 to 2013. Change in elevation, either through accretion or erosion, was used as a measure of year-to-year disturbance over the 2 years of the study. At the scale of different dune habitats, foredunes were found to have the greatest disturbance, while interdunes had the least. Elevation and habitat (i.e. foredune, interdune, backdune) were significantly correlated with plant community composition. Generalized linear models conducted within each habitat show that the change in elevation (disturbance) is also significantly correlated with the plant community, but only within foredunes and interdunes. The importance of disturbance in exposed foredunes was expected and was found to be related to an increasing abundance of a dominant species (Uniola paniculata) in eroding areas. The significant effect of disturbance in the relatively stable interdunes was surprising, and may be due to the importance of flooding associated with small changes in elevation in these low-lying areas. Overall, this study documents changes in the plant community associated with elevation, and demonstrates that the foredune and interdune

  20. Ecosystem-based management of coastal eutrophication

    DEFF Research Database (Denmark)

    Andersen, Jesper H.

    This thesis focuses on Ecosystem-Based Management (EBM) of coastal eutrophication. Special attention is put on connections between science and decision-making in regard to development, implementation and revision of evidence-based nutrient management strategies. Two strategies are presented...... and analysed: the Danish Action Plans on the Aquatic Environment and the eutrophication segment of the Baltic Sea Action Plan. Similarities and differences are discussed and elements required for making nutrient management strategies successful are suggested. Key words: Eutrophication, marine, Danish...

  1. Diet of the lizard Liolaemus occipitalis in the coastal sand dunes of southern Brazil (Squamata-Liolaemidae

    Directory of Open Access Journals (Sweden)

    L. Verrastro

    Full Text Available Knowledge of a species’ diet provides important information on adaptation and the relationship between the organism and its environment. The genus Liolaemus occurs in the southern region of South America and is an excellent model to investigate the adaptive processes of vertebrate ecology in ecosystems of this region of the world. Liolaemus occipitalis is an endangered species that inhabits the coastal sand dunes of southern Brazil. This species is the most abundant vertebrate in this environment, and it presents unique adaptation characteristics to the restinga environment. The present study analyzed this lizard’s diet to verify similarities or differences between this species and other species of the same genus. Specimens were collected monthly from January 1996 to December 1997. The number of items, frequency of occurrence and volume of each prey taxon were determined. Arthropods were identified to the order level, and plant material was identified as flower, fruit, seed and leaves. Variations in the diet of males and females, adults and juveniles and seasons were also analyzed. The data indicate that Liolaemus occipitalis is a generalist, “sit-and-wait” or ambush predator as well as omnivorous, feeding on both arthropods and plant material. Significant ontogenetic differences were verified. Juveniles are more carnivorous, and the intake of plant material increases with size and age. Seasonal differences in diet composition were also observed. In the spring, arthropod and plant materials were more diversified and, therefore, consumed more often.

  2. Diet of the lizard Liolaemus occipitalis in the coastal sand dunes of southern Brazil (Squamata-Liolaemidae).

    Science.gov (United States)

    Verrastro, L; Ely, I

    2015-05-01

    Knowledge of a species' diet provides important information on adaptation and the relationship between the organism and its environment. The genus Liolaemus occurs in the southern region of South America and is an excellent model to investigate the adaptive processes of vertebrate ecology in ecosystems of this region of the world. Liolaemus occipitalis is an endangered species that inhabits the coastal sand dunes of southern Brazil. This species is the most abundant vertebrate in this environment, and it presents unique adaptation characteristics to the restinga environment. The present study analyzed this lizard's diet to verify similarities or differences between this species and other species of the same genus. Specimens were collected monthly from January 1996 to December 1997. The number of items, frequency of occurrence and volume of each prey taxon were determined. Arthropods were identified to the order level, and plant material was identified as flower, fruit, seed and leaves. Variations in the diet of males and females, adults and juveniles and seasons were also analyzed. The data indicate that Liolaemus occipitalis is a generalist, "sit-and-wait" or ambush predator as well as omnivorous, feeding on both arthropods and plant material. Significant ontogenetic differences were verified. Juveniles are more carnivorous, and the intake of plant material increases with size and age. Seasonal differences in diet composition were also observed. In the spring, arthropod and plant materials were more diversified and, therefore, consumed more often.

  3. Coastal biodiversity and ecosystem services flows at the landscape scale: The CBESS progamme.

    Science.gov (United States)

    Paterson, David; Bothwell, John; Bradbury, Richard; Burrows, Michael; Burton, Niall; Emmerson, Mark; Garbutt, Angus; Skov, Martin; Solan, Martin; Spencer, Tom; Underwood, Graham

    2015-04-01

    The health of the European coastline is inextricably linked to the economy and culture of coastal nations but they are sensitive to climate change. As global temperatures increase, sea levels will rise and the forces experienced where land meets sea will become more destructive. Salt marshes, mudflats, beaches will be affected. These landscapes support a wide range of economically valuable animal and plant species, but also act as sites of carbon storage, nutrient recycling, and pollutant capture and amelioration. Their preservation is of utmost importance. Our programme: "A hierarchical approach to the examination of the relationship between biodiversity and ecosystem service flows across coastal margins" (CBESS) is designed to understand the landscape-scale links between the functions that these systems provide (ecosystem service flows) and the organisms that provide these services (biodiversity stocks) and moves beyond most previous studies, conducted at smaller scales. Our consortium of experts ranges from microbial ecologists, through environmental economists, to mathematical modellers, and organisations (RSPB, BTO, CEFAS, EA) with vested interest in the sustainable use of coastal wetlands. CBESS spans the landscape scale, investigating how biodiversity stocks provide ecosystem services (cf. National Ecosystem Assessment: Supporting services; Provisioning services; Regulating services; and Cultural services). CBESS combined a detailed study of two regional landscapes with a broad-scale UK-wide study to allow both specific and general conclusions to be drawn. The regional study compares two areas of great UK national importance: Morecambe Bay on the west coast and the Essex coastline on the east. We carried out biological and physical surveys at more than 600 stations combined with in situ measures of ecosystem funtction to clarify how biodiversity can provide these important ecosystem functions across scales. This information will be shared with those

  4. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review

    Science.gov (United States)

    Liquete, Camino; Piroddi, Chiara; Drakou, Evangelia G.; Gurney, Leigh; Katsanevakis, Stelios; Charef, Aymen; Egoh, Benis

    2013-01-01

    Background Research on ecosystem services has grown exponentially during the last decade. Most of the studies have focused on assessing and mapping terrestrial ecosystem services highlighting a knowledge gap on marine and coastal ecosystem services (MCES) and an urgent need to assess them. Methodology/Principal Findings We reviewed and summarized existing scientific literature related to MCES with the aim of extracting and classifying indicators used to assess and map them. We found 145 papers that specifically assessed marine and coastal ecosystem services from which we extracted 476 indicators. Food provision, in particular fisheries, was the most extensively analyzed MCES while water purification and coastal protection were the most frequently studied regulating and maintenance services. Also recreation and tourism under the cultural services was relatively well assessed. We highlight knowledge gaps regarding the availability of indicators that measure the capacity, flow or benefit derived from each ecosystem service. The majority of the case studies was found in mangroves and coastal wetlands and was mainly concentrated in Europe and North America. Our systematic review highlighted the need of an improved ecosystem service classification for marine and coastal systems, which is herein proposed with definitions and links to previous classifications. Conclusions/Significance This review summarizes the state of available information related to ecosystem services associated with marine and coastal ecosystems. The cataloging of MCES indicators and the integrated classification of MCES provided in this paper establish a background that can facilitate the planning and integration of future assessments. The final goal is to establish a consistent structure and populate it with information able to support the implementation of biodiversity conservation policies. PMID:23844080

  5. The role of bathymetry, wave obliquity and coastal curvature in dune erosion prediction

    NARCIS (Netherlands)

    Den Heijer, C.

    2013-01-01

    This study aims at reducing uncertainty in dune erosion predictions, in particular at complex dune coasts, in order to improve the assessment method for dune safety against flooding. To that end, state-of-the-art process-based dune erosion models are employed to further investigate issues

  6. Hurricanes Katrina and Rita and the Coastal Louisiana Ecosystem Restoration

    National Research Council Canada - National Science Library

    Zinn, Jeffrey

    2005-01-01

    ... for a $1.1 billion multiyear program to construct five projects that would help to restore portions of the coastal Louisiana ecosystem by slowing the rate of wetland loss and restoring some wetlands...

  7. A spatial analysis of cultural ecosystem service valuation by regional stakeholders in Florida: a coastal application of the social values for ecosystem services (SolVES) tool

    Science.gov (United States)

    Coffin, Alisa W.; Swett, Robert A.; Cole, Zachary D.

    2012-01-01

    Livelihoods and lifestyles of people throughout the world depend on essential goods and services provided by marine and coastal ecosystems. However, as societal demand increases and available ocean and coastal space diminish, better methods are needed to spatially and temporally allocate ocean and coastal activities such as shipping, energy production, tourism, and fishing. While economic valuation is an important mechanism for doing so, cultural ecosystem services often do not lend themselves to this method. Researchers from the U.S. Geological Survey are working collaboratively with the Florida Sea Grant College Program to map nonmonetary values of cultural ecosystem services for a pilot area (Sarasota Bay) in the Gulf of Mexico. The research seeks to close knowledge gaps about the attitudes and perceptions, or nonmonetary values, held by coastal residents toward cultural ecosystem services, and to adapt related, terrestrial-based research methods to a coastal setting. A critical goal is to integrate research results with coastal and marine spatial planning applications, thus making them relevant to coastal planners and managers in their daily efforts to sustainably manage coastal resources. Using information about the attitudes and preferences of people toward places and uses in the landscape, collected from value and preference surveys, the USGS SolVES 2.0 tool will provide quantitative models to relate social values, or perceived nonmonetary values, assigned to locations by survey respondents with the underlying environmental characteristics of those same locations. Project results will increase scientific and geographic knowledge of how Sarasota Bay residents value their area’s cultural ecosystem services.

  8. Exploring the contributions of vegetation and dune size to early dune development using unmanned aerial vehicle (UAV) imaging

    Science.gov (United States)

    van Puijenbroek, Marinka E. B.; Nolet, Corjan; de Groot, Alma V.; Suomalainen, Juha M.; Riksen, Michel J. P. M.; Berendse, Frank; Limpens, Juul

    2017-12-01

    distance to the sea. Our results show that dune growth in summer is mainly determined by dune size, whereas in winter dune growth was determined by vegetation type. In our study area the growth of exposed dunes was likely restricted by storm erosion, whereas growth of sheltered dunes was restricted by sand supply. Our results can be used to improve models predicting coastal dune development.

  9. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    Science.gov (United States)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  10. Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico

    Science.gov (United States)

    Beveridge, C.; Kocurek, G.; Ewing, R.C.; Lancaster, N.; Morthekai, P.; Singhvi, A.K.; Mahan, S.A.

    2006-01-01

    The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote-sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age-bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short-lived aeolian constructional events since ???25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ???12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ???7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform-normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

  11. Concepts and theoretical specifications of a Coastal Vulnerability Dynamic Simulator (COVUDS): A multi-agent system for simulating coastal vulnerability towards management of coastal ecosystem services

    Science.gov (United States)

    Orencio, P. M.; Endo, A.; Taniguchi, M.

    2014-12-01

    Disaster-causing natural hazards such as floods, erosions, earthquakes or slope failures were particularly observed to be concentrated in certain geographical regions. In the Asia-pacific region, coastal ecosystems were suffering because of perennial threats driven by chronic fluctuations in climate variability (e.g., typhoons, ENSO), or by dynamically occurring events (e.g., earthquakes, tsunamis). Among the many people that were found prone to such a risky condition were the ones inhabiting near the coastal areas. Characteristically, aside from being located at the forefront of these events, the coastal communities have impacted the resource by the kind of behavioral patterns they exhibited, such as overdependence and overexploitation to achieve their wellbeing. In this paper, we introduce the development of an approach to an assessment of the coupled human- environment using a multi- agent simulation (MAS) model known as Coastal Vulnerability Dynamic Simulator (COVUDS). The COVUDS comprised a human- environmental platform consisting multi- agents with corresponding spatial- based dynamic and static variables. These variables were used to present multiple hypothetical future situations that contribute to the purpose of supporting a more rational management of the coastal ecosystem and their environmental equities. Initially, we present the theoretical and conceptual components that would lead to the development of the COVUDS. These consisted of the human population engaged in behavioral patterns affecting the conditions of coastal ecosystem services; the system of the biophysical environment and changes in patches brought by global environment and local behavioral variations; the policy factors that were important for choosing area- specific interventions; and the decision- making mechanism that integrates the first three components. To guide a future scenario-based application that will be undertaken in a coastal area in the Philippines, the components of the

  12. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    Science.gov (United States)

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Preliminary analysis of the Jimo coastal ecosystem with the ecopath model

    Science.gov (United States)

    Su, Meng

    2016-12-01

    The Jimo coast encompasses an area of 2157 km2, and the ecosystem is valuable both socially and economically with regional fisheries substantially contributing to the value. A mass-balanced trophic model consisting of 15 functional ecological groups was developed for the coastal ecosystem using the Ecopath model in Ecopath with Ecosim (EwE) software (version 6.4.3). The results of the model simulations indicated that the trophic levels of the functional groups varied between 1.0 and 3.76, and the total production of the system was estimated to be 5112.733 t km-2 yr-1 with a total energy transfer efficiency of 17.6%. The proportion of the total flow originating from detritus was estimated to be 48%, whereas that from primary producers was 52%, indicating that the grazing food chain dominated the energy flow. The ratio of total primary productivity to total respiration in the system was 3.78, and the connectivity index was 0.4. The fin cycling index and the mean path length of the energy flow were 4.92% and 2.57%, respectively, which indicated that the ecosystem exhibits relatively low maturity and stability. The mixed trophic impact (MTI) procedure suggested that the ecological groups at lower trophic levels dominated the feeding dynamics in the Jimo coastal ecosystem. Overfishing is thought to be the primary reason for the degeneration of the Jimo coastal ecosystem, resulting in a decline in the abundance of pelagic and demersal fish species and a subsequent shift to the predominance of lower-trophic-level functional groups. Finally, we offered some recommendations for improving current fishery management practices.

  14. Minimal size of a barchan dune

    Science.gov (United States)

    Parteli, E. J. R.; Durán, O.; Herrmann, H. J.

    2007-01-01

    Barchans are dunes of high mobility which have a crescent shape and propagate under conditions of unidirectional wind. However, sand dunes only appear above a critical size, which scales with the saturation distance of the sand flux [P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002); B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B 28, 321 (2002); G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E 64, 31305 (2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. 89, 264301 (2002)] that this flux fetch distance is itself constant. Indeed, this could not explain the protosize of barchan dunes, which often occur in coastal areas of high litoral drift, and the scale of dunes on Mars. In the present work, we show from three-dimensional calculations of sand transport that the size and the shape of the minimal barchan dune depend on the wind friction speed and the sand flux on the area between dunes in a field. Our results explain the common appearance of barchans a few tens of centimeter high which are observed along coasts. Furthermore, we find that the rate at which grains enter saltation on Mars is one order of magnitude higher than on Earth, and is relevant to correctly obtain the minimal dune size on Mars.

  15. Impacts of climate change and sea level rise to Danish near shore ecosystems

    International Nuclear Information System (INIS)

    Vestergaard, P.

    2001-01-01

    Salt marshes and sand dunes are important types of coastal, terrestrial nature, which like other terrestrial ecosystems will be sensible to the future changes in climate, which have been predicted. Due to the processes acting in their morphogenesis and in the development and composition of their ecosystems, they will not least be influenced by sea level rise. Especially a strong impact of a sea level rise of about 50 cm (midrange of the projected global sea level rise) for the next century can be expected on Danish salt marshes, considering their limited vertical range (50-100 cm). (LN)

  16. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach

    KAUST Repository

    Singh, Gerald G.; Sinner, Jim; Ellis, Joanne; Kandlikar, Milind; Halpern, Benjamin S.; Satterfield, Terre; Chan, Kai M.A.

    2017-01-01

    Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services

  17. Payments for coastal and marine ecosystem services: prospects and principles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Essam Yassin

    2012-05-15

    Coastal and marine resources provide millions of impoverished people across the global South with livelihoods, and provide the world with a range of critical 'ecosystem services', from biodiversity and culture to carbon storage and flood protection. Yet across the world, these resources are fast-diminishing under the weight of pollution, land clearance, coastal development, overfishing, natural disasters and climate change. Traditional approaches to halt the decline focus on regulating against destructive practices, but to little effect. A more successful strategy could be to establish payments for ecosystem services (PES) schemes, or incorporate an element of PES in existing regulatory mechanisms. Examples from across the world suggest that PES can work to protect both livelihoods and environments. But to succeed, these schemes must be underpinned by robust research, clear property rights, equitable benefit sharing and sustainable finance.

  18. Mycorrhizal associations as Salix repens L. communities in succession of dune ecosystems II Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Heijden, van der E.W.; Vosatka, M.

    2000-01-01

    Ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations of Salix repens were studied at 16 sites in different successional stages of dune ecosystems (calcareous-acidic, dry-wet) in the Netherlands. High EcM colonization, low AM colonization, and lack of differences between habitats

  19. Testing model parameters for wave‐induced dune erosion using observations from Hurricane Sandy

    Science.gov (United States)

    Overbeck, Jacquelyn R.; Long, Joseph W.; Stockdon, Hilary F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave‐impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision‐making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  20. Testing model parameters for wave-induced dune erosion using observations from Hurricane Sandy

    Science.gov (United States)

    Overbeck, J. R.; Long, J. W.; Stockdon, H. F.

    2017-01-01

    Models of dune erosion depend on a set of assumptions that dictate the predicted evolution of dunes throughout the duration of a storm. Lidar observations made before and after Hurricane Sandy at over 800 profiles with diverse dune elevations, widths, and volumes are used to quantify specific dune erosion model parameters including the dune face slope, which controls dune avalanching, and the trajectory of the dune toe, which controls dune migration. Wave-impact models of dune erosion assume a vertical dune face and erosion of the dune toe along the foreshore beach slope. Observations presented here show that these assumptions are not always valid and require additional testing if these models are to be used to predict coastal vulnerability for decision-making purposes. Observed dune face slopes steepened by 43% yet did not become vertical faces, and only 50% of the dunes evolved along a trajectory similar to the foreshore beach slope. Observations also indicate that dune crests were lowered during dune erosion. Moreover, analysis showed a correspondence between dune lowering and narrower beaches, smaller dune volumes, and/or longer wave impact.

  1. Evaluation of Continuous VNIR-SWIR Spectra versus Narrowband Hyperspectral Indices to Discriminate the Invasive Acacia longifolia within a Mediterranean Dune Ecosystem

    Directory of Open Access Journals (Sweden)

    André Große-Stoltenberg

    2016-04-01

    Full Text Available Hyperspectral remote sensing is an effective tool to discriminate plant species, providing vast potential to trace plant invasions for ecological assessments. However, necessary baseline information for the use of remote sensing data is missing for many high-impact invaders. Furthermore, the identification of the suitable classification algorithms and spectral regions for successfully classifying species remains an open field of research. Here, we tested the separability of the invasive tree Acacia longifolia from adjacent exotic and native vegetation in a Natura 2000 protected Mediterranean dune ecosystem. We used continuous visible, near-infrared and short wave infrared (VNIR-SWIR data as well as vegetation indices at the leaf and canopy level for classification, comparing five different classification algorithms. We were able to successfully distinguish A. longifolia from surrounding vegetation based on vegetation indices. At the leaf level, radial-basis function kernel Support Vector Machine (SVM and Random Forest (RF achieved both a high Sensitivity (SVM: 0.83, RF: 0.78 and a high Positive Predicted Value (PPV (0.86, 0.83. At the canopy level, RF was the classifier with an optimal balance of Sensitivity (0.75 and PPV (0.75. The most relevant vegetation indices were linked to the biochemical parameters chlorophyll, water, nitrogen, and cellulose as well as vegetation cover, which is in line with biochemical and ecophysiological properties reported for A. longifolia. Our results highlight the potential to use remote sensing as a tool for an early detection of A. longifolia in Mediterranean coastal ecosystems.

  2. Ecosystem services provided by a complex coastal region: challenges of classification and mapping

    Science.gov (United States)

    Sousa, Lisa P.; Sousa, Ana I.; Alves, Fátima L.; Lillebø, Ana I.

    2016-03-01

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  3. Ecosystem services provided by a complex coastal region: challenges of classification and mapping.

    Science.gov (United States)

    Sousa, Lisa P; Sousa, Ana I; Alves, Fátima L; Lillebø, Ana I

    2016-03-11

    A variety of ecosystem services classification systems and mapping approaches are available in the scientific and technical literature, which needs to be selected and adapted when applied to complex territories (e.g. in the interface between water and land, estuary and sea). This paper provides a framework for addressing ecosystem services in complex coastal regions. The roadmap comprises the definition of the exact geographic boundaries of the study area; the use of CICES (Common International Classification of Ecosystem Services) for ecosystem services identification and classification; and the definition of qualitative indicators that will serve as basis to map the ecosystem services. Due to its complexity, the Ria de Aveiro coastal region was selected as case study, presenting an opportunity to explore the application of such approaches at a regional scale. The main challenges of implementing the proposed roadmap, together with its advantages are discussed in this research. The results highlight the importance of considering both the connectivity of natural systems and the complexity of the governance framework; the flexibility and robustness, but also the challenges when applying CICES at regional scale; and the challenges regarding ecosystem services mapping.

  4. Coastal dune facies, Permian Cutler Formation (White Rim Sandstone), Capitol Reef National Park area, southern Utah

    Science.gov (United States)

    Kamola, Diane L.; Chan, Marjorie A.

    1988-04-01

    The Permian Cutler Formation (White Rim Sandstone) in the Capitol Reef National Park area in southern Utah is an excellent example of a coastal dune complex subjected to periodic flooding by marine waters. Wind-ripple, grainfall and grainflow laminae compose the cross-sets deposited by eolian dunes. However, wave-reworked structures such as oscillation ripples, the occurrence of the characteristically marine trace fossils Thalassinoides and Chondrites, and interfingering marine carbonate beds of the Kaibab Formation collectively indicate marine interaction with the eolian environment. Four facies are distinguished: cross-stratified sandstone, burrowed to bioturbated sandstone, brecciated and deformed sandstone, and ripple-laminated sandstone and thin carbonate beds. One unusual aspect of the cross-stratified sandstone facies is the abundance of coarse-grained sand. Coarse-grained sand is atypical in many ancient eolian slipface deposits, but occurs here in large slipface foresets as both grainflow and wind-ripple deposits. No water-laid structures are found in these slipface deposits. Coarse-grained sand was probably transported to the Cutler shoreline by fluvial systems draining the Uncompahgre Uplift to the east, and then concentrated as coarse-grained ripples in interdune areas. Some of these coarse-grained ripples migrated up the stoss side of the dunes and accumulations of coarse-grained sand avalanched down the crest to form grainflow deposits. An extensive amount of soft-sediment deformation is indicated by the presence of convolute bedding and brecciation. These features occur near the zone of interfingering with marine carbonate beds of the Kaibab Formation. The water-saturated and moist conditions required for extensive deformation may have been controlled by the proximity of these sandstones to the shoreline, and fluctuations in the associated groundwater table.

  5. Study on water quality around mangrove ecosystem for coastal rehabilitation

    Science.gov (United States)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  6. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach.

    Science.gov (United States)

    Singh, Gerald G; Sinner, Jim; Ellis, Joanne; Kandlikar, Milind; Halpern, Benjamin S; Satterfield, Terre; Chan, Kai M A

    2017-09-01

    Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these. This study trials an approach for understanding the cumulative impacts of anthropogenic change, focusing on Tasman and Golden Bays, New Zealand. Using an expert elicitation procedure, we collected information on three aspects of cumulative impacts: the importance and magnitude of impacts by various activities and stressors on ecosystem services, and the causal processes of impact on ecosystem services. We assessed impacts to four ecosystem service benefits - fisheries, shellfish aquaculture, marine recreation and existence value of biodiversity-addressing three main research questions: (1) how severe are cumulative impacts on ecosystem services (correspondingly, what potential is there for restoration)?; (2) are threats evenly distributed across activities and stressors, or do a few threats dominate?; (3) do prominent activities mainly operate through direct stressors, or do they often exacerbate other impacts? We found (1) that despite high uncertainty in the threat posed by individual stressors and impacts, total cumulative impact is consistently severe for all four ecosystem services. (2) A subset of drivers and stressors pose important threats across the ecosystem services explored, including climate change, commercial fishing, sedimentation and pollution. (3) Climate change and commercial fishing contribute to prominent indirect impacts across ecosystem services by exacerbating regional impacts, namely sedimentation and pollution. The prevalence and magnitude of these indirect, networked impacts highlights the need for approaches

  7. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach

    KAUST Repository

    Singh, Gerald G.

    2017-05-23

    Coastal environments are some of the most populated on Earth, with greater pressures projected in the future. Managing coastal systems requires the consideration of multiple uses, which both benefit from and threaten multiple ecosystem services. Thus understanding the cumulative impacts of human activities on coastal ecosystem services would seem fundamental to management, yet there is no widely accepted approach for assessing these. This study trials an approach for understanding the cumulative impacts of anthropogenic change, focusing on Tasman and Golden Bays, New Zealand. Using an expert elicitation procedure, we collected information on three aspects of cumulative impacts: the importance and magnitude of impacts by various activities and stressors on ecosystem services, and the causal processes of impact on ecosystem services. We assessed impacts to four ecosystem service benefits — fisheries, shellfish aquaculture, marine recreation and existence value of biodiversity—addressing three main research questions: (1) how severe are cumulative impacts on ecosystem services (correspondingly, what potential is there for restoration)?; (2) are threats evenly distributed across activities and stressors, or do a few threats dominate?; (3) do prominent activities mainly operate through direct stressors, or do they often exacerbate other impacts? We found (1) that despite high uncertainty in the threat posed by individual stressors and impacts, total cumulative impact is consistently severe for all four ecosystem services. (2) A subset of drivers and stressors pose important threats across the ecosystem services explored, including climate change, commercial fishing, sedimentation and pollution. (3) Climate change and commercial fishing contribute to prominent indirect impacts across ecosystem services by exacerbating regional impacts, namely sedimentation and pollution. The prevalence and magnitude of these indirect, networked impacts highlights the need for

  8. Patterns of Arbuscular Mycorrhizal Fungal Distribution on Mainland and Island Sandy Coastal Plain Ecosystems in Brazil.

    Science.gov (United States)

    da Silva, Iolanda Ramalho; de Souza, Francisco Adriano; da Silva, Danielle Karla Alves; Oehl, Fritz; Maia, Leonor Costa

    2017-10-01

    Although sandy coastal plains are important buffer zones to protect the coast line and maintain biological diversity and ecosystem services, these ecosystems have been endangered by anthropogenic activities. Thus, information on coastal biodiversity and forces shaping coastal biological diversity are extremely important for effective conservation strategies. In this study, we aimed to compare arbuscular mycorrhizal (AM) fungal communities from soil samples collected on the mainland and nearby islands located in Brazilian sandy coastal plain ecosystems (Restingas) to get information about AM fungal biogeography and identify factors shaping these communities. Soil samples were collected in 2013 and 2014 on the beachfront of the tropical sandy coastal plain at six sites (three island and three mainland locations) across the northeast, southeast, and south regions of Brazil. Overall, we recorded 53 AM fungal species from field and trap culture samples. The richness and diversity of AM fungal species did not differ between mainland and island locations, but AM fungal community assemblages were different between mainland and island environments and among most sites sampled. Glomeromycota communities registered from island samples showed higher heterogeneity than communities from mainland samples. Sandy coastal plains harbor diverse AM fungal communities structured by climatic, edaphic, and spatial factors, while the distance from the colonizing source (mainland environments) does not strongly affect the AM fungal communities in Brazilian coastal environments.

  9. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    Science.gov (United States)

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  10. Marine Ecosystem Modeling Beyond the Box: Using GIS to Study Carbon Fluxes in a Coastal Ecosystem

    International Nuclear Information System (INIS)

    Wijnbladh, Erik; Joensson, Bror Fredrik; Kumblad, Linda

    2006-01-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phyto benthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem

  11. Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) for the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. Concept Presentation

    Science.gov (United States)

    Janz, Scott; Smith, James C.; Mannino, Antonio

    2010-01-01

    This slide presentation reviews the concepts of the Geostationary Coastal Ecosystem Dynamics Imager (GEO CEDI) which will be used on the GEO Coastal and Air Pollution Events (GEO CAPE) Mission. The primary science requirements require scans of the U.S. Coastal waters 3 times per day during the daylight hours. Included in the overview are presentations about the systems, the optics, the detectors, the mechanical systems, the electromechanical systems, the electrical design, the flight software, the thermal systems, and the contamination prevention requirements.

  12. Stratigraphy and landsnail faunas of Late Holocene coastal dunes, Tokerau Beach, northern New Zealand

    International Nuclear Information System (INIS)

    Brook, F.J.

    1999-01-01

    At least four depositional episodes, each involving cycles of dune instability and sand accumulation followed by stabilisation and soil formation, are represented in a Holocene dune sequence at Tokerau Beach. The first depositional episode followed the maximum post-glacial sea level rise at 6500 years BP, probably with formation of a narrow dune belt landward of the present coastline. The second depositional episode resulted in extensive progradation of the dune belt to about the present coastline from c. 3000-2000 years BP, followed by dune stabilisation and soil formation from c. 2000-900 years BP. The third depositional episode involved vertical dune accretion at c. 900-600 years BP, followed by stabilisation and soil formation after c. 600 years BP. The fourth depositional episode, after 240 years BP, resulted in further vertical dune accretion and localised extensive erosion and reworking of pre-existing dune deposits. Fossil landsnail faunas indicate that there was patchy sandfield and shrubland vegetation of the dune belt from c. 3000-2000 years BP, followed by a mosaic of shrubland and forest from c. 2000-900 years BP. After 900 years BP there was a progressive reversion to patchy shrubland vegetation, but an extensive shrubland cover again became established at c. 600 years BP and persisted until c. 450 years BP, when it was replaced by patchy shrubland and sandfield vegetation. Dune progradational phases in the first two depositional episodes correlate with and probably developed primarily in response to changes in sea level, whereas subsequent alternating phases of dune stabilisation and build-up are inferred to have resulted in part from the influence of long term cyclical variation in prevailing local wind and wave regimes in Doubtless Bay. Two stratigraphically distinct, exotic, sea-rafted pumice units are represented in the Tokerau dune sequence: Tokerau pumice (new), which has a primary depositional age of c. 3000 years BP, and Loisels pumice, which

  13. Sediment Source Fingerprinting of the Lake Urmia Sand Dunes.

    Science.gov (United States)

    Ahmady-Birgani, Hesam; Agahi, Edris; Ahmadi, Seyed Javad; Erfanian, Mahdi

    2018-01-09

    Aeolian sand dunes are continuously being discovered in inner dry lands and coastal areas, most of which have been formed over the Last Glacial Maximum. Presently, due to some natural and anthropogenic implications on earth, newly-born sand dunes are quickly emerging. Lake Urmia, the world's second largest permanent hypersaline lake, has started shrinking, vast lands comprising sand dunes over the western shore of the lake have appeared and one question has been playing on the minds of nearby dwellers: where are these sand dunes coming from, What there was not 15 years ago!! In the present study, the determination of the source of the Lake Urmia sand dunes in terms of the quantifying relative contribution of each upstream geomorphological/lithological unit has been performed using geochemical fingerprinting techniques. The findings demonstrate that the alluvial and the fluvial sediments of the western upstream catchment have been transported by water erosion and they accumulated in the lower reaches of the Kahriz River. Wind erosion, as a secondary agent, have carried the aeolian sand-sized sediments to the sand dune area. Hence, the Lake Urmia sand dunes have been originating from simultaneous and joint actions of alluvial, fluvial and aeolian processes.

  14. Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China

    Directory of Open Access Journals (Sweden)

    Caiyao Xu

    2016-08-01

    Full Text Available Urbanization, and the resulting land use/cover change, is a primary cause of the degradation of coastal wetland ecosystems. Reclamation projects are seen as a way to strike a balance between socioeconomic development and maintenance of coastal ecosystems. Our aim was to understand the ecological changes to Jiangsu’s coastal wetland resulting from land use change since 1977 by using remote sensing and spatial analyses. The results indicate that: (1 The area of artificial land use expanded while natural land use was reduced, which emphasized an increase in production-orientated land uses at the expense of ecologically important wetlands; (2 It took 34 years for landscape ecological security and 39 years for ecosystem services to regain equilibrium. The coastal reclamation area would recover ecological equilibrium only after a minimum of 30 years; (3 The total ecosystem service value decreased significantly from $2.98 billion per year to $2.31 billion per year from 1977 to 2014. Food production was the only one ecosystem service function that consistently increased, mainly because of government policy; (4 The relationship between landscape ecological security and ecosystem services is complicated, mainly because of the scale effect of landscape ecology. Spatial analysis of changing gravity centers showed that landscape ecological security and ecosystem service quality became better in the north than the south over the study period.

  15. Climate change impacts on U.S. coastal and marine ecosystems

    Science.gov (United States)

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  16. Stratigraphy, landsnail faunas, and paleoenvironmental history of Late Holocene coastal dunes, Tauroa Peninsula, northern New Zealand

    International Nuclear Information System (INIS)

    Brook, F.J.

    1999-01-01

    The post -700 years BP depositional history of the Holocene coastal dunebelt on northwestern Tauroa Peninsula involved an initial progradational phase, then a subsequent predominantly stable phase that began some time after 650 years BP, followed by a highly unstable phase from late prehistoric time to the present-day. Fossil landsnail faunas indicate that sandfield and prostrate shrubland have been the main vegetation types on the dunefield since at least 700 years BP, but that taller shrubland established locally during the later part of the prehistoric period of dunefield stability. Five species of landsnails became extinct on the dunefield in late prehistoric-historic time, probably as a result of vegetation disturbance caused by widespread dune mobilisation and erosion. (author). 19 refs., 3 figs., 1 tab

  17. Long-Distance Interactions Regulate the Structure and Resilience of Coastal Ecosystems

    NARCIS (Netherlands)

    van de Koppel, J.; van der Heide, T.; Altieri, A.H.; Eriksson, B.K.; Bouma, T.J.; Olff, H.; Silliman, B.R.

    2015-01-01

    Mounting evidence indicates that spatial interactions are important in structuring coastal ecosystems. Until recently, however, most of this work has been focused on seemingly exceptional systems that are characterized by regular, self-organized patterns. In this review, we document that

  18. Assessing biomass of diverse coastal marsh ecosystems using statistical and machine learning models

    Science.gov (United States)

    Mo, Yu; Kearney, Michael S.; Riter, J. C. Alexis; Zhao, Feng; Tilley, David R.

    2018-06-01

    The importance and vulnerability of coastal marshes necessitate effective ways to closely monitor them. Optical remote sensing is a powerful tool for this task, yet its application to diverse coastal marsh ecosystems consisting of different marsh types is limited. This study samples spectral and biophysical data from freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops statistical and machine learning models to assess the marshes' biomass with combined ground, airborne, and spaceborne remote sensing data. It is found that linear models derived from NDVI and EVI are most favorable for assessing Leaf Area Index (LAI) using multispectral data (R2 = 0.7 and 0.67, respectively), and the random forest models are most useful in retrieving LAI and Aboveground Green Biomass (AGB) using hyperspectral data (R2 = 0.91 and 0.84, respectively). It is also found that marsh type and plant species significantly impact the linear model development (P biomass of Louisiana's coastal marshes using various optical remote sensing techniques, and highlights the impacts of the marshes' species composition on the model development and the sensors' spatial resolution on biomass mapping, thereby providing useful tools for monitoring the biomass of coastal marshes in Louisiana and diverse coastal marsh ecosystems elsewhere.

  19. Wet dune slacks : decline and new opportunities

    NARCIS (Netherlands)

    Dijk, H.W.J. van; Grootjans, A.P.

    1993-01-01

    For a number of infiltrated coastal dune areas it is discussed to what extent artificial infiltration for the public water supply affects the quality of soil, groundwater and vegetation around pools and ponds, and what its effect is on the vegetation. Further, the results of investigations into the

  20. Modeling aeolian dune and dune field evolution

    Science.gov (United States)

    Diniega, Serina

    Aeolian sand dune morphologies and sizes are strongly connected to the environmental context and physical processes active since dune formation. As such, the patterns and measurable features found within dunes and dune fields can be interpreted as records of environmental conditions. Using mathematical models of dune and dune field evolution, it should be possible to quantitatively predict dune field dynamics from current conditions or to determine past field conditions based on present-day observations. In this dissertation, we focus on the construction and quantitative analysis of a continuum dune evolution model. We then apply this model towards interpretation of the formative history of terrestrial and martian dunes and dune fields. Our first aim is to identify the controls for the characteristic lengthscales seen in patterned dune fields. Variations in sand flux, binary dune interactions, and topography are evaluated with respect to evolution of individual dunes. Through the use of both quantitative and qualitative multiscale models, these results are then extended to determine the role such processes may play in (de)stabilization of the dune field. We find that sand flux variations and topography generally destabilize dune fields, while dune collisions can yield more similarly-sized dunes. We construct and apply a phenomenological macroscale dune evolution model to then quantitatively demonstrate how dune collisions cause a dune field to evolve into a set of uniformly-sized dunes. Our second goal is to investigate the influence of reversing winds and polar processes in relation to dune slope and morphology. Using numerical experiments, we investigate possible causes of distinctive morphologies seen in Antarctic and martian polar dunes. Finally, we discuss possible model extensions and needed observations that will enable the inclusion of more realistic physical environments in the dune and dune field evolution models. By elucidating the qualitative and

  1. Editorial - Special Issue on the Ninth International Conference on Aeolian Research - ICAR IX (Coastal Dune Processes and Aeolian Transport)

    Science.gov (United States)

    da Silva, Graziela Miot

    2018-04-01

    This special issue combines some of the papers related to coastal dune processes and aeolian sediment transport that were presented at the Ninth International Conference on Aeolian Research - ICAR IX. The conference was held between 4 and 8 of July 2016 in Mildura, Australia, organized by the International Society for Aeolian Research (ISAR) and convened by Adrian Chappell (Cardiff University), Craig Strong (Australian National University), Stephen Cattle (University of Sydney), Patrick Hesp (Flinders University), John Leys (New South Wales Office of Environment and Heritage), Lynda Petherick (University of Wellington) and Nick Webb (USDA-ARS Jornada Experimental Range).

  2. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    Science.gov (United States)

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  3. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    International Nuclear Information System (INIS)

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography

  4. Impact of river basin management on coastal water quality and ecosystem services: A southern Baltic estuary

    Science.gov (United States)

    Schernewski, Gerald; Hürdler, Jens; Neumann, Thomas; Stybel, Nardine; Venohr, Markus

    2010-05-01

    Eutrophication management is still a major challenge in the Baltic Sea region. Estuaries or coastal waters linked to large rivers cannot be managed independently. Nutrient loads into these coastal ecosystems depend on processes, utilisation, structure and management in the river basin. In practise this means that we need a large scale approach and integrated models and tools to analyse, assess and evaluate the effects of nutrient loads on coastal water quality as well as the efficiency of river basin management measures on surface waters and especially lagoons and estuaries. The Odra river basin, the Szczecin Lagoon and its coastal waters cover an area of about 150,000 km² and are an eutrophication hot-spot in the Baltic region. To be able to carry out large scale, spatially integrative analyses, we linked the river basin nutrient flux model MONERIS to the coastal 3D-hydrodynamic and ecosystem model ERGOM. Objectives were a) to analyse the eutrophication history in the river basin and the resulting functional changes in the coastal waters between early 1960's and today and b) to analyse the effects of an optimal nitrogen and phosphorus management scenario in the Oder/Odra river basin on coastal water quality. The models show that an optimal river basin management with reduced nutrient loads (e.g. N-load reduction of 35 %) would have positive effects on coastal water quality and algae biomass. The availability of nutrients, N/P ratios and processes like denitrification and nitrogen-fixation would show spatial and temporal changes. It would have positive consequences for ecosystems functions, like the nutrient retention capacity, as well. However, this optimal scenario is by far not sufficient to ensure a good coastal water quality according to the European Water Framework Directive. A "good" water quality in the river will not be sufficient to ensure a "good" water quality in the coastal waters. Further, nitrogen load reductions bear the risk of increased

  5. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    Science.gov (United States)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of

  6. Dune advance into a coastal forest, equatorial Brazil: A subsurface perspective

    Science.gov (United States)

    Buynevich, Ilya V.; Filho, Pedro Walfir M. Souza; Asp, Nils E.

    2010-06-01

    A large active parabolic dune along the coast of Pará State, northern Brazil, was analyzed using aerial photography and imaged with high-resolution ground-penetrating radar (GPR) to map the subsurface facies architecture and point-source anomalies. Most high-amplitude (8-10 dB) subsurface anomalies are correlated with partially buried mangrove trees along the leading edge (slipface) of the advancing dune. Profiles along a 200-m long basal stoss side of the dune reveal 66 targets, most of which lie below the water table and are thus inaccessible by other methods. Signal amplitudes of point-source anomalies are substantially higher than those associated with the reflections from continuous subsurface features (water table, sedimentary layers). When complemented with exposures and excavations, GPR provides the best means of rapid continuous imaging of the geological record of complex interactions between vegetation and aeolian deposition.

  7. Recreational impacts on the fauna of Australian coastal marine ecosystems.

    Science.gov (United States)

    Hardiman, Nigel; Burgin, Shelley

    2010-11-01

    This paper reviews recent research into the ecological impacts of recreation and tourism on coastal marine fauna in Australia. Despite the high and growing importance of water-based recreation to the Australian economy, and the known fragility of many Australian ecosystems, there has been relatively limited research into the effects of marine tourism and recreation, infrastructure and activities, on aquatic resources. In this paper we have reviewed the ecological impacts on fauna that are caused by outdoor recreation (including tourism) in Australian coastal marine ecosystems. We predict that the single most potentially severe impact of recreation may be the introduction and/or dispersal of non-indigenous species of marine organisms by recreational vessels. Such introductions, together with other impacts due to human activities have the potential to increasingly degrade recreation destinations. In response, governments have introduced a wide range of legislative tools (e.g., impact assessment, protected area reservation) to manage the recreational industry. It would appear, however, that these instruments are not always appropriately applied. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Habitat structural effect on squamata fauna of the restinga ecosystem in northeastern Brazil.

    Science.gov (United States)

    Dias, Eduardo J R; Rocha, Carlos F D

    2014-03-01

    In this work, we surveyed data on richness and composition of squamatan reptiles and habitat structural effect in nine areas of restinga ecosystem in the State of Bahia, northeastern Brazil. The "restinga" ecosystems are coastal sand dune habitats on the coast of Brazil. Our main hypothesis is that the Squamata fauna composition along these restinga areas would be modulated by habitat structural. After 90 days of field sampling we recorded approximately 5% of reptile species known in Brazil. The composition of Squamata assemblages varied mainly based on the presence or absence of lizards of the genera Ameivula and Tropidurus. Our data showed that habitat structure consistently affected the composition of local Squamata fauna, especially lizards.

  9. A resilience framework for chronic exposures: water quality and ecosystem services in coastal social-ecological systems

    Science.gov (United States)

    We outline a tailored resilience framework that applies ecosystem service concepts to coastal social-ecological systems (SES) affected by water quality degradation. Unlike acute coastal disturbances such as hurricanes or oil spills, water quality issues, particularly those relate...

  10. Predicting Disturbance-driven Impacts on Ecosystem Services in Coastal Wetlands

    Science.gov (United States)

    Rajan, S.; Crawford, P.; Kleinhuizen, A.; Mortazavi, B.; Sobecky, P.

    2017-12-01

    Natural and human-induced disturbances pose significant threats to the health and long-term productivity of Alabama coastal wetlands. As wetlands are a vital state resource, decisions on management, restoration, and remediation require actionable data if socio-economic demands are to be balanced with efforts to sustain these habitats. In 2010, the BP oil spill was a large and severe disturbance that threatened coastal Gulf ecosystem services. The largest marine oil spill to date served to highlight fundamental gaps in our knowledge of oil-induced disturbances and the resiliency and restoration of coastal Alabama wetland functions. To address these gaps, a year-long mesocosm study was conducted to investigate oil-induced effects on (i) plant-microbial interactions, (ii) microbial and plant biodiversity, and, (iii) the contributions of microbial genetic biodiversity to ecosystems services. In this study, Avicennia germinans (black mangrove), a C3 plant that grows from the tropics to warm temperate latitudes, were grown with or without mono- and polyculture mixtures of Spartina alterniflora, a C4 plant. At an interval of 3-months, oil was introduced as a pulse disturbance to achieve a concentration of 4000 ppm. Molecular-based analyses of microbial community biodiversity, genetic diversity, and functional metabolic genes were compared to controls (i.e., no oil disturbance). To assess the oil-induced effects on the nitrogen (N) cycle, measurements of denitrification and N fixation processes were conducted. Our results showed that community diversity and phylogenetic diversity significantly changed and that the oil disturbance contributed to the creation of niches for distinct microbial types. The abundance of N-fixing microbial types increased as the abundance of denitrifying microbial types decreased as a result of the oil disturbance. As denitrification is an ecosystem service that directly contributes to removing nitrate (NO3-) loading to coastal zones, impairment

  11. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes.

    Science.gov (United States)

    Mohamed Mahmoud, Fadila; Krimi, Zoulikha; Maciá-Vicente, Jose G; Brahim Errahmani, Mohamed; Lopez-Llorca, Luis V

    Symbiotic interactions with fungal endophytes are argued to be responsible for the tolerance of plants to some stresses and for their adaptation to natural conditions. In this study we aimed to examine the endophytic fungal diversity associated with roots of date palms growing in coastal dune systems, and to screen this collection of endophytes for potential use as biocontrol agents, for antagonistic activity and mycoparasitism, and as producers of antifungal compounds with potential efficacy against root diseases of date palm. Roots of nine individual date palms growing in three coastal locations in the South-East of Spain (Guardamar, El Carabassí, and San Juan) were selected to isolate endophytic fungi. Isolates were identified on the basis of morphological and/or molecular characters. Five hundred and fifty two endophytic fungi were isolated and assigned to thirty morphological taxa or molecular operational taxonomic units. Most isolates belonged to Ascomycota, and the dominant order was Hypocreales. Fusarium and Clonostachys were the most frequently isolated genera and were present at all sampling sites. Comparisons of the endophytic diversity with previous studies, and their importance in the management of the date palm crops are discussed. This is the first study on the diversity of endophytic fungi associated with roots of date palm. The isolates obtained might constitute a source of biological control agents and biofertilizers for use in crops of this plant. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Linking benthic biodiversity to the functioning of coastal ecosystems subjected to river runoff (NW Mediterranean

    Directory of Open Access Journals (Sweden)

    Harmelin–Vivien, M. L.

    2009-12-01

    Full Text Available Continental particulate organic matter (POM plays a major role in the functioning of coastal marine ecosystems as a disturbance as well as an input of nutrients. Relationships linking continental inputs from the Rhone River to biodiversity of the coastal benthic ecosystem and fishery production were investigated in the Golfe du Lion (NW Mediterranean Sea. Macrobenthic community diversity decreased when continen¬tal inputs of organic matter increased, whereas ecosystem production, measured by common sole (Solea solea fishery yields in the area, increased. Decreases in macrobenthic diversity were mainly related to an increasing abundance of species with specific functional traits, particularly deposit-feeding polychaetes. The decrease in macrobenthic diversity did not result in a decrease, but an increase in ecosystem production, as it enhanced the transfer of continental POM into marine food webs. The present study showed that it is necessary to consider functional traits of species, direct and indirect links between species, and feedback loops to understand the effects of biodiversity on ecosystem functioning and productivity.

  13. Nitrogen deposition and grass encroachment in calcareous and acidic Grey dunes (H2130) in NW-Europe

    NARCIS (Netherlands)

    Kooijman, A.M.; van Til, M.; Noordijk, E.; Remke, E.; Kalbitz, K.

    We present an overview of high nitrogen deposition effects on coastal dune grasslands in NW-Europe (H2130), especially concerning grass encroachment in calcareous and acidic Grey Dunes. The problem is larger than previously assumed, because critical loads are still too high, and extra N-input from

  14. Coastal Zone Ecosystem Services: from science to values and decision making; a case study.

    Science.gov (United States)

    Luisetti, T; Turner, R K; Jickells, T; Andrews, J; Elliott, M; Schaafsma, M; Beaumont, N; Malcolm, S; Burdon, D; Adams, C; Watts, W

    2014-09-15

    This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  15. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems

    NARCIS (Netherlands)

    Ostman, Orjan; Eklof, Johan; Eriksson, Britas Klemens; Olsson, Jens; Moksnes, Per-Olav; Bergstrom, Ulf

    Seagrass and seaweed habitats constitute hotspots for diversity and ecosystem services in coastal ecosystems. These habitats are subject to anthropogenic pressures, of which eutrophication is one major stressor. Eutrophication favours fast-growing ephemeral algae over perennial macroalgae and

  16. Strategies of bioremediation of a contaminated coastal Ecosystem (Bolmon Lagoon, South-Easter Mediterranean Coast)

    International Nuclear Information System (INIS)

    Charpy-Roubaud, C.; Fayolle, S.; Franquet, E.; Pietri, L.; Anselmet, F.; Brun, L.; Roux, B.

    2009-01-01

    Bolmon ecosystem (Bouches du Rhone, South-easter France) is a coastal mediterranean lagoon. This ecosystem presents a great interest in terms of ecology, economy and cultural aspects. Bolmon is connected to the salty Berre pond, itself connected to Mediterranean sea, via tiny artificial channels and a main one (rove channel) that also bounds it to the South. (Author)

  17. Strategies of bioremediation of a contaminated coastal Ecosystem (Bolmon Lagoon, South-Easter Mediterranean Coast)

    Energy Technology Data Exchange (ETDEWEB)

    Charpy-Roubaud, C.; Fayolle, S.; Franquet, E.; Pietri, L.; Anselmet, F.; Brun, L.; Roux, B.

    2009-07-01

    Bolmon ecosystem (Bouches du Rhone, South-easter France) is a coastal mediterranean lagoon. This ecosystem presents a great interest in terms of ecology, economy and cultural aspects. Bomon is connected to the salty Berre pond, itself connected to Mediterranean sea, via tiny artificial channels and a main one (rove channel) that also bounds it to the South. (Author)

  18. Erosion reasons and rate on accumulative Polish dune coast caused by the January 2012 storm surge

    Directory of Open Access Journals (Sweden)

    Tomasz A. Łabuz

    2014-03-01

    Full Text Available The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8. Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  19. Integrating societal perspectives and values for improved stewardship of a coastal ecosystem engineer

    Directory of Open Access Journals (Sweden)

    Steven B. Scyphers

    2014-09-01

    Full Text Available Oyster reefs provide coastal societies with a vast array of ecosystem services, but are also destructively harvested as an economically and culturally important fishery resource, exemplifying a complex social-ecological system (SES. Historically, societal demand for oysters has led to destructive and unsustainable levels of harvest, which coupled with multiple other stressors has placed oyster reefs among the most globally imperiled coastal habitats. However, more recent studies have demonstrated that large-scale restoration is possible and that healthy oyster populations can be sustained with effective governance and stewardship. However, both of these require significant societal support or financial investment. In our study, we explored relationships among how coastal societies (1 perceive and value oyster ecosystem services, (2 recognize and define problems associated with oyster decline, and (3 perceive or support stewardship initiatives. We specifically focused on the SES of eastern oysters (Crassostrea virginica and coastal societies in the northern Gulf of Mexico, a region identified as offering among the last and best opportunities to sustainably balance conservation objectives with a wild fishery. We found that, in addition to harvest-related benefits, oysters were highly valued for providing habitat, mitigating shoreline erosion, and improving water quality or clarity. Our results also showed that although most respondents recognized that oyster populations have declined, many respondents characterized the problem differently than most scientific literature does. Among a variety of initiatives for enhancing sustainability, spawning sanctuaries and reef restoration were well supported in all states, but support for harvest reductions was less consistent. Our study suggests that public support for maintaining both harvest and ecosystem services exists at societal levels and that enhancing public awareness regarding the extent and causes

  20. Impact of petroleum pollution on aquatic coastal ecosystems in Brazil

    International Nuclear Information System (INIS)

    Silva, E.M. da; Peso-Aguiar, M.C.; Navarro, M.F.T.; Chastinet, C.B.A.

    1997-01-01

    Although oil activities generate numerous forms of environmental impact on biological communities, studies of these impacts on Brazilian coastal ecosystems are rate. Results of tests for the content of oil in sediments and organisms indicate a substantially high rate of degradation. Results for uptake of polycyclic aromatic hydrocarbons in bivalves suggested the recent occurrence of oil spills and that these organisms differed in their capabilities to bioconcentrate oil. The mangrove community has suffered constant inputs of oil and has responded with increased numbers of aerial roots, generation of malformed leaves and fruits by plants, and a decrease in litter production. Studies of the impact of oil on rocky shore communities and the toxicity of oil and its by-products to marine organisms have confirmed the results reported in the literature. Presently most of the available studies deal with the macroscopic effects of oil on organisms and have indicated that the nature of oil, climate characteristics, the physical environment, and the structure of the community influence the symptoms of oil contamination in organisms of coastal waters. Long-term studies should be carried out to assess changes in community structure, sublethal effects in populations, and the resilience of contaminated ecosystems

  1. Quantifying Economic Value of Coastal Ecosystem Services: A Review

    Directory of Open Access Journals (Sweden)

    Seyedabdolhossein Mehvar

    2018-01-01

    Full Text Available The complexity of quantifying ecosystem services in monetary terms has long been a challenging issue for economists and ecologists. Many case specific valuation studies have been carried out in various parts of the World. Yet, a coherent review on the valuation of coastal ecosystem services (CES, which systematically describes fundamental concepts, analyzes reported applications, and addresses the issue of climate change (CC impacts on the monetary value of CES is still lacking. Here, we take a step towards addressing this knowledge gap by pursuing a coherent review that aims to provide policy makers and researchers in multidisciplinary teams with a summary of the state-of-the-art and a guideline on the process of economic valuation of CES and potential changes in these values due to CC impacts. The article highlights the main concepts of CES valuation studies and offers a systematic analysis of the best practices by analyzing two global scale and 30 selected local and regional case studies, in which different CES have been valued. Our analysis shows that coral reefs and mangroves are among the most frequently valued ecosystems, while sea-grass beds are the least considered ones. Currently, tourism and recreation services as well as storm protection are two of the most considered services representing higher estimated value than other CES. In terms of the valuation techniques used, avoided damage, replacement and substitute cost method as well as stated preference method are among the most commonly used valuation techniques. Following the above analysis, we propose a methodological framework that provides step-wise guidance and better insight into the linkages between climate change impacts and the monetary value of CES. This highlights two main types of CC impacts on CES: one being the climate regulation services of coastal ecosystems, and the other being the monetary value of services, which is subject to substantial uncertainty. Finally, a

  2. A conceptual approach to integrate management of ecosystem service and disservice in coastal wetlands

    Directory of Open Access Journals (Sweden)

    Jon Knight

    2017-04-01

    Full Text Available Management of coastal wetlands is increasingly difficult because of increasing pressure arising from anthropogenic causes. These include sea level and climate change as well as coastline development caused by population growth and demographic shifts, for example, amenity migration where people move to coastal communities for lifestyle reasons. Management of mangroves and salt marshes is especially difficult because maintaining ecosystem values, including the goods and services provided, is countered by the potential of enhancing or even creating ecosystem disservices, such as unpleasant odour and mosquito hazards. Here we present, explain and apply a conceptual model aimed at improving understanding of management choices that primarily focus on mitigation of disservice while enabling improvement in ecosystem services. The model was developed after more than 30 years of habitat management following modification of a salt marsh to control mosquito production. We discuss the application of the model in a mangrove forest known to produce mosquitoes and outline the benefits arising from using the model.

  3. Exploratory analysis of atmospheric pollution in a coastal forest ecosystem in central Italy

    Directory of Open Access Journals (Sweden)

    Rita Aromolo

    2015-02-01

    Full Text Available Exploratory analysis of atmospheric pollution in a coastal forest ecosystem in central Italy - The study of spatial and temporal distribution of heavy metals in the atmosphere through the continuous assessment of deposition is of great interest for the analysis of anthropogenic pressure on the environment and the potential toxicity to humans and other living organisms. Information based on reliable estimates of heavy metals is therefore crucial for the evaluation of environmental quality. Trends in heavy metal concentration in atmospheric depositions on a coastal forest ecosystem (Castelporziano, Rome are analyzed in the present study based on a three-year monitoring field survey over three sites representative of different woodland characteristics in the area. Our results highlight both the influence of transportation processes in the short and medium distance based on the human pressure reflecting urban expansion and infrastructure development on the fringe of Castelporziano pristine forest. Further studies investigating the latent correlation with meteorological variables at various temporal scales are needed to provide a comprehensive picture of environmental conditions in a forest ecosystem subjected to increasing human pressure. Analysis of runoff water quality and the determination of other heavy metals, such as arsenic, may identify additional sources of pollution impacting soil and forest ecosystem.

  4. An invasive foundation species enhances multifunctionality in a coastal ecosystem.

    Science.gov (United States)

    Ramus, Aaron P; Silliman, Brian R; Thomsen, Mads S; Long, Zachary T

    2017-08-08

    While invasive species often threaten biodiversity and human well-being, their potential to enhance functioning by offsetting the loss of native habitat has rarely been considered. We manipulated the abundance of the nonnative, habitat-forming seaweed Gracilaria vermiculophylla in large plots (25 m 2 ) on southeastern US intertidal landscapes to assess impacts on multiple ecosystem functions underlying coastal ecosystem services. We document that in the absence of native habitat formers, this invasion has an overall positive, density-dependent impact across a diverse set of ecosystem processes (e.g., abundance and richness of nursery taxa, flow attenuation). Manipulation of invader abundance revealed both thresholds and saturations in the provisioning of ecosystem functions. Taken together, these findings call into question the focus of traditional invasion research and management that assumes negative effects of nonnatives, and emphasize the need to consider context-dependence and integrative measurements when assessing the impact of an invader, including density dependence, multifunctionality, and the status of native habitat formers. This work supports discussion of the idea that where native foundation species have been lost, invasive habitat formers may be considered as sources of valuable ecosystem functions.

  5. Characterizing Coastal Ecosystem Service Trade-offs with Future Urban Development in a Tropical City.

    Science.gov (United States)

    Richards, Daniel R; Friess, Daniel A

    2017-11-01

    With rapid urbanization in the coastal zone and increasing habitat losses, it is imperative to understand how urban development affects coastal biodiversity and ecosystem service provision. Furthermore, it is important to understand how habitat fragments can best be incorporated into broader land use planning and coastal management, in order to maximize the environmental benefits they provide. In this study, we characterized the trade-offs between (a) urban development and individual mangrove environmental indicators (habitat quality and ecosystem services), and (b) between different environmental indicators in the tropical nation of Singapore. A range of biological, biophysical, and cultural indicators, including carbon, charcoal production, support for offshore fisheries, recreation, and habitat quality for a threatened species were quantified using field-based, remote sensing, and expert survey methods. The shape of the trade-off Pareto frontiers was analyzed to assess the sensitivity of environmental indicators for development. When traded off individually with urban development, four out of five environmental indicators were insensitive to development, meaning that relatively minor degradation of the indicator occurred while development was below a certain threshold, although indicator loss accelerated once this threshold was reached. Most of the pairwise relationships between the five environmental indicators were synergistic; only carbon storage and charcoal production, and charcoal production and recreational accessibility showed trade-offs. Trade-off analysis and land use optimization using Pareto frontiers could be a useful decision-support tool for understanding how changes in land use and coastal management will impact the ability of ecosystems to provide environmental benefits.

  6. Characterizing Coastal Ecosystem Service Trade-offs with Future Urban Development in a Tropical City

    Science.gov (United States)

    Richards, Daniel R.; Friess, Daniel A.

    2017-11-01

    With rapid urbanization in the coastal zone and increasing habitat losses, it is imperative to understand how urban development affects coastal biodiversity and ecosystem service provision. Furthermore, it is important to understand how habitat fragments can best be incorporated into broader land use planning and coastal management, in order to maximize the environmental benefits they provide. In this study, we characterized the trade-offs between (a) urban development and individual mangrove environmental indicators (habitat quality and ecosystem services), and (b) between different environmental indicators in the tropical nation of Singapore. A range of biological, biophysical, and cultural indicators, including carbon, charcoal production, support for offshore fisheries, recreation, and habitat quality for a threatened species were quantified using field-based, remote sensing, and expert survey methods. The shape of the trade-off Pareto frontiers was analyzed to assess the sensitivity of environmental indicators for development. When traded off individually with urban development, four out of five environmental indicators were insensitive to development, meaning that relatively minor degradation of the indicator occurred while development was below a certain threshold, although indicator loss accelerated once this threshold was reached. Most of the pairwise relationships between the five environmental indicators were synergistic; only carbon storage and charcoal production, and charcoal production and recreational accessibility showed trade-offs. Trade-off analysis and land use optimization using Pareto frontiers could be a useful decision-support tool for understanding how changes in land use and coastal management will impact the ability of ecosystems to provide environmental benefits.

  7. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System.

    Science.gov (United States)

    Xiu, Peng; Chai, Fei; Curchitser, Enrique N; Castruccio, Frederic S

    2018-02-12

    Coastal upwelling ecosystems are among the most productive ecosystems in the world, meaning that their response to climate change is of critical importance. Our understanding of climate change impacts on marine ecosystems is largely limited to the open ocean, mainly because coastal upwelling is poorly reproduced by current earth system models. Here, a high-resolution model is used to examine the response of nutrients and plankton dynamics to future climate change in the California Current System (CCS). The results show increased upwelling intensity associated with stronger alongshore winds in the coastal region, and enhanced upper-ocean stratification in both the CCS and open ocean. Warming of the open ocean forces isotherms downwards, where they make contact with water masses with higher nutrient concentrations, thereby enhancing the nutrient flux to the deep source waters of the CCS. Increased winds and eddy activity further facilitate upward nutrient transport to the euphotic zone. However, the plankton community exhibits a complex and nonlinear response to increased nutrient input, as the food web dynamics tend to interact differently. This analysis highlights the difficulty in understanding how the marine ecosystem responds to a future warming climate, given to range of relevant processes operating at different scales.

  8. SCOR Working Group 137: "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems": An introduction to the special issue of Estuarine, Coastal and Shelf Science

    Science.gov (United States)

    Paerl, Hans W.; Yin, Kedong; O'Brien, Todd D.

    2015-09-01

    Phytoplankton form the base of most aquatic food webs and play a central role in assimilation and processing of carbon and nutrients, including nitrogen, phosphorus, silicon, iron and a wide range of trace elements (Reynolds, 2006). In the marine environment, estuarine and coastal ecosystems (jointly termed coastal here) are among the most productive, resourceful and dynamic habitats on Earth (Malone et al., 1999; Day et al., 2012). These ecosystems constitute only ∼10% of the global oceans' surface, but account for over 30% of its primary production (Day et al., 2012). They process vast amounts of nutrients, sediments, carbonaceous, and xenobiotic compounds generated in coastal watersheds, in which approximately 70% of the world's human population resides (Nixon, 1995; Vitousek et al., 1997; NOAA, 2013). Estuarine and coastal ecosystems are also strongly influenced by localized nutrient enrichment from coastal upwelling, with major impacts on the structure and function of phytoplankton communities and the food webs they support (Legendre and Rassoulzadegan, 2012; Paerl and Justić, 2012). In addition, introductions and invasions of exotic plant and animal species have led to significant "top down" mediated changes in phytoplankton community structure and function (Carlton, 1999; Thompson, 2005). Lastly, the coastal zone is the "front line" of climatically-induced environmental change, including warming, altered rainfall patterns, intensities and magnitudes (Trenberth, 2005; IPCC, 2012), which jointly impact phytoplankton community structure and function (Cloern and Jassby, 2012; Hall et al., 2013). The combined effects of these pressures translate into a myriad of changes in phytoplankton production and community structure along geomorphological and geographic gradients (Fig. 1), with cascading quantitative and qualitative impacts on biogeochemical cycling, food web structure and function, water quality and overall resourcefulness and sustainability of these

  9. Assessing radiation impact at a protected coastal sand dune site: an intercomparison of models for estimating the radiological exposure of non-human biota

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Michael D., E-mail: mwood@liv.ac.u [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER), Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); Beresford, Nicholas A.; Barnett, Catherine L. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire LA1 4AP (United Kingdom); Copplestone, David [Environment Agency, PO Box 12, Richard Fairclough House, Knutsford Road, Latchford, Warrington, Cheshire WA4 1HG (United Kingdom); Leah, Richard T. [Institute for Sustainable Water Integrated Management and Ecosystem Research (SWIMMER), Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom); School of Biological Sciences, Nicholson Building, University of Liverpool, Liverpool, Merseyside L69 3GP (United Kingdom)

    2009-12-15

    This paper presents the application of three publicly available biota dose assessment models (the ERICA Tool, R and D128/SP1a and RESRAD-BIOTA) to an assessment of the Drigg coastal sand dunes. Using measured {sup 90}Sr, {sup 99}Tc, {sup 137}Cs, {sup 238}Pu, {sup 239+240}Pu and {sup 241}Am activity concentrations in sand dune soil, activity concentration and dose rate predictions are made for a range of organisms including amphibians, birds, invertebrates, mammals, reptiles, plants and fungi. Predicted biota activity concentrations are compared to measured data where available. The main source of variability in the model predictions is the transfer parameters used and it is concluded that developing the available transfer databases should be a focus of future research effort. The value of taking an informed user approach to investigate the way in which models may be expected to be applied in practice is highlighted and a strategy for the future development of intercomparison exercises is presented.

  10. Assessing radiation impact at a protected coastal sand dune site: an intercomparison of models for estimating the radiological exposure of non-human biota

    International Nuclear Information System (INIS)

    Wood, Michael D.; Beresford, Nicholas A.; Barnett, Catherine L.; Copplestone, David; Leah, Richard T.

    2009-01-01

    This paper presents the application of three publicly available biota dose assessment models (the ERICA Tool, R and D128/SP1a and RESRAD-BIOTA) to an assessment of the Drigg coastal sand dunes. Using measured 90 Sr, 99 Tc, 137 Cs, 238 Pu, 239+240 Pu and 241 Am activity concentrations in sand dune soil, activity concentration and dose rate predictions are made for a range of organisms including amphibians, birds, invertebrates, mammals, reptiles, plants and fungi. Predicted biota activity concentrations are compared to measured data where available. The main source of variability in the model predictions is the transfer parameters used and it is concluded that developing the available transfer databases should be a focus of future research effort. The value of taking an informed user approach to investigate the way in which models may be expected to be applied in practice is highlighted and a strategy for the future development of intercomparison exercises is presented.

  11. Hurricane Ike: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Plant, Nathaniel G.; Stockdon, Hilary F.; Sallenger, Asbury H.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with the storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, and wave climate. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and large waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to those processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is equally important to the coastal change observed during extreme storm events. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms The U.S. Geological Survey's (USGS) National Assessment of Coastal Change Hazards Project (http://coastal.er.usgs.gov/hurricanes), strives to provide hazard information to those interested in the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure coastal changes associated with Hurricane Ike, which made landfall near Galveston, Texas, on September 13, 2008. Methods of observation included aerial photography and airborne topographic surveys. This report documents these data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline

  12. The influence of groundwater depth on coastal dune development at sand flats close to inlets

    Science.gov (United States)

    Silva, Filipe Galiforni; Wijnberg, Kathelijne M.; de Groot, Alma V.; Hulscher, Suzanne J. M. H.

    2018-05-01

    A cellular automata model is used to analyze the effects of groundwater levels and sediment supply on aeolian dune development occurring on sand flats close to inlets. The model considers, in a schematized and probabilistic way, aeolian transport processes, groundwater influence, vegetation development, and combined effects of waves and tides that can both erode and accrete the sand flat. Next to three idealized cases, a sand flat adjoining the barrier island of Texel, the Netherlands, was chosen as a case study. Elevation data from 18 annual LIDAR surveys was used to characterize sand flat and dune development. Additionally, a field survey was carried out to map the spatial variation in capillary fringe depth across the sand flat. Results show that for high groundwater situations, sediment supply became limited inducing formation of Coppice-like dunes, even though aeolian losses were regularly replenished by marine import during sand flat flooding. Long dune rows developed for high sediment supply scenarios which occurred for deep groundwater levels. Furthermore, a threshold depth appears to exist at which the groundwater level starts to affect dune development on the inlet sand flat. The threshold can vary spatially depending on external conditions such as topography. On sand flats close to inlets, groundwater is capable of introducing spatial variability in dune growth, which is consistent with dune development patterns found on the Texel sand flat.

  13. Variability and correlations of shoreline and dunes on the southern Baltic coast (CRS Lubiatowo, Poland)

    OpenAIRE

    Zbigniew Pruszak; Rafal Ostrowski; Jan Schönhofer

    2011-01-01

    The paper analyses the results of field investigations into the evolution of the shoreline and dune toe positions in a multi-bar,dissipative coastal zone. The correlations between the changes in the shoreline and the dune toe range from -0.4 to 0.8. It is most often the case that the dune toe is stable while the shoreline moves. Consistent cross-shore migration is slightly more likelyto happen than the divergent or convergent movements of both lines. Shoreline retreat and advance attain resp...

  14. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    Science.gov (United States)

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.

  15. Insect biodiversity of the Algodones Dunes of California

    Directory of Open Access Journals (Sweden)

    Lynn Kimsey

    2017-11-01

    Full Text Available Over a nine year period beginning in 2007 we surveyed the insects of the Algodones Dunes, Imperial Count, California, as part of a study undertaken for the U.S. Bureau of Land Management. In a series of 22 collecting trips ranging in duration from 2 to 8 days we thus far have accumulated records of 1,840 species, 21 orders and 244 families from the dunes. Hymenoptera constituted the most diverse order, comprising about 45% of all the species recovered. Insect diversity and abundance peaked during the hottest part of the year between the months of May and September. Life history traits of the insects sampled included herbivores (29.6%, parasitoids (28.7%, predators (18.1%, pollen/nectar feeders (10.9%, detritivores (6.2% and scavengers (2.4%. Seventy-nine or 4% of the insect species collected in the dunes have been solely recorded from there, and 3% of the species almost certainly derive from adjacent aquatic habitats or agricultural ecosystems, as their life histories could not be completed in Algodones Dunes habitat. The insect fauna of the Algodones Dunes is unexpectedly rich and diverse.

  16. Including ecosystem dynamics in risk assessment of radioactive waste in coastal regions

    International Nuclear Information System (INIS)

    Kumblad, L.; Kautsky, U.; Gilek, M.

    2000-01-01

    Radiation protection has mainly focused on assessing and minimising risks of negative effects on human health. Although some efforts have been made to estimate effects on non-human populations, modelling of radiation risks to other components of the ecosystem have often lead to more or less disappointing results. In this paper an ecosystem approach is suggested and exemplified with a preliminary 14 C model of a coastal Baltic ecosystem. Advantages with the proposed ecosystem approach are for example the possibility to detect important but previously neglected pathways to humans since the whole ecosystem is analysed. The results from the model indicate that a rather small share of hypothetical released 14 C would accumulate in biota due to large water exchange in the modelled area. However, modelled future scenarios imply opposite results, i.e. relatively high doses in biota, due to changes of the physical properties in the area that makes a larger accumulation possible. (author)

  17. Millennium Ecosystem Assessment: MA Ecosystems

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Ecosystems provides data and information on the extent and classification of ecosystems circa 2000, including coastal,...

  18. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge

    Directory of Open Access Journals (Sweden)

    Tomasz A. Łabuz

    2014-01-01

    Full Text Available The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves attacking the coast for almost 12 days. Quantitative analyses of the morphological dynamics of the coastal dunes are presented for 57 profiles located along the coast. Only those accumulative sections of the Polish coast are analysed where sand accumulation did occur and led to new foredune development. The mean rate of dune erosion was 2.5 m3 per square metre with an average toe retreat of 1.4 m. Erosion understood as dune retreat was greater when a beach was lower (correlation coefficient 0.8. Dune erosion did not occur on coasts with beaches higher than 3.2 m or on lower ones covered by embryo dunes.

  19. Structure and floristic pattern of a coastal dunes in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Augusto Giaretta

    2013-03-01

    Full Text Available The Brazilian shrublands area (restinga is composed of marine coast vegetation on Quaternary sandy plains, where the species composition can vary depending on the surrounding ecosystems. The aims of this study were to describe the structure and floristic composition of a restinga near the community of Itaúnas, in the northern part of the state of Espírito Santo, to identify any relationships between this restinga and surrounding plant formations, and to determine which are the species that occur preferentially in the coastal forests of Espírito Santo. We sampled woody plants with a diameter at breast height > 2.5 cm, excluding lianas, in 50 plots of 100 m². We selected studies of coastal forests in the states of Espírito Santo and Bahia to prepare a database that would reveal patterns of floristic variation among these areas. We used t wo-way indicator species analysis for the identification of the species that occur preferentially in the coastal forests of Espírito Santo. We identified 114 species belonging to 38 families. Species richness was greatest for Myrtaceae (26 species, followed by Fabaceae (10. The Shannon index for the study area was 3.96. The estimated total density was 3,330 individuals/ha and basal area was 32.02 m²/ha. The highest importance value (IV was for Protium heptaphyllum (IV, 23.4, indicating that it is characteristic of the Espírito Santo restinga. The results of our floristic analysis indicate that the species composition of the Itaúnas restinga is influenced by the so-called tabuleiro forests (coastal lowland forests on Tertiary deposits, which are most common in northern Espírito Santo. This seems to be the main factor responsible for the gradual reduction in floristic similarity between the restingas in the north of Espírito Santo and those in the south of the state, each constituting a distinct floristic block. In addition, we generated lists of species that occur preferentially in the restinga and

  20. Fate and effects of petroleum hydrocarbons in marine coastal ecosystems

    International Nuclear Information System (INIS)

    Vanderhorst, J.R.

    1977-01-01

    Preliminary results are reported from field and laboratory studies on the effects of petroleum hydrocarbons on marine organisms of Northwest Pacific coastal ecosystems. Chemical methods for the characterization of test solutions for specific hydrocarbons (benzene, toluene, xylene, and heptodecane) were developed concurrently with population and community studies of the effects of short-term and chronic exposures. Results are reported from studies on algae (Ulva), clams (protothaca staminea), crustaceans (Anomyx and Neomysis) and burrowing worms

  1. FAUNA OF COLEPTERA,TENEBRIORIDAE OF ARID COASTAL AND ISLAND ECOSYSTEMS OF THE CASPIAN SEA.

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2014-01-01

    Full Text Available Aim. The aim of the given paper is to expose species structure and geographical distribution of Coleoptera, Tenebrioridae (C, T of coastal and island ecosystem of the Caspian Sea. The given report is compiled of the matcrials, collected in different periods by authors (1961-2013 in the Caucasian part of the Caspian Sea, in the south of the European part of the Russian Federation, Kazakhstan, islands (the Chechen island, the Nord island. The Tuleniyisland. The Kulaly island, collective materials (ZIN; RAS, museum of Zoology of MSU, Institute NAN of Azerbaijan, National museum of Georgia and materials published (Kryzhanovsky, 1965, Medvedev, 1987, 1990; Medvedev, Nepesova, 1990; Shuster, 1934; Kaluzhnaya, 1982; Arzanov and others, 2004, Egorov, 2006.Methods. We used the traditional methods of collecting (hand picking, traps soil, soil traps light amplification light traps, processing and material definition. List of species composition discussed fauna composed by modern taxonomy using directories. Location. Coastal and island ecosystems of the Caspian sea.Results. Species structure and data on general and regional distribution of C,T of coastal and island ecosystems of the Caspian Sea is represented in the paper. Faund discussed is widely represented in the fauna of arid regions of land, especially in the fauna of subtropical deserts and semideserts.Main conclusions. Results of the study will be a step in the determination of age of the islands through the biological diversity and the consequent level regime of the Caspian Sea, as well as possible changes in the population structure of darkling beetles (Coleoptera: Tenebrionidae on island ecosystems.

  2. Does salt stress constrain spatial distribution of dune building grasses Ammophila arenaria and Elytrichia juncea on the beach?

    Science.gov (United States)

    van Puijenbroek, Marinka E B; Teichmann, Corry; Meijdam, Noortje; Oliveras, Imma; Berendse, Frank; Limpens, Juul

    2017-09-01

    Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea-level rise. In this study, we explored to what extent salt stress experienced by dune building plant species constrains their spatial distribution at the Dutch sandy coast. We conducted a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea . In the field, we measured salinity and monitored growth of transplanted grasses in four vegetation zones: (I) nonvegetated beach, (II) E. juncea occurring, (III) both species co-occurring, and (IV) A. arenaria dominant. In the glasshouse, we subjected the two species to six soil salinity treatments, with and without salt spray. We monitored biomass, photosynthesis, leaf sodium, and nutrient concentrations over a growing season. The vegetation zones were weakly associated with summer soil salinity; zone I and II were significantly more saline than zones III and IV. Ammophila arenaria performed equally (zone II) or better (zones III, IV) than E. juncea , suggesting soil salinity did not limit species performance. Both species showed severe winter mortality. In the glasshouse, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity. Our findings suggest that soil salinity stress either takes place in winter, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected.

  3. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    Science.gov (United States)

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  4. Coastal vulnerability assessment using Fuzzy Logic and Bayesian Belief Network approaches

    Science.gov (United States)

    Valentini, Emiliana; Nguyen Xuan, Alessandra; Filipponi, Federico; Taramelli, Andrea

    2017-04-01

    Natural hazards such as sea surge are threatening low-lying coastal plains. In order to deal with disturbances a deeper understanding of benefits deriving from ecosystem services assessment, management and planning can contribute to enhance the resilience of coastal systems. In this frame assessing current and future vulnerability is a key concern of many Systems Of Systems SOS (social, ecological, institutional) that deals with several challenges like the definition of Essential Variables (EVs) able to synthesize the required information, the assignment of different weight to be attributed to each considered variable, the selection of method for combining the relevant variables. It is widely recognized that ecosystems contribute to human wellbeing and then their conservation increases the resilience capacities and could play a key role in reducing climate related risk and thus physical and economic losses. A way to fully exploit ecosystems potential, i.e. their so called ecopotential (see H2020 EU funded project "ECOPOTENTIAL"), is the Ecosystem based Adaptation (EbA): the use of ecosystem services as part of an adaptation strategy. In order to provide insight in understanding regulating ecosystem services to surge and which variables influence them and to make the best use of available data and information (EO products, in situ data and modelling), we propose a multi-component surge vulnerability assessment, focusing on coastal sandy dunes as natural barriers. The aim is to combine together eco-geomorphological and socio-economic variables with the hazard component on the base of different approaches: 1) Fuzzy Logic; 2) Bayesian Belief Networks (BBN). The Fuzzy Logic approach is very useful to get a spatialized information and it can easily combine variables coming from different sources. It provides information on vulnerability moving along-shore and across-shore (beach-dune transect), highlighting the variability of vulnerability conditions in the spatial

  5. Catchment2Coast: A systems approach to coupled river-coastal ecosystem science and management

    CSIR Research Space (South Africa)

    Monteiro, PMS

    2009-07-01

    Full Text Available Catchment2Coast was an interdisciplinary research and modelling project that aimed to improve understanding of the linkages between coastal ecosystems and the adjacent river catchments. The project involved nine partner organizations from three...

  6. Coastal livelihood transitions under globalization with implications for trans-ecosystem interactions.

    Science.gov (United States)

    Kramer, Daniel B; Stevens, Kara; Williams, Nicholas E; Sistla, Seeta A; Roddy, Adam B; Urquhart, Gerald R

    2017-01-01

    Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.

  7. Coastal livelihood transitions under globalization with implications for trans-ecosystem interactions.

    Directory of Open Access Journals (Sweden)

    Daniel B Kramer

    Full Text Available Anthropogenic threats to natural systems can be exacerbated due to connectivity between marine, freshwater, and terrestrial ecosystems, complicating the already daunting task of governance across the land-sea interface. Globalization, including new access to markets, can change social-ecological, land-sea linkages via livelihood responses and adaptations by local people. As a first step in understanding these trans-ecosystem effects, we examined exit and entry decisions of artisanal fishers and smallholder farmers on the rapidly globalizing Caribbean coast of Nicaragua. We found that exit and entry decisions demonstrated clear temporal and spatial patterns and that these decisions differed by livelihood. In addition to household characteristics, livelihood exit and entry decisions were strongly affected by new access to regional and global markets. The natural resource implications of these livelihood decisions are potentially profound as they provide novel linkages and spatially-explicit feedbacks between terrestrial and marine ecosystems. Our findings support the need for more scientific inquiry in understanding trans-ecosystem tradeoffs due to linked-livelihood transitions as well as the need for a trans-ecosystem approach to natural resource management and development policy in rapidly changing coastal regions.

  8. Using models in Integrated Ecosystem Assessment of coastal areas

    Science.gov (United States)

    Solidoro, Cosimo; Bandelj, Vinko; Cossarini, Gianpiero; Melaku Canu, Donata; Libralato, Simone

    2014-05-01

    Numerical Models can greatly contribute to integrated ecological assessment of coastal and marine systems. Indeed, models can: i) assist in the identification of efficient sampling strategy; ii) provide space interpolation and time extrapolation of experiemtanl data which are based on the knowedge on processes dynamics and causal realtionships which is coded within the model, iii) provide estimates of hardly measurable indicators. Furthermore model can provide indication on potential effects of implementation of alternative management policies. Finally, by providing a synthetic representation of an ideal system, based on its essential dynamic, model return a picture of ideal behaviour of a system in the absence of external perturbation, alteration, noise, which might help in the identification of reference behaivuor. As an important example, model based reanalyses of biogeochemical and ecological properties are an urgent need for the estimate of the environmental status and the assessment of efficacy of conservation and environmental policies, also with reference to the enforcement of the European MSFD. However, the use of numerical models, and particularly of ecological models, in modeling and in environmental management still is far from be the rule, possibly because of a lack in realizing the benefits which a full integration of modeling and montoring systems might provide, possibly because of a lack of trust in modeling results, or because many problems still exists in the development, validation and implementation of models. For istance, assessing the validity of model results is a complex process that requires the definition of appropriate indicators, metrics, methodologies and faces with the scarcity of real-time in-situ biogeochemical data. Furthermore, biogeochemical models typically consider dozens of variables which are heavily undersampled. Here we show how the integration of mathematical model and monitoring data can support integrated ecosystem

  9. Uavs to Assess the Evolution of Embryo Dunes

    Science.gov (United States)

    Taddia, Y.; Corbau, C.; Zambello, E.; Russo, V.; Simeoni, U.; Russo, P.; Pellegrinelli, A.

    2017-08-01

    The balance of a coastal environment is particularly complex: the continuous formation of dunes, their destruction as a result of violent storms, the growth of vegetation and the consequent growth of the dunes themselves are phenomena that significantly affect this balance. This work presents an approach to the long-term monitoring of a complex dune system by means of Unmanned Aerial Vehicles (UAVs). Four different surveys were carried out between November 2015 and November 2016. Aerial photogrammetric data were acquired during flights by a DJI Phantom 2 and a DJI Phantom 3 with cameras in a nadiral arrangement. GNSS receivers in Network Real Time Kinematic (NRTK) mode were used to frame models in the European Terrestrial Reference System. Processing of the captured images consisted in reconstruction of a three-dimensional model using the principles of Structure from Motion (SfM). Particular care was necessary due to the vegetation: filtering of the dense cloud, mainly based on slope detection, was performed to minimize this issue. Final products of the SfM approach were represented by Digital Elevation Models (DEMs) of the sandy coastal environment. Each model was validated by comparison through specially surveyed points. Other analyses were also performed, such as cross sections and computing elevation variations over time. The use of digital photogrammetry by UAVs is particularly reliable: fast acquisition of the images, reconstruction of high-density point clouds, high resolution of final elevation models, as well as flexibility, low cost and accuracy comparable with other available techniques.

  10. UAVS TO ASSESS THE EVOLUTION OF EMBRYO DUNES

    Directory of Open Access Journals (Sweden)

    Y. Taddia

    2017-08-01

    Full Text Available The balance of a coastal environment is particularly complex: the continuous formation of dunes, their destruction as a result of violent storms, the growth of vegetation and the consequent growth of the dunes themselves are phenomena that significantly affect this balance. This work presents an approach to the long-term monitoring of a complex dune system by means of Unmanned Aerial Vehicles (UAVs. Four different surveys were carried out between November 2015 and November 2016. Aerial photogrammetric data were acquired during flights by a DJI Phantom 2 and a DJI Phantom 3 with cameras in a nadiral arrangement. GNSS receivers in Network Real Time Kinematic (NRTK mode were used to frame models in the European Terrestrial Reference System. Processing of the captured images consisted in reconstruction of a three-dimensional model using the principles of Structure from Motion (SfM. Particular care was necessary due to the vegetation: filtering of the dense cloud, mainly based on slope detection, was performed to minimize this issue. Final products of the SfM approach were represented by Digital Elevation Models (DEMs of the sandy coastal environment. Each model was validated by comparison through specially surveyed points. Other analyses were also performed, such as cross sections and computing elevation variations over time. The use of digital photogrammetry by UAVs is particularly reliable: fast acquisition of the images, reconstruction of high-density point clouds, high resolution of final elevation models, as well as flexibility, low cost and accuracy comparable with other available techniques.

  11. Impacts of the Nutrient Inputs from Riverine on the Dynamic and Community Structure of Fungal-like Protists in the Coastal Ocean Ecosystems

    Science.gov (United States)

    Duan, Y.; Wang, G.; Xie, N.

    2016-02-01

    The coastal ocean connects terrestrial (e.g., rivers and estuaries) with oceanic ecosystems and is considered as a major component of global carbon cycles and budgets. The coastal waters are featured with a high biodiversity and high primary production. Because of the excessive primary production, a large fraction of primary organic matter becomes available to consumers as detritus in the coastal waters. Bacterioplankton have long been known to play a key role in the degradation of this detritus, and export and storage of organic matter in the coastal ecosystems. However, the primary and secondary production and the carbon biogeochemical processes in the ecosystems are largely regulated by nutrient inputs from riverine and other anthropogenic activities through heterotrophic microbial communities. Thraustochytrids, commonly known as fungal-like protists, are unicellular heterotrophic protists and are recently acknowledged to play a significant role in ocean carbon cycling. Their abundance exceeds that of bacterioplankton in the most time of the year in the coastal waters of China. Also, their abundance and diversity are largely regulated by nutrients inputs from riverine and other anthropogenic activities. Our findings support that thraustochytrids are a dominant heterotrophic microbial group in the coastal waters. Evidently, thraustochytrids are an import, but neglected, component in microbial carbon biogeochemical processes of the coastal ocean.

  12. Integrating ecosystem services and climate change responses in coastal wetlands development plans for Bangladesh

    NARCIS (Netherlands)

    Sarwar, M.H.; Hein, L.G.; Rip, F.I.; Dearing, J.A.

    2015-01-01

    This study explores the integration of ecosystem services and climate change adaptation in development plans for coastal wetlands in Bangladesh. A new response framework for adaptation is proposed, based on an empirical analysis and consultations with stakeholders, using a modified version of the

  13. Urgent and Compelling Need for Coastal and Inland Aquatic Ecosystem Research Using Space-Based Sensors

    Science.gov (United States)

    Otis, D. B.; Muller-Karger, F. E.; Hestir, E.; Turpie, K. R.; Roberts, D. A.; Frouin, R.; Goodman, J.; Schaeffer, B. A.; Franz, B. A.; Humm, D. C.

    2016-12-01

    Coastal and inland waters and associated aquatic habitats, including wetlands, mangroves, submerged grasses, and coral reefs, are some of the most productive and diverse ecosystems on the planet. They provide services critical to human health, safety, and prosperity. Yet, they are highly vulnerable to changes in climate and other anthropogenic pressures. With a global population of over seven billion people and climbing, and a warming atmosphere driven by carbon dioxide now in excess of 400 ppb, these services are at risk of rapidly diminishing globally. We know little about how these ecosystems function. We need to characterize short-term changes in the functional biodiversity and biogeochemical cycles of these coastal and wetland ecosystems, from canopy to benthos, and trace these changes to their underlying environmental influences. This requires an observation-based approach that covers coastal and inland aquatic ecosystems in a repeated, synoptic manner. Space-borne sensing systems can provide this capability, supported by coordinated in situ calibration and product validation activities. The design requires high temporal resolution (weekly or better), medium spatial resolution (30 m pixels at nadir to complement Landsat-class sensors), and highly sensitive, ocean-color radiometric quality, high resolution spectroscopy with Visible and Short-Wave IR bands (order of 10 nm or better) to assess both atmospheric correction parameters and land vegetation composition. The strategy needs to include sunglint avoidance schemes, and methods to maximize signal to noise ratios and temporal coverage of aquatic areas. We describe such a system, and urge the U.S. to implement such an observing strategy in the short-term and sustain it for the benefit of humankind.

  14. Drought and coastal ecosystems: an assessment of decision maker needs for information

    Science.gov (United States)

    Kirsten Lackstrom; Amanda Brennan; Kirstin Dow

    2016-01-01

    The National Integrated Drought Information System (NIDIS) is in the process of developing drought early warning systems in areas of the U.S. where the development and coordination of drought information is needed. In summer 2012, NIDIS launched a pilot program in North and South Carolina, addressing the uniqueness of drought impacts on coastal ecosystems.

  15. Oceans and Human Health: Linking Ocean, Organism, and Human Health for Sustainable Management of Coastal Ecosystems

    Science.gov (United States)

    Sandifer, P. A.; Trtanj, J.; Collier, T. K.

    2012-12-01

    Scientists and policy-makers are increasingly recognizing that sustainable coastal communities depend on healthy and resilient economies, ecosystems, and people, and that the condition or "health" of the coastal ocean and humans are intimately and inextricably connected. A wealth of ecosystem services provided by ocean and coastal environments are crucial for human survival and well being. Nonetheless, the health of coastal communities, their economies, connected ecosystems and ecosystem services, and people are under increasing threats from health risks associated with environmental degradation, climate change, and unwise land use practices, all of which contribute to growing burdens of naturally-occurring and introduced pathogens, noxious algae, and chemical contaminants. The occurrence, frequency, intensity, geographic range, and number and kinds of ocean health threats are increasing, with concomitant health and economic effects and eroding public confidence in the safety and wholesomeness of coastal environments and resources. Concerns in the research and public health communities, many summarized in the seminal 1999 NRC Report, From Monsoons to Microbes and the 2004 final report of the US Commission on Ocean Policy, resulted in establishment of a new "meta-discipline" known as Oceans and Human Health (OHH). OHH brings together practitioners in oceanography, marine biology, ecology, biomedical science, medicine, economics and other social sciences, epidemiology, environmental management, and public health to focus on water- and food-borne causes of human and animal illnesses associated with ocean and coastal systems and on health benefits of seafood and other marine products. It integrates information across multiple disciplines to increase knowledge of ocean health risks and benefits and communicate such information to enhance public safety. Recognizing the need for a comprehensive approach to ocean health threats and benefits, Congress passed the Oceans and

  16. Hurricane Gustav: Observations and Analysis of Coastal Change

    Science.gov (United States)

    Doran, Kara S.; Stockdon, Hilary F.; Plant, Nathaniel G.; Sallenger, Asbury H.; Guy, Kristy K.; Serafin, Katherine A.

    2009-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical processes of interest are the wind field, storm surge, currents, and wave field. Not only does wind cause direct damage to structures along the coast, but it is ultimately responsible for much of the energy that is transferred to the ocean and expressed as storm surge, mean currents, and surface waves. Waves and currents are the processes most responsible for moving sediments in the coastal zone during extreme storm events. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to attack parts of the coast not normally exposed to these processes. Coastal geomorphology, including shapes of the shoreline, beaches, and dunes, is also a significant aspect of the coastal change observed during extreme storms. Relevant geomorphic variables include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to predict coastal vulnerability to storms. The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards project (http://coastal.er.usgs.gov/hurricanes) strives to provide hazard information to those concerned about the Nation's coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. As part of the National Assessment, observations were collected to measure morphological changes associated with Hurricane Gustav, which made landfall near Cocodrie, Louisiana, on September 1, 2008. Methods of observation included oblique aerial photography, airborne topographic surveys, and ground-based topographic surveys. This report documents these data-collection efforts and presents qualitative and

  17. CO2 sequestration in two mediterranean dune areas subjected to a different level of anthropogenic disturbance

    Science.gov (United States)

    Bonito, Andrea; Ricotta, Carlo; Iberite, Mauro; Gratani, Loretta; Varone, Laura

    2017-09-01

    Coastal sand dunes are among the most threatened habitats, especially in the Mediterranean Basin, where the high levels of human pressure impair the presence of plant species, putting at risk the maintenance of the ecosystem services, such as CO2 sequestration provided by these habitats. The aim of this study was to analyze how disturbance-induced changes in plant species abundance patterns account for variations in annual CO2 sequestration flow (CS) of Mediterranean sand dune areas. Two sites characterized by a high (site HAD) and a lower (site LAD) anthropogenic disturbance level were selected. At both sites, plant species number, cover, height and CS based on net photosynthesis measurements were sampled. At the plant species level, our results highlighted that Ammophila arenaria and Pancratium maritimum, had a key role in CS. Moreover, the results revealed a patchy species assemblage in both sites. In particular, HAD was characterized by a higher extension of the anthropogenic aphytoic zone (64% of the total transect length) than LAD. In spite of the observed differences in plant species composition, there were not significant differences between HAD and LAD in structural and functional traits, such as plant height and net photosynthesis. As a consequence, HAD and LAD had a similar CS (443 and 421 Mg CO2 ha-1 y-1, respectively). From a monetary point of view, our estimates based on the social costs of carbon revealed that the flow of sequestered CO2 valued on an average 3181 ± 114 ha-1 year-1 (mean value for the two sites). However, considering also the value of the CO2 negative flow related to loss of vegetated area, the annual net benefit arising from CO2 sequestration amounted to 1641 and 1772 for HAD and LAD, respectively. Overall, the results highlighted the importance to maximize the efforts to preserve dune habitats by applying an effective management policy, which could allow maintaining also a regulatory ecosystem service such as CO2 sequestration.

  18. Human impacts quantification on the coastal landforms of Gran Canaria Island (Canary Islands)

    Science.gov (United States)

    Ferrer-Valero, Nicolás; Hernández-Calvento, Luis; Hernández-Cordero, Antonio I.

    2017-06-01

    The coastal areas of the Canary Islands are particularly sensitive to changes, both from a natural perspective and for their potential socio-economic implications. In this paper, the state of conservation of an insular coast is approached from a geomorphological point of view, considering recent changes induced by urban and tourism development. The analysis is applied to the coast of Gran Canaria, a small Atlantic island of volcanic origin, subject to a high degree of human pressure on its coastal areas, especially in recent decades. Currently, much of the economic activity of Gran Canaria is linked to mass tourism, associated with climatic and geomorphological features of the coast. This work is addressed through detailed mapping of coastal landforms across the island (256 km perimeter), corresponding to the period before the urban and tourism development (late 19th century for the island's capital, mid-20th century for the rest of the island) and today. The comparison between the coastal geomorphology before and after the urban and tourism development was established through four categories of human impacts, related to their conservation state: unaltered, altered, semi-destroyed and extinct. The results indicate that 43% of coastal landforms have been affected by human impacts, while 57% remain unaltered. The most affected are sedimentary landforms, namely coastal dunes, palaeo-dunes, beaches and wetlands. Geodiversity loss was also evaluated by applying two diversity indices. The coastal geodiversity loss by total or partial destruction of landforms is estimated at - 15.2%, according to Shannon index (H‧), while it increases to - 32.1% according to an index proposed in this paper. We conclude that the transformations of the coast of Gran Canaria induced by urban and tourism development have heavily affected the most singular coastal landforms (dunes, palaeo-dunes and wetlands), reducing significantly its geodiversity.

  19. Spatio-temporal variability in accretion and erosion of coastal foredunes in the Netherlands: regional climate and local topography

    NARCIS (Netherlands)

    Keijsers, J.G.S.; Poortinga, A.; Riksen, M.J.P.M.; Maroulis, J.

    2014-01-01

    Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal

  20. Advanced InSAR imaging for dune mapping

    Science.gov (United States)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and

  1. The capacities of institutions for the integration of ecosystem services in coastal strategic planning: The case of Jiaozhou Bay

    NARCIS (Netherlands)

    Li, Ruiqian; Li, Yongfu; Woltjer, Johan; van den Brink, Margo

    2015-01-01

    This paper explains how the practice of integrating ecosystem-service thinking (i.e., ecological benefits for human beings) and institutions (i.e., organisations, policy rules) is essential for coastal spatial planning. Adopting an integrated perspective on ecosystem services (ESs) both helps

  2. Beach-dune dynamics: Spatio-temporal patterns of aeolian sediment transport under complex offshore airflow

    Science.gov (United States)

    Lynch, K.; Jackson, D.; Delgado-Fernandez, I.; Cooper, J. A.; Baas, A. C.; Beyers, M.

    2010-12-01

    This study examines sand transport and wind speed across a beach at Magilligan Strand, Northern Ireland, under offshore wind conditions. Traditionally the offshore component of local wind regimes has been ignored when quantifying beach-dune sediment budgets, with the sheltering effect of the foredune assumed to prohibit grain entrainment on the adjoining beach. Recent investigations of secondary airflow patterns over coastal dunes have suggested this may not be the case, that the turbulent nature of the airflow in these zones enhances sediment transport potential. Beach sediment may be delivered to the dune toe by re-circulating eddies under offshore winds in coastal areas, which may explain much of the dynamics of aeolian dunes on coasts where the dominant wind direction is offshore. The present study investigated aeolian sediment transport patterns under an offshore wind event. Empirical data were collected using load cell traps, for aeolian sediment transport, co-located with 3-D ultrasonic anemometers. The instrument positioning on the sub-aerial beach was informed by prior analysis of the airflow patterns using computational fluid dynamics. The array covered a total beach area of 90 m alongshore by 65 m cross-shore from the dune crest. Results confirm that sediment transport occurred in the ‘sheltered’ area under offshore winds. Over short time and space scales the nature of the transport is highly complex; however, preferential zones for sand entrainment may be identified. Alongshore spatial heterogeneity of sediment transport seems to show a relationship to undulations in the dune crest, while temporal and spatial variations may also be related to the position of the airflow reattachment zone. These results highlight the important feedbacks between flow characteristics and transport in a complex three dimensional surface.

  3. Quantifying thresholds for significant dune erosion along the Sefton Coast, Northwest England

    Science.gov (United States)

    Esteves, Luciana S.; Brown, Jennifer M.; Williams, Jon J.; Lymbery, Graham

    2012-03-01

    Field and model hindcast data are used to establish a critical dune erosion threshold for the Sefton Coast (NW England). Events are classified as causing significant erosion if they result in: (a) a mean dune retreat along the entire study area of > 2 m; (b) a dune retreat of ≥ 5 m along a coastal segment ≥ 2 km in length; and (c) an eroded area ≥ 20,000 m2. For the period 1996 to 2008, individual storms were characterised using hindcast results from a POLCOMS-WAM model and measured data from the Liverpool Bay Coastal Observatory. Results show that combined extreme surge levels (> 1.5 m) and wave heights (> 4 m), or tidal water levels above 9.0 m Chart Datum (CD), do not always result in significant dune erosion. Evidence suggests that erosion is more likely to occur when wave heights are > 2.6 m, peak water level is > 10.2 m CD at Liverpool and when consecutive tidal cycles provide 10 h or more of water levels above 9.4 m CD. However, lower water levels and wave heights, and shorter events of sustained water levels, can cause significant erosion in the summer. While the return period for events giving rise to the most severe erosion in the winter is > 50 years, significant erosion in the summer can be caused by events with return periods dune toe elevation c. 30 cm. Although the study shows it might be possible to characterise objectively storm events based on oceanographic conditions, the resultant morphological change at the coast is demonstrated to depend on the time and duration of events, and on other variables which are not so easy to quantify. Further investigation is needed to understand the influence of alongshore and seasonal variability in beach/dune morphology in determining the response to the hydrodynamic and meteorological conditions causing significant erosion. Improved monitoring pre- and post-storm of changes in beach/dune morphology is required to develop reliable proxies that can be used to establish early warning systems to mitigate the

  4. Mycorrhizal status of Lycium europaeum in the coastal dunes of ...

    African Journals Online (AJOL)

    SARAH

    2013-11-30

    Nov 30, 2013 ... to fix the mobile dunes and to protect the reserve of Sidi Boughaba threatened by the progress of sand. Mycorrhization probably .... 90°C in the water bath until the roots became white. Roots were then rinsed, after this; ..... early in the vegetation succession on degraded soil and promote subsequently the ...

  5. Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network

    Science.gov (United States)

    Plant, Nathaniel G.

    2016-01-01

    Predictions of coastal evolution driven by episodic and persistent processes associated with storms and relative sea-level rise (SLR) are required to test our understanding, evaluate our predictive capability, and to provide guidance for coastal management decisions. Previous work demonstrated that the spatial variability of long-term shoreline change can be predicted using observed SLR rates, tide range, wave height, coastal slope, and a characterization of the geomorphic setting. The shoreline is not suf- ficient to indicate which processes are important in causing shoreline change, such as overwash that depends on coastal dune elevations. Predicting dune height is intrinsically important to assess future storm vulnerability. Here, we enhance shoreline-change predictions by including dune height as a vari- able in a statistical modeling approach. Dune height can also be used as an input variable, but it does not improve the shoreline-change prediction skill. Dune-height input does help to reduce prediction uncer- tainty. That is, by including dune height, the prediction is more precise but not more accurate. Comparing hindcast evaluations, better predictive skill was found when predicting dune height (0.8) compared with shoreline change (0.6). The skill depends on the level of detail of the model and we identify an optimized model that has high skill and minimal overfitting. The predictive model can be implemented with a range of forecast scenarios, and we illustrate the impacts of a higher future sea-level. This scenario shows that the shoreline change becomes increasingly erosional and more uncertain. Predicted dune heights are lower and the dune height uncertainty decreases.

  6. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; hide

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  7. Capacity building for tropical coastal ecosystems management using a dynamic teaching model

    DEFF Research Database (Denmark)

    Lindberg, Annika Büchert; Nielsen, Thomas; Macintosh, Donald

    2008-01-01

    This learning opportunity illustrates effective capacity building through a dynamic teaching model that involves you and gives you personal experiences. The teaching model is easy to adapt to local environments and the learning opportunity is relevant to everyone working in coastal natural resource...... in combining knowledge and methods and applying these in a real life situation. Objectives: The participants will apply the acquired knowledge of ecosystems and project management tools when describing ecosystem services and when planning a project The participants will act as different stakeholders during...... the role play and hereby gain experience from a situation mimicking real life project situation.; The participants will experience how dynamic teaching can improve capacity building....

  8. Visualizing Coastal Erosion, Overwash and Coastal Flooding in New England

    Science.gov (United States)

    Young Morse, R.; Shyka, T.

    2017-12-01

    Powerful East Coast storms and their associated storm tides and large, battering waves can lead to severe coastal change through erosion and re-deposition of beach sediment. The United States Geological Survey (USGS) has modeled such potential for geological response using a storm-impact scale that compares predicted elevations of hurricane-induced water levels and associated wave action to known elevations of coastal topography. The resulting storm surge and wave run-up hindcasts calculate dynamic surf zone collisions with dune structures using discrete regime categories of; "collision" (dune erosion), "overwash" and "inundation". The National Weather Service (NWS) recently began prototyping this empirical technique under the auspices of the North Atlantic Regional Team (NART). Real-time erosion and inundation forecasts were expanded to include both tropical and extra-tropical cyclones along vulnerable beaches (hotspots) on the New England coast. Preliminary results showed successful predictions of impact during hurricane Sandy and several intense Nor'easters. The forecasts were verified using observational datasets, including "ground truth" reports from Emergency Managers and storm-based, dune profile measurements organized through a Maine Sea Grant partnership. In an effort to produce real-time visualizations of this forecast output, the Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS) and the Gulf of Maine Research Institute (GMRI) partnered with NART to create graphical products of wave run-up levels for each New England "hotspot". The resulting prototype system updates the forecasts twice daily and allows users the ability to adjust atmospheric and sea state input into the calculations to account for model errors and forecast uncertainty. This talk will provide an overview of the empirical wave run-up calculations, the system used to produce forecast output and a demonstration of the new web based tool.

  9. Marine and coastal ecosystem services on the science–policy–practice nexus: challenges and opportunities from 11 European case studies

    NARCIS (Netherlands)

    Drakou, E.G.; Kermagoret, C.; Liquete, C.; Ruiz-Frau, A.; Burkhard, K.; Lillebø, A.I.; van Oudenhoven, A.P.E.; Ballé-Béganton, J.; Rodrigues, J.G.; Nieminen, E.; Oinonen, S.; Ziemba, A.; Gissi, E.; Depellegrin, D.; Veidemane, K.; Ruskule, A.; Delangue, J.; Böhnke-Henrichs, A.; Boon, A.; Wenning, R.; Martino, S.; Hasler, B.; Termansen, M.; Rockel, M.; Hummel, H.; El Serafy, G.; Peev, P.

    2017-01-01

    We compared and contrasted 11 European case studies to identify challenges and opportunitiestoward the operationalization of marine and coastal ecosystem service (MCES) assessments inEurope. This work is the output of a panel convened by the Marine Working Group of theEcosystemServices Partnership

  10. Parabolic dune reactivation and migration at Napeague, NY, USA: Insights from aerial and GPR imagery

    Science.gov (United States)

    Girardi, James D.; Davis, Dan M.

    2010-02-01

    Observations from mapping since the 19th century and aerial imagery since 1930 have been used to study changes in the aeolian geomorphology of coastal parabolic dunes over the last ~ 170 years in the Walking Dune Field, Napeague, NY. The five large parabolic dunes of the Walking Dune Field have all migrated across, or are presently interacting with, a variably forested area that has affected their migration, stabilization and morphology. This study has concentrated on a dune with a particularly complex history of stabilization, reactivation and migration. We have correlated that dune's surface evolution, as revealed by aerial imagery, with its internal structures imaged using 200 MHz and 500 MHz Ground Penetrating Radar (GPR) surveys. Both 2D (transect) and high-resolution 3D GPR imagery image downwind dipping bedding planes which can be grouped by apparent dip angle into several discrete packages of beds that reflect distinct decadal-scale episodes of dune reactivation and growth. From aerial and high resolution GPR imagery, we document a unique mode of reactivation and migration linked to upwind dune formation and parabolic dune interactions with forest trees. This study documents how dune-dune and dune-vegetation interactions have influenced a unique mode of blowout deposition that has alternated on a decadal scale between opposite sides of a parabolic dune during reactivation and migration. The pattern of recent parabolic dune reactivation and migration in the Walking Dune Field appears to be somewhat more complex, and perhaps more sensitive to subtle environmental pressures, than an idealized growth model with uniform deposition and purely on-axis migration. This pattern, believed to be prevalent among other parabolic dunes in the Walking Dune Field, may occur also in many other places where similar observational constraints are unavailable.

  11. Climate warming and estuarine and marine coastal ecosystems

    International Nuclear Information System (INIS)

    Kennedy, V.S.

    1994-01-01

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs

  12. Ecosystem-based management of coastal zones in face of climate change impacts: Challenges and inequalities.

    Science.gov (United States)

    Fernandino, Gerson; Elliff, Carla I; Silva, Iracema R

    2018-06-01

    Climate change effects have the potential of affecting both ocean and atmospheric processes. These changes pose serious threats to the millions of people that live by the coast. Thus, the objective of the present review is to discuss how climate change is altering (and will continue to alter) atmospheric and oceanic processes, what are the main implications of these alterations along the coastline, and which are the ecosystem-based management (EBM) strategies that have been proposed and applied to address these issues. While ocean warming, ocean acidification and increasing sea level have been more extensively studied, investigations on the effects of climate change to wind and wave climates are less frequent. Coastal ecosystems and their respective natural resources will respond differently according to location, environmental drivers and coastal processes. EBM strategies have mostly concentrated on improving ecosystem services, which can be used to assist in mitigating climate change effects. The main challenge for developing nations regards gaps in information and scarcity of resources. Thus, for effective management and adaptive EBM strategies to be developed worldwide, information at a local level is greatly needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Response of the chitinolytic microbial community to chitin amendments of dune soils

    NARCIS (Netherlands)

    De Boer, W.; Gerards, S.; Klein Gunnewiek, P.J.A.; Modderman, R.

    1999-01-01

    The dynamics of culturable chitin-degrading microorganisms were studied during a 16-week incubation of chitin-amended coastal dune soils that differed in acidity. Soil samples were incubated at normal (5% Why) and high (15% w/w) moisture levels. More than half of the added chitin was decomposed

  14. Variability and correlations of shoreline and dunes on the southern Baltic coast (CRS Lubiatowo, Poland

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2011-03-01

    Full Text Available The paper analyses the results of field investigations into the evolution of the shoreline and dune toe positions in a multi-bar,dissipative coastal zone. The correlations between the changes in the shoreline and the dune toe range from -0.4 to 0.8. It is most often the case that the dune toe is stable while the shoreline moves. Consistent cross-shore migration is slightly more likelyto happen than the divergent or convergent movements of both lines. Shoreline retreat and advance attain respective rates of 0.7 m day-1 and 0.4 m day-1. Deep-water wave energy of about 50 kJ m-1 constitutes the boundary between shore accumulation and erosion.

  15. Geomorphometry in coastal morphodynamics

    Science.gov (United States)

    Guisado-Pintado, Emilia; Jackson, Derek

    2017-04-01

    Geomorphometry is a cross-cutting discipline that has interwoven itself into multiple research themes due to its ability to encompass topographic quantification on many fronts. Its operational focus is largely defined as the extraction of land-surface parameters and earth surface characterisation. In particular, the coastal sciences have been enriched by the use of digital terrain production techniques both on land and in the nearshore/marine area. Numerous examples exist in which the utilisation of field instrumentation (e.g. LIDAR, GPS, Terrestrial Laser Scanning, multi-beam echo-sounders) are used for surface sampling and development of Digital Terrain Models, monitoring topographic change and creation of nearshore bathymetry, and have become central elements in modern investigations of coastal morphodynamics. The coastal zone is a highly dynamic system that embraces variable and at times, inter-related environments (sand dunes, sandy beaches, shoreline and nearshore) all of which require accurate and integrated monitoring. Although coastal studies can be widely diverse (with interconnected links to other related disciplines such as geology or biology), the characterisation of the landforms (coastal geomorphology) and associated processes (morphodynamics, hydrodynamics, aeolian processes) is perhaps where geomorphometry (topo-bathymetry quantification) is best highlighted. In this respect, many tools have been developed (or improved upon) for the acquisition of topographic data that now commands a high degree of accuracy, simplicity, and ultimately acquisition cost reduction. We present a series of field data acquisitions examples that have produced land surface characterisation using a range of techniques including traditional GPS surveys to more recent Terrestrial Laser Scanning and airborne LIDAR. These have been conducted within beach and dune environments and have helped describe erosion and depositional processes driven by wind and wave energy (high

  16. The Carolina Sandhills: Quaternary eolian sand sheets and dunes along the updip margin of the Atlantic Coastal Plain province, southeastern United States

    Science.gov (United States)

    Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard; Mahan, Shannon; Garrity, Christopher P.; Aleman Gonzalez, Wilma B.; Dobbs, Kerby M.

    2016-01-01

    The Carolina Sandhills is a physiographic region of the Atlantic Coastal Plain province in the southeastern United States. In Chesterfield County (South Carolina), the surficial sand of this region is the Pinehurst Formation, which is interpreted as eolian sand derived from the underlying Cretaceous Middendorf Formation. This sand has yielded three clusters of optically stimulated luminescence ages: (1) 75 to 37 thousand years ago (ka), coincident with growth of the Laurentide Ice Sheet; (2) 28 to 18 ka, coincident with the last glacial maximum (LGM); and (3) 12 to 6 ka, mostly coincident with the Younger Dryas through final collapse of the Laurentide Ice Sheet. Relict dune morphologies are consistent with winds from the west or northwest, coincident with modern and inferred LGM January wind directions. Sand sheets are more common than dunes because of effects of coarse grain size (mean range: 0.35–0.59 mm) and vegetation. The coarse grain size would have required LGM wind velocities of at least 4–6 m/sec, accounting for effects of colder air temperatures on eolian sand transport. The eolian interpretation of the Carolina Sandhills is consistent with other evidence for eolian activity in the southeastern United States during the last glaciation.

  17. Intertidal Sandbar Welding as a Primary Source of Sediment for Dune Growth: Evidence from a Large Scale Field Experiment

    Science.gov (United States)

    Cohn, N.; Ruggiero, P.; de Vries, S.

    2016-12-01

    Dunes provide the first line of defense from elevated water levels in low-lying coastal systems, limiting potentially major flooding, economic damages, and loss of livelihood. Despite the well documented importance of healthy dunes, our predictive ability of dune growth, particularly following erosive storm events, remains poor - resulting in part from traditionally studying the wet and dry beach as separate entities. In fact, however, dune recovery and growth is closely tied to the subtidal morphology and the nearshore hydrodynamic conditions, necessitating treating the entire coastal zone from the shoreface to the backshore as an integrated system. In this context, to further improve our understanding of the physical processes allowing for beach and dune growth during fair weather conditions, a large field experiment, the Sandbar-aEolian Dune EXchange EXperiment, was performed in summer 2016 in southwestern Washington, USA. Measurements of nearshore and atmospheric hydrodynamics, in-situ sediment transport, and morphology change provide insight into the time and space scales of nearshore-beach-dune exchanges along a rapidly prograding stretch of coast over a 6 week period. As part of this experiment, the hypothesis that dune growth is limited by the welding of intertidal sandbars to the shoreline (Houser, 2009) was tested. Using laser particle counters, bed elevation sensors (sonar altimeters and Microsoft Kinect), continuously logging sediment traps, RGB and IR cameras, and repeat morphology surveys (terrestrial lidar, kite based structure from motion, and RTK GPS), spatial and temporal trends in aeolian sediment transport were assessed in relation to the synoptic onshore migration and welding of intertidal sandbars. Observations from this experiment demonstrate that (1) the intertidal zone is the primary source of sediment to the dunes during non-storm conditions, (2) rates of saltation increase during later stages of bar welding but equivalent wind conditions

  18. Thermal biology of Liolaemus occipitalis (Squamata, Tropiduridae in the coastal sand dunes of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    C. S. Bujes

    Full Text Available The thermal biology of the small sand lizard, Liolaemus occipitalis, was studied in the coastal sand dunes at Quintão Beach (Palmares do Sul, Rio Grande do Sul, Brazil; 30° 24' S and 50° 17' W, between September, 1998 and August, 1999. Liolaemus occipitalis presented a mean body temperature of 30.89 °C (SD = 4.43 °C; min = 16.4 °C; max = 40.2 °C; N = 270, that varied on a daily and seasonal basis according to microhabitat thermal alterations. The substrate temperature was the main heat source for thermoregulation of L. occipitalis as in all seasons of the year it was responsible for the animals' temperature variation (82% of the collected lizards in the spring; 60% in the summer; 84% in the fall and 68% in the winter. The results indicate that L. occipitalis is a saxicolous, thigmothermic and heliothermic species that regulates its body temperature through behavioral mechanisms.

  19. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems.

    Science.gov (United States)

    Munier, B; Bendell, L I

    2018-01-01

    Nine urban intertidal regions in Burrard Inlet, Vancouver, British Columbia, Canada, were sampled for plastic debris. Debris included macro and micro plastics and originated from a wide diversity of uses ranging from personal hygiene to solar cells. Debris was characterized for its polymer through standard physiochemical characteristics, then subject to a weak acid extraction to remove the metals, zinc, copper, cadmium and lead from the polymer. Recently manufactured low density polyethylene (LDPE), nylon, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) were subject to the same extraction. Data was statistically analyzed by appropriate parametric and non-parametric tests when needed with significance set at P Plastic debris will affect metals within coastal ecosystems by; 1) providing a sorption site (copper and lead), notably for PVC 2) desorption from the plastic i.e., the "inherent" load (cadmium and zinc) and 3) serving as a point source of acute trace metal exposure to coastal ecosystems. All three mechanisms will put coastal ecosystems at risk to the toxic effects of these metals.

  20. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    Science.gov (United States)

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  1. Desalination impacts on the coastal environment: Ash Shuqayq, Saudi Arabia

    International Nuclear Information System (INIS)

    Alharbi, O.A.; Phillips, M.R.; Williams, A.T.; Gheith, A.M.; Bantan, R.A.; Rasul, N.M.

    2012-01-01

    Ash Shuqayq (Saudi Red Sea coast) is approximately 28 km long and characterised by narrow rocky headlands with intermittent pocket beaches. Fifty-two sediment samples from six different environments (beach, dune, sabkha, tidal/lagoon, offshore and wadi) were analysed. Testing showed that beach and dune sands are mainly medium to fine grained, with some very coarse sand (MZ = − 0.59ø). Both beach and dune sands are moderately well to moderately sorted, although some are poorly sorted due to an influx of wadi sediments. Sediment source together with littoral reworking contributed to grain size variation. Carbonate content varied between 1.5% and 23%, whilst the organic content varied between 1.1% and 13%. Spatial analysis showed increasing southward carbonate and organic content, with both correlated (r = 0.57). Sabkha sediments had significantly higher carbonate percentages (t = 2.898; df = 18; p < 0.01) and results suggested origins are similar for both UAE Arabian Sea and Saudi Arabian Red Sea coasts. X-ray diffractions show beach and dune sediments are mainly composed of detrital quartz and plagioclase feldspar with uncommon amounts of chlorites. Analysis of sediment characteristics, composition and shoreline distribution alongside coastal processes, indicate that high chlorite levels are probably caused by desalination processes. Due to human and ecosystem health consequences and the likely increased demand for desalination plants, similar analyses should be undertaken elsewhere, e.g. the Mediterranean. - Highlights: ► New and previously unpublished Red Sea sediment information. ► Sediment chemical and spatial variations established. ► Sabkha origins are similar for both UAE Arabian Sea and Saudi Arabian Red Sea coasts. ► Desalination plant shown as cause of increased marine sediment chlorite levels.

  2. [Multi-scenario simulation and prediction of ecosystem services as affected by urban expansion: A case study in coastal area of Tianjin, North China].

    Science.gov (United States)

    Huang, Huan-Chun; Yun, Ying-Xia; Miao, Zhan-Tang; Hao, Cui; Li, Hong-yuan

    2013-03-01

    Based on the modified Logistic-CA model, and taking the coastal area of Tianjin as a case, this paper simulated the spatial evolution patterns of ecosystem services as affected by the urban expansion in 2011-2020 under the scenarios of historical extrapolation, endogenous development, and exogenous development. Overall, the total ecosystem services of the study area under the three scenarios were generally the same, and the functional region with the lowest level ecosystem services had the identical spatial pattern. However, the spatial evolution patterns of the ecosystem services of the study area under the three scenarios had a great difference. The functional regions with lower-level ecosystem services grew in a cross-shaped pattern, with the Tanggu downtown as a center, and finally formed a full connectivity area along the Haihe River and coastal zone.

  3. Seal carrion is a predictable resource for coastal ecosystems

    Science.gov (United States)

    Quaggiotto, Maria-Martina; Barton, Philip S.; Morris, Christopher D.; Moss, Simon E. W.; Pomeroy, Patrick P.; McCafferty, Dominic J.; Bailey, David M.

    2018-04-01

    The timing, magnitude, and spatial distribution of resource inputs can have large effects on dependent organisms. Few studies have examined the predictability of such resources and no standard ecological measure of predictability exists. We examined the potential predictability of carrion resources provided by one of the UK's largest grey seal (Halichoerus grypus) colonies, on the Isle of May, Scotland. We used aerial (11 years) and ground surveys (3 years) to quantify the variability in time, space, quantity (kg), and quality (MJ) of seal carrion during the seal pupping season. We then compared the potential predictability of seal carrion to other periodic changes in food availability in nature. An average of 6893 kg of carrion •yr-1 corresponding to 110.5 × 103 MJ yr-1 was released for potential scavengers as placentae and dead animals. A fifth of the total biomass from dead seals was consumed by the end of the pupping season, mostly by avian scavengers. The spatial distribution of carcasses was similar across years, and 28% of the area containing >10 carcasses ha-1 was shared among all years. Relative standard errors (RSE) in space, time, quantity, and quality of carrion were all below 34%. This is similar to other allochthonous-dependent ecosystems, such as those affected by migratory salmon, and indicates high predictability of seal carrion as a resource. Our study illustrates how to quantify predictability in carrion, which is of general relevance to ecosystems that are dependent on this resource. We also highlight the importance of carrion to marine coastal ecosystems, where it sustains avian scavengers thus affecting ecosystem structure and function.

  4. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    Science.gov (United States)

    Guild, Liane; Kudela, Raphael; Hooker, Stanford; Morrow, John; Russell, Philip; Palacios, Sherry; Livingston, John M.; Negrey, Kendra; Torres-Perez, Juan; Broughton, Jennifer

    2014-01-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of

  5. Assessment of beach and dune erosion and accretion using LiDAR: Impact of the stormy 2013-14 winter and longer term trends on the Sefton Coast, UK

    Science.gov (United States)

    Pye, Kenneth; Blott, Simon J.

    2016-08-01

    An important question for coastal management concerns the importance of individual storms and clusters of storms on longer term beach sediment budgets, beach and dune erosion, and coastal flood risk. Between October 2013 and March 2014 a series of deep Atlantic low pressure systems crossed the Northeast Atlantic, and strong winds, high waves and high water levels affected many coastal areas in the UK and other parts of western Europe. Net dune recession of up to 12.1 m occurred around Formby Point. On 5 December 2013 the highest water level ever recorded at Liverpool (6.22 m ODN) coincided with waves of Hs of 4.55 m and Tp of 9.3 s in Liverpool Bay. Wave trimming of the dune toe occurred along the entire length of the Sefton coast, but significant dune erosion occurred only where the upper beach (between the mean high water spring tide level and the dune toe) was dune system, mostly at Formby Point. However, some parts of the beach to the south of Formby Point gained sediment, indicating net north to south transport over the winter. When considered in a longer term context, the 2013-14 winter represents only a small perturbation on the longer-term coast trend of erosion at Formby Point and progradation to the north and south. Analysis of LiDAR data over a longer time period 1999-2014 indicated upper beach and dune sediment loss of 780 × 103 m3 from the north-central part of Formby Point, with net gains of 806 × 103 m3 and 2116 × 103 m3 in areas to the north and south, respectively. This indicates a net onshore transport of 2142 × 103 m3 from Liverpool Bay towards the coast between Birkdale and Altcar, with a further net total of 210 × 103 m3 transported towards the shore between Altcar and Crosby. In view of the demonstrated value of airborne LiDAR surveys for the quantification of storm impacts and longer term coastal changes, it is recommended that such surveys should be undertaken before and after each winter storm period, covering the area between mean low

  6. Coastal Ecosystem Assessment, Development and Creation of a Policy Tool using Unmanned Aerial Vehicles (UAVs) for: A Case Study of Western Puerto Rico Coastal Region

    Science.gov (United States)

    Munoz Barreto, J.; Pillich, J.; Aponte Bermúdez, L. D.; Torres Pagan, G.

    2017-12-01

    This project utilizes low-cost Unmanned Aerial Vehicles (UAVs) based systems for different applications, such as low-altitude (high resolution) aerial photogrammetry for aerial analysis of vegetation, reconstruction of beach topography and mapping coastal erosion to understand, and estimated ecosystem values. As part of this work, five testbeds coastal sites, designated as the Caribbean Littoral Aerial Surveillance System (CLASS), were established. The sites are distributed along western Puerto Rico coastline where population and industry (tourism) are very much clustered and dense along the coast. Over the past year, rapid post-storm deployment of UAV surveying has been successfully integrated into the CLASS sites, specifically at Rincon (Puerto Rico), where coastal erosion has raised the public and government concern over the past decades. A case study is presented here where we collected aerial photos before and after the swells caused by Hurricane Mathew (October 2016). We merged the point cloud obtained from the UAV photogrammetric assessment with topo-bathymetric data, to get a complete beach topography. Using the rectified and georeferenced UAV orthophotos, we identified the maximum wave runup for the pre-swell and post-swell events. Also, we used numerical modeling (X-Beach) to simulate the rate-of-change dynamics of the coastal zones and compare the model results to observed values (including multiple historic shoreline positions). In summary, our project has accomplished the first milestone which is the Development and Implementation of an Effective Shoreline Monitoring Program using UAVs. The activities of the monitoring program have enabled the collection of crucial data for coastal mapping along Puerto Rico's shorelines with emphasis on coastal erosion hot spots zones and ecosystem values. Our results highlight the potential of the synergy between UAVs, photogrammetry, and Geographic Information Systems to provide faster and low-cost reliable

  7. Responses to invasion and invader removal differ between native and exotic plant groups in a coastal dune.

    Science.gov (United States)

    Magnoli, Susan M; Kleinhesselink, Andrew R; Cushman, J Hall

    2013-12-01

    The spread of exotic, invasive species is a global phenomenon that is recognized as a major source of environmental change. Although many studies have addressed the effects of exotic plants on the communities they invade, few have quantified the effects of invader removal on plant communities, or considered the degree to which different plant groups vary in response to invasion and invader removal. We evaluated the effects of an exotic succulent, iceplant (Carpobrotus edulis), on a coastal dune plant community in northern California, as well as the community responses to its removal. To assess possible mechanisms by which iceplant affects other plants, we also evaluated its above- and belowground influences on the germination and growth of a dominant exotic annual grass, Bromus diandrus. We found that iceplant invasion was associated with reduced native plant cover as well as increased cover and density of some exotic plants-especially exotic annual grasses. However, iceplant removal did not necessarily lead to a reversal of these effects: removal increased the cover and density of both native and exotic species. We also found that B. diandrus grown in iceplant patches, or in soil where iceplant had been removed, had poorer germination and growth than B. diandrus grown in soil not influenced by iceplant. This suggests that the influence of iceplant on this dune plant community occurs, at least in part, due to belowground effects, and that these effects remain after iceplant has been removed. Our study demonstrates the importance of considering how exotic invasive plants affect not only native species, but also co-occurring exotic taxa. It also shows that combining observational studies with removal experiments can lead to important insights into the influence of invaders and the mechanisms of their effects.

  8. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems

    Science.gov (United States)

    Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong

    2016-01-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  9. protoDUNE-Single Phase and protDUNE-DualPhase

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    At the EHN1 two big 8m x 8m x8m detector prototypes (protoDUNE-Single Phase and protDUNE-DualPhase) are being constructed. The aim is to test technologies and detector performances for DUNE, a new generation of LBN neutr

  10. Variability of sediment transport in beach and coastal dune environments, Brittany, France

    Science.gov (United States)

    Regnauld, Hervé; Louboutin, Roland

    2002-06-01

    On the coasts of Brittany (English Channel and Bay of Biscay), barrier systems were surveyed between 1995 and 2000. The beach profiles have a very high variability, which cannot be statistically explained by linear correlation with the wind, the waves, or the tides. The behaviour of the profile is represented on a phase diagram (speed of profile change: Y-axis, thickness of the profile: X-axis). The points in the center of the profile "rotate" around an average equilibrium which is seldom measured in the field. The seaward edge of the beaches oscillates between loss and gain, but with a net positive budget. The landward top of the beach displays a range of oscillations. The dunes always have a positive budget. The whole behaviour of the system is explained if the precise succession of anticyclonic and cyclonic winds is taken into account. Long periods of easterly winds (offshorewards) tend to produce a calm sea and to increase tidal sediment settling on the seafloor. If an onshore westerly storm occurs just after such a period, it hits a sediment-rich environment and produces a net accumulation on both the beach and the dunes. Periods of westerly calm to moderate winds do not help accumulation: a full going storm will hit a depleted environment and produce erosion. The speed of dune accretion and the budget of the beaches seem to partly depend on the ratio of cyclonic to anticyclonic conditions.

  11. Temporal development of coastal ecosystems in the Baltic Sea - an assessment of patterns and trends

    DEFF Research Database (Denmark)

    Olsson, Jens; Bergström, Lena; Tomczak, Maciej

    2014-01-01

    in the north, covers between two to five trophic levels per area, and include time series dating back to the early 1990s. Using multivariate analyses, we assess the temporal development of species abundance or biomass at different trophic levels in relation to the development of variables related to local...... and regional climate, hydrology, nutrient loading and fishing pressure. Our results highlight the relative timing of change in ecosystem structure and the development of key biological elements across areas. Besides describing the temporal development of coastal ecosystems in the Baltic Sea during the past two...

  12. Erosi Pantai, Ekosistem Hutan Bakau dan Adaptasi Masyarakat Terhadap Bencana Kerusakan Pantai Di negara Tropis (Coastal Erosion, Mangrove Ecosystems and Community Adaptation to Coastal Disasters in Tropical Countries

    Directory of Open Access Journals (Sweden)

    Aji Ali Akbar

    2017-05-01

    Full Text Available ABSTRAK   Tulisan ini bertujuan untuk mengkaji terjadinya kerusakan lingkungan pantai di negara tropis dan sebagian negara subtropis akibat perilaku manusia. Perilaku manusia yang menyebabkan kerusakan lingkungan adalah memanfaatkan sumberdaya alam pesisir tanpa memperhatikan keberlanjutan sumber daya alam dan daya dukung lingkungannya. Kerusakan lingkungan pantai yang umum terjadi di negara tropis dan sebagian subtropis adalah erosi pantai dan degradasi ekosistem hutan bakau. Kerusakan lingkungan pantai ini akibat alih fungsi lahan menjadi jaringan jalan, permukiman, lahan pertanian/ perkebunan, pertambakan, dan pertambangan pasir. Kerusakan lingkungan pantai mempengaruhi kondisi sosial ekonomi masyarakat setempat seperti hilangnya badan jalan, permukiman, lahan pertanian, dan fasilitas umum akibat abrasi pantai. Upaya penanggulangan kerusakan lingkungan pantai sebagai bagian dari adaptasi manusia mempertahankan kehidupannya berupa pembangunan pemecah gelombang (breakwaters dan rehabilitasi ekosistem hutan bakau. Upaya penanggulangan bencana tersebut tentunya membutuhkan biaya yang besar dan waktu lama daripada upaya pencegahan. Oleh karena itu, perubahan pola pikir baik pemerintah dan masyarakat dalam memanfaatkan, mengelola dan melestarikan sumber daya alam perlu ditingkatkan melalui perbaikan informasi, ilmu pengetahuan, dan strategi perencanaan yang holistik. Kata kunci: erosi pantai, kerusakan ekosistem hutan bakau, alih fungsi lahan, pemecah gelombang, rehabilitasi ABSTRACT This paper aims to assess the coastal degradation in tropical and subtropical countries in part due to human behavior. Human behavior is causing coastal degradation is to utilize natural resources without regard to the sustainability of coastal natural resources and the carrying capacity of the environment. Degradation of coastal common in most tropical and subtropical countries are coastal erosion and degradation of mangrove ecosystems. This coastal degradation as a

  13. Bioavailability and impact of effluents on coastal ecosystems

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The Bioavailability and Impact of Effluents on Coastal Ecosystems program was initiated in July 1974. The program's major objective was to bring together a multidisciplinary team of researchers to investigate the biogeochemical processes that control the transport, transfer, distribution, biological availability and toxicity of materials found in energy-related effluents. This year has been spent in planning the needed research tasks, assembling the necessary personnel and equipment, and initiating first stage research as defined by the program. The program is centered at the Marine Research Laboratory, Sequim, Washington, and involves scientists located at Sequim and Richland. The operating philosophy is to conduct the program at the Marine Research Laboratory and use equipment and expertise from Richland as a resource for studies that cannot be practically done at Sequim. The research described represents the first year's efforts by the investigators involved in the program

  14. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence.

    Science.gov (United States)

    Morris, Rebecca L; Konlechner, Teresa M; Ghisalberti, Marco; Swearer, Stephen E

    2018-05-01

    Climate change is increasing the threat of erosion and flooding along coastlines globally. Engineering solutions (e.g. seawalls and breakwaters) in response to protecting coastal communities and associated infrastructure are increasingly becoming economically and ecologically unsustainable. This has led to recommendations to create or restore natural habitats, such as sand dunes, saltmarsh, mangroves, seagrass and kelp beds, and coral and shellfish reefs, to provide coastal protection in place of (or to complement) artificial structures. Coastal managers are frequently faced with the problem of an eroding coastline, which requires a decision on what mitigation options are most appropriate to implement. A barrier to uptake of nature-based coastal defence is stringent evaluation of the effectiveness in comparison to artificial protection structures. Here, we assess the current evidence for the efficacy of nature-based vs. artificial coastal protection and discuss future research needs. Future projects should evaluate habitats created or restored for coastal defence for cost-effectiveness in comparison to an artificial structure under the same environmental conditions. Cost-benefit analyses should take into consideration all ecosystem services provided by nature-based or artificial structures in addition to coastal protection. Interdisciplinary research among scientists, coastal managers and engineers is required to facilitate the experimental trials needed to test the value of these shoreline protection schemes, in order to support their use as alternatives to artificial structures. This research needs to happen now as our rapidly changing climate requires new and innovative solutions to reduce the vulnerability of coastal communities to an increasingly uncertain future. © 2018 John Wiley & Sons Ltd.

  15. Major threats of pollution and climate change to global coastal ecosystems and enhanced management for sustainability

    NARCIS (Netherlands)

    Lu, Y.; Yuan, J.; Lu, X.; Su, Chao; Zhang, Y.; Wang, C.; Cao, X.; Li, Q.; Su, Jilan; Ittekkot, Venugopalan; Garbutt, Richard Angus; Bush, S.R.; Fletcher, Stephen; Wagey, Tonny; Kachur, Anatolii; Sweijd, Neville

    2018-01-01

    Coastal zone is of great importance in the provision of various valuable ecosystem services. However, it is also sensitive and vulnerable to environmental changes due to high human populations and interactions between the land and ocean. Major threats of pollution from over enrichment of nutrients,

  16. Evaluation of the health status of a coastal ecosystem in southeast Mexico: Assessment of water quality, phytoplankton and submerged aquatic vegetation.

    Science.gov (United States)

    Herrera-Silveira, Jorge A; Morales-Ojeda, Sara M

    2009-01-01

    The coastal environment of the Yucatan Peninsula (SE, Mexico) includes a wide variety of ecosystems ranging from mangroves to coral reefs, resulting in a heterogeneous landscape. Specifically, the marine system is characterized by environmental differences which respond to regional and local forcing functions such as marine currents and groundwater discharges (GD). Such functional characteristics were used here to define four subregions across the Yucatan coast and diagnose the health status of this coastal marine ecosystem. To achieve this goal, we conducted an analysis and integration of water quality variables, an eutrophic assessment, evaluated changes in submerged aquatic vegetation (SAV), and analyzed the community structure and distribution of harmful phytoplankton. The first step was to determine the reference values for each subregion based on data previously collected from 2002 to 2006 along the coast of Yucatan, 200m offshore. The trophic index (TRIX) and Canadian index for aquatic life (CCMEWQI) were used to diagnose each subregion and then the ASSETS approach was conducted for Dzilam and Progreso, sampling localities on each end of the health status continuum (those with the best and worst conditions). Overall, results indicated that the marine coastal ecosystem of Yucatan is in good condition; however, differences were observed between subregions that can be attributed to local forcing functions and human impacts. Specifically, the central region (zone HZII, Progreso-Telchac) showed symptoms of initial eutrophication due to nutrient inputs from human activities. The eastern region (zone HZ III, Dzilam-Las Bocas) showed a meso-eutrophic condition linked to natural groundwater discharges, while the other two subregions western (zone HZI Celestun-Palmar) and caribbean (zone HZ IV Ria Lagartos-El Cuyo) exhibited symptoms of oligo-mesotrophic condition. These findings may be considered baseline information for coastal ecosystem monitoring programs in

  17. North American coastal carbon stocks and exchanges among the coupled ecosystems of tidal wetlands and estuaries

    Science.gov (United States)

    Windham-Myers, L.; Cai, W. J.

    2017-12-01

    The development of the 2nd State of the Carbon Cycle Report (SOCCR-2) has recognized a significant role of aquatic ecosystems, including coastal zones, in reconciling some of the gaps associated with the North American carbon (C) budget. Along with a large community of coauthors, we report major C stocks and fluxes for tidal wetlands and estuaries of Canada, Mexico and the United States. We find divergent patterns between these coupled ecosystems, with tidal wetlands largely serving as CO2 sinks (net autotrophic), and open-water estuaries largely serving as CO2 sources (net heterotrophic). We summarized measurements across 4 continental regions - East Coast, Gulf of Mexico, West Coast, and High Latitudes - to assess spatial variability and datagaps in our understanding of coastal C cycling. Subtracting estuarine outgassing of 10 ± 10 Tg C yr-1 from the tidal wetland uptake of 23 ± 10 Tg C yr-1 leaves a net uptake of the combined system of 13 ± 14 Tg C yr-1. High uncertainty for net atmospheric C exchange in this combined coastal system is further complicated by spatially and temporally dynamic boundaries, as well as terrestrial C sources. Tidal wetlands are among the most productive ecosystems on earth and are capable of continuously accumulating organic C in their sediments as a result of environmental conditions that inhibit organic matter decomposition. Estuaries have more interannual variability in C dynamics than those of tidal wetlands, reflecting the estuarine balance of exchanges with terrestrial watersheds, tidal wetlands, and the continental shelf. Whereas tidal, subtidal and estuarine maps are of limited accuracy at larger scales, North America likely represents less than 1/10 of global distributions of coastal wetland habitats. Coupled land-ocean C flux models are increasingly robust but lacking much of the data needed for parameterization and validation. Accurate boundary maps and synoptic monitoring data on air-water CO2 exchange may be developed

  18. The presence of the Indo-Pacific symbiont-bearing foraminifer Amphistegina lobifera in Greek coastal ecosystems (Aegean Sea, Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    M.V. TRIANTAPHYLLOU

    2009-12-01

    Full Text Available During the last decades, hundreds of species of Indo-Pacific origin from the Red Sea have traversed the Suez Canal and settled in the Eastern Mediterranean. Nowadays, Amphistegina lobifera Larsen, is known to be a successful immigrant that is widely distributed in the coastal ecosystems of the Eastern Mediterranean Sea. Amphistegina is the most common epiphytic, symbiont- bearing large foraminifer. In this study we provide additional data on the presence of this species in the coastal ecosystems of Aegean Sea, Greece. The high relative abundance of A. lobifera is the result of very successful adaptation of this species to local conditions and suggests that it has become a significant part of the epiphytic foraminiferal fauna.

  19. Introduction to the project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    Science.gov (United States)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2013-07-01

    The main goal of the project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of Aeolian dust. Atmospheric deposition is now recognized as a significant source of macro- and micro-nutrients for the surface ocean, but the quantification of its role on the biological carbon pump is still poorly determined. We proposed in DUNE to investigate the role of atmospheric inputs on the functioning of an oligotrophic system particularly well adapted to this kind of study: the Mediterranean Sea. The Mediterranean Sea - etymologically, sea surrounded by land - is submitted to atmospheric inputs that are very variable both in frequency and intensity. During the thermal stratification period, only atmospheric deposition is prone to fertilize Mediterranean surface waters which has become very oligotrophic due to the nutrient depletion (after the spring bloom). This paper describes the objectives of DUNE and the implementation plan of a series of mesocosms experiments during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented, including laboratory results on the solubility of trace elements in erodible soils in addition to results from the mesocosm experiments. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension in the study of the fate of atmospheric deposition within surface waters. Results obtained can be more easily extrapolated to quantify budgets and parameterize processes such as particle migration through a "captured water column". The strong simulated dust deposition

  20. Grain-size variations on a longitudinal dune and a barchan dune

    Science.gov (United States)

    Watson, Andrew

    1986-01-01

    The grain-size characteristics of the sand upon two dunes—a 40 m high longitudinal dune in the central Namib Desert and a 6.0 m high barchan in the Jafurah sand sea of Saudi Arabia—vary with position on the dunes. On the longitudinal dune, median grain size decreases, sorting improves and the grain-size distributions are less skewed and more normalized toward the crest. Though sand at the windward toe is distinct, elsewhere on the dune the changes in grain-size characteristics are gradual. An abrupt change in grain size and sorting near the crest—as described by Bagnold (1941, pp. 226-229)—is not well represented on this dune. Coarse grains remain as a lag on concave slope units and small particles are winnowed from the sand on the steepest windward slopes near the crest. Avalanching down slipfaces at the crest acts only as a supplementary grading mechanism. On the barchan dune median grain size also decreases near the crest, but sorting becomes poorer, though the grain-size distributions are more symmetric and more normalized. The dune profile is a Gaussian curve with a broad convex zone at the apex upon which topset beds had accreted prior to sampling. Grain size increases and sorting improves down the dune's slipface. However, this grading mechanism does not influence sand on the whole dune because variations in wind regime bring about different modes of dune accretion. On both dunes, height and morphology appear to influence significantly the grain-size characteristics.

  1. Observations of Interannual Dune Morphological Evolution With Comparisons to Shoreline Change Along the Columbia River Littoral Cell

    Science.gov (United States)

    Doermann, L.; Kaminsky, G. M.; Ruggiero, P.

    2006-12-01

    Beach topographic data have been collected along the 160 km-long Columbia River Littoral Cell in southwest Washington and northwest Oregon, USA as part of the Southwest Washington Coastal Erosion Study and a NANOOS pilot project. The monitoring program includes the collection of cross-shore beach profiles at 49 sites for each of the 34 seasons since 1997 (with few exceptions), enabling the investigation of the seasonal to interannual morphological variability of this high-energy coast. We focus here on the dunes backing the beaches, aiming to quantitatively describe the wide variety of characteristics they exhibit, as well as to relate dune evolution to shoreline change. To analyze the large volume of high-quality data, we use automated algorithms and systematic processes to identify the location of the dune toe, crest, and face, and calculate a volume (where enough data are available) and beach width for each survey. We define the position of the dune face as the elevation half-way between the average dune toe and average dune crest elevations at each profile location, and beach width as the horizontal distance between the 2-m contour (~MSL) and the dune toe. Much like shoreline proxies lower on the beach profile, (e.g., the 3-m contour), the location of the dune toe shows large seasonal variability with onshore deposition of sand in summer months and offshore sand transport in the winter. However, the location of the dune face and the elevation of the dune crest are much less variable and are useful in describing the evolution of the dune/beach system in the horizontal and vertical directions, respectively, over interannual time scales. On beaches with the highest shoreline change rates in the study area, the dune face follows the progradational trend of the shoreline with the dune face prograding at approximately 25-50% of the rate of the shoreline. Along many of these beaches that experienced severe erosion during the El Niño of 1997/98, the dune face

  2. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems.

    Science.gov (United States)

    von Glasow, Roland; Jickells, Tim D; Baklanov, Alexander; Carmichael, Gregory R; Church, Tom M; Gallardo, Laura; Hughes, Claire; Kanakidou, Maria; Liss, Peter S; Mee, Laurence; Raine, Robin; Ramachandran, Purvaja; Ramesh, R; Sundseth, Kyrre; Tsunogai, Urumu; Uematsu, Mitsuo; Zhu, Tong

    2013-02-01

    Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.

  3. Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula)

    KAUST Repository

    Saderne, Vincent; Cusack, Michael; Almahasheer, Hanan; Serrano, Oscar; Masqué , Pere; Arias-Ortiz, Ariane; Krishnakumar, Periyadan Kadinjappalli; Rabaoui, Lotfi; Qurban, Mohammad Ali; Duarte, Carlos M.

    2018-01-01

    Anthropogenic sea level rise (SLR) presents one of the greatest risks to human lives and infrastructures. Coastal vegetated ecosystems, that is, tidal marshes, seagrass meadows, and mangrove forests, elevate the seabed through soil accretion, providing a natural coastline protection against SLR. The soil accretion of these ecosystems has never been assessed in hot desert climate regions, where water runoff is negligible. However, tropical marine ecosystems are areas of intense calcification that may constitute an important source of sediment supporting seabed elevation, compensating for the lack of terrestrial inputs. We estimated the long-term (C-centennial) and short-term (Pb-20th century) soil accretion rates (SARs) and inorganic carbon (C) burial in coastal vegetated ecosystems of the Saudi coasts of the central Red Sea and the Arabian Gulf. Short-term SARs (±SE) in mangroves of the Red Sea (0.27 ± 0.22 cm/year) were twofold the SLR for that region since 1925 (0.13 cm/year). In the Arabian Gulf, only mangrove forest SAR is equivalent to local SLR estimates for the period 1979-2007 (0.21 ± 0.09 compared to 0.22 ± 0.05 cm/year, respectively). Long-term SARs are comparable or higher than the global estimates of SLR for the late Holocene (0.01 cm/year). In all habitats of the Red Sea and Arabian Gulf, SARs are supported by high carbonate accretion rates, comprising 40% to 60% of the soil volume. Further studies on the role of carbonates in coastal vegetated ecosystems are required to understand their role in adaptation to SLR.

  4. Accumulation of Carbonates Contributes to Coastal Vegetated Ecosystems Keeping Pace With Sea Level Rise in an Arid Region (Arabian Peninsula)

    KAUST Repository

    Saderne, Vincent

    2018-04-12

    Anthropogenic sea level rise (SLR) presents one of the greatest risks to human lives and infrastructures. Coastal vegetated ecosystems, that is, tidal marshes, seagrass meadows, and mangrove forests, elevate the seabed through soil accretion, providing a natural coastline protection against SLR. The soil accretion of these ecosystems has never been assessed in hot desert climate regions, where water runoff is negligible. However, tropical marine ecosystems are areas of intense calcification that may constitute an important source of sediment supporting seabed elevation, compensating for the lack of terrestrial inputs. We estimated the long-term (C-centennial) and short-term (Pb-20th century) soil accretion rates (SARs) and inorganic carbon (C) burial in coastal vegetated ecosystems of the Saudi coasts of the central Red Sea and the Arabian Gulf. Short-term SARs (±SE) in mangroves of the Red Sea (0.27 ± 0.22 cm/year) were twofold the SLR for that region since 1925 (0.13 cm/year). In the Arabian Gulf, only mangrove forest SAR is equivalent to local SLR estimates for the period 1979-2007 (0.21 ± 0.09 compared to 0.22 ± 0.05 cm/year, respectively). Long-term SARs are comparable or higher than the global estimates of SLR for the late Holocene (0.01 cm/year). In all habitats of the Red Sea and Arabian Gulf, SARs are supported by high carbonate accretion rates, comprising 40% to 60% of the soil volume. Further studies on the role of carbonates in coastal vegetated ecosystems are required to understand their role in adaptation to SLR.

  5. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems

    DEFF Research Database (Denmark)

    Giblin, Anne E.; Tobias, Craig R.; Song, Bongkeun

    2013-01-01

    Until recently, it was believed that biological assimilation and gaseous nitrogen (N) loss through denitrification were the two major fates of nitrate entering or produced within most coastal ecosystems. Denitrification is often viewed as an important ecosystem service that removes reactive N from...... the ecosystem. However, there is a competing nitrate reduction process, dissimilatory nitrate reduction to ammonium (DNRA), that conserves N within the ecosystem. The recent application of nitrogen stable isotopes as tracers has generated growing evidence that DNRA is a major nitrogen pathway that cannot...... of denitrification and DNRA, and how the balance changes with increased nitrogen loading, is of critical importance for predicting eutrophication trajectories. Recent improvements in methods for assessing rates of DNRA have helped refine our understanding of the rates and controls of this process, but accurate...

  6. Land-margin ecosystem hydrologic data for the coastal Everglades, Florida, water years 1996-2012

    Science.gov (United States)

    Anderson, Gordon H.; Smith, Thomas J.; Balentine, Karen M.

    2014-01-01

    Mangrove forests and salt marshes dominate the landscape of the coastal Everglades (Odum and McIvor, 1990). However, the ecological effects from potential sea-level rise and increased water flows from planned freshwater Everglades restoration on these coastal systems are poorly understood. The National Park Service (NPS) proposed the South Florida Global Climate Change Project (SOFL-GCC) in 1990 to evaluate climate change and the effect from rising sea levels on the coastal Everglades, particularly at the marsh/mangrove interface or ecotone (Soukup and others, 1990). A primary objective of SOFL-GCC project was to monitor and synthesize the hydrodynamics of the coastal Everglades from the upstream freshwater marsh to the downstream estuary mangrove. Two related hypotheses were set forward (Nuttle and Cosby, 1993): 1. There exists hydrologic conditions (tide, local rainfall, and upstream water deliveries), which characterize the location of the marsh/mangrove ecotone along the marine and terrestrial hydrologic gradient; and 2. The marsh/mangrove ecotone is sensitive to fluctuations in sea level and freshwater inflow from inland areas. Hydrologic monitoring of the SOFL-GCC network began in 1995 after startup delays from Hurricane Andrew (August 1992) and organizational transfers from the NPS to the National Biological Survey (October 1993) and the merger with the U.S. Geological Survey (USGS) Biological Research Division in 1996 (Smith, 2004). As the SOFL-GCC project progressed, concern by environmental scientists and land managers over how the diversion of water from Everglades National Park would affect the restoration of the greater Everglades ecosystem. Everglades restoration scenarios were based on hydrodynamic models, none of which included the coastal zone (Fennema and others, 1994). Modeling efforts were expanded to include the Everglades coastal zone (Schaffranek and others, 2001) with SOFL-GCC hydrologic data assisting the ecological modeling needs. In 2002

  7. Nitrogen limitation in the coastal heath at Anholt, Denmark

    DEFF Research Database (Denmark)

    Johnsen, Ib; Christensen, Steen; Riis-Nielsen, Torben

    2014-01-01

    ) and phosphorus as KH2PO4 (P-addition) was carried out in the coastal grey dune vegetation of Anholt. The Naddition corresponded to 40 kg N ha−1 year−1 and the Paddition to 7 kg P ha−1 year−1 The experiment included N-, P-, N + P-addition and control. Lichens (genera: mainly Cladonia, Stereocaulon, Cetraria......The purpose of the study was to investigate, whether the coastal grey dune vegetation at Anholt, Denmark, is limited by nitrogen or phosphorus. The island Anholt (22,37 km2) is situated in the centre of Kattegat A two factor fertilization experiment with nitrogen as NH4NO3 (Naddition...... significantly following N and N + P addition. No effect was observed by P addition alone. N limitation of this coastal heath vegetation remote from agricultural and industrial activities was evident. The effect on the plant species of the single application was short-lived. After two-three years of enhanced...

  8. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NARCIS (Netherlands)

    Van Loon, W.M.G.M.; Boon, A.R.; Gittenberger, A.; Walvoort, D.J.J.; Lavaleye, M.S.S.; Duineveld, G.C.A.; Verschoor, A.J.

    2015-01-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and AMBI,

  9. Application of the Benthic Ecosystem Quality Index 2 to benthos in Dutch transitional and coastal waters

    NARCIS (Netherlands)

    Loon, van W.M.G.M.; Boon, A.R.; Gittenberger, A.; Walvoort, D.J.J.; Lavaleye, M.; Duineveld, G.C.A.; Verschoor, A.J.

    2015-01-01

    The Benthic Ecosystem Quality Index 2 (BEQI2) is the Dutch multi-metric index (MMI) for assessing the status and trend of benthic invertebrates in transitional and coastal waters for the Water Framework Directive (WFD). It contains the same indicators, i.e. species richness, Shannon index and

  10. 50 Years of coastal erosion analysis: A new methodological approach.

    Science.gov (United States)

    Prieto Campos, Antonio; Diaz Cuevas, Pilar; Ojeda zujar, Jose; Guisado-Pintado, Emilia

    2017-04-01

    Coasts over the world have been subjected to increased anthropogenic pressures which combined with natural hazards impacts (storm events, rising sea-levels) have led to strong erosion problems with negative impacts on the economy and the safety of coastal communities. The Andalusian coast (South Spain) is a renowned global tourist destination. In the past decades a deep transformation in the economic model led to significant land use changes: strong regulation of rivers, urbanisation and occupation of dunes, among others. As a result irreversible transformations on the coastline, from the aggressive urbanisation undertaken, are now to be faced by local authorities and suffered by locals and visitors. Moreover, the expected impacts derived from the climate change aggravated by anthropic activities emphasises the need for tools that facilitates decision making for a sustainable coastal management. In this contribution a homogeneous (only a proxy and one photointerpreter) methodology is proposed for the calculation of coastal erosion rates of exposed beaches in Andalusia (640 km) through the use of detailed series (1:2500) of open source orthophotographies for the period (1956-1977-2001-2011). The outstanding combination of the traditional software DSAS (Digital Shoreline Analysis System) with a spatial database (PostgreSQL) which integrates the resulting erosion rates with related coastal thematic information (geomorphology, presence of engineering infrastructures, dunes and ecosystems) enhances the capacity of analysis and exploitation. Further, the homogeneity of the method used allows the comparison of the results among years in a highly diverse coast, with both Mediterranean and Atlantic façades. The novelty development and integration of a PostgreSQL/Postgis database facilitates the exploitation of the results by the user (for instance by relating calculated rates with other thematic information as geomorphology of the coast or the presence of a dune field on

  11. 3D Airflow patterns over coastal foredunes: implications for aeolian sediment transport

    Science.gov (United States)

    Jackson, Derek W. T.; Cooper, Andrew G.; Baas, Andreas C. W.; Lynch, Kevin; Beyers, Meiring

    2010-05-01

    A fundamental criterion for the development of coastal sand dunes is usually highlighted as a significant onshore wind component of the local wind field. The presence of large sand dune systems on coasts where the predominant wind blows offshore is therefore difficult to explain and usually they are attributed to the past occurrence of onshore winds and, by implication, subsequent changes in climate. Recent studies have shown that offshore winds can be deflected or 'steered' by existing dunes so that their direction changes. This can occur to such an extent that a process known as 'flow reversal' can arise, whereby the initially offshore wind actually flows onshore at the beach. This process is important because it can cause sand to be blown from the beach and into the dunes, causing them to grow. This may be central in explaining the presence of extensive dunes on coasts where the dominant wind is offshore, but is also important in how dunes recover after periods of wave erosion during storms. Offshore winds have traditionally been excluded from sediment budget calculations for coastal dunes, but when they do transport sand onshore, this may have been an important oversight leading to significant underestimates of the volume of sand being transported by wind. This work investigates the controls on the processes and the mechanisms involved in deformation of the flow and resulting sediment transport at coastal foredunes in Northern Ireland. We use a combination of field measurement of wind and sediment transport coupled with state-of-the-art aerodynamic modelling using computational fluid dynamics (CFD) and 3-D sonic anemometry. Our working hypothesis is that offshore winds contribute substantially to foredune behaviour on leeside coasts. Preliminary results show strong reverse flow eddies in the seaward side of the foredunes during offshore wind events. These secondary flow reversals have been above velocity threshold and are transport capable. Using CFD modelling

  12. Coastal freshwater resources management in the frame of climate change: application to three basins (Italy, Morocco, Portugal)

    Science.gov (United States)

    Masson, E.; Antonellini, M.; Dentinho, T.; Khattabi, A.

    2009-04-01

    dunes were eroded and a series of saltwater ponds are present right behind the active dunes. The central part of the study area is characterised by the presence an active dune system and of a large pond in the innermost side of the backshore. In this case, there is a narrow freshwater lens in the aquifer of the active dunes area, whereas inland the aquifer is completely salty up to the agricultural fields. The southern area has the best preserved and tallest dunes and do not contain any pond. Here, the freshwater lens in the aquifer is wider than everywhere else and the aquifer becomes salty only where the drainage ditches are causing upcoming of deeper salty groundwater. This study has recognized the importance of coastal dunes in counteracting saltwater intrusion in the phreatic aquifer. Therefore, it is important to consider measures and interventions in order to preserve the integrity of the dunes not only for the purposes of avoiding shoreline erosion and coastal ecosystem destruction but also for freshwater resources protection. On the other hand, in low level coastal areas, drainage and the construction of ponds may enhance seawater upcoming. In this Italian case, a socio-economical modelling has to be developed to help decision making in both water and economical management to step toward an integrated water resource management. In the Terceira Island, a spatial interaction model has been developed including land and water uses combined with economical sectors related to Corine-Land-Cover (i.e. CLC) classification applied to urban areas and its surroundings. The spatial competition between different economical sectors and population pressures for land use and water use is resulting from the calibration of bid-rents. This economical model requires a dataset based on the spatial distribution of population, land uses and the calculation of distances between each economical sector including socio-economical indicators (i.e. employment, labor productivity, human

  13. Optical dating of dune ridges on Rømø

    DEFF Research Database (Denmark)

    Madsen, Anni Tindahl; Murray, A. S.; Andersen, Thorbjørn Joest

    2007-01-01

    The application of optically stimulated luminescence (OSL) to the dating of recent aeolian sand ridges on Rømø, an island off the southwest coast of Denmark, is tested. These sand ridges began to form approximately 300 years ago, and estimates of the ages are available from historical records....... Samples for OSL dating were taken ~0.5 m below the crests of four different dune ridges; at least five samples were recovered from each ridge to test the internal consistency of the ages. Additional samples were recovered from the low lying areas in the swales and from the scattered dune formations......-defined building phases separated by inactive periods and the first major ridge formed ~235 years ago. This study demonstrates that optical dating can be successfully applied to these young aeolian sand deposits, and we conclude that OSL dating is a powerful chronological tool in studies of coastal change....

  14. Introduction to project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem

    Science.gov (United States)

    Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.

    2014-01-01

    The main goal of project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of eolian mineral dust. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension after atmospheric deposition at the sea surface. This introductory paper describes the objectives of DUNE and the implementation plan of a series of mesocosm experiments conducted in the Mediterranean Sea in 2008 and 2010 during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated based on the production of dust analogs from erodible soils of a source region. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented. From laboratory results on the solubility of trace elements in dust to biogeochemical results from the mesocosm experiments and associated modeling, these papers describe how the strong simulated dust deposition events impacted the marine biogeochemistry. Those multidisciplinary results are bringing new insights into the role of atmospheric deposition on oligotrophic ecosystems and its impact on the carbon budget. The dissolved trace metals with crustal origin - Mn, Al and Fe - showed different behaviors as a function of time after the seeding. The increase in dissolved Mn and Al concentrations was attributed to dissolution processes. The observed decrease in dissolved Fe was due to scavenging on sinking dust particles and aggregates. When a second dust seeding followed, a dissolution of Fe from the dust particles was then observed due to the excess Fe binding ligand concentrations present at that time. Calcium nitrate and sulfate were formed in the dust

  15. Benthic macroinvertebrates as ecological indicators for estuarine and coastal ecosystems : assessment and intercalibration

    OpenAIRE

    Teixeira, Heliana Lilita Gonçalves

    2010-01-01

    Tese de doutoramento em Biologia (Ecologia) apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra The aim of the research work presented in this thesis is to be a contribution to the field of ecological assessment in coastal and transitional ecosystems. The main goals were: a) to present a method for the assessment of the ecological status of benthic macroinvertebrate communities in Portuguese transitional waters that would meet the requirements of the Eur...

  16. Exposure of coastal ecosystems to river plume spreading across a near-equatorial continental shelf

    Science.gov (United States)

    Tarya, A.; Hoitink, A. J. F.; Vegt, M. Van der; van Katwijk, M. M.; Hoeksema, B. W.; Bouma, T. J.; Lamers, L. P. M.; Christianen, M. J. A.

    2018-02-01

    The Berau Continental Shelf (BCS) in East Kalimantan, Indonesia, harbours various tropical marine ecosystems, including mangroves, seagrass meadows and coral reefs. These ecosystem are located partly within reach of the Berau River plume, which may affect ecosystem health through exposure to land-derived sediments, nutrients and pollutants carried by the plume. This study aims (1) to assess the exposure risk of the BCS coastal ecosystems to river plume water, measured as exposure time to three different salinity levels, (2) to identify the relationships between these salinity levels and the abundance and diversity of coral and seagrass ecosystems, and (3) to determine a suitable indicator for the impacts of salinity on coral reef and seagrass health. We analysed hydrodynamic models, classified salinity levels, and quantified the correlations between the salinity model parameters and ecological metrics for the BCS systems. An Empirical Orthogonal Functions (EOF) analysis revealed three modes of river plume dispersal patterns, which strongly reflect monsoon seasonality. The first mode, explaining 39% of the variability, was associated with the southward movement of the plume due to northerly winds, while the second and third modes (explaining 29% and 26% of the variability, respectively) were associated with the northeastward migration of the plume related to southwesterly and southerly winds. Exposure to low salinity showed higher correlations with biological indicators than mean salinity, indicating that low salinity is a more suitable indicator for coastal ecosystem health. Significant correlations (R2) were found between exposure time to low salinity (days with salinity values below 25 PSU) with coral cover, coral species richness, seagrass cover, the number of seagrass species, seagrass leaf phosphorus, nitrogen, C:N ratio and iron content. By comparing the correlation coefficients and the slopes of the regression lines, our study suggests that coral reefs are

  17. A COMPARATIVE ANALYSIS OF SPECIES COMPOSITION OF GROUND BEETLES OF COASTAL AND ISLAND ECOSYSTEMS OF THE WESTERN CASPIAN

    Directory of Open Access Journals (Sweden)

    G. M. Abdurakhmanov

    2011-01-01

    Full Text Available For the first time studied the species composition of ground beetles of coastal and island ecosystems of the Western Caspian. The article provides a comparative analysis of species composition of ground beetles and adjacent areas.

  18. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    Science.gov (United States)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  19. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    Science.gov (United States)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  20. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    Science.gov (United States)

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  1. Advanced Interferometric Synthetic Aperture Imaging Radar (InSAR) for Dune Mapping

    Science.gov (United States)

    Havivi, Shiran; Amir, Doron; Schvartzman, Ilan; August, Yitzhak; Mamman, Shimrit; Rotman, Stanely R.; Blumberg, Dan G.

    2016-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available lose particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970s, remote sensing imagery, both optical and radar, have been used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two or more images. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR methods. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This work aims to demonstrate how interferometric decorrelation can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the coherence change detection method was used, in order to identify dune stability or instability and the dune activity level. The Nitzanim-Ashdod coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of

  2. Coastal protection policy in the Netherlands

    NARCIS (Netherlands)

    Verhagen, H.J.

    1990-01-01

    The 350 km long Dutch coast along the North Sea is characterized by alternating coastal stretches of accretion and erosion resp. resulting in seaward and landward displacement retreats of the shoreline. Places of accretion and erosion also vary in time. Behind the dunes are low lying polders (very

  3. Inventory of coastal protected areas and historical heritage sites (North Bulgarian coast)

    Science.gov (United States)

    Palazov, Atanas; Stancheva, Margarita; Stanchev, Hristo; Krastev, Anton; Peev, Preslav

    2015-04-01

    Coastal protected areas and historical heritage sites in Bulgaria are established by national policy instruments/laws and EU Directives to protect a wide range of natural and cultural resources along the coast. Within the framework of HERAS Project (Submarine Archaeological Heritage of the Western Black Sea Shelf), financed by European Union under the CBC Program Romania-Bulgaria, we made an inventory and identification of protected areas, nature reserves, monuments, parks and onshore historical sites along the North Bulgarian coast (NUTS III level). The adjacent coastline is 96 km long between cape Sivriburun to the border of Romania on the north and cape Ekrene on the south. Coastal zone here is mostly undeveloped and low urbanized compared to other coastal regions in Bulgaria. It comprises of large sand beaches, vast sand dunes, up to 70 m spectacular high limestone cliffs, coastal fresh-water lakes, wetlands etc. This coastal section includes also one of the most important wetlands and it is migration corridor for many protected birds in Bulgaria, that host one of the rarest ecosystem types with national and international conservational value. Added to ecosystem values, the region is also an archeologically important area, where numerous underwater and coastal archaeological sites from different periods have been discovered - Prehistory, Antiquity (ancient Greek, Hellenistic, Roman), Mediaeval (Early Byzantium, Bulgarian). Research was made within 2100 m zone from the coastline (in accordance with zones defined by the Black Sea Coastal Development Act) for territories with protected status in the framework of many national laws and EU Directives. The total area of this strip zone is 182, 6 km2 and around 67% is under protection. There are 11 unique NATURA 2000 protected areas (6 Special Protection Areas (SPAs) and 5 Sites of Communities Importance (SCI), 2 nature reserves and 1 Nature Park. Some of them are also onshore historical sites. In Bulgaria such sites

  4. Evaluating Satellite and Supercomputing Technologies for Improved Coastal Ecosystem Assessments

    Science.gov (United States)

    McCarthy, Matthew James

    Water quality and wetlands represent two vital elements of a healthy coastal ecosystem. Both experienced substantial declines in the U.S. during the 20th century. Overall coastal wetland cover decreased over 50% in the 20th century due to coastal development and water pollution. Management and legislative efforts have successfully addressed some of the problems and threats, but recent research indicates that the diffuse impacts of climate change and non-point source pollution may be the primary drivers of current and future water-quality and wetland stress. In order to respond to these pervasive threats, traditional management approaches need to adopt modern technological tools for more synoptic, frequent and fine-scale monitoring and assessment. In this dissertation, I explored some of the applications possible with new, commercial satellite imagery to better assess the status of coastal ecosystems. Large-scale land-cover change influences the quality of adjacent coastal water. Satellite imagery has been used to derive land-cover maps since the 1960's. It provides multiple data points with which to evaluate the effects of land-cover change on water quality. The objective of the first chapter of this research was to determine how 40 years of land-cover change in the Tampa Bay watershed (6,500 km2) may have affected turbidity and chlorophyll concentration - two proxies for coastal water quality. Land cover classes were evaluated along with precipitation and wind stress as explanatory variables. Results varied between analyses for the entire estuary and those of segments within the bay. Changes in developed land percent cover best explained the turbidity and chlorophyll-concentration time series for the entire bay (R2 > 0.75, p Ocean-color satellite imagery was used to derive proxies for coastal water with near-daily satellite observations since 2000. The goal of chapter two was to identify drivers of turbidity variability for 11 National Estuary Program water bodies

  5. Contrasting Patterns of Phytoplankton Assemblages in Two Coastal Ecosystems in Relation to Environmental Factors (Corsica, NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Marie Garrido

    2014-04-01

    Full Text Available Corsica Island is a sub-basin of the Northwestern Mediterranean Sea, with hydrological features typical of both oligotrophic systems and eutrophic coastal zones. Phytoplankton assemblages in two coastal ecosystems of Corsica (the deep Bay of Calvi and the shallow littoral of Bastia show contrasting patterns over a one-year cycle. In order to determine what drives these variations, seasonal changes in littoral phytoplankton are considered together with environmental parameters. Our methodology combined a survey of the physico-chemical structure of the subsurface water with a characterization of the phytoplankton community structure. Sampling provided a detailed record of the seasonal changes and successions that occur in these two areas. Results showed that the two sampled stations presented different phytoplankton abundance and distribution patterns, notably during the winter–spring bloom period. Successions in pico-, nano-, and microphytoplankton communities appeared mainly driven by differences in the ability to acquire nutrients, and in community-specific growth rates. Phytoplankton structure and dynamics are discussed in relation to available data on the Northwestern Mediterranean Sea. These results confirm that integrated monitoring of coastal areas is a requisite for gaining a proper understanding of marine ecosystems.

  6. Ecosystem resilience and threshold response in the Galápagos coastal zone.

    Directory of Open Access Journals (Sweden)

    Alistair W R Seddon

    Full Text Available BACKGROUND: The Intergovernmental Panel on Climate Change (IPCC provides a conservative estimate on rates of sea-level rise of 3.8 mm yr(-1 at the end of the 21(st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? METHODOLOGY/PRINCIPAL FINDINGS: Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ(13C were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. CONCLUSIONS/SIGNIFICANCE: Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast' and 'slow' environmental change between alternative stable states. This study

  7. The effects of changing wind regimes on the development of blowouts in the coastal dunes of The Netherlands

    NARCIS (Netherlands)

    Jungerius, P.D.; Witter, J.V.; van Boxel, J.H.

    1991-01-01

    Blowouts are the main features of aeolian activity in many dune areas. To assess the impact of future climatic change on the geomorphological processes prevailing in a dune landscape it is essential to understand blowout formation and identify the meteorological parameters which are important. The

  8. Southern African Coastal vulnerability assessment

    CSIR Research Space (South Africa)

    Rautenbach, C

    2015-10-01

    Full Text Available or business. The CSIR coastal systems group uses specialist skills in coastal engineering, geographic engineering systems and numerical modelling to assess and map vulnerable coastal ecosystems to develop specific adaptation measures and coastal protection...

  9. Introduction to the special issue on “Understanding and predicting change in the coastal ecosystems of the northern Gulf of Mexico”

    Science.gov (United States)

    Brock, John C.; Barras, John A.; Williams, S. Jeffress

    2013-01-01

    The coastal region of the northern Gulf of Mexico owes its current landscape structure to an array of tectonic, erosional and depositional, climatic, geochemical, hydrological, ecological, and human processes that have resulted in some of the world's most complex, dynamic, productive, and threatened ecosystems. Catastrophic hurricane landfalls, ongoing subsidence and erosion exacerbated by sea-level rise, disintegration of barrier island chains, and high rates of wetland loss have called attention to the vulnerability of northern Gulf coast ecosystems, habitats, built infrastructure, and economy to natural and anthropogenic threats. The devastating hurricanes of 2005 (Katrina and Rita) motivated the U.S. Geological Survey Coastal and Marine Geology Program and partnering researchers to pursue studies aimed at understanding and predicting landscape change and the associated storm hazard vulnerability of northern Gulf coast region ecosystems and human communities. Attaining this science goal requires increased knowledge of landscape evolution on geologic, historical, and human time scales, and analysis of the implications of such changes in the natural and built components of the landscape for hurricane impact susceptibility. This Special Issue of the Journal of Coastal Research communicates northern Gulf of Mexico research results that (1) improve knowledge of prior climates and depositional environments, (2) assess broad regional ecosystem structure and change over Holocene to human time scales, (3) undertake process studies and change analyses of dynamic landscape components, and (4) integrate framework, climate, variable time and spatial scale mapping, monitoring, and discipline-specific process investigations within interdisciplinary studies.

  10. Quantification of Dune Response over the Course of a 6-Day Nor'Easter, Outer Banks, NC

    Science.gov (United States)

    Brodie, K. L.; Spore, N.; Swann, C.

    2014-12-01

    The amount and type of foredune morphologic change during a storm event primarily scales with the level of inundation during that event. Specifically, external hydrodynamic forcing (total water level) can be compared with antecedent beach and foredune morphology to predict an impact regime that relates to the type of expected morphologic evolution of the system. For example, when total water levels are above the dune toe, but below the dune crest, the impact regime is classified as "collision" and the expected morphology response is slumping or scarping of the dune face. While the amount of dune retreat scales largely with the duration of wave attack to the dune face, characteristics of the dune other than its crest or toe elevation may also enhance or impede rates of morphologic change. The aftermath of Hurricane Sandy provided a unique opportunity to observe alongshore variations in dune response to a 6-day Nor'Easter (Hs >4 m in 6 m depth), as a variety of dunes were constructed (or not) by individual home owners in preparation for the winter storm season. Daily terrestrial lidar scans were conducted along 20 km of coastline in Duck, NC using Coastal Lidar And Radar Imaging System (CLARIS) during the first dune collision event following Sandy. Foredunes were grouped by their pre-storm form (e.g. vegetated, pushed, scarped, etc) using automated feature extraction tools based on surface curvature and slope, and daily rates of morphologic volume change were calculated. The highest dune retreat rates were focused along a 1.5 km region where cross-shore erosion of recently pushed, un-vegetated dunes reached 2 m/day. Variations in dune response were analyzed in relation to their pre-storm morphology, with care taken to normalize for alongshore variations in hydrodynamic forcing. Ongoing research is focused on identifying specific metrics that can be easily extracted from topographic DEMs to aid in dune retreat predictions.

  11. Analisi spaziali sull' Oasi del Simeto; restauro ambientale basato sull'analisi dell'ecologia del paesaggio; environmental restauration [sic] based on a landscape ecological analysis

    NARCIS (Netherlands)

    Sluis, van der T.; Pedroli, B.

    2003-01-01

    In this study it is assessed whether the habitat loss for the Foce Simeto nature reserve (Province of Catania, Sicily), due to the housing estate nearby, might lead to increased fragmentation. Three ecosystems were selected: dunes and the littoral coastal ecosystem, marshland and forests. For these

  12. Topographically-controlled site conditions drive vegetation pattern on inland dunes in Poland

    Science.gov (United States)

    Sewerniak, Piotr; Jankowski, Michał

    2017-07-01

    could be useful for both practical foresters to increase biodiversity of ecosystems and for practices that work on the fixation of dunes by restoring vegetation.

  13. Uncertainty Analysis of Phytoplankton Dynamics in Coastal Waters

    NARCIS (Netherlands)

    Niu, L.

    2015-01-01

    There is an increasing concern about the interactions between phytoplankton and coastal ecosystems, especially on the negative effects from coastal eutrophication and phytoplankton blooms. As the key indicator of the coastal ecosystem, phytoplankton plays an important role in the whole impact-effect

  14. Risks for marine coastal ecosystems from anthropogenic loading in the Leningrad NPP environs

    International Nuclear Information System (INIS)

    Zimina, L.; Zimin, V.; Shchukina, T.; Pomiluiko, G.; Ryabova, V.

    1998-01-01

    Data on conditions and variations in phytoplankton, zooplankton and fish communities, chlorophyll 'a' and hydrochemical parameters in the coastal waters of Koporskaya Bay (cooling water body of the Leningrad NPP) were analyzed. The most significant anthropogenic factors issued from the Leningrad nuclear power plant activity are of non-radioactive character, as it was recognized during long-time (20 years) ecological monitoring. Main factors influenced ecosystem of the NPP cooling water body are thermal water discharge and nutrient outflows from the bay catchment area. (authors)

  15. Primary producers may ameliorate impacts of daytime CO2 addition in a coastal marine ecosystem.

    Science.gov (United States)

    Bracken, Matthew E S; Silbiger, Nyssa J; Bernatchez, Genevieve; Sorte, Cascade J B

    2018-01-01

    Predicting the impacts of ocean acidification in coastal habitats is complicated by bio-physical feedbacks between organisms and carbonate chemistry. Daily changes in pH and other carbonate parameters in coastal ecosystems, associated with processes such as photosynthesis and respiration, often greatly exceed global mean predicted changes over the next century. We assessed the strength of these feedbacks under projected elevated CO 2 levels by conducting a field experiment in 10 macrophyte-dominated tide pools on the coast of California, USA. We evaluated changes in carbonate parameters over time and found that under ambient conditions, daytime changes in pH, p CO 2 , net ecosystem calcification ( NEC ), and O 2 concentrations were strongly related to rates of net community production ( NCP ). CO 2 was added to pools during daytime low tides, which should have reduced pH and enhanced p CO 2 . However, photosynthesis rapidly reduced p CO 2 and increased pH, so effects of CO 2 addition were not apparent unless we accounted for seaweed and surfgrass abundances. In the absence of macrophytes, CO 2 addition caused pH to decline by ∼0.6 units and p CO 2 to increase by ∼487 µatm over 6 hr during the daytime low tide. As macrophyte abundances increased, the impacts of CO 2 addition declined because more CO 2 was absorbed due to photosynthesis. Effects of CO 2 addition were, therefore, modified by feedbacks between NCP , pH, p CO 2 , and NEC . Our results underscore the potential importance of coastal macrophytes in ameliorating impacts of ocean acidification.

  16. The effects of spilled oil on coastal ecosystems: Lessons from the Exxon Valdez spill: Chapter 11

    Science.gov (United States)

    Bodkin, James L.; Esler, Daniel N.; Rice, Stanley D.; Matkin, Craig O.; Ballachey, Brenda E.; Maslo, Brooke; Lockwood, Julie L.

    2014-01-01

    Oil spilled from ships or other sources into the marine environment often occurs in close proximity to coastlines, and oil frequently accumulates in coastal habitats. As a consequence, a rich, albeit occasionally controversial, body of literature describes a broad range of effects of spilled oil across several habitats, communities, and species in coastal environments. This statement is not to imply that spilled oil has less of an effect in pelagic marine ecosystems, but rather that marine spills occurring offshore may be less likely to be detected, and associated effects are more difficult to monitor, evaluate, and quantify (Peterson et al., 2012). As a result, we have a much greater awareness of coastal pollution, which speaks to our need to improve our capacities in understanding the ecology of the open oceans. Conservation of coastal ecosystems and assessment of risks associated with oil spills can be facilitated through a better understanding of processes leading to direct and indirect responses of species and systems to oil exposure.It is also important to recognize that oil spilled from ships represents only ~9% of the nearly 700 000 barrels of petroleum that enter waters of North America annually from anthropogenic sources (NRC, 2003). The immediate effects of large spills can be defined as acute, due to the obvious and dramatic effects that are observed. In contrast, the remaining 625 000 barrels that are released each year can be thought of as chronic non-point pollution, resulting from oil entering the coastal ocean as runoff in a more consistent but much less conspicuous rate. In this chapter, we primarily address the effects of large oil spills that occur near coastlines and consider their potential for both acute and chronic effects on coastal communities. As described below, in some instances, the effects from chronic exposure may meet or exceed the more evident acute effects from large spills. Consequently, although quantifying chronic effects

  17. Contribution of Cultural Ecosystem Services to Natural Capital in the coastal area of Civitavecchia (Latium, Italy)

    Science.gov (United States)

    Marcelli, Marco; Madonia, Alice; Tofani, Anna; Molino, Chiara; Manfredi Frattarelli, Francesco

    2017-04-01

    Natural Capital evaluation is emerging as a fundamental tool to support the management of natural resources. Indeed, the achievement of the compatibility among their multiple uses, often in conflict in coastal areas, is a priority to avoid the increasing undesirable effects which threat both ecosystems and human health and well-being. It represents the scientific basis for actions needed to enhance the conservation and sustainable use of those systems and their contribution to human well-being. Furthermore the Millennium Ecosystem Assessment (called by Kofi Annan in 2000), assessed the consequences of ecosystem change for human well-being, and in particular, the analysis method has been centered on the linkages between "ecosystem services" and human well-being. This "Ecosystem Approach" allows to evaluate the consequences of ecosystems changes on human well-being through the assessment of the Ecosystem Services (ES), which are defined as "the benefits that people obtain from ecosystems". These include provisioning services (food, water, timber, etc.), regulating services (climate, floods, disease, etc.); cultural services (recreational, aesthetic and spiritual benefits) and supporting services (soil formation, photosynthesis, nutrient cycling, etc.) Also the reference guidelines for European Environmental Policy (Marine Strategy Framework Directive 2008/56 / EC - MSFD; Maritime Spatial Planning Directive 2014/89 / EC - MSP) are based on the principle of the Ecosystem Approach to define the monitoring criteria of marine and maritime space management ecosystems. The assessment of ES provided by Natural Capital cannot overlook the integration of ecological data with economic and socio-cultural ones, since they are considered as the direct and indirect contributions to human well-being provided by ecosystems. Cultural Ecosystem Services (CES), often omitted in the cost-benefit impact studies, has been receiving increasing interest from the scientific community in order

  18. State-space modeling indicates rapid invasion of an alien shrub in coastal dunes

    DEFF Research Database (Denmark)

    Damgaard, Christian Frølund; Nygaard, Bettina; Ejrnæs, Rasmus

    2011-01-01

    allows separation of process and sampling variance, thus enabling ecological predictions with a known degree of uncertainty. The method is applied for the invasive shrub Rosa rugosa (Japanese rose) in Danish fixed dunes. The probability of observing R. rugosa increased significantly from 0.18 to 0...

  19. Observations and analytical modeling of freshwater and rainwater lenses in coastal dune systems

    NARCIS (Netherlands)

    Stuijfzand, Pieter

    2016-01-01

    Observations are reported on (i) groundwater recharge rates under various types of vegetation as measured with megalysimeters in the dunes, (ii) freshwater lenses along the Dutch North Sea coast in the early 1900s, and (iii) rainwater lenses that develop on top of laterally migrating,

  20. Booming Sand Dunes

    Science.gov (United States)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  1. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China

    Science.gov (United States)

    Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

    2015-01-01

    The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the

  2. Use of Natural and Nature-Based Features for Coastal Resilience

    Science.gov (United States)

    Piercy, C.; Bridges, T. S.

    2017-12-01

    Natural and Nature-Based Features (NNBF) have been used for decades to support a variety of objectives in coastal systems. Beach and dune projects have been a longstanding part of flood risk reduction strategies in Europe, the United States and elsewhere. Coastal restoration projects supporting wetlands, seagrass, oysters and other habitats and communities have been undertaken around the world to restore ecosystem functions. In more recent years there has been a growing interest in developing a technically sound engineering approach for integrating NNBF, in combination with conventional flood defense systems (e.g., levees, seawalls, etc.), for more comprehensive and sustainable flood defense systems. This interest was further stimulated by the outcomes of recent storm events, including Hurricanes Katrina and Sandy in the United States, which have given rise to a range of studies and projects focused on the role of coastal landscape features in flood risk management. The global dialogue that has been underway for several years—including within the Engineering with Nature program in the United States—has revealed the demand for an authoritative guidance on the use of NNBF in shoreline management. The U.S. Army Corps of Engineers has initiated a collaborative project involving participants from several countries and organizations representing government, academia, and the private sector to develop international guidelines to inform the planning, design, construction, and operation or NNBF projects to support coastal resilience. This paper will describe the key issues and objectives informing the work of the international team that is developing the guidelines.

  3. An evolving research agenda for human-coastal systems

    Science.gov (United States)

    Lazarus, Eli D.; Ellis, Michael A.; Brad Murray, A.; Hall, Damon M.

    2016-03-01

    Within the broad discourses of environmental change, sustainability science, and anthropogenic Earth-surface systems, a focused body of work involves the coupled economic and physical dynamics of developed shorelines. Rapid rates of change in coastal environments, from wetlands and deltas to inlets and dune systems, help researchers recognize, observe, and investigate coupling in natural (non-human) morphodynamics and biomorphodynamics. This same intrinsic quality of fast-paced change also makes developed coastal zones exemplars of observable coupling between physical processes and human activities. In many coastal communities, beach erosion is a natural hazard with economic costs that coastal management counters through a variety of mitigation strategies, including beach replenishment, groynes, revetments, and seawalls. As cycles of erosion and mitigation iterate, coastline change and economically driven interventions become mutually linked. Emergent dynamics of two-way economic-physical coupling is a recent research discovery. Having established a strong theoretical basis, research into coupled human-coastal systems has passed its early proof-of-concept phase. This paper frames three major challenges that need resolving in order to advance theoretical and empirical treatments of human-coastal systems: (1) codifying salient individual and social behaviors of decision-making in ways that capture societal actions across a range of scales (thus engaging economics, social science, and policy disciplines); (2) quantifying anthropogenic effects on alongshore and cross-shore sediment pathways and long-term landscape evolution in coastal zones through time, including direct measurement of cumulative changes to sediment cells resulting from coastal development and management practices (e.g., construction of buildings and artificial dunes, bulldozer removal of overwash after major storms); and (3) reciprocal knowledge and data exchange between researchers in coastal

  4. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.

    Science.gov (United States)

    Govers, Laura L; Man In 't Veld, Willem A; Meffert, Johan P; Bouma, Tjeerd J; van Rijswick, Patricia C J; Heusinkveld, Jannes H T; Orth, Robert J; van Katwijk, Marieke M; van der Heide, Tjisse

    2016-08-31

    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts. © 2016 The Author(s).

  5. Modeling river dune development and dune transition to upper stage plane bed

    NARCIS (Netherlands)

    Naqshband, Suleyman; van Duin, Olav; Ribberink, Jan S.; Hulscher, Suzanne J.M.H.

    2016-01-01

    Large asymmetric bedforms known as dunes commonly dominate the bed of sand rivers. Due to the turbulence generation over their stoss and lee sides, dunes are of central importance in predicting hydraulic roughness and water levels. During floods in steep alluvial rivers, dunes are observed to grow

  6. The evolution of Holocene coastal dunefields, Jutland, Denmark

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Murray, Andrew S.; Heinemeier, Jan

    2009-01-01

    Coastal dunefields have developed on the west coast of Jutland in Denmark over the past 5000 years. The dunefields are situated in a temperate climate zone with frequent high energy wind events. Dunefield development was characterized by repeated periods of transgressive dune formation punctuated...

  7. Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru

    Science.gov (United States)

    Parker Gay, S.

    1999-03-01

    Significant studies of sand dunes and sand movement made in coastal southern Peru in 1959-1961 [Gay, S.P., 1962. Origen, distribución y movimiento de las arenas eólicas en el área de Yauca a Palpa. Boletin de la Sociedad Geologica del Perú 37, 37-58] have never been published in the English language and consequently have never been referred to in the standard literature. These studies contain valuable information, not developed by later workers in this field, that may be of broad general interest. For example, using airphotos of barchan dunes and plotting the rates of movement vs. dune widths, the author quantified the deduction of Bagnold [Bagnold, R.A., 1941. The Physics of Blown Sand and Desert Dunes. Methuen, London.] that the speed of barchan movement is inversely proportional to barchan size (as characterized by height or width). This led to the conclusion that all barchans in a given dune field, regardless of size, sweep out approximately equal areas in equal times. Another conclusion was that collisions between smaller, overtaking dunes and larger dunes in front of them do not result in destruction or absorption of the smaller dunes if the collision is a `sideswipe'. The dunes simply merge into a compound dune for a time, and the smaller dune then moves on intact, i.e., passes, the larger dune, whilst retaining its approximate original size and shape. Another result of the 1959-1961 studies was a map that documents the Pacific coast beaches as the source of the sand ( Fig. 1), which is then blown inland through extensive dune fields of barchans and other dune forms in great clockwise-sweeping paths, to its final resting place in huge sand masses, sometimes called `sand seas' [Lancaster, N., 1995. Geomorphology of Desert Dunes. Routledge, London], at higher elevations 20 to 60 km from the coast. A minor, but nevertheless interesting, discovery was a small heavy mineral dune located directly in the lee of a large barchan, evidently formed by the winnowing

  8. Spatio-temporal variability in accretion and erosion of coastal foredunes in the Netherlands: regional climate and local topography.

    Science.gov (United States)

    Keijsers, Joep G S; Poortinga, Ate; Riksen, Michel J P M; Maroulis, Jerry

    2014-01-01

    Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal variations in foredune erosion and accretion were studied in relation to proxies for aeolian transport potential and storminess using yearly elevation measurements from 1965 to 2012 for six sections of the Dutch coast. Longshore differences in the relative impacts of erosion and accretion were examined in relation to local beach width. The results show that temporal variability in foredune accretion and erosion is highest in narrow beach sections. Here, dune erosion alternates with accretion, with variability displaying strong correlations with yearly values of storminess (maximum sea levels). In wider beach sections, dune erosion is less frequent, with lower temporal variability and stronger correlations with time series of transport potential. In erosion dominated years, eroded volumes decrease from narrow to wider beaches. When accretion dominates, dune-volume changes are relatively constant alongshore. Dune erosion is therefore suggested to control spatial variability in dune-volume changes. On a scale of decades, the volume of foredunes tends to increase more on wider beaches. However, where widths exceed 200 to 300 m, this trend is no longer observed.

  9. South African Journal of Geomatics, Vol. 6. No. 1, April 2017 106 ...

    African Journals Online (AJOL)

    OKUKU

    measuring vegetation and bare soil fractions in dune ecosystems along the Kenyan coast. The accurate ... The coastal ecosystems is deteriorating in quality and value because of climate .... it is heavily influenced by the prevailing weather conditions. ..... better if we were able to acquire the data on a free-cloud day. 4.

  10. Local ecological knowledge related with marine ecosystems in two coastal communities: El Valle and Sapzurro

    International Nuclear Information System (INIS)

    Correa, Sandra Liliana; Turbay, Sandra; Velez, Madelene

    2012-01-01

    The inhabitants of the Colombian coastal populations of El Valle, in the Pacific, and Sapzurro, in the Caribbean Darien, have ecological knowledge about coastal ecosystems that is a result of their constant relation with the sea, through fishing and navigation. The sea is a source of food and economical resources, but it is also the sphere where the male personality is forged. The accurate knowledge about mangrove, coral, coral reef, beaches and fishing grounds has been enriched through the dialog between local inhabitants and researchers in the conservation biology field. However, the tensions with researchers and environmental authorities still exist. The paper suggests that local ecological knowledge studies could be a starting point for maintaining a more horizontal dialogue between environmentalist and the populations with livelihoods derived of fishing.

  11. Mars Global Digital Dune Database (MGD3): Global dune distribution and wind pattern observations

    Science.gov (United States)

    Hayward, Rosalyn K.; Fenton, Lori; Titus, Timothy N.

    2014-01-01

    The Mars Global Digital Dune Database (MGD3) is complete and now extends from 90°N to 90°S latitude. The recently released south pole (SP) portion (MC-30) of MGD3 adds ∼60,000 km2 of medium to large-size dark dune fields and ∼15,000 km2 of sand deposits and smaller dune fields to the previously released equatorial (EQ, ∼70,000 km2), and north pole (NP, ∼845,000 km2) portions of the database, bringing the global total to ∼975,000 km2. Nearly all NP dunes are part of large sand seas, while the majority of EQ and SP dune fields are individual dune fields located in craters. Despite the differences between Mars and Earth, their dune and dune field morphologies are strikingly similar. Bullseye dune fields, named for their concentric ring pattern, are the exception, possibly owing their distinctive appearance to winds that are unique to the crater environment. Ground-based wind directions are derived from slipface (SF) orientation and dune centroid azimuth (DCA), a measure of the relative location of a dune field inside a crater. SF and DCA often preserve evidence of different wind directions, suggesting the importance of local, topographically influenced winds. In general however, ground-based wind directions are broadly consistent with expected global patterns, such as polar easterlies. Intriguingly, between 40°S and 80°S latitude both SF and DCA preserve their strongest, though different, dominant wind direction, with transport toward the west and east for SF-derived winds and toward the north and west for DCA-derived winds.

  12. Microlevel mapping of coastal geomorphology and coastal resources of Rameswaram island, India: A remote sensing and GIS perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Nobi, E.P.; Shivaprasad, A.; Karikalan, R.; Dilipan, E.; Thangaradjou, T.; Sivakumar, K.

    Coastal areas are facing serious threats from both manmade and natural disturbances; coastal erosion, sea-level variation, and cyclones are the major factors that alter the coastal topography and coastal resources of the island ecosystems...

  13. Inside ProtoDune

    CERN Multimedia

    Brice, Maximilien

    2017-01-01

    The protoDUNE experimental program is designed to test and validate the technologies and design that will be applied to the construction of the DUNE Far Detector at the Sanford Underground Research Facility (SURF). The protoDUNE detectors will be run in a dedicated beam line at the CERN SPS accelerator complex. The rate and volume of data produced by these detectors will be substantial and will require extensive system design and integration effort. As of Fall 2015, "protoDUNE" is the official name for the two apparatuses to be used in CERN beam test: single-phase and dual-phase LArTPC detectors. Each received a formal CERN experiment designation: NP02 for the dual-phase detector. NP04 for single-phase detector.

  14. Soil Fertility Gradient in the Restinga Ecosystem

    Science.gov (United States)

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due

  15. From nitrogen enrichment to oxygen depletion: a mechanistic model of coastal marine ecosystems response

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Nitrogen (N) emissions from anthropogenic sources may enrich coastal waters and lead to marine eutrophication impacts. Processes describing N-limited primary production (PP), zooplankton grazing, and bacterial respiration of sinking organic carbon, were modelled to quantify the potential dissolved...... oxygen (DO) consumption as a function of N input. Such indicator is the basis for an eXposure Factor (XF) applied in Life Cycle Impact Assessment (LCIA) to estimate impacts from N enrichment. The Large Marine Ecosystems (LME) biogeographical classification system was adopted to address the spatial...

  16. GIS Assessment of Mass Tourism Anthropization in Sensitive Coastal Environments: Application to a Case Study in the Mar Menor Area

    Directory of Open Access Journals (Sweden)

    Salvador García-Ayllón

    2018-04-01

    Full Text Available On the Mediterranean coast, the tourism activity which has developed since the 1950s has become a mass tourism industry in recent decades, cohabitating with natural spaces of high environmental value. These sensitive areas are thus subjected to a varied catalog of anthropizing actions (urbanization of the natural soil, modification of the dune balances by the construction of port infrastructures, alteration of marine ecosystems by recreational activities, etc.. All these inter-related elements are often difficult to analyze in a comprehensive way because of their diffuse nature. This paper proposes a methodology based on GIS analysis for the evaluation of diffuse anthropization associated to tourism in sensitive coastal environments. By using different indicators of territorial transformation, a complete method is proposed to establish the index of diffuse anthropization of a territory. This methodology, which is easily applicable in a generalized manner in different cases for developed countries, will be applied in the Mar Menor, a coastal lagoon area in the Mediterranean that has been suffering from mass tourism during recent decades. The results will show the important impact of several actions linked to tourism and the worrying inertia that the current trend can cause in the lagoon’s ecosystem.

  17. ESTRUTURA TRÓFICA E COMPOSIÇÃO DA NEMATOFAUNA EM UM ECOSSISTEMA COSTEIRO DE DUNAS

    Directory of Open Access Journals (Sweden)

    Hugo Agripino Medeiros

    2008-01-01

    Full Text Available Nematodes are abundant metazoans in all ecosystems with some species surviving in extreme conditions. The sand dunes are dynamic systems and are always in a state of successional change in terms of succession and only recently has the distribution and succession of soil animals in coastal dunes been given wider attention. This research focused on to describe the trophic structure of nematode community associated with two stages of a vegetation succession in a coastal moving sand dunes ecosystem in the north shore of the Rio Grande do Norte State. Five sites were classified in two stages of an ecological succession defined as "beach" and "deflation hollows among dunes" where samples of soil, roots and shoots were collected. Nematodes were extracted from the soil by centrifugal flotation procedure and from the roots by this method associated to blender trituration and classified in families and trophic groups according to feeding habits. The structure of nematode fauna was described by maturity index, plant parasite index and modified maturity index and fungal feeders/bacterial feeders and omnivores+predators/bacterial feeders+fungal feeders+plant parasites rates. The ecosystem was characterized by low diversity of families which composed trophic groups, low values of maturity indexes and omnivores+predators/bacterial feeders+fungal feeders+plant parasites ratio and low abundance of dorylaimids. These datas reflected high level of disturbance which this habitat faces.

  18. Seasonal geomorphic processes and rates of sand movement at Mount Baldy dune in Indiana, USA

    Science.gov (United States)

    Kilibarda, Zoran; Kilibarda, Vesna

    2016-12-01

    Winds are very strong, frequent, and have high energy (annual DP ∼800 VU) along the southern shores of Lake Michigan, allowing the coexistence of fixed and active dunes. Six years (2007-13) of monitoring Mount Baldy in the Indiana Dunes National Lakeshore reveals that this is the most active coastal dune in the Great Lakes region. This paper documents aeolian processes and changes in the dune's morphology that occur temporarily, following storms, or seasonally, due to weather (climate) variations. Most of the sand transport in this area takes place during strong storms with gale force (>17.5 m/s) winds, which occur in the autumn and winter months. A single storm, such as the October 28-31, 2013 event, can contribute 25% of the annual sand transport and dune movement inland. In its most active year (June 1, 2011 through May 31, 2012), Mount Baldy moved inland on average 4.34 m, with a maximum of 6.52 m along the blowout's axis (155° azimuth). During this particularly active season, there were six storms with sustained gale force winds, winter air temperatures were warmer than average, and shelf ice on Lake Michigan lasted only one day. The dune is least active during the summer season, when the winds are weakest. The late fall and winter winds are the strongest. But in a typical year, most of the dune's advance inland takes place during the spring thaw when sand is released from over-steepened and lumpy slip face, allowing it to avalanche to the toe of the slip face. However, with a warming air temperatures, a reduction in the duration of winter shelf ice, and rising Lake Michigan levels, the annual rates of sand transport and dune movement may increase. The recent Mount Baldy management strategy, which includes planting vegetation and installing wind barriers on the dune's stoss side in an effort to fix the dune and stop its further movement inland, may potentially cause the destruction of the mobile sand, open dune habitat, resulting in the extinction of rare

  19. Dune erosion above revetments

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.

    2012-01-01

    In a situation with a narrow dune, the dune base can be protected with a revetment to reduce dune erosion during extreme events. To quantify the effects of a revetment on storm impact, the functionality of the numerical storm impact model XBeach (Roelvink et al., 2009) is extended to account for the

  20. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida’s Gulf Coast: Implications for Adaptation Planning

    Science.gov (United States)

    Birch, Anne P.; Brenner, Jorge; Gordon, Doria R.

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida’s Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  1. Laboratory studies of dune sand for the use of construction industry in Sri Lanka

    Science.gov (United States)

    de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka

    2015-04-01

    With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing

  2. Light-stress avoidance mechanisms in a Sphagnum-dominated wet coastal Arctic tundra ecosystem in Alaska.

    Science.gov (United States)

    Zona, D; Oechel, Walter C; Richards, James H; Hastings, Steven; Kopetz, Irene; Ikawa, Hiroki; Oberbauer, Steven

    2011-03-01

    The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.

  3. Community structure of spiders in coastal habitats of a Mediterranean delta region (Nestos Delta, NE Greece

    Directory of Open Access Journals (Sweden)

    S. Buchholz

    2009-01-01

    Full Text Available (pp 101-115Habitat zonation and ecology of spider assemblages have been poorly studied in Mediterranean ecosystems. A first analysis of spider assemblages in coastal habitats in the east Mediterranean area is presented. The study area is the 250 km² Nestos Delta, located in East Macedonia in the North-East of Greece. Spiders were caught in pitfall traps at 17 sites from the beginning of April to the end of June 2004. Nonparametric estimators were used to determine species richness and alpha diversity. Ordination analysis (redundancy analysis indicated four clearly separable spider species groups (salt meadows, dunes, mea-dows and floodplain forests, along a soil salinity and moisture gradient. Based on these results we discuss the habitat preferences of these spiders and include the first ecological data on several species.

  4. Suppression of hyphal growth of soil-borne fungi by dune soils from vigorous and declining stands of Ammophila arenaria

    NARCIS (Netherlands)

    De Boer, W.; Klein Gunnewiek, P.J.A.; Woldendorp, J.W.

    1998-01-01

    A study was carried out to determine whether expansion of marram-grass stands (Ammophila arenaria (L.) Link) on acidic inner Dutch coastal dunes was caused by suppressiveness of soils from these stands against three potential pathogenic fungi of marram grass, namely Fusarium culmorum (W. G. Sm.)

  5. Coral Reef and Coastal Ecosystems Decision Support Workshop April 27-29, 2010 Caribbean Coral Reef Institute, La Parguera, Puerto Rico

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) and Caribbean Coral Reef Institute (CCRI) hosted a Coral Reef and Coastal Ecosystems Decision Support Workshop on April 27-28, 2010 at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico. Forty-three participants, includin...

  6. Ecomorphology of crabs and swimming crabs (Crustacea DecapodaBrachyura from coastal ecosystems

    Directory of Open Access Journals (Sweden)

    Murilo Zanetti Marochi

    Full Text Available Abstract Brachyuran crabs are one of the most diverse taxa of crustaceans, occurring in almost all coastal habitats. Due to their high morphological diversification, the authors sought to ascertain the existence of morphological patterns related to the habitat of coastal brachyuran crabs. We analyzed 17 species from mangrove forests, rocky shores, sandy beaches and exclusively aquatic marine/estuarine ecosystems. A total of 16 linear measurements of males and 17 of females were obtained for each habitat. We were able to discriminate three functional groups of crab species, based on their habitat: 1. Complex Substrates, 2. Semiterrestrial, 3. Exclusively Aquatic. The species belonging to the Complex Substrates group had long ambulatory legs, as well as being heteroquely related to uneven terrain. Semiterrestrial species showed ambulatory legs of different sizes, allowing them to walk easily on the terrestrial terrain due to the long fourth ambulatory leg, and long eyestalks which are important for visual communication. Exclusively Aquatic species showed the largest carapace widths and the shortest eyestalks. The presence of different crab lineages in the environments analyzed allows us to demonstrate the clear evolutionary convergence, by which the crabs adapted to their specific habitat and environment.

  7. Belowground dynamics in mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  8. Impacts of simulated climate change and fungal symbionts on survival and growth of a foundation species in sand dunes.

    Science.gov (United States)

    Emery, Sarah M; Rudgers, Jennifer A

    2013-12-01

    For many ecosystems, one of the primary avenues of climate impact may be through changes to foundation species, which create habitats and sustain ecosystem services. For plants, microbial symbionts can often act as mutualists under abiotic stress and may mediate foundational plant responses to climate change. We manipulated the presence of endophytes in Ammophila breviligulata, a foundational sand dune species, to evaluate their potential to influence plant responses to climate change. We simulated projected climate change scenarios for temperature and precipitation using a growth chamber experiment. A 5 °C increase in temperature relative to current climate in northern Michigan reduced A. breviligulata survival by 45 %. Root biomass of A. breviligulata, which is critical to dune stabilization, was also strongly reduced by temperature. Plants inoculated with the endophyte had 14 % higher survival than endophyte-free plants. Contrary to our prediction, endophyte symbiosis did not alter the magnitude or direction of the effects of climate manipulations on A. breviligulata survival. However, in the absence of the endophyte, an increase in temperature increased the number of sand grains bound by roots by 80 %, while in symbiotic plants sand adherence did not significantly respond to temperature. Thus, plant-endophyte symbiosis actually negated the benefits in ecosystem function gained under a warmer climate. This study suggests that heat stress related to climate change in the Great Lakes may compromise the ability of A. breviligulata to stabilize dune ecosystems and reduce carbon storage and organic matter build-up in these early-successional systems due to reduced plant survival and root growth.

  9. Hurricane Isaac: observations and analysis of coastal change

    Science.gov (United States)

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography

  10. Understanding river dune splitting through flume experiments and analysis of a dune evolution model

    NARCIS (Netherlands)

    Warmink, Jord Jurriaan; Dohmen-Janssen, Catarine M.; Lansink, Jord; Naqshband, Suleyman; van Duin, Olav; Paarlberg, Andries; Termes, A.P.P.; Hulscher, Suzanne J.M.H.

    2014-01-01

    Forecasts of water level during river floods require accurate predictions of the evolution of river dune dimensions, because the hydraulic roughness of the main channel is largely determined by the bed morphology. River dune dimensions are controlled by processes like merging and splitting of dunes.

  11. Ecomarkets for conservation and sustainable development in the coastal zone.

    Science.gov (United States)

    Fujita, Rod; Lynham, John; Micheli, Fiorenza; Feinberg, Pasha G; Bourillón, Luis; Sáenz-Arroyo, Andrea; Markham, Alexander C

    2013-05-01

    Because conventional markets value only certain goods or services in the ocean (e.g. fish), other services provided by coastal and marine ecosystems that are not priced, paid for, or stewarded tend to become degraded. In fact, the very capacity of an ecosystem to produce a valued good or service is often reduced because conventional markets value only certain goods and services, rather than the productive capacity. Coastal socio-ecosystems are particularly susceptible to these market failures due to the lack of clear property rights, strong dependence on resource extraction, and other factors. Conservation strategies aimed at protecting unvalued coastal ecosystem services through regulation or spatial management (e.g. Marine Protected Areas) can be effective but often result in lost revenue and adverse social impacts, which, in turn, create conflict and opposition. Here, we describe 'ecomarkets' - markets and financial tools - that could, under the right conditions, generate value for broad portfolios of coastal ecosystem services while maintaining ecosystem structure and function by addressing the unique problems of the coastal zone, including the lack of clear management and exclusion rights. Just as coastal tenure and catch-share systems generate meaningful conservation and economic outcomes, it is possible to imagine other market mechanisms that do the same with respect to a variety of other coastal ecosystem goods and services. Rather than solely relying on extracting goods, these approaches could allow communities to diversify ecosystem uses and focus on long-term stewardship and conservation, while meeting development, food security, and human welfare goals. The creation of ecomarkets will be difficult in many cases, because rights and responsibilities must be devolved, new social contracts will be required, accountability systems must be created and enforced, and long-term patterns of behaviour must change. We argue that efforts to overcome these obstacles

  12. Stability of isolated Barchan dunes

    Science.gov (United States)

    Fourrière, Antoine; Charru, François

    2010-11-01

    When sand grains are entrained by an air flow over a non-erodible ground, or with limited sediment supply from the bed, they form isolated dunes showing a remarkable crescentic shape with horns pointing downstream. These dunes, known as Barchan dunes, are commonly observed in deserts, with height of a few meters and velocity of a few meters per year (Bagnold 1941). These dunes also exist under water, at a much smaller, centimetric size (Franklin & Charru 2010). Their striking stability properties are not well understood yet. Two phenomena are likely to be involved in this stability: (i) relaxation effects of the sand flux which increases from the dune foot up to the crest, related to grain inertia or deposition, and (ii) a small transverse sand flux due to slope effects and the divergence of the streamlines of the fluid flow. We reproduced aqueous Barchan dunes in a channel, and studied their geometrical and dynamic properties (in particular their shape, velocity, minimum size, and rate of erosion). Using coloured glass beads (see the figure), we were then able to measure the particle flux over the whole dune surface. We will discuss the stability of these dunes in the light of our measurements.

  13. Sand mining impacts on long-term dune erosion in southern Monterey Bay

    Science.gov (United States)

    Thornton, E.B.; Sallenger, Abby; Sesto, Juan Conforto; Egley, L.; McGee, Timothy; Parsons, Rost

    2006-01-01

    Southern Monterey Bay was the most intensively mined shoreline (with sand removed directly from the surf zone) in the U.S. during the period from 1906 until 1990, when the mines were closed following hypotheses that the mining caused coastal erosion. It is estimated that the yearly averaged amount of mined sand between 1940 and 1984 was 128,000 m3/yr, which is approximately 50% of the yearly average dune volume loss during this period. To assess the impact of sand mining, erosion rates along an 18 km range of shoreline during the times of intensive sand mining (1940–1990) are compared with the rates after sand mining ceased (1990–2004). Most of the shoreline is composed of unconsolidated sand with extensive sand dunes rising up to a height of 46 m, vulnerable to the erosive forces of storm waves. Erosion is defined here as a recession of the top edge of the dune. Recession was determined using stereo-photogrammetry, and LIDAR and GPS surveys. Long-term erosion rates vary from about 0.5 m/yr at Monterey to 1.5 m/yr in the middle of the range, and then decrease northward. Erosion events are episodic and occur when storm waves and high tides coincide, allowing swash to undercut the dune and resulting in permanent recession. Erosion appears to be correlated with the occurrence of El Niños. The calculated volume loss of the dune in southern Monterey Bay during the 1997–98 El Niño winter was 1,820,000 m3, which is almost seven times the historical annual mean dune erosion of 270,000 m3/yr. The alongshore variation in recession rates appears to be a function of the alongshore gradient in mean wave energy and depletions by sand mining. After cessation of sand mining in 1990, the erosion rates decreased at locations in the southern end of the bay but have not significantly changed at other locations.

  14. Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem.

    Science.gov (United States)

    Cornwall, Christopher E; Eddy, Tyler D

    2015-02-01

    Understanding ecosystem responses to global and local anthropogenic impacts is paramount to predicting future ecosystem states. We used an ecosystem modeling approach to investigate the independent and cumulative effects of fishing, marine protection, and ocean acidification on a coastal ecosystem. To quantify the effects of ocean acidification at the ecosystem level, we used information from the peer-reviewed literature on the effects of ocean acidification. Using an Ecopath with Ecosim ecosystem model for the Wellington south coast, including the Taputeranga Marine Reserve (MR), New Zealand, we predicted ecosystem responses under 4 scenarios: ocean acidification + fishing; ocean acidification + MR (no fishing); no ocean acidification + fishing; no ocean acidification + MR for the year 2050. Fishing had a larger effect on trophic group biomasses and trophic structure than ocean acidification, whereas the effects of ocean acidification were only large in the absence of fishing. Mortality by fishing had large, negative effects on trophic group biomasses. These effects were similar regardless of the presence of ocean acidification. Ocean acidification was predicted to indirectly benefit certain species in the MR scenario. This was because lobster (Jasus edwardsii) only recovered to 58% of the MR biomass in the ocean acidification + MR scenario, a situation that benefited the trophic groups lobsters prey on. Most trophic groups responded antagonistically to the interactive effects of ocean acidification and marine protection (46%; reduced response); however, many groups responded synergistically (33%; amplified response). Conservation and fisheries management strategies need to account for the reduced recovery potential of some exploited species under ocean acidification, nonadditive interactions of multiple factors, and indirect responses of species to ocean acidification caused by declines in calcareous predators. © 2014 Society for Conservation Biology.

  15. Our evolving conceptual model of the coastal eutrophication problem

    Science.gov (United States)

    Cloern, James E.

    2001-01-01

    A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5

  16. Dunes Around Khnifiss Lagoon (Tarfaya, SW of Morocco): Composition, Itinerary In Dune Fields, Effects on Dunes' Colours and Morphodynamic

    Science.gov (United States)

    Adnani, M.; Azzaoui, M. A.; Elbelrhiti, H.; Ahmamou, M.; Masmoudi, L.

    2015-12-01

    Dunes around Khnifiss lagoon (28° 3'N, 12°13'W) show different colors ranging from black at the beach, whitish yellow in transverse dunes near the beach to reddish at the mega barchans situated few kilometers in the SW. The scientific question is about the abundance of different dunes in the same environmental conditions. The present work aims to investigate the factors that influence dunes color change, and then at which degree these factors could control dunes stability. To highlight the difference in color observed at the dune fields then to characterize dunes mineralogy, Landsat TM images were used in addition to mineralogical analysis that was carried out for the black grains samples originated from megabarchans. Optic Microscope and SEM- EDS data was adopted, in addition to physico-chemical analysis provided by Electronic Microprobe. Grain size and shape analysis were conducted to characterize the different types of grains of sand. 3/1 Landsat image band ratio allowed iron oxide distinction, the results revealed the importance of iron oxide concentration. Furthermore, mineralogical and physico-chemical analysis revealed (i) a high grade of oxides (Rutile, Ilmenite, Magnetite, Ulvöspinel) in samples, (ii) silicates (Quartz, Clinopyroxene, feldspar, Zircon), (iii) phosphate (apatite) and (iv) carbonate (calcite). The grain size analysis of the sand originated from the megabarchans reveals that there are three populations of sand. Black grains with a diameter less than 100μm and dominated by the magnetite, red ones composed mainly by the quartz with diameter between 100 and 180 μm and grains with diameter more than 180 μm are white and composed by carbonates. The threshold of motion of these different grains was calculated. It shows that these different grains have the same threshold of motion, which means that the grain size compensates the density. This explains the abundance of different populations of sand in the same environment. The dominance of iron

  17. The role of sexual vs. asexual recruitment of Artemisia wudanica in transition zone habitats between inter-dune lowlands and active dunes in Inner Mongolia, China

    Science.gov (United States)

    Wang, Yongcui; Alberto, Busso Carlos; Jiang, Deming; Ala, Musa; Li, Xuehua; Zhou, Quanlai; Lin, Jixiang; Ren, Guohua; Jia, Lian

    2016-04-01

    Artemisia wudanica is an endemic, perennial, pioneering psammophyte species in the sand dune ecosystems of western Horqin Sand Land in northern China. However, no studies have addressed how sexual and asexual reproduction modes of A. wudanica perform at the transitional zones between active dune inter-dune lowlands and active dunes. In early spring, quadrats were randomly set up in the study area to monitor surviving seedling and/or ramet density and frequency coming from sexual/asexual reproduction of A. wudanica. Iron sticks were inserted near each quadrat to determine wind erosion intensity (WE). Additionally, soil samples were collected nearby each quadrat to test for soil moisture (SM), organic matter (OM) and pH. Surviving seedlings of A. wudanica showed an inverse response in comparison with ramets to SM, OM and WE. Soil moisture showed the most positive effect, and WE the negative effect, on surviving, sexual reproduction seedlings. Contrarily, WE had the most positive effect, and SM the negative effect, on asexual reproduction ramets. This suggests that increases in SM and decreases in WE should benefit recruitment of A. wudanica seedlings. On the contrary, ramets coming from asexual reproduction showed a different response to environmental factors in transition zone habitats. While SM was not a key constraint for the survival of seedlings, they showed a better, positive response to wind erosion environments. Overall, various study environmental parameters could be improved to foster A. wudanica invasion and settlement in the plant community through different reproductive modes, thereby promoting vegetation restoration and rehabilitation.

  18. Coastal and estuarine resources of Bangladesh: management and conservation issues

    Directory of Open Access Journals (Sweden)

    Abu Hena M. Kamal

    2009-07-01

    Full Text Available The coastal area of Bangladesh includes a number of bays into which different types of rivers empty, creating an estuarine ecosystem adjacent to the shore. The main estuarine systems are Brahmaputra-Megna (Gangetic delta, Karnaphuly, Matamuhuri, Bakkhali and Naf rivers, which are comprised of mangroves, salt marshes, seagrass, seaweeds, fisheries, coastal birds, animals, coral reefs, deltas, salt beds, minerals and sand dunes. The estuarine environment, which serves as feeding, breeding and nursery grounds for a variety of animals, varies according to the volume of discharge of the river and tidal range. It is highly productive in terms of nutrient input from different sources that promotes other living resources in the estuaries. Drought conditions exist during the winter months, i.e. November to February, and effective rainfall is confined to the monsoon period, i.e. May to June. Changes in salinity and turbidity depend on annual rainfall. The colour of most estuarine waters is tea brown or brown due to heavy outflows during the monsoon. The tidal mixing and riverine discharge governs the distribution of the hydrological parameters. The pH of these waters is reported to be slightly alkaline (>7.66 and dissolved oxygen (<6.0 mg/l shows an inverse relationship to temperature. Studies of plankton have indicated two periods of maximum abundance, i.e. February-March and August-September. The abundance of fish and shrimp larvae varies in number and composition with season. Many marine and freshwater species are available in various types of coastal brackish water, which depend on monsoonal activities and local environmental conditions.

  19. SAFRR tsunami scenario: Impacts on California ecosystems, species, marine natural resources, and fisheries: Chapter G in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    Science.gov (United States)

    Brosnan, Deborah; Wein, Anne; Wilson, Rick; Ross, Stephanie L.; Jones, Lucile

    2014-01-01

    We evaluate the effects of the SAFRR Tsunami Scenario on California’s ecosystems, species, natural resources, and fisheries. We discuss mitigation and preparedness approaches that can be useful in Tsunami planning. The chapter provides an introduction to the role of ecosystems and natural resources in tsunami events (Section 1). A separate section focuses on specific impacts of the SAFRR Tsunami Scenario on California’s ecosystems and endangered species (Section 2). A section on commercial fisheries and the fishing fleet (Section 3) documents the plausible effects on California’s commercial fishery resources, fishing fleets, and communities. Sections 2 and 3 each include practical preparedness options for communities and suggestions on information needs or research.Our evaluation indicates that many low-lying coastal habitats, including beaches, marshes and sloughs, rivers and waterways connected to the sea, as well as nearshore submarine habitats will be damaged by the SAFRR Tsunami Scenario. Beach erosion and complex or high volumes of tsunami-generated debris would pose major challenges for ecological communities. Several endangered species and protected areas are at risk. Commercial fisheries and fishing fleets will be affected directly by the tsunami and indirectly by dependencies on infrastructure that is damaged. There is evidence that in some areas intact ecosystems, notably sand dunes, will act as natural defenses against the tsunami waves. However, ecosystems do not provide blanket protection against tsunami surge. The consequences of ecological and natural resource damage are estimated in the millions of dollars. These costs are driven partly by the loss of ecosystem services, as well as cumulative and follow-on impacts where, for example, increased erosion during the tsunami can in turn lead to subsequent damage and loss to coastal properties. Recovery of ecosystems, natural resources and fisheries is likely to be lengthy and expensive

  20. Mapping invasive woody species in coastal dunes in the Netherlands: a remote sensing approach using LIDAR and high-resolution aerial photographs

    NARCIS (Netherlands)

    Hantson, W.P.R.; Kooistra, L.; Slim, P.A.

    2012-01-01

    Questions Does remote sensing improve classification of invasive woody species in dunes, useful for shrub management? Does additional height information and an object-based classifier increase woody species classification accuracy? Location The dunes of Vlieland, one of the Wadden Sea Islands, the

  1. Plant responses to an edaphic gradient across an active sand dune/desert boundary in the great basin desert.

    NARCIS (Netherlands)

    Rosenthal, D.M.; Ludwig, F.; Donovan, L.A.

    2005-01-01

    In arid ecosystems, variation in precipitation causes broad-scale spatial heterogeneity in soil moisture, but differences in soil texture, development, and plant cover can also create substantial local soil moisture heterogeneity. The boundary between inland desert sand dunes and adjacent desert

  2. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    Science.gov (United States)

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  3. 7Be content in rainfall and soil deposition in South American coastal ecosystems

    International Nuclear Information System (INIS)

    Cardoso, R.; Ayub, J. Juri; Anjos, Roberto Meigikos dos; Cid, Alberto Silva; Velasco, H.

    2011-01-01

    soil deposition in a semiarid ecosystem at San Luis Province, central Argentina. Now, we are starting measurements in coastal ecosystems at Niteroi, southeastern Brazil. At this conference, we are going to present preliminary results on 7 Be content in rains, relationships with precipitation regime, and assess the 7 Be deposition in soil and its seasonality. (author)

  4. Dune growth under multidirectional wind regimes

    Science.gov (United States)

    Gadal, C.; Rozier, O.; Claudin, P.; Courrech Du Pont, S.; Narteau, C.

    2017-12-01

    Under unidirectional wind regimes, flat sand beds become unstable to produce periodic linear dunes, commonly called transverse dunes because their main ridges are oriented perpendicular to the air flow. In areas of low sediment availability, the same interactions between flow, transport and topography produce barchan dunes, isolated sand-pile migrating over long distances with a characteristic crescentic shape. For the last fifteen years, barchan dunes and the instability at the origin of transverse dunes have been the subject of numerous studies that have identified a set of characteristic length and time scales with respect to the physical properties of both grains and fluid. This is not the case for dunes developing under multidirectional wind regimes. Under these conditions, dune orientation is measured with respect to the direction of the resultant sand flux. Depending on the wind regime, dunes do not always line up perpendicularly to the resultant sand flux, but can also be at an oblique angle or even parallel to it. These oblique and longitudinal dunes are ubiquitous in all deserts on Earth and planetary bodies because of the seasonal variability of wind orientation. They are however poorly constrained by observations and there is still no complete theoretical framework providing a description of their orientation and initial wavelength. Here, we extend the linear stability analysis of a flat sand of bed done in two dimensions for a unidirectional flow to three dimensions and multidirectional flow regimes. We are able to recover transitions from transverse to oblique or longitudinal dune patterns according to changes in wind regimes. We besides give a prediction for the initial dune wavelength. Our results compare well to previous theory of dune orientation and to field, experimental and numerical data.

  5. Size distribution and structure of Barchan dune fields

    Directory of Open Access Journals (Sweden)

    O. Durán

    2011-07-01

    Full Text Available Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009, we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

  6. Effects of Land Use Changes on the Ecosystem Service Values of Coastal Wetlands

    Science.gov (United States)

    Camacho-Valdez, Vera; Ruiz-Luna, Arturo; Ghermandi, Andrea; Berlanga-Robles, César A.; Nunes, Paulo A. L. D.

    2014-10-01

    Changes in the coastal landscape of Southern Sinaloa (Mexico), between 2000 and 2010, were analyzed to relate spatial variations in wetlands extent with the provision and economic value of the ecosystem services (ES). Remote sensing techniques applied to Landsat TM imagery were used to evaluate land use/land cover changes while the value transfer method was used to assess the value of ES by land cover category. Five wetland types and other four land covers were found as representative of the coastal landscape. Findings reveal a 14 % decrease in the saltmarsh/forested mangrove area and a 12 % increase in the area of shrimp pond aquaculture (artificial wetland) during the study period. ES valuation shows that the total value flow increased by 9 % from 215 to 233 million (2007 USD) during the 10-year period. This increase is explained as result of the high value worldwide assigned to saltmarsh. We recognize limitations in the transfer-based approach in quantifying and mapping ES values in the region, but this method provides with value estimates spatially defined, and also provides some guidance in the preliminary screening of policies and projected development in the context of data-scarce regions.

  7. Shrubs as ecosystem engineers across an environmental gradient: effects on species richness and exotic plant invasion.

    Science.gov (United States)

    Kleinhesselink, Andrew R; Magnoli, Susan M; Cushman, J Hall

    2014-08-01

    Ecosystem-engineering plants modify the physical environment and can increase species diversity and exotic species invasion. At the individual level, the effects of ecosystem engineers on other plants often become more positive in stressful environments. In this study, we investigated whether the community-level effects of ecosystem engineers also become stronger in more stressful environments. Using comparative and experimental approaches, we assessed the ability of a native shrub (Ericameria ericoides) to act as an ecosystem engineer across a stress gradient in a coastal dune in northern California, USA. We found increased coarse organic matter and lower wind speeds within shrub patches. Growth of a dominant invasive grass (Bromus diandrus) was facilitated both by aboveground shrub biomass and by growing in soil taken from shrub patches. Experimental removal of shrubs negatively affected species most associated with shrubs and positively affected species most often found outside of shrubs. Counter to the stress-gradient hypothesis, the effects of shrubs on the physical environment and individual plant growth did not increase across the established stress gradient at this site. At the community level, shrub patches increased beta diversity, and contained greater rarified richness and exotic plant cover than shrub-free patches. Shrub effects on rarified richness increased with environmental stress, but effects on exotic cover and beta diversity did not. Our study provides evidence for the community-level effects of shrubs as ecosystem engineers in this system, but shows that these effects do not necessarily become stronger in more stressful environments.

  8. Dunes with Frost

    Science.gov (United States)

    2004-01-01

    31 May 2004 Springtime for the martian northern hemisphere brings defrosting spots and patterns to the north polar dune fields. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example located near 76.7oN, 250.4oW. In summer, these dunes would be darker than their surroundings. However, while they are still covered by frost, they are not any darker than the substrate across which the sand is slowly traveling. Dune movement in this case is dominated by winds that blow from the southwest (lower left) toward the northeast (upper right). The picure covers an area about 3 km (1.9 mi) across and is illuminated by sunlight from the lower left.

  9. Mars Global Digital Dune Database; MC-1

    Science.gov (United States)

    Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2010-01-01

    The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S (http://pubs.usgs.gov/of/2007/1158/). The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore, the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera narrow angle (MOC NA), or Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also

  10. Frost on Dunes

    Science.gov (United States)

    2005-01-01

    18 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark dunes on a crater floor during the southern spring. Some of the dunes have frost on their south-facing slopes. Location near: 52.3oS, 326.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  11. Composition And Geometry Of Titan'S Dunes

    Science.gov (United States)

    Le Gall, Alice; Janssen, M. A.; Wye, L. C.; Lorenz, R. D.; Radebaugh, J.; Cassini RADAR Team

    2009-09-01

    Fields of linear dunes cover a large portion of Titan's equatorial regions. As the Cassini mission continues, more of them are unveiled and examined by the microwave Titan RADAR Mapper both in the active and passive modes of operation of the instrument and with an increasing variety of observational geometries. In this presentation, we will show that the joint analysis of the SAR (Synthetic Aperture Radar) and radiometry observations of the dunes at closest approach supports the idea of different composition between the dunes and the interdunes. It suggests that the icy bedrock of Titan may be exposed, or partially exposed, in the interdunes. We also see regional differences among dune fields. Dunes are highly directional features; their visibility is controlled by the look direction and the incidence angle. We have developed a backscatter and emissivity model that takes into account the topography of the dunes relative to the geometry of observation as well as the composition of the dunes and interdunes. Compared to observations and, in particular, to multiple observations of areas at the overlap of several swaths, we argue the need for a diffuse scattering mechanism. The presence of ripples in the dunes and/or interdunes might account for the recorded backscatter. In this presentation we will also report the results of the T61 experiment. The T61 HiSAR sequence (on August 25, 2009) was designed to examine a small region of the Shangri-La dune field with a substantial sampling of incidence angles around the direction perpendicular to the dunes long axis. The spot in question was already observed during the T55 SAR swath and the T61 experiment should allow us to determine the slope of the dunes.

  12. Impacts of cattle on ecological restoration of coastal forests in ...

    African Journals Online (AJOL)

    Livestock from communities bordered by dune mining, urban areas and commercial forestry in northern KwaZulu-Natal spend substantial time foraging in the coastal forest that the mining company is obliged to restore. A survey of livestock owners and an experimental study of impacts of cattle on restoration processes were ...

  13. Changes in vegetation and biological soil crust communities on sand dunes stabilizing after a century of grazing on San Miguel Island, Channel Island National Park, California

    Science.gov (United States)

    Zellman, Kristine L.

    2014-01-01

    San Miguel Island is the westernmost of the California Channel Islands and one of the windiest areas on the west coast of North America. The majority of the island is covered by coastal sand dunes, which were stripped of vegetation and subsequently mobilized due to droughts and sheep ranching during the late 19th century and early 20th century. Since the removal of grazing animals, vegetation and biological soil crusts have once again stabilized many of the island's dunes. In this study, historical aerial photographs and field surveys were used to develop a chronosequence of the pattern of change in vegetation communities and biological soil crust levels of development (LOD) along a gradient of dune stabilization. Historical aerial photographs from 1929, 1954, 1977, and 2009 were georeferenced and used to delineate changes in vegetation canopy cover and active (unvegetated) dune extent among 5 historical periods (pre-1929, 1929–1954, 1954–1977, 1977–2009, and 2009–2011). During fieldwork, vegetation and biological soil crust communities were mapped along transects distributed throughout San Miguel Island's central dune field on land forms that had stabilized during the 5 time periods of interest. Analyses in a geographic information system (GIS) quantified the pattern of changes that vegetation and biological soil crust communities have exhibited on the San Miguel Island dunes over the past 80 years. Results revealed that a continuing increase in total vegetation cover and a complex pattern of change in vegetation communities have taken place on the San Miguel Island dunes since the removal of grazing animals. The highly specialized native vascular vegetation (sea rocket, dunedelion, beach-bur, and locoweed) are the pioneer stabilizers of the dunes. This pioneer community is replaced in later stages by communities that are dominated by native shrubs (coastal goldenbush, silver lupine, coyote-brush, and giant coreopsis), with apparently overlapping or

  14. Dune mobility in the St. Anthony Dune Field, Idaho, USA: Effects of meteorological variables and lag time

    Science.gov (United States)

    Hoover, R. H.; Gaylord, D. R.; Cooper, C. M.

    2018-05-01

    The St. Anthony Dune Field (SADF) is a 300 km2 expanse of active to stabilized transverse, barchan, barchanoid, and parabolic sand dunes located in a semi-arid climate in southeastern Idaho. The northeastern portion of the SADF, 16 km2, was investigated to examine meteorological influences on dune mobility. Understanding meteorological predictors of sand-dune migration for the SADF informs landscape evolution and impacts assessment of eolian activity on sensitive agricultural lands in the western United States, with implications for semi-arid environments globally. Archival aerial photos from 1954 to 2011 were used to calculate dune migration rates which were subsequently compared to regional meteorological data, including temperature, precipitation and wind speed. Observational analyses based on aerial photo imagery and meteorological data indicate that dune migration is influenced by weather for up to 5-10 years and therefore decadal weather patterns should be taken into account when using dune migration rates as proxies from climate fluctuation. Statistical examination of meteorological variables in this study indicates that 24% of the variation of sand dune migration rates is attributed to temperature, precipitation and wind speed, which is increased to 45% when incorporating lag time.

  15. Sand dune movement in the Victoria Valley, Antarctica

    Science.gov (United States)

    Bourke, Mary C.; Ewing, Ryan C.; Finnegan, David; McGowan, Hamish A.

    2009-08-01

    We use vertical aerial photographs and LiDAR topographic survey data to estimate dune migration rates in the Victoria Valley dunefield, Antarctica, between 1961 and 2001. Results confirm that the dunes migrated an average of 1.5 m/year. These values are consistent with other estimates of dune migration from cold climate deserts and are significantly lower than estimates from warm deserts. Dune migration rates are retarded by the presence of entrained ice, soil moisture and a reversing wind regime. Dune absorption, merging and limb extension are apparent from the time-series images and account for significant changes in dune form and the field-scale dune pattern. Dune-field pattern analysis shows an overall increase in dune-field organization with an increase in mean dune spacing and a reduction in total crest length and defect density. These data suggest that dunes in other cold desert environments on Earth, Mars or Titan, that may also have inter-bedded frozen laminae, still have the potential to migrate and organize, albeit at lower rates than dunes in warm deserts.

  16. In hot water: the future of Australia's coastal and marine ecosystems

    International Nuclear Information System (INIS)

    Richardson, Anthony J; Poloczanska, Elvira

    2007-01-01

    Full text: Full text: Marine ecosystems are extremely important economically and ecologically to Australia in terms of tourism, coastal defence, resources, and ecosystem services such as nutrient cycling and waste disposal. Australia is also a globally important repository of biodiversity. Here we describe the observed and potential future impacts of climate change on Australia's marine diversity. Climate simulations project oceanic warming, an increase in stratification, a strengthening of the Eastern Australian Current, increased ocean acidification, a rise in sea level, and altered storm and rainfall regimes, which taken collectively will fundamentally change marine ecosystems. There has already been widespread bleaching of tropical corals, poleward shifts of temperate fish and plankton populations, and a decline in cold-water giant kelp off Tasmania. Future changes are likely to be even more dramatic and have considerable economic and ecological consequences, especially in 'hot spots' of climate change such as theTasman Sea and the Great Barrier Reef area. Corals are likely to bleach more frequently and decline in abundance in response to both warming and ocean acidification. Planktonic animals with calcium carbonate shells, such as winged pteropod snails and coccolithophorid phytoplankton, are likely to decline as increased ocean acidification impairs their ability to maintain carbonate body structures. The projected high warming off south-east Australia is of particular concern. Marine ecosystems in this region are already stressed by high metal concentrations, sewage pollution, and overfishing, and climate models project that this region will warm more than anywhere else in the Southern Hemisphere this century because of enhanced southerly penetration of the East Australian Current. Venomous jellyfish and harmful algal blooms, which are major threats to human health, will potentially extend further south and occur more frequently. Temperate species

  17. Environmental Controls and Eco-geomorphic Interactions of the Barchan-to-parabolic Dune Stabilisation and the Parabolic-to-barchan Dune Reactivation

    Science.gov (United States)

    Yan, Na; Baas, Andreas

    2015-04-01

    Parabolic dunes are one of a few common aeolian landforms which are highly controlled by eco-geomorphic interactions. Parabolic dunes, on the one hand, can be developed from highly mobile dune landforms, barchans for instance, in an ameliorated vegetation condition; or on the other hand, they can be reactivated and transformed back into mobile dunes due to vegetation deterioration. The fundamental mechanisms and eco-geomorphic interactions controlling both dune transformations remain poorly understood. To bridge the gap between complex processes involved in dune transformations on a relatively long temporal scale and real world monitoring records on a very limited temporal scale, this research has extended the DECAL model to incorporate 'dynamic' growth functions and the different 'growth' of perennial shrubs between growing and non-growing seasons, informed by field measurements and remote sensing analysis, to explore environmental controls and eco-geomorphic interactions of both types of dune transformation. A non-dimensional 'dune stabilising index' is proposed to capture the interactions between environmental controls (i.e. the capabilities of vegetation to withstand wind erosion and sand burial, the sandy substratum thickness, the height of the initial dune, and the sand transport potential), and establish the linkage between these controls and the geometry of a stabilising dune. An example demonstrates how to use the power-law relationship between the dune stabilising index and the normalised migration distance to assist in extrapolating the historical trajectories of transforming dunes. The modelling results also show that a slight increase in vegetation cover of an initial parabolic dune can significantly increase the reactivation threshold of climatic impact (both drought stress and wind strength) required to reactivate a stabilising parabolic dune into a barchan. Four eco-geomorphic interaction zones that govern a barchan-to-parabolic dune transformation

  18. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    Science.gov (United States)

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  19. Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain)

    Science.gov (United States)

    Benavente, J.; Del Río, L.; Gracia, F. J.; Martínez-del-Pozo, J. A.

    2006-06-01

    Mapping of coastal inundation hazard related to storms requires the combination of multiple sources of information regarding meteorological, morphological and dynamic characteristics of both the area at risk and the studied phenomena. Variables such as beach slope, storm wave height or wind speed have traditionally been used, but detailed geomorphological features of the area as well as long-term shoreline evolution trends must also be taken into account in order to achieve more realistic results. This work presents an evaluation of storm flooding hazard in Valdelagrana spit and marshes (SW Spain), considering two types of storm that are characteristic of the area: a modal storm with 1 year of recurrence interval (maximum wave height of 3.3 m), and an extreme storm with 6-10 years of recurrence interval (maximum wave height of 10.6 m), both approaching the coast perpendicularly. After calculating theoretical storm surge elevation, a digital terrain model was made by adjusting topographic data to field work and detailed geomorphological analysis. A model of flooding extent was subsequently developed for each storm type, and then corrected according to the rates of shoreline change in the last decades, which were assessed by means of aerial photographs taking the dune toe as shoreline indicator. Results show that long-term coastline trend represents an important factor in the prediction of flooding extent, since shoreline retreat causes the deterioration of natural coastal defences as dune ridges, thus increasing coastal exposure to high-energy waves. This way, it has been stated that the lack of sedimentary supply plays an important role in spatial variability of inundation extent in Valdelagrana spit. Finally, a hazard map is presented, where calculated coastal retreat rates are employed in order to predict the areas that could be affected by future inundation events.

  20. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region (Version 2.0)

    Science.gov (United States)

    2010-11-01

    35 Figure 4. At the toe of a hill slope, the gradient is only slightly inclined or nearly level. ..................... 35...marshes, beach/ dune systems, and wet flats are typical of the outer coastal plain on recent or Holocene sediments, while mixed evergreen/hardwood...mangrove shrublands are also found along the Texas and Louisiana coasts (NatureServe 2006). Beach/ dune systems are typically associated with barrier

  1. Degradation of mangroves adversely affected ecosystem and rural inhabitant in the Sindh's coastal area

    International Nuclear Information System (INIS)

    Naqvi, S.R.; Inam, Z.

    2005-01-01

    Mangroves the ecological treasure of Sindh, are facing a steady decline due to in active Government policies and lack of interest of local people. Mangroves provide important breeding Zone of to the marine biodiversity because of the reduction of silt flows, the area of active growth of delta, has been reduced from an original estimate of 2600 sq km to about 260 sq km. Similarly, the area of Mangroves from 345,000 hectares, the area is now only 205000 hectares. Pakistani Mangroves rank 6th among the mangroves spread in 92 countries. Mangroves forests act as inter face b/w land and sea. It provides nutrients to marine fisheries and is vital healthy Ecosystem. During past 50 years, nearly 100,000 hectares have been destroyed. The destruction is quite high from 1975 to 1992. It is due to water shortage in the river Indus. Degradation of mangroves adversely affected ecosystem and rural inhabitant in the coastal area. Thus to find root causes of degradation and its effects this study was made. (author)

  2. Effluent Mixing Modeling for Liquefied Natural Gas Outfalls in a Coastal Ecosystem

    Directory of Open Access Journals (Sweden)

    Mustafa Samad

    2014-06-01

    Full Text Available Liquid Natural Gas (LNG processing facilities typically are located on ocean shores for easy transport of LNG by marine vessels. These plants use large quantities of water for various process streams. The combined wastewater effluents from the LNG plants are discharged to the coastal and marine environments typically through submarine outfalls. Proper disposal of effluents from an LNG plant is essential to retain local and regional environmental values and to ensure regulatory and permit compliance for industrial effluents. Typical outfall designs involve multi-port diffuser systems where the design forms a part of the overall environmental impact assessment for the plant. The design approach needs to ensure that both near-field plume dispersion and far-field effluent circulation meets the specified mixing zone criteria. This paper describes typical wastewater process streams from an LNG plant and presents a diffuser system design case study (for an undisclosed project location in a meso-tidal coast to meet the effluent mixing zone criteria. The outfall is located in a coastal and marine ecosystem where the large tidal range and persistent surface wind govern conditions for the diffuser design. Physical environmental attributes and permit compliance criteria are discussed in a generic format. The paper describes the design approach, conceptualization of numerical model schemes for near- and far-field effluent mixing zones, and the selected diffuser design.

  3. Optical Dating of Holocene Dune Sands in the Ferris Dune Field, Wyoming

    Science.gov (United States)

    Stokes, Stephen; Gaylord, David R.

    1993-05-01

    Optical dating of late Quaternary quartz dune sands from the Clear Creek portion of Ferris dune field, Wyoming, demonstrates the considerable potential of the technique as a chronostratigraphic tool. A sequence of radiocarbon-dated Holocene interdune strata permit optical dating of the intercalated dune sand to be tested; the concordance is good. The optical dates for the aeolian deposits not datable by radiocarbon suggest that aeolian sedimentation at Clear Creek peaked during two relatively short phases at ca. 8500 and 4000 yr B.P. The dates indicate that aeolian accumulation maxima (at least in the Clear Creek area) may not be synchronous with previously defined phases of marked aridity.

  4. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    OpenAIRE

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-01-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  5. Water repellency and infiltration of biological soil crusts on an arid and a temperate dunes

    Science.gov (United States)

    Fischer, Thomas; Yair, Aaron; Geppert, Helmut; Veste, Maik

    2014-05-01

    Biological soil crusts (BSCs) play an important role in many ecosystems and in all climates. We studies hydrological properties of BSCs under arid and temperate climates. The arid study site was located near Nizzana, in the northwestern Negev, Israel and the temperate site was near Lieberose, Brandenburg, Germany. BSCs were sampled at each site near the dune crest, at the center of the dune slope and at the dune base. Using principal component analysis (PCA), we studied the relationships between hydraulic properties and the molecular structure of organic matter using repellency indices, microinfiltrometry, and 13C-CP/MAS-NMR. The soil texture was finer and water holding capacities (WHCs) were higher in Nizzana, whereas surface wettability was reduced in Lieberose. At both sites, BSCs caused extra WHC compared to the mineral substrate. Infiltration after wetting along both catenas generally reached a maximum after 10 min and decreased after 30 min. Carbohydrates were the dominating components in all of the BSCs studied, where the relative peak areas of carbohydrate-derived structures (60-110 ppm) amounted to 28-46% and to 10-14% of total C-peak areas, respectively. PCA revealed that the WHC of the substrate was closely related to the amount of silt and clay, whereas the BSC induced extra WHC was closely related to carbohydrates. It was further found that water repellency was positively related to carbohydrate C, but negatively related to alkyl C. Infiltration kinetics was attributed to polysaccharide hydration and swelling. Our findings support the hypothesis that hydraulic properties of BSCs are determined by extracellular polymeric substances (EPS) and soil texture. Hydraulic properties in BSCs result from the combination of chemical properties related to C compounds mainly dominated by carbohydrates and physical surface properties related to texture, porosity and water holding capacity. References Fischer, T., Yair, A., Veste, M., Geppert, H. (2013) Hydraulic

  6. Large Plankton Enhance Heterotrophy Under Experimental Warming in a Temperate Coastal Ecosystem

    KAUST Repository

    Huete-Stauffer, Tamara Megan

    2017-12-15

    Microbes are key players in oceanic carbon fluxes. Temperate ecosystems are seasonally variable and thus suitable for testing the effect of warming on microbial carbon fluxes at contrasting oceanographic conditions. In four experiments conducted in February, April, August and October 2013 in coastal NE Atlantic waters, we monitored microbial plankton stocks and daily rates of primary production, bacterial heterotrophic production and respiration at in situ temperature and at 2 and 4°C over ambient values during 4-day incubations. Ambient total primary production (TPP) exceeded total community respiration (< 200 µm, TR) in winter and fall but not in spring and summer. The bacterial contribution to ecosystem carbon fluxes was low, with bacterial production representing on average 6.9 ± 3.2% of TPP and bacterial respiration (between 0.8 and 0.2 µm) contributing on average 35 ± 7% to TR. Warming did not result in a uniform increase in the variables considered, and most significant effects were found only for the 4°C increase. In the summer and fall experiments, under warm and nutrient-deficient conditions, the net TPP/TR ratio decreased by 39 and 34% in the 4°C treatment, mainly due to the increase in respiration of large organisms rather than bacteria. Our results indicate that the interaction of temperature and substrate availability in determining microbial carbon fluxes has a strong seasonal component in temperate planktonic ecosystems, with temperature having a more pronounced effect and generating a shift toward net heterotrophy under more oligotrophic conditions as found in summer and early fall.

  7. Single-phase ProtoDUNE, the Prototype of a Single-Phase Liquid Argon TPC for DUNE at the CERN Neutrino Platform

    CERN Document Server

    Cavanna, F; Touramanis, C

    2017-01-01

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. It was proposed to the CERN SPSC in June 2015 (SPSC-P-351) and was approved in December 2015 as experiment NP04 (ProtoDUNE). ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single phase LArTPC detector to be built to date. It is housed in an extension to the EHN1 hall in the North Area, where the CERN NP is providing a new dedicated charged-particle test beamline. ProtoDUNE-SP aims to take its first beam data before the LHC long shutdown (LS2) at the end of 2018. ProtoDUNE-SP prototypes the designs of most of the single-phase DUNE far detector module (DUNE-SP) components at a 1:1 scale, with an extrapolation of abo...

  8. Assessment of the Impact of Radioactive Disposals and Discharges from the United Kingdom Low Level Waste Repository on the Ecosystem

    International Nuclear Information System (INIS)

    Barber, N.

    2009-01-01

    This paper describes an assessment of the impacts to ecosystems and wildlife species from radioactive discharges and disposals at the United Kingdom's low level waste disposal facility in West Cumbria. The assessment was undertaken in response to a requirement in the site's current authorisation and comprised a detailed desk based review along with an exercise to screen relevant monitoring data from the site against generic assessment criteria and undertake a numerical risk assessment. Much of the site is vegetated, comprising a variety of habitats including grassland, relict dune heath and surface water bodies. Furthermore, the site is located adjacent to a coastal/estuarine area which is protected as it provides a habitat of high ecological value and species of animals and plants are present that are rare, endangered or vulnerable. However, the current impact of aerial and liquid radioactive discharges from the low level waste repository on ecosystems and wildlife species is considered to be low. Site monitoring data also indicate that there has been a reduction of radionuclide activities in ground and surface water and leachates over time, a result of measures initiated to minimise rainwater infiltration and improve leachate management associated with the disposal area. A quantitative assessment was undertaken to assess future impacts to relevant terrestrial, fresh water and marine ecosystems. This showed that modelled peak radionuclide concentrations in the first 4,000 years after site closure were not sufficiently high to cause potential impact to any of these ecosystems or associated wildlife. This cut-off date was chosen as it is considered probable that, due to the effects of future climate and landscape change and, unless actions are taken to defend the coastline, the site is likely to be disrupted by coastal erosion in the next 4,000 years. (authors)

  9. A case study on dune response to infragravity waves

    Science.gov (United States)

    Li, Wenshan; Wang, Hui; Li, Huan; Wu, Shuangquan; Li, Cheng

    2017-08-01

    A series of numerical simulations were conducted using the process-based model XBeach to investigate dune response under normal and getting rid of infragravity wave conditions with different slopes. Erosion volume upside the dune toe and dune top recession are set as indicators for dune vulnerability as well as defence capacity for its front-beach. Results show that both dune erosion volume and dune top recession decrease with gentler dune slopes. Of all the simulation cases, dune with a face slope of 1/1 lost most sand and supplied most sand for lower-bed. The presence of infragravity waves is validated to be crucial to dune vulnerability. The dune erosion volume is shown to decrease by 44.5%∼61.5% and the dune top recession decreased by 0%∼45.5% correspondingly, in the case that infragravity motion is not taken into account during simulation for different dune slopes.

  10. Coastal monitoring solutions of the geomorphological response of beach-dune systems using multi-temporal LiDAR datasets (Vendée coast, France)

    Science.gov (United States)

    Le Mauff, Baptiste; Juigner, Martin; Ba, Antoine; Robin, Marc; Launeau, Patrick; Fattal, Paul

    2018-03-01

    Three beach and dune systems located in the northeastern part of the Bay of Biscay in France were monitored over 5 years with a time series of three airborne LiDAR datasets. The three study sites illustrate a variety of morphological beach types found in this region. Reproducible monitoring solutions adapted to basic and complex beach and dune morphologies using LiDAR time series were investigated over two periods bounded by the three surveys. The first period (between May 2008 and August 2010) is characterized by a higher prevalence of storm events, and thus has a greater potential for eroding the coast, than the second period (between August 2010 and September 2013). During the first period, the central and northeastern part of the Bay of Biscay was notably impacted by Storm Xynthia, with water levels and wave heights exceeding the 10-year return period and 1-year return period, respectively. Despite differences in dune morphology between the sites, the dune crest (Dhigh) and the dune base (Dlow) are efficiently extracted from each DEM. Based on the extracted dune base, an original shoreline mobility indicator is built displaying a combination of the horizontal and vertical migrations of this geomorphic indicator between two LiDAR datasets. A 'Geomorphic Change Detection' is also completed by computing DEMs of Difference (DoD) resulting in segregated maps of erosion and deposition and sediment budgets. Accounting for the accuracy of LiDAR datasets, a probabilistic approach at a 95% confidence interval is used as a threshold for the Geomorphic Change Detection showing more reliable results. However, caution should be taken when interpreting thresholded maps of changes and sediment budgets because some beach processes may be masked, especially on wide tidal beaches, by only keeping the most significant changes. The results of the shoreline mobility and Geomorphic Change Detection show a high variability in the beach responses between and within the three study

  11. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem.

    Directory of Open Access Journals (Sweden)

    Eglė Jakubavičiūtė

    Full Text Available The three-spined stickleback (Gasterosteus aculeatus L., hereafter 'stickleback' is a common mesopredatory fish in marine, coastal and freshwater areas. In large parts of the Baltic Sea, stickleback densities have increased >10-fold during the last decades, and it is now one of the dominating fish species both in terms of biomass and effects on lower trophic levels. Still, relatively little is known about its diet-knowledge which is essential to understand the increasing role sticklebacks play in the ecosystem. Fish diet analyses typically rely on visual identification of stomach contents, a labour-intensive method that is made difficult by prey digestion and requires expert taxonomic knowledge. However, advances in DNA-based metabarcoding methods promise a simultaneous identification of most prey items, even from semi-digested tissue. Here, we studied the diet of stickleback from the western Baltic Sea coast using both DNA metabarcoding and visual analysis of stomach contents. Using the cytochrome oxidase (CO1 marker we identified 120 prey taxa in the diet, belonging to 15 phyla, 83 genera and 84 species. Compared to previous studies, this is an unusually high prey diversity. Chironomids, cladocerans and harpacticoids were dominating prey items. Large sticklebacks were found to feed more on benthic prey, such as amphipods, gastropods and isopods. DNA metabarcoding gave much higher taxonomic resolution (median rank genus than visual analysis (median rank order, and many taxa identified using barcoding could not have been identified visually. However, a few taxa identified by visual inspection were not revealed by barcoding. In summary, our results suggest that the three-spined stickleback feeds on a wide variety of both pelagic and benthic organisms, indicating that the strong increase in stickleback populations may affect many parts of the Baltic Sea coastal ecosystem.

  12. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    Science.gov (United States)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite

  13. Rip Currents, Mega-Cusps, and Eroding Dunes

    OpenAIRE

    Thornton, E.B.; MacMahan, J.; Sallenger, A.H.

    2006-01-01

    Submitted to Marine Geology 1 November 2006 Dune erosion is shown to occur at the embayment of beach mega-cusps O(200m alongshore) that are associated with rip currents. The beach is the narrowest at the embayment of the mega-cusps allowing the swash of large storm waves coincident with high tides to reach the toe of the dune, to undercut the dune and to cause dune erosion. Field measurements of dune, beach, and rip current morphology are acquired along an 18 km shoreline in southern Mont...

  14. Managing coastal resources in the 21st century

    NARCIS (Netherlands)

    Weinstein, Michael P.; Baird, Ronald C.; Conover, David O.; Gross, Matthias; Keulartz, Jozef; Loomis, David K.; Naveh, Zev; Peterson, Susan B.; Reed, Denise J.; Roe, Emery; Swanson, R. Lawrence; Swart, Jacques A. A.; Teal, John M.; Turner, R. Eugene; van der Windt, Henny J.

    Coastal ecosystems are increasingly dominated by humans. Consequently, the human dimensions of sustainability science have become an integral part of emerging coastal governance and management practices. But if we are to avoid the harsh lessons of land management, coastal decision makers must

  15. Coastal remote sensing – towards integrated coastal research and management

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2012-10-01

    Full Text Available coastal resources and anthropogenic infrastructure for a safer future. What is the role of remote sensing? The coastal zone connects terrestrial biophysical systems with marine systems. Some marine ecosystems cannot function without intact inland... for the development of sound integrated management solutions. To date, however, remote sensing applications usually focus on areas landward from the highwater line (?terrestrial? remote sensing), while ?marine? remote sensing does not pay attention to the shallow...

  16. Danish attitudes and reactions to the threat of sea-level rise

    DEFF Research Database (Denmark)

    Fenger, Jes; Buch, Erik; Jakobsen, Per Roed

    2008-01-01

    , where the approach has largely been a "wait and see" attitude. Economical evaluations have been either unofficial or absent. More attention has been paid to the impacts on coastal ecosystems, especially saltmarshes and sand dunes. Here the choice of action will depend on attitudes to and weighing...

  17. Experiment Simulation Configurations Used in DUNE CDR

    Energy Technology Data Exchange (ETDEWEB)

    Alion, T. [Univ. of South Carolina, Columbia, SC (United States); Black, J. J. [Univ. of Warwick, Coventry (United Kingdom); Bashyal, A. [Oregon State Univ., Corvallis, OR (United States); Bass, M. [Univ. of Oxford (United Kingdom); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cherdack, D. [Colorado State Univ., Fort Collins, CO (United States); Diwan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, J. [Univ. of Manchester (United Kingdom); Fernandez-Martinez, E. [Madrid Autonama Univ. (Spain); Fields, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Gran, R. [Univ. of Minnesota, Duluth, MN (United States); Guenette, R. [Univ. of Oxford (United Kingdom); Hewes, J. [Univ. of Manchester (United Kingdom); Hogan, M. [Colorado State Univ., Fort Collins, CO (United States); Hylen, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Junk, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kohn, S. [Univ. of California, Berkeley, CA (United States); LeBrun, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lundberg, B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Marchionni, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Morris, C. [Univ. of California, Berkeley, CA (United States); Papadimitriou, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rameika, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Rucinski, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Soldner-Rembold, S. [Univ. of Manchester (United Kingdom); Sorel, M. [Spanish National Research Council (CSIC), Valencia (Spain). Univ. of Valencia (UV), Inst. de Fisica Corpuscular; Urheim, J. [Indiana Univ., Bloomington, IN (United States); Viren, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Whitehead, L. [Univ. of Houston, TX (United States); Wilson, R. [Colorado State Univ., Fort Collins, CO (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeller, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-06-30

    The LBNF/DUNE CDR describes the proposed physics program and experimental design at the conceptual design phase. Volume 2, entitled The Physics Program for DUNE at LBNF, outlines the scientific objectives and describes the physics studies that the DUNE collaboration will perform to address these objectives. The long-baseline physics sensitivity calculations presented in the DUNE CDR rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the far detector, and a parameterized analysis of detector performance and systematic uncertainty. The purpose of this posting is to provide the results of these simulations to the community to facilitate phenomenological studies of long-baseline oscillation at LBNF/DUNE. Additionally, this posting includes GDML of the DUNE single-phase far detector for use in simulations. DUNE welcomes those interested in performing this work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community.

  18. Aquaculture in mangrove ecosystems of India: State of art and prospects

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    The mangrove vegetation spread over 0.35 million hactares accounts for less than 1/10th of the extensive coastal ecosystems of India. It's an experience that the coastal ecosystems which are intricately diverse are equally high productive biotopes...

  19. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

    Science.gov (United States)

    Osland, Michael J.; Enwright, Nicholas M.; Day, Richard H.; Gabler, Christopher A.; Stagg, Camille L.; Grace, James B.

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate-change related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.

  20. Modelo conceitual de avaliação de ameaças sobre serviços ecossistêmicos de sistemas de dunas. Estudo de caso: os campos de dunas da Ilha de Santa Catarina/SC, Brasil

    Directory of Open Access Journals (Sweden)

    Francisco Arenhart da Veiga Lima

    2016-08-01

    Full Text Available This article aims to develop a conceptual framework for the identification of dunes ecosystem services (ES, it´s main pressure sources, the beneficiaries of those services and management responses based on the use of a framework developed by the Integrated Coastal Management Laboratory of UFSC. It refers to a case study on three protected areas with dunes systems located on Santa Catarina Island, Brazil. The methodologies used were Ecosystem Based Management and Knowledge, developed by the Integrated Costal Management Lab/UFSC as a tool for services identification and classification, and Threats Classification Scheme, from the IUCN, for the identification and evaluation of dune system threats degrees. Santa Catarina Island has 18 environmental systems supplying around 50 environmental and social needs. For dunes systems, nine prevailing services were identified, classified as: habitat support; freshwater and mineral resources supply; aquifer regulation and recharge; sediment flow; erosion control; nutrients cycling and filtering; and cultural, related to the landscape. The main beneficiaries and the actors most affected by the use and diminishing offer and quality of those ES are local communities and the whole touristic sector. As for the threats upon the dunes, 18 pressure vectors were highlighted. The classified as “very high” were: subterranean water catchment and sewage discharge. Classified as “high” are touristic and recreational activities, housing and commercial infrastructure, and roads/pathways.n the face of these results, the challenge is to develop public policies to encourage knowledge gathering on the coastal zone ES as they are central to reaching an effective management of its natural resources. The use of EBM enables the identification of pressure vectors, framing a technical and scientific information base as a way to subsidize decision making and popular knowledge aimed at diminishing impacts on ecosystem services

  1. Impact d'une modulation duale sur les performances d'une liaison ...

    African Journals Online (AJOL)

    Le présent document présente la technique de modulation duale Fréquence - Amplitude dans le cas d'une liaison optique du type IM-DD. Ce travail révèle que la modulation duale Fréquence - Amplitude permet de générer un signal à bande latérale unique. Les performances d'une liaison optique IM-DD basée sur cette ...

  2. Establishment, growth and degeneration of Ammophila arenaria in coastal sand dunes

    NARCIS (Netherlands)

    Putten, van der W.H.

    1989-01-01

    Introduction

    This study deals with the establishment, growth, and degeneration of Ammophila arenaria (marram grass), a grass species that dominates the vegetation in coastal foredunes. Following natural

  3. The need for ecosystem-based coastal planning in Trabzon city

    OpenAIRE

    Dikhan, Mustafa; Güneroğlu, Nilgün; Güneroğlu, Abdülaziz; Karslı, Fevzi

    2017-01-01

    Coastalurbanization problem was emanated from willingness of coastal living. Urbansprawl is one of the most important coastal problems in Turkey as it is inTrabzon city which is known for its natural and historical assets. In order toensure the sustainability and ecological continuity of the city, an ecosystembased coastal planning is an issue of high priority. Protection and usagebalance of the coastal areas could also ensure transition of the natural valuesto future generations. Trabzon cit...

  4. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    Science.gov (United States)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  5. Delineating Beach and Dune Morphology from Massive Terrestrial Laser Scanning Data Using the Generic Mapping Tools

    Science.gov (United States)

    Zhou, X.; Wang, G.; Yan, B.; Kearns, T.

    2016-12-01

    Terrestrial laser scanning (TLS) techniques have been proven to be efficient tools to collect three-dimensional high-density and high-accuracy point clouds for coastal research and resource management. However, the processing and presenting of massive TLS data is always a challenge for research when targeting a large area with high-resolution. This article introduces a workflow using shell-scripting techniques to chain together tools from the Generic Mapping Tools (GMT), Geographic Resources Analysis Support System (GRASS), and other command-based open-source utilities for automating TLS data processing. TLS point clouds acquired in the beach and dune area near Freeport, Texas in May 2015 were used for the case study. Shell scripts for rotating the coordinate system, removing anomalous points, assessing data quality, generating high-accuracy bare-earth DEMs, and quantifying beach and sand dune features (shoreline, cross-dune section, dune ridge, toe, and volume) are presented in this article. According to this investigation, the accuracy of the laser measurements (distance from the scanner to the targets) is within a couple of centimeters. However, the positional accuracy of TLS points with respect to a global coordinate system is about 5 cm, which is dominated by the accuracy of GPS solutions for obtaining the positions of the scanner and reflector. The accuracy of TLS-derived bare-earth DEM is primarily determined by the size of grid cells and roughness of the terrain surface for the case study. A DEM with grid cells of 4m x 1m (shoreline by cross-shore) provides a suitable spatial resolution and accuracy for deriving major beach and dune features.

  6. Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes.

    Science.gov (United States)

    Eschauzier, Christian; Haftka, Joris; Stuyfzand, Pieter J; de Voogt, Pim

    2010-10-01

    Different studies have shown that surface waters contain perfluorinated compounds (PFCs) in the low ng/L range. Surface waters are used to produce drinking water and PFCs have been shown to travel through the purification system and form a potential threat to human health. The specific physicochemical properties of PFCs cause them to be persistent and some of them to be bioaccumulative and toxic in the environment. This study investigates the evolvement of PFC concentrations in Rhine water and rainwater during dune water infiltration processes over a transect in the dune area of the western part of The Netherlands. The difference between infiltrated river water and rainwater in terms of PFC composition was investigated. Furthermore, isomer profiles were investigated. The compound perfluorobutanesulfonate (PFBS) was found at the highest concentrations of all PFCs investigated, up to 37 ng/L in infiltrated river water (71 ± 13% of ΣPFCs). This is in contrast with the predominant occurrence of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) reported in literature. The concentrations of PFBS found in infiltrated river Rhine water were significantly higher than those in infiltrated rainwater. For perfluorohexanesulfonate (PFHxS) the opposite was found: infiltrated rainwater contained more than infiltrated river water. The concentrations of PFOA, perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), PFBS, PFOS, and PFHxS in infiltrated river water showed an increasing trend with decreasing age of the water. The relative contribution of the branched PFOA and PFOS isomers to total concentrations of PFOA and PFOS showed a decreasing trend with decreasing age of the water.

  7. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    Science.gov (United States)

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  8. Effects of intake interruptions on dune infiltration systems in the Netherlands, their quantification and mitigation.

    Science.gov (United States)

    Stuyfzand, Pieter J; van der Schans, Martin L

    2018-07-15

    In the coastal dunes of the Western Netherlands, managed aquifer recharge (MAR) is applied for drinking water supply since 1957. The MAR systems belong to the Aquifer Transfer Recovery (ATR) type, because recharge and recovery are operated without interruption. This makes these systems very vulnerable to intake interruptions, which are expected to increase in frequency and duration due to climate change. Such interruptions are problematic, because: (i) groundwater recovery from dunes needs to continue to supply fresh drinking water to the Western Netherlands; (ii) risks of salt water intrusion are high, and (iii) MAR bordering wet dune slacks with an EU Natura 2000 status cannot survive for long without MAR. In this paper, effects of intake stops are discussed and quantified. The hydrological effects consist of the decline of water tables, disappearance of flow-through dune lakes, reservoir depletion, salt water intrusion, disruption of rainwater lenses, and entrapped air hampering a rapid refill of the groundwater reservoir. Water quality effects include changes in (i) redox environment of the flushed aquifer, impacting the behavior of nutrients, calcium, sulfate and organic micro-pollutants, and (ii) the mixing ratio of water types. The main ecological impacts comprise the dying of organisms in recharge ponds and dune lakes, and a decline of biodiversity. Effects of very long intake interruptions (years) are predicted via historical observations during the long overexploitation period (1900-1957) prior to MAR. A closed form analytical solution for safe yield of a semiconfined aquifer is proposed, together with a related upconing risk index. Both also apply to the pumping from any fresh water lens without MAR. Some mitigation strategies are discussed, such as a dual intake, raising the storage capacity, earlier mud removal, and accelerated refilling of the reservoir. A magnitude scale for intake stops (MIS) is proposed. Copyright © 2018 Elsevier B.V. All rights

  9. Controls on desert dune activity - a geospatial approach

    Science.gov (United States)

    Lancaster, N.; Hesse, P. P.

    2017-12-01

    Desert and other inland dunes occur on a wide spectrum of activity (defined loosely as the proportion of the surface area subject to sand movement) from unvegetated to sparsely vegetated "active" dunes through discontinuously vegetated inactive dunes to completely vegetated and degraded dunes. Many of the latter are relicts of past climatic conditions. Although field studies and modeling of the interactions between winds, vegetation cover, and dune activity can provide valuable insights, the response of dune systems to climate change and variability past, present, and future has until now been hampered by the lack of pertinent observational data on geomorphic and climatic boundary conditions and dune activity status for most dune areas. We have developed GIS-based approach that permits analysis of boundary conditions and controls on dune activity at a range of spatial scales from dunefield to global. In this approach, the digital mapping of dune field and sand sea extent has been combined with systematic observations of dune activity at 0.2° intervals from high resolution satellite image data, resulting in four classes of activity. 1 km resolution global gridded datasets for the aridity index (AI); precipitation, satellite-derived percent vegetation cover; and estimates of sand transport potential (DP) were re-sampled for each 0.2° grid cell, and dune activity was compared to vegetation cover, sand transport potential, precipitation, and the aridity index. Results so far indicate that there are broad-scale relationships between dunefield mean activity, climate, and vegetation cover. However, the scatter in the data suggest that other local factors may be at work. Intra-dune field patterns are complex in many cases. Overall, much more work needs to be done to gain a full understanding of controls at different spatial and temporal scales, which can be faciliated by this spatial database.

  10. A marine eutrophication impacts assessment method in LCIA coupling coastal ecosystems exposure to nitrogen and species sensitivity to hypoxia

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Characterisation modelling in Life Cycle Impact Assessment (LCIA) aims at quantifying potential impacts of anthropogenic emissions. It delivers substance-specific Characterisation Factors (CF) expressing ecosystem responses to marginal increments in emitted quantities. Nitrogen (N) emissions from e.......g. agriculture and industry enrich coastal marine ecosystems. Excessive algal growth and dissolved oxygen (DO) depletion typify the resulting marine eutrophication. LCIA modelling frameworks typically encompass fate, exposure and effect in the environment. The present novel method couples relevant marine...... biological processes of ecosystem’s N exposure (Exposure Factor, XF) with the sensitivity of select species to hypoxia (Effect Factor, EF). The XF converts N-inputs into a sinking carbon flux from planktonic primary production and DO consumed by bacterial respiration in bottom waters, whereas EF builds...

  11. The sustainable use of tropical coastal resources - A key conservation issue

    Energy Technology Data Exchange (ETDEWEB)

    Holdgate, M W [IUCN-World Conservation Union, Gland (Switzerland)

    1993-01-01

    The three papers covered in this review form a series, addressing broadly the same issues in increasing detail. The paper by Carl Gustaf Lundin and Olof Linden, on 'Coastal ecosystems: Attempts to manage a threatened resource', takes a wide view of the coastal zones (the regions between the seaward margins of the continental shelves, in water depths of around 200 m and the landward edge of the coastal plains at a comparable altitude above mean sea level), and the nature of the pressures upon them. The paper by Magnus A.K. Ngoile and Chris J. Horrill, on 'Coastal ecosystems productivity and ecosystem protection: Coastal ecosystem management', focuses very much on these same issues of use and pressure in the Eastern Africa Region. The paper by M.C.Oehman, A. Rajasuriya and O. Linden, on 'Human disturbances on coral reefs in Sri Lanka: A case study' looks in some depth at the situation on three selected reef systems in the one country. All the papers address the key question of how the management of coastal resources should change, in order to avoid continuing degradation and the cost and impoverishment it is likely to bring. The three papers mentioned is published in this issue of Ambio, p. 461-480

  12. Introducing mixotrophy into a biogeochemical model describing an eutrophied coastal ecosystem: The Southern North Sea

    Science.gov (United States)

    Ghyoot, Caroline; Lancelot, Christiane; Flynn, Kevin J.; Mitra, Aditee; Gypens, Nathalie

    2017-09-01

    Most biogeochemical/ecological models divide planktonic protists between phototrophs (phytoplankton) and heterotrophs (zooplankton). However, a large number of planktonic protists are able to combine several mechanisms of carbon and nutrient acquisition. Not representing these multiple mechanisms in biogeochemical/ecological models describing eutrophied coastal ecosystems can potentially lead to different conclusions regarding ecosystem functioning, especially regarding the success of harmful algae, which are often reported as mixotrophic. This modelling study investigates the implications for trophic dynamics of including 3 contrasting forms of mixotrophy, namely osmotrophy (using alkaline phosphatase activity, APA), non-constitutive mixotrophy (acquired phototrophy by microzooplankton) and also constitutive mixotrophy. The application is in the Southern North Sea, an ecosystem that faced, between 1985 and 2005, a significant increase in the nutrient supply N:P ratio (from 31 to 81 mol N:P). The comparison with a traditional model shows that, when the winter N:P ratio in the Southern North Sea is above 22 molN molP-1 (as occurred from mid-1990s), APA allows a 3-32% increase of annual gross primary production (GPP). In result of the higher GPP, the annual sedimentation increases as well as the bacterial production. By contrast, APA does not affect the export of matter to higher trophic levels because the increased GPP is mainly due to Phaeocystis colonies, which are not grazed by copepods. Under high irradiance, non-constitutive mixotrophy appreciably increases annual GPP, transfer to higher trophic levels, sedimentation, and nutrient remineralisation. In this ecosystem, non-constitutive mixotrophy is also observed to have an indirect stimulating effect on diatoms. Constitutive mixotrophy in nanoflagellates appears to have little influence on this ecosystem functioning. An important conclusion from this work is that contrasting forms of mixotrophy have different

  13. Sand dune tracking from satellite laser altimetry

    Science.gov (United States)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  14. Satellite Sensor Requirements for Monitoring Essential Biodiversity Variables of Coastal Ecosystems

    Science.gov (United States)

    Muller-Karger, Frank E.; Hestir, Erin; Ade, Christiana; Turpie, Kevin; Roberts, Dar A.; Siegel, David; Miller, Robert J.; Humm, David; Izenberg, Noam; Keller, Mary; hide

    2018-01-01

    to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.

  15. Coastal Innovation Imperative

    Directory of Open Access Journals (Sweden)

    Bruce C. Glavovic

    2013-03-01

    Full Text Available This is the second of two articles that explores the coastal innovation paradox and imperative. Paradoxically, innovation is necessary to escape the vulnerability trap created by past innovations that have degraded coastal ecosystems and imperil coastal livelihoods. The innovation imperative is to reframe and underpin business and technology with coherent governance innovations that lead to social transformation for coastal sustainability. How might coastal management help to facilitate this transition? It is argued that coastal management needs to be reconceptualised as a transformative practice of deliberative coastal governance. A foundation comprising four deliberative or process outcomes is posited. The point of departure is to build human and social capital through issue learning and improved democratic attitudes and skills. Attention then shifts to facilitating community-oriented action and improving institutional capacity and decision-making. Together, these endeavours enable improved community problem-solving. The ultimate process goal is to build more collaborative communities. Instituting transformative deliberative coastal governance will help to stimulate innovations that chart new sustainability pathways and help to resolve the coastal problems. This framework could be adapted and applied in other geographical settings.

  16. Responses of three-dimensional flow to variations in the angle of incident wind and profile form of dunes: Greenwich Dunes, Prince Edward Island, Canada

    Science.gov (United States)

    Walker, Ian J.; Hesp, Patrick A.; Davidson-Arnott, Robin G. D.; Bauer, Bernard O.; Namikas, Steven L.; Ollerhead, Jeff

    2009-04-01

    these flow responses are enhanced with faster speeds of incident flow and/or more onshore winds. Significant onshore steering of near-surface vectors of flow (to 37°) occurs and is greatest closer to the surface and during highly oblique winds (~ 15° onshore). Therefore, even subtle effects of streamline compression and amplification of flow under alongshore conditions effectively steer flow and sand transport toward the dune. As topographic forcing and steering cause significant, three-dimensional deviations in near-surface properties of flow, most regional-scale and/or two-dimensional models of dune process-response dynamics are insufficient for characterizing coastal and desert dune sediment budgets and morphodynamics. In particular, deflection of sand transport vectors with greater fetch distances than those derived from regional winds may occur. Coincident flow, transport and morphological response data are required to better quantitatively model these processes.

  17. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas M; Day, Richard H; Gabler, Christopher A; Stagg, Camille L; Grace, James B

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze

    Science.gov (United States)

    Borchert, Sinéad M.; Osland, Michael J.; Enwright, Nicholas M.; Griffith, Kereen

    2018-01-01

    Coastal wetland ecosystems are expected to migrate landwards in response to rising seas. However, due to differences in topography and coastal urbanization, estuaries vary in their ability to accommodate migration. Low‐lying urban areas can constrain migration and lead to wetland loss (i.e. coastal squeeze), especially where existing wetlands cannot keep pace with rising seas via vertical adjustments. In many estuaries, there is a pressing need to identify landward migration corridors and better quantify the potential for landward migration and coastal squeeze.We quantified and compared the area available for landward migration of tidal saline wetlands and the area where urban development is expected to prevent migration for 39 estuaries along the wetland‐rich USA Gulf of Mexico coast. We did so under three sea level rise scenarios (0.5, 1.0, and 1.5 m by 2100).Within the region, the potential for wetland migration is highest within certain estuaries in Louisiana and southern Florida (e.g. Atchafalaya/Vermilion Bays, Mermentau River, Barataria Bay, and the North and South Ten Thousand Islands estuaries).The potential for coastal squeeze is highest in estuaries containing major metropolitan areas that extend into low‐lying lands. The Charlotte Harbor, Tampa Bay, and Crystal‐Pithlachascotee estuaries (Florida) have the highest amounts of urban land expected to constrain wetland migration. Urban barriers to migration are also high in the Galveston Bay (Texas) and Atchafalaya/Vermilion Bays (Louisiana) estuaries.Synthesis and applications. Coastal wetlands provide many ecosystem services that benefit human health and well‐being, including shoreline protection and fish and wildlife habitat. As the rate of sea level rise accelerates in response to climate change, coastal wetland resources could be lost in areas that lack space for landward migration. Migration corridors are particularly important in highly urbanized estuaries where, due to low‐lying coastal

  19. Environmental controls on the carbon isotope composition of ecosystem-respired CO{sub 2} in contrasting forest ecosystems in Canada and the USA

    Energy Technology Data Exchange (ETDEWEB)

    Alstad, K.P. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Toledo Univ., Toledo, OH (United States). Dept. of Environmental Sciences; Flanagan, L.B. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Lai, C.T. [Utah Univ., Salt Lake City, UT (United States); San Diego State Univ., San Diego, CA (United States); Ehleringer, J.R. [Utah Univ., Salt Lake City, UT (United States)

    2007-10-15

    Eleven forest ecosystems in Canada and the United States were compared in order to test for differences among forest {delta}{sup 13} carbon (C) responses to seasonal variations in environmental conditions from May to October 2004. Carbon isotope composition of ecosystem-respired carbon dioxide (CO{sub 2}) was considered as a proxy for short-term changes in photosynthetic discrimination. The study compared coniferous and deciduous forests, as well as forests in boreal and coastal environments. It was hypothesized that the carbon isotope composition of ecosystem-respired CO{sub 2} varied in a manner consistent with results obtained in leaf-level studies. Results of the study showed that higher R{sup 2} values were obtained for coastal ecosystems. The relationships between {delta}{sup 13}C{sub R} and environmental conditions were consistent with results obtained from leaf-level studies. Vapour pressure deficits and soil temperatures were significant determinants of variations in {delta}{sup 13}C{sub R} in the boreal forest ecosystem. Variations in {delta}{sup 13}C{sub R} in the coastal forest ecosystem correlated with changes in photosynthetic photon flux (PPF). It was concluded that {delta}{sup 13}C{sub R} measurements can be used to assess yearly variations in ecosystem physiological responses to changing environmental conditions. 59 refs., 7 tabs., 6 figs.

  20. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    Science.gov (United States)

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low-relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades leading to thawing of on-shore permafrost and the disappearance of sea ice at unprecedented rates. The U.S. Geological Survey’s (USGS) Changing Arctic Ecosystems (CAE) research initiative was developed to investigate and forecast these rapid changes in the physical environment of the Arctic, and the associated changes to wildlife populations, in order to inform key management decisions by the U.S. Department of the Interior and other agencies. Forecasting future wildlife responses to changes in the Arctic can benefit greatly from historical records that inform what changes have already occurred. Several Arctic wildlife and plant species have already responded to climatic and physical changes to the Arctic Coastal Plain of northern Alaska. Thus, we located historical aerial imagery to improve our understanding of recent habitat changes and the associated response to such changes by wildlife populations.

  1. Towards a more complete SOCCR: Establishing a Coastal Carbon Data Network

    Science.gov (United States)

    Pidgeon, E.; Howard, J.; Tang, J.; Kroeger, K. D.; Windham-Myers, L.

    2015-12-01

    The 2007 State of the Carbon Cycle Report (SOCCR) was highly influential in ensuring components of the carbon cycle were accounted for in national policy and related management. However, while SOCCR detailed the significance of North American coastal wetlands, it was not until recently that leading governments began to fully recognized these ecosystems for their carbon sequestration and storage capacity and hence the significant role coastal ecosystems can play in GHG emission reductions strategies, offset mechanisms, coastal management strategies and climate mitigation policy. The new attention on coastal carbon systems has exposed limitations in terms of data availability and data quality, as well as insufficient knowledge of coastal carbon distributions, characteristics and coastal carbon cycle processes. In addition to restricting scientific progress, lack of comprehensive, comparable, and quality-controlled coastal carbon data is hindering progress towards carbon based conservation and coastal management. To directly address those limitations, we are developing a Global Science and Data Network for Coastal "Blue" Carbon, with support from the Carbon Cycle Interagency Working Group. Goals include: • Improving basic and applied science on carbon and GHG cycling in vegetated coastal ecosystems; • Supporting a coastal carbon and associated GHG data archive for use by the science community, coastal and climate practitioners and other data users; • Building the capacity of coastal carbon stakeholders globally to collect and interpret high quality coastal carbon science and data; • Providing a forum and mechanism to promote exchange and collaboration between scientists and coastal carbon data users globally; and • Outreach activities to ensure the best available data are globally accessible and that science is responsive to the needs of coastal managers and policy-makers.

  2. Coastal erosion in Sicily: geomorphologic impact and mitigation (Italy)

    Science.gov (United States)

    Liguori, V.; Manno, G.

    2009-04-01

    The coast of Sicily region stretches about 1400 km, bathing three different seas: the North tract, from Messina to Capo San Vito wash to the Tyrrhenian Sea, the oriental side, from Messina to Capo Passero, wash to the Ionian Sea, and finally the southern side wash to the Mediterranean. Of these, 395 km are made up of beaches and 970 km from rocky shores. The coastal morph-type were analyzed in relation to their evolutionary trend (backspace or advancement of the seaside), can be summarized as follows: a low shores of torrent plain (Messina), low shores with salt (Trapani), low shores beaches edged with dunal systems, subject to backspace, where urbanization has reduced or eliminated the internal sand dunes, shores on marine terraces, with beaches at the foot (Agrigento) and high shores non-affected of real phenomena of backspace, but subject to often dangerous events of detachment and collapse of blocks (high rocky shores). The marine and coastal environment is a complex and articulated, in balance with the Earth's environment, in which live together, but through different dynamics strongly interacting, ecosystems and marine ecosystems typically transition. The increasing density of population concentrated along the shores, the gradual expansion of activities related to the use of marine and coastal resources, are some of the issues that threaten the delicate balance of nature and the sea coast. The sicilian coastal areas most subject to erosion are those in Ragusa shores areas in south-eastern of Sicily, where the critical areas interesting low coastline and high shores. Following the coast, between Capo Peloro and Milazzo (Messina),where the erosion affects the coast with a low of about 23 km. In the coastal between Capo St. Marco and Capo Feto (Trapani) the critical areas interesting the low coastline and, in part erodible bluffs. One of this case is localized in the town of Mazara del Vallo. In general, the phenomenon erosive affects almost all the sicilian

  3. Tracking the Fate of Explosive-Trinitrotriazine (RDX) in Coastal Marine Ecosystems Using Stable Isotopic Tracer

    Science.gov (United States)

    Ariyarathna, T. S.; Ballentine, M.; Vlahos, P.; Smith, R. W.; Bohlke, J. K.; Tobias, C. R.; Fallis, S.; Groshens, T.; Cooper, C.

    2017-12-01

    It has been estimated that there are hundreds of explosive-contaminated sites all over the world and managing these contaminated sites is an international challenge. As coastal zones and estuaries are commonly impacted zones, it is vital to understand the fate and transport of munition compounds in these environments. The demand for data on sorption, biodegradation and mineralization of trinitrotriazine (RDX) in coastal ecosystems is the impetus for this study using stable nitrogen isotopes to track its metabolic pathways. Mesocosm experiments representing subtidal vegetated, subtidal unvegetated and intertidal marsh ecocosms were conducted. Steady state concentrations of RDX were maintained in the systems throughout two-week time duration of experiments. Sediment, pore-water and overlying water samples were analyzed for RDX and degradation products. Isotope analysis of the bulk sediments revealed an initial rising inventory of 15N followed by a decay illustrating the role of sediments on sorption and degradation of RDX in anaerobic sediments respectively. Both pore-water and overlying water samples were analyzed for 15N inventories of different inorganic nitrogen pools including ammonium, nitrate, nitrite, nitrous oxide and nitrogen gases. RDX is mineralized to nitrogen gas through a series of intermediates leaving nitrous oxide as the prominent metabolite of RDX. Significant differences in RDX metabolism were observed in the three different ecosystems based on sediment characteristics and redox conditions in the systems. Fine grained organic carbon rich sediments show notably higher mineralization rates of RDX in terms of production of its metabolites. Quantification of degradation and transformation rates leads to mass balances of RDX in the systems. Further analysis of results provides insights for mineralization pathways of RDX into both organic and inorganic nitrogen pools entering the marine nitrogen cycle.

  4. Exploring inner structure of Titan's dunes from Cassini Radar observations

    Science.gov (United States)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  5. New perspectives on the occupation of Hatuana dune site, Ua Huka, Marquesas Islands

    International Nuclear Information System (INIS)

    Molle, G.; Conte, E.

    2011-01-01

    New archaeological excavations were conducted in 2009 in the Hatuana dune site, Ua Huka, Marquesas archipelago (French Polynesia). The objectives of this research were to determine the complete stratigraphy of the western section of the site, and to obtain charcoal samples for radiocarbon dating. The results are presented here, updating previous dates by E. Conte, and enhancing our understanding of the place of the Hatuana coastal area in the island's prehistory. The main occupation occurred during a period of warfare, suggesting that the place was used to control and prevent enemy attacks. (author). 24 refs., 5 figs., 1 tab.

  6. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  7. Modeling Coastal Vulnerability through Space and Time.

    Science.gov (United States)

    Hopper, Thomas; Meixler, Marcia S

    2016-01-01

    Coastal ecosystems experience a wide range of stressors including wave forces, storm surge, sea-level rise, and anthropogenic modification and are thus vulnerable to erosion. Urban coastal ecosystems are especially important due to the large populations these limited ecosystems serve. However, few studies have addressed the issue of urban coastal vulnerability at the landscape scale with spatial data that are finely resolved. The purpose of this study was to model and map coastal vulnerability and the role of natural habitats in reducing vulnerability in Jamaica Bay, New York, in terms of nine coastal vulnerability metrics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with no habitat, habitat role, erodible shoreline, and surge) under past (1609), current (2015), and future (2080) scenarios using InVEST 3.2.0. We analyzed vulnerability results both spatially and across all time periods, by stakeholder (ownership) and by distance to damage from Hurricane Sandy. We found significant differences in vulnerability metrics between past, current and future scenarios for all nine metrics except relief and wave exposure. The marsh islands in the center of the bay are currently vulnerable. In the future, these islands will likely be inundated, placing additional areas of the shoreline increasingly at risk. Significant differences in vulnerability exist between stakeholders; the Breezy Point Cooperative and Gateway National Recreation Area had the largest erodible shoreline segments. Significant correlations exist for all vulnerability (exposure/surge) and storm damage combinations except for exposure and distance to artificial debris. Coastal protective features, ranging from storm surge barriers and levees to natural features (e.g. wetlands), have been promoted to decrease future flood risk to communities in coastal areas around the world. Our methods of combining coastal vulnerability results with additional data and across multiple time

  8. Recommendations for a barrier island breach management plan for Fire Island National Seashore, including the Otis Pike High Dune Wilderness Area, Long Island, New York

    Science.gov (United States)

    Williams, S. Jeffress; Foley, Mary K.

    2007-01-01

    ) policy stipulates that natural coastal processes be maintained to the greatest extent possible and not be impeded so as to conserve landforms, habitats and natural ecosystem resources that reply on the landforms and processes for long-term sustainability of the national park. Storms and associated processes such as waves, tides, currents and relative sea-level change are critical elements for the formation and evolution of these barrier islands, sand dunes, back-barrier sand flats and lagoons and vegetated wetlands. Processes such as wave run-up, overwash and barrier beaching, which occur during elevated storm surge are all necessary processes in enabling the efficient transfer of sediments, nutrients and marine water from the Atlantic Ocean across barriers and into Great South Bay. A large body of scientific data and information published over the past 50 years shows that such transfers of sediment and water from the ocean to the bays are essential for the long-term maintenance of the barrier island and back-bay systems and their biologically diverse habitats an d ecosystems. Current relative sea-level rise (~12 in/century) is chronic and pervasive in driving Long Island coastal change and with the likelihood of accelerating sea level rise in the near future, coastal hazards such as erosion, inundation, and storm surge flooding will increase, with corresponding increased risk to life and property on both Fire Island and on the mainland. In addition, the cumulative effects over the past century and more, both direct and indirect, of human impacts on the Long Island coast have altered the barrier beach and dunes and sediment transport processes. These impacts have likely increased the potential for breaching and increased risk to life and property on the coast and the mainland. Examples of direct impacts are: the stone jetties at Moriches, Shinnecock, and Fire Island tidal inlets and groin field structures at Westhampton that alter littoral processes, armoring and erosion

  9. Evaluating the Ability of Oysters (Crassostrea virginica) to Mitigate Coastal Nitrogen Over-Enrichment

    Science.gov (United States)

    Human actions have resulted in a doubling of the rate of bio-available nitrogen production in the biosphere, leading to over-fertilization of coastal ecosystems worldwide. Such over-fertilization has numerous negative consequences for coastal ecosystems, such as excessive algal g...

  10. Exploring the ecosystem engineering ability of Red Sea shallow benthic habitats using stocks and fluxes in carbon biogeochemistry

    KAUST Repository

    Baldry, Kimberlee

    2017-12-01

    The coastal ocean is a marginal region of the global ocean, but is home to metabolically intense ecosystems which increase the structural complexity of the benthos. These ecosystems have the ability to alter the carbon chemistry of surrounding waters through their metabolism, mainly through processes which directly release or consume carbon dioxide. In this way, coastal habitats can engineer their environment by acting as sources or sinks of carbon dioxide and altering their environmental chemistry from the regional norm. In most coastal water masses, it is difficult to resolve the ecosystem effect on coastal carbon biogeochemistry due to the mixing of multiple offshore end members, complex geography or the influence of variable freshwater inputs. The Red Sea provides a simple environment for the study of ecosystem processes at a coastal scale as it contains only one offshore end-member and negligible freshwater inputs due to the arid climate of adjacent land. This work explores the ability of three Red Sea benthic coastal habitats (coral reefs, seagrass meadows and mangrove forests) to create characteristic ecosystem end-members, which deviate from the biogeochemistry of offshore source waters. This is done by both calculating non-conservative deviations in carbonate stocks collected over each ecosystem, and by quantifying net carbonate fluxes (in seagrass meadows and mangrove forests only) using 24 hour incubations. Results illustrate that carbonate stocks over ecosystems conform to broad ecosystem trends, which are different to the offshore end-member, and are influenced by inherited properties from surrounding ecosystems. Carbonate fluxes also show ecosystem dependent trends and further illustrate the importance of sediment processes in influencing CaCO3 fluxes in blue carbon benthic habitats, which warrants further attention. These findings show the respective advantages of studying both carbonate stocks and fluxes of coastal benthic ecosystems in order to

  11. Ecosystem impacts of hypoxia: thresholds of hypoxia and pathways to recovery

    International Nuclear Information System (INIS)

    Steckbauer, A; Duarte, C M; Vaquer-Sunyer, R; Carstensen, J; Conley, D J

    2011-01-01

    Coastal hypoxia is increasing in the global coastal zone, where it is recognized as a major threat to biota. Managerial efforts to prevent hypoxia and achieve recovery of ecosystems already affected by hypoxia are largely based on nutrient reduction plans. However, these managerial efforts need to be informed by predictions on the thresholds of hypoxia (i.e. the oxygen levels required to conserve biodiversity) as well as the timescales for the recovery of ecosystems already affected by hypoxia. The thresholds for hypoxia in coastal ecosystems are higher than previously thought and are not static, but regulated by local and global processes, being particularly sensitive to warming. The examination of recovery processes in a number of coastal areas managed for reducing nutrient inputs and, thus, hypoxia (Northern Adriatic; Black Sea; Baltic Sea; Delaware Bay; and Danish Coastal Areas) reveals that recovery timescales following the return to normal oxygen conditions are much longer than those of loss following the onset of hypoxia, and typically involve decadal timescales. The extended lag time for ecosystem recovery from hypoxia results in non-linear pathways of recovery due to hysteresis and the shift in baselines, affecting the oxygen thresholds for hypoxia through time.

  12. Future DUNE constraints on EFT

    Science.gov (United States)

    Falkowski, Adam; Grilli di Cortona, Giovanni; Tabrizi, Zahra

    2018-04-01

    In the near future, fundamental interactions at high-energy scales may be most efficiently studied via precision measurements at low energies. A universal language to assemble and interpret precision measurements is the so-called SMEFT, which is an effective field theory (EFT) where the Standard Model (SM) Lagrangian is extended by higher-dimensional operators. In this paper we investigate the possible impact of the DUNE neutrino experiment on constraining the SMEFT. The unprecedented neutrino flux offers an opportunity to greatly improve the current limits via precision measurements of the trident production and neutrino scattering off electrons and nuclei in the DUNE near detector. We quantify the DUNE sensitivity to dimension-6 operators in the SMEFT Lagrangian, and find that in some cases operators suppressed by an O(30) TeV scale can be probed. We also compare the DUNE reach to that of future experiments involving atomic parity violation and polarization asymmetry in electron scattering, which are sensitive to an overlapping set of SMEFT parameters.

  13. The Smartfin: How Citizen Scientist Surfers Could Help Inform Coastal Ocean Science and Conservation.

    Science.gov (United States)

    Stern, A.

    2016-12-01

    Coastal marine ecosystems only represent a small percentage of the global ocean's surface area. However, these ecosystems are highly productive, rich in biodiversity, and are where the vast majority of human activity occurs. The complex interaction between seawater, land, and atmosphere makes coastal ecosystems some of the most dynamic in terms of seawater chemistry. In order to capture these dynamic changes in seawater chemistry across appropriate spatial and temporal scales requires a large amount of measurements. Unfortunately, it is often challenging to maintain an array of oceanographic sensors in coastal ecosystems, especially in high energy areas like the surf zone. Citizen science has the potential to increase the collection of oceanographic data from coastal systems where traditional methods are more difficult or expensive to implement. This talk will highlight the Smartfin, a surfboard mounted fin that measures seawater chemical parameters, physical wave characteristics, and GPS location during an ordinary surf session. Created by environmental non-profit Lost Bird, the Smartfin is a partnership between non-profits (Lost Bird and Surfrider Foundation), researchers (Scripps Institution of Oceanography), engineers (Board Formula), and the citizen science community. With an estimated 23 million surfers worldwide the Smartfin could greatly enhance vital data collection in coastal regions as well as raise awareness about our changing coastal and ocean ecosystems.

  14. Microbial Characterization of Qatari Barchan Sand Dunes.

    Directory of Open Access Journals (Sweden)

    Sara Abdul Majid

    Full Text Available This study represents the first characterization of sand microbiota in migrating barchan sand dunes. Bacterial communities were studied through direct counts and cultivation, as well as 16S rRNA gene and metagenomic sequence analysis to gain an understanding of microbial abundance, diversity, and potential metabolic capabilities. Direct on-grain cell counts gave an average of 5.3 ± 0.4 x 105 cells g-1 of sand. Cultured isolates (N = 64 selected for 16S rRNA gene sequencing belonged to the phyla Actinobacteria (58%, Firmicutes (27% and Proteobacteria (15%. Deep-sequencing of 16S rRNA gene amplicons from 18 dunes demonstrated a high relative abundance of Proteobacteria, particularly enteric bacteria, and a dune-specific-pattern of bacterial community composition that correlated with dune size. Shotgun metagenome sequences of two representative dunes were analyzed and found to have similar relative bacterial abundance, though the relative abundances of eukaryotic, viral and enterobacterial sequences were greater in sand from the dune closer to a camel-pen. Functional analysis revealed patterns similar to those observed in desert soils; however, the increased relative abundance of genes encoding sporulation and dormancy are consistent with the dune microbiome being well-adapted to the exceptionally hyper-arid Qatari desert.

  15. Coastal hypoxia and sediment biogeochemistry

    Directory of Open Access Journals (Sweden)

    J. J. Middelburg

    2009-07-01

    Full Text Available The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways, the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. Bottom-water oxygen levels also affect the organisms involved in organic matter processing with the contribution of metazoans decreasing as oxygen levels drop. Hypoxia has a significant effect on benthic animals with the consequences that ecosystem functions related to macrofauna such as bio-irrigation and bioturbation are significantly affected by hypoxia as well. Since many microbes and microbial-mediated biogeochemical processes depend on animal-induced transport processes (e.g. re-oxidation of particulate reduced sulphur and denitrification, there are indirect hypoxia effects on biogeochemistry via the benthos. Severe long-lasting hypoxia and anoxia may result in the accumulation of reduced compounds in sediments and elimination of macrobenthic communities with the consequences that biogeochemical properties during trajectories of decreasing and increasing oxygen may be different (hysteresis with consequences for coastal ecosystem dynamics.

  16. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory.

    Science.gov (United States)

    Alleway, Heidi K; Connell, Sean D

    2015-06-01

    Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems. © 2015 Society for Conservation Biology.

  17. Merits and Limits of Ecosystem Protection for Conserving Wild Salmon in a Northern Coastal British Columbia River

    Directory of Open Access Journals (Sweden)

    Aaron C. Hill

    2010-06-01

    Full Text Available Loss and degradation of freshwater habitat reduces the ability of wild salmon populations to endure other anthropogenic stressors such as climate change, harvest, and interactions with artificially propagated fishes. Preservation of pristine salmon rivers has thus been advocated as a cost-effective way of sustaining wild Pacific salmon populations. We examine the value of freshwater habitat protection in conserving salmon and fostering resilience in the Kitlope watershed in northern coastal British Columbia - a large (3186 km2 and undeveloped temperate rainforest ecosystem with legislated protected status. In comparison with other pristine Pacific Rim salmon rivers we studied, the Kitlope is characterized by abundant and complex habitats for salmon that should contribute to high resilience. However, biological productivity in this system is constrained by naturally cold, light limited, ultra-oligotrophic growing conditions; and the mean (± SD density of river-rearing salmonids is currently low (0.32 ± 0.27 fish per square meter; n = 36 compared to our other four study rivers (grand mean = 2.55 ± 2.98 fish per square meter; n = 224. Existing data and traditional ecological knowledge suggest that current returns of adult salmon to the Kitlope, particularly sockeye, are declining or depressed relative to historic levels. This poor stock status - presumably owing to unfavorable conditions in the marine environment and ongoing harvest in coastal mixed-stock fisheries - reduces the salmon-mediated transfer of marine-derived nutrients and energy to the system's nutrient-poor aquatic and terrestrial food webs. In fact, Kitlope Lake sediments and riparian tree leaves had marine nitrogen signatures (δ15N among the lowest recorded in a salmon ecosystem. The protection of the Kitlope watershed is undoubtedly a conservation success story. However, "salmon strongholds" of pristine watersheds may not adequately sustain salmon populations and foster

  18. Reconstruction of metal pollution and recent sedimentation processes in Havana Bay (Cuba): A tool for coastal ecosystem management

    International Nuclear Information System (INIS)

    Díaz-Asencio, M.; Alvarado, J.A. Corcho; Alonso-Hernández, C.; Quejido-Cabezas, A.; Ruiz-Fernández, A.C.; Sanchez-Sanchez, M.; Gómez-Mancebo, M.B.; Froidevaux, P.; Sanchez-Cabeza, J.A.

    2011-01-01

    Highlights: ► Past metal pollution in the heavy polluted coastal ecosystem of Havana Bay. ► Effectiveness of pollution-reduction strategies. ► Dated environmental archives to reconstruct sedimentation and pollution trends. ► Impact of severe climatic events on sedimentation. - Abstract: Since 1998 the highly polluted Havana Bay ecosystem has been the subject of a mitigation program. In order to determine whether pollution-reduction strategies were effective, we have evaluated the historical trends of pollution recorded in sediments of the Bay. A sediment core was dated radiometrically using natural and artificial fallout radionuclides. An irregularity in the 210 Pb record was caused by an episode of accelerated sedimentation. This episode was dated to occur in 1982, a year coincident with the heaviest rains reported in Havana over the XX century. Peaks of mass accumulation rates (MAR) were associated with hurricanes and intensive rains. In the past 60 years, these maxima are related to strong El Niño periods, which are known to increase rainfall in the north Caribbean region. We observed a steady increase of pollution (mainly Pb, Zn, Sn, and Hg) since the beginning of the century to the mid 90s, with enrichment factors as high as 6. MAR and pollution decreased rapidly after the mid 90s, although some trace metal levels remain high. This reduction was due to the integrated coastal zone management program introduced in the late 90s, which dismissed catchment erosion and pollution.

  19. The Single-Phase ProtoDUNE Technical Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Abi, B. [Univ. of Padova (Italy); et al.

    2017-06-21

    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report.

  20. Ecological Values of Mangrove Forest Ecosystem

    OpenAIRE

    Kusmana, Cecep

    1996-01-01

    Research on quantification of ecological values of mangrove forest ecosystem are urgently needed, due to its importance as the basics for utilization and management of resources. From the ecological point of vlew, the main prohlem of mangrove ecosystem is rarity and inconsistency of data and limited accurate methods inquantifying ecological values of that ecosystem. Results show that mangrove has the significant ecological values on coastal ecosystem. However, there must be further research t...

  1. Coastal marine contamination in Colombia

    International Nuclear Information System (INIS)

    Garay T, Jesus A; Marin Z, Bienvenido; Velez G, Ana Maria

    2002-01-01

    The paper tries about the problem of the marine contamination and their marked influence in the health of the coastal ecosystems, of their narrow relationship with the growing increase of the populations that they inhabit the coastal areas and of equal it forms, with the increment of the domestic, agricultural and industrial activities that, for the wrong handling and inadequate control of the solid and liquid waste, they affect the marine environment with significant implications at ecological, socioeconomic level and of health. Another component of the environmental problem of the marine ecosystems in the country, resides in that don't exist in general normative on the chemical quality and sanitary for its marine waters, that which limits the categorization of this agreement ecosystems with its environmental quality, conditioning this the lack of adequate mechanisms to mitigate the causes that originate the deterioration of the quality of the Colombian coasts

  2. Morphological Modeling of a Low-Dune Barrier Headland System's Response to Hurricane Forcing Before and After a Large Scale Restoration

    Science.gov (United States)

    Johnson, C.; Chen, Q. J.

    2017-12-01

    Coastal barrier landforms serve as the first line of defense against oceanic and meteorological forcing. Widespread recognition of this function has prompted coastal managers to adopt systematic restoration programs. The state of Louisiana has, in response to its critically eroding shorelines (Byrnes et al., 2017), implemented 30 barrier island and headland restoration projects over the past three decades. The Caminada Headlands Beach and Dune Restoration Project, completed in 2016, restored 22.5 kilometers of Louisiana's coastline by elevating the cross-shore profile and placing approximately 250,000 m3 of sediment within the back- and foreshore. Interventions of this magnitude are significant perturbations to the local sediment budget and geomorphodynamic equilibrium. In Louisiana, an important question is the immediate fate of placed sediment transported during the passage of a hurricane, as the potential to ultimately retain this sediment is influenced by the location of its deposition. The direction of net sediment transport (on- or offshore) depends mainly on the elevation of the storm surge relative to the dune crest, but also on the evolution of the cross-shore water surface gradient and the spatial configuration of biogeophysical properties and hard-structures (Sherwood et al., 2014; Smallegan et al., 2016) . Prior to its restoration, the Caminada headlands were generally of low elevation with the majority of dune crest extending less than 50 cm above MHW and several active breaches. Hurricanes Gustav (2008) and Isaac (2012) made landfall directly on the headlands with inundating storm surges that resulted in observed overwash deposition (Doran et al, 2009; Guy et al, 2013), i.e. landward directed sediment transport and deposition. An open-source process-based morphological model (XBeach) is used to study hurricane induced sediment transport for both pre- and post-restoration of the Caminada headlands. Hindcast pre-restoration simulations of Gustav's and

  3. Rip currents, mega-cusps, and eroding dunes

    Science.gov (United States)

    Thornton, E.B.; MacMahan, J.; Sallenger, A.H.

    2007-01-01

    Dune erosion is shown to occur at the embayment of beach mega-cusps O(200 m alongshore) that are associated with rip currents. The beach is the narrowest at the embayment of the mega-cusps allowing the swash of large storm waves coincident with high tides to reach the toe of the dune, to undercut the dune and to cause dune erosion. Field measurements of dune, beach, and rip current morphology are acquired along an 18 km shoreline in southern Monterey Bay, California. This section of the bay consists of a sandy shoreline backed by extensive dunes, rising to heights exceeding 40 m. There is a large increase in wave height going from small wave heights in the shadow of a headland, to the center of the bay where convergence of waves owing to refraction over the Monterey Bay submarine canyon results in larger wave heights. The large alongshore gradient in wave height results in a concomitant alongshore gradient in morphodynamic scale. The strongly refracted waves and narrow bay aperture result in near normal wave incidence, resulting in well-developed, persistent rip currents along the entire shoreline. The alongshore variations of the cuspate shoreline are found significantly correlated with the alongshore variations in rip spacing at 95% confidence. The alongshore variations of the volume of dune erosion are found significantly correlated with alongshore variations of the cuspate shoreline at 95% confidence. Therefore, it is concluded the mega-cusps are associated with rip currents and that the location of dune erosion is associated with the embayment of the mega-cusp.

  4. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation

    Science.gov (United States)

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-01-01

    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  5. Controls of Carbon Preservation in Coastal Wetlands of Texas: Mangrove vs. Saltmarsh Ecosystems

    Science.gov (United States)

    Sterne, A. M. E.; Louchouarn, P.; Norwood, M. J.; Kaiser, K.

    2014-12-01

    The estimated magnitude of the carbon (C) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire C stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of C under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze total hydrolysable carbohydrates, amino acids, phenols and stable isotopic data (δ13C) at two study sites located on the Texas coastline to investigate chemical compositions and the stage of decomposition in mangrove and marsh grass dominated wetlands. Carbohydrates are used as specific decomposition indicators of the polysaccharide component of wetland plants, whereas amino acids are used to identify the contribution of microbial biomass, and acid/aldehyde ratios of syringyl (S) and vanillyl (V) phenols (Ac/AlS,V) follow the decomposition of lignin. Preliminary results show carbohydrates account for 30-50 % of organic carbon in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Ecological differences (between marsh grass and mangrove dominated wetlands) are discussed to better constrain the role of litter biochemistry and ecological shifts on C preservation in these anoxic environments.

  6. Decision-making in Coastal Management and a Collaborative Governance Framework

    Science.gov (United States)

    Over half of the US population lives in coastal watersheds, creating a regional pressure for coastal ecosystems to provide a broad spectrum of services while continuing to support healthy communities and economies. The National Ocean Policy, issued in 2010, and Coastal and Marin...

  7. Natural and human controls of the Holocene evolution of the beach, aeolian sand and dunes of Caesarea (Israel)

    Science.gov (United States)

    Roskin, J.; Sivan, D.; Shtienberg, G.; Roskin, E.; Porat, N.; Bookman, R.

    2015-12-01

    The study focuses on the Holocene appearance, chronology and drivers of beach sand deposition and inland aeolian sand transport around the Roman-Byzantine ruins of Caesarea, Israel. Beach sand, sand sheets, nebkha, linear and transverse dunes as well as parabolic and transverse interdunes along two transects were sampled in the current study down to their substrate. Sixteen new optically stimulated luminescence ages cluster at ∼5.9-3.3 ka, ∼1.2-1.1 ka (800-900 AD) and ∼190-120 years ago (1825-1895 AD) indicating times of middle and late Holocene sand sheet depositions and historical dune stabilization. The first age cluster indicates that beach sand accumulated when rates of global sea level rise declined around 6-5 ka. Until ∼4 ka sand sheets encroached up to 2.5 km inland. Historical and archaeological evidence points to sand mobilization since the first century AD. Sand sheets dating to 1.2-1.1 ka, coevally found throughout the dunefield represent sand stabilization due to vegetation reestablishment attributed to gradual and fluctuating decline in human activity from the middle Early Islamic period until the 10th century. Historical and chronological evidence of the existence of transverse and coppice dunes from the 19th century suggest that dunes only formed in the last few centuries. The study illustrates the initial role of natural processes, in this case decline in global sea level rise and the primary and later role of fluctuating human activity upon coastal sand mobility. The study distinguishes between sand sheets and dunes and portrays them as sensors of environmental changes.

  8. Multi-spatial analysis of aeolian dune-field patterns

    Science.gov (United States)

    Ewing, Ryan C.; McDonald, George D.; Hayes, Alex G.

    2015-07-01

    Aeolian dune-fields are composed of different spatial scales of bedform patterns that respond to changes in environmental boundary conditions over a wide range of time scales. This study examines how variations in spatial scales of dune and ripple patterns found within dune fields are used in environmental reconstructions on Earth, Mars and Titan. Within a single bedform type, different spatial scales of bedforms emerge as a pattern evolves from an initial state into a well-organized pattern, such as with the transition from protodunes to dunes. Additionally, different types of bedforms, such as ripples, coarse-grained ripples and dunes, coexist at different spatial scales within a dune-field. Analysis of dune-field patterns at the intersection of different scales and types of bedforms at different stages of development provides a more comprehensive record of sediment supply and wind regime than analysis of a single scale and type of bedform. Interpretations of environmental conditions from any scale of bedform, however, are limited to environmental signals associated with the response time of that bedform. Large-scale dune-field patterns integrate signals over long-term climate cycles and reveal little about short-term variations in wind or sediment supply. Wind ripples respond instantly to changing conditions, but reveal little about longer-term variations in wind or sediment supply. Recognizing the response time scales across different spatial scales of bedforms maximizes environmental interpretations from dune-field patterns.

  9. Dynamics of a cliff top dune

    Science.gov (United States)

    Rasmussen, K. R.

    2012-12-01

    Morphological changes during more than 100 years have been investigated for a cliff-top dune complex at Rubjerg at the Danish North Sea coast. Here the lower 50 m of the cliff front is composed of Pleistocene steeply inclined floes of silt and clay with coarse sand in between which gives it a saw-tooth appearance. On top of this the dunes are found for several kilometres along the coastline. Due to erosion by the North Sea the cliff has retreated about 120 m between approximately 1880 and 1970 as indicated from two national surveys, and recent GPS-surveys indicate that erosion is continuing at a similar rate. Nevertheless the cliff top dune complex has survived, but its morphology has undergone some changed. The old maps indicate that around 1880 the dune complex was composed of several up to about 20 m high dunes streamlined in the East-West direction which is parallel to the prevailing wind direction. When protective planting started during the first half of the 20th Century the cliff top dunes gradually merged together forming a narrow, tall ridge parallel to the shore line with the highest part reaching about 90 m near 1970. In 1993 the highest points along the ridge was almost 95 m high, but then the protective planting was considerably reduced and recent annual GPS-surveys indicate that the dunes respond quickly to this by changing their morphology towards the original appearance. It is remarkable that despite the mass wasting caused by the constant erosion of the cliff front the dunes have remained more or less intact. Theoretical studies of hill flow indicate given the proper geometry of the cliff then suspension of even coarse grains can be a very effective agent for carrying sand from the exposed parts of the cliff front to and beyond the cliff-top. Mostly the sand grains are deposited within some hundred meters downwind of the cliff dune while silt is often carried more than 10 km inland. Field observations indicate that where the dislodged floes and

  10. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  11. Pattern or process? Evaluating the peninsula effect as a determinant of species richness in coastal dune forests.

    Directory of Open Access Journals (Sweden)

    Pieter I Olivier

    Full Text Available The peninsula effect predicts that the number of species should decline from the base of a peninsula to the tip. However, evidence for the peninsula effect is ambiguous, as different analytical methods, study taxa, and variations in local habitat or regional climatic conditions influence conclusions on its presence. We address this uncertainty by using two analytical methods to investigate the peninsula effect in three taxa that occupy different trophic levels: trees, millipedes, and birds. We surveyed 81 tree quadrants, 102 millipede transects, and 152 bird points within 150 km of coastal dune forest that resemble a habitat peninsula along the northeast coast of South Africa. We then used spatial (trend surface analyses and non-spatial regressions (generalized linear mixed models to test for the presence of the peninsula effect in each of the three taxa. We also used linear mixed models to test if climate (temperature and precipitation and/or local habitat conditions (water availability associated with topography and landscape structural variables could explain gradients in species richness. Non-spatial models suggest that the peninsula effect was present in all three taxa. However, spatial models indicated that only bird species richness declined from the peninsula base to the peninsula tip. Millipede species richness increased near the centre of the peninsula, while tree species richness increased near the tip. Local habitat conditions explained species richness patterns of birds and trees, but not of millipedes, regardless of model type. Our study highlights the idiosyncrasies associated with the peninsula effect-conclusions on the presence of the peninsula effect depend on the analytical methods used and the taxon studied. The peninsula effect might therefore be better suited to describe a species richness pattern where the number of species decline from a broader habitat base to a narrow tip, rather than a process that drives species

  12. Aeolian sedimentary processes at the Bagnold Dunes, Mars: Implications for modern dune dynamics and sedimentary structures in the aeolian stratigraphic record of Mars

    Science.gov (United States)

    Ewing, Ryan C.; Bridges, Nathan T.; Sullivan, Rob; Lapotre, Mathieu G. A.; Fischer, Woodward W.; Lamb, Mike P.; Rubin, David M.; Lewis, Kevin W.; Gupta, Sanjeev

    2016-04-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under Martian conditions. In-situ observations of sand dunes (informally called the Bagnold Dunes) by Curiosity Rover in Gale Crater, Mars provide the first opportunity to make observations of dunes from the grain-to-dune scale thereby filling the gap in knowledge between theory and orbital observations and refining our understanding of the martian aeolian stratigraphic record. We use the suite of cameras on Curiosity, including Navigation Camera (Navcam), Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI), to make observations of the Bagnold Dunes. Measurements of sedimentary structures are made where stereo images are available. Observations indicate that structures generated by gravity-driven processes on the dune lee slopes, such as grainflow and grainfall, are similar to the suite of aeolian sedimentary structures observed on Earth and should be present and recognizable in Mars' aeolian stratigraphic record. Structures formed by traction-driven processes deviate significantly from those found on Earth. The dune hosts centimeter-scale wind ripples and large, meter-scale ripples, which are not found on Earth. The large ripples migrate across the depositional, lee slopes of the dune, which implies that these structures should be present in Mars' stratigraphic record and may appear similar to compound-dune stratification.The Mars Science Laboratory Curiosity Rover Team is acknowledged for their support of this work.

  13. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    Science.gov (United States)

    Larsen, Laurel G.; Moseman, Serena; Santoro, Alyson; Hopfensperger, Kristine; Burgin, Amy

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  14. Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems.

    Directory of Open Access Journals (Sweden)

    B Munier

    . Plastic debris will affect metals within coastal ecosystems by; 1 providing a sorption site (copper and lead, notably for PVC 2 desorption from the plastic i.e., the "inherent" load (cadmium and zinc and 3 serving as a point source of acute trace metal exposure to coastal ecosystems. All three mechanisms will put coastal ecosystems at risk to the toxic effects of these metals.

  15. Circumpolar Biodiversity Monitoring Programme: Coastal Expert Workshop meeting summary

    Science.gov (United States)

    Thomson, L.; McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Christensen, T.; Price, C.

    2016-01-01

    The Coastal Expert Workshop brought together a diverse group of coastal experts with the common goal of developing a biodiversity monitoring program for coastal ecosystems across the circumpolar Arctic. Meeting participants, including northern residents, industry and Non-Governmental Organization (NGO) representatives, scientists, and government regulators from across the circumpolar Arctic, gathered at the Lord Elgin Hotel in Ottawa from March 1 to 3, 2016, to discuss current biodiversity monitoring efforts, understand key issues facing biodiversity in the Arctic coastal areas and suggest monitoring indicators, or Focal Ecosystem Components, for the program. A Traditional Knowledge Holders meeting was held on February 29, 2016 in conjunction with the workshop. The following document provides a summary of the workshop activities and outcomes, and will be followed by a more complete Workshop Report.

  16. Modelling climate change effects on a dutch coastal groundwater system using airborne electromagnetic measurements

    NARCIS (Netherlands)

    Faneca S̀anchez, M.; Gunnink, J.L.; Baaren, E.S. van; Oude Essink, G.H.P.; Siemon, B.; Auken, E.; Elderhorst, W.; Louw, P.G.B. de

    2012-01-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being

  17. Monitoring the Productivity of Coastal Systems Using PH ...

    Science.gov (United States)

    The impact of nutrient inputs to the eutrophication of coastal ecosystems has been one of the great themes of coastal ecology. There have been countless studies devoted to quantifying how human sources of nutrients, in particular nitrogen (N), effect coastal water bodies. These studies, which often measure in situ concentrations of nutrients, chlorophyll, and dissolved oxygen, are often spatially and/or temporally intensive and expensive. We provide evidence from experimental mesocosms, coupled with data from the water column of a well-mixed estuary, that pH can be a quick, inexpensive, and integrative measure of net ecosystem metabolism. In some cases, this approach is a more sensitive tracer of production than direct measurements of chlorophyll and carbon-14. Taken together, our data suggest that pH is a sensitive, but often overlooked, tool for monitoring estuarine production. This presentation will explore the potential utility of pH as an indicator of ecosystem productivity. Our data suggest that pH is a sensitive and potentially integrator of net ecosystem production. It should not be overlooked, that measuring pH is quick, easy, and inexpensive, further increasing its value as an analytical tool.

  18. Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars.

    Science.gov (United States)

    Chojnacki, Matthew; Urso, Anna; Fenton, Lori K; Michaels, Timothy I

    2017-06-01

    It is now known unambiguously that wind-driven bedform activity is occurring on the surface of Mars today, including early detections of active sand dunes in Meridiani Planum's Endeavour crater. Many of these reports are only based on a few sets of observations of relatively isolated bedforms and lack regional context. Here, we investigate aeolian activity across central Meridiani Planum and test the hypothesis that dune sites surrounding Endeavour crater are also active and part of region-wide sediment migration driven by northwesterly winds. All 13 dune fields investigated clearly showed evidence for activity and the majority exhibited dune migration (average rates of 0.6 m/Earth-year). Observations indicate substantial geographic and temporal heterogeneity of dune crest fluxes across the area and per site. Locations with multiple time steps indicate dune sand fluxes can vary by a factor of five, providing evidence for short periods of rapid migration followed by near-stagnation. In contrast, measurements at other sites are nearly identical, indicating that some dunes are in a steady-state as they migrate. The observed sediment transport direction was consistent with a regional northeasterly-to-northwesterly wind regime, revealing more variations than were appreciated from earlier, more localized studies. Craters containing shallow, degraded, flat-floored interiors tended to have dunes with high sediment fluxes/activity, whereas local kilometer-scale topographic obstructions (e.g., central peaks, yardangs) were found to be inversely correlated with dune mobility. Finally, the previous, more limited detections of dune activity in Endeavour crater have been shown to be representative of a broader, region-wide pattern of dune motion.

  19. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  20. Degradation State and Sequestration Potential of Carbon in Coastal Wetlands of Texas: Mangrove Vs. Saltmarsh Ecosystems

    Science.gov (United States)

    Sterne, A. M. E.; Kaiser, K.; Louchouarn, P.; Norwood, M. J.

    2015-12-01

    The estimated magnitude of the organic carbon (OC) stocks contained in the first meter of US coastal wetland soils represents ~10% of the entire OC stock in US soils (4 vs. 52 Pg, respectively). Because this stock extends to several meters below the surface for many coastal wetlands, it becomes paramount to understand the fate of OC under ecosystem shifts, varying natural environmental constraints, and changing land use. In this project we analyze the major classes of biochemicals including total hydrolysable neutral carbohydrates, enantiomeric amino acids, phenols, and cutins/suberins at two study sites located on the Texas coastline to investigate chemical composition and its controls on organic carbon preservation in mangrove (Avicennia germinans) and saltmarsh grass (Spartina alterniflora) dominated wetlands. Results show neutral carbohydrates and lignin contribute 30-70% and 10-40% of total OC, respectively, in plant litter and surface sediments at both sites. Sharp declines of carbohydrate yields with depth occur parallel to increasing Ac/AlS,V ratios indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Contrasts in the compositions and relative abundances of all previously mentioned compound classes are further discussed to examine the role of litter biochemistry in OC preservation. For example, the selective preservation of cellulose over hemicellulose in sediments indicates macromolecular structure plays a key role in preservation between plant types. It is concluded that the chemical composition of litter material controls the composition and magnitude of OC stored in sediments. Ultimately, as these ecosystems transition from one dominant plant type to another, as is currently observed along the Texas coastline, there is the potential for OC sequestration efficiency to shift due to the changing composition of OC input to sediments.

  1. Provision of ecosystem services by human-made structures in a highly impacted estuary

    International Nuclear Information System (INIS)

    Layman, Craig A; Jud, Zachary R; Archer, Stephanie K; Riera, David

    2014-01-01

    Water filtration is one of the most important ecosystem services provided by sessile organisms in coastal ecosystems. As a consequence of increased coastal development, human-made shoreline structures (e.g., docks and bulkheads) are now common, providing extensive surface area for colonization by filter feeders. We estimate that in a highly urbanized sub-tropical estuary, water filtration capacity supported by filter feeding assemblages on dock pilings accounts for 11.7 million liters of water h −1 , or ∼30% of the filtration provided by all natural oyster reef throughout the estuary. Assemblage composition, and thus filtration capacity, varied as a function of piling type, suggesting that the choice of building material has critical implications for ecosystem function. A more thorough depiction of the function of coastal ecosystems necessitates quantification of the extensive ecosystem services associated with human-made structures. (paper)

  2. Soil-landscape development and late Quaternary environmental change in coastal Estremadura, Portugal

    Science.gov (United States)

    Daniels, Michael; Haws, Jonathan; Benedetti, Michael; Bicho, Nuno

    2015-04-01

    This poster integrates soil-landscape analysis with archaeological survey and paleoenvironmental reconstruction. Soils in surface and buried contexts in Estremadura, Portugal, provide evidence of landscape stability and instability, relative age relationships between landforms, and general paleoenvironmental conditions during the late Quaternary. These factors provide insight into the distribution and condition of Paleolithic archaeological sites and help understand the record of human settlement in the region. Late Pleistocene and Holocene dunes extend inland approximately 10 km from coastal source regions. Surface soils in Holocene dunes under maritime pine (Pinus pinaster) forest exhibit A, E, C/Bh and A, C horizon sequences and classify as Quartzipsamments. Surface soils in late Pleistocene dunes exhibit A, E, Bh, Bhs, Bs horizon sequences and classify as Haplorthods. Both Pleistocene and Holocene dunes commonly bury a heavily weathered soil formed in calcareous sandstone. The boundary between underlying buried soils and overlying surface soils is characterized by a lag deposit of medium to coarse, moderately-rounded gravels, underlain immediately by subsurface Bt and Bss horizons. The lag deposit and absence of buried A horizons both indicate intense and/or prolonged surface erosion prior to burial by late Quaternary dunes. Soil-geomorphic relationships therefore suggest at least two distinct episodes of dune emplacement and subsequent landscape stability following an extensive episode late Pleistocene landscape instability and soil erosion. A conceptual model of soil-landscape evolution through the late Quaternary and Holocene results from the integration of soil profile data, proxy paleoenvironmental data, and the partial record of human settled as revealed in the archaeological record.

  3. Sand Dunes with Frost

    Science.gov (United States)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  4. Integrating multi-disciplinary field and laboratory methods to investigate the response and recovery of beach-dune systems in Ireland to extreme events

    Science.gov (United States)

    Farrell, E.; Lynch, K.; Wilkes Orozco, S.; Castro Camba, G.; Scullion, A.

    2017-12-01

    This two year field monitoring project examines the response and recovery of 1.2km of a coastal beach-dune system in the west coast of Ireland (The Maharees, Brandon Bay, Co. Kerry) to storms. The results from this project initiated a larger scale study to assess the long term evolution of Brandon Bay (12km) and patterns of meso-scale rotation. On a bay scale historic shoreline analyses were completed using historic Ordnance Survey maps, aerial photography, and DGPS surveys inputted to the Digital Shoreline Analysis System. These were coupled with a GSTA-wavemeter experiment that collected 410 sediment samples along the beach and nearshore to identify preferred sediment transport pathways along the bay. On a local scale (1.2km) geomorphological changes of the beach and nearshore were monitored using repeated monthly DGPS surveys and drone technology. Topographical data were correlated with atmospheric data obtained from a locally installed automatic weather station, oceanographic data from secondary sources, and photogrammetry using a camera installed at the site collecting pictures every 10 minutes during daylight hours. Changes in surface elevation landward of the foredune from aeolian processes were measured using five pin transects across the dune. The contribution of local blowout dynamics were measured using drone imagery and structure-from-motion technology. The results establish that the average shoreline recession along the 1.2 km site is 72 m during the past 115 years. The topographic surveys illustrate that natural beach building processes initiate system recovery post storms including elevated foreshores and backshores and nearshore sand bar migration across the entire 1.2 km stretch of coastline. In parallel with the scientific work, the local community have mobilized and are working closely with the lead scientists to implement short term coastal management strategies such as signage, information booklets, sand trap fencing, walkways, wooden

  5. Diversity and associations between coastal habitats and anurans in southernmost Brazil.

    Science.gov (United States)

    Oliveira, Mauro C L M; Dos Santos, Maurício B; Loebmann, Daniel; Hartman, Alexandre; Tozetti, Alexandro M

    2013-01-01

    This study aimed to verify the relationship between habitat and the composition of anuran species in dune and restinga habitats in southernmost Brazil. The habitats were sampled between April 2009 and March 2010 using pitfalls with drift fence. We have captured 13,508 individuals of 12 anuran species. Species richness was lower in the dunes and dominance was higher in the resting. Apparently the less complex plant cover, water availability, and wide daily thermal variation in dunes act as an environmental filter for frogs. This hypothesis is reinforced by the fact that the most abundant species (Physalaemus biligonigerus and Odonthoprynus maisuma) bury themselves in the sand, minimizing these environmental stresses. Despite being in the Pampa biome, the studied community was more similar to those of coastal restinga environment of southeast Brazil than with other of the Pampa biome. The number of recorded species is similar to those observed in other open habitats in Brazil, showing the importance of adjacent ones to the shoreline for the maintenance of the diversity of anurans in southernmost Brazil.

  6. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2010-05-01

    Full Text Available Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes a deterioration of the structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, coastal waters, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include freshwater runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses. Their different interactions set up mechanisms that drive the system towards hypoxia. Coastal systems also vary in their relative susceptibility to hypoxia depending on their physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences include compression and loss of habitat, as well as changes in organism life cycles and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in non-linear ways with pronounced feedbacks to other compartments of the Earth System, including those that affect human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behavior that will improve confidence in remediation management strategies for coastal hypoxia.

  7. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development

    Science.gov (United States)

    Zhang, J.; Gilbert, D.; Gooday, A. J.; Levin, L.; Naqvi, S. W. A.; Middelburg, J. J.; Scranton, M.; Ekau, W.; Peña, A.; Dewitte, B.; Oguz, T.; Monteiro, P. M. S.; Urban, E.; Rabalais, N. N.; Ittekkot, V.; Kemp, W. M.; Ulloa, O.; Elmgren, R.; Escobar-Briones, E.; van der Plas, A. K.

    2010-05-01

    Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes a deterioration of the structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, coastal waters, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include freshwater runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses. Their different interactions set up mechanisms that drive the system towards hypoxia. Coastal systems also vary in their relative susceptibility to hypoxia depending on their physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences include compression and loss of habitat, as well as changes in organism life cycles and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in non-linear ways with pronounced feedbacks to other compartments of the Earth System, including those that affect human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behavior that will improve confidence in remediation management strategies for coastal hypoxia.

  8. Corridors of barchan dunes: Stability and size selection

    DEFF Research Database (Denmark)

    Hersen, P.; Andersen, Ken Haste; Elbelrhiti, H.

    2004-01-01

    state. Second, the propagation speed of dunes decreases with the size of the dune: this leads, through the collision process, to a coarsening of barchan fields. We show that these phenomena are not specific to the model, but result from general and robust mechanisms. The length scales needed...... for these instabilities to develop are derived and discussed. They turn out to be much smaller than the dune field length. As a conclusion, there should exist further, yet unknown, mechanisms regulating and selecting the size of dunes....

  9. Vulnerability of inter-tropical littoral areas. Preface

    Science.gov (United States)

    Charvis, Philippe; Gubert, Flore; Ménard, Frédéric

    2017-10-01

    The coastal area is defined as the interface between land and sea. It is a transition zone where land is affected by its proximity to the sea, and the coastal sea is affected by its proximity to the land. Its components are diverse and include river deltas, coastal plains, wetlands, beaches and dunes, reefs, mangrove forests, lagoons, and other coastal features. Coastal areas contribute to a small proportion of the total land area in the Earth system, but they provide a wide variety of ecosystem services (e.g., food through fish production, sand mining, flooding and erosion protection, recreational benefits, etc.) and are home to a large and growing proportion of the world's population.

  10. Hurricane Irma's Effects on Dune and Beach Morphology at Matanzas Inlet, Atlantic Coast of North Florida: Impacts and Inhibited Recovery?

    Science.gov (United States)

    Adams, P. N.; Conlin, M. P.; Johnson, H. A.; Paniagua-Arroyave, J. F.; Woo, H. B.; Kelly, B. P.

    2017-12-01

    During energetic coastal storms, surge from low atmospheric pressure, high wave set-up, and increased wave activity contribute to significant morphologic change within the dune and upper beach environments of barrier island systems. Hurricane Irma made landfall on the southwestern portion of the Florida peninsula, as a category 4 storm on Sept 10th, 2017 and tracked northward along the axis of the Florida peninsula for two days before dissipating over the North American continent. Observations along the North Florida Atlantic coast recorded significant wave heights of nearly 7 m and water levels that exceeded predictions by 2 meters on the early morning of Sept. 11th. At Fort Matanzas National Monument, the dune and upper beach adjacent to Matanzas Inlet experienced landward retreat during the storm, diminishing the acreage of dune and scrub habitat for federally-listed endangered and threatened animal species, including the Anastasia beach mouse, gopher tortoises, and several protected shore birds. Real Time Kinematic (RTK) GPS surveys, conducted prior to the passage of the storm (Sept. 8) and immediately after the storm (Sept. 13) document dune scarp retreat >10 m in places and an average retreat of 7.8 m (+/- 5.2 m) of the 2-m beach contour, attributable to the event, within the study region. Although it is typical to see sedimentary recovery at the base of dunes within weeks following an erosive event of this magnitude, our follow up RTK surveys, two weeks (Sept. 26) and five weeks (Oct. 19) after the storm, document continued dune retreat and upper beach lowering. Subsequent local buoy observations during the offshore passage of Hurricanes Jose, Maria (Sept. 17 and 23, respectively) and several early-season Nor'easters recorded wave heights well above normal (2-3 meters) from the northeast. The lack of recovery may reveal a threshold vulnerability of the system, in which the timing of multiple moderate-to-high wave events, in the aftermath of a land falling

  11. Matter Density Profile Shape Effects at DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kevin J. [Northwestern U.; Parke, Stephen J. [Fermilab

    2018-02-19

    Quantum mechanical interactions between neutrinos and matter along the path of propagation, the Wolfenstein matter effect, are of particular importance for the upcoming long-baseline neutrino oscillation experiments, specifically the Deep Underground Neutrino Experiment (DUNE). Here, we explore specifically what about the matter density profile can be measured by DUNE, considering both the shape and normalization of the profile between the neutrinos' origin and detection. Additionally, we explore the capability of a perturbative method for calculating neutrino oscillation probabilities and whether this method is suitable for DUNE. We also briefly quantitatively explore the ability of DUNE to measure the Earth's matter density, and the impact of performing this measurement on measuring standard neutrino oscillation parameters.

  12. Emergy evaluation of benthic ecosystems influenced by upwelling in northern Chile: Contributions of the ecosystems to the regional economy

    Science.gov (United States)

    Emergy evaluations of three benthic ecosystem networks found in Mejillones, Antofagasta and Tongoy Bays, located on the coast of northern Chile, were carried out with the intent of documenting the contributions of these coastal ecosystems to the economy. The productivity of these...

  13. Rhynchostegium megapolitanum (Web. et Mohr) B.S.G.-A rare bryophyte in dune ecosystems of Zealand, Denmark

    DEFF Research Database (Denmark)

    Johnsen, Ib

    2014-01-01

    Rhynchostegium megapolitanum was observed during a study of the effects of the invasive non-native Rosa rugosa in a sand dune. The vascular as well as the epiphytic and epigeic cryptogam vegetation was recorded., and soil properties were measured. Epihytic lichens were abundant on dead or dying b...... branches of Rosa rugosa scrubs, under which the stable substrate and high light exposure provided growth conditions for an epigeic community dominated by lichens and bryophytes. The occurrence of the rare bryophyte Rhynchostegium megapolitanum is discussed......Rhynchostegium megapolitanum was observed during a study of the effects of the invasive non-native Rosa rugosa in a sand dune. The vascular as well as the epiphytic and epigeic cryptogam vegetation was recorded., and soil properties were measured. Epihytic lichens were abundant on dead or dying...

  14. Mapping Cumulative Impacts of Human Activities on Marine Ecosystems

    OpenAIRE

    , Seaplan

    2018-01-01

    Given the diversity of human uses and natural resources that converge in coastal waters, the potential independent and cumulative impacts of those uses on marine ecosystems are important to consider during ocean planning. This study was designed to support the development and implementation of the 2009 Massachusetts Ocean Management Plan. Its goal was to estimate and visualize the cumulative impacts of human activities on coastal and marine ecosystems in the state and federal waters off of Ma...

  15. Dune-Yardang Interactions in Becquerel Crater, Mars

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A.

    2018-02-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr-1) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  16. Dune-Yardang Interactions in Becquerel Crater, Mars.

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A

    2018-01-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr -1 ) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  17. Large-eddy simulation of unidirectional turbulent flow over dunes

    Science.gov (United States)

    Omidyeganeh, Mohammad

    We performed large eddy simulation of the flow over a series of two- and three-dimensional dune geometries at laboratory scale using the Lagrangian dynamic eddy-viscosity subgrid-scale model. First, we studied the flow over a standard 2D transverse dune geometry, then bedform three-dimensionality was imposed. Finally, we investigated the turbulent flow over barchan dunes. The results are validated by comparison with simulations and experiments for the 2D dune case, while the results of the 3D dunes are validated qualitatively against experiments. The flow over transverse dunes separates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, as well as the generation of coherent structures. Spanwise vortices are generated in the separated shear; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils". The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which may cause secondary flow across the stream. The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radii of the order of the flow depth. Staggering the crestlines alters the secondary motion; two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The flow over barchan dunes presents significant differences to that over transverse dunes. The flow near the bed, upstream of the dune, diverges from the centerline plane; the flow close to the centerline plane separates at the crest and reattaches on the bed. Away from the centerline plane and along the horns, flow separation occurs intermittently. The flow in the separation bubble is routed towards the horns and leaves

  18. Ecosystem-based coastal defence in the face of global change

    NARCIS (Netherlands)

    Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; de Vriend, H.J.

    2013-01-01

    The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly

  19. Deploying scanning lidars at coastal sites

    DEFF Research Database (Denmark)

    Courtney, Michael; Simon, Elliot

    that the most desirable sites are away from sand dunes and with some significant elevation above the sea surface, such as at the top of a cliff. Coastal planning restrictions in Denmark are quite restrictive and it was important to allow sufficient time to obtain permission from the relevant authorities....... At the same time, with our particular application, the authorities and land owners were quite favourably inclined to give permission to temporary installations in support of wind energy research. The report concludes with the final positions and a pictorial description of the three RUNE scanning lidars....

  20. Participation and Sustainable Management of Coastal Lagoon Ecosystems: The Case of the Fosu Lagoon in Ghana

    Directory of Open Access Journals (Sweden)

    Ernest K.A. Afrifa

    2010-01-01

    Full Text Available Participation as a tool has been applied as a social learning process and communication platform to create awareness among stakeholders in the context of resource utilisation. The application of participatory processes to aquatic ecosystem management is attracting a growing body of literature. However, the application of participation as a tool for sustainable management of coastal lagoon ecosystems is recent. This paper examines the context and the extent of participation of stakeholders in the management of the Fosu lagoon in Ghana. Six hundred individuals from twenty seven stakeholder groups were randomly selected for study. Both closed and open-ended questions were used in face-to-face interviews with stakeholders. The findings indicate that the stakeholder groups were not involved in decision-making regarding the conservation of the lagoon irrespective of their expertise in planning and/or their interest in lagoon resource utilisation. This situation has created apathy among some of the stakeholders who feel neglected in the decision-making process. There is scope for broadening the base of interest groups in decision-making processes regarding the lagoon and improving stakeholder participation in the management of the lagoon to ensure the sustainability of the management process.

  1. Species richness accelerates marine ecosystem restoration in the Coral Triangle.

    Science.gov (United States)

    Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R

    2017-11-07

    Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.

  2. Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development

    Science.gov (United States)

    Zhang, J.; Gilbert, D.; Gooday, A.; Levin, L.; Naqvi, W.; Middelburg, J.; Scranton, M.; Ekau, W.; Pena, A.; Dewitte, B.; Oguz, T.; Monteiro, P. M. S.; Urban, E.; Rabalais, N.; Ittekkot, V.; Kemp, W. M.; Ulloa, O.; Elmgren, R.; Escobar-Briones, E.; van der Plas, A.

    2009-11-01

    Hypoxia has become a world-wide phenomenon in the global coastal ocean and causes deterioration of structure and function of ecosystems. Based on the collective contributions of members of SCOR Working Group #128, the present study provides an overview of the major aspects of coastal hypoxia in different biogeochemical provinces, including estuaries, upwelling areas, fjords and semi-enclosed basins, with various external forcings, ecosystem responses, feedbacks and potential impact on the sustainability of the fishery and economics. The obvious external forcings include fresh water runoff and other factors contributing to stratification, organic matter and nutrient loadings, as well as exchange between coastal and open ocean water masses; their different interactions set up mechanisms that drive the system towards hypoxia. However, whether the coastal environment becomes hypoxic or not, under the combination of external forcings, depends also on the nature of the ecosystem, e.g. physical and geographic settings. It is understood that coastal hypoxia has a profound impact on the sustainability of ecosystems, which can be seen, for example, by the change in the food-web structure and system function; other influences can be compression and loss of habitat, as well as change in life cycle and reproduction. In most cases, the ecosystem responds to the low dissolved oxygen in a non-linear way and has pronounced feedbacks to other compartments of the Earth System, hence affecting human society. Our knowledge and previous experiences illustrate that there is a need to develop new observational tools and models to support integrated research of biogeochemical dynamics and ecosystem behaviour that will improve confidence in remediation management strategies for coastal hypoxia.

  3. Nutrient dynamics and primary production in a pristine coastal mangrove ecosystem: Andaman Islands, India

    Science.gov (United States)

    Jenkins, E. N.; Nickodem, K.; Siemann, A. L.; Hoeher, A.; Sundareshwar, P. V.; Ramesh, R.; Purvaja, R.; Banerjee, K.; Manickam, S.; Haran, H.

    2012-12-01

    Mangrove ecosystems play a key role in supporting coastal food webs and nutrient cycles in the coastal zone. Their strategic position between the land and the sea make them important sites for land-ocean interaction. As part of an Indo-US summer field course we investigated changes in the water chemistry in a pristine mangrove creek located at Wright Myo in the Andaman Islands, India. This study was conducted during the wet season (June 2012) to evaluate the influence of the coastal mangrove wetlands on the water quality and productivity in adjoining pelagic waters. Over a full tidal cycle spanning approximately 24 hrs, we measured nutrient concentrations and other ancillary parameters (e.g. dissolved oxygen, turbidity, salinity, etc.) hourly to evaluate water quality changes in incoming and ebbing tides. Nutrient analyses had the following concentration ranges (μM): nitrite 0.2-0.9, nitrate 2.0-11.5, ammonium 1.3-7.5, dissolved inorganic phosphate 0.7-2.8. The dissolved inorganic nitrogen to dissolved inorganic phosphate (DIN/DIP) ratio was very low relative to an optimal ratio, suggesting growth is nitrogen limited. In addition, we conducted primary production assays to investigate the factors that controlled primary production in this pristine creek. The experiment was carried out in situ using the Winkler method at low and high tide. Four-hour incubation of light and dark bottles representing a fixed control, non-fertilized, fertilized with nitrate, and fertilized with phosphate enabled the measurement of both net oxygen production and dark respiration. The low tide experiment suggests the ecosystem is heterotrophic because the oxygen measured in the light bottles was consistently less than that of the dark bottles. This result may be an experimental artifact of placing the glass bottles in the sun for too long prior to incubation, potentially leading to photolysis of large organic molecules in the light bottles. The high tide experiment also displayed

  4. Ecosystem recovery after hypoxia: what can foraminifera indicate?

    NARCIS (Netherlands)

    Brouwer, G.M.

    2014-01-01

    The many resources and services provided by coastal ecosystems (e.g. food, fertile soils), make these areas valuable habitats for marine life and human occupation. Expanding human population sizes and the associated increase of human exploitation of coastal zones has made these areas prone to

  5. The Contribution of Mosses to the Complex Pattern of Diurnal and Seasonal Metabolism the wet Coastal Tundra Ecosystems Near Barrow Alaska.

    Science.gov (United States)

    Zona, D.; Oechel, W.; Hastings, S.; Oberbauer, S.; Kopetz, I.; Ikawa, H.

    2006-12-01

    Despite the abundance and importance bryophytes in the Alaskan Arctic tundra there is relatively little information on the role of these plants in determining the CO2 fluxes of Arctic tundra and, in particular, the environmental controls and climate change sensitivities of current and future photosynthesis in Arctic mosses. Studies in the tundra biome during the IBP program implicated high light together with high temperature as causes of decreases in photosynthesis in arctic mosses. Several authors have reported midday depression of moss photosynthesis due to high irradiance, even under optimum temperature and fully hydrated conditions. The focus of this study is to understand the role of Sphagnum ssp. mosses of various species, the dominant moss in the Alaska coastal wet Tundra on the total ecosystem carbon exchange throughout the season and in particular soon after snowmelt when the ecosystem is a carbon source. Our hypothesis is that the ecosystem carbon source activity during this critical period may be a result of sensitivity of mosses to light and photoinhibition in the absence of the protective canopy layer of vascular plants. In this study we measured daily courses of photosynthesis and fluorescence in the moss layer and we compare it to the total ecosystem carbon fluxes determined by the eddy covariance technique. The measurements were conducted in wet coastal tundra from June 2006, right after the snow melt, to August 2006 in the Biological Experimental Observatory (BEO) in Barrow, Alaska. The photosynthesis in the moss layer was found to be strongly inhibited when the radiation exceeded 800 ìmol m-2 s-1. Mosses remained fully hydrated throughout the season, precluding drying as a cause of decreased photosynthesis. Dark-adapted fluorescence measurements (Fv/Fm) showed a relatively low value (0.6) right after the snow melt, and remained fairly stable throughout the season. This low value was previously reported as characteristic of photoinhibited

  6. Formation of aeolian dunes on Anholt, Denmark since AD 1560

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Bjørnsen, Mette; Murray, Andrew

    2007-01-01

    Sand dunes on the island of Anholt (Denmark) in the middle of Kattegat form a relatively barren, temperate climate Aeolian system, locally termed the "Desert". The dunes have developed on top of a raised beach ridge system under the influence of dominant winds from westerly directions. They are r......Sand dunes on the island of Anholt (Denmark) in the middle of Kattegat form a relatively barren, temperate climate Aeolian system, locally termed the "Desert". The dunes have developed on top of a raised beach ridge system under the influence of dominant winds from westerly directions....... They are relatively coarse-grained with an average mean grain size of 480 µm. The last phase of aeolian activity and dune formation on Anholt started after AD 1560, when the local pine forest was removed. Historical sources report intense sand mobilization in the 17th century, and new optically stimulated...... in the beginning of the 20th century probably records a temporary decrease in storminess. Ground-penetrating radar mapping of the internal structures in two dunes in the western part of the Desert (a parabolic dune and a linear dune) indicates the importance of north-westerly (storm) winds during dune formation...

  7. UAV photogrammetry for topographic monitoring of coastal areas

    Science.gov (United States)

    Gonçalves, J. A.; Henriques, R.

    2015-06-01

    Coastal areas suffer degradation due to the action of the sea and other natural and human-induced causes. Topographical changes in beaches and sand dunes need to be assessed, both after severe events and on a regular basis, to build models that can predict the evolution of these natural environments. This is an important application for airborne LIDAR, and conventional photogrammetry is also being used for regular monitoring programs of sensitive coastal areas. This paper analyses the use of unmanned aerial vehicles (UAV) to map and monitor sand dunes and beaches. A very light plane (SwingletCam) equipped with a very cheap, non-metric camera was used to acquire images with ground resolutions better than 5 cm. The Agisoft Photoscan software was used to orientate the images, extract point clouds, build a digital surface model and produce orthoimage mosaics. The processing, which includes automatic aerial triangulation with camera calibration and subsequent model generation, was mostly automated. To achieve the best positional accuracy for the whole process, signalised ground control points were surveyed with a differential GPS receiver. Two very sensitive test areas on the Portuguese northwest coast were analysed. Detailed DSMs were obtained with 10 cm grid spacing and vertical accuracy (RMS) ranging from 3.5 to 5.0 cm, which is very similar to the image ground resolution (3.2-4.5 cm). Where possible to assess, the planimetric accuracy of the orthoimage mosaics was found to be subpixel. Within the regular coastal monitoring programme being carried out in the region, UAVs can replace many of the conventional flights, with considerable gains in the cost of the data acquisition and without any loss in the quality of topographic and aerial imagery data.

  8. Lizard assemblage from a sand dune habitat from southeastern Brazil: a niche overlap analysis.

    Science.gov (United States)

    Winck, Gisele R; Hatano, Fabio; Vrcibradic, Davor; VAN Sluys, Monique; Rocha, Carlos F D

    2016-01-01

    Communities are structured by interactions of historical and ecological factors, which influence the use of different resources in time and space. We acquired data on time of activity, microhabitat use and diet of a lizard assemblage from a sand dune habitat in a coastal area, southeastern Brazil (Restinga de Jurubatiba). We analyzed the data of niche overlap among species in these three axes (temporal, spatial and trophic) using null models. We found a significant overlap within the trophic niche, whereas the overlap for the other axes did not differ from the expected. Based on this result, we discuss the factors acting on the structure of the local lizard community.

  9. Origin of the late quaternary dune fields of northeastern Colorado

    Science.gov (United States)

    Muhs, D.R.; Stafford, T.W.; Cowherd, S.D.; Mahan, S.A.; Kihl, R.; Maat, P.B.; Bush, C.A.; Nehring, J.

    1996-01-01

    Stabilized eolian deposits, mostly parabolic dunes and sand sheets, cover much of the landscape of northeastern Colorado and adjacent parts of southwestern Nebraska in four geographically distinct dune fields. Stratigraphic and soil-geomorphic relations and accelerator radiocarbon dating indicate that at least three episodes of eolian sand movement occurred between 27 ka and 11 ka, possibly between 11 ka and 4 ka, and within the past 1.5 ka. Thus, eolian sand deposition took place under both glacial and interglacial climatic conditions. In the youngest episodes of eolian sand movement, Holocene parabolic dunes partially buried Pleistocene sand sheet deposits. Late Holocene sands in the Fort Morgan and Wray dune fields, to the south of the South Platte River, have trace element ratios that are indistinguishable from modern South Platte River sands, but different from Ogallala Formation bedrock, which has previously been cited as the main source of dune sand on the Great Plains. Sands in the Greeley dune field, to the north of the South Platte River, have trace element concentrations that indicate a probable Laramie Formation source. Measurements of parabolic dunes indicate paleowinds from the northwest in all dune fields, in good agreement with resultant drift directions calculated for nearby weather stations. Thus, paleowinds were probably not significantly different from present-day winds, and are consistent with a South Platte River source for the Fort Morgan and Wray dune fields, and a Laramie Formation source for the Greeley dune field. Sand accumulated downwind of the South Platte River to form the Fort Morgan dune field. In addition, sand was also transported farther downwind over the upland formed by the calcrete caprock of the Ogallala Formation, and deposited in die lee of the upland on the southeast side. Because of high wind energy, the upland itself served as a zone of sand transport, but little or no sand accumulation took place on this surface. These

  10. Protective role of coastal ecosystems in the context of the tsunami in Tamil Nadu coast, India: Implications for hazard preparedness

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas, A.; Jayakumar, S.

    of society bears the recurring loss of humans, livestock and property. Prudent development of coasts is the obvious solution. The inherent benefits offered by a functional sea front have to be considered for a sustainable management of hazard-prone coasts... and high dunes act as efficient dissipaters of wave energy. Sand dunes therefore serve as stores that strong waves draw on during extreme events. Society at large is immensely benefitted. The role played by sand dunes and beach gradients during the tsunami...

  11. The New Seafloor Observatory (OBSEA) for Remote and Long-Term Coastal Ecosystem Monitoring

    Science.gov (United States)

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  12. The New Seafloor Observatory (OBSEA for Remote and Long-Term Coastal Ecosystem Monitoring

    Directory of Open Access Journals (Sweden)

    Albert Palanques

    2011-05-01

    Full Text Available A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA, located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET. OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration; a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and

  13. The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring.

    Science.gov (United States)

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  14. Do ENSO and Coastal Development Enhance Coastal Burial of Terrestrial Carbon?

    Science.gov (United States)

    Macreadie, Peter I; Rolph, Timothy C; Boyd, Ron; Schröder-Adams, Claudia J; Skilbeck, Charles G

    2015-01-01

    Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Niño-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity ("super-ENSO") and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Niña), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensification--both of which are predicted to increase over the coming century--can enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial-marine carbon connectivity into global carbon budgets.

  15. How models can support ecosystem-based management of coral reefs

    NARCIS (Netherlands)

    Weijerman, M.W.; Fulton, E.A.; Janssen, A.B.G.; Kuiper, J.J.; Leemans, R.; Leemput, van de I.A.; Mooij, W.M.

    2015-01-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic

  16. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities.

    Science.gov (United States)

    Arkema, Katie K; Griffin, Robert; Maldonado, Sergio; Silver, Jessica; Suckale, Jenny; Guerry, Anne D

    2017-07-01

    Interest in the role that ecosystems play in reducing the impacts of coastal hazards has grown dramatically. Yet the magnitude and nature of their effects are highly context dependent, making it difficult to know under what conditions coastal habitats, such as saltmarshes, reefs, and forests, are likely to be effective for saving lives and protecting property. We operationalize the concept of natural and nature-based solutions for coastal protection by adopting an ecosystem services framework that propagates the outcome of a management action through ecosystems to societal benefits. We review the literature on the basis of the steps in this framework, considering not only the supply of coastal protection provided by ecosystems but also the demand for protective services from beneficiaries. We recommend further attention to (1) biophysical processes beyond wave attenuation, (2) the combined effects of multiple habitat types (e.g., reefs, vegetation), (3) marginal values and expected damage functions, and, in particular, (4) community dependence on ecosystems for coastal protection and co-benefits. We apply our approach to two case studies to illustrate how estimates of multiple benefits and losses can inform restoration and development decisions. Finally, we discuss frontiers for linking social, ecological, and physical science to advance natural and nature-based solutions to coastal protection. © 2017 New York Academy of Sciences.

  17. Coexistence of Dunes and Humid Conditions at Titan's Tropics

    Science.gov (United States)

    Radebaugh, Jani; Lorenz, R. D.; Lunine, J. I.; Kirk, R. L.; Ori, G. G.; Farr, T. G.; Malaska, M.; Le Gall, A.; Liu, Z. Y. C.; Encrenaz, P. J.; Paillou, P.; Hayes, A.; Lopes, R. M. C.; Turtle, E. P.; Wall, S. D.; Stofan, E. R.; Wood, C. A.; Cassini RADAR Team

    2012-10-01

    At Titan's equatorial latitudes there are tens of thousands of dunes, a landform typical of desert environments where sand does not become anchored by vegetation or fluids. Model climate simulations predict generally dry conditions at the equator and humid conditions near the poles of Titan, where lakes of methane/ethane are found. However, moderate relative methane humidity was observed at the Huygens landing site, recent rainfall was seen by Cassini ISS near the Belet Sand Sea, and a putative transient lake in Shangri-La was observed by Cassini VIMS, all of which indicate abundant fluids may be present, at least periodically, at Titan's equatorial latitudes. Terrestrial observations and studies demonstrate dunes can exist and migrate in conditions of high humidity. Active dunes are found in humid climates, indicating the movement of sand is not always prohibited by the presence of fluids. Sand mobility is related to precipitation, evaporation and wind speed and direction. If dune surfaces become wetted by rainfall or rising subsurface fluids, they can become immobilized. However, winds can act to dry the uppermost layers, freeing sands for saltation and enabling dune migration in wet conditions. Active dunes are found in tropical NE Brazil and NE Australia, where there are alternating dry and wet periods, a condition possible for Titan's tropics. Rising and falling water levels lead to the alteration of dune forms, mainly from being anchored by vegetation, but also from cementation by carbonates or clays. Studies of Titan's dunes, which could undergo anchoring of organic sediments by hydrocarbon fluids, could inform the relative strength of vegetation vs. cementation at humid dune regions on Earth. Furthermore, a comprehensive survey of dune morphologies near regions deemed low by SARTopo and stereo, where liquids may collect in wet conditions, could reveal if bodies of liquid have recently existed at Titan's tropics.

  18. The Coastal Hazard Wheel system for coastal multi-hazard assessment & management in a changing climate

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Halsnæs, Kirsten

    2015-01-01

    This paper presents the complete Coastal Hazard Wheel (CHW) system, developed for multi-hazard-assessment and multi-hazard-management of coastal areas worldwide under a changing climate. The system is designed as a low-tech tool that can be used in areas with limited data availability...... screening and management. The system is developed to assess the main coastal hazards in a single process and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The system was initially presented in 2012 and based on a range of test......-applications and feedback from coastal experts, the system has been further refined and developed into a complete hazard management tool. This paper therefore covers the coastal classification system used by the CHW, a standardized assessment procedure for implementation of multi-hazard-assessments, technical guidance...

  19. Estimation of sand dune thickness using a vertical velocity profile

    International Nuclear Information System (INIS)

    Al-Shuhail, Abdullatif A.

    2004-01-01

    Previous field and mathematical studies have shown that sand dunes may have vertical velocity profiles (i.e. continuous increase of velocity with depth). Therefore, computing the dunes thickness using conventional seismic refraction methods that assume a vertically homogeneous layer will likely produce some errors. The purpose of this study is to quantify the effect of the vertical velocity profile in a sand dune on the process of thickness estimation using seismic refraction data. First, the time distance (T-X) data of the direct wave in the dune is calculated using a vertical velocity profile, V (z), derived from Hertz-Mindlin contact theory. Then the thickness is estimated from the calculated T-X data, intercept time and velocity of the refractor at the dune's base assuming a constant velocity in the dune. The error in the estimated thickness due to the constant-velocity assumption increases with increasing thickness and decreasing porosity of the dune. For sand dunes with porosities greater than 0.2 and thickness less than 200 meter, the error is less than 15%. (author)

  20. Episodic Late Holocene dune movements on the sand-sheet area, Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado, USA

    Science.gov (United States)

    Forman, S. L.; Spaeth, M.; Marín, L.; Pierson, J.; Gómez, J.; Bunch, F.; Valdez, A.

    2006-07-01

    The Great Sand Dunes National Park and Preserve (GSDNPP) in the San Luis Valley, Colorado, contains a variety of eolian landforms that reflect Holocene drought variability. The most spectacular is a dune mass banked against the Sangre de Cristo Mountains, which is fronted by an extensive sand sheet with stabilized parabolic dunes. Stratigraphic exposures of parabolic dunes and associated luminescence dating of quartz grains by single-aliquot regeneration (SAR) protocols indicate eolian deposition of unknown magnitude occurred ca. 1290-940, 715 ± 80, 320 ± 30, and 200-120 yr ago and in the 20th century. There are 11 drought intervals inferred from the tree-ring record in the past 1300 yr at GSDNPP potentially associated with dune movement, though only five eolian depositional events are currently recognized in the stratigraphic record. There is evidence for eolian transport associated with dune movement in the 13th century, which may coincide with the "Great Drought", a 26-yr-long dry interval identified in the tree ring record, and associated with migration of Anasazi people from the Four Corners areas to wetter areas in southern New Mexico. This nascent chronology indicates that the transport of eolian sand across San Luis Valley was episodic in the late Holocene with appreciable dune migration in the 8th, 10-13th, and 19th centuries, which ultimately nourished the dune mass against the Sangre de Cristo Mountains.