WorldWideScience

Sample records for coarse angular resolution

  1. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  2. Linear mixing model applied to coarse resolution satellite data

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  3. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    Science.gov (United States)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  4. Studying AGN Jets At Extreme Angular Resolution

    Science.gov (United States)

    Bruni, Gabriele

    2016-10-01

    RadioAstron is a 10m antenna orbiting on the Russian Speckt-R spacecraft, launched in 2011. Performing radio interferometry with a global array of ground telescopes, it is providing record angular resolution. The Key Science Project on AGN polarization is exploiting it to study in great detail the configuration of magnetic fields in AGN jets, and understand their formation and collimation. To date, the project has already achieved the highest angular resolution image ever obtained in Astronomy, and detected brightness temperatures exceeding the ones predicted by theory of AGN.

  5. Angular resolution of the gaseous micro-pixel detector Gossip

    Science.gov (United States)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  6. Angular resolution of the gaseous micro-pixel detector Gossip

    Energy Technology Data Exchange (ETDEWEB)

    Bilevych, Y.; Blanco Carballo, V.; Dijk, M. van; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S. [Nikhef, P.O. Box 41882, 1009 DB Amsterdam (Netherlands); Rogers, M. [Radboud University, P.O. Box 9102, 6500HC Nijmegen (Netherlands); Romaniouk, A.; Veenhof, R. [CERN, CH-1211, Geneve 23 (Switzerland)

    2011-06-15

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO{sub 2} 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  7. Angular resolution of the gaseous micro-pixel detector Gossip

    International Nuclear Information System (INIS)

    Bilevych, Y.; Blanco Carballo, V.; Dijk, M. van; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-01-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  8. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.

  9. Trade-off between angular and spatial resolutions in in vivo fiber tractography

    OpenAIRE

    Vos, Sjoerd B.; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J.; Maclaren, Julian; Viergever, Max A.; Leemans, Alexander; Bammer, Roland

    2016-01-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angul...

  10. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    Science.gov (United States)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  11. Statistical Angular Resolution Limit for Ultrawideband MIMO Noise Radar

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhou

    2015-01-01

    Full Text Available The two-dimensional angular resolution limit (ARL of elevation and azimuth for MIMO radar with ultrawideband (UWB noise waveforms is investigated using statistical resolution theory. First, the signal model of monostatic UWB MIMO noise radar is established in a 3D reference frame. Then, the statistical angular resolution limits (SARLs of two closely spaced targets are derived using the detection-theoretic and estimation-theoretic approaches, respectively. The detection-theoretic approach is based on the generalized likelihood ratio test (GLRT with given probabilities of false alarm and detection, while the estimation-theoretic approach is based on Smith’s criterion which involves the Cramér-Rao lower bound (CRLB. Furthermore, the relationship between the two approaches is presented, and the factors affecting the SARL, that is, detection parameters, transmit waveforms, array geometry, signal-to-noise ratio (SNR, and parameters of target (i.e., radar cross section (RCS and direction, are analyzed. Compared with the conventional radar resolution theory defined by the ambiguity function, the SARL reflects the practical resolution ability of radar and can provide an optimization criterion for radar system design.

  12. Evaluation of coarse scale land surface remote sensing albedo product over rugged terrain

    Science.gov (United States)

    Wen, J.; Xinwen, L.; You, D.; Dou, B.

    2017-12-01

    Satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. The accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. And more literatures investigated the validation methods about the albedo validation in a flat or homogenous surface. However, the albedo performance over rugged terrain is still unknow due to the validation method limited. A multi-validation strategy is implemented to give a comprehensive albedo validation, which will involve the high resolution albedo processing, high resolution albedo validation based on in situ albedo, and the method to upscale the high resolution albedo to a coarse scale albedo. Among them, the high resolution albedo generation and the upscale method is the core step for the coarse scale albedo validation. In this paper, the high resolution albedo is generated by Angular Bin algorithm. And a albedo upscale method over rugged terrain is developed to obtain the coarse scale albedo truth. The in situ albedo located 40 sites in mountain area are selected globally to validate the high resolution albedo, and then upscaled to the coarse scale albedo by the upscale method. This paper takes MODIS and GLASS albedo product as a example, and the prelimarily results show the RMSE of MODIS and GLASS albedo product over rugged terrain are 0.047 and 0.057, respectively under the RMSE with 0.036 of high resolution albedo.

  13. Angular resolution study of a combined gamma-neutron coded aperture imager for standoff detection

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo

    2013-01-01

    Nuclear threat source observables at standoff distances of tens of meters from mCi class sources include both gamma-rays and neutrons. This work uses simulations to investigate the effects of the angular resolution of a mobile gamma-ray and neutron coded aperture imaging system upon orphan source detection significance and specificity. The design requires maintaining high sensitivity and specificity while keeping the system size as compact as possible to reduce weight, footprint, and cost. A mixture of inorganic and organic scintillators was considered in the detector plane for high sensitivity to both gamma-rays and fast neutrons. For gamma-rays (100 to 2500 keV) and fission spectrum neutrons, angular resolutions of 1–9° and radiation angles of incidence appropriate for mobile search were evaluated. Detection significance for gamma-rays considers those events that contribute to the photopeak of the image pixel corresponding the orphan source location. For detection of fission spectrum neutrons, energy depositions above a set pulse shape discrimination threshold were tallied. The results show that the expected detection significance for the system at an angular resolution of 1° is significantly lower compared to its detection significance an angular resolution of ∼3–4°. An angular resolution of ∼3–4° is recommended both for better detection significance and improved false alarm rate, considering that finer angular resolution does not result in improved background rejection when the coded aperture method is used. Instead, over-pixelating the search space may result in an unacceptably high false alarm rate

  14. Adaptive resolution simulation of polarizable supramolecular coarse-grained water models

    International Nuclear Information System (INIS)

    Zavadlav, Julija; Praprotnik, Matej; Melo, Manuel N.; Marrink, Siewert J.

    2015-01-01

    Multiscale simulations methods, such as adaptive resolution scheme, are becoming increasingly popular due to their significant computational advantages with respect to conventional atomistic simulations. For these kind of simulations, it is essential to develop accurate multiscale water models that can be used to solvate biophysical systems of interest. Recently, a 4-to-1 mapping was used to couple the bundled-simple point charge water with the MARTINI model. Here, we extend the supramolecular mapping to coarse-grained models with explicit charges. In particular, the two tested models are the polarizable water and big multiple water models associated with the MARTINI force field. As corresponding coarse-grained representations consist of several interaction sites, we couple orientational degrees of freedom of the atomistic and coarse-grained representations via a harmonic energy penalty term. This additional energy term aligns the dipole moments of both representations. We test this coupling by studying the system under applied static external electric field. We show that our approach leads to the correct reproduction of the relevant structural and dynamical properties

  15. Report on the ESO Workshop ''Astronomy at High Angular Resolution''

    Science.gov (United States)

    Boffin, H.; Schmidtobreick, L.; Hussain, G.; Berger, J.-Ph.

    2015-03-01

    A workshop took place in Brussels in 2000 on astrotomography, a generic term for indirect mapping techniques that can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei. It appeared to be timely to revisit the topic given the many past, recent and forthcoming improvements in telescopes and instrumentation. We therefore decided to repeat the astrotomography workshop, but to put it into the much broader context of high angular resolution astronomy. Many techniques, from lucky and speckle imaging, adaptive optics to interferometry, are now widely employed to achieve high angular resolution and they have led to an amazing number of new discoveries. A summary of the workshop themes is presented.

  16. Development of the super high angular resolution principle for X-ray imaging

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2011-01-01

    Development of the Super High Angular Resolution Principle (SHARP) for coded-mask X-ray imaging is presented. We prove that SHARP can be considered as a generalized coded mask imaging method with a coding pattern comprised of diffraction-interference fringes in the mask pattern. The angular resolution of SHARP can be improved by detecting the fringes more precisely than the mask's element size, i.e. by using a detector with a pixel size smaller than the mask's element size. The proposed mission SHARP-X for solar X-ray observations is also briefly discussed. (research papers)

  17. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  18. A two-dimensional wide-angle proton spectrometer with improved angular resolution

    International Nuclear Information System (INIS)

    Yang, Su; Deng, Yanqing; Ge, Xulei; Fang, Yuan; Wei, Wenqing; Gao, Jian; Liu, Feng; Chen, Min; Liao, Guoqian; Li, Yutong; Zhao, Li; Ma, Yanyun

    2017-01-01

    We present an improvement design of a two-dimensional (2D) angular-resolved proton spectrometer for wide-angle measurement of proton beams from high-intensity laser-solid interactions. By using a 2D selective entrance pinhole array with different periods in orthogonal axes, the angular resolution along one dimension is improved by a factor of 6.7. This improvement provides the accessibility to detect the spatial fine structures of the proton energy spectrum.

  19. A two-dimensional wide-angle proton spectrometer with improved angular resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Su [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Deng, Yanqing [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Ge, Xulei [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Fang, Yuan; Wei, Wenqing; Gao, Jian; Liu, Feng; Chen, Min [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Liao, Guoqian; Li, Yutong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Zhao, Li [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Ma, Yanyun [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); and others

    2017-07-11

    We present an improvement design of a two-dimensional (2D) angular-resolved proton spectrometer for wide-angle measurement of proton beams from high-intensity laser-solid interactions. By using a 2D selective entrance pinhole array with different periods in orthogonal axes, the angular resolution along one dimension is improved by a factor of 6.7. This improvement provides the accessibility to detect the spatial fine structures of the proton energy spectrum.

  20. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew; Gao, Feng

    2015-01-01

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  1. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus

    2015-11-12

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  2. Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    Science.gov (United States)

    Scullion, C.; Doria, D.; Romagnani, L.; Ahmed, H.; Alejo, A.; Ettlinger, O. C.; Gray, R. J.; Green, J.; Hicks, G. S.; Jung, D.; Naughton, K.; Padda, H.; Poder, K.; Scott, G. G.; Symes, D. R.; Kar, S.; McKenna, P.; Najmudin, Z.; Neely, D.; Zepf, M.; Borghesi, M.

    2016-09-01

    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam.

  3. Angularly resolved characterization of ion beams from laser-ultrathin foil interactions

    International Nuclear Information System (INIS)

    Scullion, C.; Doria, D.; Ahmed, H.; Alejo, A.; Jung, D.; Naughton, K.; Kar, S.; Zepf, M.; Romagnani, L.; Ettlinger, O.C.; Hicks, G.S.; Poder, K.; Najmudin, Z.; Gray, R.J.; Padda, H.; McKenna, P.; Green, J.; Scott, G.G.; Symes, D.R.; Neely, D.

    2016-01-01

    Methods and techniques used to capture and analyze beam profiles produced from the interaction of intense, ultrashort laser pulses and ultrathin foil targets using stacks of Radiochromic Film (RCF) and Columbia Resin #39 (CR-39) are presented. The identification of structure in the beam is particularly important in this regime, as it may be indicative of the dominance of specific acceleration mechanisms. Additionally, RCF can be used to deconvolve proton spectra with coarse energy resolution while mantaining angular information across the whole beam.

  4. γ-ray telescopes using conversions to e+e- pairs: event generators, angular resolution and polarimetry

    Science.gov (United States)

    Gros, P.; Bernard, D.

    2017-02-01

    We benchmark various available event generators in Geant4 and EGS5 in the light of ongoing projects for high angular-resolution pair-conversion telescopes at low energy. We compare the distributions of key kinematic variables extracted from the geometry of the three final state particles. We validate and use as reference an exact generator using the full 5D differential cross-section of the conversion process. We focus in particular on the effect of the unmeasured recoiling nucleus on the angular resolution. We show that for high resolution trackers, the choice of the generator affects the estimated resolution of the telescope. We also show that the current available generator are unable to describe accurately a linearly polarised photon source.

  5. Compact and high-resolution optical orbital angular momentum sorter

    Directory of Open Access Journals (Sweden)

    Chenhao Wan

    2017-03-01

    Full Text Available A compact and high-resolution optical orbital angular momentum (OAM sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  6. Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)

    Science.gov (United States)

    Britton, T. B.; Hickey, J. L. R.

    2018-01-01

    High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.

  7. Super-resolution and ultra-sensitivity of angular rotation measurement based on SU(1,1) interferometers using homodyne detection

    Science.gov (United States)

    Liu, Jun; Li, Shitao; Wei, Dong; Gao, Hong; Li, Fuli

    2018-02-01

    We theoretically explore the angular rotation measurement sensitivity of SU(1,1) interferometers with a coherent beam and a vacuum beam input by using orbital angular momentum (OAM). Compared with the OAM in an SU(2) interferometer, the SU(1,1) interferometer employing homodyne detection can further surpass the angular rotation shot noise limit \\tfrac{1}{2l\\sqrt{N}} and improve the resolution and sensitivity of angular rotation measurement. Two models are considered, one is that OAM is carried by a probe beam and the other one is a pump beam with the OAM. The sensitivity can be improved by higher OAM and nonlinear process with a large gain. The resolution can be enhanced in the case that the pump beam has OAM. Moreover, we present a brief discussion on the variation of resolution and sensitivity in the presence of photon loss.

  8. Angular resolution in underground detectors and a status report of the Soudan II nucleon decay detector

    International Nuclear Information System (INIS)

    Ambats, I.; Ayres, D.; Barrett, W.

    1987-01-01

    This paper is a status report of the Soudan II honeycomb drift chamber project. It reports on the physics goals, present progress and future schedule of our experiment. It also includes a discussion of the angular resolution of cosmic ray muons which can be achieved in underground detectors, and in particular how to calibrate the resolution using the moon's shadow in cosmic rays. This last point has relevance in trying to understand the angular distributions in the reported observations of underground muons from Cygnus X-3. 12 refs., 9 figs

  9. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity

    Energy Technology Data Exchange (ETDEWEB)

    Caiazzo, Giuseppina; Trojsi, Francesca; Cirillo, Mario; Tedeschi, Gioacchino [MRI Research Center SUN-FISM-Neurological Institute for Diagnosis and Care ' ' Hermitage Capodimonte' ' , Naples (Italy); Second University of Naples, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Naples (Italy); Esposito, Fabrizio [University of Salerno, Department of Medicine and Surgery, Baronissi (Salerno) (Italy); Maastricht University, Department of Cognitive Neuroscience, Maastricht (Netherlands)

    2016-02-15

    Q-ball imaging (QBI) is one of the typical data models for quantifying white matter (WM) anisotropy in diffusion-weighted MRI (DwMRI) studies. Brain and spinal investigation by high angular resolution DwMRI (high angular resolution imaging (HARDI)) protocols exhibits higher angular resolution in diffusion imaging compared to low angular resolution models, although with longer acquisition times. We aimed to assess the difference between QBI-derived anisotropy values from high and low angular resolution DwMRI protocols and their potential advantages or shortcomings in neuroradiology. Brain DwMRI data sets were acquired in seven healthy volunteers using both HARDI (b = 3000 s/mm{sup 2}, 54 gradient directions) and low angular resolution (b = 1000 s/mm{sup 2}, 32 gradient directions) acquisition schemes. For both sequences, tract of interest tractography and generalized fractional anisotropy (GFA) measures were extracted by using QBI model and were compared between the two data sets. QBI tractography and voxel-wise analyses showed that some WM tracts, such as corpus callosum, inferior longitudinal, and uncinate fasciculi, were reconstructed as one-dominant-direction fiber bundles with both acquisition schemes. In these WM tracts, mean percent different difference in GFA between the two data sets was less than 5 %. Contrariwise, multidirectional fiber bundles, such as corticospinal tract and superior longitudinal fasciculus, were more accurately depicted by HARDI acquisition scheme. Our results suggest that the design of optimal DwMRI acquisition protocols for clinical investigation of WM anisotropy by QBI models should consider the specific brain target regions to be explored, inducing researchers to a trade-off choice between angular resolution and acquisition time. (orig.)

  10. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery

    Science.gov (United States)

    Huang, Xin; Chen, Huijun; Gong, Jianya

    2018-01-01

    Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed

  11. Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Beaulieu

    2018-04-01

    Full Text Available The microlensing technique is a unique method to hunt for cold planets over a range of mass and separation, orbiting all varieties of host stars in the disk of our galaxy. It provides precise mass-ratio and projected separations in units of the Einstein ring radius. In order to obtain the physical parameters (mass, distance, orbital separation of the system, it is necessary to combine the result of light curve modeling with lens mass-distance relations and/or perform a Bayesian analysis with a galactic model. A first mass-distance relation could be obtained from a constraint on the Einstein ring radius if the crossing time of the source over the caustic is measured. It could then be supplemented by secondary constraints such as parallax measurements, ideally by using coinciding ground and space-born observations. These are still subject to degeneracies, like the orbital motion of the lens. A third mass-distance relation can be obtained thanks to constraints on the lens luminosity using high angular resolution observations with 8 m class telescopes or the Hubble Space Telescope. The latter route, although quite inexpensive in telescope time is very effective. If we have to rely heavily on Bayesian analysis and limited constraints on mass-distance relations, the physical parameters are determined to 30–40% typically. In a handful of cases, ground-space parallax is a powerful route to get stronger constraint on masses. High angular resolution observations will be able to constrain the luminosity of the lenses in the majority of the cases, and in favorable circumstances it is possible to derive physical parameters to 10% or better. Moreover, these constraints will be obtained in most of the planets to be discovered by the Euclid and WFIRST satellites. We describe here the state-of-the-art approaches to measure lens masses and distances with an emphasis on high angular resolution observations. We will discuss the challenges, recent results and

  12. The relationship between Class I and Class II methanol masers at high angular resolution

    Science.gov (United States)

    McCarthy, T. P.; Ellingsen, S. P.; Voronkov, M. A.; Cimò, G.

    2018-06-01

    We have used the Australia Telescope Compact Array (ATCA) to make the first high-resolution observations of a large sample of class I methanol masers in the 95-GHz (80-71A+) transition. The target sources consist of a statistically complete sample of 6.7-GHz class II methanol masers with an associated 95-GHz class I methanol maser, enabling a detailed study of the relationship between the two methanol maser classes at arcsecond angular resolution. These sources have been previously observed at high resolution in the 36- and 44-GHz transitions, allowing comparison between all three class I maser transitions. In total, 172 95-GHz maser components were detected across the 32 target sources. We find that at high resolution, when considering matched maser components, a 3:1 flux density ratio is observed between the 95- and 44-GHz components, consistent with a number of previous lower angular resolution studies. The 95-GHz maser components appear to be preferentially located closer to the driving sources and this may indicate that this transition is more strongly inverted nearby to background continuum sources. We do not observe an elevated association rate between 95-GHz maser emission and more evolved sources, as indicated by the presence of 12.2-GHz class II masers. We find that in the majority of cases where both class I and class II methanol emission is observed, some component of the class I emission is associated with a likely outflow candidate.

  13. Improving the angular resolution of existing air shower arrays by adding a thin layer of lead

    International Nuclear Information System (INIS)

    Poirier, J.; Mikocki, S.

    1987-01-01

    Calculations show that placing a thin sheet of lead above conventional extensive air shower counters yields an additional signal which is earlier in time. This will improve the array's angular resolution. (orig.)

  14. The Effect of Morphological Characteristic of Coarse Aggregates Measured with Fractal Dimension on Asphalt Mixture’s High-Temperature Performance

    Directory of Open Access Journals (Sweden)

    Hainian Wang

    2016-01-01

    Full Text Available The morphological properties of coarse aggregates, such as shape, angularity, and surface texture, have a great influence on the mechanical performance of asphalt mixtures. This study aims to investigate the effect of coarse aggregate morphological properties on the high-temperature performance of asphalt mixtures. A modified Los Angeles (LA abrasion test was employed to produce aggregates with various morphological properties by applying abrasion cycles of 0, 200, 400, 600, 800, 1000, and 1200 on crushed angular aggregates. Based on a laboratory-developed Morphology Analysis System for Coarse Aggregates (MASCA, the morphological properties of the coarse aggregate particles were quantified using the index of fractal dimension. The high-temperature performances of the dense-graded asphalt mixture (AC-16, gap-graded stone asphalt mixture (SAC-16, and stone mastic asphalt (SMA-16 mixtures containing aggregates with different fractal dimensions were evaluated through the dynamic stability (DS test and the penetration shear test in laboratory. Good linear correlations between the fractal dimension and high-temperature indexes were obtained for all three types of mixtures. Moreover, the results also indicated that higher coarse aggregate angularity leads to stronger high-temperature shear resistance of asphalt mixtures.

  15. Method of separation of air showers initiated by γ-quanta and protons using Cherenkov light angular characteristics in combination and angular resolution estimate for an array of several optical telescopes

    International Nuclear Information System (INIS)

    Anokhina, A.M.; Galkin, V.I.; Ivanenko, I.P.; Roganova, T.M.

    1990-01-01

    Computer simulation of optical characteristics of air showers was carried out. On the basis of multidimensional analysis of Cherenkov light angular distribution possibility is considered to distinguish γ-showers from proton showers. Also an estimate for angular resolution is given for an array of five optical telescopes situated at Mt.Aragats. 7 refs.; 10 figs.; 11 tabs

  16. The impact of clustering and angular resolution on far-infrared and millimeter continuum observations

    Science.gov (United States)

    Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea

    2017-11-01

    Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources

  17. A model of regional primary production for use with coarse resolution satellite data

    Science.gov (United States)

    Prince, S. D.

    1991-01-01

    A model of crop primary production, which was originally developed to relate the amount of absorbed photosynthetically active radiation (APAR) to net production in field studies, is discussed in the context of coarse resolution regional remote sensing of primary production. The model depends on an approximately linear relationship between APAR and the normalized difference vegetation index. A more comprehensive form of the conventional model is shown to be necessary when different physiological types of plants or heterogeneous vegetation types occur within the study area. The predicted variable in the new model is total assimilation (net production plus respiration) rather than net production alone or harvest yield.

  18. Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging

    NARCIS (Netherlands)

    Astola, L.J.; Florack, L.M.J.

    2010-01-01

    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) [24] of the brain. The goal is to reveal the architecture of the neural fibers in brain white matter. To the

  19. Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging

    NARCIS (Netherlands)

    Astola, L.J.; Florack, L.M.J.

    2011-01-01

    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al. in Magn. Reson. Med. 48(6):1358–1372, 2004) of the brain. The goal is to reveal the architecture

  20. Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging.

    NARCIS (Netherlands)

    Astola, L.; Florack, L.

    2011-01-01

    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al. in Magn. Reson. Med. 48(6):1358–1372, 2004) of the brain. The goal is to reveal the architecture

  1. Evaluation of Medium Spatial Resolution BRDF-Adjustment Techniques Using Multi-Angular SPOT4 (Take5) Acquisitions

    OpenAIRE

    Claverie, Martin; Vermote, Eric; Franch, Belen; He, Tao; Hagolle, Olivier; Kadiri, Mohamed; Masek, Jeff

    2015-01-01

    High-resolution sensor Surface Reflectance (SR) data are affected by surface anisotropy but are difficult to adjust because of the low temporal frequency of the acquisitions and the low angular sampling. This paper evaluates five high spatial resolution Bidirectional Reflectance Distribution Function (BRDF) adjustment techniques. The evaluation is based on the noise level of the SR Time Series (TS) corrected to a normalized geometry (nadir view, 45° sun zenith angle) extracted from the multi-...

  2. Angular-resolution and material-characterization measurements for a dual-particle imaging system with mixed-oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Poitrasson-Rivière, Alexis, E-mail: alexispr@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Polack, J. Kyle; Hamel, Michael C.; Klemm, Dietrich D.; Ito, Kai; McSpaden, Alexander T.; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Tomanin, Alice [Lainsa-Italia S.R.L., Via E. Fermi 2749, 21027 Ispra, VA (Italy); Peerani, Paolo [European Commission, Joint Research Centre, Institute for Transuranium Elements, 21027 Ispra, VA (Italy)

    2015-10-11

    A dual-particle imaging (DPI) system, capable of simultaneously imaging fast neutrons and gamma rays, has been operated in the presence of mixed-oxide (MOX) fuel to assess the system's angular resolution and material-characterization capabilities. The detection principle is based on the scattering physics of neutrons (elastic scattering) and gamma rays (Compton scattering) in organic and inorganic scintillators. The detection system is designed as a combination of a two-plane Compton camera and a neutron-scatter camera. The front plane consists of EJ-309 liquid scintillators and the back plane consists of interleaved EJ-309 and NaI(Tl) scintillators. MCNPX-PoliMi was used to optimize the geometry of the system and the resulting prototype was built and tested using a Cf-252 source as an SNM surrogate. A software package was developed to acquire and process data in real time. The software was used for a measurement campaign to assess the angular resolution of the imaging system with MOX samples. Measurements of two MOX canisters of similar isotopics and intensity were performed for 6 different canister separations (from 5° to 30°, corresponding to distances of 21 cm and 131 cm, respectively). The measurements yielded a minimum separation of 20° at 2.5 m (86-cm separation) required to see 2 separate hot spots. Additionally, the results displayed good agreement with MCNPX-PoliMi simulations. These results indicate an angular resolution between 15° and 20°, given the 5° step. Coupled with its large field of view, and its capability to differentiate between spontaneous fission and (α,n) sources, the DPI system shows its potential for nuclear-nonproliferation applications.

  3. Investigation of angular and axial smoothing of PET data

    International Nuclear Information System (INIS)

    Daube-Witherspoon, M.E.; Carson, R.E.

    1996-01-01

    Radial filtering of emission and transmission data is routinely performed in PET during reconstruction in order to reduce image noise. Angular smoothing is not typically done, due to the introduction of a non-uniform resolution loss; axial filtering is also not usually performed on data acquired in 2D mode. The goal of this paper was to assess the effects of angular and axial smoothing on noise and resolution. Angular and axial smoothing was incorporated into the reconstruction process on the Scanditronix PC2048-15B brain PET scanner. In-plane spatial resolution and noise reduction were measured for different amounts of radial and angular smoothing. For radial positions away from the center of the scanner, noise reduction and degraded tangential resolution with no loss of radial resolution were seen. Near the center, no resolution loss was observed, but there was also no reduction in noise for angular filters up to a 7 degrees FWHM. These results can be understood by considering the combined effects of smoothing projections across rows (angles) and then summing (backprojecting). Thus, angular smoothing is not optimal due to its anisotropic noise reduction and resolution degradation properties. However, uniform noise reduction comparable to that seen with radial filtering can be achieved with axial smoothing of transmission data. The axial results suggest that combined radial and axial transmission smoothing could lead to improved noise characteristics with more isotropic resolution degradation

  4. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 x 50 μm 2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32 arcsec above about 10 keV and 0.36 arcsec at 1.24 keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed. (invited reviews)

  5. Downscaling Surface Water Inundation from Coarse Data to Fine-Scale Resolution: Methodology and Accuracy Assessment

    Directory of Open Access Journals (Sweden)

    Guiping Wu

    2015-11-01

    Full Text Available The availability of water surface inundation with high spatial resolution is of fundamental importance in several applications such as hydrology, meteorology and ecology. Medium spatial resolution sensors, like MODerate-resolution Imaging Spectroradiometer (MODIS, exhibit a significant potential to study inundation dynamics over large areas because of their high temporal resolution. However, the low spatial resolution provided by MODIS is not appropriate to accurately delineate inundation over small scale. Successful downscaling of water inundation from coarse to fine resolution would be crucial for improving our understanding of complex inundation characteristics over the regional scale. Therefore, in this study, we propose an innovative downscaling method based on the normalized difference water index (NDWI statistical regression algorithm towards generating small-scale resolution inundation maps from MODIS data. The method was then applied to the Poyang Lake of China. To evaluate the performance of the proposed downscaling method, qualitative and quantitative comparisons were conducted between the inundation extent of MODIS (250 m, Landsat (30 m and downscaled MODIS (30 m. The results indicated that the downscaled MODIS (30 m inundation showed significant improvement over the original MODIS observations when compared with simultaneous Landsat (30 m inundation. The edges of the lakes become smoother than the results from original MODIS image and some undetected water bodies were delineated with clearer shapes in the downscaled MODIS (30 m inundation map. With respect to high-resolution Landsat TM/ETM+ derived inundation, the downscaling procedure has significantly increased the R2 and reduced RMSE and MAE both for the inundation area and for the value of landscape metrics. The main conclusion of this study is that the downscaling algorithm is promising and quite feasible for the inundation mapping over small-scale lakes.

  6. Analytical reconstruction schemes for coarse-mesh spectral nodal solution of slab-geometry SN transport problems

    International Nuclear Information System (INIS)

    Barros, R. C.; Filho, H. A.; Platt, G. M.; Oliveira, F. B. S.; Militao, D. S.

    2009-01-01

    Coarse-mesh numerical methods are very efficient in the sense that they generate accurate results in short computational time, as the number of floating point operations generally decrease, as a result of the reduced number of mesh points. On the other hand, they generate numerical solutions that do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. In this paper we describe two analytical reconstruction schemes for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates (S N ) transport model in slab geometry. The first scheme we describe is based on the analytical reconstruction of the coarse-mesh solution within each discretization cell of the spatial grid set up on the slab. The second scheme is based on the angular reconstruction of the discrete ordinates solution between two contiguous ordinates of the angular quadrature set used in the S N model. Numerical results are given so we can illustrate the accuracy of the two reconstruction schemes, as described in this paper. (authors)

  7. Modeling the Self-assembly and Stability of DHPC Micelles using Atomic Resolution and Coarse Grained MD Simulations

    DEFF Research Database (Denmark)

    Kraft, Johan Frederik; Vestergaard, Mikkel; Schiøtt, Birgit

    2012-01-01

    Membrane mimics such as micelles and bicelles are widely used in experiments involving membrane proteins. With the aim of being able to carry out molecular dynamics simulations in environments comparable to experimental conditions, we set out to test the ability of both coarse grained and atomistic...... resolution force fields to model the experimentally observed behavior of the lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), which is a widely used lipid for biophysical characterization of membrane proteins. It becomes clear from our results that a satisfactory modeling of DHPC aggregates...

  8. Astronomy at high angular resolution a compendium of techniques in the visible and near-infrared

    CERN Document Server

    Hussain, Gaitee; Berger, Jean-Philippe; Schmidtobreick, Linda

    2016-01-01

    This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techni...

  9. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    Gómez de León, F C; Meroño Pérez, P A

    2010-01-01

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  10. A Multi-instrument and Multi-wavelength High Angular Resolution Study of MWC 614: Quantum Heated Particles Inside the Disk Cavity

    Science.gov (United States)

    Kluska, Jacques; Kraus, Stefan; Davies, Claire L.; Harries, Tim; Willson, Matthew; Monnier, John D.; Aarnio, Alicia; Baron, Fabien; Millan-Gabet, Rafael; Ten Brummelaar, Theo; Che, Xiao; Hinkley, Sasha; Preibisch, Thomas; Sturmann, Judit; Sturmann, Laszlo; Touhami, Yamina

    2018-03-01

    High angular resolution observations of young stellar objects are required to study the inner astronomical units of protoplanetary disks in which the majority of planets form. As they evolve, gaps open up in the inner disk regions and the disks are fully dispersed within ∼10 Myr. MWC 614 is a pretransitional object with a ∼10 au radius gap. We present a set of high angular resolution observations of this object including SPHERE/ZIMPOL polarimetric and coronagraphic images in the visible, Keck/NIRC2 near-infrared (NIR) aperture masking observations, and Very Large Telescope Interferometer (AMBER, MIDI, and PIONIER) and Center for High Angular Resolution Astronomy (CLASSIC and CLIMB) long-baseline interferometry at infrared wavelengths. We find that all the observations are compatible with an inclined disk (i ∼ 55° at a position angle of ∼20°–30°). The mid-infrared data set confirms that the disk inner rim is at 12.3 ± 0.4 au from the central star. We determined an upper mass limit of 0.34 M ⊙ for a companion inside the cavity. Within the cavity, the NIR emission, usually associated with the dust sublimation region, is unusually extended (∼10 au, 30 times larger than the theoretical sublimation radius) and indicates a high dust temperature (T ∼ 1800 K). As a possible result of companion-induced dust segregation, quantum heated dust grains could explain the extended NIR emission with this high temperature. Our observations confirm the peculiar state of this object where the inner disk has already been accreted onto the star, exposing small particles inside the cavity to direct stellar radiation. Based on observations made with the Keck observatory (NASA program ID N104N2) and with ESO telescopes at the Paranal Observatory (ESO program IDs 073.C-0720, 077.C-0226, 077.C-0521, 083.C-0984, 087.C-0498(A), 190.C-0963, 095.C-0883) and with the Center for High Angular Resolution Astronomy observatory.

  11. Improving angular resolution with Scan-MUSIC algorithm for real complex targets using 35-GHz millimeter-wave radar

    Science.gov (United States)

    Ly, Canh

    2004-08-01

    Scan-MUSIC algorithm, developed by the U.S. Army Research Laboratory (ARL), improves angular resolution for target detection with the use of a single rotatable radar scanning the angular region of interest. This algorithm has been adapted and extended from the MUSIC algorithm that has been used for a linear sensor array. Previously, it was shown that the SMUSIC algorithm and a Millimeter Wave radar can be used to resolve two closely spaced point targets that exhibited constructive interference, but not for the targets that exhibited destructive interference. Therefore, there were some limitations of the algorithm for the point targets. In this paper, the SMUSIC algorithm is applied to a problem of resolving real complex scatterer-type targets, which is more useful and of greater practical interest, particular for the future Army radar system. The paper presents results of the angular resolution of the targets, an M60 tank and an M113 Armored Personnel Carrier (APC), that are within the mainlobe of a Κα-band radar antenna. In particular, we applied the algorithm to resolve centroids of the targets that were placed within the beamwidth of the antenna. The collected coherent data using the stepped-frequency radar were compute magnitudely for the SMUSIC calculation. Even though there were significantly different signal returns for different orientations and offsets of the two targets, we resolved those two target centroids when they were as close as about 1/3 of the antenna beamwidth.

  12. Direct observation of strain in bulk subgrains and dislocation walls by high angular resolution three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Lienert, U.; Almer, J.

    2008-01-01

    The X-ray diffraction (XRD) method "high angular resolution 3DXRD" is briefly introduced, and results are presented for a single bulk grain in a polycrystalline copper sample deformed in tension. It is found that the three-dimensional reciprocal-space intensity distribution of a 400 reflection...

  13. The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry

    Science.gov (United States)

    Kurek, A. R.; Stachowski, A.; Banaszek, K.; Pollo, A.

    2018-05-01

    High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.

  14. HIGH ANGULAR RESOLUTION OBSERVATIONS OF FOUR CANDIDATE BLAST HIGH-MASS STARLESS CORES

    International Nuclear Information System (INIS)

    Olmi, Luca; Poventud, Carlos M.; Araya, Esteban D.; Chapin, Edward L.; Gibb, Andrew; Hofner, Peter; Martin, Peter G.

    2010-01-01

    We discuss high angular resolution observations of ammonia toward four candidate high-mass starless cores (HMSCs). The cores were identified by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) during its 2005 survey of the Vulpecula region where 60 compact sources were detected simultaneously at 250, 350, and 500 μm. Four of these cores, with no IRAS-PSC or MSX counterparts, were mapped with the NRAO Very Large Array and observed with the Effelsberg 100 m telescope in the NH 3 (1,1) and (2,2) spectral lines. Our observations indicate that the four cores are cold (T k -1 . The four BLAST cores appear to be colder and more quiescent than other previously observed HMSC candidates, suggesting an earlier stage of evolution.

  15. In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 Tesla.

    Directory of Open Access Journals (Sweden)

    Othman I Alomair

    Full Text Available Magnetic Resonance Imaging (MRI of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T1 and shorter T2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI with strong diffusion weighting (b >3000 s/mm2 and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE, thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white

  16. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  17. PREFACE: Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei

    Science.gov (United States)

    Iserlohe, Christof; Karas, Vladimir; Krips, Melanie; Eckart, Andreas; Britzen, Silke; Fischer, Sebastian

    2012-07-01

    We are pleased to present the proceedings from the Astronomy at High Angular Resolution 2011: The central kiloparsec in galactic nuclei conference. The conference took place in the Physikzentrum of the Deutsche Physikalische Gesellschaft (DPG), Bad Honnef, Germany, from 28 August to 2 September 2011. It was the second conference of this kind, following the Astronomy at High Angular Resolution conference held in Bad Honnef, three years earlier in 2008. The main objective of the conference was to frame the discussion of the broad range of physical processes that occur in the central 100pc of galactic nuclei. In most cases, this domain is difficult to probe through observations. This is mainly because of the lack of angular resolution, the brightness of the central engine and possible obscurations through dust and gas, which play together in the central regions of host galaxies of galactic nuclei within a broad range of activity. The presence of large amounts of molecular and atomic (both neutral and ionized) gas, dust and central engines with outflows and jets implies that the conditions for star formation in these regions are very special, and probably different from those in the disks of host galaxies. Numerous presentations covering a broad range of topics, both theoretical and experimental, those related to research on Active Galactic Nuclei and on a wide range of observed wavelengths were submitted to the Scientific Organizing Committee. Presentations have been grouped into six sessions: The nuclei of active galaxies The Galactic Center The immediate environment of Super Massive Black Holes The physics of nuclear jets and the interaction of the interstellar medium The central 100pc of the nuclear environment Star formation in that region The editors thank all participants of the AHAR 2011 conference for their enthusiasm and their numerous and vivid contributions to this conference. We would especially like to thank John Hugh Seiradakis from the Aristotle

  18. Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data

    International Nuclear Information System (INIS)

    Schroeder, R; Rawlins, M A; McDonald, K C; Podest, E; Zimmermann, R; Kueppers, M

    2010-01-01

    Wetlands are not only primary producers of atmospheric greenhouse gases but also possess unique features that are favourable for application of satellite microwave remote sensing to monitoring their status and trend. In this study we apply combined passive and active microwave remote sensing data sets from the NASA sensors AMSR-E and QuikSCAT to map surface water dynamics over Northern Eurasia. We demonstrate our method on the evolution of large wetland complexes for two consecutive years from January 2006 to December 2007. We apply river discharge measurements from the Ob River along with land surface runoff simulations derived from the Pan-Arctic Water Balance Model during and after snowmelt in 2006 and 2007 to interpret the abundance of widespread flooding along the River Ob in early summer of 2007 observed in the remote sensing products. The coarse-resolution, 25 km, surface water product is compared to a high-resolution, 30 m, inundation map derived from ALOS PALSAR (Advanced Land Observation Satellite phased array L-band synthetic aperture radar) imagery acquired for 11 July 2006, and extending along a transect in the central Western Siberian Plain. We found that the surface water fraction derived from the combined AMSR-E/QuikSCAT data sets closely tracks the inundation mapped using higher-resolution ALOS PALSAR data.

  19. Angularly-resolved elastic scatter from single particles collected over a large solid angle and with high resolution

    International Nuclear Information System (INIS)

    Aptowicz, Kevin B; Chang, Richard K

    2005-01-01

    Elastic light scattering from a single non-spherical particle of various morphologies has been measured simultaneously with a large angular range (90 deg. < θ < 165 deg. and 0 deg. < φ < 360 deg.) and with high angular resolution (1024 pixels in θ and 512 pixels in φ). Because the single-shot laser pulse is short (pulse duration of 70 ns), the tumbling and flowing particle can be treated as frozen in space. The large angle two-dimensional angular optical scattering (hereafter referred to as LA TAOS) intensity pattern, I(θ,φ), has been measured for a variety of particle morphology, such as the following: (1) single polystyrene latex (PSL) sphere; (2) cluster of PSL spheres; (3) single Bacillus subtilis (BG) spore; (4) cluster of BG spores; (5) dried aggregates of bio-aerosols as well as background clutter aerosols. All these measurements were made using the second harmonic of a Nd:YAG laser (0.532 μm). Islands structures in the LA TAOS patterns seem to be the prominent feature. Efforts are being made to extract metrics from these islands and compare them to theoretical results based on the T-matrix method

  20. Sea Dredged Gravel versus Crushed Granite as Coarse Aggregate for Self Compacting Concrete in Aggressive Environment

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Kristensen, Lasse Frølich

    2007-01-01

    Properties of self compacting concrete (SCC) with two types of coarse aggregate - sea dredged gravel with smooth and rounded particles and crushed granite with rough and angular particles - have been studied. Sea gravel allowed a higher aggregate proportion in the concrete leading to a higher...

  1. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    International Nuclear Information System (INIS)

    Riley, M A; Simpson, J; Paul, E S

    2016-01-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’ . High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum–excitation energy plane that continue to surprise and fascinate scientists. (invited comment)

  2. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    Science.gov (United States)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  3. Fuel type characterization based on coarse resolution MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Lanorte A

    2007-01-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (I adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  4. Focal plane instrumentation: a very high resolution MWPC system for inclined tracks

    International Nuclear Information System (INIS)

    Bertozzi, W.; Hynes, M.V.; Sargent, C.P.; Creswell, C.; Dunn, P.C.; Hirsch, A.; Leitch, M.; Norum, B.; Rad, F.N.; Sasanuma, T.

    1977-01-01

    A focal plane system has been developed for the MIT energy-loss spectrometer. The arrival time information from adjacent wires of one MWPC (s=2mm), is used to trace particle trajectories with a position resolution of 120μm (2sigma) and an angular resolution of less than 17 mrad (2sigma). The tracks are inclined to the MWPC at about 45 0 . The readout uses 3 delay lines connected to successive sense wires in a cyclical pattern. Coarse wire positions are determined by differences and drift times by sums of signal arrival times at the ends of the delays lines. A Cherenkov counter provides a fiducial signal. Interpolation is independent of drift velocity since the drift is normal to the sense plane. A similar readout with a second chamber provides position information perpendicular to momentum plane. This information is used to correct on-line for focal plane curvatures and other spectrometer aberrations. Final momentum resolution is about 10 -4 . (Auth.)

  5. A hybrid concept (segmented plus monolithic fused silica shells) for a high-throughput and high-angular resolution x-ray mission (Lynx/X-Ray Surveyor like)

    Science.gov (United States)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni; Parodi, Giancarlo

    2017-09-01

    Lynx is a large area and high angular resolution X-ray mission being studied by NASA to be presented to the next Decadal Survey for the implementation in the next decade. It aims to realize an X-ray telescope with the effective area similar to Athena (2 m2 at 1 keV) but with the same angular resolution of Chandra and a much larger Field Of View (up 20 arcmin x 20 arcmin). The science of X-ray Surveyor requires a large-throughput mirror assembly with sub-arcsec angular resolution. These future X-ray mirrors have a set of requirements which, collectively, represents very substantial advances over any currently in operation or planned for missions other than X-ray Surveyor. Of particular importance is achieving low mass per unit collecting area, while maintaining Chandra like angular resolution. Among the possible solutions under study, the direct polishing of both thin monolithic pseudo-cylindrical shells and segments made of fused silica are being considered as viable solutions for the implementation of the mirrors. Fused silica has very good thermomechanical parameters (including a very low CTE), making the material particularly well suited for for the production of the Lynx mirrors. It should be noted that the use of close shells is also very attractive, since the operations for the integration of the shells will be greatly simplified and the area lost due to the vignetting from the interfacing structures minimized even if the management of such big (diameter of 3 m) and thin shells have to be demonstrated. In this paper we will discuss a possible basic layout for a full shell mirror and a hybrid concept (segmented plus monolithic shells made of fused silica) as a second solution, for the Lynx/XRS telescope, discussing preliminary results in terms of optical and mechanical performance.

  6. High mass star formation to the extremes: NGC 3603 at high angular resolution in the near-infrared

    International Nuclear Information System (INIS)

    Nuernberger, Dieter E A

    2008-01-01

    High angular resolution observations play a decisive role for our understanding of high mass star formation processes, both within our Galaxy and in extragalactic starburst regions. We take the Galactic starburst template NGC 3603 as paradigm and report here on high angular resolution JHK s L' observations of the enigmatic, highly reddened sources IRS 9A-C in the NGC 3603 region, which were performed with NACO at ESO's Very Large Telescope Yepun. These broad-band imaging data strongly support the classification of IRS 9A-C as high mass protostellar candidates. We also confirm unambiguously the membership of IRS 9A-C with the NGC 3603 region as gas and dust is seen to be stripped off from their circumstellar envelopes by strong stellar winds, originating from the high mass main sequence stars of the nearby OB cluster. The orientation of these gas and dust streamers coincides with that of a very faint, only marginally detected mini-pillar protruding from the adjacent molecular clump NGC 3603 MM 2. The L' data show extended envelopes around IRS 9A-C and reveal sub-structures therein which are indicative for non-spherically distributed material. It seems obvious that protostellar mass outflows are at work to clear cavities along the polar axes of the central protostar, and / or that circumstellar disks are taking shape.

  7. Simple Fourier optics formalism for high-angular-resolution systems and nulling interferometry.

    Science.gov (United States)

    Hénault, François

    2010-03-01

    Reviewed are various designs of advanced, multiaperture optical systems dedicated to high-angular-resolution imaging or to the detection of exoplanets by nulling interferometry. A simple Fourier optics formalism applicable to both imaging arrays and nulling interferometers is presented, allowing their basic theoretical relationships to be derived as convolution or cross-correlation products suitable for fast and accurate computation. Several unusual designs, such as a "superresolving telescope" utilizing a mosaicking observation procedure or a free-flying, axially recombined interferometer are examined, and their performance in terms of imaging and nulling capacity are assessed. In all considered cases, it is found that the limiting parameter is the diameter of the individual telescopes. A final section devoted to nulling interferometry shows an apparent superiority of axial versus multiaxial recombining schemes. The entire study is valid only in the framework of first-order geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all entrance subapertures are optically conjugated with their associated exit pupils.

  8. Noise reduction methods in the analysis of near infrared lunar occultation light curves for high angular resolution measurements

    International Nuclear Information System (INIS)

    Baug Tapas; Chandrasekhar Thyagarajan

    2013-01-01

    A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground-based 1 m class telescopes. LO observations are limited to brighter objects because they require a high signal-to-noise ratio (S/N ∼40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and wavelet transforms have been explored in this study. A sample of 54 NIR LO light curves observed with the IR camera at Mt Abu Observatory has been used. It is seen that both Fourier and wavelet methods have shown an improvement in S/N compared to the original data. However, the application of wavelet transforms causes a slight smoothing of the fringes and results in a higher value for angular diameter. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. The Fourier transform method seems to be effective in improving the S/N, as well as improving the model fit, particularly in the fainter regime of our sample. These methods also provide a better model fit for brighter sources in some cases, though there may not be a significant improvement in S/N

  9. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  10. Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wallis, David, E-mail: davidwa@earth.ox.ac.uk [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Hansen, Lars N. [Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN (United Kingdom); Ben Britton, T. [Department of Materials, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford, Oxfordshire, OX1 3PH (United Kingdom)

    2016-09-15

    Dislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earth's upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation. - Highlights: • Lattice orientation gradients in olivine were measured using HR-EBSD. • The limited number of olivine slip systems enable simple least squares inversion for GND

  11. Leishmaniasis transmission: distribution and coarse-resolution ecology of two vectors and two parasites in Egypt

    Directory of Open Access Journals (Sweden)

    Abdallah M. Samy

    2014-01-01

    Full Text Available Introduction: In past decades, leishmaniasis burden has been low across Egypt; however, changing environment and land use has placed several parts of the country at risk. As a consequence, leishmaniasis has become a particularly difficult health problem, both for local inhabitants and for multinational military personnel. Methods: To evaluate coarse-resolution aspects of the ecology of leishmaniasis transmission, collection records for sandflies and Leishmania species were obtained from diverse sources. To characterize environmental variation across the country, we used multitemporal Land Surface Temperature (LST and Normalized Difference Vegetation Index (NDVI data from the Moderate Resolution Imaging Spectroradiometer (MODIS for 2005-2011. Ecological niche models were generated using MaxEnt, and results were analyzed using background similarity tests to assess whether associations among vectors and parasites (i.e., niche similarity can be detected across broad geographic regions. Results: We found niche similarity only between one vector species and its corresponding parasite species (i.e., Phlebotomus papatasi with Leishmania major, suggesting that geographic ranges of zoonotic cutaneous leishmaniasis and its potential vector may overlap, but under distinct environmental associations. Other associations (e.g., P. sergenti with L. major were not supported. Mapping suitable areas for each species suggested that northeastern Egypt is particularly at risk because both parasites have potential to circulate. Conclusions: Ecological niche modeling approaches can be used as a first-pass assessment of vector-parasite interactions, offering useful insights into constraints on the geography of transmission patterns of leishmaniasis.

  12. Ghost Imaging Using Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    赵生妹; 丁建; 董小亮; 郑宝玉

    2011-01-01

    We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum. In the signal arm, object spatial information is encoded as a phase matrix. For an N-grey-scale object, different phase matrices, varying from 0 to K with increment n/N, are used for different greyscales, and then they are modulated to a signal beam by a spatial light modulator. According to the conservation of the orbital angular momentum in the ghost imaging system, these changes will give different coincidence rates in measurement, and hence the object information can be extracted in the idler arm. By simulations and experiments, the results show that our scheme can improve the resolution of the image effectively. Compared with another encoding method using orbital angular momentum, our scheme has a better performance for both characters and the image object.%We present a novel encoding scheme in a ghost-imaging system using orbital angular momentum.In the signal arm,object spatial information is encoded as a phase matrix.For an N-grey-scale object,different phase matrices,varying from 0 to π with increment π/N,are used for different greyscales,and then they are modulated to a signal beam by a spatial light modulator.According to the conservation of the orbital angular momentum in the ghost imaging system,these changes will give different coincidence rates in measurement,and hence the object information can be extracted in the idler arm.By simulations and experiments,the results show that our scheme can improve the resolution of the image effectively.Compared with another encoding method using orbital angular momentum,our scheme has a better performance for both characters and the image object.

  13. Effects of equal channel angular extrusion on microstructure, strength and ballistic performance of AA5754 plates

    DEFF Research Database (Denmark)

    Mishin, Oleg; Hong, Chuanshi; Toftegaard, Helmuth Langmaack

    2014-01-01

    The microstructure, hardness, tensile properties and ballistic performance have been investigated in thick plates of the AA5754 alloy both in a coarse-grained as-received condition and after 4 passes of equal channel angular extrusion (ECAE) conducted at elevated temperatures. It is found that ECAE...

  14. Linear transforms for Fourier data on the sphere: application to high angular resolution diffusion MRI of the brain.

    Science.gov (United States)

    Haldar, Justin P; Leahy, Richard M

    2013-05-01

    This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Power calculation of linear and angular incremental encoders

    Science.gov (United States)

    Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.

    2016-04-01

    Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and

  16. Resolution of potential ambiguities through farside angular structure: Semiclassical analysis

    International Nuclear Information System (INIS)

    Fricke, S.H.; Brandan, M.E.; McVoy, K.W.

    1988-01-01

    The optical potential fits summarized in the preceding paper are subjected to a semiclassical analysis of the Ford-Wheeler--Knoll-Schaeffer type. The important broad dips in their farside cross sections, which are essential in greatly reducing potential ambiguities, are found (in partial agreement with a suggestion of Goldberg's) to be mainly weak ''Airy'' or rainbow minima, that serve to identify deeply penetrating trajectories. The semiclassical analysis also permits the identification and understanding of a new category of discrete and continuous potential ambiguities, and suggests the manner in which specific features of the angular distributions (such as spacings and depths of various angular minima) determine the Woods-Saxon parameters found by a chi-squared search

  17. Evaluation of Medium Spatial Resolution BRDF-Adjustment Techniques Using Multi-Angular SPOT4 (Take5 Acquisitions

    Directory of Open Access Journals (Sweden)

    Martin Claverie

    2015-09-01

    Full Text Available High-resolution sensor Surface Reflectance (SR data are affected by surface anisotropy but are difficult to adjust because of the low temporal frequency of the acquisitions and the low angular sampling. This paper evaluates five high spatial resolution Bidirectional Reflectance Distribution Function (BRDF adjustment techniques. The evaluation is based on the noise level of the SR Time Series (TS corrected to a normalized geometry (nadir view, 45° sun zenith angle extracted from the multi-angular acquisitions of SPOT4 over three study areas (one in Arizona, two in France during the five-month SPOT4 (Take5 experiment. Two uniform techniques (Cst, for Constant, and Av, for Average, relying on the Vermote–Justice–Bréon (VJB BRDF method, assume no variation in space of the BRDF shape. Two methods (VI-dis, for NDVI-based disaggregation and LC-dis, for Land-Cover based disaggregation are based on disaggregation of the MODIS-derived BRDF VJB parameters using vegetation index and land cover, respectively. The last technique (LUM, for Look-Up Map relies on the MCD43 MODIS BRDF products and a crop type data layer. The VI-dis technique produced the lowest level of noise corresponding to the most effective adjustment: reduction from directional to normalized SR TS noises by 40% and 50% on average, for red and near-infrared bands, respectively. The uniform techniques displayed very good results, suggesting that a simple and uniform BRDF-shape assumption is good enough to adjust the BRDF in such geometric configuration (the view zenith angle varies from nadir to 25°. The most complex techniques relying on land cover (LC-dis and LUM displayed contrasting results depending on the land cover.

  18. Coarse Resolution SAR Imagery to Support Flood Inundation Models in Near Real Time

    Science.gov (United States)

    Di Baldassarre, Giuliano; Schumann, Guy; Brandimarte, Luigia; Bates, Paul

    2009-11-01

    In recent years, the availability of new emerging data (e.g. remote sensing, intelligent wireless sensors, etc) has led to a sudden shift from a data-sparse to a data-rich environment for hydrological and hydraulic modelling. Furthermore, the increased socioeconomic relevance of river flood studies has motivated the development of complex methodologies for the simulation of the hydraulic behaviour of river systems. In this context, this study aims at assessing the capability of coarse resolution SAR (Synthetic Aperture Radar) imagery to support and quickly validate flood inundation models in near real time. A hydraulic model of a 98km reach of the River Po (Italy), previously calibrated on a high-magnitude flood event with extensive and high quality field data, is tested using a SAR flood image, acquired and processed in near real time, during the June 2008 low-magnitude event. Specifically, the image is an acquisition by the ENVISAT-ASAR sensor in wide swath mode and has been provided through ESA (European Space Agency) Fast Registration system at no cost 24 hours after the acquisition. The study shows that the SAR image enables validation and improvement of the model in a time shorter than the flood travel time. This increases the reliability of model predictions (e.g. water elevation and inundation width along the river reach) and, consequently, assists flood management authorities in undertaking the necessary prevention activities.

  19. High Angular Resolution Measurements of the Anisotropy of Reflectance of Sea Ice and Snow

    Science.gov (United States)

    Goyens, C.; Marty, S.; Leymarie, E.; Antoine, D.; Babin, M.; Bélanger, S.

    2018-01-01

    We introduce a new method to determine the anisotropy of reflectance of sea ice and snow at spatial scales from 1 m2 to 80 m2 using a multispectral circular fish-eye radiance camera (CE600). The CE600 allows measuring radiance simultaneously in all directions of a hemisphere at a 1° angular resolution. The spectral characteristics of the reflectance and its dependency on illumination conditions obtained from the camera are compared to those obtained with a hyperspectral field spectroradiometer manufactured by Analytical Spectral Device, Inc. (ASD). Results confirm the potential of the CE600, with the suggested measurement setup and data processing, to measure commensurable sea ice and snow hemispherical-directional reflectance factor, HDRF, values. Compared to the ASD, the reflectance anisotropy measured with the CE600 provides much higher resolution in terms of directional reflectance (N = 16,020). The hyperangular resolution allows detecting features that were overlooked using the ASD due to its limited number of measurement angles (N = 25). This data set of HDRF further documents variations in the anisotropy of the reflectance of snow and ice with the geometry of observation and illumination conditions and its spectral and spatial scale dependency. Finally, in order to reproduce the hyperangular CE600 reflectance measurements over the entire 400-900 nm spectral range, a regression-based method is proposed to combine the ASD and CE600 measurements. Results confirm that both instruments may be used in synergy to construct a hyperangular and hyperspectral snow and ice reflectance anisotropy data set.

  20. Post-Disturbance Stability of Fish Assemblages Measured at Coarse Taxonomic Resolution Masks Change at Finer Scales.

    Science.gov (United States)

    Ceccarelli, Daniela M; Emslie, Michael J; Richards, Zoe T

    2016-01-01

    Quantifying changes to coral reef fish assemblages in the wake of cyclonic disturbances is challenging due to spatial variability of damage inherent in such events. Often, fish abundance appears stable at one spatial scale (e.g. reef-wide), but exhibits substantial change at finer scales (e.g. site-specific decline or increase). Taxonomic resolution also plays a role; overall stability at coarse taxonomic levels (e.g. family) may mask species-level turnover. Here we document changes to reef fish communities after severe Tropical Cyclone Ita crossed Lizard Island, Great Barrier Reef. Coral and reef fish surveys were conducted concurrently before and after the cyclone at four levels of exposure to the prevailing weather. Coral cover declined across all exposures except sheltered sites, with the largest decline at exposed sites. There was no significant overall reduction in the total density, biomass and species richness of reef fishes between 2011 and 2015, but individual fish taxa (families and species) changed in complex and unpredictable ways. For example, more families increased in density and biomass than decreased following Cyclone Ita, particularly at exposed sites whilst more fish families declined at lagoon sites even though coral cover did not decline. All sites lost biomass of several damselfish species, and at most sites there was an increase in macroinvertivores and grazers. Overall, these results suggest that the degree of change measured at coarse taxonomic levels masked high species-level turnover, although other potential explanations include that there was no impact of the storm, fish assemblages were impacted but underwent rapid recovery or that there is a time lag before the full impacts become apparent. This study confirms that in high-complexity, high diversity ecosystems such as coral reefs, species level analyses are essential to adequately capture the consequences of disturbance events.

  1. Multichannel system for angular distribution measurements

    International Nuclear Information System (INIS)

    Burjan, V.; Kroha, V.; Putz, K.

    A description is given of the individual blocks of the spectrometric apparatus used for measuring the angular distribution of particle spectra and excitation functions of (d,p) reactions at an electrostatic accelerator and the U-120 M cyclotron, both operating at the Nuclear Physics Institute of the Czechoslovak Academy of Sciences at Rez. Main attention was devoted to attaining maximum energy resolution at a high measurement efficiency, this by installing 8 independent spectrometric chains allowing simultaneous measurement of angular distribution in 8 points of the beam. The semiconductor detectors were cooled to -40 degC to -60 degC, which significantly reduced the level of inherent detector noise. An energy resolution of 13 keV was attained using Tesla detectors at a particle energy of 11 MeV. A brief review of data processing and software is given. (B.S.)

  2. ANGULAR MOMENTUM ACQUISITION IN GALAXY HALOS

    International Nuclear Information System (INIS)

    Stewart, Kyle R.; Brooks, Alyson M.; Bullock, James S.; Maller, Ariyeh H.; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A.

    2013-01-01

    We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ∼70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ∼ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms ''cold flow disks.'' We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

  3. A lower limit to the accretion disc radius in the low-luminosity AGN NGC 1052 derived from high-angular resolution data

    Science.gov (United States)

    Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus

    2018-05-01

    We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.

  4. Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering

    Science.gov (United States)

    Wright, Margaret J.; Thompson, Paul M.; Vidal, René

    2015-01-01

    We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748

  5. Optimal Design of Experiments by Combining Coarse and Fine Measurements

    Science.gov (United States)

    Lee, Alpha A.; Brenner, Michael P.; Colwell, Lucy J.

    2017-11-01

    In many contexts, it is extremely costly to perform enough high-quality experimental measurements to accurately parametrize a predictive quantitative model. However, it is often much easier to carry out large numbers of experiments that indicate whether each sample is above or below a given threshold. Can many such categorical or "coarse" measurements be combined with a much smaller number of high-resolution or "fine" measurements to yield accurate models? Here, we demonstrate an intuitive strategy, inspired by statistical physics, wherein the coarse measurements are used to identify the salient features of the data, while the fine measurements determine the relative importance of these features. A linear model is inferred from the fine measurements, augmented by a quadratic term that captures the correlation structure of the coarse data. We illustrate our strategy by considering the problems of predicting the antimalarial potency and aqueous solubility of small organic molecules from their 2D molecular structure.

  6. Adaptive resolution simulation of salt solutions

    International Nuclear Information System (INIS)

    Bevc, Staš; Praprotnik, Matej; Junghans, Christoph; Kremer, Kurt

    2013-01-01

    We present an adaptive resolution simulation of aqueous salt (NaCl) solutions at ambient conditions using the adaptive resolution scheme. Our multiscale approach concurrently couples the atomistic and coarse-grained models of the aqueous NaCl, where water molecules and ions change their resolution while moving from one resolution domain to the other. We employ standard extended simple point charge (SPC/E) and simple point charge (SPC) water models in combination with AMBER and GROMOS force fields for ion interactions in the atomistic domain. Electrostatics in our model are described by the generalized reaction field method. The effective interactions for water–water and water–ion interactions in the coarse-grained model are derived using structure-based coarse-graining approach while the Coulomb interactions between ions are appropriately screened. To ensure an even distribution of water molecules and ions across the simulation box we employ thermodynamic forces. We demonstrate that the equilibrium structural, e.g. radial distribution functions and density distributions of all the species, and dynamical properties are correctly reproduced by our adaptive resolution method. Our multiscale approach, which is general and can be used for any classical non-polarizable force-field and/or types of ions, will significantly speed up biomolecular simulation involving aqueous salt. (paper)

  7. Predictive coarse-graining

    Energy Technology Data Exchange (ETDEWEB)

    Schöberl, Markus, E-mail: m.schoeberl@tum.de [Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching (Germany); Zabaras, Nicholas [Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching (Germany); Department of Aerospace and Mechanical Engineering, University of Notre Dame, 365 Fitzpatrick Hall, Notre Dame, IN 46556 (United States); Koutsourelakis, Phaedon-Stelios [Continuum Mechanics Group, Technical University of Munich, Boltzmannstraße 15, 85748 Garching (Germany)

    2017-03-15

    We propose a data-driven, coarse-graining formulation in the context of equilibrium statistical mechanics. In contrast to existing techniques which are based on a fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent generators of the fine scale (all-atom) data. From an information-theoretic perspective, the framework proposed provides an improvement upon the relative entropy method and is capable of quantifying the uncertainty due to the information loss that unavoidably takes place during the coarse-graining process. Furthermore, it can be readily extended to a fully Bayesian model where various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior distributions on these quantities. Predictive posterior distributions reflect the confidence of the model as a function of the amount of data and the level of coarse-graining. The issues of model complexity and model selection are seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse solutions, revealing the most prominent features in the coarse-grained model. A flexible and parallelizable Monte Carlo – Expectation–Maximization (MC-EM) scheme is proposed for carrying out inference and learning tasks. A comparative assessment of the proposed methodology is presented for a lattice spin system and the SPC/E water model.

  8. A novel instrument for generating angular increments of 1 nanoradian

    Science.gov (United States)

    Alcock, Simon G.; Bugnar, Alex; Nistea, Ioana; Sawhney, Kawal; Scott, Stewart; Hillman, Michael; Grindrod, Jamie; Johnson, Iain

    2015-12-01

    Accurate generation of small angles is of vital importance for calibrating angle-based metrology instruments used in a broad spectrum of industries including mechatronics, nano-positioning, and optic fabrication. We present a novel, piezo-driven, flexure device capable of reliably generating micro- and nanoradian angles. Unlike many such instruments, Diamond Light Source's nano-angle generator (Diamond-NANGO) does not rely on two separate actuators or rotation stages to provide coarse and fine motion. Instead, a single Physik Instrumente NEXLINE "PiezoWalk" actuator provides millimetres of travel with nanometre resolution. A cartwheel flexure efficiently converts displacement from the linear actuator into rotary motion with minimal parasitic errors. Rotation of the flexure is directly measured via a Magnescale "Laserscale" angle encoder. Closed-loop operation of the PiezoWalk actuator, using high-speed feedback from the angle encoder, ensures that the Diamond-NANGO's output drifts by only ˜0.3 nrad rms over ˜30 min. We show that the Diamond-NANGO can reliably move with unprecedented 1 nrad (˜57 ndeg) angular increments over a range of >7000 μrad. An autocollimator, interferometer, and capacitive displacement sensor are used to independently confirm the Diamond-NANGO's performance by simultaneously measuring the rotation of a reflective cube.

  9. Multiresolution Modeling of Semidilute Polymer Solutions: Coarse-Graining Using Wavelet-Accelerated Monte Carlo

    Directory of Open Access Journals (Sweden)

    Animesh Agarwal

    2017-09-01

    Full Text Available We present a hierarchical coarse-graining framework for modeling semidilute polymer solutions, based on the wavelet-accelerated Monte Carlo (WAMC method. This framework forms a hierarchy of resolutions to model polymers at length scales that cannot be reached via atomistic or even standard coarse-grained simulations. Previously, it was applied to simulations examining the structure of individual polymer chains in solution using up to four levels of coarse-graining (Ismail et al., J. Chem. Phys., 2005, 122, 234901 and Ismail et al., J. Chem. Phys., 2005, 122, 234902, recovering the correct scaling behavior in the coarse-grained representation. In the present work, we extend this method to the study of polymer solutions, deriving the bonded and non-bonded potentials between coarse-grained superatoms from the single chain statistics. A universal scaling function is obtained, which does not require recalculation of the potentials as the scale of the system is changed. To model semi-dilute polymer solutions, we assume the intermolecular potential between the coarse-grained beads to be equal to the non-bonded potential, which is a reasonable approximation in the case of semidilute systems. Thus, a minimal input of microscopic data is required for simulating the systems at the mesoscopic scale. We show that coarse-grained polymer solutions can reproduce results obtained from the more detailed atomistic system without a significant loss of accuracy.

  10. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  11. Hyper-Resolution Groundwater Modeling using MODFLOW 6

    Science.gov (United States)

    Hughes, J. D.; Langevin, C.

    2017-12-01

    MODFLOW 6 is the latest version of the U.S. Geological Survey's modular hydrologic model. MODFLOW 6 was developed to synthesize many of the recent versions of MODFLOW into a single program, improve the way different process models are coupled, and to provide an object-oriented framework for adding new types of models and packages. The object-oriented framework and underlying numerical solver make it possible to tightly couple any number of hyper-resolution models within coarser regional models. The hyper-resolution models can be used to evaluate local-scale groundwater issues that may be affected by regional-scale forcings. In MODFLOW 6, hyper-resolution meshes can be maintained as separate model datasets, similar to MODFLOW-LGR, which simplifies the development of a coarse regional model with imbedded hyper-resolution models from a coarse regional model. For example, the South Atlantic Coastal Plain regional water availability model was converted from a MODFLOW-2000 model to a MODFLOW 6 model. The horizontal discretization of the original model is approximately 3,218 m x 3,218 m. Hyper-resolution models of the Aiken and Sumter County water budget areas in South Carolina with a horizontal discretization of approximately 322 m x 322 m were developed and were tightly coupled to a modified version of the original coarse regional model that excluded these areas. Hydraulic property and aquifer geometry data from the coarse model were mapped to the hyper-resolution models. The discretization of the hyper-resolution models is fine enough to make detailed analyses of the effect that changes in groundwater withdrawals in the production aquifers have on the water table and surface-water/groundwater interactions. The approach used in this analysis could be applied to other regional water availability models that have been developed by the U.S. Geological Survey to evaluate local scale groundwater issues.

  12. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain....... In contrast to the deformation stages, during each stress relaxation stage, number, size and orientation of subgrains are found to be constant, while a minor amount of clean-up of the microstructure is observed as narrowing of the radial X-ray diffraction line profile. The associated decrease in the width...

  13. Adaptive resolution simulation of an atomistic protein in MARTINI water

    International Nuclear Information System (INIS)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J.; Praprotnik, Matej

    2014-01-01

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations

  14. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM).

    Science.gov (United States)

    Sinitskiy, Anton V; Voth, Gregory A

    2018-01-07

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  15. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM)

    Science.gov (United States)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2018-01-01

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  16. Sub-Airy disk angular resolution with high dynamic range in the near-infrared

    Directory of Open Access Journals (Sweden)

    Richichi A.

    2011-07-01

    Full Text Available Lunar occultations (LO are a simple and effective high angular resolution method, with minimum requirements in instrumentation and telescope time. They rely on the analysis of the diffraction fringes created by the lunar limb. The diffraction phenomen occurs in space, and as a result LO are highly insensitive to most of the degrading effects that limit the performance of traditional single telescope and long-baseline interferometric techniques used for direct detection of faint, close companions to bright stars. We present very recent results obtained with the technique of lunar occultations in the near-IR, showing the detection of companions with very high dynamic range as close as few milliarcseconds to the primary star. We discuss the potential improvements that could be made, to increase further the current performance. Of course, LO are fixed-time events applicable only to sources which happen to lie on the Moon’s apparent orbit. However, with the continuously increasing numbers of potential exoplanets and brown dwarfs beign discovered, the frequency of such events is not negligible. I will list some of the most favorable potential LO in the near future, to be observed from major observatories.

  17. Theoretical evaluation of the Doppler broadening contribution to the angular resolution in CdZnTe Compton scattering detector

    International Nuclear Information System (INIS)

    Diaz Garcia, A.; Cabal Rodriguez, A.E.; Rubio Rodriguez, J. A.; Salicio Diez, J.; Perez Morales, J.M.; Vela Morales, O.; Willmott Zappacosta, C.; Van Espen, P.

    2011-01-01

    Electronically collimated Compton Cameras have been tested in Single Photon Emission Tomography (SPECT) systems instead of mechanically collimated gamma detectors in order to improve their limited sensitivity. One of the main factors that contribute to the worsening of the angular resolution and thus to the deterioration of the system spatial resolution is Doppler broadening. Double differential Klein-Nishina equation is used to consider the random movement of electron inside the crystal. It is important to perform this analysis for each particular material because is difficult to infer one simple Doppler broadening dependency of the atomic number Z. In high Z materials the internal electrons are strongly linked to the nucleus and therefore there can be found high momentums, but they represent just a small portion of the electrons that suffers Compton scattering. This work estimates the influence of the Doppler broadening in CdZnTe semiconductor for different incoming photon energies. For this means there are analyzed main Compton broadening processes in semiconductor Cd 0,8 Zn 0,2 Te with density ρ=5,85g/cm 3 . (Author)

  18. On the angular momentum in star formation

    International Nuclear Information System (INIS)

    Horedt, G.P.

    1978-01-01

    The author discusses the rotation of interstellar clouds which are in a stage immediately before star formation. Cloud collisions seem to be the principal cause of the observed rotation of interstellar clouds. The rotational motion of the clouds is strongly influenced by turbulence. Theories dealing with the resolution of the angular momentum problem in star formation are classified into five major groups. The old idea that the angular momentum of an interstellar cloud passes during star formation into the angular momentum of double star systems and/or circumstellar clouds, is developed. It is suggested that a rotating gas cloud contracts into a ring-like structure which fragments into self-gravitating subcondensations. By collisions and gas accretion these subcondensations accrete into binary systems surrounded by circumstellar clouds. Using some rough approximations the authors find analytical expressions for the semi-major axis of the binary system and for the density of the circumstellar clouds as a function of the initial density and of the initial angular velocity of an interstellar cloud. The obtained values are well within the observational limits. (Auth.)

  19. Lectures on coarse geometry

    CERN Document Server

    Roe, John

    2003-01-01

    Coarse geometry is the study of spaces (particularly metric spaces) from a 'large scale' point of view, so that two spaces that look the same from a great distance are actually equivalent. This point of view is effective because it is often true that the relevant geometric properties of metric spaces are determined by their coarse geometry. Two examples of important uses of coarse geometry are Gromov's beautiful notion of a hyperbolic group and Mostow's proof of his famous rigidity theorem. The first few chapters of the book provide a general perspective on coarse structures. Even when only metric coarse structures are in view, the abstract framework brings the same simplification as does the passage from epsilons and deltas to open sets when speaking of continuity. The middle section reviews notions of negative curvature and rigidity. Modern interest in large scale geometry derives in large part from Mostow's rigidity theorem and from Gromov's subsequent 'large scale' rendition of the crucial properties of n...

  20. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    International Nuclear Information System (INIS)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-01-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10–50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains. (paper)

  1. The relative entropy is fundamental to adaptive resolution simulations

    Science.gov (United States)

    Kreis, Karsten; Potestio, Raffaello

    2016-07-01

    Adaptive resolution techniques are powerful methods for the efficient simulation of soft matter systems in which they simultaneously employ atomistic and coarse-grained (CG) force fields. In such simulations, two regions with different resolutions are coupled with each other via a hybrid transition region, and particles change their description on the fly when crossing this boundary. Here we show that the relative entropy, which provides a fundamental basis for many approaches in systematic coarse-graining, is also an effective instrument for the understanding of adaptive resolution simulation methodologies. We demonstrate that the use of coarse-grained potentials which minimize the relative entropy with respect to the atomistic system can help achieve a smoother transition between the different regions within the adaptive setup. Furthermore, we derive a quantitative relation between the width of the hybrid region and the seamlessness of the coupling. Our results do not only shed light on the what and how of adaptive resolution techniques but will also help setting up such simulations in an optimal manner.

  2. Computational modeling for the angular reconstruction of monoenergetic neutron flux in non-multiplying slabs using synthetic diffusion approximation

    International Nuclear Information System (INIS)

    Mansur, Ralph S.; Barros, Ricardo C.

    2011-01-01

    We describe a method to determine the neutron scalar flux in a slab using monoenergetic diffusion model. To achieve this goal we used three ingredients in the computational code that we developed on the Scilab platform: a spectral nodal method that generates numerical solution for the one-speed slab-geometry fixed source diffusion problem with no spatial truncation errors; a spatial reconstruction scheme to yield detailed profile of the coarse-mesh solution; and an angular reconstruction scheme to yield approximately the neutron angular flux profile at a given location of the slab migrating in a given direction. Numerical results are given to illustrate the efficiency of the offered code. (author)

  3. Angular integration and inter-projection correlation effects in CT reconstruction

    International Nuclear Information System (INIS)

    Crawford, C.R.; Pele, N.J.

    1987-01-01

    CT reconstruction algorithms require snap-shot projections of an object. In order to minimize scan times, CT scanners rotate continuously which, in turn, prevents the acquisition of snap-shot projections. Acquired projections are integrals over angular position and may be correlated inter-projection. This paper shows that angular integration and inter-projection correlation introduce a radially dependent degradation of the spatial resolution and cause the image noise to vary non-linearly with radial position

  4. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2018-01-01

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  5. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Leader, Elliot, E-mail: e.leader@imperial.ac.uk

    2016-05-10

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  6. Quantum entanglement of high angular momenta.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  7. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    Science.gov (United States)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  8. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI.

    Science.gov (United States)

    Aggarwal, Manisha; Nauen, David W; Troncoso, Juan C; Mori, Susumu

    2015-01-15

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n=3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers-layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Adaptive Angular Sampling for SPECT Imaging

    OpenAIRE

    Li, Nan; Meng, Ling-Jian

    2011-01-01

    This paper presents an analytical approach for performing adaptive angular sampling in single photon emission computed tomography (SPECT) imaging. It allows for a rapid determination of the optimum sampling strategy that minimizes image variance in regions-of-interest (ROIs). The proposed method consists of three key components: (a) a set of close-form equations for evaluating image variance and resolution attainable with a given sampling strategy, (b) a gradient-based algor...

  10. Angular distribution of atoms ejected by laser ablation of different metals

    International Nuclear Information System (INIS)

    Konomi, I.; Motohiro, T.; Asaoka, T.

    2009-01-01

    Angular distributions of 13 different metals ejected by laser ablation using fourth harmonics (wavelength=266 nm) of neodymium doped yttrium aluminum garnet laser and a fluence close to near-threshold value (2.3 J/cm 2 ) have been investigated with a high angular resolution. The angular distribution which is characterized by the exponent n of cos n θ distribution showed very broad range of values between 3 and 24 for different metals. A simple relation that the exponent n is proportional to the square root of particle atomic weight as reported previously has not been observed. Instead, a general trend has been found that the metals with higher sublimation energy such as Ta and Zr show narrower angular distribution than those with lower sublimation energy such as Sn and In. While the sublimation energy of metals has a great influence on the angular distribution of ejected atoms, a simple consideration suggests that their thermal conductivity and specific heat have little effect on it.

  11. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models.

    Science.gov (United States)

    Genheden, Samuel

    2017-10-01

    We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.

  12. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models

    Science.gov (United States)

    Genheden, Samuel

    2017-10-01

    We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.

  13. Mechanical properties of copper processed by Equal Channel Angular Pressing – a review

    Directory of Open Access Journals (Sweden)

    Ludvík Kunz

    2012-01-01

    Full Text Available The Equal Channel Angular Pressing is a hardening treatment with which ductile metals can be processed to refine their grain and sub-grain structure. This process enhances the mechanical strength of metals in terms of tensile strength, stress-controlled fatigue strength, and fatigue crack growth resistance. In this paper the authors draw a review of the major results of a wide research activity they carried out on a copper microstructure processed by Equal Channel Angular Pressing. The essential results are that tensile and fatigue strengths of the so obtained refined structure are improved by a factor of two with respect to the original coarse-grained metal. The fatigue crack initiation mechanism and the stability of the refined microstructure under cyclic loading are topics also discussed, evidencing the essential role of the process and of the material parameter, as the content of impurities in the microstructure. In this review, the authors also underline some critical aspects that have to be more investigated.

  14. A study of interference effects in Na(3S,3P)-Ne, Ar scattering experiments at high angular resolution

    International Nuclear Information System (INIS)

    Berg, F.T.M. van den.

    1984-01-01

    In this thesis the author presents measurements of differential cross sections for the scattering of Na-atoms in the ground-state and first excited-state by the rare gas atoms Ne and Ar. The scattering experiments were performed in a crossed-beam apparatus built and tested by van Deventer et al. The unique high angular-resolution (0.1 0 ) of this beam-scattering apparatus permits us (i) to remove the discrepancies that still exist between the various X 2 Σ- and A 2 PI-potential curves for Na-Ar and Na-Ne reported up to now, (ii) to obtain detailed information on the B 2 Σ-potentials for these systems and (iii) to demonstrate the necessity of taking into account the spin-uncoupling effects, in the interpretation of the experimental Na-Ne scattering patterns. (Auth.)

  15. Mass loss of evolved massive stars: the circumstellar environment at high angular resolution

    International Nuclear Information System (INIS)

    Montarges, Miguel

    2014-01-01

    Mass loss of evolved stars is still largely mysterious, despite its importance as the main evolution engine for the chemical composition of the interstellar medium. For red supergiants (RSG), the triggering of the outflow and the mechanism of dust condensation remain unknown. Concerning red giant stars, we still do not know how their mass loss is able to form a bipolar planetary nebula. During my PhD thesis, I observed evolved stars with high angular resolution techniques. They allowed us to study the surface and the close environment of these stars, from where mass loss originates. With near-infrared interferometric observations, I characterized the water vapor and carbon monoxide envelope of the nearby RSG Betelgeuse. I also monitored a hot spot on its surface and analyzed the structure of its convection, as well as that of Antares (another very nearby supergiant) thanks to radiative hydrodynamical simulations. Diffraction-limited imaging techniques (near-infrared adaptive optics, ultraviolet space telescope) allowed me to observe the evolution of inhomogeneities in the circumstellar envelope of Betelgeuse and to discover a circumstellar disk around L2 Puppis, an asymptotic giant branch star. These multi-scale and multi-wavelength observations obtained at several epochs allowed us to monitor the evolution of the structures and to derive information on the dynamics of the stellar environment. With a wider stellar sample expected in the next few years, this observing program will allow a better understanding of the mass loss of evolved stars. (author)

  16. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  17. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  18. How coarse is too coarse for salmon spawning substrates?

    Science.gov (United States)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also

  19. Characteristic evolutions in numerical relativity using six angular patches

    International Nuclear Information System (INIS)

    Reisswig, Christian; Bishop, Nigel T; Lai, Chi Wai; Thornburg, Jonathan; Szilagyi, Bela

    2007-01-01

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50

  20. Characteristic evolutions in numerical relativity using six angular patches

    Energy Technology Data Exchange (ETDEWEB)

    Reisswig, Christian [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Bishop, Nigel T [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Lai, Chi Wai [Department of Mathematical Sciences, University of South Africa, PO Box 392, Unisa 0003, South Africa (South Africa); Thornburg, Jonathan [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany); Szilagyi, Bela [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, D-14476 Golm (Germany)

    2007-06-21

    The characteristic approach to numerical relativity is a useful tool in evolving gravitational systems. In the past this has been implemented using two patches of stereographic angular coordinates. In other applications, a six-patch angular coordinate system has proved effective. Here we investigate the use of a six-patch system in characteristic numerical relativity, by comparing an existing two-patch implementation (using second-order finite differencing throughout) with a new six-patch implementation (using either second- or fourth-order finite differencing for the angular derivatives). We compare these different codes by monitoring the Einstein constraint equations, numerically evaluated independently from the evolution. We find that, compared to the (second-order) two-patch code at equivalent resolutions, the errors of the second-order six-patch code are smaller by a factor of about 2, and the errors of the fourth-order six-patch code are smaller by a factor of nearly 50.

  1. ASSIMILATION OF COARSE-SCALEDATAUSINGTHE ENSEMBLE KALMAN FILTER

    KAUST Repository

    Efendiev, Yalchin

    2011-01-01

    Reservoir data is usually scale dependent and exhibits multiscale features. In this paper we use the ensemble Kalman filter (EnKF) to integrate data at different spatial scales for estimating reservoir fine-scale characteristics. Relationships between the various scales is modeled via upscaling techniques. We propose two versions of the EnKF to assimilate the multiscale data, (i) where all the data are assimilated together and (ii) the data are assimilated sequentially in batches. Ensemble members obtained after assimilating one set of data are used as a prior to assimilate the next set of data. Both of these versions are easily implementable with any other upscaling which links the fine to the coarse scales. The numerical results with different methods are presented in a twin experiment setup using a two-dimensional, two-phase (oil and water) flow model. Results are shown with coarse-scale permeability and coarse-scale saturation data. They indicate that additional data provides better fine-scale estimates and fractional flow predictions. We observed that the two versions of the EnKF differed in their estimates when coarse-scale permeability is provided, whereas their results are similar when coarse-scale saturation is used. This behavior is thought to be due to the nonlinearity of the upscaling operator in the case of the former data. We also tested our procedures with various precisions of the coarse-scale data to account for the inexact relationship between the fine and coarse scale data. As expected, the results show that higher precision in the coarse-scale data yielded improved estimates. With better coarse-scale modeling and inversion techniques as more data at multiple coarse scales is made available, the proposed modification to the EnKF could be relevant in future studies.

  2. Polarization-Dependent Measurements of Molecular Super Rotors with Oriented Angular Momenta

    Science.gov (United States)

    Murray, Matthew J.; Toro, Carlos; Liu, Qingnan; Mullin, Amy S.

    2014-05-01

    Controlling molecular motion would enable manipulation of energy flow between molecules. Here we have used an optical centrifuge to investigate energy transfer between molecular super rotors with oriented angular momenta. The polarizable electron cloud of the molecules interacts with the electric field of linearly polarized light that angularly accelerates over the time of the optical pulse. This process drives molecules into high angular momentum states that are oriented with the optical field and have energies far from equilibrium. High resolution transient IR spectroscopy reveals the dynamics of collisional energy transfer for these super excited rotors. The results of this study leads to a more fundamental understanding of energy balance in non-equilibrium environments and the physical and chemical properties of gases in a new regime of energy states. Results will be presented for several super rotor species including carbon monoxide, carbon dioxide, and acetylene. Polarization-dependent measurements reveal the extent to which the super rotors maintain spatial orientation of high angular momentum states.

  3. Development of insula connectivity between ages 12 and 30 revealed by high angular resolution diffusion imaging.

    Science.gov (United States)

    Dennis, Emily L; Jahanshad, Neda; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Hickie, Ian B; Toga, Arthur W; Wright, Margaret J; Thompson, Paul M

    2014-04-01

    The insula, hidden deep within the Sylvian fissures, has proven difficult to study from a connectivity perspective. Most of our current information on the anatomical connectivity of the insula comes from studies of nonhuman primates and post mortem human dissections. To date, only two neuroimaging studies have successfully examined the connectivity of the insula. Here we examine how the connectivity of the insula develops between ages 12 and 30, in 307 young adolescent and adult subjects scanned with 4-Tesla high angular resolution diffusion imaging (HARDI). The density of fiber connections between the insula and the frontal and parietal cortex decreased with age, but the connection density between the insula and the temporal cortex generally increased with age. This trajectory is in line with well-known patterns of cortical development in these regions. In addition, males and females showed different developmental trajectories for the connection between the left insula and the left precentral gyrus. The insula plays many different roles, some of them affected in neuropsychiatric disorders; this information on the insula's connectivity may help efforts to elucidate mechanisms of brain disorders in which it is implicated. Copyright © 2013 Wiley Periodicals, Inc.

  4. Coarse graining for synchronization in directed networks

    Science.gov (United States)

    Zeng, An; Lü, Linyuan

    2011-05-01

    Coarse-graining model is a promising way to analyze and visualize large-scale networks. The coarse-grained networks are required to preserve statistical properties as well as the dynamic behaviors of the initial networks. Some methods have been proposed and found effective in undirected networks, while the study on coarse-graining directed networks lacks of consideration. In this paper we proposed a path-based coarse-graining (PCG) method to coarse grain the directed networks. Performing the linear stability analysis of synchronization and numerical simulation of the Kuramoto model on four kinds of directed networks, including tree networks and variants of Barabási-Albert networks, Watts-Strogatz networks, and Erdös-Rényi networks, we find our method can effectively preserve the network synchronizability.

  5. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  6. Comparison of atomic-level and coarse-grained models for liquid hydrocarbons from molecular dynamics configurational entropy estimates

    NARCIS (Netherlands)

    Baron, R; de Vries, AH; Hunenberger, PH; van Gunsteren, WF

    2006-01-01

    Molecular liquids can be modeled at different levels of spatial resolution. In atomic-level (AL) models, all (heavy) atoms can be explicitly simulated. In coarse-grained (CG) models, particles (beads) that represent groups of covalently bound atoms are used as elementary units. Ideally, a CG model

  7. Adaptive Resolution Simulation of MARTINI Solvents

    NARCIS (Netherlands)

    Zavadlav, Julija; Melo, Manuel N.; Cunha, Ana V.; de Vries, Alex H.; Marrink, Siewert J.; Praprotnik, Matej

    We present adaptive resolution dynamics simulations of aqueous and apolar solvents coarse-grained molecular models that are compatible with the MARTINI force field. As representatives of both classes solvents we have chosen liquid water and butane, respectively, at ambient temperature. The solvent

  8. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models

    Directory of Open Access Journals (Sweden)

    Stovgaard Kasper

    2010-08-01

    Full Text Available Abstract Background Genome sequencing projects have expanded the gap between the amount of known protein sequences and structures. The limitations of current high resolution structure determination methods make it unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS is an established low resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a method can for example be used to construct a likelihood function, which is paramount for structure determination based on statistical inference. Results We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves. Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid led to significantly better results than a single scattering body. Conclusion We show that the obtained point estimates allow the calculation of accurate SAXS curves from coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL, which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement in the decoy recognition performance. In conclusion, the presented method shows great promise for

  9. Uncertainty principle for angular position and angular momentum

    International Nuclear Information System (INIS)

    Franke-Arnold, Sonja; Barnett, Stephen M; Yao, Eric; Leach, Jonathan; Courtial, Johannes; Padgett, Miles

    2004-01-01

    The uncertainty principle places fundamental limits on the accuracy with which we are able to measure the values of different physical quantities (Heisenberg 1949 The Physical Principles of the Quantum Theory (New York: Dover); Robertson 1929 Phys. Rev. 34 127). This has profound effects not only on the microscopic but also on the macroscopic level of physical systems. The most familiar form of the uncertainty principle relates the uncertainties in position and linear momentum. Other manifestations include those relating uncertainty in energy to uncertainty in time duration, phase of an electromagnetic field to photon number and angular position to angular momentum (Vaccaro and Pegg 1990 J. Mod. Opt. 37 17; Barnett and Pegg 1990 Phys. Rev. A 41 3427). In this paper, we report the first observation of the last of these uncertainty relations and derive the associated states that satisfy the equality in the uncertainty relation. We confirm the form of these states by detailed measurement of the angular momentum of a light beam after passage through an appropriate angular aperture. The angular uncertainty principle applies to all physical systems and is particularly important for systems with cylindrical symmetry

  10. Dual-resolution dose assessments for proton beamlet using MCNPX 2.6.0

    Science.gov (United States)

    Chao, T. C.; Wei, S. C.; Wu, S. W.; Tung, C. J.; Tu, S. J.; Cheng, H. W.; Lee, C. C.

    2015-11-01

    The purpose of this study is to access proton dose distribution in dual resolution phantoms using MCNPX 2.6.0. The dual resolution phantom uses higher resolution in Bragg peak, area near large dose gradient, or heterogeneous interface and lower resolution in the rest. MCNPX 2.6.0 was installed in Ubuntu 10.04 with MPI for parallel computing. FMesh1 tallies were utilized to record the energy deposition which is a special designed tally for voxel phantoms that converts dose deposition from fluence. 60 and 120 MeV narrow proton beam were incident into Coarse, Dual and Fine resolution phantoms with pure water, water-bone-water and water-air-water setups. The doses in coarse resolution phantoms are underestimated owing to partial volume effect. The dose distributions in dual or high resolution phantoms agreed well with each other and dual resolution phantoms were at least 10 times more efficient than fine resolution one. Because the secondary particle range is much longer in air than in water, the dose of low density region may be under-estimated if the resolution or calculation grid is not small enough.

  11. A search for quark compositeness at the LHC. Dijet angular distributions

    International Nuclear Information System (INIS)

    Usubov, Z.U.; Abdinov, O.B.

    1999-01-01

    The effects of dijet angular distributions coming from a model of quark compositeness are considered. The influence of the parton distribution function, calorimeter non-linearity and energy resolution is investigated. The data sensitivity to the quark compositeness scale for low and high LHC luminosity is studied

  12. Anisotropy of the Cosmic Microwave Background Radiation on Large and Medium Angular Scales

    Science.gov (United States)

    Houghton, Anthony; Timbie, Peter

    1998-01-01

    This grant has supported work at Brown University on measurements of the 2.7 K Cosmic Microwave Background Radiation (CMB). The goal has been to characterize the spatial variations in the temperature of the CMB in order to understand the formation of large-scale structure in the universe. We have concurrently pursued two measurements using millimeter-wave telescopes carried aloft by scientific balloons. Both systems operate over a range of wavelengths, chosen to allow spectral removal of foreground sources such as the atmosphere, Galaxy, etc. The angular resolution of approx. 25 arcminutes is near the angular scale at which the most structure is predicted by current models to be visible in the CMB angular power spectrum. The main goal is to determine the angular scale of this structure; in turn we can infer the density parameter, Omega, for the universe as well as other cosmological parameters, such as the Hubble constant.

  13. Non-Galerkin Coarse Grids for Algebraic Multigrid

    Energy Technology Data Exchange (ETDEWEB)

    Falgout, Robert D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, Jacob B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-26

    Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. And while AMG has been effectively implemented on large scale parallel machines, challenges remain, especially when moving to exascale. Particularly, stencil sizes (the number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy, and this growth leads to more communication. Therefore, as problem size increases and the number of levels in the hierarchy grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in stencil size is due to the standard Galerkin coarse grid operator, $P^T A P$, where $P$ is the prolongation (i.e., interpolation) operator. For example, the coarse grid stencil size for a simple three-dimensional (3D) seven-point finite differencing approximation to diffusion can increase into the thousands on present day machines, causing an associated increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques. The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve phase times.

  14. Mass and Angular Distributions of Charged Dihadron Production

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, Mary Clare [Michigan U.

    1990-01-01

    Experiment 711, conducted at Fermilab. provided a unique handle towards understanding valence quark scattering by studying pairs of single. charged, high transverse momentum hadrons produced in collisions of 800 GeV /c protons on fixed metal targets. The apparatus consisted of a double-arm spectrometer. calorimetrically triggered. with high momentum resolution and a large angular acceptance for all charge states of particle pairs. The experiment was designed to select those hadron pairs that carrted most of the momentum and energy of the underlying scattered quarks and gluons. The charge of such "leading" hadrons is correlated with the charge of the quark that produced it. Quantum Chromodynamics (QCD) assumes that the scattering behavior of quarks ts independent of their charge, or "flavour": Experiment 711 could test this assumption. Tilis dissertation descrtbes the analysis of the mass and angular distributions of hadron pair production for three separate charge states: +-, ++ and --. The angular distributions are found to deviate from theory predictions of flavour symmetry. Also. the mass cross sections indicate ratios of positive to negative hard-scattered particles that are larger than expected from theory. These results could warrant reconsideration of the assumptions and approximations currently made in leading-order QCD calculations.

  15. Control of Rotational Energy and Angular Momentum Orientation with an Optical Centrifuge

    Science.gov (United States)

    Ogden, Hannah M.; Murray, Matthew J.; Mullin, Amy S.

    2017-04-01

    We use an optical centrifuge to trap and spin molecules to an angular frequency of 30 THz with oriented angular momenta and extremely high rotational energy and then investigate their subsequent collision dynamics with transient high resolution IR spectroscopy. The optical centrifuge is formed by combining oppositely-chirped pulses of 800 nm light, and overlapping them spatially and temporally. Polarization-sensitive Doppler-broadened line profiles characterize the anisotropic kinetic energy release of the super rotor molecules, showing that they behave like molecular gyroscopes. Studies are reported for collisions of CO2 super rotors with CO2, He and Ar. These studies reveal how mass, velocity and rotational adiabaticity impact the angular momentum relaxation and reorientation. Quantum scattering calculations provide insight into the J-specific collision cross sections that control the relaxation. NSF-CHE 105 8721.

  16. HIRENASD coarse unstructured

    Data.gov (United States)

    National Aeronautics and Space Administration — Unstructured HIRENASD mesh: - coarse size (5.7 million nodes, 14.4 million elements) - for node centered solvers - 01.06.2011 - caution: dimensions in mm

  17. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    Science.gov (United States)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  18. Generalized coarse-grained Becker-Doering equations

    International Nuclear Information System (INIS)

    Bolton, Colin D; Wattis, Jonathan A D

    2003-01-01

    We present and apply a generalized coarse-graining method of reducing the Becker-Doering model; originally formulated to describe the stepwise aggregation and fragmentation of clusters during nucleation. Previous formulations of the coarse-graining procedure have allowed a temporal rescaling of the coarse-grained reaction rates; this is generalized to allow the rescaling to depend on cluster size. The form of this factor is derived for general reaction rates and general mesh function so that the steady-state solution is preserved; in the case of an even mesh function the kinetics can also be accurately reproduced. With a size-dependent mesh function the equilibrium solution and the form of convergence to this state are matched for a specific example. Finally we consider reaction rates relevant to the classical nucleation theory of spherical cluster growth, and numerically compare solutions of the full system to the generalized coarse-grained system in both constant monomer and constant mass formulations, demonstrating the accuracy of the method

  19. The impact of spatial resolution on resolving spatial precipitation patterns in the Himalayas

    NARCIS (Netherlands)

    Bonekamp, P.N.J.; Collier, S.E.; Immerzeel, W.W.

    2017-01-01

    Frequently used gridded meteorological datasets poorly represent precipitation in the Himalaya due to their relatively low spatial resolution and the associated coarse representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy

  20. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  1. Coarse-mesh rebalancing acceleration for eigenvalue problems

    International Nuclear Information System (INIS)

    Asaoka, T.; Nakahara, Y.; Miyasaka, S.

    1974-01-01

    The coarse-mesh rebalance method is adopted for Monte Carlo schemes for aiming at accelerating the convergence of a source iteration process. At every completion of the Monte Carlo game for one batch of neutron histories, the scaling factor for the neutron flux is calculated to achieve the neutron balance in each coarse-mesh zone into which the total system is divided. This rebalance factor is multiplied to the weight of each fission source neutron in the coarse-mesh zone for playing the next Monte Carlo game. The numerical examples have shown that the coarse-mesh rebalance Monte Carlo calculation gives a good estimate of the eigenvalue already after several batches with a negligible extra computer time compared to the standard Monte Carlo. 5 references. (U.S.)

  2. A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM)

    International Nuclear Information System (INIS)

    Wang, Dongbin; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2015-01-01

    This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5–10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2–4 h) without obvious shortcomings. - Highlights: • A novel only PM sampling and Cu measuring technology is developed. • Very good particle collection efficiency for coarse PM is observed. • Excellent agreement is obtained between Cu ISE and offline ICP-MS measurements. • The new system can be continuously operated for at least 6 consecutive days. - A new technique for online measurements of Cu in coarse PM is described

  3. Adaptive resolution simulation of supramolecular water : The concurrent making, breaking, and remaking of water bundles

    NARCIS (Netherlands)

    Zavadlav, Julija; Marrink, Siewert J; Praprotnik, Matej

    The adaptive resolution scheme (AdResS) is a multiscale molecular dynamics simulation approach that can concurrently couple atomistic (AT) and coarse-grained (CG) resolution regions, i.e., the molecules can freely adapt their resolution according to their current position in the system. Coupling to

  4. Downscaling Coarse Scale Microwave Soil Moisture Product using Machine Learning

    Science.gov (United States)

    Abbaszadeh, P.; Moradkhani, H.; Yan, H.

    2016-12-01

    Soil moisture (SM) is a key variable in partitioning and examining the global water-energy cycle, agricultural planning, and water resource management. It is also strongly coupled with climate change, playing an important role in weather forecasting and drought monitoring and prediction, flood modeling and irrigation management. Although satellite retrievals can provide an unprecedented information of soil moisture at a global-scale, the products might be inadequate for basin scale study or regional assessment. To improve the spatial resolution of SM, this work presents a novel approach based on Machine Learning (ML) technique that allows for downscaling of the satellite soil moisture to fine resolution. For this purpose, the SMAP L-band radiometer SM products were used and conditioned on the Variable Infiltration Capacity (VIC) model prediction to describe the relationship between the coarse and fine scale soil moisture data. The proposed downscaling approach was applied to a western US basin and the products were compared against the available SM data from in-situ gauge stations. The obtained results indicated a great potential of the machine learning technique to derive the fine resolution soil moisture information that is currently used for land data assimilation applications.

  5. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  6. Prototyping global Earth System Models at high resolution: Representation of climate, ecosystems, and acidification in Eastern Boundary Currents

    Science.gov (United States)

    Dunne, J. P.; John, J. G.; Stock, C. A.

    2013-12-01

    The world's major Eastern Boundary Currents (EBC) such as the California Current Large Marine Ecosystem (CCLME) are critically important areas for global fisheries. Computational limitations have divided past EBC modeling into two types: high resolution regional approaches that resolve the strong meso-scale structures involved, and coarse global approaches that represent the large scale context for EBCs, but only crudely resolve only the largest scales of their manifestation. These latter global studies have illustrated the complex mechanisms involved in the climate change and acidification response in these regions, with the CCLME response dominated not by local adjustments but large scale reorganization of ocean circulation through remote forcing of water-mass supply pathways. While qualitatively illustrating the limitations of regional high resolution studies in long term projection, these studies lack the ability to robustly quantify change because of the inability of these models to represent the baseline meso-scale structures of EBCs. In the present work, we compare current generation coarse resolution (one degree) and a prototype next generation high resolution (1/10 degree) Earth System Models (ESMs) from NOAA's Geophysical Fluid Dynamics Laboratory in representing the four major EBCs. We review the long-known temperature biases that the coarse models suffer in being unable to represent the timing and intensity of upwelling-favorable winds, along with lack of representation of the observed high chlorophyll and biological productivity resulting from this upwelling. In promising contrast, we show that the high resolution prototype is capable of representing not only the overall meso-scale structure in physical and biogeochemical fields, but also the appropriate offshore extent of temperature anomalies and other EBC characteristics. Results for chlorophyll were mixed; while high resolution chlorophyll in EBCs were strongly enhanced over the coarse resolution

  7. Learning to Play Efficient Coarse Correlated Equilibria

    KAUST Repository

    Borowski, Holly P.

    2018-03-10

    The majority of the distributed learning literature focuses on convergence to Nash equilibria. Coarse correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However, there are no existing distributed learning algorithms that converge to specific coarse correlated equilibria. In this paper, we provide one such algorithm, which guarantees that the agents’ collective joint strategy will constitute an efficient coarse correlated equilibrium with high probability. The key to attaining efficient correlated behavior through distributed learning involves incorporating a common random signal into the learning environment.

  8. On the impacts of coarse-scale models of realistic roughness on a forward-facing step turbulent flow

    International Nuclear Information System (INIS)

    Wu, Yanhua; Ren, Huiying

    2013-01-01

    Highlights: ► Discrete wavelet transform was used to produce coarse-scale models of roughness. ► PIV were performed in a forward-facing step flow with roughness of different scales. ► Impacts of roughness scales on various turbulence statistics were studied. -- Abstract: The present work explores the impacts of the coarse-scale models of realistic roughness on the turbulent boundary layers over forward-facing steps. The surface topographies of different scale resolutions were obtained from a novel multi-resolution analysis using discrete wavelet transform. PIV measurements are performed in the streamwise–wall-normal (x–y) planes at two different spanwise positions in turbulent boundary layers at Re h = 3450 and δ/h = 8, where h is the mean step height and δ is the incoming boundary layer thickness. It was observed that large-scale but low-amplitude roughness scales had small effects on the forward-facing step turbulent flow. For the higher-resolution model of the roughness, the turbulence characteristics within 2h downstream of the steps are observed to be distinct from those over the original realistic rough step at a measurement position where the roughness profile possesses a positive slope immediately after the step’s front. On the other hand, much smaller differences exist in the flow characteristics at the other measurement position whose roughness profile possesses a negative slope following the step’s front

  9. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  10. The influence of model spatial resolution on simulated ozone and fine particulate matter for Europe: implications for health impact assessments

    Science.gov (United States)

    Fenech, Sara; Doherty, Ruth M.; Heaviside, Clare; Vardoulakis, Sotiris; Macintyre, Helen L.; O'Connor, Fiona M.

    2018-04-01

    We examine the impact of model horizontal resolution on simulated concentrations of surface ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5), and the associated health impacts over Europe, using the HadGEM3-UKCA chemistry-climate model to simulate pollutant concentrations at a coarse (˜ 140 km) and a finer (˜ 50 km) resolution. The attributable fraction (AF) of total mortality due to long-term exposure to warm season daily maximum 8 h running mean (MDA8) O3 and annual-average PM2.5 concentrations is then calculated for each European country using pollutant concentrations simulated at each resolution. Our results highlight a seasonal variation in simulated O3 and PM2.5 differences between the two model resolutions in Europe. Compared to the finer resolution results, simulated European O3 concentrations at the coarse resolution are higher on average in winter and spring (˜ 10 and ˜ 6 %, respectively). In contrast, simulated O3 concentrations at the coarse resolution are lower in summer and autumn (˜ -1 and ˜ -4 %, respectively). These differences may be partly explained by differences in nitrogen dioxide (NO2) concentrations simulated at the two resolutions. Compared to O3, we find the opposite seasonality in simulated PM2.5 differences between the two resolutions. In winter and spring, simulated PM2.5 concentrations are lower at the coarse compared to the finer resolution (˜ -8 and ˜ -6 %, respectively) but higher in summer and autumn (˜ 29 and ˜ 8 %, respectively). Simulated PM2.5 values are also mostly related to differences in convective rainfall between the two resolutions for all seasons. These differences between the two resolutions exhibit clear spatial patterns for both pollutants that vary by season, and exert a strong influence on country to country variations in estimated AF for the two resolutions. Warm season MDA8 O3 levels are higher in most of southern Europe, but lower in areas of northern and eastern Europe when

  11. Characterization of coarse particulate matter in school gyms

    International Nuclear Information System (INIS)

    Branis, Martin; Safranek, Jiri

    2011-01-01

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM 10-2.5 and PM 2.5-1.0 ) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM 10-2.5 4.1-7.4 μg m -3 and PM 2.5-1.0 2.0-3.3 μg m -3 ) than indoors (average PM 10-2.5 13.6-26.7 μg m -3 and PM 2.5-1.0 3.7-7.4 μg m -3 ). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM 10-2.5 and 1.4-4.8 for the PM 2.5-1.0 values. Under extreme conditions, the I/O ratios reached 180 (PM 10-2.5 ) and 19.1 (PM 2.5-1.0 ). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of

  12. Second generation stationary digital breast tomosynthesis system with faster scan time and wider angular span.

    Science.gov (United States)

    Calliste, Jabari; Wu, Gongting; Laganis, Philip E; Spronk, Derrek; Jafari, Houman; Olson, Kyle; Gao, Bo; Lee, Yueh Z; Zhou, Otto; Lu, Jianping

    2017-09-01

    The aim of this study was to characterize a new generation stationary digital breast tomosynthesis system with higher tube flux and increased angular span over a first generation system. The linear CNT x-ray source was designed, built, and evaluated to determine its performance parameters. The second generation system was then constructed using the CNT x-ray source and a Hologic gantry. Upon construction, test objects and phantoms were used to characterize system resolution as measured by the modulation transfer function (MTF), and artifact spread function (ASF). The results indicated that the linear CNT x-ray source was capable of stable operation at a tube potential of 49 kVp, and measured focal spot sizes showed source-to-source consistency with a nominal focal spot size of 1.1 mm. After construction, the second generation (Gen 2) system exhibited entrance surface air kerma rates two times greater the previous s-DBT system. System in-plane resolution as measured by the MTF is 7.7 cycles/mm, compared to 6.7 cycles/mm for the Gen 1 system. As expected, an increase in the z-axis depth resolution was observed, with a decrease in the ASF from 4.30 mm to 2.35 mm moving from the Gen 1 system to the Gen 2 system as result of an increased angular span. The results indicate that the Gen 2 stationary digital breast tomosynthesis system, which has a larger angular span, increased entrance surface air kerma, and faster image acquisition time over the Gen 1 s-DBT system, results in higher resolution images. With the detector operating at full resolution, the Gen 2 s-DBT system can achieve an in-plane resolution of 7.7 cycles per mm, which is better than the current commercial DBT systems today, and may potentially result in better patient diagnosis. © 2017 American Association of Physicists in Medicine.

  13. Quantum theory of multiscale coarse-graining.

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A

    2018-03-14

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  14. Quantum theory of multiscale coarse-graining

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W.; Voth, Gregory A.

    2018-03-01

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  15. Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate

    Science.gov (United States)

    Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.

    2017-09-01

    The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.

  16. Angular correlation methods

    International Nuclear Information System (INIS)

    Ferguson, A.J.

    1974-01-01

    An outline of the theory of angular correlations is presented, and the difference between the modern density matrix method and the traditional wave function method is stressed. Comments are offered on particular angular correlation theoretical techniques. A brief discussion is given of recent studies of gamma ray angular correlations of reaction products recoiling with high velocity into vacuum. Two methods for optimization to obtain the most accurate expansion coefficients of the correlation are discussed. (1 figure, 53 references) (U.S.)

  17. Angular-momentum-dominated electron beams and flat-beam generation

    International Nuclear Information System (INIS)

    Sun, Yin-e

    2005-01-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  18. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e [Univ. of Chicago, IL (United States)

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  19. Characterization of coarse particulate matter in school gyms

    Energy Technology Data Exchange (ETDEWEB)

    Branis, Martin, E-mail: branis@natur.cuni.cz [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Prague (Czech Republic); Safranek, Jiri [Charles University in Prague, Faculty of Physical Education, Department of Outdoor Sports, Prague (Czech Republic)

    2011-05-15

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} and PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school

  20. Characterization of the angular memory effect of scattered light in biological tissues.

    Science.gov (United States)

    Schott, Sam; Bertolotti, Jacopo; Léger, Jean-Francois; Bourdieu, Laurent; Gigan, Sylvain

    2015-05-18

    High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues and therefore grants access to superficial brain layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations ('angular memory effect') are of a very short range and should theoretically be only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range and thus the possible field-of-view by more than an order of magnitude compared to isotropic scattering for ∼1 mm thick tissue layers.

  1. A coarse to fine minutiae-based latent palmprint matching.

    Science.gov (United States)

    Liu, Eryun; Jain, Anil K; Tian, Jie

    2013-10-01

    With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching. To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows XP desktop system with 2

  2. SMART-X: Square Meter, Arcsecond Resolution Telescope for X-rays

    Science.gov (United States)

    Vikhlinin, Alexey; SMART-X Collaboration

    2013-04-01

    SMART-X is a concept for a next-generation X-ray observatory with large-area, 0.5" angular resolution grazing incidence adjustable X-ray mirrors, high-throughput critical angle transmission gratings, and X-ray microcalorimeter and CMOS-based imager in the focal plane. High angular resolution is enabled by new technology based on controlling the shape of mirror segments using thin film piezo actuators deposited on the back surface. Science applications include observations of growth of supermassive black holes since redshifts of ~10, ultra-deep surveys over 10's of square degrees, galaxy assembly at z=2-3, as well as new opportunities in the high-resolution X-ray spectroscopy and time domains. We also review the progress in technology development, tests, and mission design over the past year.

  3. The impact of spatial resolution on resolving spatial precipitation patterns in the Himalayas

    OpenAIRE

    Bonekamp, P.N.J.; Collier, S.E.; Immerzeel, W.W.

    2017-01-01

    Frequently used gridded meteorological datasets poorly represent precipitation in the Himalaya due to their relatively low spatial resolution and the associated coarse representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy and quality of the precipitation fields, as simulations at higher spatial resolution are more capable of resolving the interaction between the topography and the atmosphere. However, most physics par...

  4. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  5. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  6. Homogenization-based topology optimization for high-resolution manufacturable micro-structures

    DEFF Research Database (Denmark)

    Groen, Jeroen Peter; Sigmund, Ole

    2018-01-01

    This paper presents a projection method to obtain high-resolution, manufacturable structures from efficient and coarse-scale, homogenization-based topology optimization results. The presented approach bridges coarse and fine scale, such that the complex periodic micro-structures can be represented...... by a smooth and continuous lattice on the fine mesh. A heuristic methodology allows control of the projected topology, such that a minimum length-scale on both solid and void features is ensured in the final result. Numerical examples show excellent behavior of the method, where performances of the projected...

  7. Development of a High Resolution BRDF/Albedo Product by Fusing Airborne CASI Reflectance with MODIS Daily Reflectance in the Oasis Area of the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Dongqin You

    2015-05-01

    Full Text Available A land-cover-based linear BRDF (bi-directional reflectance distribution function unmixing (LLBU algorithm based on the kernel-driven model is proposed to combine the compact airborne spectrographic imager (CASI reflectance with the moderate resolution imaging spectroradiometer (MODIS daily reflectance product to derive the BRDF/albedo of the two sensors simultaneously in the foci experimental area (FEA of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER, which was carried out in the Heihe River basin, China. For each land cover type, an archetypal BRDF, which characterizes the shape of its anisotropic reflectance, is extracted by linearly unmixing from the MODIS reflectance with the assistance of a high-resolution classification map. The isotropic coefficients accounting for the differences within a class are derived from the CASI reflectance. The BRDF is finally determined by the archetypal BRDF and the corresponding isotropic coefficients. Direct comparisons of the cropland archetypal BRDF and CASI albedo with in situ measurements show good agreement. An indirect validation which compares retrieved BRDF/albedo with that of the MCD43A1 standard product issued by NASA and aggregated CASI albedo also suggests reasonable reliability. LLBU has potential to retrieve the high spatial resolution BRDF/albedo product for airborne and spaceborne sensors which have inadequate angular samplings. In addition, it can shorten the timescale for coarse spatial resolution product like MODIS.

  8. Test of special resolution and trigger efficiency

    CERN Document Server

    Benhammou, Y

    2015-01-01

    The forthcoming luminosity upgrade of LHC to super-LHC (sLHC) will increase the expected background rate in the forward region of the ATLAS Muon Spectrometer by approximately the factor of five. Some of the present Muon Spectrometer components will fail to cope with these high rates and will have to be replaced. The results of a test of a device consisting of Thin Gap Chambers (TGC) and a fast small-diameter Muon Drift Tube Chamber (sMDT) using the 180 GeV/c muons at the SPS-H8 muon beam at CERN are presented. The goal of the test was to study the combined TGC-sMDT system as tracking and triggering device in the ATLAS muon spectrometer after high-luminosity upgrades of the LHC. The analysis of the recorded data shows a very good correlation between the TGC and sMDT track position and inclination. This technology offers the combination of trigger and tracking and has good angular and spatial resolutions. The angular resolution is 0.4 mrad for each system individually. For the spatial resolution, the width of t...

  9. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

    Science.gov (United States)

    Knoch, Fabian; Schäfer, Ken; Diezemann, Gregor; Speck, Thomas

    2018-01-01

    We present a dynamic coarse-graining technique that allows one to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSMs), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling, we additionally perform steered molecular dynamics simulations and find excellent agreement between the results of the fully atomistic and the dynamically coarse-grained simulations. Our technique allows the determination of the rates of mechanical unfolding in a dynamical range from approximately 10-8/ns to 1/ns thus reaching experimentally accessible time regimes without abandoning atomistic resolution.

  10. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  11. Automated and angular time-synchronized directional gamma-ray scintillation sensor

    International Nuclear Information System (INIS)

    Kronenberg, S.; Brucker, G.J.

    1998-01-01

    The authors' previous research resulted in directional sensors for gamma rays and X rays that have a 4π solid angle of acceptance and, at the same time, a high angular resolution that is limited only by their ability to measure small angles. Angular resolution of ∼1 s of arc was achieved. These sensors are capable of operating and accurately detecting high and very low intensity radiation patterns. Such a system can also be used to image broad area sources and their scattering patterns. The principle of operation and design of directional sensors used in this study was described elsewhere; however, for convenience, a part of that text is repeated here. It was shown analytically that the angular distribution of radiation incident on the sensor is proportional to the first derivative of the scan data, that is, of the events' count rate versus orientation of the detector. The previously published results were obtained with a annual operating system. The detector assembly was set at a specific angle, and a pulse rate count was made. This was repeated at numerous other angles of orientation, a time-consuming and labor-intensive process. Recently, the authors automated this system, which is based on the detection of scintillations. The detector, which consists of a stack of plates of Lucite, plastic scintillator, and lead foils, rotates by means of a motor in front of a stationary photomultiplier tube (PMT). One revolution per second was chosen for the motor. At time zero, a trigger indicates that a revolution has started. The angle of orientation of the detector in the laboratory system is proportional to the time during one revolution. The process repeats itself a desired number of times. The trigger signal initiates a scan of a multichannel scalar (MCS). The detector assembly is allowed to rotate in the radiation field, and the MCS scans are repeated in an accumulated mode of operation until enough events are collected for the location of the radiation source to be

  12. THE ANGULAR MOMENTUM OF MAGNETIZED MOLECULAR CLOUD CORES: A TWO-DIMENSIONAL-THREE-DIMENSIONAL COMPARISON

    International Nuclear Information System (INIS)

    Dib, Sami; Csengeri, Timea; Audit, Edouard; Hennebelle, Patrick; Pineda, Jaime E.; Goodman, Alyssa A.; Bontemps, Sylvain

    2010-01-01

    In this work, we present a detailed study of the rotational properties of magnetized and self-gravitating dense molecular cloud (MC) cores formed in a set of two very high resolution three-dimensional (3D) MC simulations with decaying turbulence. The simulations have been performed using the adaptative mesh refinement code RAMSES with an effective resolution of 4096 3 grid cells. One simulation represents a mildly magnetically supercritical cloud and the other a strongly magnetically supercritical cloud. We identify dense cores at a number of selected epochs in the simulations at two density thresholds which roughly mimic the excitation densities of the NH 3 (J - K) = (1,1) transition and the N 2 H + (1-0) emission line. A noticeable global difference between the two simulations is the core formation efficiency (CFE) of the high-density cores. In the strongly supercritical simulations, the CFE is 33% per unit free-fall time of the cloud (t ff,cl ), whereas in the mildly supercritical simulations this value goes down to ∼6 per unit t ff,cl . A comparison of the intrinsic specific angular momentum (j 3D ) distributions of the cores with the specific angular momentum derived using synthetic two-dimensional (2D) velocity maps of the cores (j 2D ) shows that the synthetic observations tend to overestimate the true value of the specific angular momentum by a factor of ∼8-10. We find that the distribution of the ratio j 3D /j 2D of the cores peaks at around ∼0.1. The origin of this discrepancy lies in the fact that contrary to the intrinsic determination of j which sums up the individual gas parcels' contributions to the angular momentum, the determination of the specific angular momentum using the standard observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our results may well provide a natural explanation for the

  13. Angular Momentum in Dwarf Galaxies

    Directory of Open Access Journals (Sweden)

    Del Popolo A.

    2014-06-01

    Full Text Available We study the “angular momentum catastrophe” in the framework of interaction among baryons and dark matter through dynamical friction. By means of Del Popolo (2009 model we simulate 14 galaxies similar to those investigated by van den Bosch, Burkert and Swaters (2001, and calculate the distribution of their spin parameters and the angular momenta. Our model gives the angular momentum distribution which is in agreement with the van den Bosch et al. observations. Our result shows that the “angular momentum catastrophe” can be naturally solved in a model that takes into account the baryonic physics and the exchange of energy and angular momentum between the baryonic clumps and dark matter through dynamical friction.

  14. New energy levels of praseodymium with large angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shamim; Siddiqui, Imran; Gamper, Bettina; Syed, Tanweer Iqbal; Guthoehrlein, Guenter H.; Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    The electronic ground state configuration of praseodymium {sup 59}Pr{sub 141} is [Xe] 4f{sup 3}6s{sup 2}, with ground state level {sup 4}I{sub 9/2}. Our research is mainly devoted to find previously unknown energy levels by the investigation of spectral lines and their hyperfine structures. In a hollow cathode discharge lamp praseodymium atoms and ions in ground and excited states are excited to high lying states by laser light. The excitation source is a tunable ring-dye laser system, operated with R6G, Kiton Red, DCM and LD700. A high resolution Fourier transform spectrum is used for selecting promising excitation wavelengths. Then the laser wavelength is tuned to a strong hyperfine component of the spectral line to be investigated, and a search for fluorescence from excited levels is performed. From the observed hyperfine structure we determine J-values and hyperfine constants A of the combining levels. This information, together with excitation and fluorescence wavelengths, allows us to find the energies of involved new levels. Up to now we have discovered large number of previously unknown energy levels with various angular momentum values. We present here the data (energies, parities, angular momenta J, magnetic hyperfine constants A) of ca. 40 new, until now unknown energy levels with high angular momentum values: 15/2, 17/2, 19/2, 21/2.

  15. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Sana, H. [European Space Agency/Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Le Bouquin, J.-B.; Duvert, G.; Zins, G. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Lacour, S.; Gauchet, L.; Pickel, D. [LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, Paris Sciences et Lettres, 5 Place Jules Janssen, F-92195 Meudon (France); Berger, J.-P. [European Southern Observatory, Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Norris, B. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Olofsson, J. [Max-Planck-Institut für Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Absil, O. [Département d' Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, B-4000 Liège (Belgium); De Koter, A. [Astrophysical Institute Anton Pannekoek, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); Kratter, K. [JILA, 440 UCB, University of Colorado, Boulder, CO 80309-0440 (United States); Schnurr, O. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Zinnecker, H., E-mail: hsana@stsci.edu [Deutsches SOFIA Instituut, SOFIA Science Center, NASA Ames Research Center, Mail Stop N232-12, Moffett Field, CA 94035 (United States)

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperture Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio

  16. Angular glint effects generation for false naval target verisimility requirements

    International Nuclear Information System (INIS)

    Kostis, Theodoros G; Galanis, Konstantinos G; Katsikas, Sokratis K

    2009-01-01

    A stimulating problem in the generation of coherent countermeasures for high range resolution radar systems is the inclusion of angular glint effects in the preparation of the false target mask. Since angular glint is representative of extended naval targets, this inclusion increases the credibility factor of the decoy playback signal at the adversary radar-operator station. In this paper, the ability of an interferometric inverse synthetic aperture radar (InISAR) simulator to provide a proof of concept towards the clarification of this challenging task is ascertained. The solution consists of three novel vector representations of the generated data, which are proven to behave according to the laws of physics governing the glint phenomenon. The first depiction is the angular glint injection at the target which is followed by the representation of the wavefront distortion at the radar. A value-added time procession integration of the target in pure roll motion provides an expected by ISAR theory side-view image of the naval extended false target. The effectiveness of the proposed approach through verification and validation of the results by using the method of pictorial evidence is established. A final argument is raised on the usage of this software tool for actual obfuscation and deception actions for air defence at sea applications

  17. Data-oriented development with AngularJS

    CERN Document Server

    Waikar, Manoj

    2015-01-01

    This book helps beginner-level AngularJS developers organize AngularJS applications by discussing important AngularJS concepts and best practices. If you are an experienced AngularJS developer but haven't written directives or haven't created custom HTML controls before, then this book is ideal for you.

  18. AngularJS web application development

    CERN Document Server

    Darwin, Peter Bacon

    2013-01-01

    The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.

  19. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    Science.gov (United States)

    Wild, Oliver; Prather, Michael J.

    2006-06-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.

  20. Angular momentum of dwarf galaxies

    Science.gov (United States)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  1. Fused silica segments: a possible solution for x-ray telescopes with very high angular resolution like Lynx/XRS

    Science.gov (United States)

    Salmaso, Bianca; Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Spiga, Daniele; Vecchi, Gabriele; Pareschi, Giovanni

    2017-09-01

    In order to look beyond Chandra, the Lynx/XRS mission has been proposed in USA and is currently studied by NASA. The optic will have an effective area of 2.5 m2 and an angular resolution of 0.5 arcsec HEW at 1 keV. In order to fulfill these requirements different technologies are considered, with the approaches of both full and segmented shells (that, possibly, can be also combined together). Concerning the production of segmented mirrors, a variety of thin substrates (glass, metal, silicon) are envisaged, that can be produced using both direct polishing or replication methods. Innovative post-fabrication correction methods (such as piezoelectric or magneto-restrictive film actuators on the back surface, differential deposition, ion implantation) are being also considered in order to reach the final tolerances. In this paper we are presenting a technology development based on fused silica (SiO2) segmented substrates, owing the low coefficient of thermal expansion of Fused Silica and its high chemical stability compared to other glasses. Thin SiO2 segmented substrates (typically 2 mm thick) are figured by direct polishing combined with final profile ion figuring correction, while the roughness reduction is reached with pitch tools. For the profile and roughness correction, the segments are glued to a substrate. In this paper we present the current status of this technology.

  2. Design of UHECR telescope with 1 arcmin resolution and 50 deg. field of view

    CERN Document Server

    Sasaki, M; Asaoka, Y

    2002-01-01

    A new telescope design based on Baker-Nunn optics is proposed for observation of ultra-high-energy cosmic rays (UHECRs). The optical system has an image resolution better than 0.02 deg. within a wide field of view of 50 deg. angular diameter. When combined with a high-quality imaging device, the proposed design enables the directions of UHECRs and high-energy neutrinos to be determined with an accuracy better than 1 arcmin. The outstanding resolution of this telescope allows charge-separated cosmic-rays to be resolved and the source to be determined accurately. This marked improvement in angular resolution will allow the multi-wavelength and 'multi-particle' observations of astronomical objects through collaboration with established astronomical observations.

  3. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Directory of Open Access Journals (Sweden)

    Elliot Leader

    2018-04-01

    Full Text Available The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam. Keywords: Photon, Angular momentum, Laser optics, Particle physics

  4. AngularJS : yksisivuisen web-sovelluksen käyttöliittymän toteutus AngularJS:llä

    OpenAIRE

    Suomijoki, Juha

    2015-01-01

    Opinnäytetyössä tutkittiin mikä on AngularJS-JavaScript-ohjelmistokehys ja miten se soveltuu yksisivuisen web-sovelluksen käyttöliittymän toteutukseen. AngularJS on vuonna 2012 julkaistu Googlen ylläpitämä JavaScript-ohjelmistokehys, joka on tarkoitettu ensisijaisesti yksisivuisten web-sovellusten kehittämiseen. Opinnäytetyön teoriaosuudessa tutkittiin mikä AngularJS on ja mitkä ovat AngularJS:n keskeiset konseptit ja sovelluskomponentit. Tarkastelu pohjautui AngularJS:stä kirjoitettu...

  5. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  6. Rotations and angular momentum

    International Nuclear Information System (INIS)

    Nyborg, P.; Froyland, J.

    1979-01-01

    This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

  7. Coarse Thinking and Pricing a Financial Option

    OpenAIRE

    Siddiqi, Hammad

    2009-01-01

    Mullainathan et al [Quarterly Journal of Economics, May 2008] present a formalization of the concept of coarse thinking in the context of a model of persuasion. The essential idea behind coarse thinking is that people put situations into categories and the values assigned to attributes in a given situation are affected by the values of corresponding attributes in other co-categorized situations. We derive a new option pricing formula based on the assumption that the market consists of coars...

  8. Multilevel coarse graining and nano-pattern discovery in many particle stochastic systems

    International Nuclear Information System (INIS)

    Kalligiannaki, Evangelia; Katsoulakis, Markos A.; Plecháč, Petr; Vlachos, Dionisios G.

    2012-01-01

    In this work we propose a hierarchy of Markov chain Monte Carlo methods for sampling equilibrium properties of stochastic lattice systems with competing short and long range interactions. Each Monte Carlo step is composed by two or more sub-steps efficiently coupling coarse and finer state spaces. The method can be designed to sample the exact or controlled-error approximations of the target distribution, providing information on levels of different resolutions, as well as at the microscopic level. In both strategies the method achieves significant reduction of the computational cost compared to conventional Markov chain Monte Carlo methods. Applications in phase transition and pattern formation problems confirm the efficiency of the proposed methods.

  9. Property A and Coarse Embedding for Locally Compact Groups

    DEFF Research Database (Denmark)

    Li, Kang

    property A. In a joint work with Knudby, we characterize the connected simple Lie groups with the discrete topology that have different approximation properties (see Article B). Moreover, we give a contractive Schur multiplier characterization of locally compact groups coarsely embeddable into Hilbert......In the study of the Novikov conjecture, property A and coarse embedding of metric spaces were introduced by Yu and Gromov, respectively. The main topic of the thesis is property A and coarse embedding for locally compact second countable groups. We prove that many of the results that are known...... to hold in the discrete setting, hold also in the locally compact setting.In a joint work with Deprez, we show that property A is equivalent to amenability at infinity and the strong Novikov conjecture is true for every locally compact group that embeds coarsely into a Hilbert space (see Article A...

  10. Two-level method with coarse space size independent convergence

    Energy Technology Data Exchange (ETDEWEB)

    Vanek, P.; Brezina, M. [Univ. of Colorado, Denver, CO (United States); Tezaur, R.; Krizkova, J. [UWB, Plzen (Czech Republic)

    1996-12-31

    The basic disadvantage of the standard two-level method is the strong dependence of its convergence rate on the size of the coarse-level problem. In order to obtain the optimal convergence result, one is limited to using a coarse space which is only a few times smaller than the size of the fine-level one. Consequently, the asymptotic cost of the resulting method is the same as in the case of using a coarse-level solver for the original problem. Today`s two-level domain decomposition methods typically offer an improvement by yielding a rate of convergence which depends on the ratio of fine and coarse level only polylogarithmically. However, these methods require the use of local subdomain solvers for which straightforward application of iterative methods is problematic, while the usual application of direct solvers is expensive. We suggest a method diminishing significantly these difficulties.

  11. A multiwire proportional chamber for precision studies of neutron β decay angular correlations

    International Nuclear Information System (INIS)

    Ito, T.M.; Carr, R.; Filippone, B.W.; Martin, J.W.; Plaster, B.; Rybka, G.; Yuan, J.

    2007-01-01

    A new multiwire proportional chamber (MWPC) was designed and constructed for precision studies of neutron β decay angular correlations. Its design has several novel features, including the use of low pressure neopentane as the MWPC gas and an entrance window made of thin Mylar sheet reinforced with Kevlar fibers. In the initial off-line performance tests, the gas gain of neopentane and the position resolution were studied

  12. A proposed measurement of optical orbital and spin angular momentum and its implications for photon angular momentum

    Science.gov (United States)

    Leader, Elliot

    2018-04-01

    The expression for the total angular momentum carried by a laser optical vortex beam, splits, in the paraxial approximation, into two terms which seem to represent orbital and spin angular momentum respectively. There are, however, two very different competing versions of the formula for the spin angular momentum, one based on the use of the Poynting vector, as in classical electrodynamics, the other related to the canonical expression for the angular momentum which occurs in Quantum Electrodynamics. I analyze the possibility that a sufficiently sensitive optical measurement could decide which of these corresponds to the actual physical angular momentum carried by the beam.

  13. Resolution of the neutron transport equation by massively parallel computer in the Cronos code

    International Nuclear Information System (INIS)

    Zardini, D.M.

    1996-01-01

    The feasibility of neutron transport problems parallel resolution by CRONOS code's SN module is here studied. In this report we give the first data about the parallel resolution by angular variable decomposition of the transport equation. Problems about parallel resolution by spatial variable decomposition and memory stage limits are also explained here. (author)

  14. Development and Test of a Contactless Position and Angular Sensor Device for the Application in Synchronous Micro Motors

    Directory of Open Access Journals (Sweden)

    Andreas WALDSCHIK

    2009-09-01

    Full Text Available In this work, we present a contactless micro position and angular sensor system which consists of fixed commercial magnetic sensor elements, such as hall sensors and a movable part with integrated micro structured polymer magnets. This system serves particularly for linear and rotatory synchronous micro motors which we have developed and successfully tested. In order to achieve high precision and control of these motors an integration of the special micro position and angular sensors is pursued to increase the resolution and accuracy of the devices.

  15. Kinematics and resolution at future ep colliders

    International Nuclear Information System (INIS)

    Bluemlein, J.; Klein, M.

    1992-01-01

    Limitations due to resolution and kinematics are discussed of the (Q 2 , x) range accessible with electron-proton colliders after HERA. For the time after HERA one may think of two electron-proton colliders: an asymmetric energy machine and a rather symmetric one. Both colliders are compared here in order to study the influence of the different E l /E p ratios on the accessible kinematic range which is restricted due to angular coverage, finite detector resolution and calibration uncertainties

  16. Coarse-graining stochastic biochemical networks: adiabaticity and fast simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Hengartner, Nick [Los Alamos National Laboratory

    2008-01-01

    We propose a universal approach for analysis and fast simulations of stiff stochastic biochemical kinetics networks, which rests on elimination of fast chemical species without a loss of information about mesoscoplc, non-Poissonian fluctuations of the slow ones. Our approach, which is similar to the Born-Oppenhelmer approximation in quantum mechanics, follows from the stochastic path Integral representation of the cumulant generating function of reaction events. In applications with a small number of chemIcal reactions, It produces analytical expressions for cumulants of chemical fluxes between the slow variables. This allows for a low-dimensional, Interpretable representation and can be used for coarse-grained numerical simulation schemes with a small computational complexity and yet high accuracy. As an example, we derive the coarse-grained description for a chain of biochemical reactions, and show that the coarse-grained and the microscopic simulations are in an agreement, but the coarse-gralned simulations are three orders of magnitude faster.

  17. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles

    KAUST Repository

    Hong, Bingbing

    2012-01-01

    Coarse-grained models of poly(ethylene oxide) oligomer-grafted nanoparticles are established by matching their structural distribution functions to atomistic simulation data. Coarse-grained force fields for bulk oligomer chains show excellent transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on the core-core interactions. This leads to poor transferability of the core potential to conditions different from the state point at which the potential was optimized. Remarkably, coarse graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This stands in sharp contrast to linear polymer systems, for which coarse graining always accelerates the dynamics. Diffusivity data suggest that the grafting topology is one cause of slower motions of the cores for short-chain oligomer-grafted nanoparticles; an estimation based on transition-state theory shows the coarse-grained core-core potential also has a slowing-down effect on the nanoparticle organic hybrid materials motions; both effects diminish as grafted chains become longer. © 2012 American Institute of Physics.

  18. High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases.

    Science.gov (United States)

    Valentini, Giseli; Gonçalves-Vidigal, Maria Celeste; Hurtado-Gonzales, Oscar P; de Lima Castro, Sandra Aparecida; Cregan, Perry B; Song, Qijian; Pastor-Corrales, Marcial A

    2017-08-01

    Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 4 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 4 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively. We used co-segregation analysis and high-throughput genotyping of 179 F 2:3 families from the Rudá (susceptible) × Ouro Negro (resistant) cross-phenotyped separately with races of the rust and anthracnose pathogens. The results confirmed that Ur-14 and Co-3 4 /Phg-3 cluster in Ouro Negro conferred resistance to rust and anthracnose, respectively, and that Ur-14 and the Co-3 4 /Phg-3 cluster were closely linked. Genotyping the F 2:3 families, first with 5398 SNPs on the Illumina BeadChip BARCBEAN6K_3 and with 15 SSR, and eight KASP markers, specifically designed for the candidate region containing Ur-14 and Co-3 4 /Phg-3, permitted the creation of a high-resolution genetic linkage map which revealed that Ur-14 was positioned at 2.2 cM from Co-3 4 /Phg-3 on the short arm of chromosome Pv04 of the common bean genome. Five flanking SSR markers were tightly linked at 0.1 and 0.2 cM from Ur-14, and two flanking KASP markers were tightly linked at 0.1 and 0.3 cM from Co-3 4 /Phg-3. Many other SSR, SNP, and KASP markers were also linked to these genes. These markers will be useful for the development of common bean cultivars combining the important Ur-14 and Co-3 4 /Phg-3 genes conferring resistance to three of the most destructive diseases of common bean.

  19. AngularJS Performance: A Survey Study

    OpenAIRE

    Ramos, Miguel; Valente, Marco Tulio; Terra, Ricardo

    2017-01-01

    AngularJS is a popular JavaScript MVC-based framework to construct single-page web applications. In this paper, we report the results of a survey with 95 professional developers about performance issues of AngularJS applications. We report common practices followed by developers to avoid performance problems (e.g., use of third-party or custom components), the general causes of performance problems in AngularJS applications (e.g., inadequate architecture decisions taken by AngularJS users), a...

  20. Angular Positioning Sensor for Space Mechanisms

    Science.gov (United States)

    Steiner, Nicolas; Chapuis, Dominique

    2013-09-01

    Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.

  1. Characterization of coarse particulate matter in school gyms.

    Science.gov (United States)

    Braniš, Martin; Šafránek, Jiří

    2011-05-01

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.5) and PM(2.5-1.0)) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM(10-2.5) 4.1-7.4 μg m(-3) and PM(2.5-1.0) 2.0-3.3 μg m(-3)) than indoors (average PM(10-2.5) 13.6-26.7 μg m(-3) and PM(2.5-1.0) 3.7-7.4 μg m(-3)). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM(10-2.5) and 1.4-4.8 for the PM(2.5-1.0) values. Under extreme conditions, the I/O ratios reached 180 (PM(10-2.5)) and 19.1 (PM(2.5-1.0)). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high

  2. Instant AngularJS starter

    CERN Document Server

    Menard, Dan

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is written in an easytoread style, with a strong emphasis on realworld, practical examples. Stepbystep explanations are provided for performing important tasks.This book is for web developers familiar with JavascriptIt doesn't cover the history of AngularJS, and it's not a pitch to convince you that AngularJS is the best framework on the entire web. It's a guide to help you learn everything you need to know about AngularJS in as few pa

  3. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  4. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Science.gov (United States)

    Stewart, Kyle R.; Maller, Ariyeh H.; Oñorbe, Jose; Bullock, James S.; Joung, M. Ryan; Devriendt, Julien; Ceverino, Daniel; Kereš, Dušan; Hopkins, Philip F.; Faucher-Giguère, Claude-André

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ˜4 times more specific angular momentum in cold halo gas (λ cold ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  5. High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of LCDM

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R. [Department of Mathematical Sciences, California Baptist University, 8432 Magnolia Ave., Riverside, CA 92504 (United States); Maller, Ariyeh H. [Department of Physics, New York City College of Technology, 300 Jay St., Brooklyn, NY 11201 (United States); Oñorbe, Jose [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bullock, James S. [Center for Cosmology, Department of Physics and Astronomy, The University of California at Irvine, Irvine, CA 92697 (United States); Joung, M. Ryan [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Devriendt, Julien [Department of Physics, University of Oxford, The Denys Wilkinson Building, Keble Rd., Oxford OX1 3RH (United Kingdom); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Kereš, Dušan [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Hopkins, Philip F. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Faucher-Giguère, Claude-André [Department of Physics and Astronomy and CIERA, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208 (United States)

    2017-07-01

    We investigate angular momentum acquisition in Milky Way-sized galaxies by comparing five high resolution zoom-in simulations, each implementing identical cosmological initial conditions but utilizing different hydrodynamic codes: Enzo, Art, Ramses, Arepo, and Gizmo-PSPH. Each code implements a distinct set of feedback and star formation prescriptions. We find that while many galaxy and halo properties vary between the different codes (and feedback prescriptions), there is qualitative agreement on the process of angular momentum acquisition in the galaxy’s halo. In all simulations, cold filamentary gas accretion to the halo results in ∼4 times more specific angular momentum in cold halo gas ( λ {sub cold} ≳ 0.1) than in the dark matter halo. At z > 1, this inflow takes the form of inspiraling cold streams that are co-directional in the halo of the galaxy and are fueled, aligned, and kinematically connected to filamentary gas infall along the cosmic web. Due to the qualitative agreement among disparate simulations, we conclude that the buildup of high angular momentum halo gas and the presence of these inspiraling cold streams are robust predictions of Lambda Cold Dark Matter galaxy formation, though the detailed morphology of these streams is significantly less certain. A growing body of observational evidence suggests that this process is borne out in the real universe.

  6. Non-periodic molecular dynamics simulations of coarse grained lipid bilayer in water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Hanasaki, I.; Walther, Jens Honore

    2010-01-01

    We present a multiscale algorithm that couples coarse grained molecular dynamics (CGMD) with continuum solver. The coupling requires the imposition of non-periodic boundary conditions on the coarse grained Molecular Dynamics which, when not properly enforced, may result in spurious fluctuations o...... in simulating more complex systems by performing a non-periodic Molecular Dynamics simulation of a DPPC lipid in liquid coarse grained water.......We present a multiscale algorithm that couples coarse grained molecular dynamics (CGMD) with continuum solver. The coupling requires the imposition of non-periodic boundary conditions on the coarse grained Molecular Dynamics which, when not properly enforced, may result in spurious fluctuations...... of the material properties of the system represented by CGMD. In this paper we extend a control algorithm originally developed for atomistic simulations [3], to conduct simulations involving coarse grained water molecules without periodic boundary conditions. We demonstrate the applicability of our method...

  7. Development of a Measuring System Based on LabVIEW for Angular Stiffness of Integrative Flexible Joint

    International Nuclear Information System (INIS)

    Liu, C J; Wan, D A

    2006-01-01

    In order to meet the need of development of integrative flexible joint, this paper presents a higher precision measuring system for angular stiffness test of integrative flexible joint. The main parts of the system include PC, precision motorized goniometric stage, precision motorized rotary stage and high accuracy torque sensor. The measuring and control program is developed on the platform of LabVIEW. The measuring system developed has angular resolution at 0.00032 deg. (about 1'') theoretically in determining the angular displacement of the joint round its equatorial axis and torque accuracy at 0.005 mN · m. The developed program, which presents a friendly GUI, can implement the data acquisition and processing, measuring procedure automatically. In comparison with other measuring devices with similar purposes, the measuring device can improve the measuring efficiency and accuracy distinctly while has advantages of simple configuration, low cost and high stability

  8. Chandra's Ultimate Angular Resolution: Studies of the HRC-I Point Spread Function

    Science.gov (United States)

    Juda, Michael; Karovska, M.

    2010-03-01

    The Chandra High Resolution Camera (HRC) should provide an ideal imaging match to the High-Resolution Mirror Assembly (HRMA). The laboratory-measured intrinsic resolution of the HRC is 20 microns FWHM. HRC event positions are determined via a centroiding method rather than by using discrete pixels. This event position reconstruction method and any non-ideal performance of the detector electronics can introduce distortions in event locations that, when combined with spacecraft dither, produce artifacts in source images. We compare ray-traces of the HRMA response to "on-axis" observations of AR Lac and Capella as they move through their dither patterns to images produced from filtered event lists to characterize the effective intrinsic PSF of the HRC-I. A two-dimensional Gaussian, which is often used to represent the detector response, is NOT a good representation of the intrinsic PSF of the HRC-I; the actual PSF has a sharper peak and additional structure which will be discussed. This work was supported under NASA contract NAS8-03060.

  9. FROM ATOMISTIC TO SYSTEMATIC COARSE-GRAINED MODELS FOR MOLECULAR SYSTEMS

    KAUST Repository

    Harmandaris, Vagelis; Kalligiannaki, Evangelia; Katsoulakis, Markos; Plechac, Petr

    2017-01-01

    The development of systematic (rigorous) coarse-grained mesoscopic models for complex molecular systems is an intense research area. Here we first give an overview of methods for obtaining optimal parametrized coarse-grained models, starting from

  10. Thermodynamic forces in coarse-grained simulations

    Science.gov (United States)

    Noid, William

    Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.

  11. Modelling airborne dispersion of coarse particulate material

    International Nuclear Information System (INIS)

    Apsley, D.D.

    1989-03-01

    Methods of modelling the airborne dispersion and deposition of coarse particulates are presented, with the emphasis on the heavy particles identified as possible constituents of releases from damaged AGR fuel. The first part of this report establishes the physical characteristics of the irradiated particulate in airborne emissions from AGR stations. The second part is less specific and describes procedures for extending current dispersion/deposition models to incorporate a coarse particulate component: the adjustment to plume spread parameters, dispersion from elevated sources and dispersion in conjunction with building effects and plume rise. (author)

  12. Recycled Coarse Aggregate Produced by Pulsed Discharge in Water

    Science.gov (United States)

    Namihira, Takao; Shigeishi, Mitsuhiro; Nakashima, Kazuyuki; Murakami, Akira; Kuroki, Kaori; Kiyan, Tsuyoshi; Tomoda, Yuichi; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Ohtsu, Masayasu

    In Japan, the recycling ratio of concrete scraps has been kept over 98 % after the Law for the Recycling of Construction Materials was enforced in 2000. In the present, most of concrete scraps were recycled as the Lower Subbase Course Material. On the other hand, it is predicted to be difficult to keep this higher recycling ratio in the near future because concrete scraps increase rapidly and would reach to over 3 times of present situation in 2010. In addition, the demand of concrete scraps as the Lower Subbase Course Material has been decreased. Therefore, new way to reuse concrete scraps must be developed. Concrete scraps normally consist of 70 % of coarse aggregate, 19 % of water and 11 % of cement. To obtain the higher recycling ratio, the higher recycling ratio of coarse aggregate is desired. In this paper, a new method for recycling coarse aggregate from concrete scraps has been developed and demonstrated. The system includes a Marx generator and a point to hemisphere mesh electrode immersed in water. In the demonstration, the test piece of concrete scrap was located between the electrodes and was treated by the pulsed discharge. After discharge treatment of test piece, the recycling coarse aggregates were evaluated under JIS and TS and had enough quality for utilization as the coarse aggregate.

  13. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    Science.gov (United States)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  14. Variation in angular velocity and angular acceleration of a particle in rectilinear motion

    International Nuclear Information System (INIS)

    Mashood, K K; Singh, V A

    2012-01-01

    We discuss the angular velocity and angular acceleration associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a straight line. We present some details of our observations. A formal derivation of ω and α is presented which reveals ‘surprising’ and non-intuitive aspects, namely non-monotonic behaviour with an associated extremum. The special case of constant velocity is studied and we find that angular acceleration associated with it also has an extremum. We discuss a plausible source of difficulty. (paper)

  15. High-Resolution Structural Monitoring of Ionospheric Absorption Events

    Science.gov (United States)

    2013-07-01

    7 riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of...riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of confusion...event captured with this system . Note that, even at this fairly coarse resolution, there is discrete structure that changes in position and strength

  16. Bragg reflection transmission filters for variable resolution monochromators

    International Nuclear Information System (INIS)

    Chapman, D.

    1989-01-01

    There are various methods for improving the angular and spectral resolution of monochromator and analyzer systems. The novel system described here, though limited to higher x-ray energies (>20keV), is based on a dynamical effect occurring on the transmitted beam with a thin perfect crystal plate set in the Bragg reflection case. In the case of Bragg reflection from a perfect crystal, the incident beam is rapidly attenuated as it penetrates the crystal in the range of reflection. This extinction length is of the order of microns. The attenuation length, which determines the amount of normal transmission through the plate is generally much longer. Thus, in the range of the Bragg reflection the attenuation of the transmitted beam can change by several orders of magnitude with a small change in energy or angle. This thin crystal plate cuts a notch in the transmitted beam with a width equal to its Darwin width, thus acting as a transmission filter. When used in a non-dispersive mode with other monochromator crystals, the filter when set at the Bragg angle will reflect the entire Darwin width of the incident beam and transmit the wings of the incident beam distribution. When the element is offset in angle by some fraction of the Darwin width, the filter becomes useful in adjusting the angular width of the transmitted beam and removing a wing. Used in pairs with a symmetric offset, the filters can be used to continuously adjust the intrinsic angular divergence of the beam with good wing reduction. Instances where such filters may be useful are in improving the angular resolution of a small angle scattering camera. These filters may be added to a Bonse-Hart camera with one pair on the incident beam to reduce the intrinsic beam divergence and a second pair on the analyzer arm to improve the analyzer resolution. 2 refs., 3 Figs

  17. An alternative resolution to the Mansuripur paradox

    Science.gov (United States)

    Redfern, Francis

    2016-04-01

    In 2013 an article published online by the journal Science declared that the paradox proposed by Masud Mansuripur was resolved. This paradox concerns a point charge-Amperian magnetic dipole system as seen in a frame of reference where they are at rest and one in which they are moving. In the latter frame an electric dipole appears on the magnetic dipole. A torque is then exerted upon the electric dipole by the point charge, a torque that is not observed in the at-rest frame. Mansuripur points out this violates the relativity principle and suggests the Lorentz force responsible for the torque be replaced by the Einstein-Laub force. The resolution of the paradox reported by Science, based on numerous papers in the physics literature, preserves the Lorentz force but depends on the concept of hidden momentum. Here I propose a different resolution based on the overlooked fact that the charge-magnetic dipole system contains linear and angular electromagnetic field momentum. The time rate of change of the field angular-momentum in the frame through which the system is moving cancels that due to the charge-electric dipole interaction. From this point of view hidden momentum is not needed in the resolution of the paradox.

  18. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  19. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  20. Characterisation of radiation damage in perovskite using high angular resolution electron channeling x-ray spectroscopy (HARECXS)

    International Nuclear Information System (INIS)

    Smith, K.L.; Zaluzec, N.J.

    2002-01-01

    Full text: Predicting and/or modelling the occurrence of radiation damage induced defects and their effects on physical properties (eg. amorphisation induced swelling, electrical conductivity., optical response etc.) in ceramic phases requires knowledge of the displacement energies, E d , of cations and anions in those phases. In this study, High Angular Resolution Electron Channelling X-ray Spectroscopy (HARECXS) spectra were collected from perovskite (CaTiO 3 ) samples that had been exposed to high-energy electrons or high-energy heavy ions. Calculations based on experimental data were then used to indicate the E d of the cations in perovskite. The HARECXS measurements were conducted on a Philips EM 420T AEM (LaB6 source, operated at 120 kV) fitted with an EDAX ultra thin window Si(Li) detector. The specimen was first manually oriented to an appropriate zone axis. Then control of the relative orientation of the incident probe was accomplished via direct computer control of the beam tilt coils, Typical acquisition times for a complete two-dimensional scan were 18-24 hours, while one dimensional scans ranged from 1-5 hours. Our experiments established that: a) HARECXS can detect radiation damage in perovskite caused by either high energy heavy ions or high energy electrons, b) the HARECXS signature of perovskite shows a systematic change with ion dose, c) HARECXS detects damage in perovskite that has been irradiated with 900kV electrons and does not detect damage in perovskite that has been irradiated with 620kV electrons, indicating the existance of an electron irradiation damage threshold. Calculations based on the latter results indicate that the displacement energy, E d of calcium and titanium in perovskite lie between 50 and 85eV. Copyright (2002) Australian Society for Electron Microscopy Inc

  1. Chemical-mineralogical characterisation of coarse recycled concrete aggregate

    International Nuclear Information System (INIS)

    Limbachiya, M.C.; Marrocchino, E.; Koulouris, A.

    2007-01-01

    The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO 2 , Al 2 O 3 and CaO) of concrete, but thereafter there was a marginal decrease in SiO 2 and increase in Al 2 O 3 and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition

  2. Chemical-mineralogical characterisation of coarse recycled concrete aggregate.

    Science.gov (United States)

    Limbachiya, M C; Marrocchino, E; Koulouris, A

    2007-01-01

    The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO2, Al2O3 and CaO) of concrete, but thereafter there was a marginal decrease in SiO2 and increase in Al2O3 and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition.

  3. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  4. Coarse graining of atactic polystyrene and its derivatives

    Science.gov (United States)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2014-03-01

    Capturing large length scales in polymers and soft matter while retaining atomistic properties is imperative to computational studies of dynamic systems. Here we present a new methodology developing coarse-grain model based on atomistic simulation of atactic polystyrene (PS). Similar to previous work by Fritz et al., each monomer is described by two coarse grained beads. In contrast to this earlier work where intramolecular potentials were based on Monte Carlo simulation of both isotactic and syndiotactic single PS molecule to capture stereochemistry, we obtained intramolecular interactions from a single molecular dynamics simulation of an all-atom atactic PS melts. The non-bonded interactions are obtained using the iterative Boltzmann inversion (IBI) scheme. This methodology has been extended to coarse graining of poly-(t-butyl-styrene) (PtBS). An additional coarse-grained bead is used to describe the t-butyl group. Similar to the process for PS, the intramolecular interactions are obtained from a single all atom atactic melt simulation. Starting from the non-bonded interactions for PS, we show that the IBI method for the non-bonded interactions of PtBS converges relatively fast. A generalized scheme for substituted PS is currently in development. We would like to acknowledge Prof. Kurt Kremer for helpful discussions during this work.

  5. Remote Sensing of River Delta Inundation: Exploiting the Potential of Coarse Spatial Resolution, Temporally-Dense MODIS Time Series

    Directory of Open Access Journals (Sweden)

    Claudia Kuenzer

    2015-07-01

    Full Text Available River deltas belong to the most densely settled places on earth. Although they only account for 5% of the global land surface, over 550 million people live in deltas. These preferred livelihood locations, which feature flat terrain, fertile alluvial soils, access to fluvial and marine resources, a rich wetland biodiversity and other advantages are, however, threatened by numerous internal and external processes. Socio-economic development, urbanization, climate change induced sea level rise, as well as flood pulse changes due to upstream water diversion all lead to changes in these highly dynamic systems. A thorough understanding of a river delta’s general setting and intra-annual as well as long-term dynamic is therefore crucial for an informed management of natural resources. Here, remote sensing can play a key role in analyzing and monitoring these vast areas at a global scale. The goal of this study is to demonstrate the potential of intra-annual time series analyses at dense temporal, but coarse spatial resolution for inundation characterization in five river deltas located in four different countries. Based on 250 m MODIS reflectance data we analyze inundation dynamics in four densely populated Asian river deltas—namely the Yellow River Delta (China, the Mekong Delta (Vietnam, the Irrawaddy Delta (Myanmar, and the Ganges-Brahmaputra (Bangladesh, India—as well as one very contrasting delta: the nearly uninhabited polar Mackenzie Delta Region in northwestern Canada for the complete time span of one year (2013. A complex processing chain of water surface derivation on a daily basis allows the generation of intra-annual time series, which indicate inundation duration in each of the deltas. Our analyses depict distinct inundation patterns within each of the deltas, which can be attributed to processes such as overland flooding, irrigation agriculture, aquaculture, or snowmelt and thermokarst processes. Clear differences between mid

  6. Coarse-graining free theories with gauge symmetries: the linearized case

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Dittrich, Bianca; He Song

    2011-01-01

    Discretizations of continuum theories often do not preserve the gauge symmetry content. This occurs in particular for diffeomorphism symmetry in general relativity, which leads to severe difficulties in both canonical and covariant quantization approaches. We discuss here the method of perfect actions, which attempts to restore gauge symmetries by mirroring exactly continuum physics on a lattice via a coarse graining process. Analytical results can only be obtained via a perturbative approach, for which we consider the first step, namely the coarse graining of the linearized theory. The linearized gauge symmetries are exact also in the discretized theory; hence, we develop a formalism to deal with gauge systems. Finally, we provide a discretization of linearized gravity as well as a coarse graining map and show that with this choice the three-dimensional (3D) linearized gravity action is invariant under coarse graining.

  7. Nonlinear Multigrid solver exploiting AMGe Coarse Spaces with Approximation Properties

    DEFF Research Database (Denmark)

    Christensen, Max la Cour; Villa, Umberto; Engsig-Karup, Allan Peter

    The paper introduces a nonlinear multigrid solver for mixed finite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstructured problems is the guaranteed approximation property of the AMGe coarse...... properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on unstructured meshes has the ability to be as powerful/successful as FAS on geometrically refined meshes. For comparison, Newton’s method and Picard iterations with an inner state-of-the-art linear solver...... are compared to FAS on a nonlinear saddle point problem with applications to porous media flow. It is demonstrated that FAS is faster than Newton’s method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate...

  8. Probing the Spatial Distribution of the Interstellar Dust Medium by High Angular Resolution X-ray Halos of Point Sources

    Science.gov (United States)

    Xiang, Jingen

    X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N

  9. Technological possibilities for increasing coarse coal yield in the Staszic mine

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Major, M

    1985-06-01

    Experiments carried out in the Staszic underground black coal mine in Upper Silesia showed that there is a correlation of coarse coal yield and yield strength of shield supports used at longwall faces. The faces were equipped with Pioma 25-45, Fazos 15-31 and Fazos 19-32 shield supports, KWB 3RDU shearer loaders and Rybnik chain conveyors. Pressure of oil in water emulsion used in the Pioma 25/45 shield supports was reduced from the recommended 30 MPa to 15 MPa or to 10 MPa. Reducing emulsion pressure (and support yield strength) caused an increase in coarse coal yield. Coarse coal yield was also increased by use of Fazos 19/32 shield supports with reduced yield strength. During the tests coarse coal yield increased 1.68% and 2.65%. Test results are shown in 3 diagrams. Investigations carried out in the Staszic mine in 1983 showed that by optimizing yield strength of shield supports coarse coal yield could be increased 2 to 8%. 6 references.

  10. Angular-momentum transport in nuclear collisions

    International Nuclear Information System (INIS)

    Wolschin, G.; Ayik, S.; Noerenberg, W.

    1978-01-01

    Among the various relaxation processes that can be observed in heavy-ion collisions, the dissipation of relative angular momentum into intrinsic angular momentum of the fragments attracts increasing attention. Here we present a transport theoretical description of angular-momentum and mass transport that allows for a transparent interpretation of the data. (orig.) [de

  11. AngularJS test-driven development

    CERN Document Server

    Chaplin, Tim

    2015-01-01

    This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.

  12. Volume calculations of coarse woody debris; evaluation of coarse woody debris volume calculations and consequences for coarse woody debris volume estimates in forest reserves

    NARCIS (Netherlands)

    Wijdeven, S.M.J.; Vaessen, O.H.B.; Hees, van A.F.M.; Olsthoorn, A.F.M.

    2005-01-01

    Dead wood is recognized as one of the key indicators for sustainable forest management and biodiversity. Accurate assessments of dead wood volume are thus necessary. In this study New volume models were designed based on actual volume measurements of coarse woody debris. The New generic model

  13. Spacetime coarse grainings in nonrelativistic quantum mechanics

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1991-01-01

    Sum-over-histories generalizations of nonrelativistic quantum mechanics are explored in which probabilities are predicted, not just for alternatives defined on spacelike surfaces, but for alternatives defined by the behavior of spacetime histories with respect to spacetime regions. Closed, nonrelativistic systems are discussed whose histories are paths in a given configuration space. The action and the initial quantum state are assumed fixed and given. A formulation of quantum mechanics is used which assigns probabilities to members of sets of alternative coarse-grained histories of the system, that is, to the individual classes of a partition of its paths into exhaustive and exclusive classes. Probabilities are assigned to those sets which decohere, that is, whose probabilities are consistent with the sum rules of probability theory. Coarse graining by the behavior of paths with respect to regions of spacetime is described. For example, given a single region, the set of all paths may be partitioned into those which never pass through the region and those which pass through the region at least once. A sum-over-histories decoherence functional is defined for sets of alternative histories coarse-grained by spacetime regions. Techniques for the definition and effective computation of the relevant sums over histories by operator-product formulas are described and illustrated by examples. Methods based on Euclidean stochastic processes are also discussed and illustrated. Models of decoherence and measurement for spacetime coarse grainings are described. Issues of causality are investigated. Such spacetime generalizations of nonrelativistic quantum mechanics may be useful models for a generalized quantum mechanics of spacetime geometry

  14. Constructing Optimal Coarse-Grained Sites of Huge Biomolecules by Fluctuation Maximization.

    Science.gov (United States)

    Li, Min; Zhang, John Zenghui; Xia, Fei

    2016-04-12

    Coarse-grained (CG) models are valuable tools for the study of functions of large biomolecules on large length and time scales. The definition of CG representations for huge biomolecules is always a formidable challenge. In this work, we propose a new method called fluctuation maximization coarse-graining (FM-CG) to construct the CG sites of biomolecules. The defined residual in FM-CG converges to a maximal value as the number of CG sites increases, allowing an optimal CG model to be rigorously defined on the basis of the maximum. More importantly, we developed a robust algorithm called stepwise local iterative optimization (SLIO) to accelerate the process of coarse-graining large biomolecules. By means of the efficient SLIO algorithm, the computational cost of coarse-graining large biomolecules is reduced to within the time scale of seconds, which is far lower than that of conventional simulated annealing. The coarse-graining of two huge systems, chaperonin GroEL and lengsin, indicates that our new methods can coarse-grain huge biomolecular systems with up to 10,000 residues within the time scale of minutes. The further parametrization of CG sites derived from FM-CG allows us to construct the corresponding CG models for studies of the functions of huge biomolecular systems.

  15. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed

    Science.gov (United States)

    Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; Rémond, D.

    2010-10-01

    The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.

  16. Entropies from Coarse-graining: Convex Polytopes vs. Ellipsoids

    Directory of Open Access Journals (Sweden)

    Nikos Kalogeropoulos

    2015-09-01

    Full Text Available We examine the Boltzmann/Gibbs/Shannon SBGS and the non-additive Havrda-Charvát/Daróczy/Cressie-Read/Tsallis Sq and the Kaniadakis κ-entropy Sκ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between two generally different approaches: the Euclidean/Riemannian metric one that reflects independence and picks cubes as the fundamental cells in coarse-graining and the symplectic/canonical one that picks spheres/ellipsoids for this role. Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of many degrees of freedom. We see that Dvoretzky’s theorem provides asymptotic estimates for the minimal dimension beyond which these two approaches are close to each other. We state and speculate about the role that dualities may play in this viewpoint.

  17. Improved wetland classification using eight-band high-resolution satellite imagery and a hybrid approach

    Science.gov (United States)

    Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of derived wetland maps were limited or often unsatisfactory largely due to the relatively coarse spatial resolution of conventional satellite imagery. This re...

  18. Angular momentum from tidal torques

    International Nuclear Information System (INIS)

    Barnes, J.; Efstathiou, G.; Cambridge Univ., England)

    1987-01-01

    The origin of the angular momentum of bound objects in large N-body simulations is studied using three sets of models. One model with white-noise initial conditions is analyzed as well as two in which the initial conditions have more power on large scales, as predicted in models with cold dark matter. The growth and distribution of angular momentum in individual objects is studied and it is found that the specific angular momentum distribution of bound clumps increases in a near linear fashion with radius while the orientation of the angular momentum in the inner high-density regions is often poorly correlated with that of the outer parts. It is also found that the dimensionless spin parameter is insensitive to the initial perturbation spectrum and has a median value of about 0.05. 61 references

  19. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  20. Fission Fragment Angular Distributions in the $^{234}$U(n,f) and $^{236}$U(n,f) reactions

    CERN Multimedia

    We propose to measure the fission fragment angular distribution (FFAD) of the $^{234}$U(n,f) and $^{236}$U (n,f) reactions with the PPAC detection setup used in previous n_TOF-14 experiment. This experiment would take advantage of the high resolution of the n_TOF facility to investigate the FFAD behaviour in the pronounced vibrational resonances that have been observed between 0.1 and 2 MeV for the thorium cycle isotopes. In addition, the angular distribution of these isotopes will be measured for the first time beyond 14 MeV. Furthermore, the experiment will also provide the fission cross section with reduced statistical uncertainty, extending the $^{236}$U(n,f) data up to 1 GeV

  1. Effects of model resolution and parameterizations on the simulations of clouds, precipitation, and their interactions with aerosols

    Science.gov (United States)

    Lee, Seoung Soo; Li, Zhanqing; Zhang, Yuwei; Yoo, Hyelim; Kim, Seungbum; Kim, Byung-Gon; Choi, Yong-Sang; Mok, Jungbin; Um, Junshik; Ock Choi, Kyoung; Dong, Danhong

    2018-01-01

    This study investigates the roles played by model resolution and microphysics parameterizations in the well-known uncertainties or errors in simulations of clouds, precipitation, and their interactions with aerosols by the numerical weather prediction (NWP) models. For this investigation, we used cloud-system-resolving model (CSRM) simulations as benchmark simulations that adopt high-resolution and full-fledged microphysical processes. These simulations were evaluated against observations, and this evaluation demonstrated that the CSRM simulations can function as benchmark simulations. Comparisons between the CSRM simulations and the simulations at the coarse resolutions that are generally adopted by current NWP models indicate that the use of coarse resolutions as in the NWP models can lower not only updrafts and other cloud variables (e.g., cloud mass, condensation, deposition, and evaporation) but also their sensitivity to increasing aerosol concentration. The parameterization of the saturation process plays an important role in the sensitivity of cloud variables to aerosol concentrations. while the parameterization of the sedimentation process has a substantial impact on how cloud variables are distributed vertically. The variation in cloud variables with resolution is much greater than what happens with varying microphysics parameterizations, which suggests that the uncertainties in the NWP simulations are associated with resolution much more than microphysics parameterizations.

  2. NONLINEAR MULTIGRID SOLVER EXPLOITING AMGe COARSE SPACES WITH APPROXIMATION PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Max La Cour [Technical Univ. of Denmark, Lyngby (Denmark); Villa, Umberto E. [Univ. of Texas, Austin, TX (United States); Engsig-Karup, Allan P. [Technical Univ. of Denmark, Lyngby (Denmark); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-22

    The paper introduces a nonlinear multigrid solver for mixed nite element discretizations based on the Full Approximation Scheme (FAS) and element-based Algebraic Multigrid (AMGe). The main motivation to use FAS for unstruc- tured problems is the guaranteed approximation property of the AMGe coarse spaces that were developed recently at Lawrence Livermore National Laboratory. These give the ability to derive stable and accurate coarse nonlinear discretization problems. The previous attempts (including ones with the original AMGe method, [5, 11]), were less successful due to lack of such good approximation properties of the coarse spaces. With coarse spaces with approximation properties, our FAS approach on un- structured meshes should be as powerful/successful as FAS on geometrically re ned meshes. For comparison, Newton's method and Picard iterations with an inner state-of-the-art linear solver is compared to FAS on a nonlinear saddle point problem with applications to porous media ow. It is demonstrated that FAS is faster than Newton's method and Picard iterations for the experiments considered here. Due to the guaranteed approximation properties of our AMGe, the coarse spaces are very accurate, providing a solver with the potential for mesh-independent convergence on general unstructured meshes.

  3. The solid state track detectors for α-particles angular distribution measurements

    International Nuclear Information System (INIS)

    Bakr, M.H.S.

    1978-01-01

    The solid state track detectors technique is described in details from the point of view of applying them in nuclear reactions research. Using an optimum developing solution, the etching rate of polycarbonate detector was found to be 10.5 μ/hour. The energy resolution of this detector was estimated using 241 Am α-source at α-energies between 1 and 3 Mev. The scattering chamber designed for angular distribution measurements using solid state track detectors is described. A special schematic normograph for range-energy-degrading foils relation is given

  4. Angular trap for macroparticles

    International Nuclear Information System (INIS)

    Aksyonov, D.S.

    2013-01-01

    Properties of angular macroparticle traps were investigated in this work. These properties are required to design vacuum arc plasma filters. The correlation between trap geometry parameters and its ability to absorb macroparticles were found. Calculations allow one to predict the behaviour of filtering abilities of separators which contain such traps in their design. Recommendations regarding the use of angular traps in filters of different builds are given.

  5. Renormalization and Coarse-graining of Loop Quantum Gravity

    OpenAIRE

    Charles, Christoph

    2017-01-01

    The continuum limit of loop quantum gravity is still an open problem. Indeed, no proper dynamics in known to start with and we still lack the mathematical tools to study its would-be continuum limit. In the present PhD dissertation, we will investigate some coarse-graining methods that should become helpful in this enterprise. We concentrate on two aspects of the theory's coarse-graining: finding natural large scale observables on one hand and studying how the dynamics of varying graphs could...

  6. Influence of uncoated and coated plastic waste coarse aggregates to concrete compressive strength

    OpenAIRE

    Purnomo Heru; Pamudji Gandjar; Satim Madsuri

    2017-01-01

    The use of plastic waste as coarse aggregates in concrete is part of efforts to reduce environmental pollution. In one hand the use of plastic as aggregates can provide lighter weight of the concrete than concrete using natural aggregates, but on the other hand bond between plastic coarse aggregates and hard matrix give low concrete compressive strength. Improvement of the bond between plastic coarse aggregate and hard matrix through a sand coating to plastic coarse aggregate whole surface is...

  7. SAGA GIS based processing of spatial high resolution temperature data

    International Nuclear Information System (INIS)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen; Zaksek, Klemen

    2013-01-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  8. Peculiar velocity effects in high-resolution microwave background experiments

    International Nuclear Information System (INIS)

    Challinor, Anthony; Leeuwen, Floor van

    2002-01-01

    We investigate the impact of peculiar velocity effects due to the motion of the solar system relative to the cosmic microwave background (CMB) on high resolution CMB experiments. It is well known that on the largest angular scales the combined effects of Doppler shifts and aberration are important; the lowest Legendre multipoles of total intensity receive power from the large CMB monopole in transforming from the CMB frame. On small angular scales aberration dominates and is shown here to lead to significant distortions of the total intensity and polarization multipoles in transforming from the rest frame of the CMB to the frame of the solar system. We provide convenient analytic results for the distortions as series expansions in the relative velocity of the two frames, but at the highest resolutions a numerical quadrature is required. Although many of the high resolution multipoles themselves are severely distorted by the frame transformations, we show that their statistical properties distort by only an insignificant amount. Therefore, the cosmological parameter estimation is insensitive to the transformation from the CMB frame (where theoretical predictions are calculated) to the rest frame of the experiment

  9. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Cresswell, A.; Zimmerman, R.L.; Oregon Univ., Eugene

    1986-01-01

    It is argued that the correct expressions for the angular momentum flux carried by gravitational radiation should follow directly from the momentum currents. Following this approach, the authors compute the angular momentum associated with several different choices of energy-momentum prescriptions. (author)

  10. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  11. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion

    International Nuclear Information System (INIS)

    Svensson, K.; Jompol, Y.; Olin, H.; Olsson, E.

    2003-01-01

    A scanning tunneling microscope (STM) with a compact, three-dimensional, inertial slider design is presented. Inertial sliding of the STM tip, in three dimensions, enables coarse motion and scanning using only one piezoelectric tube. Using the same electronics both for scanning and inertial sliding, step lengths of less than 5% of the piezo range were achieved. The compact design, less than 1 cm3 in volume, ensures a low mechanical noise level and enables us to fit the STM into the sample holder of a transmission electron microscope (TEM), while maintaining atomic scale resolution in both STM and TEM imaging

  12. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  13. Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows

    Science.gov (United States)

    Mach, Patryk; Piróg, Michał; Font, José A.

    2018-05-01

    We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.

  14. Fabrication of High Resolution Lightweight X-ray Mirrors Using Mono-crystalline Silicon Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "Three factors characterize an X-ray optics fabrication technology: angular resolution, effective area per unit mass, and production cost per unit effective...

  15. Adaptive resolution simulation of an atomistic DNA molecule in MARTINI salt solution

    NARCIS (Netherlands)

    Zavadlav, J.; Podgornik, R.; Melo, M.n.; Marrink, S.j.; Praprotnik, M.

    2016-01-01

    We present a dual-resolution model of a deoxyribonucleic acid (DNA) molecule in a bathing solution, where we concurrently couple atomistic bundled water and ions with the coarse-grained MAR- TINI model of the solvent. We use our fine-grained salt solution model as a solvent in the inner shell

  16. Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects the measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.

  17. Characteristics of thin and coarse particulates of urban and natural brazilian aerosols

    International Nuclear Information System (INIS)

    Orsini, C.Q.; Tabacnics, M.H.; Artaxo, P.; Andrade, M.F.; Kerr, A.S.

    1994-01-01

    Thin and coarse particulate were sampled during the period 1982-1985 in a natural coastal forest (Jureia), and five urban-industrial regions (Vitoria, Salvador, Porto Alegre, Sao Paulo and Belo Horizonte). The time variation of the concentration in the air, and the relative elementary composition of the thin and coarse particulate, sampled by thin and Coarse Particulate Sampler (AFG), were determined by gravimetric method and PIXE analysis respectively. The results demonstrated that the ground dust and salt from the sea are unequivocally one of the largest sources of coarse particulate, and also the ground is a significant thin particulate source. 25 refs, 22 figs, 28 tabs. (L.C.J.A.)

  18. Importance of Coarse Woody Debris to Avian Communities in Loblolly Pine Forests

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, S.M.; Gauthreaux, S.A.; Kilgo, J.C.

    2001-06-14

    Investigates the importance of standing and down coarse woody debris to bird communities in loblolly pine forests, researchers compared breeding and nonbreeding responses of birds among two coarse woody debris removal and control treatments. Quantification of vegetation layers to determine their effects on the experimental outcome coarse woody debris removal had no effect on the nonbreeding bird community. Most breeding and nonbreeding species used habitats with sparse midstory and well-developed understory, where as sparse canopy cover and dense midstory were important to some nonbreeding species. Snag and down coarse woody debris practices that maintain a dense understory, sparse midstory and canopy will create favorable breeding habitat.

  19. Coarse-graining using the relative entropy and simplex-based optimization methods in VOTCA

    Science.gov (United States)

    Rühle, Victor; Jochum, Mara; Koschke, Konstantin; Aluru, N. R.; Kremer, Kurt; Mashayak, S. Y.; Junghans, Christoph

    2014-03-01

    Coarse-grained (CG) simulations are an important tool to investigate systems on larger time and length scales. Several methods for systematic coarse-graining were developed, varying in complexity and the property of interest. Thus, the question arises which method best suits a specific class of system and desired application. The Versatile Object-oriented Toolkit for Coarse-graining Applications (VOTCA) provides a uniform platform for coarse-graining methods and allows for their direct comparison. We present recent advances of VOTCA, namely the implementation of the relative entropy method and downhill simplex optimization for coarse-graining. The methods are illustrated by coarse-graining SPC/E bulk water and a water-methanol mixture. Both CG models reproduce the pair distributions accurately. SYM is supported by AFOSR under grant 11157642 and by NSF under grant 1264282. CJ was supported in part by the NSF PHY11-25915 at KITP. K. Koschke acknowledges funding by the Nestle Research Center.

  20. High-resolution Compton cameras based on Si/CdTe double-sided strip detectors

    International Nuclear Information System (INIS)

    Odaka, Hirokazu; Ichinohe, Yuto; Takeda, Shin'ichiro; Fukuyama, Taro; Hagino, Koichi; Saito, Shinya; Sato, Tamotsu; Sato, Goro; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Yamaguchi, Mitsutaka

    2012-01-01

    We have developed a new Compton camera based on silicon (Si) and cadmium telluride (CdTe) semiconductor double-sided strip detectors (DSDs). The camera consists of a 500-μm-thick Si-DSD and four layers of 750-μm-thick CdTe-DSDs all of which have common electrode configuration segmented into 128 strips on each side with pitches of 250μm. In order to realize high angular resolution and to reduce size of the detector system, a stack of DSDs with short stack pitches of 4 mm is utilized to make the camera. Taking advantage of the excellent energy and position resolutions of the semiconductor devices, the camera achieves high angular resolutions of 4.5° at 356 keV and 3.5° at 662 keV. To obtain such high resolutions together with an acceptable detection efficiency, we demonstrate data reduction methods including energy calibration using Compton scattering continuum and depth sensing in the CdTe-DSD. We also discuss imaging capability of the camera and show simultaneous multi-energy imaging.

  1. Design of low-power coarse-grained reconfigurable architectures

    CERN Document Server

    Kim, Yoonjin

    2010-01-01

    Coarse-grained reconfigurable architecture (CGRA) has emerged as a solution for flexible, application-specific optimization of embedded systems. Helping you understand the issues involved in designing and constructing embedded systems, Design of Low-Power Coarse-Grained Reconfigurable Architectures offers new frameworks for optimizing the architecture of components in embedded systems in order to decrease area and save power. Real application benchmarks and gate-level simulations substantiate these frameworks.The first half of the book explains how to reduce power in the configuration cache. T

  2. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  3. On the representability problem and the physical meaning of coarse-grained models

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jacob W.; Dama, James F.; Durumeric, Aleksander E. P.; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2016-07-28

    In coarse-grained (CG) models where certain fine-grained (FG, i.e., atomistic resolution) observables are not directly represented, one can nonetheless identify indirect the CG observables that capture the FG observable’s dependence on CG coordinates. Often, in these cases it appears that a CG observable can be defined by analogy to an all-atom or FG observable, but the similarity is misleading and significantly undermines the interpretation of both bottom-up and top-down CG models. Such problems emerge especially clearly in the framework of the systematic bottom-up CG modeling, where a direct and transparent correspondence between FG and CG variables establishes precise conditions for consistency between CG observables and underlying FG models. Here we present and investigate these representability challenges and illustrate them via the bottom-up conceptual framework for several simple analytically tractable polymer models. The examples provide special focus on the observables of configurational internal energy, entropy, and pressure, which have been at the root of controversy in the CG literature, as well as discuss observables that would seem to be entirely missing in the CG representation but can nonetheless be correlated with CG behavior. Though we investigate these problems in the framework of systematic coarse-graining, the lessons apply to top-down CG modeling also, with crucial implications for simulation at constant pressure and surface tension and for the interpretations of structural and thermodynamic correlations for comparison to experiment.

  4. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    OpenAIRE

    C. M. R. Mateo; C. M. R. Mateo; D. Yamazaki; D. Yamazaki; H. Kim; A. Champathong; J. Vaze; T. Oki; T. Oki

    2017-01-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development...

  5. New high-sensitivity, milliarcsecond resolution results from routine observations of lunar occultations at the ESO VLT

    Science.gov (United States)

    Richichi, A.; Fors, O.; Chen, W.-P.; Mason, E.

    2010-11-01

    Context. Lunar occultations (LO) are a very efficient and powerful technique that achieves the best combination of high angular resolution and sensitivity possible today at near-infrared wavelengths. Given that the events are fixed in time, that the sources are occulted randomly, and that the telescope use is minimal, the technique is very well suited for service mode observations. Aims: We have established a program of routine LO observations at the VLT observatory, especially designed to take advantage of short breaks available in-between other programs. We have used the ISAAC instrument in burst mode, capable of producing continuous read-outs at millisecond rates on a suitable subwindow. Given the random nature of the source selection, our aim has been primarily the investigation of a large number of stellar sources at the highest angular resolution in order to detect new binaries. Serendipitous results such as resolved sources and detection of circumstellar components were also anticipated. Methods: We have recorded the signal from background stars for a few seconds, around the predicted time of occultation by the Moon's dark limb. At millisecond time resolution, a characteristic diffraction pattern can be observed. Patterns for two or more sources superimpose linearly, and this property is used for the detection of binary stars. The detailed analysis of the diffraction fringes can be used to measure specific properties such as the stellar angular size and the presence of extended light sources such as a circumstellar shell. Results: We present a list of 191 stars for which LO data could be recorded and analyzed. Results include the detection of 16 binary and 2 triple stars, all but one of which were previously unknown. The projected angular separations are as small as 4 milliarcsec and magnitude differences as high as Δ K = 5.8 mag. Additionally we derive accurate angular diameters for 2 stars and resolve circumstellar emission around another one, also all

  6. Longitudinal profile diagnostic scheme with subfemtosecond resolution for high-brightness electron beams

    Directory of Open Access Journals (Sweden)

    G. Andonian

    2011-07-01

    Full Text Available High-resolution measurement of the longitudinal profile of a relativistic electron beam is of utmost importance for linac based free-electron lasers and other advanced accelerator facilities that employ ultrashort bunches. In this paper, we investigate a novel scheme to measure ultrashort bunches (subpicosecond with exceptional temporal resolution (hundreds of attoseconds and dynamic range. The scheme employs two orthogonally oriented deflecting sections. The first imparts a short-wavelength (fast temporal resolution horizontal angular modulation on the beam, while the second imparts a long-wavelength (slow angular kick in the vertical dimension. Both modulations are observable on a standard downstream screen in the form of a streaked sinusoidal beam structure. We demonstrate, using scaled variables in a quasi-1D approximation, an expression for the temporal resolution of the scheme and apply it to a proof-of-concept experiment at the UCLA Neptune high-brightness injector facility. The scheme is also investigated for application at the SLAC NLCTA facility, where we show that the subfemtosecond resolution is sufficient to resolve the temporal structure of the beam used in the echo-enabled free-electron laser. We employ beam simulations to verify the effect for typical Neptune and NLCTA parameter sets and demonstrate the feasibility of the concept.

  7. Vibration-dependent angular anisotropy in the photodetachment of O{sub 2}{sup -}, viewed with velocity-map imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S T; Cavanagh, S J; Lewis, B R [Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Gascooke, J R [School of Chemistry, Physics and Earth Sciences, Flinders University, SA 5001 (Australia); Mabbs, R [Department of Chemistry, Washington University, St Louis MO 63930-4899 (United States); Sanov, A, E-mail: Stephen.Gibson@anu.edu.a, E-mail: Steven.Cavanagh@anu.edu.a [Department of Chemistry, University of Arizona, Tucson AZ 85721-0041 (United States)

    2009-11-01

    The photodetachment spectrum of O{sub 2}{sup -} has been measured at a number of wavelengths using velocity-map imaging. The electron kinetic-energy resolution (< 5 meV) is sufficient to resolve the anion fine-structure splitting, vibrational and electronic structure. The electron angular distribution varies with the electron kinetic-energy, with a different behaviour for each vibronic band.

  8. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    Science.gov (United States)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  9. R&D proposal to DRDC fast EM calorimeter with excellent photon angular resolution and energy resolution using scintillating noble liquids

    CERN Document Server

    Chen, M; Sumorok, K; Zhang, X; Gaudreau, M P J; Akimov, D Y; Bolozdynya, A I; Churakov, D; Chernyshov, V; Koutchenkov, A; Kovalenko, A; Kuzichev, V F; Lamkov, V A; Lebedenko, V; Gusev, L; Safronov, G A; Sheinkman, V A; Smirnov, G; Krasnokutsky, R N; Shuvalov, R S; Fedyakin, N N; Sushkov, V V; Akopyan, M V; Gougas, Andreas; Pevsner, A; CERN. Geneva. Detector Research and Development Committee

    1993-01-01

    Recent test beam data have shown fast and large signals for LKr, mixed with >1% LXe. Excellent uniformity in LKr and LXe was achieved over a 37 cm long cell. CsI cathode works well inside LKr/LXe with O(1%) resolution at 5 MeV. Precision calibration in-situ has been demonstrated. Scintillating LKr/LXe detectors are sufficiently radiation hard for LHC environment. These new developments simplify the construction of prototype LKr calorimeter, to demonstrate the superior e/gamma energy resolution and the determination of photon direction using longitudinal and transverse segmentations, which are vital for the detection of the multi-photon states. The constant term in the energy resolution is small, the electronics noise is negligible due to the large signal size. The overall pion/electron suppression is expected to be better than 10-4.

  10. Effects of Model Resolution and Ocean Mixing on Forced Ice-Ocean Physical and Biogeochemical Simulations Using Global and Regional System Models

    Science.gov (United States)

    Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin

    2018-01-01

    The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.

  11. Improved Plane-Wave Ultrasound Beamforming by Incorporating Angular Weighting and Coherent Compounding in Fourier Domain.

    Science.gov (United States)

    Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L

    2018-05-01

    In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.

  12. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    Science.gov (United States)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  13. Orbital angular momentum in phase space

    International Nuclear Information System (INIS)

    Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.

    2011-01-01

    Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  14. An Evaluation of Coarse-Grained Locking for Multicore Microkernels

    OpenAIRE

    Elphinstone, Kevin; Zarrabi, Amirreza; Danis, Adrian; Shen, Yanyan; Heiser, Gernot

    2016-01-01

    The trade-off between coarse- and fine-grained locking is a well understood issue in operating systems. Coarse-grained locking provides lower overhead under low contention, fine-grained locking provides higher scalability under contention, though at the expense of implementation complexity and re- duced best-case performance. We revisit this trade-off in the context of microkernels and tightly-coupled cores with shared caches and low inter-core migration latencies. We evaluate performance on ...

  15. Angular momentum projected wave-functions

    International Nuclear Information System (INIS)

    Bengtsson, R.; Haakansson, H.B.

    1978-01-01

    Angular momentum projection has become a vital link between intrinsic model-wavefunctions and the physical states one intends to describe. We discuss in general terms some aspects of angular momentum projection and present results from projection on e.g. cranking wavefunctions. Mass densities and spectroscopic factors are also presented for some cases. (author)

  16. Experimental investigation of coarse particle conveying in pipes

    Directory of Open Access Journals (Sweden)

    Vlasak Pavel

    2015-01-01

    Full Text Available The advanced knowledge of particle-water mixture flow behaviour is important for safe, reliable, and economical design and operation of the freight pipelines. The effect of the mixture velocity and concentration on the coarse particle – water mixtures flow behaviour was experimentally investigated on an experimental pipe loop of inner diameter D = 100 mm with horizontal, vertical, and inclined pipe sections. Narrow particle size distribution basalt pebbles were used as model of coarse-grained solid particles. The radiometric method was used to measure particle concentration distribution in pipe cross-section. Mixture flow behaviour and particles motion along the pipe invert were studied in a pipe viewing section. The study revealed that the coarse particlewater mixtures in the horizontal and inclined pipe sections were significantly stratified. The particles moved principally in a layer close to the pipe invert. However, for higher and moderate flow velocities the particles moved also in the central part of the pipe cross-section, and particle saltation was found to be dominant mode of particle conveying.

  17. Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes

    Science.gov (United States)

    Spechler, Joshua A.; Hoppe, Daniel J.; Sigrist, Norbert; Shi, Fang; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.

    2013-01-01

    Segment mirror phasing, a critical step of segment mirror alignment, requires the ability to sense and correct the relative pistons between segments from up to a few hundred microns to a fraction of wavelength in order to bring the mirror system to its full diffraction capability. When sampling the aperture of a telescope, using auto-collimating flats (ACFs) is more economical. The performance of a telescope with a segmented primary mirror strongly depends on how well those primary mirror segments can be phased. One such process to phase primary mirror segments in the axial piston direction is dispersed fringe sensing (DFS). DFS technology can be used to co-phase the ACFs. DFS is essentially a signal fitting and processing operation. It is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. The Advanced Dispersed Fringe Sensing (ADFS) Algorithm is designed to reduce the sensitivity to calibration errors by determining the optimal fringe extraction line. Applying an angular extraction line dithering procedure and combining this dithering process with an error function while minimizing the phase term of the fitted signal, defines in essence the ADFS algorithm.

  18. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    Science.gov (United States)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  19. Management of Angular Cheilitis in children

    Directory of Open Access Journals (Sweden)

    Fajriani Fajriani

    2017-04-01

    Full Text Available Objective : Angular cheilitis is a type of oral soft tissue disease that can occur in children and adults, the condition is characterized by cracks and inflammation on both corners of the mouth. Although this disease can not cause severe disorder, it quite disturbs one's activity and physical appearance. Mild Angular cheilitis will recover itself over times. However severe conditions can cause pain and bleeding. This paper aims to inform colleagues about management of angular cheilitis in children.

  20. Management of angular cheilitis for children

    Directory of Open Access Journals (Sweden)

    Fajriani Fajriani

    2016-06-01

    Full Text Available Angular cheilitis is one type of oral soft tissue disease that can occur in both children and adults, the condition is characterized by cracks and inflammation in both corners of the mouth. Although this disease does not cause severe disruption but quite disturbing activity and also one's physical appearance. Angular cheilitis light will disappear on their own over time.Severe conditions that can cause pain and bleading. aims to give feedback on peers about managment angular cheilitis in children.

  1. An atlas of high-resolution IRAS maps on nearby galaxies

    Science.gov (United States)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  2. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  3. THE IMPACT OF SPATIAL AND TEMPORAL RESOLUTIONS IN TROPICAL SUMMER RAINFALL DISTRIBUTION: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2017-10-01

    Full Text Available The abundance or lack of rainfall affects peoples’ life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007, accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG. However, the models’ resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days and monthly resolutions. The probability distributions (PDF and cumulative distribution functions(CDF of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  4. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    Science.gov (United States)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  5. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    OpenAIRE

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-01-01

    Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction,...

  6. Angular integrals in d dimensions.

    OpenAIRE

    Somogyi, G.

    2011-01-01

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  7. Angular integrals in d dimensions

    International Nuclear Information System (INIS)

    Somogyi, Gabor

    2011-01-01

    We discuss the evaluation of certain d-dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  8. Angular integrals in d dimensions

    Science.gov (United States)

    Somogyi, Gábor

    2011-08-01

    We discuss the evaluation of certain d-dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications.

  9. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    Science.gov (United States)

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  10. Angular momentum projected semiclassics

    International Nuclear Information System (INIS)

    Hasse, R.W.

    1986-10-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle- one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space (r, r') the relevant quantities depend on vertical stroker - r 3 vertical stroke instead of vertical stroker - r'vertical stroke and in Wigner space (R, P) they become proportional to the angular momentum constraints δ(vertical strokeRxPvertical stroke/ℎ - l) and δ((RxP) z /ℎ - m). As applications we calculate the single-particle and one particle- one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction. (orig.)

  11. High resolution backscattering instruments

    International Nuclear Information System (INIS)

    Coldea, R.

    2001-01-01

    The principle of operation of indirect-geometry time-of-flight spectrometers are presented, including the IRIS at the ISIS spallation neutron source. The key features that make those types of spectrometers ideally suited for low-energy spectroscopy are: high energy resolution over a wide dynamic range, and simultaneous measurement over a large momentum transfer range provided by the wide angular detector coverage. To exemplify these features are discussed of single-crystal experiments of the spin dynamics in the two-dimensional frustrated quantum magnet Cs 2 CuCl 4 . (R.P.)

  12. Scanning tunneling microscope with a rotary piezoelectric stepping motor

    Science.gov (United States)

    Yakimov, V. N.

    1996-02-01

    A compact scanning tunneling microscope (STM) with a novel rotary piezoelectric stepping motor for coarse positioning has been developed. An inertial method for rotating of the rotor by the pair of piezoplates has been used in the piezomotor. Minimal angular step size was about several arcsec with the spindle working torque up to 1 N×cm. Design of the STM was noticeably simplified by utilization of the piezomotor with such small step size. A shaft eccentrically attached to the piezomotor spindle made it possible to push and pull back the cylindrical bush with the tubular piezoscanner. A linear step of coarse positioning was about 50 nm. STM resolution in vertical direction was better than 0.1 nm without an external vibration isolation.

  13. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra

    International Nuclear Information System (INIS)

    Metzkes, J.; Kraft, S. D.; Sobiella, M.; Stiller, N.; Zeil, K.; Schramm, U.; Karsch, L.; Schürer, M.; Pawelke, J.; Richter, C.

    2012-01-01

    In recent years, a new generation of high repetition rate (∼10 Hz), high power (∼100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ∼1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  14. A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra.

    Science.gov (United States)

    Metzkes, J; Karsch, L; Kraft, S D; Pawelke, J; Richter, C; Schürer, M; Sobiella, M; Stiller, N; Zeil, K; Schramm, U

    2012-12-01

    In recent years, a new generation of high repetition rate (~10 Hz), high power (~100 TW) laser systems has stimulated intense research on laser-driven sources for fast protons. Considering experimental instrumentation, this development requires online diagnostics for protons to be added to the established offline detection tools such as solid state track detectors or radiochromic films. In this article, we present the design and characterization of a scintillator-based online detector that gives access to the angularly resolved proton distribution along one spatial dimension and resolves 10 different proton energy ranges. Conceived as an online detector for key parameters in laser-proton acceleration, such as the maximum proton energy and the angular distribution, the detector features a spatial resolution of ~1.3 mm and a spectral resolution better than 1.5 MeV for a maximum proton energy above 12 MeV in the current design. Regarding its areas of application, we consider the detector a useful complement to radiochromic films and Thomson parabola spectrometers, capable to give immediate feedback on the experimental performance. The detector was characterized at an electrostatic Van de Graaff tandetron accelerator and tested in a laser-proton acceleration experiment, proving its suitability as a diagnostic device for laser-accelerated protons.

  15. Details of 1π sr wide acceptance angle electrostatic lens for electron energy and two-dimensional angular distribution analysis combined with real space imaging

    International Nuclear Information System (INIS)

    Tóth, László; Matsuda, Hiroyuki; Matsui, Fumihiko; Goto, Kentaro; Daimon, Hiroshi

    2012-01-01

    We propose a new 1π sr Wide Acceptance Angle Electrostatic Lens (WAAEL), which works as a photoemission electron microscope (PEEM), a highly sensitive display-type electron energy and two-dimensional angular distribution analyzer. It can display two-dimensional angular distributions of charged particles within the acceptance angle of ±60° that is much larger than the largest acceptance angle range so far and comparable to the display-type spherical mirror analyzer developed by Daimon et al. . It has good focusing capabilities with 5-times magnification and 27(4) μm lateral-resolution. The relative energy resolution is typically from 2 to 5×10 -3 depending on the diameter of energy aperture and the emission area on the sample. Although, the lateral resolution of the presented lens is far from those are available nowadays, but this is the first working model that can form images using charged particles collected from 1π sr wide acceptance angle. The realization of such lens system is one of the first possible steps towards reaching the field of imaging type atomic resolution electron microscopy Feynman et al. Here some preliminary results are shown.

  16. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    International Nuclear Information System (INIS)

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.; Jao, W.-C.; Norris, R. P.

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additional targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.

  17. Angular integrals in d dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Gabor

    2011-01-15

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)

  18. Angular integrals in d dimensions

    International Nuclear Information System (INIS)

    Somogyi, Gabor

    2011-01-01

    We discuss the evaluation of certain d dimensional angular integrals which arise in perturbative field theory calculations. We find that the angular integral with n denominators can be computed in terms of a certain special function, the so-called H-function of several variables. We also present several illustrative examples of the general result and briefly consider some applications. (orig.)

  19. Thermodynamically consistent coarse graining of biocatalysts beyond Michaelis–Menten

    Science.gov (United States)

    Wachtel, Artur; Rao, Riccardo; Esposito, Massimiliano

    2018-04-01

    Starting from the detailed catalytic mechanism of a biocatalyst we provide a coarse-graining procedure which, by construction, is thermodynamically consistent. This procedure provides stoichiometries, reaction fluxes (rate laws), and reaction forces (Gibbs energies of reaction) for the coarse-grained level. It can treat active transporters and molecular machines, and thus extends the applicability of ideas that originated in enzyme kinetics. Our results lay the foundations for systematic studies of the thermodynamics of large-scale biochemical reaction networks. Moreover, we identify the conditions under which a relation between one-way fluxes and forces holds at the coarse-grained level as it holds at the detailed level. In doing so, we clarify the speculations and broad claims made in the literature about such a general flux–force relation. As a further consequence we show that, in contrast to common belief, the second law of thermodynamics does not require the currents and the forces of biochemical reaction networks to be always aligned.

  20. Landsat and Sentinel-2A Surface Albedo Estimation and Evaluation Against In Situ Measurements Across the US SURFRAD Network

    Science.gov (United States)

    Franch, B.; Skakun, S.; Vermote, E.; Roger, J. C.

    2017-12-01

    Surface albedo is an essential parameter not only for developing climate models, but also for most energy balance studies. While climate models are usually applied at coarse resolution, the energy balance studies, which are mainly focused on agricultural applications, require a high spatial resolution. The albedo, estimated through the angular integration of the BRDF, requires an appropriate angular sampling of the surface. However, Sentinel-2A sampling characteristics, with nearly constant observation geometry and low illumination variation, prevent from deriving a surface albedo product. In this work, we apply an algorithm developed to derive a Landsat surface albedo to Sentinel-2A. It is based on the BRDF parameters estimated from the MODerate Resolution Imaging Spectroradiometer (MODIS) CMG surface reflectance product (M{O,Y}D09) using the VJB method (Vermote et al., 2009). Sentinel-2A unsupervised classification images are used to disaggregate the BRDF parameters to the Sentinel-2 spatial resolution. We test the results over five different sites of the US SURFRAD network and plot the results versus albedo field measurements. Additionally, we also test this methodology using Landsat-8 images.

  1. Hybrid continuum-coarse-grained modeling of erythrocytes

    Science.gov (United States)

    Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc

    2018-06-01

    The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.

  2. The Martini Coarse-Grained Force Field

    NARCIS (Netherlands)

    Periole, X.; Marrink, S.J.; Monticelli, Luca; Salonen, Emppu

    2013-01-01

    The Martini force field is a coarse-grained force field suited for molecular dynamics simulations of biomolecular systems. The force field has been parameterized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical

  3. Coarse sediment oil persistence laboratory studies and model

    International Nuclear Information System (INIS)

    Humphrey, B.; Harper, J.R.

    1993-01-01

    To gain understanding of the factors which affect the fate of stranded oil on coarse sediment beaches, a series of oil penetration and tidal flushing experiments was conducted in columns containing sediments of two grain sizes: granules and pebbles. The experiments included changing oil properties by weathering and by emulsification. Factors examined included permeability, effective porosity, and residual capacity of the sediment for oil. The laboratory data provided input to an oil persistence model for coarse sediment beaches, and the model was modified on the basis of the new data. The permeability measurements suggest that the permeability of pebble/granule mixtures is close to that of the smaller component. For low viscosity oils, the permeability in coarse sediments is rapid enough to match the fall and rise of tidal water. Effective porosity of the pebbles was ca 90% of the measured porosity, but for both the granules and a 50-50 pebble/granule mixture, the effective porosity was ca 75% of measured porosity. Results of tidal flushing simulation imply that flushing may be rapid but not efficient. The emulsion completely entered the sediment in the case of pebbles only. 2 refs., 6 figs., 3 tabs

  4. Faunistic assemblages of a sublittoral coarse sand habitat of the northwestern Mediterranean

    Directory of Open Access Journals (Sweden)

    Eva Pubill

    2011-02-01

    Full Text Available The sublittoral megabenthic assemblages of a northwestern Mediterranean coarse sandy beach exploited for the bivalve Callista chione were studied. The spatial and bathymetric variability of its distinctive faunal assemblages was characterised by quantitative sampling performed with a clam dredge. The taxa studied were Mollusca Bivalvia and Gastropoda, Crustacea Decapoda, Echinodermata and Pisces, which accounted for over 99% of the total biomass. Three well-differentiated species assemblages were identified: (1 assemblage MSS (Medium Sand Shallow in medium sand (D50=0.37 mm and shallow waters (mean depth =6.5 m, (2 assemblage CSS (Coarse Sand Shallow in coarse sand (D50=0.62 mm in shallow waters (mean depth =6.7 m, and (3 assemblage CSD (Coarse Sand Deep in coarse sand (D50=0.64 mm in deeper waters (mean depth =16.2 m. Assemblage MSS was characterised by the codominance of the bivalves Mactra stultorum and Acanthocardia tuberculata. C. chione was dominant in both density and biomass in assemblages CSS and CSD. The occurrence of the crab Thia scutellata also characterised assemblage CSS, whereas the occurrence of the sea urchin Echinocardium mediterraneum characterised assemblage CSD. A depth breaking point of around 10 m determined the discontinuity between assemblages CSS and CSD, which was related to the closure depth of the beaches in the study area. Species richness was highest in the coarse sand communities; however, Shannon-Wiener diversity and Pielou equitability indexes were higher in the shallow fine sand community.

  5. Coarse graining flow of spin foam intertwiners

    Science.gov (United States)

    Dittrich, Bianca; Schnetter, Erik; Seth, Cameron J.; Steinhaus, Sebastian

    2016-12-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group SU (2 )k×SU (2 )k, which implement the simplicity constraints analogous to four-dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different topological phases. Most of these phases correspond to decoupling spin foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates furthermore that the transitions between these phases are not of second order. The EPRL/FK model by contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the original simplicity constraints; however, with the truncation employed here, the models generically do not converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.

  6. A comparison of multi-spectral, multi-angular, and multi-temporal remote sensing datasets for fractional shrub canopy mapping in Arctic Alaska

    Science.gov (United States)

    Selkowitz, D.J.

    2010-01-01

    Shrub cover appears to be increasing across many areas of the Arctic tundra biome, and increasing shrub cover in the Arctic has the potential to significantly impact global carbon budgets and the global climate system. For most of the Arctic, however, there is no existing baseline inventory of shrub canopy cover, as existing maps of Arctic vegetation provide little information about the density of shrub cover at a moderate spatial resolution across the region. Remotely-sensed fractional shrub canopy maps can provide this necessary baseline inventory of shrub cover. In this study, we compare the accuracy of fractional shrub canopy (> 0.5 m tall) maps derived from multi-spectral, multi-angular, and multi-temporal datasets from Landsat imagery at 30 m spatial resolution, Moderate Resolution Imaging SpectroRadiometer (MODIS) imagery at 250 m and 500 m spatial resolution, and MultiAngle Imaging Spectroradiometer (MISR) imagery at 275 m spatial resolution for a 1067 km2 study area in Arctic Alaska. The study area is centered at 69 ??N, ranges in elevation from 130 to 770 m, is composed primarily of rolling topography with gentle slopes less than 10??, and is free of glaciers and perennial snow cover. Shrubs > 0.5 m in height cover 2.9% of the study area and are primarily confined to patches associated with specific landscape features. Reference fractional shrub canopy is determined from in situ shrub canopy measurements and a high spatial resolution IKONOS image swath. Regression tree models are constructed to estimate fractional canopy cover at 250 m using different combinations of input data from Landsat, MODIS, and MISR. Results indicate that multi-spectral data provide substantially more accurate estimates of fractional shrub canopy cover than multi-angular or multi-temporal data. Higher spatial resolution datasets also provide more accurate estimates of fractional shrub canopy cover (aggregated to moderate spatial resolutions) than lower spatial resolution datasets

  7. Coarse graining from variationally enhanced sampling applied to the Ginzburg-Landau model

    Science.gov (United States)

    Invernizzi, Michele; Valsson, Omar; Parrinello, Michele

    2017-03-01

    A powerful way to deal with a complex system is to build a coarse-grained model capable of catching its main physical features, while being computationally affordable. Inevitably, such coarse-grained models introduce a set of phenomenological parameters, which are often not easily deducible from the underlying atomistic system. We present a unique approach to the calculation of these parameters, based on the recently introduced variationally enhanced sampling method. It allows us to obtain the parameters from atomistic simulations, providing thus a direct connection between the microscopic and the mesoscopic scale. The coarse-grained model we consider is that of Ginzburg-Landau, valid around a second-order critical point. In particular, we use it to describe a Lennard-Jones fluid in the region close to the liquid-vapor critical point. The procedure is general and can be adapted to other coarse-grained models.

  8. Learning to Play Efficient Coarse Correlated Equilibria

    KAUST Repository

    Borowski, Holly P.; Marden, Jason R.; Shamma, Jeff S.

    2018-01-01

    The majority of the distributed learning literature focuses on convergence to Nash equilibria. Coarse correlated equilibria, on the other hand, can often characterize more efficient collective behavior than even the best Nash equilibrium. However

  9. The combustion of sound and rotten coarse woody debris: a review

    Science.gov (United States)

    Joshua C. Hyde; Alistair M.S. Smith; Roger D. Ottmar; Ernesto C. Alvarado; Penelope Morgan

    2011-01-01

    Coarse woody debris serves many functions in forest ecosystem processes and has important implications for fire management as it affects air quality, soil heating and carbon budgets when it combusts. There is relatively little research evaluating the physical properties relating to the combustion of this coarse woody debris with even less specifically addressing...

  10. Rabi like angular splitting in Surface Plasmon Polariton - Exciton interaction in ATR configuration

    Science.gov (United States)

    Hassan, Heba; Abdallah, T.; Negm, S.; Talaat, H.

    2018-05-01

    We have studied the coupling of propagating Surface Plasmon Polaritons (SPP) on silver films and excitons in CdS quantum dots (QDs). We employed the Kretschmann-Raether configuration of the attenuated total reflection (ATR) to propagate the SPP on silver film of thickness 47.5 nm at three different wavelengths. The CdS QD have been chemically synthesized with particular size such that its exciton of energy would resonate with SPP. High resolution transmission electron microscopy (HRTEM) and scan tunneling microscopy (STM) were used to measure the corresponding QDs size and confirm its shape. Further confirmation of the size has been performed by the effective mass approximation (EMA) model utilizing the band gap of the prepared QDs. The band gaps have been measured through UV-vis absorption spectra as well as scan tunneling spectroscopy (STS). The coupling has been observed as two branching dips in the ATR spectra indicating Rabi like splitting. To the best of our knowledge, this is the first time that Rabi interaction is directly observed in an ATR angular spectra. This observation is attributed to the use a high resolution angular scan (±0.005°), in addition to the Doppler width of the laser line as well as the energy distribution of the excitons. The effect of three different linker molecules (TOPO, HDA), (Pyridine) and (Tri-butylamine) as surface ligands, on SPP-Exciton interaction has been examined.

  11. Angular distribution of oriented nucleus fission neutrons

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1982-01-01

    Calculations of anisotropy of angular distribution of oriented 235 U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%

  12. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    Science.gov (United States)

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Responsive web design with AngularJS

    CERN Document Server

    Patel, Sandeep Kumar

    2014-01-01

    If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.

  14. Energy and angular distributions of neutrons from 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Vasil'ev, Yu.A.; Sidorov, L.V.; Vasil'eva, N.K.

    1982-01-01

    Some results from a first series of measurements of energy and angular distributions of neutrons from 252 Cf spontaneous fission using a spectrometer with high neutron detection efficiency, i.e. a 4π neutron time-of-flight spectrometer, were already presented. Subsequently, a second series of measurements was performed using a more sophisticated technique. For this second series, we used a more intense 252 Cf layer (25,000 spontaneous fissions per second). The angular resolution was improved by a factor of 2-3 by combining the hexahedral counter modules, placed at the same angle with respect to the direction of motion of the fragments, in new panoramic counters. The neutron counters were calibrated against the average 252 Cf neutron spectrum at several positions of the axis of the fragment detector with respect to the neutron counters. In the spectrum measurements and calibration work, the scattered neutron background was not determined theoretically, as in the first series of measurements, but experimentally using four extra scintillation counters with scatter cones; the counters were set up at 60 deg., 80 deg., 100 deg., and 120 deg. to the direction of separation of the fragments

  15. An angle encoder for super-high resolution and super-high accuracy using SelfA

    International Nuclear Information System (INIS)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-01-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 2 21 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science and Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 2 33 , that is, corresponding to a 0.0015″ signal period

  16. Integrated spectral study of small angular diameter galactic open clusters

    Science.gov (United States)

    Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.

    2017-10-01

    This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.

  17. Whole-body angular momentum during stair ascent and descent.

    Science.gov (United States)

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effects of Resolution on the Simulation of Boundary-layer Clouds and the Partition of Kinetic Energy to Subgrid Scales

    Directory of Open Access Journals (Sweden)

    Anning Cheng

    2010-02-01

    Full Text Available Seven boundary-layer cloud cases are simulated with UCLA-LES (The University of California, Los Angeles – large eddy simulation model with different horizontal and vertical gridspacing to investigate how the results depend on gridspacing. Some variables are more sensitive to horizontal gridspacing, while others are more sensitive to vertical gridspacing, and still others are sensitive to both horizontal and vertical gridspacings with similar or opposite trends. For cloud-related variables having the opposite dependence on horizontal and vertical gridspacings, changing the gridspacing proportionally in both directions gives the appearance of convergence. In this study, we mainly discuss the impact of subgrid-scale (SGS kinetic energy (KE on the simulations with coarsening of horizontal and vertical gridspacings. A running-mean operator is used to separate the KE of the high-resolution benchmark simulations into that of resolved scales of coarse-resolution simulations and that of SGSs. The diagnosed SGS KE is compared with that parameterized by the Smagorinsky-Lilly SGS scheme at various gridspacings. It is found that the parameterized SGS KE for the coarse-resolution simulations is usually underestimated but the resolved KE is unrealistically large, compared to benchmark simulations. However, the sum of resolved and SGS KEs is about the same for simulations with various gridspacings. The partitioning of SGS and resolved heat and moisture transports is consistent with that of SGS and resolved KE, which means that the parameterized transports are underestimated but resolved-scale transports are overestimated. On the whole, energy shifts to large-scales as the horizontal gridspacing becomes coarse, hence the size of clouds and the resolved circulation increase, the clouds become more stratiform-like with an increase in cloud fraction, cloud liquid-water path and surface precipitation; when coarse vertical gridspacing is used, cloud sizes do not

  19. A test of systematic coarse-graining of molecular dynamics simulations: Thermodynamic properties

    Science.gov (United States)

    Fu, Chia-Chun; Kulkarni, Pandurang M.; Scott Shell, M.; Gary Leal, L.

    2012-10-01

    Coarse-graining (CG) techniques have recently attracted great interest for providing descriptions at a mesoscopic level of resolution that preserve fluid thermodynamic and transport behaviors with a reduced number of degrees of freedom and hence less computational effort. One fundamental question arises: how well and to what extent can a "bottom-up" developed mesoscale model recover the physical properties of a molecular scale system? To answer this question, we explore systematically the properties of a CG model that is developed to represent an intermediate mesoscale model between the atomistic and continuum scales. This CG model aims to reduce the computational cost relative to a full atomistic simulation, and we assess to what extent it is possible to preserve both the thermodynamic and transport properties of an underlying reference all-atom Lennard-Jones (LJ) system. In this paper, only the thermodynamic properties are considered in detail. The transport properties will be examined in subsequent work. To coarse-grain, we first use the iterative Boltzmann inversion (IBI) to determine a CG potential for a (1-ϕ)N mesoscale particle system, where ϕ is the degree of coarse-graining, so as to reproduce the radial distribution function (RDF) of an N atomic particle system. Even though the uniqueness theorem guarantees a one to one relationship between the RDF and an effective pairwise potential, we find that RDFs are insensitive to the long-range part of the IBI-determined potentials, which provides some significant flexibility in further matching other properties. We then propose a reformulation of IBI as a robust minimization procedure that enables simultaneous matching of the RDF and the fluid pressure. We find that this new method mainly changes the attractive tail region of the CG potentials, and it improves the isothermal compressibility relative to pure IBI. We also find that there are optimal interaction cutoff lengths for the CG system, as a function of

  20. Large Contribution of Coarse Mode to Aerosol Microphysical and Optical Properties: Evidence from Ground-Based Observations of a Transpacific Dust Outbreak at a High-Elevation North American Site

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, E. [Pacific Northwest National Laboratory, Richland, Washington; Pekour, M. [Pacific Northwest National Laboratory, Richland, Washington; Flynn, C. [Pacific Northwest National Laboratory, Richland, Washington; Berg, L. K. [Pacific Northwest National Laboratory, Richland, Washington; Beranek, J. [Pacific Northwest National Laboratory, Richland, Washington; Zelenyuk, A. [Pacific Northwest National Laboratory, Richland, Washington; Zhao, C. [Pacific Northwest National Laboratory, Richland, Washington; Leung, L. R. [Pacific Northwest National Laboratory, Richland, Washington; Ma, P. L. [Pacific Northwest National Laboratory, Richland, Washington; Riihimaki, L. [Pacific Northwest National Laboratory, Richland, Washington; Fast, J. D. [Pacific Northwest National Laboratory, Richland, Washington; Barnard, J. [University of Nevada, Reno, Nevada; Hallar, A. G. [Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado; McCubbin, I. B. [Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado; Eloranta, E. W. [University of Wisconsin–Madison, Madison, Wisconsin; McComiskey, A. [National Oceanic and Atmospheric Administration, Boulder, Colorado; Rasch, P. J. [Pacific Northwest National Laboratory, Richland, Washington

    2017-05-01

    Our work is motivated by previous studies of the long-range trans-Atlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 µm. We examine coarse mode contributions from the trans-Pacific transport of Asian dust to North American aerosol microphysical and optical properties using a dataset collected at the high-elevation, mountain-top Storm Peak Laboratory (SPL, 3.22 km above sea level [ASL]) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 2.76 km ASL). Data collected during the SPL Cloud Property Validation Experiment (STORMVEX, March 2011) are complemented by quasi-global high-resolution model simulations coupled with aerosol chemistry. We identify dust event associated mostly with Asian plume (about 70% of dust mass) where the coarse mode with moderate (~4 µm) VMD is distinct and contributes substantially to aerosol microphysical (up to 70% for total volume) and optical (up to 45% for total scattering and aerosol optical depth) properties. Our results, when compared with previous Saharan dust studies, suggest a fairly invariant behavior of coarse mode dust aerosols. If confirmed in additional studies, this invariant behavior may simplify considerably model parameterizations for complex and size-dependent processes associated with dust transport and removal.

  1. NEW RSW & Wall Coarse Tet Only Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the RSW Coarse Tet Only grid with the root viscous tunnel wall. This grid is for a node-based unstructured solver. Quad Surface Faces= 0 Tria Surface Faces=...

  2. Using phase information to enhance speckle noise reduction in the ultrasonic NDE of coarse grain materials

    Energy Technology Data Exchange (ETDEWEB)

    Lardner, Timothy; Gachagan, Anthony [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Li, Minghui [School of Engineering, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-02-18

    Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.

  3. Using phase information to enhance speckle noise reduction in the ultrasonic NDE of coarse grain materials

    Science.gov (United States)

    Lardner, Timothy; Li, Minghui; Gachagan, Anthony

    2014-02-01

    Materials with a coarse grain structure are becoming increasingly prevalent in industry due to their resilience to stress and corrosion. These materials are difficult to inspect with ultrasound because reflections from the grains lead to high noise levels which hinder the echoes of interest. Spatially Averaged Sub-Aperture Correlation Imaging (SASACI) is an advanced array beamforming technique that uses the cross-correlation between images from array sub-apertures to generate an image weighting matrix, in order to reduce noise levels. This paper presents a method inspired by SASACI to further improve imaging using phase information to refine focusing and reduce noise. A-scans from adjacent array elements are cross-correlated using both signal amplitude and phase to refine delay laws and minimize phase aberration. The phase-based and amplitude-based corrected images are used as inputs to a two-dimensional cross-correlation algorithm that will output a weighting matrix that can be applied to any conventional image. This approach was validated experimentally using a 5MHz array a coarse grained Inconel 625 step wedge, and compared to the Total Focusing Method (TFM). Initial results have seen SNR improvements of over 20dB compared to TFM, and a resolution that is much higher.

  4. Robustness of plasmonic angular momentum confinement in cross resonant optical antennas

    Energy Technology Data Exchange (ETDEWEB)

    Klaer, Peter; Lehr, Martin; Krewer, Keno; Schertz, Florian; Schönhense, Gerd; Elmers, Hans Joachim, E-mail: elmers@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz (Germany); Razinskas, Gary; Wu, Xiao-Fei; Hecht, Bert [Institut für Physik, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg (Germany)

    2015-06-29

    Using a combination of photoemission electron microscopy and numerical simulations, we investigated the angular moment transfer in strongly enhanced optical near-fields of artificially fabricated optical antennas. The polarization dependence of the optical near-field enhancement has been measured in a maximum symmetric geometry, i.e., excitation by a normal incident planar wave. Finite-difference time-domain simulations for the realistic antenna geometries as determined by high-resolution electron microscopy reveal a very good agreement with experimental data. The agreement confirms that the geometrical asymmetries and inhomogeneities due to the nanoscale fabrication process preserve the circular polarization in the gap regions with strong near-field enhancement.

  5. Orbital angular momentum exchange in post-collision interaction

    International Nuclear Information System (INIS)

    van der Burgt, P.J.M.; van Eck, J.; Heideman, H.G.M.

    1985-01-01

    The authors study the exchange of orbital angular mementum between the scattered and the ejected electron. The angular distribution of electrons ejected by the He (2s 2 ) 2 S autoionizing state after its excitation via the He (2s2p 2 ) 2 D resonance is measured. Taking into accout interference with electrons from the direct ionization of helium, the authors are able to show that the measured anisotropic angular distribution is the result of an orbital angular momentum exchange during the post-collision interaction

  6. Mutually unbiased coarse-grained measurements of two or more phase-space variables

    Science.gov (United States)

    Paul, E. C.; Walborn, S. P.; Tasca, D. S.; Rudnicki, Łukasz

    2018-05-01

    Mutual unbiasedness of the eigenstates of phase-space operators—such as position and momentum, or their standard coarse-grained versions—exists only in the limiting case of infinite squeezing. In Phys. Rev. Lett. 120, 040403 (2018), 10.1103/PhysRevLett.120.040403, it was shown that mutual unbiasedness can be recovered for periodic coarse graining of these two operators. Here we investigate mutual unbiasedness of coarse-grained measurements for more than two phase-space variables. We show that mutual unbiasedness can be recovered between periodic coarse graining of any two nonparallel phase-space operators. We illustrate these results through optics experiments, using the fractional Fourier transform to prepare and measure mutually unbiased phase-space variables. The differences between two and three mutually unbiased measurements is discussed. Our results contribute to bridging the gap between continuous and discrete quantum mechanics, and they could be useful in quantum-information protocols.

  7. Coarse graining from variationally enhanced sampling applied to the Ginzburg–Landau model

    Science.gov (United States)

    Invernizzi, Michele; Valsson, Omar; Parrinello, Michele

    2017-01-01

    A powerful way to deal with a complex system is to build a coarse-grained model capable of catching its main physical features, while being computationally affordable. Inevitably, such coarse-grained models introduce a set of phenomenological parameters, which are often not easily deducible from the underlying atomistic system. We present a unique approach to the calculation of these parameters, based on the recently introduced variationally enhanced sampling method. It allows us to obtain the parameters from atomistic simulations, providing thus a direct connection between the microscopic and the mesoscopic scale. The coarse-grained model we consider is that of Ginzburg–Landau, valid around a second-order critical point. In particular, we use it to describe a Lennard–Jones fluid in the region close to the liquid–vapor critical point. The procedure is general and can be adapted to other coarse-grained models. PMID:28292890

  8. NEW RSW & Wall Coarse Mixed Element Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the Coarse Mixed Element Grid for the RSW with a viscous wall at the root. This grid is for a node-based unstructured solver. Quad Surface Faces= 9728 Tria...

  9. Estimating the shear strength of concrete with coarse aggregate replacement

    OpenAIRE

    Folagbade Olusoga Peter ORIOLA; George MOSES; Jacob Oyeniyi AFOLAYAN; John Engbonye SANI

    2017-01-01

    For economic, environmental and practical reasons, it is desirable to replace the constituents of concrete with wastes and cheaper alternative materials. However, it is best when such replacements are done at optimum replacement levels. In view of this, a laboratory investigative test was carried out to evaluate the shear strength of concrete with coarse aggregate replacement by Coconut Shell and by Waste Rubber Tyre. The coarse aggregate replacement was done at recommended optimum proportion...

  10. Measurement of the dijet angular distributions and search for quark compositeness with the CMS experiment

    International Nuclear Information System (INIS)

    Hinzmann, Andreas Dominik

    2011-01-01

    The Large Hadron Collider (LHC) at the Conseil Europeen pour la Recherche Nucleaire (CERN) allows to study the interactions of quarks and gluons in a yet unexplored energy regime. In 2010, the LHC delivered an integrated luminosity of more than 36 pb -1 of proton-proton collisions at a center-of-mass energy of √(s)=7 TeV. In these proton-proton collisions, the interactions of the constituent quarks and gluons produced a considerable amount of jets of particles with transverse momenta above 1 TeV. Well suited for the study of these jet processes is the Compact Muon Solenoid (CMS) experiment situated at the LHC point 5 as it can measure jets with the necessary energy and angular resolutions over a large range of transverse momentum (∝30 GeV T dijet = e vertical stroke y 1 -y 2 vertical stroke , where y 1 and y 2 are the rapidities of the two jets, y ≡ (1)/(2)ln [(E+p z )/(E-p z )], and p z is the projection of the jet momentum along the beam axis. The choice of the variable χ dijet is motivated by the fact that the normalized differential cross section (1)/(σ) (dσ)/(dχ dijet ) (the dijet angular distribution) is flat in this variable for Rutherford scattering, characteristic for spin-1 particle exchange. In contrast to QCD which predicts a dijet angular distribution similar to Rutherford scattering, new physics, such as quark compositeness, that might have a more isotropic dijet angular distribution would produce an excess at low values of χ dijet . Since the shapes of the dijet angular distributions for the qg →qg, qq ' →qq ' and gg →gg scattering processes are similar, the QCD prediction does not strongly depend on the parton distribution functions (PDFs) which describe the momentum distribution of the partons inside the protons. Due to the normalization, the dijet angular distribution has a reduced sensitivity to several predominant experimental uncertainties (e.g. the jet energy scale and luminosity uncertainties). The dijet angular distribution

  11. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  12. Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging

    Science.gov (United States)

    Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen

    2017-07-01

    The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.

  13. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    Science.gov (United States)

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  14. Coarse-to-fine region selection and matching

    KAUST Repository

    Yang, Yanchao

    2015-10-15

    We present a new approach to wide baseline matching. We propose to use a hierarchical decomposition of the image domain and coarse-to-fine selection of regions to match. In contrast to interest point matching methods, which sample salient regions to reduce the cost of comparing all regions in two images, our method eliminates regions systematically to achieve efficiency. One advantage of our approach is that it is not restricted to covariant salient regions, which is too restrictive under large viewpoint and leads to few corresponding regions. Affine invariant matching of regions in the hierarchy is achieved efficiently by a coarse-to-fine search of the affine space. Experiments on two benchmark datasets shows that our method finds more correct correspondence of the image (with fewer false alarms) than other wide baseline methods on large viewpoint change. © 2015 IEEE.

  15. Calibration and validation of coarse-grained models of atomic systems: application to semiconductor manufacturing

    Science.gov (United States)

    Farrell, Kathryn; Oden, J. Tinsley

    2014-07-01

    Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and

  16. Bayesian calibration of coarse-grained forces: Efficiently addressing transferability

    International Nuclear Information System (INIS)

    Patrone, Paul N.; Rosch, Thomas W.; Phelan, Frederick R.

    2016-01-01

    Generating and calibrating forces that are transferable across a range of state-points remains a challenging task in coarse-grained (CG) molecular dynamics. In this work, we present a coarse-graining workflow, inspired by ideas from uncertainty quantification and numerical analysis, to address this problem. The key idea behind our approach is to introduce a Bayesian correction algorithm that uses functional derivatives of CG simulations to rapidly and inexpensively recalibrate initial estimates f 0 of forces anchored by standard methods such as force-matching. Taking density-temperature relationships as a running example, we demonstrate that this algorithm, in concert with various interpolation schemes, can be used to efficiently compute physically reasonable force curves on a fine grid of state-points. Importantly, we show that our workflow is robust to several choices available to the modeler, including the interpolation schemes and tools used to construct f 0 . In a related vein, we also demonstrate that our approach can speed up coarse-graining by reducing the number of atomistic simulations needed as inputs to standard methods for generating CG forces.

  17. Bayesian calibration of coarse-grained forces: Efficiently addressing transferability

    Science.gov (United States)

    Patrone, Paul N.; Rosch, Thomas W.; Phelan, Frederick R.

    2016-04-01

    Generating and calibrating forces that are transferable across a range of state-points remains a challenging task in coarse-grained (CG) molecular dynamics. In this work, we present a coarse-graining workflow, inspired by ideas from uncertainty quantification and numerical analysis, to address this problem. The key idea behind our approach is to introduce a Bayesian correction algorithm that uses functional derivatives of CG simulations to rapidly and inexpensively recalibrate initial estimates f0 of forces anchored by standard methods such as force-matching. Taking density-temperature relationships as a running example, we demonstrate that this algorithm, in concert with various interpolation schemes, can be used to efficiently compute physically reasonable force curves on a fine grid of state-points. Importantly, we show that our workflow is robust to several choices available to the modeler, including the interpolation schemes and tools used to construct f0. In a related vein, we also demonstrate that our approach can speed up coarse-graining by reducing the number of atomistic simulations needed as inputs to standard methods for generating CG forces.

  18. Coarse-scale spatial and ecological analysis of tuberculosis in cattle: an investigation in Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Horacio Zendejas-Martínez

    2008-11-01

    Full Text Available We have tested the hypothesis that coarse-scale environmental features are associated with spatial variation in bovine tuberculosis (BTB prevalence, based on extensive sampling and testing of cattle in the state of Jalisco, Mexico. Ecological niche models were developed to summarize relationships between BTB occurrences and aspects of climate, topography and surface. Model predictions, however, reflected the distributions of dairy cattle versus beef cattle, and the non-random nature of sampling any cattle, but did not succeed in detecting environmental correlates at spatial resolutions of 1 km. Given that the tests employed seek any predictivity better than random expectations, making the finding of no environmental associations conservative, we conclude that BTB prevalence is independent of coarsescale environmental features.

  19. Anelasticity of olivine single crystals investigated by stress-reduction tests and high-angular resolution electron backscatter diffraction

    Science.gov (United States)

    Wallis, D.; Hansen, L. N.; Kempton, I.; Wilkinson, A. J.

    2017-12-01

    Geodynamic phenomena, including glacial isostatic adjustment and postseismic deformation, can involve transient deformation in response to changes in differential stress acting on mantle rocks. As such, rheological models of transient deformation are incorporated in predictions of associated processes, including sea-level rise and stress redistribution after earthquakes. However, experimental constraints on rheological models for transient deformation of mantle materials are sparse. In particular, experiments involving stress reductions have been lacking. Moreover, a material's response to a reduction in stress can provide clues to the microphysical processes controlling deformation. To constrain models of transient deformation of mantle rocks we performed stress-reduction tests on single crystals of olivine at 1250-1300°C. Mechanical and piezoelectric actuators controlled constant initial stress during creep. At various strain intervals stress was reduced near-instantaneously using the piezoelectric actuator, inducing both elastic and anelastic (time-dependent) lengthening of the samples. A range of magnitudes of stress reduction were applied, typically unloading 10-90% of the initial stress. High-angular resolution electron backscatter diffraction (HR-EBSD), based on cross-correlation of diffraction patterns, was used to map dislocation density and elastic strain distributions in the recovered samples. Magnitudes of anelastic back-strain increase with increasing magnitudes of stress reduction and show a marked increase when stress reductions exceed 50% of the initial stress, consistent with previous observations in metals and alloys. This observation is inconsistent with the Burgers rheological model commonly used to describe transient behaviour and suggests that the style of rheological behaviour depends on the magnitude of stress change. HR-EBSD maps reveal that the crystal lattices are smoothly curved and generally lack subgrain boundaries and elastic strain

  20. Angular distributions in quasi-fission reactions

    International Nuclear Information System (INIS)

    Luetzenkirchen, K.; Kratz, J.V.; Lucas, R.; Poitou, J.; Gregoire, C.; Wirth, G.; Bruechle, W.; Suemmerer, K.

    1985-10-01

    Angular distributions for fission-like fragments were measured in the systems 50 Ti, 56 Fe + 208 Pb by applying an off-line KX-ray activation technique. The distributions d 2 sigma/dTHETAdZ exhibit forward-backward asymmetries that are strongly Z-dependent. They result from a process (quasi-fission) which yields nearly symmetric masses in times comparable to the rotational period of the composite system. A method for obtaining the variance of the tilting angular momentum, K 0 2 , from these skewed, differential angular distributions is described. The results indicate that the tilting mode is not fully excited in quasi-fission reactions. The results are compared to the sum of the variances of all statistical spin components, measured via γ-multiplicities. Integration of the angular distributions d 2 sigma/dTHETAdZ over all values of Z yields integral angular distributions dsigma/dTHETA and dsigma/dΩ symmetric around 90 0 . The associated unusually large anisotropies do not at all provide an adequate basis for tests or modifications of the transition state theory. A deconvolution of d 2 sigma/dTHETAdZ is performed with gaussian distributions depending on rotational angles ΔTHETA extending over a range of up to 540 0 . From the mean values a time scale for the evolution of K 0 is calculated. (orig.)

  1. Photon beam polarization and non-dipolar angular distributions

    International Nuclear Information System (INIS)

    Peshkin, M.

    1996-01-01

    Angular distributions of ejecta from unoriented atoms and molecules depend upon the polarization state of the incident x-rays as well as upon the dynamics of the physical systems being studied. I recommend a simple geometrical way of looking at the polarization and its effects upon angular distributions. The polarization is represented as a vector in a parameter space that faithfully represents the polarization of the beam. The simple dependence of the angular dependence of the angular distributions on the polarization vector enables easy extraction of the dynamical information contained in those angular distributions. No new physical results emerge from this geometrical approach, but known consequences of the symmetries appear in an easily visualized form that I find pleasing and that has proved to be useful for planning experiments and for analyzing data

  2. Beam Angular Divergence Effects in Ion Implantation

    International Nuclear Information System (INIS)

    Horsky, T. N.; Hahto, S. K.; Bilbrough, D. G.; Jacobson, D. C.; Krull, W. A.; Goldberg, R. D.; Current, M. I.; Hamamoto, N.; Umisedo, S.

    2008-01-01

    An important difference between monomer ion beams and heavy molecular beams is a significant reduction in beam angular divergence and increased on-wafer angular accuracy for molecular beams. This advantage in beam quality stems from a reduction in space-charge effects within the beam. Such improved angular accuracy has been shown to have a significant impact on the quality and yield of transistor devices [1,12]. In this study, B 18 H x + beam current and angular divergence data collected on a hybrid scanned beam line that magnetically scans the beam across the wafer is presented. Angular divergence is kept below 0.5 deg from an effective boron energy of 200 eV to 3000 eV. Under these conditions, the beam current is shown analytically to be limited by space charge below about 1 keV, but by the matching of the beam emittance to the acceptance of the beam line above 1 keV. In addition, results of a beam transport model which includes variable space charge compensation are presented, in which a drift mode B 18 H x + beam is compared to an otherwise identical boron beam after deceleration. Deceleration is shown to introduce significant space-charge blow up resulting in a large on-wafer angular divergence. The divergence effects introduced by wafer charging are also discussed.

  3. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal

  4. Coarse and fine sediment transportation patterns and causes downstream of the Three Gorges Dam

    Science.gov (United States)

    Li, Songzhe; Yang, Yunping; Zhang, Mingjin; Sun, Zhaohua; Zhu, Lingling; You, Xingying; Li, Kanyu

    2017-11-01

    Reservoir construction within a basin affects the process of water and sediment transport downstream of the dam. The Three Gorges Reservoir (TGR) affects the sediment transport downstream of the dam. The impoundment of the TGR reduced total downstream sediment. The sediment group d≤0.125 mm (fine particle) increased along the path, but the average was still below what existed before the reservoir impoundment. The sediments group d>0.125 mm (coarse particle) was recharged in the Yichang to Jianli reach, but showed a deposition trend downstream of Jianli. The coarse sediment in the Yichang to Jianli section in 2003 to 2007 was above the value before the TGR impoundment. However, the increase of both coarse and fine sediments in 2008 to 2014 was less than that in 2003 to 2007. The sediment retained in the dam is the major reason for the sediment reduction downstream. However, the retention in different river reaches is affected by riverbed coarsening, discharge, flow process, and conditions of lake functioning and recharging from the tributaries. The main conclusions derived from our study are as follows: 1) The riverbed in the Yichang to Shashi section was relatively coarse, thereby limiting the supply of fine and coarse sediments. The fine sediment supply was mainly controlled by TGR discharge, whereas the coarse sediment supply was controlled by the duration of high flow and its magnitude. 2) The supply of both coarse and fine sediments in the Shashi to Jianli section was controlled by the amount of total discharge. The sediment supply from the riverbed was higher in flood years than that in the dry years. The coarse sediment tended to deposit, and the deposition in the dry years was larger than that in the flood years. 3) The feeding of the fine sediment in the Luoshan to Hankou section was mainly from the riverbed. The supply in 2008 to 2014 was more than that in 2003 to 2007. Around 2010, the coarse sediments transited from depositing to scouring that was

  5. HIGH ANGULAR RESOLUTION RADIO OBSERVATIONS OF THE HL/XZ TAU REGION: MAPPING THE 50 AU PROTOPLANETARY DISK AROUND HL TAU AND RESOLVING XZ TAU S INTO A 13 AU BINARY

    International Nuclear Information System (INIS)

    Carrasco-Gonzalez, Carlos; Anglada, Guillem; RodrIguez, Luis F.; Curiel, Salvador

    2009-01-01

    We present new 7 mm and archive 1.3 cm high angular resolution observations of the HL/XZ Tau region made with the Very Large Array. At 7 mm, the emission from HL Tau seems to arise in a clumpy disk with radius of the order of 25 AU. The 1.3 cm emission from XZ Tau shows the emission from a binary system with 0.''3 (42 AU) separation, known from previous optical/IR observations. However, at 7 mm, the southern radio component resolves into a binary with 0.''09 (13 AU) separation, suggesting that XZ Tau is actually a triple star system. We suggest that the remarkable ejection of gas from the XZ Tau system observed with the Hubble Space Telescope may be related to a periastron passage of this newly discovered close binary system.

  6. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Prior, C.R.

    1977-01-01

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state. (author)

  7. Combining fine texture and coarse color features for color texture classification

    Science.gov (United States)

    Wang, Junmin; Fan, Yangyu; Li, Ning

    2017-11-01

    Color texture classification plays an important role in computer vision applications because texture and color are two fundamental visual features. To classify the color texture via extracting discriminative color texture features in real time, we present an approach of combining the fine texture and coarse color features for color texture classification. First, the input image is transformed from RGB to HSV color space to separate texture and color information. Second, the scale-selective completed local binary count (CLBC) algorithm is introduced to extract the fine texture feature from the V component in HSV color space. Third, both H and S components are quantized at an optimal coarse level. Furthermore, the joint histogram of H and S components is calculated, which is considered as the coarse color feature. Finally, the fine texture and coarse color features are combined as the final descriptor and the nearest subspace classifier is used for classification. Experimental results on CUReT, KTH-TIPS, and New-BarkTex databases demonstrate that the proposed method achieves state-of-the-art classification performance. Moreover, the proposed method is fast enough for real-time applications.

  8. A coarse-to-fine scheme for groupwise registration of multisensor images

    Directory of Open Access Journals (Sweden)

    Yinghao Li

    2016-11-01

    Full Text Available Ensemble registration is concerned with a group of images that need to be registered simultaneously. It is challenging but important for many image analysis tasks such as vehicle detection and medical image fusion. To solve this problem effectively, a novel coarse-to-fine scheme for groupwise image registration is proposed. First, in the coarse registration step, unregistered images are divided into reference image set and float image set. The images of the two sets are registered based on segmented region matching. The coarse registration results are used as an initial solution for the next step. Then, in the fine registration step, a Gaussian mixture model with a local template is used to model the joint intensity of coarse-registered images. Meanwhile, a minimum message length criterion-based method is employed to determine the unknown number of mixing components. Based on this mixture model, a maximum likelihood framework is used to register a group of images. To evaluate the performance of the proposed approach, some representative groupwise registration approaches are compared on different image data sets. The experimental results show that the proposed approach has improved performance compared to conventional approaches.

  9. Fast reconstruction of 3D time-of-flight PET data by axial rebinning and transverse mashing

    International Nuclear Information System (INIS)

    Vandenberghe, Stefaan; Daube-Witherspoon, Margaret E; Lewitt, Robert M; Karp, Joel S

    2006-01-01

    Faster scintillators like LaBr 3 and LSO have sparked renewed interest in PET scanners with time-of-flight (TOF) information. The TOF information adds another dimension to the data set compared to conventional three-dimensional (3D) PET with the size of the projection data being multiplied by the number of TOF bins. Here we show by simulations and analytical reconstruction that angular sampling for two-dimensional (2D) TOF PET can be reduced significantly compared to what is required for conventional 2D PET. Fully 3D TOF PET data, however, have a wide range of oblique and transverse angles. To make use of the smaller necessary angular sampling we reduce the 3D data to a set of 2D histoprojections. This is done by rebinning the 3D data to 2D data and by mashing these 2D data into a limited number of angles. Both methods are based on the most likely point given by the TOF measurement. It is shown that the axial resolution loss associated with rebinning reduces with improved timing resolution and becomes less than 1 mm for a TOF resolution below 300 ps. The amount of angular mashing that can be applied without tangential resolution loss increases with improved TOF resolution. Even quite coarse angular mashing (18 angles out of 324 measured angles for 424 ps) does not significantly reduce image quality in terms of the contrast or noise. The advantages of the proposed methods are threefold. Data storage is reduced to a limited number of 2D histoprojections with TOF information. Compared to listmode format we have the advantage of a predetermined storage space and faster reconstruction. The method does not require the normalization of projections prior to rebinning and can be applied directly to measured listmode data

  10. Jet angularity measurements for single inclusive jet production

    Science.gov (United States)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  11. The R package 'icosa' for coarse resolution global triangular and penta-hexagonal gridding

    Science.gov (United States)

    Kocsis, Adam T.

    2017-04-01

    With the development of the internet and the computational power of personal computers, open source programming environments have become indispensable for science in the past decade. This includes the increase of the GIS capacity of the free R environment, which was originally developed for statistical analyses. The flexibility of R made it a preferred programming tool in a multitude of disciplines from the area of the biological and geological sciences. Many of these subdisciplines operate with incidence (occurrence) data that are in a large number of cases to be grained before further analyses can be conducted. This graining is executed mostly by gridding data to cells of a Gaussian grid of various resolutions to increase the density of data in a single unit of the analyses. This method has obvious shortcomings despite the ease of its application: well-known systematic biases are induced to cell sizes and shapes that can interfere with the results of statistical procedures, especially if the number of incidence points influences the metrics in question. The 'icosa' package employs a common method to overcome this obstacle by implementing grids with roughly equal cell sizes and shapes that are based on tessellated icosahedra. These grid objects are essentially polyhedra with xyz Cartesian vertex data that are linked to tables of faces and edges. At its current developmental stage, the package uses a single method of tessellation which balances grid cell size and shape distortions, but its structure allows the implementation of various other types of tessellation algorithms. The resolution of the grids can be set by the number of breakpoints inserted into a segment forming an edge of the original icosahedron. Both the triangular and their inverted penta-hexagonal grids are available for creation with the package. The package also incorporates functions to look up coordinates in the grid very effectively and data containers to link data to the grid structure. The

  12. Systematic and simulation-free coarse graining of homopolymer melts: A structure-based study

    International Nuclear Information System (INIS)

    Yang, Delian; Wang, Qiang

    2015-01-01

    We propose a systematic and simulation-free strategy for coarse graining of homopolymer melts, where each chain of N m monomers is uniformly divided into N segments, with the spatial position of each segment corresponding to the center-of-mass of its monomers. We use integral-equation theories suitable for the study of equilibrium properties of polymers, instead of many-chain molecular simulations, to obtain the structural and thermodynamic properties of both original and coarse-grained (CG) systems, and quantitatively examine how the effective pair potentials between CG segments and the thermodynamic properties of CG systems vary with N. Our systematic and simulation-free strategy is much faster than those using many-chain simulations, thus effectively solving the transferability problem in coarse graining, and provides the quantitative basis for choosing the appropriate N-values. It also avoids the problems caused by finite-size effects and statistical uncertainties in many-chain simulations. Taking the simple hard-core Gaussian thread model [K. S. Schweizer and J. G. Curro, Chem. Phys. 149, 105 (1990)] as the original system, we demonstrate our strategy applied to structure-based coarse graining, which is quite general and versatile, and compare in detail the various integral-equation theories and closures for coarse graining. Our numerical results show that the effective CG potentials for various N and closures can be collapsed approximately onto the same curve, and that structure-based coarse graining cannot give thermodynamic consistency between original and CG systems at any N < N m

  13. MT-ADRES: Multithreading on Coarse-Grained Reconfigurable Architecture

    DEFF Research Database (Denmark)

    Wu, Kehuai; Kanstein, Andreas; Madsen, Jan

    2007-01-01

    The coarse-grained reconfigurable architecture ADRES (Architecture for Dynamically Reconfigurable Embedded Systems) and its compiler offer high instruction-level parallelism (ILP) to applications by means of a sparsely interconnected array of functional units and register files. As high-ILP archi......The coarse-grained reconfigurable architecture ADRES (Architecture for Dynamically Reconfigurable Embedded Systems) and its compiler offer high instruction-level parallelism (ILP) to applications by means of a sparsely interconnected array of functional units and register files. As high......-ILP architectures achieve only low parallelism when executing partially sequential code segments, which is also known as Amdahl’s law, this paper proposes to extend ADRES to MT-ADRES (Multi-Threaded ADRES) to also exploit thread-level parallelism. On MT-ADRES architectures, the array can be partitioned in multiple...

  14. Effects of intermediate wettability on entry capillary pressure in angular pores.

    Science.gov (United States)

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Influence of uncoated and coated plastic waste coarse aggregates to concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Purnomo Heru

    2017-01-01

    Full Text Available The use of plastic waste as coarse aggregates in concrete is part of efforts to reduce environmental pollution. In one hand the use of plastic as aggregates can provide lighter weight of the concrete than concrete using natural aggregates, but on the other hand bond between plastic coarse aggregates and hard matrix give low concrete compressive strength. Improvement of the bond between plastic coarse aggregate and hard matrix through a sand coating to plastic coarse aggregate whole surface is studied. Sand used to coat the plastic aggregates are Merapi volcanic sand which are taken in Magelang. Three mixtures of polypropylene (PP coarse plastic aggregates, Cimangkok river sand as fine aggregates, water and Portland Cement Composite with a water-cement ratio of 0.28, 0.3 and 0.35 are conducted. Compression test are performed on concrete cylindrical specimens with a diameter of 10 cm and a height of 20 cm. The results in general show that concrete specimens using plastic aggregates coated with sand have higher compressive strength compared to those of concrete specimens using plastic aggregates without sand coating. The bond improvement is indirectly indicated by the betterment of concrete compressive strength.

  16. GALACTICNUCLEUS: A high angular resolution JHKs imaging survey of the Galactic centre. I. Methodology, performance, and near-infrared extinction towards the Galactic centre

    Science.gov (United States)

    Nogueras-Lara, F.; Gallego-Calvente, A. T.; Dong, H.; Gallego-Cano, E.; Girard, J. H. V.; Hilker, M.; de Zeeuw, P. T.; Feldmeier-Krause, A.; Nishiyama, S.; Najarro, F.; Neumayer, N.; Schödel, R.

    2018-03-01

    Context. The Galactic centre (GC) is of fundamental astrophysical interest, but existing near-infrared surveys fall short covering it adequately, either in terms of angular resolution, multi-wavelength coverage, or both. Here we introduce the GALACTICNUCLEUS survey, a JHKs imaging survey of the centre of the Milky Way with a 0.2″ angular resolution. Aim. The purpose of this paper is to present the observations of Field 1 of our survey, centred approximately on SgrA* with an approximate size of 7.95' × 3.43'. We describe the observational set-up and data reduction pipeline and discuss the quality of the data. Finally, we present the analysis of the data. Methods: The data were acquired with the near-infrared camera High Acuity Wide field K-band Imager (HAWK-I) at the ESO Very Large Telescope (VLT). Short readout times in combination with the speckle holography algorithm allowed us to produce final images with a stable, Gaussian PSF (point spread function) of 0.2″ FWHM (full width at half maximum). Astrometric calibration is achieved via the VISTA Variables in the Via Lactea (VVV) survey and photometric calibration is based on the SIRIUS/Infrared Survey Facility telescope (IRSF) survey. The quality of the data is assessed by comparison between observations of the same field with different detectors of HAWK-I and at different times. Results: We reach 5σ detection limits of approximately J = 22, H = 21, and Ks = 20. The photometric uncertainties are less than 0.05 at J ≲ 20, H ≲ 17, and Ks ≲ 16. We can distinguish five stellar populations in the colour-magnitude diagrams; three of them appear to belong to foreground spiral arms, and the other two correspond to high- and low-extinction star groups at the GC. We use our data to analyse the near-infrared extinction curve and find some evidence for a possible difference between the extinction index between J - H and H - Ks. However, we conclude that it can be described very well by a power law with an index of

  17. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  18. Coarse Grained Molecular Dynamics Simulations of Transmembrane Protein-Lipid Systems

    Directory of Open Access Journals (Sweden)

    Peter Spijker

    2010-06-01

    Full Text Available Many biological cellular processes occur at the micro- or millisecond time scale. With traditional all-atom molecular modeling techniques it is difficult to investigate the dynamics of long time scales or large systems, such as protein aggregation or activation. Coarse graining (CG can be used to reduce the number of degrees of freedom in such a system, and reduce the computational complexity. In this paper the first version of a coarse grained model for transmembrane proteins is presented. This model differs from other coarse grained protein models due to the introduction of a novel angle potential as well as a hydrogen bonding potential. These new potentials are used to stabilize the backbone. The model has been validated by investigating the adaptation of the hydrophobic mismatch induced by the insertion of WALP-peptides into a lipid membrane, showing that the first step in the adaptation is an increase in the membrane thickness, followed by a tilting of the peptide.

  19. Staggering of angular momentum distribution in fission

    Science.gov (United States)

    Tamagno, Pierre; Litaize, Olivier

    2018-03-01

    We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  20. A CATALOG OF NEAR-IR SOURCES FOUND TO BE UNRESOLVED WITH MILLIARCSECOND RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Richichi, A. [National Astronomical Research Institute of Thailand, 191 Siriphanich Bldg., Huay Kaew Rd., Suthep, Muang, Chiang Mai 50200 (Thailand); Fors, O. [Departament Astronomia i Meteorologia and Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (UB/IEEC), Marti i Franques 1, E-08028 Barcelona (Spain); Cusano, F. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Moerchen, M., E-mail: andrea@narit.or.th [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-12-15

    Calibration is one of the long-standing problems in optical interferometric measurements, particularly with long baselines which demand stars with angular sizes on the milliarcsecond scale and no detectable companions. While systems of calibrators have been generally established for the near-infrared in the bright source regime (K {approx}< 3 mag), modern large interferometers are sensitive to significantly fainter magnitudes. We aim to provide a list of sources found to be unresolved from direct observations with high angular resolution and dynamic range, which can be used to choose interferometric calibrators. To this purpose, we have used a large number of lunar occultations recorded with the ISAAC instrument at the Very Large Telescope to select sources found to be unresolved and without close companions. An algorithm has been used to determine the limiting angular resolution achieved for each source, taking into account a noise model built from occulted and unocculted portions of the light curves. We have obtained upper limits on the angular sizes of 556 sources, with magnitudes ranging from K{sub s} Almost-Equal-To 4 to 10, with a median of 7.2 mag. The upper limits on possible undetected companions (within Almost-Equal-To 0.''5) range from K{sub s} Almost-Equal-To 8 to 13, with a median of 11.5 mag. One-third of the sources have angular sizes {<=}1 mas, and two-thirds have sizes {<=}2 mas. This list of unresolved sources matches well the capabilities of current large interferometric facilities. We also provide available cross-identifications, magnitudes, spectral types, and other auxiliary information. A fraction of the sources are found to be potentially variable. The list covers parts of the Galactic Bulge and in particular the vicinity of the Galactic Center, where extinction is very significant and traditional lists of calibrators are often insufficient.

  1. Effects of coarse-graining on the scaling behavior of long-range correlated and anti-correlated signals

    OpenAIRE

    Xu, Yinlin; Ma, Qianli D.Y.; Schmitt, Daniel T.; Bernaola-Galván, Pedro; Ivanov, Plamen Ch.

    2011-01-01

    We investigate how various coarse-graining methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find, that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and th...

  2. Development of new test procedures for measuring fine and coarse aggregates specific gravity.

    Science.gov (United States)

    2009-09-01

    The objective of the research is to develop and evaluate new test methods at determining the specific gravity and absorption of both fine and coarse aggregates. Current methods at determining the specific gravity and absorption of fine and coarse agg...

  3. Quantifying and containing the curse of high resolution coronal imaging

    Directory of Open Access Journals (Sweden)

    V. Delouille

    2008-10-01

    Full Text Available Future missions such as Solar Orbiter (SO, InterHelioprobe, or Solar Probe aim at approaching the Sun closer than ever before, with on board some high resolution imagers (HRI having a subsecond cadence and a pixel area of about (80 km2 at the Sun during perihelion. In order to guarantee their scientific success, it is necessary to evaluate if the photon counts available at these resolution and cadence will provide a sufficient signal-to-noise ratio (SNR. For example, if the inhomogeneities in the Quiet Sun emission prevail at higher resolution, one may hope to locally have more photon counts than in the case of a uniform source. It is relevant to quantify how inhomogeneous the quiet corona will be for a pixel pitch that is about 20 times smaller than in the case of SoHO/EIT, and 5 times smaller than TRACE. We perform a first step in this direction by analyzing and characterizing the spatial intermittency of Quiet Sun images thanks to a multifractal analysis. We identify the parameters that specify the scale-invariance behavior. This identification allows next to select a family of multifractal processes, namely the Compound Poisson Cascades, that can synthesize artificial images having some of the scale-invariance properties observed on the recorded images. The prevalence of self-similarity in Quiet Sun coronal images makes it relevant to study the ratio between the SNR present at SoHO/EIT images and in coarsened images. SoHO/EIT images thus play the role of "high resolution" images, whereas the "low-resolution" coarsened images are rebinned so as to simulate a smaller angular resolution and/or a larger distance to the Sun. For a fixed difference in angular resolution and in Spacecraft-Sun distance, we determine the proportion of pixels having a SNR preserved at high resolution given a particular increase in effective area. If scale-invariance continues to prevail at smaller scales, the conclusion reached with SoHO/EIT images can be transposed

  4. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  5. Exposing Library Services with AngularJS

    OpenAIRE

    Jakob Voß; Moritz Horn

    2014-01-01

    This article provides an introduction to the JavaScript framework AngularJS and specific AngularJS modules for accessing library services. It shows how information such as search suggestions, additional links, and availability can be embedded in any website. The ease of reuse may encourage more libraries to expose their services via standard APIs to allow usage in different contexts.

  6. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia; Chazirakis, A.; Tsourtis, A.; Katsoulakis, M. A.; Plechá č, P.; Harmandaris, V.

    2016-01-01

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  7. Parametrizing coarse grained models for molecular systems at equilibrium

    KAUST Repository

    Kalligiannaki, Evangelia

    2016-10-18

    Hierarchical coarse graining of atomistic molecular systems at equilibrium has been an intensive research topic over the last few decades. In this work we (a) review theoretical and numerical aspects of different parametrization methods (structural-based, force matching and relative entropy) to derive the effective interaction potential between coarse-grained particles. All methods approximate the many body potential of mean force; resulting, however, in different optimization problems. (b) We also use a reformulation of the force matching method by introducing a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (E. Kalligiannaki, et al., J. Chem. Phys. 2015). We apply and compare these methods to: (a) a benchmark system of two isolated methane molecules; (b) methane liquid; (c) water; and (d) an alkane fluid. Differences between the effective interactions, derived from the various methods, are found that depend on the actual system under study. The results further reveal the relation of the various methods and the sensitivities that may arise in the implementation of numerical methods used in each case.

  8. Estimate of the angular dimensions of objects and reconstruction of their shapes from the parameters of the fourth-order radiation correlation function

    International Nuclear Information System (INIS)

    Buryi, E V; Kosygin, A A

    2004-01-01

    It is shown that, when the angular resolution of a receiving optical system is insufficient, the angular dimensions of a located object can be estimated and its shape can be reconstructed by estimating the parameters of the fourth-order correlation function (CF) of scattered coherent radiation. The reliability of the estimates of CF counts obtained by the method of a discrete spatial convolution of the intensity-field counts, the possibility of estimating the CF profile counts by the method of one-dimensional convolution of intensity counts, and the applicability of the method for reconstructing the object shape are confirmed experimentally. (laser applications and other topics in quantum electronics)

  9. Experimental determination of high angular momentum states

    International Nuclear Information System (INIS)

    Barreto, J.L.V.

    1985-01-01

    The current knowledge of the atomic nucleus structure is summarized. A short abstract of the nuclear properties at high angular momentum and a more detailed description of the experimental methods used in the study of high angular momenta is made. (L.C.) [pt

  10. Accelerated rotation with orbital angular momentum modes

    CSIR Research Space (South Africa)

    Schulze, C

    2015-04-01

    Full Text Available . As the angular acceleration takes place in a bounded space, the azimuthal degree of freedom, such fields accelerate periodically as they propagate. Notably, the amount of angular acceleration is not limited by paraxial considerations, may be tailored for large...

  11. Reactor calculation in coarse mesh by finite element method applied to matrix response method

    International Nuclear Information System (INIS)

    Nakata, H.

    1982-01-01

    The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt

  12. Staggering of angular momentum distribution in fission

    Directory of Open Access Journals (Sweden)

    Tamagno Pierre

    2018-01-01

    Full Text Available We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  13. The dependence of bar frequency on galaxy mass, colour, and gas content - and angular resolution - in the local universe

    Science.gov (United States)

    Erwin, Peter

    2018-03-01

    I use distance- and mass-limited subsamples of the Spitzer Survey of Stellar Structure in Galaxies (S4G) to investigate how the presence of bars in spiral galaxies depends on mass, colour, and gas content and whether large, Sloan Digital Sky Survey (SDSS)-based investigations of bar frequencies agree with local data. Bar frequency reaches a maximum of fbar ≈ 0.70 at M⋆ ˜ 109.7M⊙, declining to both lower and higher masses. It is roughly constant over a wide range of colours (g - r ≈ 0.1-0.8) and atomic gas fractions (log (M_{H I}/ M_{\\star }) ≈ -2.5 to 1). Bars are thus as common in blue, gas-rich galaxies are they are in red, gas-poor galaxies. This is in sharp contrast to many SDSS-based studies of z ˜ 0.01-0.1 galaxies, which report fbar increasing strongly to higher masses (from M⋆ ˜ 1010 to 1011M⊙), redder colours, and lower gas fractions. The contradiction can be explained if SDSS-based studies preferentially miss bars in, and underestimate the bar fraction for, lower mass (bluer, gas-rich) galaxies due to poor spatial resolution and the correlation between bar size and stellar mass. Simulations of SDSS-style observations using the S4G galaxies as a parent sample, and assuming that bars below a threshold angular size of twice the point spread function full width at half-maximum cannot be identified, successfully reproduce typical SDSS fbar trends for stellar mass and gas mass ratio. Similar considerations may affect high-redshift studies, especially if bars grow in length over cosmic time; simulations suggest that high-redshift bar fractions may thus be systematically underestimated.

  14. Path-space variational inference for non-equilibrium coarse-grained systems

    International Nuclear Information System (INIS)

    Harmandaris, Vagelis; Kalligiannaki, Evangelia; Katsoulakis, Markos; Plecháč, Petr

    2016-01-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  15. Path-space variational inference for non-equilibrium coarse-grained systems

    Energy Technology Data Exchange (ETDEWEB)

    Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion (Greece); Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Katsoulakis, Markos, E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts at Amherst (United States); Plecháč, Petr, E-mail: plechac@math.udel.edu [Department of Mathematical Sciences, University of Delaware, Newark, Delaware (United States)

    2016-06-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  16. Comparison of coarse-grained (MARTINI) and atomistic molecular ...

    Indian Academy of Sciences (India)

    Rajat Desikan

    as the root mean square deviation (RMSD) histograms and the inner pore radius profiles from ... ever coarse-grained simulations of membrane-proteins ..... from the MARTINI simulations show greater fluctuations than the all-atom simulations.

  17. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  18. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  19. Synthetic Aperture Focusing Technique in Ultrasonic Inspection of Coarse Grained Materials

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (Uppsala Univ., Signals and Systems, Box 528, SE-751 20 Uppsala (Sweden))

    2007-12-15

    Experience from the ultrasonic inspection of nuclear power plants has shown that large focused transducers are relatively effective in suppressing grain (structure) noise. Operation of a large focused transducer can be thought of as an integration (coherent summation) of individual beams reflected from the target and received by individual points at the transducer surface. Synthetic aperture focusing technique (SAFT), in its simplest version mimics an acoustic lens used for focusing beams at a desired point in the region of interest. Thus, SAFT should be able to suppress the grain noise in the similar way as the focused transducer does. This report presents the results of investigation of SAFT algorithms applied for post-processing of ultrasonic data acquired in inspection of coarse grained metals. The performance of SAFT in terms of its spatial (cross-range) resolution and grain noise suppression is studied. The evaluation is made based on the experimental data obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). SAFT algorithms for both contact and immersion mode are introduced and experimentally verified

  20. Coarse grainings and irreversibility in quantum field theory

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    1997-01-01

    In this paper we are interested in studying coarse graining in field theories using the language of quantum open systems. Motivated by the ideas of Hu and Calzetta on correlation histories we employ the Zwanzig projection technique to obtain evolution equations for relevant observables in self-interacting scalar field theories. Our coarse-graining operation consists in concentrating solely on the evolution of the correlation functions of degree less than n, a treatment which corresponds to the familiar truncation of the BBKGY hierarchy at the nth level. We derive the equations governing the evolution of mean-field and two-point functions thus identifying the terms corresponding to dissipation and noise. We discuss possible applications of our formalism, the emergence of classical behavior, and the connection to the decoherent histories framework. copyright 1997 The American Physical Society

  1. Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus.

    Science.gov (United States)

    Zhang, Yan; An, Lin; Xu, Jie; Zhang, Bo; Zheng, W Jim; Hu, Ming; Tang, Jijun; Yue, Feng

    2018-02-21

    Although Hi-C technology is one of the most popular tools for studying 3D genome organization, due to sequencing cost, the resolution of most Hi-C datasets are coarse and cannot be used to link distal regulatory elements to their target genes. Here we develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data. We demonstrate that HiCPlus can impute interaction matrices highly similar to the original ones, while only using 1/16 of the original sequencing reads. We show that the models learned from one cell type can be applied to make predictions in other cell or tissue types. Our work not only provides a computational framework to enhance Hi-C data resolution but also reveals features underlying the formation of 3D chromatin interactions.

  2. Vertical Subsurface Flow Mixing and Horizontal Anisotropy in Coarse Fluvial Aquifers: Structural Aspects

    Science.gov (United States)

    Huggenberger, P.; Huber, E.

    2014-12-01

    Detailed descriptions of the subsurface heterogeneities in coarse fluvial aquifer gravel often lack in concepts to distinguish between the essence and the noise of a permeability structure and the ability to extrapolate site specific hydraulic information at the tens to several hundred meters scale. At this scale the heterogeneity strongly influences the anisotropies of the flow field and the mixing processes in groundwater. However, in many hydrogeological models the complexity of natural systems is oversimplified. Understanding the link between the dynamics of the surface processes of braided-river systems and the resulting subsurface sedimentary structures is the key to characterizing the complexity of horizontal and vertical mixing processes in groundwater. From the different depositional elements of coarse braided-river systems, the largest permeability contrasts can be observed in the scour-fills. Other elements (e.g. different types of gravel sheets) show much smaller variabilities and could be considered as a kind of matrix. Field experiments on the river Tagliamento (Northeast Italy) based on morphological observation and ground-penetrating radar (GPR) surveys, as well as outcrop analyses of gravel pit exposures (Switzerland) allowed us to define the shape, sizes, spatial distribution and preservation potential of scour-fills. In vertical sections (e.g. 2D GPR data, vertical outcrop), the spatial density of remnant erosional bounding surfaces of scours is an indicator for the dynamics of the braided-river system (lateral mobility of the active floodplain, rate of sediment net deposition and spatial distribution of the confluence scours). In case of combined low aggradation rate and low lateral mobility the deposits may be dominated by a complex overprinting of scour-fills. The delineation of the erosional bounding surfaces, that are coherent over the survey area, is based on the identification of angular discontinuities of the reflectors. Fence diagrams

  3. Angular distributions of sputtered particles from NiTi alloy

    International Nuclear Information System (INIS)

    Neshev, I.; Hamishkeev, V.; Chernysh, V.S.; Postnikov, S.; Mamaev, B.

    1993-01-01

    The angular distributions of sputtered Ni and Ti from a polycrystalline NiTi (50-50%) alloy are investigated by Auger electron spectroscopy and Rutherford backscattering spectroscopy. A difference in the angular distributions is observed with Ni being sputtered preferentially near the surface normal. A computer program for the calculation of the angular distributions of constituents sputtered from binary targets is created and used. The mechanisms responsible for the observed differences in the angular distributions are discussed. It is found that the collisional cascade theory is not directly applicable to the results of the constituents' angular distributions obtained in the presence of oxygen. The fitted coefficients of bombardment-induced segregation are found to be greater than the experimentally obtained ones. (author)

  4. Mapping pre-European settlement vegetation at fine resolutions using a hierarchical Bayesian model and GIS

    Science.gov (United States)

    Hong S. He; Daniel C. Dey; Xiuli Fan; Mevin B. Hooten; John M. Kabrick; Christopher K. Wikle; Zhaofei. Fan

    2007-01-01

    In the Midwestern United States, the GeneralLandOffice (GLO) survey records provide the only reasonably accurate data source of forest composition and tree species distribution at the time of pre-European settlement (circa late 1800 to early 1850). However, GLO data have two fundamental limitations: coarse spatial resolutions (the square mile section and half mile...

  5. Angular distributions in pre-equilibrium reactions

    International Nuclear Information System (INIS)

    Chatterjee, A.; Gupta, S.K.; Bhabha Atomic Research Centre, Bombay

    1982-10-01

    A new model is proposed for calculating angular distributions in preequilibrium reactions. In this model, as in the model of Feshbach et al. the system consisting of target plus projectile initially branches into two sets of states with either no particle in the continuum (multistep compound states) or with at least one particle in the continuum (multistep direct states). The two chains of states are treated independently by solving two sets of master equations. The multistep compound emission is assumed to be isotropic while the angular distribution of the multistep direct emission is described using the fast particle model of Mantzouranis et al. The angular distributions for 14.6 MeV neutrons calculated using this model are found to be in better agreement with the data than the fast particle model. (author)

  6. Coarse grained model for semiquantitative lipid simulations

    NARCIS (Netherlands)

    Marrink, SJ; de Vries, AH; Mark, AE

    2004-01-01

    This paper describes the parametrization of a new coarse grained (CG) model for lipid and surfactant systems. Reduction of the number of degrees of freedom together with the use of short range potentials makes it computationally very efficient. Compared to atomistic models a gain of 3-4 orders of

  7. Smoothed dissipative particle dynamics with angular momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  8. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    Science.gov (United States)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  9. First measurements with new high-resolution gadolinium-GEM neutron detectors

    CERN Document Server

    Pfeiffer, Dorothea; Birch, Jens; Etxegarai, Maddi; Hall-Wilton, Richard; Höglund, Carina; Hultman, Lars; Llamas-Jansa, Isabel; Oliveri, Eraldo; Oksanen, Esko; Robinson, Linda; Ropelewski, Leszek; Schmidt, Susann; Streli, Christina; Thuiner, Patrik

    2016-05-17

    European Spallation Source instruments like the macromolecular diffractometer, NMX, require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The {\\mu}TPC analysis, proven to improve the spatial resolution in the case of $^{10}$B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with an estimated efficiency of 10% at a wavelength of 2 {\\AA} and a position resolution better than 350 {\\mu}m.

  10. The anatomy of effective discharge: the dynamics of coarse sediment transport revealed using continuous bedload monitoring in a gravel-bed river during a very wet year

    OpenAIRE

    Downs, Peter W.; Soar, Philip J.; Taylor, Alex

    2015-01-01

    Indirect, passive approaches for monitoring coarse bedload transport could allow cheaper, safer, higher-resolution, longer-term data that revolutionises bedload understanding and informs river management. Here, insights provided by seismic impact plates in a downstream reach of a flashy gravel-bed river (River Avon, Devon, UK) are explored in the context of plate performance. Monitoring of a centrally-situated plate (IP1) during an extremely wet 12-month period demonstrated that impacts were ...

  11. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    Energy Technology Data Exchange (ETDEWEB)

    Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr [Laboratoire de Chimie-Physique, UMR 8000 CNRS, Université Paris-Sud, Orsay (France); Schnell, Benoît; Petitjean, Laurent; Couty, Marc [Manufacture Française des Pneumatiques MICHELIN, Centre de Ladoux, 23 place des Carmes, 63000 Clermont-Ferrand (France)

    2014-04-07

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.

  12. Manifest rotation symmetric expressions for angular momentum eigenfunctions

    International Nuclear Information System (INIS)

    Eeg, J.O.; Wroldsen, J.

    1983-01-01

    Manifest rotation symmetric expressions for eigenfunctions for spin s, orbital angular momentum l and total angular momentum j = l+s, .... , /l-s/ in terms of (2j+1) x (2s+1) multipole transition matrices (MTM) is given. These matrices, which are irreducible tensor matrices, have an algebra together with ordinary spin matrices for spin s and spin j. Explicit expressions for MTM's and their algebra are given for angular momenta <-3. By means of some examples it is shown that within this formalism angular integrations in central field problems will be simplified considerably. Thus the formalism turns out to be very useful for instance for calculations within the MIT-bag and also within spin-spin interactions in atomic physics. (Auth.)

  13. The angular momentum dependence of complex fragment emission

    International Nuclear Information System (INIS)

    Sobtka, L.G.; Sarantites, D.G.; Li, Z.

    1987-01-01

    Large fragment (A > 4) production at high angular momentum is studied via the reaction, 200 MeV 45 Sc + 65 Cu. Comparisons of the fragment yields from this reaction (high angular momentum) to those from 93 Nb + Be (low angular momentum) are used to verify the strong angular momentum dependence of large fragment production predicted by equilibrium models. Details of the coincident γ-ray distributions not only confirm a rigidly rotating intermediate but also indicate that the widths of the primary L-wave distributions decrease with increasing symmetry in the decay channel. These data are used to test the asymmetry and L-wave dependence of emission barriers calculated from a rotating, finite range corrected, liquid drop model. 21 refs., 10 figs

  14. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    Science.gov (United States)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields

  15. An induced charge readout scheme incorporating image charge splitting on discrete pixels

    International Nuclear Information System (INIS)

    Kataria, D.O.; Lapington, J.S.

    2003-01-01

    Top hat electrostatic analysers used in space plasma instruments typically use microchannel plates (MCPs) followed by discrete pixel anode readout for the angular definition of the incoming particles. Better angular definition requires more pixels/readout electronics channels but with stringent mass and power budgets common in space applications, the number of channels is restricted. We describe here a technique that improves the angular definition using induced charge and an interleaved anode pattern. The technique adopts the readout philosophy used on the CRRES and CLUSTER I instruments but has the advantages of the induced charge scheme and significantly reduced capacitance. Charge from the MCP collected by an anode pixel is inductively split onto discrete pixels whose geometry can be tailored to suit the scientific requirements of the instrument. For our application, the charge is induced over two pixels. One of them is used for a coarse angular definition but is read out by a single channel of electronics, allowing a higher rate handling. The other provides a finer angular definition but is interleaved and hence carries the expense of lower rate handling. Using the technique and adding four channels of electronics, a four-fold increase in the angular resolution is obtained. Details of the scheme and performance results are presented

  16. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  17. Folding 19 proteins to their native state and stability of large proteins from a coarse-grained model.

    Science.gov (United States)

    Kapoor, Abhijeet; Travesset, Alex

    2014-03-01

    We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.

  18. Coarse particles-water mixtures flow in pipes

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel

    2017-01-01

    Roč. 225, č. 2017 (2017), s. 338-341 ISSN 2411-3336 R&D Projects: GA ČR GAP105/10/1574 Institutional support: RVO:67985874 Keywords : hydrotransport * coarse particles pipeline installation * pressure drop * pipe inclination Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics)

  19. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    Science.gov (United States)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  20. Angular momentum conservation for uniformly expanding flows

    International Nuclear Information System (INIS)

    Hayward, Sean A

    2007-01-01

    Angular momentum has recently been defined as a surface integral involving an axial vector and a twist 1-form, which measures the twisting around the spacetime due to a rotating mass. The axial vector is chosen to be a transverse, divergence-free, coordinate vector, which is compatible with any initial choice of axis and integral curves. Then a conservation equation expresses the rate of the change of angular momentum along a uniformly expanding flow as a surface integral of angular momentum densities, with the same form as the standard equation for an axial Killing vector, apart from the inclusion of an effective energy tensor for gravitational radiation

  1. Inefficient Angular Momentum Transport in Accretion Disk Boundary Layers: Angular Momentum Belt in the Boundary Layer

    Science.gov (United States)

    Belyaev, Mikhail A.; Quataert, Eliot

    2018-04-01

    We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.

  2. Coarse-mesh discretized low-order quasi-diffusion equations for subregion averaged scalar fluxes

    International Nuclear Information System (INIS)

    Anistratov, D. Y.

    2004-01-01

    In this paper we develop homogenization procedure and discretization for the low-order quasi-diffusion equations on coarse grids for core-level reactor calculations. The system of discretized equations of the proposed method is formulated in terms of the subregion averaged group scalar fluxes. The coarse-mesh solution is consistent with a given fine-mesh discretization of the transport equation in the sense that it preserves a set of average values of the fine-mesh transport scalar flux over subregions of coarse-mesh cells as well as the surface currents, and eigenvalue. The developed method generates numerical solution that mimics the large-scale behavior of the transport solution within assemblies. (authors)

  3. Characteristics of fine and coarse particles of natural and urban aerosols of Brazil

    International Nuclear Information System (INIS)

    Orsini, C.M.Q.; Tabacniks, M.H.; Artaxo Netto, P.E.; Andrade, M.F.; Kerr, A.

    1986-02-01

    Fine and coarse particles have been sampled from 1982 to 1985 in one natural forest seacoast site (Jureia) and five urban-industrial cities (Vitoria, Salvador, Porto Alegre, Sao Paulo, and Belo Horizonte). The time variations of concentrations in air and the relative elemental compositions of fine and coarse particle fractions, sampled by Nuclepore stacked filter units (SFU), have been determined gravimetrically and by PIXE analysis, respectively. Enrichment factors and correlation coefficients of the trace elements measured lead to unambiguous characterization of soil dust and sea salt, both major aerosol sources that emit coarse particles, and soil dust is also a significant source of fine particles. (Author) [pt

  4. Effects of coarse-graining on the scaling behavior of long-range correlated and anti-correlated signals.

    Science.gov (United States)

    Xu, Yinlin; Ma, Qianli D Y; Schmitt, Daniel T; Bernaola-Galván, Pedro; Ivanov, Plamen Ch

    2011-11-01

    We investigate how various coarse-graining (signal quantization) methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and that with increasing the width of the coarse-graining partition interval Δ, this crossover moves to intermediate and small scales. In contrast, the scaling of positively correlated signals is less affected by the coarse-graining, with no observable changes when Δ 1 a crossover appears at small scales and moves to intermediate and large scales with increasing Δ. For very rough coarse-graining (Δ > 3) based on the Floor and Symmetry methods, the position of the crossover stabilizes, in contrast to the Centro-Symmetry method where the crossover continuously moves across scales and leads to a random behavior at all scales; thus indicating a much stronger effect of the Centro-Symmetry compared to the Floor and the Symmetry method. For coarse-graining in time, where data points are averaged in non-overlapping time windows, we find that the scaling for both anti-correlated and positively correlated signals is practically preserved. The results of our simulations are useful for the correct interpretation of the correlation and scaling properties of symbolic sequences.

  5. Angular cheilitis: A clinical and microbial study

    Directory of Open Access Journals (Sweden)

    Nirima Oza

    2017-01-01

    Full Text Available Aims: The aim of the present study was to examine clinical types and microbiological flora isolated from angular chelitis. Materials and Methods: An eroded and/or erythematous, with or without fissure formation, nonvesicular lesion radiating from the angle of the mouth was considered to be angular chelitis. A sample of the present study comprised of 40 patients having unilateral or bilateral angular chelitis and 20 healthy individuals without any lip lesions. Clinical examination was done. In both test and control groups, the sample for microbial analysis was obtained from angle of the mouth. Results: Clinically, four types of angular cheilitis lesions were found, Type I, II, III, and IV. The most common type of lesion found was Type I lesion. Microorganisms isolated from the lesion were Staphylococcus aureus, Candida or Streptococci in 33 (82.5% cases either in pure culture or mixed culture. Among these 33 patients, S. aureus was found in 25 (75.5% cases, Candida in 16 (48.4% cases, and Streptococci in 5 (13.5% cases, respectively. Out of 16 cases positive for Candida, in 13 cases further isolation of Candida was possible. Candida albicans was found in 6 cases and Candida stellastodia in 7 cases. In majority of the dentulous and edentulous patients, S. aureus showed profuse growth. Conclusions: There are microorganisms associated with angular cheilitis.

  6. Mastering AngularJD for .NET developers

    CERN Document Server

    Majid, Mohammad Wadood

    2015-01-01

    This book is envisioned for traditional developers and programmers who want to develop client-side applications using the AngularJS framework and ASP.NET Web API 2 with Visual Studio. .NET developers who have already built web applications or web services and who have a fundamental knowledge of HTML, JavaScript, and CSS and want to explore single-page applications will also find this guide useful. Basic knowledge of AngularJS would be helpful.

  7. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  8. FROM ATOMISTIC TO SYSTEMATIC COARSE-GRAINED MODELS FOR MOLECULAR SYSTEMS

    KAUST Repository

    Harmandaris, Vagelis

    2017-10-03

    The development of systematic (rigorous) coarse-grained mesoscopic models for complex molecular systems is an intense research area. Here we first give an overview of methods for obtaining optimal parametrized coarse-grained models, starting from detailed atomistic representation for high dimensional molecular systems. Different methods are described based on (a) structural properties (inverse Boltzmann approaches), (b) forces (force matching), and (c) path-space information (relative entropy). Next, we present a detailed investigation concerning the application of these methods in systems under equilibrium and non-equilibrium conditions. Finally, we present results from the application of these methods to model molecular systems.

  9. Fine-coarse semantic processing in schizophrenia: a reversed pattern of hemispheric dominance.

    Science.gov (United States)

    Zeev-Wolf, Maor; Goldstein, Abraham; Levkovitz, Yechiel; Faust, Miriam

    2014-04-01

    Left lateralization for language processing is a feature of neurotypical brains. In individuals with schizophrenia, lack of left lateralization is associated with the language impairments manifested in this population. Beeman׳s fine-coarse semantic coding model asserts left hemisphere specialization in fine (i.e., conventionalized) semantic coding and right hemisphere specialization in coarse (i.e., non-conventionalized) semantic coding. Applying this model to schizophrenia would suggest that language impairments in this population are a result of greater reliance on coarse semantic coding. We investigated this hypothesis and examined whether a reversed pattern of hemispheric involvement in fine-coarse semantic coding along the time course of activation could be detected in individuals with schizophrenia. Seventeen individuals with schizophrenia and 30 neurotypical participants were presented with two word expressions of four types: literal, conventional metaphoric, unrelated (exemplars of fine semantic coding) and novel metaphoric (an exemplar of coarse semantic coding). Expressions were separated by either a short (250 ms) or long (750 ms) delay. Findings indicate that whereas during novel metaphor processing, controls displayed a left hemisphere advantage at 250 ms delay and right hemisphere advantage at 750 ms, individuals with schizophrenia displayed the opposite. For conventional metaphoric and unrelated expressions, controls showed left hemisphere advantage across times, while individuals with schizophrenia showed a right hemisphere advantage. Furthermore, whereas individuals with schizophrenia were less accurate than control at judging literal, conventional metaphoric and unrelated expressions they were more accurate when judging novel metaphors. Results suggest that individuals with schizophrenia display a reversed pattern of lateralization for semantic coding which causes them to rely more heavily on coarse semantic coding. Thus, for individuals with

  10. Efficient evaluation of angular power spectra and bispectra

    Science.gov (United States)

    Assassi, Valentin; Simonović, Marko; Zaldarriaga, Matias

    2017-11-01

    Angular statistics of cosmological observables are hard to compute. The main difficulty is due to the presence of highly-oscillatory Bessel functions which need to be integrated over. In this paper, we provide a simple and fast method to compute the angular power spectrum and bispectrum of any observable. The method is based on using an FFTlog algorithm to decompose the momentum-space statistics onto a basis of power-law functions. For each power law, the integrals over Bessel functions have a simple analytical solution. This allows us to efficiently evaluate these integrals, independently of the value of the multipole l. In particular, this method significantly speeds up the evaluation of the angular bispectrum compared to existing methods. To illustrate our algorithm, we compute the galaxy, lensing and CMB temperature angular power spectrum and bispectrum.

  11. Angular dispersion and deflection function for heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bai Zhen; Han Jianlong; Hu Zhengguo; Chinese Academy of Sciences, Beijing

    2007-01-01

    The differential cross sections for elastic scattering products of 17 F on 208 Pb have been measured. The angular dispersion plots of ln(dσ/dθ) versus θ 2 are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena. (authors)

  12. Finding the best resolution for the Kingman-Tajima coalescent: theory and applications.

    Science.gov (United States)

    Sainudiin, Raazesh; Stadler, Tanja; Véber, Amandine

    2015-05-01

    Many summary statistics currently used in population genetics and in phylogenetics depend only on a rather coarse resolution of the underlying tree (the number of extant lineages, for example). Hence, for computational purposes, working directly on these resolutions appears to be much more efficient. However, this approach seems to have been overlooked in the past. In this paper, we describe six different resolutions of the Kingman-Tajima coalescent together with the corresponding Markov chains, which are essential for inference methods. Two of the resolutions are the well-known n-coalescent and the lineage death process due to Kingman. Two other resolutions were mentioned by Kingman and Tajima, but never explicitly formalized. Another two resolutions are novel, and complete the picture of a multi-resolution coalescent. For all of them, we provide the forward and backward transition probabilities, the probability of visiting a given state as well as the probability of a given realization of the full Markov chain. We also provide a description of the state-space that highlights the computational gain obtained by working with lower-resolution objects. Finally, we give several examples of summary statistics that depend on a coarser resolution of Kingman's coalescent, on which simulations are usually based.

  13. Application of the Total Least Square ESPRIT Method to Estimation of Angular Coordinates of Moving Objects

    Directory of Open Access Journals (Sweden)

    Wojciech Rosloniec

    2010-01-01

    Full Text Available The TLS ESPRIT method is investigated in application to estimation of angular coordinates (angles of arrival of two moving objects at the presence of an external, relatively strong uncorrelated signal. As a radar antenna system, the 32-element uniform linear array (ULA is used. Various computer simulations have been carried out in order to demonstrate good accuracy and high spatial resolution of the TLS ESPRIT method in the scenario outlined above. It is also shown that accuracy and angle resolution can be significantly increased by using the proposed preprocessing (beamforming. The most of simulation results, presented in a graphical form, have been compared to the corresponding equivalent results obtained by using the ESPRIT method and conventional amplitude monopulse method aided by the coherent Doppler filtration.

  14. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux

    International Nuclear Information System (INIS)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  15. Frame dependence of spin-one angular conditions in light front dynamics

    International Nuclear Information System (INIS)

    Bakker, Bernard L. G.; Ji Chuengryong

    2002-01-01

    We elaborate the frame dependence of the angular conditions for spin-1 form factors. An extra angular condition is found in addition to the usual angular condition relating the four helicity amplitudes. Investigating the frame dependence of angular conditions, we find that the extra angular condition is in general as complicated as the usual one, although it becomes very simple in the q + =0 frame involving only two helicity amplitudes. It is confirmed that the angular conditions are identical in frames that are connected by kinematical transformations. The high-Q 2 behavior of the physical form factors and the limiting behavior in special reference frames are also discussed

  16. Coarse mesh code development

    Energy Technology Data Exchange (ETDEWEB)

    Lieberoth, J.

    1975-06-15

    The numerical solution of the neutron diffusion equation plays a very important role in the analysis of nuclear reactors. A wide variety of numerical procedures has been proposed, at which most of the frequently used numerical methods are fundamentally based on the finite- difference approximation where the partial derivatives are approximated by the finite difference. For complex geometries, typical of the practical reactor problems, the computational accuracy of the finite-difference method is seriously affected by the size of the mesh width relative to the neutron diffusion length and by the heterogeneity of the medium. Thus, a very large number of mesh points are generally required to obtain a reasonably accurate approximate solution of the multi-dimensional diffusion equation. Since the computation time is approximately proportional to the number of mesh points, a detailed multidimensional analysis, based on the conventional finite-difference method, is still expensive even with modern large-scale computers. Accordingly, there is a strong incentive to develop alternatives that can reduce the number of mesh-points and still retain accuracy. One of the promising alternatives is the finite element method, which consists of the expansion of the neutron flux by piecewise polynomials. One of the advantages of this procedure is its flexibility in selecting the locations of the mesh points and the degree of the expansion polynomial. The small number of mesh points of the coarse grid enables to store the results of several of the least outer iterations and to calculate well extrapolated values of them by comfortable formalisms. This holds especially if only one energy distribution of fission neutrons is assumed for all fission processes in the reactor, because the whole information of an outer iteration is contained in a field of fission rates which has the size of all mesh points of the coarse grid.

  17. ANGULAR LIGHT-SCATTERING STUDIES ON ISOLATED MITOCHONDRIA

    Science.gov (United States)

    Gotterer, Gerald S.; Thompson, Thomas E.; Lehninger, Albert L.

    1961-01-01

    Angular light-scattering studies have been carried out on suspensions of isolated rat liver mitochondria. The angular scatter pattern has a large forward component, typical of large particles. Changes in dissymmetry and in the intensity of light scattered at 90° have been correlated with changes in optical density during the course of mitochondrial swelling and contraction. Such changes can be measured at mitochondrial concentrations much below those required for optical density measurements. Changes in mitochondrial geometry caused by factors "leaking" from mitochondria, not detectable by optical density measurements, have been demonstrated by measuring changes in dissymmetry. Angular light-scattering measurements therefore offer the advantages of increased sensitivity and of added indices of changes in mitochondrial conformation. PMID:19866589

  18. Angular correlations and high energy evolution

    International Nuclear Information System (INIS)

    Kovner, Alex; Lublinsky, Michael

    2011-01-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N c approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  19. Studies of torsional properties of DNA and nucleosomes using angular optical trapping

    Science.gov (United States)

    Sheinin, Maxim Y.

    DNA in vivo is subjected to torsional stress due to the action of molecular motors and other DNA-binding proteins. Several decades of research have uncovered the fascinating diversity of DNA transformations under torsion and the important role they play in the regulation of vital cellular processes such as transcription and replication. Recent studies have also suggested that torsion can influence the structure and stability of nucleosomes---basic building blocks of the eukaryotic genome. However, our understanding of the impact of torsion is far from being complete due to significant experimental challenges. In this work we have used a powerful single-molecule experimental technique, angular optical trapping, to address several long-standing issues in the field of DNA and nucleosome mechanics. First, we utilized the high resolution and direct torque measuring capability of the angular optical trapping to precisely measure DNA twist-stretch coupling. Second, we characterized DNA melting under tension and torsion. We found that torsionally underwound DNA forms a left-handed structure, significantly more flexible compared to the regular B-DNA. Finally, we performed the first comprehensive investigation of the single nucleosome behavior under torque and force. Importantly, we discovered that positive torque causes significant dimer loss, which can have implications for transcription through chromatin.

  20. Coarse-mesh method for multidimensional, mixed-lattice diffusion calculations

    International Nuclear Information System (INIS)

    Dodds, H.L. Jr.; Honeck, H.C.; Hostetler, D.E.

    1977-01-01

    A coarse-mesh finite difference method has been developed for multidimensional, mixed-lattice reactor diffusion calculations, both statics and kinetics, in hexagonal geometry. Results obtained with the coarse-mesh (CM) method have been compared with a conventional mesh-centered finite difference method and with experiment. The results of this comparison indicate that the accuracy of the CM method for highly heterogeneous (mixed) lattices using one point per hexagonal mesh element (''hex'') is about the same as the conventional method with six points per hex. Furthermore, the computing costs (i.e., central processor unit time and core storage requirements) of the CM method with one point per hex are about the same as the conventional method with one point per hex

  1. MT-ADRES: multi-threading on coarse-grained reconfigurable architecture

    DEFF Research Database (Denmark)

    Wu, Kehuai; Kanstein, Andreas; Madsen, Jan

    2008-01-01

    The coarse-grained reconfigurable architecture ADRES (architecture for dynamically reconfigurable embedded systems) and its compiler offer high instruction-level parallelism (ILP) to applications by means of a sparsely interconnected array of functional units and register files. As high-ILP archi......The coarse-grained reconfigurable architecture ADRES (architecture for dynamically reconfigurable embedded systems) and its compiler offer high instruction-level parallelism (ILP) to applications by means of a sparsely interconnected array of functional units and register files. As high......-ILP architectures achieve only low parallelism when executing partially sequential code segments, which is also known as Amdahl's law, this article proposes to extend ADRES to MT-ADRES (multi-threaded ADRES) to also exploit thread-level parallelism. On MT-ADRES architectures, the array can be partitioned...

  2. Generation of angular-momentum-dominated electron beams from a photoinjector

    International Nuclear Information System (INIS)

    Sun, Yin-E.; Piot, Philippe; Kim, Kwang-Je; Barov, Nikolas; Lidia, Steven; Santucci, James; Tikhoplav, Rodion; Wennerberg, Jason

    2004-01-01

    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models

  3. An Apparatus for Bed Material Sediment Extraction From Coarse River Beds in Large Alluvial Rivers

    Science.gov (United States)

    Singer, M. B.; Adam, H.; Cooper, J.; Cepello, S.

    2005-12-01

    Grain size distributions of bed material sediment in large alluvial rivers are required in applications ranging from habitat mapping, calibration of sediment transport models, high resolution sediment routing, and testing of existing theories of longitudinal and cross steam sediment sorting. However, characterizing bed material sediment from coarse river beds is hampered by difficulties in sediment extraction, a challenge that is generally circumvented via pebble counts on point bars, even though it is unclear whether the bulk grain size distribution of bed sediments is well represented by pebble counts on bars. We have developed and tested a boat-based sampling apparatus and methodology for extracting bulk sediment from a wide range of riverbed materials. It involves the use of a 0.4 x 0.4 x 0.2 meter stainless steel toothed sampler, called the Cooper Scooper, which is deployed from and dragged downstream by the weight of a jet boat. The design is based on that of a river anchor such that a rotating center bar connected to a rope line in the boat aligns the sampler in the downstream direction, the teeth penetrate the bed surface, and the sampler digs into the bed. The sampler is fitted with lead weights to keep it from tipping over. The force of the sampler `biting' into the bed can be felt on the rope line held by a person in the boat at which point they let out slack. The boat then motors to the spot above the embedded sampler, which is hoisted to the water surface via a system of pulleys. The Cooper Scooper is then clipped into a winch and boom assembly by which it is brought aboard. This apparatus improves upon commonly used clamshell dredge samplers, which are unable to penetrate coarse or mixed bed surfaces. The Cooper Scooper, by contrast, extracts statistically representative bed material sediment samples of up to 30 kilograms. Not surprisingly, the sampler does not perform well in very coarse or armored beds (e.g. where surface material size is on the

  4. Nuclear spin measurement using the angular correlation method

    International Nuclear Information System (INIS)

    Schapira, J.-P.

    The double angular correlation method is defined by a semi-classical approach (Biendenharn). The equivalence formula in quantum mechanics are discussed for coherent and incoherent angular momentum mixing; the correlations are described from the density and efficiency matrices (Fano). The ambiguities in double angular correlations can be sometimes suppressed (emission of particles with a high orbital momentum l), using triple correlations between levels with well defined spin and parity. Triple correlations are applied to the case where the direction of linear polarization of γ-rays is detected [fr

  5. Notes on the quantum theory of angular momentum

    CERN Document Server

    Feenberg, Eugene

    1999-01-01

    This classic, concise text has served a generation of physicists as an exceptionally useful guide to the mysteries of angular momenta and Clebsch-Gordon Coefficients. Derived from notes originally prepared to assist graduate students in reading research papers on atomic, molecular, and nuclear structure, the text first reviews the basic elements of quantum theory. It then examines the development of the fundamental commutation relations for angular momentum components and vector operators, and the ways in which matrix elements and eigenvalues of the angular momentum operators are worked out f

  6. Superplastic behavior of coarse-grained aluminum alloys

    NARCIS (Netherlands)

    Chezan, AR; De Hosson, JTM

    2005-01-01

    In this paper we concentrate on the superplastic behavior and the microstructural evolution of two coarse-grained Al alloys: Al-4.4w/oMg and Al-4.4w/oMg-0.4w/oCu. The values for the strain rate sensitivity index and activation energy suggest that solute drag on dislocation motion is an important

  7. Symmetries and the coarse-mesh method

    International Nuclear Information System (INIS)

    Makai, M.

    1980-10-01

    This report approaches the basic problem of the coarse-mesh method from a new side. Group theory is used for the determination of the space dependency of the flux. The result is a method called ANANAS after the analytic-analytic solution. This method was tested on two benchmark problems: one given by Melice and the IAEA benchmark. The ANANAS program is an experimental one. The method was intended for use in hexagonal geometry. (Auth.)

  8. Enhancement of properties of recycled coarse aggregate concrete using bacteria

    Science.gov (United States)

    Sahoo; Arakha; Sarkar; P; Jha

    2016-01-01

    Due to rapid construction, necessity for raw materials of concrete, especially coarse aggregate, tends to increase the danger of early exhaustion of the natural resources. An alternative source of raw materials would perhaps delay the advent of this early exhaustion. Recycled coarse aggregate (RCA) plays a great role as an alternative raw material that can replace the natural coarse aggregate (NCA) for concrete. Previous studies show that the properties of RCA concrete are inferior in quality compared to NCA concrete. This article attempts to study the improvement of properties of RCA concrete with the addition of bacteria named as Bacillus subtilis. The experimental investigation was carried out to evaluate the improvement of the compressive strength, capillary water absorption, and drying shrinkage of RCA concrete incorporating bacteria. The compressive strength of RCA concrete is found to be increased by about 20% when the cell concentration of B. subtilis is 106 cells/ml. The capillary water absorption as well as drying shrinkage of RCA are reduced when bacteria is incorporated. The improvement of RCA concrete is confirmed to be due to the calcium carbonate precipitation as observed from the microstructure studies carried out on it such as EDX, SEM, and XRD.

  9. Automated Angular Momentum Recoupling Algebra

    Science.gov (United States)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  10. Modelling high-resolution electron microscopy based on core-loss spectroscopy

    International Nuclear Information System (INIS)

    Allen, L.J.; Findlay, S.D.; Oxley, M.P.; Witte, C.; Zaluzec, N.J.

    2006-01-01

    There are a number of factors affecting the formation of images based on core-loss spectroscopy in high-resolution electron microscopy. We demonstrate unambiguously the need to use a full nonlocal description of the effective core-loss interaction for experimental results obtained from high angular resolution electron channelling electron spectroscopy. The implications of this model are investigated for atomic resolution scanning transmission electron microscopy. Simulations are used to demonstrate that core-loss spectroscopy images formed using fine probes proposed for future microscopes can result in images that do not correspond visually with the structure that has led to their formation. In this context, we also examine the effect of varying detector geometries. The importance of the contribution to core-loss spectroscopy images by dechannelled or diffusely scattered electrons is reiterated here

  11. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices

    Science.gov (United States)

    Lindsay, Richard J.; Siess, Jan; Lohry, David P.; McGee, Trevor S.; Ritchie, Jordan S.; Johnson, Quentin R.; Shen, Tongye

    2018-01-01

    We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.

  12. A detection of the coarse water droplets in steam turbines

    Directory of Open Access Journals (Sweden)

    Bartoš Ondřej

    2014-03-01

    Full Text Available The aim of this paper is to introduce a novel method for the detection of coarse water droplets in a low pressure part of steam turbines. The photogrammetry method has been applied for the measurement of coarse droplets in the low-pressure part of a steam turbine. A new probe based on this measurement technique was developed and tested in the laboratory and in a steam turbine in the Počerady power-plant. The probe was equipped with state-of-the-art instrumentation. The paper contains results from laboratory tests and the first preliminary measurements in a steam turbine. Possible applications of this method have been examined.

  13. Modification of the MORSE code for Monte Carlo eigenvalue problems by coarse-mesh rebalance acceleration

    International Nuclear Information System (INIS)

    Nishida, Takahiko; Horikami, Kunihiko; Suzuki, Tadakazu; Nakahara, Yasuaki; Taji, Yukichi

    1975-09-01

    The coarse-mesh rebalancing technique is introduced into the general-purpose neutron and gamma-ray Monte Carlo transport code MORSE, to accelerate the convergence rate of the iteration process for eigenvalue calculation in a nuclear reactor system. Two subroutines are thus attached to the code. One is bookkeeping routine 'COARSE' for obtaining the quantities related with the neutron balance in each coarse mesh cell, such as the number of neutrons absorbed in the cell, from random walks of neutrons in a batch. The other is rebalance factor calculation routine 'REBAL' for obtaining the scaling factor whereby the neutron flux in the cell is multiplied to attain the neutron balance. The two subroutines and algorithm of the coarse mesh rebalancing acceleration in a Monte Carlo game are described. (auth.)

  14. People and pixels in the Sahel: a study linking coarse-resolution remote sensing observations to land users' perceptions of their changing environment in Senegal

    Directory of Open Access Journals (Sweden)

    Stefanie M. Herrmann

    2014-09-01

    Full Text Available Mounting evidence from satellite observations of a re-greening across much of the Sahel and Sudan zones over the past three decades has raised questions about the extent and reversibility of desertification. Historical ground data that could help in interpreting the re-greening are scarce. To fill that void, we tapped into the collective memories of local land users from central and western Senegal in 39 focus groups and assessed the spatial association between their perceptions of vegetation changes over time and remote sensing-derived trends. To provide context to the vegetation changes, we also explored the land users' perspective on the evolution of other environmental and human variables that are potentially related to the greening, using participatory research methods. While increases in vegetation were confirmed by the study participants for certain areas, which spatially corresponded to satellite-observed re-greening, vegetation degradation dominated their perceptions of change. This degradation, although spatially extensive according to land users, flies under the radar of coarse-resolution remote sensing data because it is not necessarily associated with a decrease in biomass but rather with undesired changes in species composition. Few significant differences were found in the perceived trends of population pressure, environmental, and livelihood variables between communities that have greened up according to satellite data and those that have not. Our findings challenge the prevailing chain of assumptions of the satellite-observed greening trend indicating an improvement of environmental conditions in the sense of a rehabilitation of the vegetation cover after the great droughts of the 1970s and 1980s, and the improvement of environmental conditions possibly translating into more stable livelihoods and greater well-being of the populations. For monitoring desertification and rehabilitation, there is a need to develop remote sensing

  15. Martini Coarse-Grained Force Field : Extension to Carbohydrates

    NARCIS (Netherlands)

    Lopez, Cesar A.; Rzepiela, Andrzej J.; de Vries, Alex H.; Dijkhuizen, Lubbert; Huenenberger, Philippe H.; Marrink, Siewert J.

    2009-01-01

    We present an extension of the Martini coarse-grained force field to carbohydrates. The parametrization follows the same philosophy as was used previously for lipids and proteins, focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar phases. The

  16. Angular momentum alignment in molecular beam scattering

    International Nuclear Information System (INIS)

    Treffers, M.A.

    1985-01-01

    It is shown how the angular momentum alignment in a molecular beam can be determined using laser-induced fluorescence in combination with precession of the angular momenta in a magnetic field. After a general analysis of the method, some results are presented to illustrate the possibilities of the method. Experimental data are presented on the alignment production for Na 2 molecules that made a collision induced angular momentum transition. Magnitude as well as direction of the alignment have been determined for scattering with several scattering partners and for a large number of scattering angles and transitions. The last chapter deals with the total alignment production in a final J-state, i.e. without state selection of the initial rotational state. (orig.)

  17. Active x-ray optics for high resolution space telescopes

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  18. Yksisivuisten web-sovellusten kehittäminen Angular 2 -sovelluskehyksellä

    OpenAIRE

    Kujala, Miika

    2016-01-01

    Yksisivuiset web-sovellukset ovat yleistyneet viime vuosina. Niiden kehityksessä hyödynnetään usein JavaScript-sovelluskehystä. Angular 2 on Google:n kehittämä JavaScript-sovelluskehys. Tämän tutkielman tavoitteena on tarkastella Angular 2 -sovelluskehystä ja sen soveltuvuutta yksisivuisten web-sovellusten ke- hityksessä. Tutkielmassa käydään läpi Angular 2 -sovelluskehyksen ominaisuuksia sekä Angular 2 -sovelluskehyksen käytössä ilmeneviä etuja ja haittoja.

  19. Design and Implementation of a Digital Angular Rate Sensor

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2010-10-01

    Full Text Available With the aim of detecting the attitude of a rotating carrier, the paper presents a novel, digital angular rate sensor. The sensor consists of micro-sensing elements (gyroscope and accelerometer, signal processing circuit and micro-processor (DSP2812. The sensor has the feature of detecting three angular rates of a rotating carrier at the same time. The key techniques of the sensor, including sensing construction, sensing principles, and signal processing circuit design are presented. The test results show that the sensor can sense rolling, pitch and yaw angular rate at the same time and the measurement error of yaw (or pitch angular rate and rolling rate of the rotating carrier is less than 0.5%.

  20. Modeling the potential area of occupancy at fine resolution may reduce uncertainty in species range estimates

    DEFF Research Database (Denmark)

    Jiménez-Alfaro, Borja; Draper, David; Nogues, David Bravo

    2012-01-01

    and maximum entropy modeling to assess whether different sampling (expert versus systematic surveys) may affect AOO estimates based on habitat suitability maps, and the differences between such measurements and traditional coarse-grid methods. Fine-scale models performed robustly and were not influenced...... by survey protocols, providing similar habitat suitability outputs with high spatial agreement. Model-based estimates of potential AOO were significantly smaller than AOO measures obtained from coarse-scale grids, even if the first were obtained from conservative thresholds based on the Minimal Predicted...... permit comparable measures among species. We conclude that estimates of AOO based on fine-resolution distribution models are more robust tools for risk assessment than traditional systems, allowing a better understanding of species ranges at habitat level....

  1. Angular Accelerating White Light

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2015-08-01

    Full Text Available wavelength dependence. By digitally simulating free-space propagation on the SLM, The authors compare the effects of real and digital propagation on the angular rotation rates of the resulting optical fields for various wavelengths. The development...

  2. Texture coarseness responsive neurons and their mapping in layer 2–3 of the rat barrel cortex in vivo

    Science.gov (United States)

    Garion, Liora; Dubin, Uri; Rubin, Yoav; Khateb, Mohamed; Schiller, Yitzhak; Azouz, Rony; Schiller, Jackie

    2014-01-01

    Texture discrimination is a fundamental function of somatosensory systems, yet the manner by which texture is coded and spatially represented in the barrel cortex are largely unknown. Using in vivo two-photon calcium imaging in the rat barrel cortex during artificial whisking against different surface coarseness or controlled passive whisker vibrations simulating different coarseness, we show that layer 2–3 neurons within barrel boundaries differentially respond to specific texture coarsenesses, while only a minority of neurons responded monotonically with increased or decreased surface coarseness. Neurons with similar preferred texture coarseness were spatially clustered. Multi-contact single unit recordings showed a vertical columnar organization of texture coarseness preference in layer 2–3. These findings indicate that layer 2–3 neurons perform high hierarchical processing of tactile information, with surface coarseness embodied by distinct neuronal subpopulations that are spatially mapped onto the barrel cortex. DOI: http://dx.doi.org/10.7554/eLife.03405.001 PMID:25233151

  3. Angular momentum dependence of the distribution of shell model eigenenergies

    International Nuclear Information System (INIS)

    Yen, M.K.

    1974-01-01

    In the conventional shell model calculation the many-particle energy matrices are constructed and diagonalized for definite angular momentum and parity. However the resulting set of eigenvalues possess a near normal behavior and hence a simple statistical description is possible. Usually one needs only about four parameters to capture the average level densities if the size of the set is not too small. The parameters are essentially moments of the distribution. But the difficulty lies in the yet unsolved problem of calculating moments in the fixed angular momentum subspace. We have derived a formula to approximate the angular momentum projection dependence of any operator averaged in a shell model basis. This approximate formula which is a truncated series in Hermite polynomials has been proved very good numerically and justified analytically for large systems. Applying this formula to seven physical cases we have found that the fixed angular momentum projection energy centroid, width and higher central moments can be obtained accurately provided for even-even nuclei the even and odd angular momentum projections are treated separately. Using this information one can construct the energy distribution for fixed angular momentum projection assuming normal behavior. Then the fixed angular momentum level densities are deduced and spectra are extracted. Results are in reasonably good agreement with the exact values although not as good as those obtained using exact fixed angular momentum moments. (Diss. Abstr. Int., B)

  4. A Novel Permanent Magnetic Angular Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-07-01

    Full Text Available Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2. Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  5. AngularJS yksisivuisen web-applikaation kehitysalustana

    OpenAIRE

    Karhu, Tuomo

    2015-01-01

    Yksisivuiset web-applikaatiot (SPA-sovellukset) ovat yleistyneet viimeisten kymmenen vuoden aikana, ja näiden avulla on ollut mahdollista tuoda verkkosivuston käyttökokemus lähemmäksi aitojen ohjelmasovellusten vastaavaa. Yksisivuisten web-applikaatioitten kehitystyöhön tarkoitetuista sovelluskehyksistä AngularJS on yksi käytetyimmistä ja suosituimmista. Työn tavoitteena on selvittää miten AngularJS-sovelluskehys soveltuu SPA-sivustojen kehitykseen sovelluskehittäjän näkökulmasta, sekä mi...

  6. Measurement of angular distribution of cosmic-ray muon fluence rate

    International Nuclear Information System (INIS)

    Lin, Jeng-Wei; Chen, Yen-Fu; Sheu, Rong-Jiun; Jiang, Shiang-Huei

    2010-01-01

    In this work a Berkeley Lab cosmic ray detector was used to measure the angular distribution of the cosmic-ray muon fluence rate. Angular response functions of the detector at each measurement orientation were calculated by using the FLUKA Monte Carlo code, where no energy attenuation was taken into account. Coincidence counting rates were measured at ten orientations with equiangular intervals. The muon angular fluence rate spectrum was unfolded from the measured counting rates associated with the angular response functions using both the MAXED code and the parameter adjusting method.

  7. Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.

    Science.gov (United States)

    Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa

    2015-04-14

    We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.

  8. Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Español, Pep [Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid (Spain); Donev, Aleksandar [Dept. Física Fundamental, Universidad Nacional de Educación a Distancia, Aptdo. 60141, E-28080 Madrid (Spain); Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 (United States)

    2015-12-21

    We derive a coarse-grained description of the dynamics of a nanoparticle immersed in an isothermal simple fluid by performing a systematic coarse graining of the underlying microscopic dynamics. As coarse-grained or relevant variables, we select the position of the nanoparticle and the total mass and momentum density field of the fluid, which are locally conserved slow variables because they are defined to include the contribution of the nanoparticle. The theory of coarse graining based on the Zwanzing projection operator leads us to a system of stochastic ordinary differential equations that are closed in the relevant variables. We demonstrate that our discrete coarse-grained equations are consistent with a Petrov-Galerkin finite-element discretization of a system of formal stochastic partial differential equations which resemble previously used phenomenological models based on fluctuating hydrodynamics. Key to this connection between our “bottom-up” and previous “top-down” approaches is the use of the same dual orthogonal set of linear basis functions familiar from finite element methods (FEMs), both as a way to coarse-grain the microscopic degrees of freedom and as a way to discretize the equations of fluctuating hydrodynamics. Another key ingredient is the use of a “linear for spiky” weak approximation which replaces microscopic “fields” with a linear FE interpolant inside expectation values. For the irreversible or dissipative dynamics, we approximate the constrained Green-Kubo expressions for the dissipation coefficients with their equilibrium averages. Under suitable approximations, we obtain closed approximations of the coarse-grained dynamics in a manner which gives them a clear physical interpretation and provides explicit microscopic expressions for all of the coefficients appearing in the closure. Our work leads to a model for dilute nanocolloidal suspensions that can be simulated effectively using feasibly short molecular dynamics

  9. Using of Porcelinite as Coarse Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    Haifa Saleh

    2015-02-01

    Full Text Available In this research the ability of using porcelinite as coarse aggregate to produce light weight concrete was investigated.  The experimental program consists of preparing and testing a mixes to investigate mechanical properties of concrete, with a total of 15 cubes (100×100×100 mm, 30 cylinders (100×200 mm. The tests include compressive strength, splitting tensile strength, fresh and hardened density of  light weight concrete for different porcelinite percentages ranged between(0% to 100% of the coarse aggregate weight. The obtained results for tested specimens were compared to control one. Test results indicated that using of porcelinite in concrete mix reduces the strength of concrete Porcelinite aggregate represents a reduction in density ranging between (10%-36% of normal weight concrete, therefore there is an advantage  using this type of light weight aggregate in this country where soil bearing capacity is low in most construction sites.

  10. Angular momentum content of galaxies

    International Nuclear Information System (INIS)

    Shaya, E.J.; Tully, R.B.

    1984-01-01

    A schema of galaxy formation is developed in which the environmental influence of large-scale structure plays a dominant role. This schema was motivated by the observation that the fraction of E and S0 galaxies is much higher in clusters than in low-density regions and by an inference that those spirals that are found in clusters probably have fallen in relatively recently from the low-density regions. It is proposed that the tidal field of the Local Supercluster acts to determine the morphology of galaxies through two complementary mechanisms. In the first place, the supercluster can apply torques to protogalaxies. Galaxies which collapsed while expanding away from the central cluster decoupled from the external tidal field and conserved the angular momentum that they acquired before collapse. Galaxies which formed in the cluster while the cluster collapsed continued to feel the tidal field. In the latter case, the spin of outer collapsing layers can be halted and reversed, and tends to cancel the spin of inner layers. The result is a reduction of the total angular momentum content of the galaxy. In addition, the supercluster tidal field can regulate accretion of fresh material onto the galaxies since the field creates a Roche limit about galaxies and material beyond this limit is lost. Any material that has not collapsed onto a galaxy by the time the galaxy falls into a cluster will be tidally stripped. The angular momentum content of that part of the protogalactic cloud which has not yet collapsed . continues to grow linearly with time due to the continued torquing by the supercluster and neighbors. Galaxies at large distances from the cluster core can continue to accrete this high angular momentum material until the present, but galaxies that enter the cluster are cut off from replenishing material

  11. Experimental study on waves propagation over a coarse-grained sloping beach

    Science.gov (United States)

    Hsu, Tai-Wen; Lai, Jian-Wu

    2013-04-01

    This study investigates velocity fields of wave propagation over a coarse-grained sloping beach using laboratory experiments. The experiment was conducted in a wave flume of 25 m long, 0.5 m wide and 0.6 m high in which a coarse-grained sloping 1:5 beach was placed with two layers ball. The glass ball is D=7.9 cm and the center to center distance of each ball is 8.0 cm. The test section for observing wave and flow fields is located at the middle part of the flume. A piston type wave maker driven by an electromechanical hydraulic serve system is installed at the end of the flume. The intrinsic permeability Kp and turbulent drag coefficient Cf were obtained from steady flow water-head experiments. The flow velocity was measured by the particle image velocimeter (PIV) and digital image process (DIP) techniques. Eleven fields of view (FOVS) were integrated into a complete representation including the outer, surf and swash zone. Details of the definition sketch of the coarse-grained sloping beach model as well as experimental setup are referred to Lai et al. (2008). A high resolution of CCD camera was used to capture the images which was calibrated by the direct linear transform (DCT) algorithm proposed by Abed El-Aziz and Kar-Ara (1971). The water surface between the interface of air and water at each time step are calculated by Otsu' (1978) detect algorithm. The comparison shows that the water surface elevation observed by integrated image agrees well with that of Otsu' detection results. For the flow field measurement, each image pair was cross correlated with 32X32 pixel inter rogation window and a half overlap between adjacent windows. The repeatability and synchronization are the key elements for both wave motion and PIV technique. The wave profiles and flow field were compared during several wave periods to ensure that they can be reproduced by the present system. The water depth is kept as a constant of h=32 cm. The incident wave conditions are set to be wave

  12. QCD angular correlations for muon pair production

    International Nuclear Information System (INIS)

    Kajantie, K.; Raitio, R.; Lindfors, J.

    1978-01-01

    Angular distributions of muons are discussed in the framework of a QCD treatment of muon pair production in hadron-hadron collisions. The predicted angular effects are independent of the infrared behavior of QCD. Measuring them will permit one to determine whether the origin of the large transverse momentum of the pair is in the quark transverse momenta or in a constituent-constituent subprocess. (author)

  13. Electronic orbital angular momentum and magnetism of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ji, E-mail: ji.luo@upr.edu

    2014-10-01

    Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping interaction between carbon atomic orbitals is the building element. A comparison between OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments of the results are discussed. - Highlights: • Orbital angular momentum of graphene electrons is calculated. • Orbital magnetic moment of graphene electrons is obtained. • Variation in magnetization of graphene is calculated. • Roles of different kinds of angular momentum are investigated.

  14. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  15. Development of a stranded oil in coarse sediment (SOCS) model

    International Nuclear Information System (INIS)

    Humphrey, B.; Owens, E.; Sergy, G.

    1993-01-01

    Oil spills in Canadian waters have a high probability of impacting coarse sediment beaches, yet the ability to predict oil fate and estimate natural self-cleaning rates is less than adequate. Data is lacking to understand fully many oil sediment interactions. Historically, shoreline interactions have been considered using fairly simple concepts. The authors examined the processes that may occur on a coarse sediment beach, selected those which are important, and developed a fate and persistence model for stranded oil. The processes were divided into stages relative to the spill event, and the factors which affect each stage were evaluated. Three areas of special interest were the capacity of a beach to hold oil, the residual capacity of a beach for oil, and the long-term fate of the oil. After developing model algorithms, the outputs were compared to a data base of information collected during the Exxon Valdez oil spill. The stranded oil in coarse sediment model will provide information at two levels: a general level for planning and sensitivity mapping and a more detailed level intended for the prediction of oil fate on specific known beaches. The strengths and weaknesses of the model have been assessed in terms of data deficiencies. The type and nature of the data which are most useful to, and which need to be collected for, spill planning and spill monitoring were identified. The model shows that the important factors directing the fate of oil on coarse sediment beaches are porosity and permeability, determined by grain size and oil properties (composition, viscosity, etc.). The natural rate of removal of oil, modeled as a first-order (exponential) removal, is dependent on the stage of the spill process and on wave energy

  16. Large-uncertainty intelligent states for angular momentum and angle

    International Nuclear Information System (INIS)

    Goette, Joerg B; Zambrini, Roberta; Franke-Arnold, Sonja; Barnett, Stephen M

    2005-01-01

    The equality in the uncertainty principle for linear momentum and position is obtained for states which also minimize the uncertainty product. However, in the uncertainty relation for angular momentum and angular position both sides of the inequality are state dependent and therefore the intelligent states, which satisfy the equality, do not necessarily give a minimum for the uncertainty product. In this paper, we highlight the difference between intelligent states and minimum uncertainty states by investigating a class of intelligent states which obey the equality in the angular uncertainty relation while having an arbitrarily large uncertainty product. To develop an understanding for the uncertainties of angle and angular momentum for the large-uncertainty intelligent states we compare exact solutions with analytical approximations in two limiting cases

  17. Using hyperentanglement to enhance resolution, signal-to-noise ratio, and measurement time

    Science.gov (United States)

    Smith, James F.

    2017-03-01

    A hyperentanglement-based atmospheric imaging/detection system involving only a signal and an ancilla photon will be considered for optical and infrared frequencies. Only the signal photon will propagate in the atmosphere and its loss will be classical. The ancilla photon will remain within the sensor experiencing low loss. Closed form expressions for the wave function, normalization, density operator, reduced density operator, symmetrized logarithmic derivative, quantum Fisher information, quantum Cramer-Rao lower bound, coincidence probabilities, probability of detection, probability of false alarm, probability of error after M measurements, signal-to-noise ratio, quantum Chernoff bound, time-on-target expressions related to probability of error, and resolution will be provided. The effect of noise in every mode will be included as well as loss. The system will provide the basic design for an imaging/detection system functioning at optical or infrared frequencies that offers better than classical angular and range resolution. Optimization for enhanced resolution will be included. The signal-to-noise ratio will be increased by a factor equal to the number of modes employed during the hyperentanglement process. Likewise, the measurement time can be reduced by the same factor. The hyperentanglement generator will typically make use of entanglement in polarization, energy-time, orbital angular momentum and so on. Mathematical results will be provided describing the system's performance as a function of loss mechanisms and noise.

  18. Angular analysis of $\\Lambda_{b} \\rightarrow \\Lambda \\mu^{+}\\mu^{-}$

    CERN Multimedia

    Chatzikonstantinidis, Georgios

    2018-01-01

    The angular analysis of the rare baryon decay of $\\Lambda_{b}\\rightarrow \\Lambda (\\rightarrow p\\pi^{-})\\mu^{+}\\mu^{-}$ in high $q^{2}$ is presented. The dataset that is used corresponds to an integrated luminosity of 5.0 fb$^{-1}$ of pp - collision data collected at centre-of-mass energies between 7 and 13 TeV by the LHCb detector in 2011, 2012, 2015 and 2016. Angular observables are determined using a moment analysis of the angular distribution.

  19. Angular momentum of circularly polarized light in dielectric media

    OpenAIRE

    Mansuripur, Masud

    2014-01-01

    A circularly polarized plane-wave is known to have no angular momentum when examined through Maxwell's equations. This, however, contradicts the experimentally observed facts, where finite segments of plane waves are known to be capable of imparting angular momentum to birefringent platelets. Using a superposition of four plane-waves propagating at slightly different angles to a common direction, we derive an expression for the angular momentum density of a single plane-wave in the limit when...

  20. Martini Coarse-Grained Force Field : Extension to RNA

    NARCIS (Netherlands)

    Uusitalo, Jaakko J.; Ingolfsson, Helgi I.; Marrink, Siewert J.; Faustino, Ignacio

    2017-01-01

    RNA has an important role not only as the messenger of genetic information but also as a regulator of gene expression. Given its central role in cell biology, there is significant interest in studying the structural and dynamic behavior of RNA in relation to other biomolecules. Coarse-grain

  1. Moving beyond Watson-Crick models of coarse grained DNA dynamics.

    Science.gov (United States)

    Linak, Margaret C; Tourdot, Richard; Dorfman, Kevin D

    2011-11-28

    DNA produces a wide range of structures in addition to the canonical B-form of double-stranded DNA. Some of these structures are stabilized by Hoogsteen bonds. We developed an experimentally parameterized, coarse-grained model that incorporates such bonds. The model reproduces many of the microscopic features of double-stranded DNA and captures the experimental melting curves for a number of short DNA hairpins, even when the open state forms complicated secondary structures. We demonstrate the utility of the model by simulating the folding of a thrombin aptamer, which contains G-quartets, and strand invasion during triplex formation. Our results highlight the importance of including Hoogsteen bonding in coarse-grained models of DNA.

  2. Moving towards Hyper-Resolution Hydrologic Modeling

    Science.gov (United States)

    Rouf, T.; Maggioni, V.; Houser, P.; Mei, Y.

    2017-12-01

    Developing a predictive capability for terrestrial hydrology across landscapes, with water, energy and nutrients as the drivers of these dynamic systems, faces the challenge of scaling meter-scale process understanding to practical modeling scales. Hyper-resolution land surface modeling can provide a framework for addressing science questions that we are not able to answer with coarse modeling scales. In this study, we develop a hyper-resolution forcing dataset from coarser resolution products using a physically based downscaling approach. These downscaling techniques rely on correlations with landscape variables, such as topography, roughness, and land cover. A proof-of-concept has been implemented over the Oklahoma domain, where high-resolution observations are available for validation purposes. Hourly NLDAS (North America Land Data Assimilation System) forcing data (i.e., near-surface air temperature, pressure, and humidity) have been downscaled to 500m resolution over the study area for 2015-present. Results show that correlation coefficients between the downscaled temperature dataset and ground observations are consistently higher than the ones between the NLDAS temperature data at their native resolution and ground observations. Not only correlation coefficients are higher, but also the deviation around the 1:1 line in the density scatterplots is smaller for the downscaled dataset than the original one with respect to the ground observations. Results are therefore encouraging as they demonstrate that the 500m temperature dataset has a good agreement with the ground information and can be adopted to force the land surface model for soil moisture estimation. The study has been expanded to wind speed and direction, incident longwave and shortwave radiation, pressure, and precipitation. Precipitation is well known to vary dramatically with elevation and orography. Therefore, we are pursuing a downscaling technique based on both topographical and vegetation

  3. Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions

    Science.gov (United States)

    Drake, Henri F.; Morrison, Adele K.; Griffies, Stephen M.; Sarmiento, Jorge L.; Weijer, Wilbert; Gray, Alison R.

    2018-01-01

    In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.

  4. Advancing the quantification of humid tropical forest cover loss with multi-resolution optical remote sensing data: Sampling & wall-to-wall mapping

    Science.gov (United States)

    Broich, Mark

    Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single

  5. Angular momentum of circularly polarized light in dielectric media

    Science.gov (United States)

    Mansuripur, Masud

    2005-07-01

    A circularly polarized plane-wave is known to have no angular momentum when examined through Maxwell’s equations. This, however, contradicts the experimentally observed facts, where finite segments of plane waves are known to be capable of imparting angular momentum to birefringent platelets. Using a superposition of four plane-waves propagating at slightly different angles to a common direction, we derive an expression for the angular momentum density of a single plane-wave in the limit when the propagation directions of the four beams come into alignment. We proceed to use this four-beam technique to analyze the conservation of angular momentum when a plane-wave enters a dielectric slab from the free space. The angular momentum of the beam is shown to decrease upon entering the dielectric medium, by virtue of the fact that the incident beam exerts a torque on the slab surface at the point of entry. When the beam leaves the slab, it imparts an equal but opposite torque to the exit facet, thus recovering its initial angular momentum upon re-emerging into the free-space. Along the way, we derive an expression for the outward-directed force of a normally incident, finite-diameter beam on a dielectric surface; the possible relationship between this force and the experimentally observed bulging of a liquid surface under intense illumination is explored.

  6. Spectral phase shift and residual angular dispersion of an accousto-optic programme dispersive filter

    International Nuclear Information System (INIS)

    Boerzsoenyi, A.; Meroe, M.

    2010-01-01

    Complete text of publication follows. There is an increasing demand for active and precise dispersion control of ultrashort laser pulses. In chirped pulse amplification (CPA) laser systems, the dispersion of the optical elements of the laser has to be compensated at least to the fourth order to obtain high temporal contrast compressed pulses. Nowadays the most convenient device for active and programmable control of spectral phase and amplitude of broadband laser pulses is the acousto-optic programmable dispersive filter (AOPDF), claimed to be able to adjust the spectral phase up to the fourth order. Although it has been widely used, surprisingly enough there has been only a single, low resolution measurement reported on the accuracy of the induced spectral phase shift of the device. In our paper we report on the first systematic experiment aiming at the precise characterization of an AOPDF device. In the experiment the spectral phase shift of the AOPDF device was measured by spectrally and spatially resolved interferometry, which is especially powerful tool to determine small dispersion values with high accuracy. Besides the spectral phase dispersion, we measured both the propagation direction angular dispersion (PDAD) and the phase front angular dispersion (PhFAD). Although the two quantities are equal for plane waves, there may be noticeable difference for Gaussian pulses. PDAD was determined simply by focusing the beam on the slit of an imaging spectrograph, while PhFAD was measured by the use of an inverted Mach-Zehnder interferometer and an imaging spectrograph. In the measurements, the spectral phase shift and both types of angular dispersion have been recorded upon the systematic change of all the accessible functions of the acousto-optic programmable dispersive filter. The measured values of group delay dispersion (GDD) and third order dispersion (TOD) have been found to agree with the preset values within the error of the measurement (1 fs 2 and 10 fs 3

  7. The Andatza coarse-grained turbidite system (westernmost Pyrenees: Stratigraphy, sedimentology and structural control

    Directory of Open Access Journals (Sweden)

    A. Bodego

    2017-06-01

    Full Text Available This is a field-based work that describes the stratigraphy and sedimentology of the Andatza Conglomerate Formation. Based on facies analysis three facies associations of a coarse-grained turbidite system and the related slope have been identified: (1 an inner fan of a turbidite system (or canyon and (2 a low- and (3 a high-gradient muddy slope respectively. The spatial distribution of the facies associations and the palaeocurrent analysis allow to interpret a depositional model for the Andatza Conglomerates consisting of an L-shaped, coarse-grained turbidite system, whose morphology was structurally controlled by synsedimentary basement-involved normal faults. The coarse-grained character of the turbidite system indicates the proximity of the source area, with the presence of a narrow shelf that fed the turbidite canyon from the north.

  8. Separation and collection of coarse aggregate from waste concrete by electric pulsed power

    Science.gov (United States)

    Shigeishi, Mitsuhiro

    2017-09-01

    Waste concrete accounts for a substantial fraction of construction waste, and the recycling of waste concrete as concrete aggregate for construction is an important challenge associated with the rapid increase in the amount of waste concrete and the tight supply of natural aggregate. In this study, we propose a technique based on the use of high-voltage pulsed electric discharge into concrete underwater for separating and collecting aggregate from waste concrete with minimal deterioration of quality. By using this technique, the quality of the coarse aggregate separated and collected from concrete test specimens is comparable to that of coarse aggregate recycled by heating and grinding methods, thus satisfying the criteria in Japan Industrial Standard (JIS) A 5021 for the oven-dry density and the water absorption of coarse aggregate by advanced recycling.

  9. Angular momentum conservation law in light-front quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.

    2017-03-01

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.

  10. Exact CTP renormalization group equation for the coarse-grained effective action

    International Nuclear Information System (INIS)

    Dalvit, D.A.; Mazzitelli, F.D.

    1996-01-01

    We consider a scalar field theory in Minkowski spacetime and define a coarse-grained closed time path (CTP) effective action by integrating quantum fluctuations of wavelengths shorter than a critical value. We derive an exact CTP renormalization group equation for the dependence of the effective action on the coarse-graining scale. We solve this equation using a derivative expansion approach. Explicit calculation is performed for the λφ 4 theory. We discuss the relevance of the CTP average action in the study of nonequilibrium aspects of phase transitions in quantum field theory. copyright 1996 The American Physical Society

  11. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium)

    Energy Technology Data Exchange (ETDEWEB)

    Vögele, Martin [Institute for Computational Physics, University of Stuttgart, Stuttgart (Germany); Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt a. M. (Germany); Holm, Christian; Smiatek, Jens, E-mail: smiatek@icp.uni-stuttgart.de [Institute for Computational Physics, University of Stuttgart, Stuttgart (Germany)

    2015-12-28

    We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models are able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models.

  12. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium)

    International Nuclear Information System (INIS)

    Vögele, Martin; Holm, Christian; Smiatek, Jens

    2015-01-01

    We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models are able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models

  13. Design of a high-resolution high-stability positioning mechanism for crystal optics

    International Nuclear Information System (INIS)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    1999-01-01

    The authors present a novel miniature multi-axis driving structure that will allow positioning of two crystals with better than 50-nrad angular resolution and nanometer linear driving sensitivity.The precision and stability of this structure allow the user to align or adjust an assembly of crystals to achieve the same performance as does a single channel-cut crystal, so they call it an artificial channel-cut crystal. In this paper, the particular designs and specifications, as well as the test results,for a two-axis driving structure for a high-energy-resolution artificial channel-cut crystal monochromator are presented

  14. Development of a super-resolution optical microscope for directional dark matter search experiment

    International Nuclear Information System (INIS)

    Alexandrov, A.; Asada, T.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Furuya, S.; Hakamata, K.; Ishikawa, M.; Katsuragawa, T.; Kuwabara, K.; Machii, S.; Naka, T.; Pupilli, F.; Sirignano, C.; Tawara, Y.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.

    2016-01-01

    Nuclear emulsion is a perfect choice for a detector for directional DM search because of its high density and excellent position accuracy. The minimal detectable track length of a recoil nucleus in emulsion is required to be at least 100 nm, making the resolution of conventional optical microscopes insufficient to resolve them. Here we report about the R&D on a super-resolution optical microscope to be used in future directional DM search experiments with nuclear emulsion as a detector media. The microscope will be fully automatic, will use novel image acquisition and analysis techniques, will achieve the spatial resolution of the order of few tens of nm and will be capable of reconstructing recoil tracks with the length of at least 100 nm with high angular resolution.

  15. Sorting and quantifying orbital angular momentum of laser beams

    CSIR Research Space (South Africa)

    Schulze, C

    2013-10-01

    Full Text Available We present a novel tool for sorting the orbital angular momentum and to determine the orbital angular momentum density of laser beams, which is based on the use of correlation filters....

  16. Measuring Crack Length in Coarse Grain Ceramics

    Science.gov (United States)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  17. ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. II. M33

    International Nuclear Information System (INIS)

    Imara, Nia; Bigiel, Frank; Blitz, Leo

    2011-01-01

    We present an analysis comparing the properties of 45 giant molecular clouds (GMCs) in M33 and the atomic hydrogen (H I) with which they are associated. High-resolution Very Large Array observations are used to measure the properties of H I in the vicinity of GMCs and in regions where GMCs have not been detected. The majority of molecular clouds coincide with a local peak in the surface density of atomic gas, though 7% of GMCs in the sample are not associated with high surface density atomic gas. The mean H I surface density in the vicinity of GMCs is 10 M sun pc -2 and tends to increase with GMC mass as Σ HI ∝ M 0.27 GMC . Thirty-nine of the 45 H I regions surrounding GMCs have linear velocity gradients of ∼0.05 km s -1 pc -1 . If the linear gradients previously observed in the GMCs result from rotation, 53% are counterrotating with respect to the local H I. And if the linear gradients in these local H I regions are also from rotation, 62% are counterrotating with respect to the galaxy. If magnetic braking reduced the angular momentum of GMCs early in their evolution, the angular velocity of GMCs would be roughly one order of magnitude lower than what is observed. Based on our observations, we consider the possibility that GMCs may not be rotating. Atomic gas not associated with GMCs has gradients closer to 0.03 km s -1 pc -1 , suggesting that events occur during the course of GMC evolution that may increase the shear in the atomic gas.

  18. The mass and angular momentum of reconstructed metric perturbations

    Science.gov (United States)

    van de Meent, Maarten

    2017-06-01

    We prove a key result regarding the mass and angular momentum content of linear vacuum perturbations of the Kerr metric obtained through the formalism developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely, we prove that the Abbott-Deser mass and angular momentum integrals of any such perturbation vanish when that perturbation was obtained from a regular Fourier mode of the Hertz potential. As a corollary we obtain a generalization of previous results on the completion of the ‘no string’ radiation gauge metric perturbation generated by a point particle. We find that for any bound orbit around a Kerr black hole, the mass and angular momentum perturbations completing the CCK metric are simply the energy and angular momentum of the particle ‘outside’ the orbit and vanish ‘inside’ the orbit.

  19. High Angular Momentum Rydberg Wave Packets

    Science.gov (United States)

    Wyker, Brendan

    2011-12-01

    High angular momentum Rydberg wave packets are studied. Application of carefully tailored electric fields to low angular momentum, high- n (n ˜ 300) Rydberg atoms creates coherent superpositions of Stark states with near extreme values of angular momentum, ℓ. Wave packet components orbit the parent nucleus at rates that depend on their energy, leading to periods of localization and delocalization as the components come into and go out of phase with each other. Monitoring survival probability signals in the presence of position dependent probing leads to observation of characteristic oscillations based on the composition of the wave packet. The discrete nature of electron energy levels is observed through the measurement of quantum revivals in the wave packet localization signal. Time-domain spectroscopy of these signals allows determination of both the population and phase of individual superposition components. Precise manipulation of wave packets is achieved through further application of pulsed electric fields. Decoherence effects due to background gas collisions and electrical noise are also detailed. Quantized classical trajectory Monte-Carlo simulations are introduced and agree remarkably well with experimental results.

  20. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - II. Rotation

    Science.gov (United States)

    Alecian, E.; Wade, G. A.; Catala, C.; Grunhut, J. H.; Landstreet, J. D.; Böhm, T.; Folsom, C. P.; Marsden, S.

    2013-02-01

    We report the analysis of the rotational properties of our sample of Herbig Ae/Be (HAeBe) and related stars for which we have obtained high-resolution spectropolarimetric observations. Using the projected rotational velocities measured at the surface of the stars, we have calculated the angular momentum of the sample and plotted it as a function of age. We have then compared the angular momentum and the v sin i distributions of the magnetic to the non-magnetic HAeBe stars. Finally, we have predicted v sin i of the non-magnetic, non-binary (`normal') stars in our sample when they reach the zero-age main sequence (ZAMS), and compared them to various catalogues of v sin i of main-sequence stars. First, we observe that magnetic HAeBe stars are much slower rotators than normal stars, indicating that they have been more efficiently braked than the normal stars. In fact, the magnetic stars have already lost most of their angular momentum, despite their young ages (lower than 1 Myr for some of them). Secondly, our analysis suggests that the low-mass (1.5 5 M⊙) are losing angular momentum. We propose that winds, which are expected to be stronger in massive stars, are at the origin of this phenomenon.

  1. Recycled tires as coarse aggregate in concrete pavement mixtures.

    Science.gov (United States)

    2013-07-01

    The reuse potential of tire chips as coarse aggregates in pavement concrete was examined in this research by : investigating the effects of low- and high-volume tire chips on fresh and hardened concrete properties. One concrete : control mixture was ...

  2. Longitudinal correlation properties of an optical field with broad angular and frequency spectra and their manifestation in interference microscopy

    International Nuclear Information System (INIS)

    Lyakin, D V; Ryabukho, V P

    2013-01-01

    The results of theoretical and experimental studies of the longitudinal correlation properties of an optical field with broad angular and frequency spectra and manifestations of these properties in interference microscopy are presented. The joint and competitive influence of the angular and frequency spectra of the object-probing field on the longitudinal resolution and on the amplitude of the interference microscope signals from the interfaces between the media inside a multilayer object is demonstrated. The method of compensating the so-called defocusing effect that arises in the interference microscopy using objectives with a large numerical aperture is experimentally demonstrated, which consists in using as a light source in the interference microscope an illuminating interferometer with a frequency-broadband light source. This method of compensation may be used as the basis of simultaneous determination of geometric thickness and refractive index of media forming a multilayer object. (optical fields)

  3. Optical circular deflector with attosecond resolution for ultrashort electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-05-01

    Full Text Available A novel method using high-power laser as a circular deflector is proposed for the measurement of femtosecond (fs and sub-fs electron beam. In the scheme, the electron beam interacts with a laser pulse operating in a radially polarized doughnut mode (TEM_{01^{*}} in a helical undulator, generating angular kicks along the beam in two directions at the same time. The phase difference between the two angular kicks makes the beam form a ring after a propagation section with appropriate phase advance, which can reveal the current profile of the electron beam. Detailed theoretical analysis of the method and numerical results with reasonable parameters are both presented. It is shown that the temporal resolution can reach up to ∼100 attosecond, which is a significant improvement for the diagnostics of ultrashort electron beam.

  4. A systematic construction of microstate geometries with low angular momentum

    Science.gov (United States)

    Bena, Iosif; Heidmann, Pierre; Ramírez, Pedro F.

    2017-10-01

    We outline a systematic procedure to obtain horizonless microstate geometries that have the same charges as three-charge five-dimensional black holes with a macroscopically-large horizon area and an arbitrarily-small angular momentum. There are two routes through which such solutions can be constructed: using multi-center Gibbons-Hawking (GH) spaces or using superstratum technology. So far the only solutions corre-sponding to microstate geometries for black holes with no angular momentum have been obtained via superstrata [1], and multi-center Gibbons-Hawking spaces have been believed to give rise only to microstate geometries of BMPV black holes with a large angular mo-mentum [2]. We perform a thorough search throughout the parameter space of smooth horizonless solutions with four GH centers and find that these have an angular momentum that is generally larger than 80% of the cosmic censorship bound. However, we find that solutions with three GH centers and one supertube (which are smooth in six-dimensional supergravity) can have an arbitrarily-low angular momentum. Our construction thus gives a recipe to build large classes of microstate geometries for zero-angular-momentum black holes without resorting to superstratum technology.

  5. Effect of nutritional intake towards Angular cheilitis of orphanage children

    Directory of Open Access Journals (Sweden)

    Nurdiani Rakhmayanthie

    2016-11-01

    Full Text Available Introduction: Angular cheilitis is one of the oral manifestations of iron, vitamin B12, and folate deficiency. This manifestation frequently seen in people at first and second decade. The purpose of this study was to obtain the prevalence of angular cheilitis and its classifications related to the nutritional intake level in 6-18 years old children. Methods: This research was a descriptive study with 53 children between 6-18 years old from Muhammadiyah Orphanage Bandung as the samples. The oral cavity was examined clinically and their food consumption in a week was noted in Food Recall 24 hours and Food Frequency Questionnaire (FFQ in order to measure their nutritional intake level. Results: There are 23 children with angular cheilitis. 13% has iron and folate deficiencies, and 87% has iron, vitamin B12, and folate deficiencies. Angular cheilitis types that has been found are Type I (39%, Type II (48% and Type III (13%. Conclusion: The prevalence of angular cheilitis in 6-18 years old children in Muhammadiyah Orphanage Bandung was moderately high, most of them were having iron, vitamin B12, and folate deficiencies. Type II angular cheilitis was the most frequently seen.

  6. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile......-deformed copper, individual, almost dislocation-free subgrains are identified from high-intensity peaks and distinguished by their unique combination of orientation and elastic strain; dislocation walls manifest themselves as a smooth cloud of lower intensity. The elastic strain shows only minor variations within...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  7. Non-Steady Oscillatory Flow in Coarse Granular Materials

    DEFF Research Database (Denmark)

    Andersen, O. H.; Gent, M. R. A. van; Meer, J. W. van der

    1992-01-01

    Stationary and oscillatory flow through coarse granular materials have been investigated experimentally at Delft Hydraulics in their oscillating water tunnel with the objective of determining the coefficients of the extended Forchheimer equation. Cylinders, spheres and different types of rock have....... Further, for the non-stationary term, the virtual mass coefficient will be derived....

  8. Loop overhead reduction techniques for coarse grained reconfigurable architectures

    NARCIS (Netherlands)

    Vadivel, K.; Wijtvliet, M.; Jordans, R.; Corporaal, H.

    2017-01-01

    Due to their flexibility and high performance, Coarse Grained Reconfigurable Array (CGRA) are a topic of increasing research interest. However, CGRAs also have the potential to achieve very high energy efficiency in comparison to other reconfigurable architectures when hardware optimizations are

  9. The glass transition in cured epoxy thermosets: A comparative molecular dynamics study in coarse-grained and atomistic resolution

    International Nuclear Information System (INIS)

    Langeloth, Michael; Böhm, Michael C.; Müller-Plathe, Florian; Sugii, Taisuke

    2015-01-01

    We investigate the volumetric glass transition temperature T g in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that T g increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition T g in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, but increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that T g is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment

  10. Learning web development with Bootstrap and AngularJS

    CERN Document Server

    Radford, Stephen

    2015-01-01

    Whether you know a little about Bootstrap or AngularJS, or you're a complete beginner, this book will enhance your capabilities in both frameworks and you'll build a fully functional web app. A working knowledge of HTML, CSS, and JavaScript is required to fully get to grips with Bootstrap and AngularJS.

  11. Rotational speedups accompanying angular deceleration of a superfluid

    International Nuclear Information System (INIS)

    Campbell, L.J.

    1979-01-01

    Exact calculations of the angular deceleration of superfluid vortex arrays show momentary speedups in the angular velocity caused by coherent, multiple vortex loss at the boundary. The existence and shape of the speedups depend on the vortex friction, the deceleration rate, and the pattern symmetry. The phenomenon resembles, in several ways, that observed in pulsars

  12. Hierarchical coarse-graining transform.

    Science.gov (United States)

    Pancaldi, Vera; King, Peter R; Christensen, Kim

    2009-03-01

    We present a hierarchical transform that can be applied to Laplace-like differential equations such as Darcy's equation for single-phase flow in a porous medium. A finite-difference discretization scheme is used to set the equation in the form of an eigenvalue problem. Within the formalism suggested, the pressure field is decomposed into an average value and fluctuations of different kinds and at different scales. The application of the transform to the equation allows us to calculate the unknown pressure with a varying level of detail. A procedure is suggested to localize important features in the pressure field based only on the fine-scale permeability, and hence we develop a form of adaptive coarse graining. The formalism and method are described and demonstrated using two synthetic toy problems.

  13. A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Markutsya, Sergiy [Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Lamm, Monica H., E-mail: mhlamm@iastate.edu [Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-11-07

    We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems.

  14. A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions

    International Nuclear Information System (INIS)

    Markutsya, Sergiy; Lamm, Monica H.

    2014-01-01

    We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems

  15. Angular momentum transport with twisted exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  16. Total angular momentum from Dirac eigenspinors

    International Nuclear Information System (INIS)

    Szabados, Laszlo B

    2008-01-01

    The eigenvalue problem for Dirac operators, constructed from two connections on the spinor bundle over closed spacelike 2-surfaces, is investigated. A class of divergence-free vector fields, built from the eigenspinors, are found, which, for the lowest eigenvalue, reproduce the rotation Killing vectors of metric spheres, and provide rotation BMS vector fields at future null infinity. This makes it possible to introduce a well-defined, gauge invariant spatial angular momentum at null infinity, which reduces to the standard expression in stationary spacetimes. The general formula for the angular momentum flux carried away by the gravitational radiation is also derived

  17. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States

    Directory of Open Access Journals (Sweden)

    Liknes Greg C

    2008-06-01

    Full Text Available Abstract Background Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables. Results Mean coarse and fine woody debris forest carbon stocks vary by Köppen's climatic regions across the United States. The highest carbon stocks were found in regions with cool summers while the lowest carbon stocks were found in arid desert/steppes or temperate humid regions. Coarse and fine woody debris carbon stocks were found to be positively correlated with available moisture and negatively correlated with maximum temperature. Conclusion It was concluded with only medium confidence that coarse and fine woody debris carbon stocks may be at risk of becoming net emitter of carbon under a global climate warming scenario as increases in coarse or fine woody debris production (sinks may be more than offset by increases in forest woody detritus decay rates (emission. Given the preliminary results of this study and the rather tenuous status of coarse and fine woody debris carbon stocks as either a source or sink of CO2, further research is suggested in the areas of forest detritus decay and production.

  18. On the Angular Momentum Loss of Tropical Cyclones: An f-Plane Approximation

    Science.gov (United States)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin; Kim, Won-Ho

    2018-02-01

    The angular momentum for ideal axisymmetric tropical cyclones on the f-plane is investigated with a focus on the total-volume integrated quantity. Budget analysis of the momentum equation at cylindrical coordinates shows that a tropical cyclone loses angular momentum during its development and mature stages due to the dynamical difference between the viscous inward-flow near the surface and the angular momentum conserving outward-flow aloft. The total relative angular momentum of a tropical cyclone, as a result, can be negative (i.e., implying anticyclonic rotation as a whole) despite intense cyclonic wind in the tropospheric layers. This anticyclonic rotation was measured in terms of the super-rotation ratio, the ratio of total relative angular momentum to the planetary angular momentum. Simulations with the numerical model of Weather Research and Forecasting (WRF) version 3.4.1 was found to be in favor of the theoretical angular-momentum budget analysis. It was revealed in the numerical simulations that the super-rotation ratio was negative, indicating a sub-rotation, as was predicted by analysis. The sub-rotation ratio was found to be less than one percent for typical tropical cyclones. To show the angular momentum decrease even in the decaying stage, numerical simulations where the thermal forcing by sea surface temperature switched off in the mature stage were carried out. In support of the angular momentum budget analysis, the results indicated that the angular momentum also decreases for a while soon after the forcing was eliminated.

  19. Interstellar scattering and resolution limitations

    International Nuclear Information System (INIS)

    Dennison, B.

    1987-01-01

    Density irregularities in both the interplanetary medium and the ionized component of the interstellar medium scatter radio waves, resulting in limitations on the achievable resolution. Interplanetary scattering (IPS) is weak for most observational situations, and in principle the resulting phase corruption can be corrected for when observing with sufficiently many array elements. Interstellar scattering (ISS), on the other hand, is usually strong at frequencies below about 8 GHz, in which case intrinsic structure information over a range of angular scales is irretrievably lost. With the earth-space baselines now planned, it will be possible to search directly for interstellar refraction, which is suspected of modulating the fluxes of background sources. 14 references

  20. Free-energy coarse-grained potential for C60

    International Nuclear Information System (INIS)

    Edmunds, D. M.; Tangney, P.; Vvedensky, D. D.; Foulkes, W. M. C.

    2015-01-01

    We propose a new deformable free energy method for generating a free-energy coarse-graining potential for C 60 . Potentials generated from this approach exhibit a strong temperature dependence and produce excellent agreement with benchmark fully atomistic molecular dynamics simulations. Parameter sets for analytical fits to this potential are provided at four different temperatures