WorldWideScience

Sample records for coalbed methane methane

  1. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  2. Mechanics of coalbed methane production

    Energy Technology Data Exchange (ETDEWEB)

    Creel, J C; Rollins, J B [Crawley, Gillespie and Associates, Inc. (United Kingdom)

    1994-12-31

    Understanding the behaviour of coalbed methane reservoirs and the mechanics of production is crucial to successful management of coalbed methane resources and projects. This paper discusses the effects of coal properties and coalbed methane reservoir characteristics on gas production rates and recoveries with a review of completion techniques for coalbed methane wells. 4 refs., 17 figs.

  3. Coalbed methane: new frontier

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.

    2003-02-01

    There are large numbers of stacked coal seams permeated with methane or natural gas in the Western Canadian Sedimentary Basin, and approximately 20 coalbed methane pilot projects are operating in the area, and brief descriptions of some of them were provided. Coalbed methane reserves have a long life cycle. A definition of coalbed methane can be a permeability challenged reservoir. It is not uncommon for coalbed methane wells to flow water for periods varying from 2 to 6 months after completion before the production of natural gas. A made-in-Canada technological solution is being developed by CDX Canada Inc., along with its American parent company. The techniques used by CDX are a marriage between coal mining techniques and oil and gas techniques. A brief description of coalification was provided. Nexen is participating in the production of gas from an Upper Mannville coal at 1 000-metres depth in a nine-well pilot project. The Alberta Foothills are considered prime exploration area since older coal is carried close to the surface by thrusting. CDX Canada uses cavitation completion in vertical wells. Cavitation consists in setting the casing above the coal seam and drilling ahead under balanced. The design of wells for coalbed methane gas is based on rock and fluid mechanics. Hydraulic fracturing completions is also used, as are tiltmeters. An enhanced coalbed methane recovery pilot project is being conducted by the Alberta Research Council at Fenn-Big Valley, located in central Alberta. It injects carbon dioxide, which shows great potential for the reduction of greenhouse gas emissions. 1 figs.

  4. Coalbed Methane Outreach Program

    Science.gov (United States)

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  5. Exploiting coalbed methane and protecting the global environment

    Energy Technology Data Exchange (ETDEWEB)

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  6. Essentials for profitable coalbed methane production in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Creel, J.C.; Rollins, J.B. [Cawley, Gillespie & Associates, Inc. (United Kingdom)

    1995-12-31

    The UK coalbed methane industry is now poised for a continuation of its growth. For this potential growth to be realized, coalbed methane production must be profitable for producers. Commercial viability of coalbed methane production in the UK depends on th fulfilment of essential technical, regulatory, and economic conditions. Technically, coalbed methane reservoirs must have an adequate thickness of permeable gas saturated coal. The regulatory environment must offer favorable treatment regarding taxation, royalties, and policies on well spacing, wellsite locations, and market accessibility. Economically, gas prices and initial capital costs must be sufficiently favorable to yield an acceptable rate of return. If these essential conditions can be fulfilled, UK coalbed methane production can be expected to be a commercially viable industry. 6 refs., 6 figs., 2 tabs.

  7. Coalbed methane: from hazard to resource

    Science.gov (United States)

    Flores, R.M.

    1998-01-01

    Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 yr. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (eg, tunnels, vertical and horizontal drillholes, shsfts) and by drainage boreholes. The 1970s 'energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been pursued vigorously during the past two decades. Since the 1970s research investigations on the causes and effects of coal mine outbursts and gas emissions have led to major advances towards the recovery and development of coalbed methane for commercial use. Thus, coalbed methane as a mining hazard was harnessed as a conventional gas resource.Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 years. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (e.g., tunnels, vertical and horizontal drillholes, shafts) and by drainage boreholes. The 1970's `energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been

  8. Methane-fueled vehicles: A promising market for coalbed methane

    International Nuclear Information System (INIS)

    Deul, M.

    1993-01-01

    The most acceptable alternative fuel for motor vehicles is compressed natural gas (CNG). An important potential source of such gas is coalbed methane, much of which is now being wasted. Although there are no technological impediments to the use of CNG it has not been adequately promoted for a variety of reasons: structural, institutional and for coalbed gas, legal. The benefits of using CNG fuel are manifold: clean burning, low cost, abundant, and usable in any internal combustion engine. Even though more than 30,000 CNG vehicles are now in use in the U.S.A., they are not readily available, fueling stations are not easily accessible, and there is general apathy on the part of the public because of negligence by such agencies as the Department of Energy, the Department of Transportation and the Environmental Protection Agency. The economic benefits of using methane are significant: 100,000 cubic feet of methane is equivalent to 800 gallons of gasoline. Considering the many millions of cubic feet methane wasted from coal mines conservation and use of this resource is a worthy national goal

  9. An assessment of coalbed methane exploration projects in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, F.M.; Marchioni, D.L.; Anderson, T.C.; McDougall, W.J. [Suncor Energy Inc., Calgary, AB (Canada)

    2000-07-01

    A critical assessment of coalbed methane exploration opportunities is presented. Geological and production data from 59 well bores drilled in Canada's major coal basins are evaluated to assess the coalbed methane potential of the deposits. Data acquisition, geology, gas content, coal quality, adsorption isotherms, formation testing, and a technical assessment are presented for each area. Areas with the best potential for economic coalbed methane accumulations are indicated. 6 refs., 153 figs., 99 tabs.

  10. Advanced Heterogeneous Fenton Treatment of Coalbed Methane-Produced Water Containing Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2018-04-01

    Full Text Available This study investigated the heterogeneous Fenton treatment to process coalbed methane-produced water containing fracturing fluid and chose the development region of coalbed methane in the Southern Qinshui Basin as a research area. We synthesized the catalyst of Fe-Co/γ-Al2O3 by homogeneous precipitation method and characterized it by BET, XRD, SEM-EDS, FTIR, and XPS. Based on the degradation rate, we studied the influences of the heterogeneous Fenton method on the coalbed methane output water treatment process parameters, including initial pH, H2O2 concentration, and the catalyst concentration. We also investigated the impacts of overall reaction kinetics of heterogeneous catalytic oxidation on coalbed methane-produced water containing fracturing fluid. Results showed that Fe-Co/γ-Al2O3 as a Fenton catalyst has a good catalytic oxidation effect and can effectively process coalbed methane-produced water. This reaction also followed first-order kinetics. The optimal conditions were as follows: the initial pH of 3.5, a H2O2 concentration of 40 mol L−1, a catalyst concentration of 4 g/L, and an apparent reaction rate constant of 0.0172 min−1. Our results provided a basis to establish methods for treating coalbed methane-produced water.

  11. Coalbed-methane reservoir simulation: an evolving science

    Energy Technology Data Exchange (ETDEWEB)

    Bybee, K.

    2004-04-01

    Correctly determining what to model in a coalbed-methane (CBM) reservoir simulation is almost as daunting a task as the simulation work itself. The full-length paper discusses how the exploitation and development of coalbed resources throughout the world are changing and how CBM reservoir simulation is changing as well.

  12. Coalbed methane production base established in Southeast Kansas

    International Nuclear Information System (INIS)

    Stoeckinger, W.T.

    1992-01-01

    This paper reports that revenue from coalbed methane gas sales is growing and currently far exceeds that of what little conventional gas is produced in southeastern Kansas. And this only 2-1/2 years after Stroud Oil Properties, Wichita, brought in the first coalbed methane well in the Sycamore Valley in Montgomery County 6 miles north of Independence. Another operator contributing to the success is Conquest Oil, Greeley, Colo. Conquest acquired a lease with 20 old wells near Sycamore, recompleted five of them in Weir coal, and has installed a compressor. It hopes to being selling a combined 300 Mcfd soon. Great Eastern Energy, Denver, reportedly can move 2 MMcfd from its Sycamore Valley holdings. The fever is spreading into Northeast Kansas, where a venture headed by Duncan Energy Co. and Farleigh Oil Properties, also of Denver, plan 12 coalbed methane wildcats. The two companies received in October 1991 from the Kansas Corporation Commission (KCC) a 40 acre well spacing for seven counties and an exclusion from burdensome gas testing procedures. The test procedures are on the books but not applicable to coal gas wells

  13. Coal-bed methane water effects on dill and essential oils

    Science.gov (United States)

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...

  14. Application of fission track method in the development study of coalbed methane

    International Nuclear Information System (INIS)

    Li Xiaoming; Peng Gelin

    2002-01-01

    In order to explore potential resource of coalbed methane in Xinji coal deposit of Huainan coalfield, its tectonic-thermal evolution history was studied by using fission track technique. The results showed that there had been 3 or more times of significant thermal events occurred in this area since the late Paleozoic Era. The paleo-geothermal gradient was higher than that of the present. It was estimated that the denudation thickness in this area should be over 2000 m. Mainly formed between 240-140 Ma, no abundant methane could be generated in such condition. Furthermore, the tectonic-thermal events would release the most of methane gases. So, the potential resource of the coalbed methane in this are might be limited

  15. Research on control system of truck-mounted rig for coalbed methane

    Directory of Open Access Journals (Sweden)

    Wang Hejian

    2018-01-01

    Full Text Available The coal-bed methane (CBM as a kind energy is clean and efficient, also it can become a security risk in mining process if it could not get out of the coal seam. In view of the current large-scale exploitation of coal-bed methane resources, the development of drilling rig for CBM drilling is needed. The parameters and structures were introduced in the paper. The rig uses a highly integrated approach that integrates the required functions on the chassis of the vehicle to meet the needs of rapid installation and transportation. Drilling control system uses hydraulic control and electro-hydraulic control dual control mode, can achieve short-range and remote control operations. The control system include security circuits and electric control system. Through the field trial, it is shown that the rig can meet the construction of the majority of coalbed methane drilling in the country and the performance is stable and the operation is simple.

  16. Raton basin assessment of coalbed methane resources. [USA - Colorado and New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S H; Kelso, B S; Lombardi, T E; Coates, J -M [Advanced Research International, Arlington, VA (USA)

    1993-02-01

    Coalbed methane resources of the Raton basin were assessed through an analysis of public and proprietary sources encompassing stratigraphic, structural, hydrologic, coal rank, and gas-content data. Mapping of coal seams within the Vermejo Formation and Raton Formation revealed several net-coal thickness maxima of 80 ft along the synclinal axis of the basin. However, this sizable coal resource is distributed among multiple, thin, laterally discontinuous coal seams; approximately 60 percent of the total coal in the Raton Formation and 50 percent in the Vermejo Formation occur in seams thinner than 4 ft. Coal rank of the basal Vermejo Formation ranges from high-volatile C to low-volatile bituminous, indicating adequate thermal maturity for methane-generation. Coal seam gas contents show considerable scatter, ranging from 4 to 810 CF/T (ash free), and vary more closely with depth below the hydrologic potentiometric surface than with depth below ground level. Exclusive of shallow and intruded coal seams, in-place coalbed methane resources are estimated at 8.4 to 12.1 TCF, with a mean average of 10.2 TCF. The apparent highest concentration of coalbed methane (24 BCF/mi[sup 2]) occurs along the La Veta trough in Colorado in an area that is geologically less well studied. A second maximum of 8 BCF/mi[sup 2] occurs southeast of Vermejo Park in New Mexico. Successful coalbed methane development in the Raton basin will require favourable coal seam geometry, depth, and reservoir properties in addition to sufficient in-place resources. Local fracturing and enhanced permeability may occur along folds, such as the Vermejo anticline, that splay off the Sangre de Cristo thrust belt. 16 refs., 9 figs.

  17. Coal-bed methane water: effects on soil properties and camelina productivity

    Science.gov (United States)

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  18. Influence of biogenic gas production on coalbed methane recovery index

    Directory of Open Access Journals (Sweden)

    Hongyu Guo

    2017-05-01

    Full Text Available In investigating the effect of biogenic gas production on the recovery of coalbed methane (CBM, coal samples spanning different ranks were applied in the microbial-functioned simulation experiments for biogenic methane production. Based on the biogenic methane yield, testing of pore structures, and the isothermal adsorption data of coals used before and after the simulation experiments, several key parameters related to the recovery of CBM, including recovery rate, gas saturation and ratio of critical desorption pressure to reservoir pressure, etc., were calculated and the corresponding variations were further analyzed. The results show that one of the significant functions of microbial communities on coal is possibly to weaken its affinity for methane gas, especially with the advance of coal ranks; and that by enhancing the pore system of coal, which can be evidenced by the increase of porosity and permeability, the samples collected from Qianqiu (Yima in Henan and Shaqu (Liulin in Shanxi coal mines all see a notable increase in the critical desorption pressure, gas saturation and recovery rate, as compared to the moderate changes of that of Guandi (Xishan in Shanxi coal sample. It is concluded that the significance of enhanced biogenic gas is not only in the increase of CBM resources and the improvement of CBM recoverability, but in serving as an engineering reference for domestic coalbed biogenic gas production.

  19. Geology and coal-bed methane resources of the northern San Juan Basin, Colorado and New Mexico

    International Nuclear Information System (INIS)

    Fassett, J.E.

    1988-01-01

    This guidebook is the first of its kind: A focused look at coal-bed methane in a large Rocky Mountain Laramide basin. The papers in this volume cover every aspect of coal-bed methane in the San Juan Basin, including: The geology, environments of deposition, and geometry of the coal beds that contain the resource; the origin and migration history of the gas; basin-wide resource estimates; the engineering aspects of getting the gas out of the ground; the marketing and economics of producing coal-bed methane in the San Juan Basin; the legal ownership of the gas; state regulations governing well spacing and field rules; disposal of produced water; and land and mineral ownership patterns in the northern part of the basin. Also included are detailed papers on all of the major coal-bed methane fields in the basin, and in a paper on the history of Fruitland gas production, a discussion of most of the not-so-major fields. A small section of the book deals with geophysical methods, as yet still experimental, for surface detection of underground hydrocarbon resources. Individual papers have been processed separately for inclusion on the data base

  20. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    Energy Technology Data Exchange (ETDEWEB)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  1. Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane

    International Nuclear Information System (INIS)

    Li, Q.Y.; Wang, L.; Ju, Y.L.

    2011-01-01

    Highlights: → A novel liquefaction and distillation process is designed for oxygen bearing coal-bed methane. → Oxygen contained in coal-bed methane is removed in distillation process. → Flammability limits are analyzed for the whole operation process. → We find explosion hazard may exist in distillation tower. → Effective measures are proposed to ensure the operation safety in distillation tower. - Abstract: A novel liquefaction and distillation process has been proposed and designed for the typical oxygen-bearing coal-bed methane (CBM), in which the impurities of the oxygen and nitrogen components are removed in the distillation column. The flammability limit theory combining with HYSYS simulation results are employed to analyze and calculate the flammability limits and the results indicate that no flammability hazard exists in the stages of compression, liquefaction and throttling. However, flammability hazard exists at the top the distillation column because the methane mole fraction decreases to the value below the upper flammability limit (UFL). The safety measures of initially removing oxygen content from the feed gas combining with the control of the bottom flowrate (flowrate of the liquid product at column bottom) are proposed to ensure the operation safety of the liquefaction process. The results reveal that the operation safety of the whole process can be guaranteed, together with high methane recovery rate and high purity of the liquid product. The applicability of the liquefaction process has also been analyzed in this paper. The simulation results can offer references for the separation of oxygen from CBM, the analysis of flammability limits and the safety measures for the whole process.

  2. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    Energy Technology Data Exchange (ETDEWEB)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  3. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, Jack [Geological Survey Of Alabama, Tuscaloosa, AL (United States); McIntyre-Redden, Marcella [Geological Survey Of Alabama, Tuscaloosa, AL (United States); Mann, Steven [Geological Survey Of Alabama, Tuscaloosa, AL (United States); Merkel, David [Geological Survey Of Alabama, Tuscaloosa, AL (United States)

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  4. China coalbed methane summary : on the edge of commercial development

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. [Far East Energy Co., Houston, TX (United States)

    2003-07-01

    Total coalbed methane (CBM) resources in China are estimated at 30 to 35 trillion cubic metres. China also produces nearly 1 billion tons of coal per year, and is considered to be one of the largest emitters of methane in the world. Methane emissions from coal mining are estimated at 8 to 10 billion cubic metres per year. CBM is only in the early stages of development in China, with 210 drilled CBM wells. The China United Coalbed Methane Co. was formed in 1996 as the state company responsible for CBM development. With exclusive rights for exploration, development and production of CBM, the company has signed 19 CBM contracts with foreign companies for a total foreign investment of $90 million U.S. The multinational companies involved include Amoco, Arco, Phillips-Conoco, and Chevron-Texaco. Far East Energy Co. is one of the many independent companies involved with CBM development in China. Exploration and development has been concentrated in Shanxi, Shaanxi, Henan, Hebei, Liaoning, Heilongjiang, and Anhui provinces. The coal deposits vary in age, structural complexity and rank, with the most of the CBM potential located in the Carboniferous, Permian and Jurassic age coals. This paper briefly described the unique coal basin geology within the north and south regions of China with reference to the tectonic events and marine transgressions that led to coal deposition. A history of CBM exploration was included along with licensing requirements. This paper also described the involvement of Far East Energy Company in CBM development in the Yunnan Province, Panjiang coal mining areas, and Qinshui Basin. Petro China, Shell, ExxonMobil and Gazprom are working on a joint venture to construct a 3,800 km pipeline to bring the CBM to markets. The West-East Gas Pipeline Project will weave its wave through the Tarim Basin, the Ordos Basin, the North China Basin, and the Bohai Gulf Basin. If approved, this joint venture would be the second largest modern engineering project in

  5. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    Science.gov (United States)

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured

  6. Coalbed methane: Clean energy for the world

    Science.gov (United States)

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  7. Assessment of Surface Water Contamination from Coalbed Methane Fracturing-Derived Volatile Contaminants in Sullivan County, Indiana, USA.

    Science.gov (United States)

    Meszaros, Nicholas; Subedi, Bikram; Stamets, Tristan; Shifa, Naima

    2017-09-01

    There is a growing concern over the contamination of surface water and the associated environmental and public health consequences from the recent proliferation of hydraulic fracturing in the USA. Petroleum hydrocarbon-derived contaminants of concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)] and various dissolved cations and anions were spatially determined in surface waters around 15 coalbed methane fracking wells in Sullivan County, IN, USA. At least one BTEX compound was detected in 69% of sampling sites (n = 13) and 23% of sampling sites were found to be contaminated with all of the BTEX compounds. Toluene was the most common BTEX compound detected across all sampling sites, both upstream and downstream from coalbed methane fracking wells. The average concentration of toluene at a reservoir and its outlet nearby the fracking wells was ~2× higher than other downstream sites. However, one of the upstream sites was found to be contaminated with BTEX at similar concentrations as in a reservoir site nearby the fracking well. Calcium (~60 ppm) and sulfates (~175 ppm) were the dominant cations and anions, respectively, in surface water around the fracking sites. This study represents the first report of BTEX contamination in surface water from coalbed methane hydraulic fracturing wells.

  8. Sage-Grouse and Coal-Bed Methane: Can They Coexist within the Powder River Basin?

    Science.gov (United States)

    Duncan, Michael B.

    2010-01-01

    Concerns are growing regarding the availability of sustainable energy sources due to a rapidly growing human population and a better understanding of climate change. In recent years, the United States has focused much attention on developing domestic energy sources, which include coal-bed methane (CBM). There are vast deposits of the natural gas…

  9. Coalbed methane produced water in China: status and environmental issues.

    Science.gov (United States)

    Meng, Yanjun; Tang, Dazhen; Xu, Hao; Li, Yong; Gao, Lijun

    2014-01-01

    As one of the unconventional natural gas family members, coalbed methane (CBM) receives great attention throughout the world. The major associated problem of CBM production is the management of produced water. In the USA, Canada, and Australia, much research has been done on the effects and management of coalbed methane produced water (CMPW). However, in China, the environmental effects of CMPW were overlooked. The quantity and the quality of CMPW both vary enormously between coal basins or stratigraphic units in China. The unit produced water volume of CBM wells in China ranges from 10 to 271,280 L/well/day, and the concentration of total dissolved solids (TDS) ranges from 691 to 93,898 mg/L. Most pH values of CMPW are more than 7.0, showing the alkaline feature, and the Na-HCO3 and Na-HCO3-Cl are typical types of CMPW in China. Treatment and utilization of CMPW in China lag far behind the USA and Australia, and CMPW is mainly managed by surface impoundments and evaporation. Currently, the core environmental issues associated with CMPW in China are that the potential environmental problems of CMPW have not been given enough attention, and relevant regulations as well as environmental impact assessment (EIA) guidelines for CMPW are still lacking. Other potential issues in China includes (1) water quality monitoring issues for CMPW with special components in special areas, (2) groundwater level decline issues associated with the dewatering process, and (3) potential environmental issues of groundwater pollution associated with hydraulic fracturing.

  10. An approach to assessing risk in coalbed methane prospect evaluation

    International Nuclear Information System (INIS)

    Vanorsdale, C.R.

    1991-01-01

    The economic evaluation of drilling prospects requires assessing the degree of risk involved and its impact on reserve estimates. In developed areas, risk can be determined in a fairly straightforward manner. In remote wildcat areas, risk can almost never be adequately identified or quantified. Between these extremes lie complex reservoirs -- reservoirs to heterogeneous that each well drilled could exhibit production characteristics unlike those of its neighbors. This paper illustrates the use of a risk assessment methodology in a case study of Fruitland coal prospects in the San Juan Basin of New Mexico. This approach could be applied to coalbed methane prospects or any unconventional or highly heterogeneous reservoir with appropriate modification. The utility of this approach is made apparent in a graphical analysis that relates reserves, rate of return and payout time for managerial or financial presentation. This graphical technique and the underlying risk assessment were used to aid a conservative management team in evaluating participation in a multi-well coalbed project

  11. The potential for coalbed methane (CBM) development in Alberta

    International Nuclear Information System (INIS)

    2001-09-01

    This report presents fiscal and regulatory recommendations of the coalbed methane (CBM) Advisory Committee which consists of representatives from Alberta's oil and gas industry who participated in a study to determine the potential for coalbed methane development in the province. CBM is a natural gas produced as a by-product of the coal formation process. This study examined the CBM reserve base in Alberta along with the necessary steps and strategies required to develop it. There is increased interest in natural gas from Alberta's coal resources because of the forecast for reasonable natural gas prices coupled with an increase in energy demand. The remaining established natural gas reserves are estimated at 43 trillion cubic feet and unconventional supplies of natural gas will be needed by 2008 to meet this increasing demand. The recoverable reserves of CBM are estimated to be between 0 and 135 trillion cubic feet. This report discussed the following mitigation strategies suggested by industry that may applicable to CBM development in Alberta: (1) potential technical mitigation strategies, (2) potential land access and tenure strategies, (3) potential water disposal and diversion mitigation strategies, (4) potential non-technical mitigation strategies, and (5) potential economic mitigation strategies. The study concluded that since no two CBM basins are the same, it is necessary to have good baseline resource inventory data. It was also noted that evolving management, drilling and completion techniques will continue to enhance the economic understanding of Alberta's extensive coal beds. It was suggested that lessons from CBM development in the United States can be useful for development in Alberta since there are currently no publicly recognized commercial production of CBM in Alberta. 24 refs., 6 tabs., 25 figs

  12. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  13. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    Science.gov (United States)

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  14. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  15. British Columbia's new coalbed methane royalty regime

    International Nuclear Information System (INIS)

    Molinski, D.

    2002-01-01

    The British Columbia Ministry of Energy and Mines is promoting the development of the coalbed methane (CBM) industry in the province in order to make CBM a viable and competitive investment option for industry. It is establishing a regulatory and fiscal regime for CBM development. Issues of concern regarding CBM development include water production, gas production rates, well numbers, and marginal economics. The features of the CBM royalty regime include a new producer cost of service allowance, the creation of a CBM royalty tax bank to collect excess PCOS allowances, and a royalty tax credit for wells drilled by the end of February, 2004. The marginal well adjustment factor threshold has been raised from 180 mcf per day to 600 mcf per day for CBM only. It was noted that royalties will probably not be payable for several years following the first commercial well because royalties are very depending on capital and operating costs, local infrastructure and price. Royalty regimes cannot save CBM from low gas prices, poor resources or economics. 2 figs

  16. Economic evaluation of coalbed methane production in China

    International Nuclear Information System (INIS)

    Luo Dongkun; Dai Youjin

    2009-01-01

    Roaring natural gas demand, energy security and environment protection concerns coupled with stringent emission reduction requirement have made China's abundant coalbed methane (CBM) resource an increasingly valuable energy source. However, not all of China's CBM resource is economic to develop under current technological condition and economic situation. In order to locate the CBM resource with economic viability to develop in China, economic evaluation of CBM production is conducted by applying net present value (NPV) method. The results indicate that more than half of CBM resource in China is economic to develop. It shows that CBM price, production rate and operating costs are the three major factors with most impact on the economic viability of the CBM development in target areas in China. The result also demonstrates that the economic limit production is roughly 1200 cubic meters per day. These economic evaluation results provide important information for both CBM companies and China government.

  17. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    OpenAIRE

    Lei Wang; Hongjun Yin; Xiaoshuang Yang; Chuncheng Yang; Jing Fu

    2015-01-01

    Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare wi...

  18. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments

  19. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    Science.gov (United States)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  20. Trading coalbed methane for carbon dioxide

    International Nuclear Information System (INIS)

    Greenberger, L.S.

    1991-01-01

    This article discusses a proposal for reducing methane emissions in coal mining activities and at the same time reducing the burden on utilities to cut carbon dioxide emissions. Emission credits would be issued to mines that recover the methane for use. These credits could then be bought by utilities and exchanged for the right to emit carbon dioxide

  1. Coal rank, distribution and coalbed methane potential of the lower cretaceous luscar group, Bow River to Blackstone River, Central Alberta Foothills. Bulletin No. 473

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, F M

    1994-12-31

    Renewed interest in coal for alternative sources of energy such as coalbed methane have led to an expansion of exploration efforts into areas where the distribution and characterization of the coal resources is not well documented. This paper provides a geological compilation and assessment of the coal distribution and characterization of the Lower Cretaceous Luscar Group for the foothills area from the Bow River to Blackstone River in west-central Alberta. Included with the report are a series of geological maps and cross-sections that highlight the distribution of the coal-bearing strata and potential coalbed methane exploration targets. Field mapping of the area was carried out during the summers of 1988, 1989, and 1990.

  2. Trials and tribulations of a new regulation: coal bed methane water well testing

    Energy Technology Data Exchange (ETDEWEB)

    Lintott, D.; Swyngedouw, C.; Schneider, E. [Norwest Labs, Edmonton, AB (Canada); Lintott, D.; Swyngedouw, C.; Schneider, E. [Bodycote Testing Group, Toronto, ON (Canada)

    2006-07-01

    As of January 2006, coalbed methane (CBM) activity in Alberta was at 3600 producing wells with the potential for 25,000 to 50,000 wells. Coalbed methane risks and regulations were discussed. Regulatory initiatives, politics of coalbed methane, and a regulatory timeline was provided and the trials of a new regulation were presented. Other topics of discussion included: methane sampling and analysis; dissolved methane in water; gas isotopes; routine water potability; microbiology testing; and, sulfate reducing bacteria (SRB)/iron-related bacteria (IRB) method validation. The results of the microbial testing were presented. Although relatively few positive coliforms in wells were analyzed, most wells demonstrated positive presence for iron and sulfate bacteria. It was recommended that further research be conducted to evaluate the water sulfide concentration/turbidity, along with other parameters with presence and concentration of SRB and IRB bacteria as an indication of poor water quality. refs., tabs.

  3. Financing considerations for international coalbed methane projects - a case history

    International Nuclear Information System (INIS)

    Mize, J.S.

    1990-01-01

    This presentation on financing of international, coalbed methane fueled Cogen projects is intended to provide the reader with some insight into the key steps and issues involved in financing an outside-the-USA project. No claim is made as to whether the strategy employed for the China projects will be suitable for other projects. The presentation is made from the perspective of an entrepreneur seeking a workable financial structure to address the concerns of risk, return, technology transfer to a third world country, and stage-wise development from prefeasibility assessment through complete resource development and gas utilization. The China projects referred to in this paper are not yet fully financed. Final project approvals for financing awaiting a request by the USA group for China to confirm that their 50% funding is available, and that initial funds have been transferred to the USA group's bank account

  4. Mosquito larval habitat mapping using remote sensing and GIS: Implications of coalbed methane development and West Nile virus

    Energy Technology Data Exchange (ETDEWEB)

    Zou, L.; Miller, S.N.; Schmidtmann, E.T. [University of Wyoming, Laramie, WY (United States). Dept. of Renewable Resources

    2006-09-15

    Potential larval habitats of the mosquito Culex tarsalis (Coquillett), implicated as a primary vector of West Nile virus in Wyoming, were identified using integrated remote sensing and geographic information system (GIS) analyses. The study area is in the Powder River Basin of north central Wyoming, an area that has been undergoing a significant increase in coalbed methane gas extractions since the late 1990s. Large volumes of water are discharged, impounded, and released during the extraction of methane gas, creating aquatic habitats that have the potential to support immature mosquito development. Landsat TM and ETM + data were initially classified into spectrally distinct water and vegetation classes, which were in turn used to identify suitable larval habitat sites. This initial habitat classification was refined using knowledge-based GIS techniques requiring spatial data layers for topography, streams, and soils to reduce the potential for overestimation of habitat. Accuracy assessment was carried out using field data and high-resolution aerial photography commensurate with one of the Landsat images. The classifier can identify likely habitat for ponds larger than 0.8 ha (2 acres) with generally satisfactory results (72.1%) with a lower detection limit of approximate to 0.4 ha (1 acre). Results show a 75% increase in potential larval habitats from 1999 to 2004 in the study area, primarily because of the large increase in small coalbed methane water discharge ponds. These results may facilitate mosquito abatement programs in the Powder River Basin with the potential for application throughout the state and region.

  5. Technology spurs growth of U.S. coalbed methane

    International Nuclear Information System (INIS)

    Stevens, S.H.; Kuuskraa, J.A.; Schraufnagel, R.A.

    1996-01-01

    Since the late 1980s, more than $2 billion in capital investments and continued technological advances have harnessed an entirely new source of natural gas -- coalbed methane (CBM). From its roots as an experimental coal mine degasification method, the CBM industry today has grown into significant component of US natural gas supply. This report, the second of a four part series assessing unconventional gas development in the US, examines the state of the CBM industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. Parts of the industry believed that CBM was largely a tax credit play that would die out once supports were removed. Now that several years have passed, however, it is becoming clear that the CBM industry has legs sturdy enough to carry it into the 21st century without special tax breaks. This article presents the post 1992 drilling and production data, coupled with detailed assessments of specific CBM projects, which together paint a portrait of a CBM industry that overall continues to thrive without tax credits, thanks to improving E and P technology and continued identification of favorable reservoir settings

  6. British Columbia's new coalbed methane royalty regime

    Energy Technology Data Exchange (ETDEWEB)

    Molinski, D. [British Columbia Ministry of Energy and Mines, Victoria, BC (Canada). Energy and Minerals Div.

    2002-07-01

    The British Columbia Ministry of Energy and Mines is promoting the development of the coalbed methane (CBM) industry in the province in order to make CBM a viable and competitive investment option for industry. It is establishing a regulatory and fiscal regime for CBM development. Issues of concern regarding CBM development include water production, gas production rates, well numbers, and marginal economics. The features of the CBM royalty regime include a new producer cost of service allowance, the creation of a CBM royalty tax bank to collect excess PCOS allowances, and a royalty tax credit for wells drilled by the end of February, 2004. The marginal well adjustment factor threshold has been raised from 180 mcf per day to 600 mcf per day for CBM only. It was noted that royalties will probably not be payable for several years following the first commercial well because royalties are very depending on capital and operating costs, local infrastructure and price. Royalty regimes cannot save CBM from low gas prices, poor resources or economics. 2 figs.

  7. Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander

    Science.gov (United States)

    Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu

    2017-12-01

    Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.

  8. Extension of the Parana Basin to offshore Brazil: Implications for coalbed methane evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Holz, M.; Kalkreuth, W.; Rolim, S.B.A. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2010-05-15

    Coalbed methane (CBM) is a worldwide exploration target of the petroleum industry. In Brazil, the most important coal-bearing succession is associated with the Permian Rio Bonito Formation of the Parana Basin. The gas-prone areas are located at the southeastern margin of the Parana Basin and possibly in the offshore region of the northern part of the Pelotas Basin. Coalfields end abruptly at the present day shoreline, a result of rifting of Gondwana and the evolution of the South Atlantic Ocean. All geologic indicators suggest that in pre-rift times the coal seams extended further eastwards, probably now lying deeply buried below the sedimentary succession of the Pelotas Basin. The present paper discusses structural, stratigraphic, seismic and aeromagenetic data that support the preservation of continental crust beneath ocean sediment. If the coal beds had similar lateral extent to known onshore coals, and coal beds extended across the projected extension of the Parana basin, and there was a conservative 5 m of cumulative coal thickness, then a potential methane volume can be estimated for this newly inferred resource. Average onshore coal gas content is 32 scf/ton (1.00 m(3)/ton). If this is similar in the offshore coal deposits, then the hypothetical methane volume in the offshore area could be in excess of 1.9 x 10(12) scf (56 x 10(9) m(3)). Metamorphism from dikes associated with rifting are potential complicating factors in these deposits, and since no borehole reaching the deep-lying strata in the offshore area are available, this is a hypothetical gas resource with a certain level of uncertainty which should be tested in the future by drilling a deep borehole.

  9. Coalbed methane multi-stakeholder advisory committee recommendations : progress update : year 3

    International Nuclear Information System (INIS)

    2009-11-01

    The coalbed methane (CBM) multi-stakeholder advisory committee (MAC) was formed in 2003 to address public concerns related to CBM development in Alberta. This progress update discussed activities and recommendations made by the MAC, with particular reference to the following 4 main areas: (1) protecting water resources, (2) enhancing information and knowledge, (3) minimizing surface impacts, and (4) communication and consultation. A second MAC was formed by members from environmental organizations, landowners, the energy industry, and government agencies in 2006 to review progress on the implementation of the recommendations. Members of the committee agree that significant progress has been achieved in relation to the recommendations made by the original MAC. A large number of new directives, guidelines, processes and best management practices have been established, or are currently under development. Approximately 19,000 CBM wells have been developed since the MAC was established in 2003. It was concluded that ongoing work related to the recommendations will ensure that CBM in Alberta continues to be developed in a responsible manner. 1 tab.

  10. Electrodialysis reversal: Process and cost approximations for treating coal-bed methane waters

    Energy Technology Data Exchange (ETDEWEB)

    Sajtar, E.T.; Bagley, D.M. [University of Wyoming, Laramie, WY (United States)

    2009-02-15

    Brackish waters with total dissolved solids (TDS) concentrations less than 10,000 mg/L are extracted from coal-beds in the Wyoming Powder River basin to facilitate the production of coal-bed methane. These waters frequently require treatment before disposal or use. Electrodialysis reversal (EDR) has not yet been used to treat these waters but this technology should be suitable. The question is whether EDR would be cost-effective. The purpose of this work, then, was to develop models for predicting the cost of EDR for brackish waters. These models, developed from data available in the literature, were found to predict actual EDR costs as a function of TDS removal, influent flow rate, chemical rejection efficiency, water recovery, electricity use, and labor cost within 10% of reported values. The total amortized cost for removing 1,000 mg/L of TDS from 10,000 m{sup 3}/day of influent assuming no concentrate disposal costs was predicted to range from $0.23/m{sup 3} to $0.85/m{sup 3} and was highly dependent on capital cost and facility life. Concentrate disposal costs significantly affected total treatment cost, providing a total treatment cost range from $0.38/m{sup 3} to $6.38/m{sup 3}, depending on concentrate disposal cost and water recovery. Pilot demonstrations of EDR in the Powder River basin should be conducted to determine the achievable water recovery when treating these waters.

  11. Powder River Basin Coalbed Methane Development and Produced Water Management Study

    International Nuclear Information System (INIS)

    2002-01-01

    Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown

  12. Coalbed methane and salmon : assessing the risks

    International Nuclear Information System (INIS)

    Wendling, G.; Vadgama, J.; Holmes, R.

    2008-05-01

    The harmful environmental impacts from coalbed methane (CBM) development on land, water and wildlife have all been well documented based on experience in the United States and elsewhere. However, proposals to develop CBM resources in the headwaters region of northwest British Columbia raise a new issue regarding the impacts of CBM extraction on salmon. In order to begin addressing this knowledge gap and provide essential information for communities, this report presented an assessment of the risks of CBM development on salmon, with a specific focus on a tenure held by Shell Canada Limited in the Klappan region of Northwest British Columbia. The report provided a general overview of the CBM extraction process and of the environmental impacts typically associated with commercial-scale production. The Klappan Tenure location and geology were described along with the significance of its CBM reserves. The report also addressed the question of salmon presence within the tenure, drawing on existing field research to identify streams where coho, chinook and sockeye salmon have been observed. The report also contained assessments of potential risks associated with the two primary impact pathways, notably runoff and erosion effects arising from land disturbance, and stream flow and temperature effects arising from groundwater extraction. The report provided a brief overview of additional CBM-related impacts which could have indirect effects on salmon. Last, the report considered factors external to the Klappan project which could influence the nature and severity of impacts on salmon, including climate change; inadequate regulations; and cumulative impacts. It was concluded that CBM development should not occur without social license. Communities need to be empowered to decide whether or not they support CBM extraction in their area before development proceeds. 73 refs., 3 tabs., 26 figs

  13. Coalbed methane : evaluating pipeline and infrastructure requirements to get gas to market

    International Nuclear Information System (INIS)

    Murray, B.

    2005-01-01

    This Power Point presentation evaluated pipeline and infrastructure requirements for the economic production of coalbed methane (CBM) gas. Reports have suggested that capital costs for CBM production can be minimized by leveraging existing oil and gas infrastructure. By using existing plant facilities, CBM producers can then tie in to existing gathering systems and negotiate third party fees, which are less costly than building new pipelines. Many CBM wells can be spaced at an equal distance to third party gathering systems and regulated transmission meter stations and pipelines. Facility cost sharing, and contracts with pipeline companies for compression can also lower initial infrastructure costs. However, transmission pressures and direct connect options for local distribution should always be considered during negotiations. The use of carbon dioxide (CO 2 ) commingling services was also recommended. A map of the North American gas network was provided, as well as details of Alberta gas transmission and coal pipeline overlays. Maps of various coal zones in Alberta were provided, as well as a map of North American pipelines. refs., tabs., figs

  14. Experimental Study on Methane Desorption from Lumpy Coal under the Action of Hydraulic and Thermal

    Directory of Open Access Journals (Sweden)

    Dong Zhao

    2018-01-01

    Full Text Available Moisture and thermal are the key factors for influencing methane desorption during CBM exploitation. Using high-pressure water injection technology into coalbed, new fractures and pathways are formed to transport methane. A phenomenon of water-inhibiting gas flow existed. This study is focused on various water pressures impacted on gas-adsorbed coal samples, and then the desorption capacity could be revealed under different conditions. And the results are shown that methane desorption capacity was decreased with the increase in water pressure at room temperature and the downtrend would be steady until water pressure was large enough. Heating could promote gas desorption capacity effectively, with the increasing of water injection pressures, and the promotion of thermal on desorption became more obvious. These results are expected to provide a clearer understanding of theoretical efficiency of heat water or steam injection into coalbed, and they can provide some theoretical and experimental guidance on CBM production and methane control.

  15. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  16. Noise considerations in the development of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    DeGagne, D.C. [Noise Solutions Inc., Calgary, AB (Canada); Burke, D. [Energy Resources Conservation Board, Calgary, AB (Canada)

    2009-07-01

    Since coalbed methane (CBM) development remains a secure option for meeting energy demands, industry will need to deal effectively with noise to reduce landowner concerns. This paper presented lessons learned and case histories for the successful approach to noise solutions accepted by regulatory agencies and industry clients. The complexities of acoustical engineering practices were discussed along with the most significant points to meeting regulatory requirements for environmental noise as stated in the Energy Resources Conservation Board (ERCB) Directive 038. The focus of the paper was on the management of environmental noise that will affect nearby residents. Noise is generally viewed as one of a number of general biological stressors. Although there is no health risk from short term exposure to noise, excessive exposure to noise might be considered a health risk as noise may contribute to the development of stress related conditions. Sleep disturbance is the most significant contributor to a stress response due to annoyance from industrial noise. This presentation demonstrated that environmental noise can be managed efficiently and in a cost effective manner. Noise control technology allows companies to meet nearly any level of noise control necessary to be in compliance with regulations. The following are commonly used in CBM operations: noise impact assessments; engine exhaust silencers; cooler silencers; acoustical buildings; building ventilation; and landscape friendly buildings. It was concluded that companies that invest in state of the art noise control combined with a stakeholder consultation program that respects the community's needs and concerns will be able to operate harmoniously with both regulators and community residents. 49 refs., 3 tabs., 4 figs.

  17. Drilling and Testing the DOI041A Coalbed Methane Well, Fort Yukon, Alaska

    Science.gov (United States)

    Clark, Arthur; Barker, Charles E.; Weeks, Edwin P.

    2009-01-01

    The need for affordable energy sources is acute in rural communities of Alaska where costly diesel fuel must be delivered by barge or plane for power generation. Additionally, the transport, transfer, and storage of fuel pose great difficulty in these regions. Although small-scale energy development in remote Arctic locations presents unique challenges, identifying and developing economic, local sources of energy remains a high priority for state and local government. Many areas in rural Alaska contain widespread coal resources that may contain significant amounts of coalbed methane (CBM) that, when extracted, could be used for power generation. However, in many of these areas, little is known concerning the properties that control CBM occurrence and production, including coal bed geometry, coalbed gas content and saturation, reservoir permeability and pressure, and water chemistry. Therefore, drilling and testing to collect these data are required to accurately assess the viability of CBM as a potential energy source in most locations. In 2004, the U.S. Geological Survey (USGS) and Bureau of Land Management (BLM), in cooperation with the U.S. Department of Energy (DOE), the Alaska Department of Geological and Geophysical Surveys (DGGS), the University of Alaska Fairbanks (UAF), the Doyon Native Corporation, and the village of Fort Yukon, organized and funded the drilling of a well at Fort Yukon, Alaska to test coal beds for CBM developmental potential. Fort Yukon is a town of about 600 people and is composed mostly of Gwich'in Athabascan Native Americans. It is located near the center of the Yukon Flats Basin, approximately 145 mi northeast of Fairbanks.

  18. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  19. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  20. Stimulation Of The Methane Production With The Use Of Changing Of The Rock Massif Physical Conditions

    Directory of Open Access Journals (Sweden)

    Baev Mikhail

    2017-01-01

    Full Text Available The commercial coalbed methane production success is majorly defined by the effectiveness of the use of special gas inflow stimulation methods. The necessity of using of such methods issubject to the aspects of searching and displacement of methane within the coal compound. Theanalysis of the ways of methane production stimulation from virgin coal formations is given. The description of the process of hydraulic fracturing (fracturing as the most common stimulation method during the commercial coalbed methane production as well as its major advantages are presented. The present work provides data about the initiated laboratory research of sands collected from Kemerovo region deposits for the purpose of finding of the most prospective samples by means of anchoring of fractures. The prospectivity and ability to implement the hydraulic fracturing with the use of locally available sands acting as proppants are shown. The influence of the strain-stress state of the rock massif on the alteration of permeability and the necessity of its extension study with respect to different technological features of hydraulic fracturing is shown

  1. Coalbed methane and tight gas no longer unconventional resources

    International Nuclear Information System (INIS)

    Gatens, M.

    2006-01-01

    Unconventional gas refers to natural gas contained in difficult-to-produce formations that require special drilling and completion techniques to achieve commercial production. It includes tight gas, coal seams, organic shales, and gas hydrates. Canada's vast unconventional gas resource is becoming an increasingly important part of the country's gas supply. The emergence of unconventional gas production in Canada over the past several years has made the unconventional increasingly conventional in terms of industry activity. It was suggested that in order to realize the potential for unconventional gas in Canada, all stakeholders should engage to ensure the development is environmentally responsible. Unconventional gas accounts for nearly one third of U.S. gas production. It also accounts for nearly 5 Bcf per day and growing. The impetus to this sudden growth has been the gradual and increasing contribution of tight sands and limes to Canadian production, which accounts for more than 4 Bcf per day. Coalbed methane (CBM) is at 0.5 Bcf per day and growing. In response to expectations that CBM will reach 2 to 3 Bcf per day over the next 2 decades, Canadian producers are placing more emphasis on unconventional resource plays, including organic shales and gas hydrates. As such, significant growth of unconventional gas is anticipated. This growth will be facilitated by the adoption of U.S..-developed technologies and new Canadian technologies. It was suggested that research and development will be key to unlocking the unconventional gas potential. It was also suggested that the already existing, strong regulatory structure should continue in order to accommodate this growth in a sustainable manner. figs

  2. Numerical Simulation of CO2 Flooding of Coalbed Methane Considering the Fluid-Solid Coupling Effect.

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    Full Text Available CO2 flooding of coalbed methane (CO2-ECBM not only stores CO2 underground and reduces greenhouse gas emissions but also enhances the gas production ratio. This coupled process involves multi-phase fluid flow and coal-rock deformation, as well as processes such as competitive gas adsorption and diffusion from the coal matrix into fractures. A dual-porosity medium that consists of a matrix and fractures was built to simulate the flooding process, and a mathematical model was used to consider the competitive adsorption, diffusion and seepage processes and the interaction between flow and deformation. Due to the effects of the initial pressure and the differences in pressure variation during the production process, permeability changes caused by matrix shrinkage were spatially variable in the reservoir. The maximum value of permeability appeared near the production well, and the degree of rebound decreased with increasing distance from the production well.

  3. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  4. Making effective use of rod pumping systems in coalbed methane applications

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, A. [eProduction Solutions Inc., Kingwood, TX (United States)

    2003-07-01

    The advantages of optimizing coalbed methane (CBM) operations are increased production, reduced expenses, improved efficiency, and better inventory. The author discussed the CBM production cycle and the possible artificial lift options, including electric submersible pump (ESP), plunger lift, primary coolant pump (PCP), and reciprocating rod lift. The presentation focused on the rod lift, as it represents a low to moderate capital expenditure, has good system efficiency, an excellent fluid volume range, an excellent salvage value, excellent familiarity with equipment, and has readily available parts and service. The major disadvantage of the rod lift is that the fixed operating range does not adapt to changing reservoir characteristics. A comparison between the rod pump controller and the variable speed drive was presented. The well can be operated at or near the pumped off condition with variable speed drives with rod pumping intelligence. The author provided a closer examination of the variable frequency drive and the vector flux drive. The presentation also included a discussion of prime movers, drive and inclinometer, gearbox loading, rod load limiter, and dynamometer cards. Three case studies were presented: CSW1, CSW2, and CSW3. It was concluded that wells must be kept pumping, and that a Flux Vector Drive should be used along with an NEMA B motor and properly sized pumping unit and pump. tabs., figs.

  5. Composition and Structure of Microalgae Indicated in Raman and Hyperspectral Spectra and Scanning Electron Microscopy: from Cyanobacteria to Isolates from Coal-bed Methane Water Ponds

    Science.gov (United States)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2017-12-01

    Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and

  6. The technology of extracting gaseous fuel based on comprehensive in situ gasification and coalbed degassing

    Directory of Open Access Journals (Sweden)

    А. Н. Шабаров

    2016-08-01

    Full Text Available The study considers a comprehensive technology (designed and patented by the authors of developing coal and methane deposits which combines in situ gasification of lower coalbeds in the suite of rock bump hazardous gassy beds, extraction of coal methane and mechanized mining of coal. The first stage of the technology consists in mining gaseous fuel that enables one to extract up to 15-20 % of total energy from the suite of coalbeds. Geodynamic zoning is used to select positions for boring wells. Using the suggested technology makes it possible to solve a number of tasks simultaneously. First of all that is extracting gaseous fuel from the suite of coalbeds without running any mining works while retaining principal coalbeds in the suite and preparing them for future processing (unloading and degassing. During the first phase the methane-coal deposit works as a gas deposit only, the gas having two sources – extracted methane (which includes its locked forms, absorbed and adsorbed and the products of partial incineration of thin coalbeds, riders and seams from thee suite. The second stage consists in deep degassing and unloading of coal beds which sharply reduces the hazards of methane explosion and rock bumps, thus increasing the productivity of mechanized coal mining. During the second stage coal is mined in long poles with the account of degassing and unloading of coal beds, plus the data on gas dynamic structure of coal rock massif.

  7. Drainage feature about coalbed methane wells in different hydrogeological conditions in Fanzhuaug area

    Institute of Scientific and Technical Information of China (English)

    NI Xiao-ming; LIN Ran; WANG Yan-bin

    2012-01-01

    It is aa important guarantee to enhance the production of coalbed methane (CBM) and reduce the project investment by finding out the drainage feature about CBM wells in different hydrogeological conditions.Based on the CBM exploration and development data on the Fanzhuang block in southeast Qinshui Basin and combined with the seepage principle and lithology on the roof and the bottom coalbed,the mathematical model of integrated permeability was established.By permeability experiments of the different lithologies on the roof and the floor within the 20 m range combined with the log curves,the integrated permeability of different lithological combinations were obtained.The starting pressure gradient and permeability of the roof and the floor for different lithologies was tested by "differential pressure-flow method".The relationships between the starting pressure gradient and the integrated permeability were obtained.The critical distance of limestone water penetrating into coal reservoirs was calculated.According to the drainage feature of CBM wells combined with the drainage data of some CBM wells,the results show that,when limestone water can penetrate into coal reservoirs,the daily water production is high and the daily gas production is low although there is no gas at the beginning of the drainage process,the CBM wells stop discharging water within 6 months after the gas began to come out,and the gas production is steadily improved.When limestone water can not penetrate into coal reservoirs,the daily water production is low and the daily gas production is high at the beginning of the drainage process,and it almost stops discharging water after some time when the gas come out,the daily gas production increases,and the cumulative water production is much lower.

  8. Coal rank, distribution, and coalbed methane potential of the Lower Cretaceous Luscar Group, Bow River to Blackstone River, central Alberta foothills

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, F M; Kalkreuth, W D

    1994-12-31

    Mapping data on Lower Cretaceous Luscar Group coals in the central Alberta foothills is presented. The coals outcrop in the Inner Foothills from the Bow River to the boundary between Alberta and British Columbia, north of Grande Cache. Both subsurface and surface mapping data is presented. The coal rank is highly variable and depends on sample location and depth, as established by vitrinite reflectance studies on trench samples and cuttings gathered from petroleum exploration wells. The conventional coal resource potential and the coalbed methane potential for the area are discussed with reference to the map sheets provided. 29 refs., 45 figs., 3 tabs., 3 apps.

  9. Enhanced microbial coalbed methane generation: A review of research, commercial activity, and remaining challenges

    Science.gov (United States)

    Ritter, Daniel J.; Vinson, David S.; Barnhart, Elliott P.; Akob, Denise M.; Fields, Matthew W.; Cunningham, Al B.; Orem, William H.; McIntosh, Jennifer C.

    2015-01-01

    Coalbed methane (CBM) makes up a significant portion of the world’s natural gas resources. The discovery that approximately 20% of natural gas is microbial in origin has led to interest in microbially enhanced CBM (MECoM), which involves stimulating microorganisms to produce additional CBM from existing production wells. This paper reviews current laboratory and field research on understanding processes and reservoir conditions which are essential for microbial CBM generation, the progress of efforts to stimulate microbial methane generation in coal beds, and key remaining knowledge gaps. Research has been primarily focused on identifying microbial communities present in areas of CBM generation and attempting to determine their function, in-situ reservoir conditions that are most favorable for microbial CBM generation, and geochemical indicators of metabolic pathways of methanogenesis (i.e., acetoclastic or hydrogenotrophic methanogenesis). Meanwhile, researchers at universities, government agencies, and companies have focused on four primary MECoM strategies: 1) microbial stimulation (i.e., addition of nutrients to stimulate native microbes); 2) microbial augmentation (i.e., addition of microbes not native to or abundant in the reservoir of interest); 3) physically increasing microbial access to coal and distribution of amendments; and 4) chemically increasing the bioavailability of coal organics. Most companies interested in MECoM have pursued microbial stimulation: Luca Technologies, Inc., successfully completed a pilot scale field test of their stimulation strategy, while two others, Ciris Energy and Next Fuel, Inc., have undertaken smaller scale field tests. Several key knowledge gaps remain that need to be addressed before MECoM strategies can be implemented commercially. Little is known about the bacterial community responsible for coal biodegradation and how these microorganisms may be stimulated to enhance microbial methanogenesis. In addition, research

  10. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    OpenAIRE

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane. For every two molecules of CO2 injected, roughly one molecule of methane is produced. The work included an investigation of the potential CBM reserves in the Dutch underground and the related CO2 s...

  11. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    Science.gov (United States)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  12. Discrete Fracture Modeling of 3D Heterogeneous Enhanced Coalbed Methane Recovery with Prismatic Meshing

    Directory of Open Access Journals (Sweden)

    Yongbin Zhang

    2015-06-01

    Full Text Available In this study, a 3D multicomponent multiphase simulator with a new fracture characterization technique is developed to simulate the enhanced recovery of coalbed methane. In this new model, the diffusion source from the matrix is calculated using the traditional dual-continuum approach, while in the Darcy flow scale, the Discrete Fracture Model (DFM is introduced to explicitly represent the flow interaction between cleats and large-scale fractures. For this purpose, a general formulation is proposed to model the multicomponent multiphase flow through the fractured coal media. The S&D model and a revised P&M model are incorporated to represent the geomechanical effects. Then a finite volume based discretization and solution strategies are constructed to solve the general ECBM equations. The prismatic meshing algorism is used to construct the grids for 3D reservoirs with complex fracture geometry. The simulator is validated with a benchmark case in which the results show close agreement with GEM. Finally, simulation of a synthetic heterogeneous 3D coal reservoir modified from a published literature is performed to evaluate the production performance and the effects of injected gas composition, well pattern and gas buoyancy.

  13. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  14. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    Science.gov (United States)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress

  15. Potential for CO2 sequestration and enhanced coalbed methane production in the Netherlands

    NARCIS (Netherlands)

    Hamelinck, C.N.; Schreurs, H.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, Daan; Pagnier, H.; Bergen, F. van; Wolf, K.-H.; Barzandji, O.; Bruining, H.

    2006-01-01

    This study investigated the technical and economic feasibility of using CO2 for the enhanced production of coal bed methane (ECBM) in the Netherlands. This concept could lead to both CO2 storage by adsorbing CO2 in deep coal layers that are not suitable for mining, as well as production of methane.

  16. The Development and Test of a Sensor for Measurement of the Working Level of Gas–Liquid Two-Phase Flow in a Coalbed Methane Wellbore Annulus

    OpenAIRE

    Chuan Wu; Huafeng Ding; Lei Han

    2018-01-01

    Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pres...

  17. Coalbed Methane prospect of Jamalganj Coalfield Bangladesh

    International Nuclear Information System (INIS)

    Imam, M. Badrul; Rahman, M.; Akhtar, Syed Humayun

    2002-01-01

    Five major Gondwana coalfields have been discovered in the half-graben type basins in the subsurface in the Precambrian platform area of the Northwest Bangladesh. The Jamalganj coalfields with an estimated reserve of about 1053 millions tons of coal, has seven coal seams in the depth range between 640 to 1158m below the ground surface. Compared to the other coalfields of the area, with coal occurring at 150 to 500m depth, Jamalganj coal is considered to be too deep to be exploited by conventional underground or open pit mining. Instead, developing coal bed methane from Jamalganj coalfield may be considered as a viable option for its exploitation. The positive factors of Jamalganj coal bed methane development include high net thickness of coal with at least one very thick (40m+) and widely developed seam, coal seam burial depth within optimum range, large coal reserves, indication of significant gas content from drilling data, and poor permeability in the rocks above and surrounding the coal layers. The thickest seam III can be primary target for CBM development especially where it combines with seam IV in the eastern part of coalfield. However, there are a number of unknown factors like actual gas content of coal, permeability, and in-seam pressure that need to be evaluated before deciding the viability of the project. An initial attempt to collect these base line data should include drilling test well or wells in the primary target area where seam III is most thick and widely developed. (author)

  18. Experimental and numerical study of radial lateral fracturing for coalbed methane

    International Nuclear Information System (INIS)

    Fu, Xuan; Li, Gensheng; Huang, Zhongwei; Liang, Yuesong; Xu, Zhengming; Jin, Xiao

    2015-01-01

    Drilling ultra-short radius horizontal laterals in a vertical well and then operating hydraulic fracturing (radial lateral fracturing, abbreviated as RLF) is proposed as a prospective novel method to increase the single-well productivity for coalbed methane (CBM) development. The objective of this article is to find the best fracture network profile RLF can generate and what kind of formation is suitable for this fracturing technique. Experiments using a true tri-axial fracturing simulation system are designed to analyse the influence of different lateral length, count and azimuth on the fracturing initiation and propagation. A numerical simulation is also carried out to study the sensitivity of the coal integrity and in situ stress state on the fracture initiation type. Our work shows that: the best effect of RLF is achieved when it initiates from the bedding plane where the laterals lie and forms a fracture network with one main horizontal fracture connecting multiple vertical fractures; the breakdown and injection pressure will be decreased by increasing the lateral length and count; increasing the lateral length can enlarge the horizontal fracture area; the optimal lateral design for horizontal initiation is four laterals with the phase of 90° and each lateral is at 45° from the horizontal stress; RLF is suitable for the intact coal seams in which cracks or cleats are not well developed and the overburden stress should be close to or less than the maximum horizontal stress. This paper will provide the experimental support and theoretical bases for CBM RLF design. (paper)

  19. Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China

    Science.gov (United States)

    Li, Xin; Fu, Xuehai; Yang, Xuesong; Ge, Yanyan; Quan, Fangkai

    2018-07-01

    The Junggar Basin is a potential replacement area of coalbed methane (CBM) development in China. To improve the efficiency of CBM exploration, we investigated CBM accumulation and dissipation patterns of coal profiles located in the northwestern, southern, eastern, and central Junggar Basin based on the following criteria: burial depth, hydrogeological zone, CBM origin, CBM phase, and CBM migration type. We identified four types of CBM accumulation patterns: (1) a self-sourcing CBM pattern containing adsorbed gas of biogenic origin from shallow-depth coal within a weak runoff zone; (2) an endogenic migration pattern containing adsorbed gas of thermogenic origin from the medium and deep coals within a stagnant zone; (3) an exogenic migration pattern containing adsorbed gas of thermogenic origin from deep coal within a stagnant zone; and (4) an exogenic migration pattern containing adsorbed and free gas of thermogenic origin from ultra-deep coal within a stagnant zone. We also identified two types of CBM dissipation patterns: (1) shallow-depth coal within a runoff zone with mixed origin CBM; and (2) shallow and medium-deep coal seams with mixed origin CBM. CBM migration in low-rank coals was more substantial than that adsorbed in high-rank coal. CBM in shallow coal could easily escape, in the absence of closed structures or hydrogeological seals. CBM reservoirs occurred in deep coal where oversaturated gas may accumulate. Future exploration should focus on gas-water sealing structures in shallow coalbeds. CBM that occurred in adsorbed and free phases and other unconventional natural gas dominated by free gas in the coal stratum should be co-explored and co-developed.

  20. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin

    Science.gov (United States)

    Pashin, Jack C.; McIntyre-Redden, Marcella R.; Mann, Steven D.; Kopaska-Merkel, David C.; Varonka, Matthew S.; Orem, William H.

    2014-01-01

    Water and gas chemistry in coalbed methane reservoirs of the Black Warrior Basin reflects a complex interplay among burial processes, basin hydrodynamics, thermogenesis, and late-stage microbial methanogenesis. These factors are all important considerations for developing production and water management strategies. Produced water ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride brine. The hydrodynamic framework of the basin is dominated by structurally controlled fresh-water plumes that formed by meteoric recharge along the southeastern margin of the basin. The produced water contains significant quantities of hydrocarbons and nitrogen compounds, and the produced gas appears to be of mixed thermogenic-biogenic origin.Late-stage microbial methanogenesis began following unroofing of the basin, and stable isotopes in the produced gas and in mineral cements indicate that late-stage methanogenesis occurred along a CO2-reduction metabolic pathway. Hydrocarbons, as well as small amounts of nitrate in the formation water, probably helped nourish the microbial consortia, which were apparently active in fresh to hypersaline water. The produced water contains NH4+ and NH3, which correlate strongly with brine concentration and are interpreted to be derived from silicate minerals. Denitrification reactions may have generated some N2, which is the only major impurity in the coalbed gas. Carbon dioxide is a minor component of the produced gas, but significant quantities are dissolved in the formation water. Degradation of organic compounds, augmented by deionization of NH4+, may have been the principal sources of hydrogen facilitating late-stage CO2 reduction.

  1. Contribution of Ash Content Related to Methane Adsorption Behaviors of Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Yanyan Feng

    2014-01-01

    Full Text Available Methane adsorption isotherms on coals with varying ash contents were investigated. The textural properties were characterized by N2 adsorption/desorption isotherm at 77 K, and methane adsorption characteristics were measured at pressures up to 4.0 MPa at 298 K, 313 K, and 328 K, respectively. The Dubinin-Astakhov model and the Polanyi potential theory were employed to fit the experimental data. As a result, ash content correlated strongly to methane adsorption capacity. Over the ash range studied, 9.35% to 21.24%, the average increase in methane adsorption capacity was 0.021 mmol/g for each 1.0% rise in ash content. With the increasing ash content range of 21.24%~43.47%, a reduction in the maximum adsorption capacities of coals was observed. In addition, there was a positive correlation between the saturated adsorption capacity and the specific surface area and micropore volume of samples. Further, this study presented the heat of adsorption, the isosteric heat of adsorption, and the adsorbed phase specific heat capacity for methane adsorption on various coals. Employing the proposed thermodynamic approaches, the thermodynamic maps of the adsorption processes of coalbed methane were conducive to the understanding of the coal and gas simultaneous extraction.

  2. Treatment of Simulated Coalbed Methane Produced Water Using Direct Contact Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Dong-Wan Cho

    2016-05-01

    Full Text Available Expolitation of coalbed methane (CBM involves production of a massive amount saline water that needs to be properly managed for environmental protection. In this study, direct contact membrane distillation (DCMD was utilized for treatment of CBM-produced water to remove saline components in the water. Simulated CBM waters containing varying concentrations of NaCl (1, 20, and 500 mM and NaHCO3 (1 and 25 mM were used as feed solutions under two transmembrane temperatures (Δ40 and 60 °C. In short-term distillation (~360 min, DCMD systems showed good performance with nearly 100% removal of salts for all solutes concentrations at both temperatures. The permeate flux increased with the feed temperature, but at a given temperature, it remained fairly stable throughout the whole operation. A gradual decline in permeate flux was observed at Δ60 °C at high NaHCO3 concentration (25 mM. In long-term distillation (5400 min, the presence of 25 mM NaHCO3 further decreased the flux to 25%–35% of the initial value toward the end of the operation, likely due to membrane fouling by deposition of Ca-carbonate minerals on the pore openings. Furthermore, pore wetting by the scalants occurred at the end of the experiment, and it increased the distillate conducitivity to 110 µS·cm−1. The precipitates formed on the surface were dominantly CaCO3 crystals, identified as aragonite.

  3. Methane production from coal by a single methanogen

    Science.gov (United States)

    Sakata, S.; Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.

    2017-12-01

    Previous geochemical studies indicate that biogenic methane greatly contributes to the formation of coalbed methane (CBM). It is unclear, however, what part of coal is used for the methane production and what types of microbes mediate the process. Here we hypothesized that methylotrophic methanogens use methoxylated aromatic compounds (MACs) derived from lignin. We incubated 11 species of methanogens belonging to order Methanosarcinales with 7 types of MACs. Two strains of methanogens, i.e., Methermicoccus shengliensis AmaM and ZC-1, produced methane from the MACs. In fact, these methanogens used over 30 types of commercially available MACs in addition to methanol and methylamines. To date, it is widely believed that methanogens use very limited number of small compounds such as hydrogen plus carbon dioxide, acetate, and methanol, and only three methanogenic pathways are recognized accordingly. Here, in contrast, two Methermicoccus strains used many types of MACs. We therefore propose this "methoxydotrophic" process as the fourth methanogenic pathway. Incubation of AmaM with 2-methoxybenzoate resulted in methanogenesis associated with the stoichiometric production of 2-hydroxybenzoate. Incubation with 2-methoxy-[7-13C] benzoate and with [13C] bicarbonate indicated that two thirds of methane carbon derived from the methoxy group and one third from CO2. Furthermore, incubation with [2-13C] acetate resulted in significant increases of 13C in both methane and CO2. These results suggest the occurrence of O-demethylation, CO2 reduction and acetyl-CoA metabolism in the methoxydotrophic methanogenesis. Furthermore, incubation of AmaM with lignite, subbituminous or bituminous coals in the bicarbonate-buffered media revealed that AmaM produced methane directly from coals via the methoxydotrophic pathway. Although 4 types of MACs were detected in the coal media in addition to methanol and methylamines, their total concentrations were too low to account for the methane

  4. Analytical modeling of pressure transient behavior for coalbed methane transport in anisotropic media

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Xiaodong

    2014-01-01

    Resulting from the nature of anisotropy of coal media, it is a meaningful work to evaluate pressure transient behavior and flow characteristics within coals. In this article, a complete analytical model called the elliptical flow model is established by combining the theory of elliptical flow in anisotropic media and Fick's laws about the diffusion of coalbed methane. To investigate pressure transient behavior, analytical solutions were first obtained through introducing a series of special functions (Mathieu functions), which are extremely complex and are hard to calculate. Thus, a computer program was developed to establish type curves, on which the effects of the parameters, including anisotropy coefficient, storage coefficient, transfer coefficient and rate constant, were analyzed in detail. Calculative results show that the existence of anisotropy would cause great pressure depletion. To validate new analytical solutions, previous results were used to compare with the new results. It is found that a better agreement between the solutions obtained in this work and the literature was achieved. Finally, a case study is used to explain the effects of the parameters, including rock total compressibility coefficient, coal medium porosity and anisotropic permeability, sorption time constant, Langmuir volume and fluid viscosity, on bottom-hole pressure behavior. It is necessary to coordinate these parameters so as to reduce the pressure depletion. (paper)

  5. Coalbed methane-produced water quality and its management options in Raniganj Basin, West Bengal, India

    Science.gov (United States)

    Mendhe, Vinod Atmaram; Mishra, Subhashree; Varma, Atul Kumar; Singh, Awanindra Pratap

    2017-06-01

    Coalbed methane (CBM) recovery is associated with production of large quantity of groundwater. The coal seams are depressurized by pumping of water for regular and consistent gas production. Usually, CBM operators need to pump >10 m3 of water per day from one well, which depends on the aquifer characteristics, drainage and recharge pattern. In India, 32 CBM blocks have been awarded for exploration and production, out of which six blocks are commercially producing methane gas at 0.5 million metric standard cubic feet per day. Large amount of water is being produced from CBM producing blocks, but no specific information or data are available for geochemical properties of CBM-produced water and its suitable disposal or utilization options for better management. CBM operators are in infancy and searching for the suitable solutions for optimal management of produced water. CBM- and mine-produced water needs to be handled considering its physical and geochemical assessment, because it may have environmental as well as long-term impact on aquifer. Investigations were carried out to evaluate geochemical and hydrogeological conditions of CBM blocks in Raniganj Basin. Totally, 15 water samples from CBM well head and nine water samples from mine disposal head were collected from Raniganj Basin. The chemical signature of produced water reveals high sodium and bicarbonate concentrations with low calcium and magnesium, and very low sulphate in CBM water. It is comprehend that CBM water is mainly of Na-HCO3 type and coal mine water is of Ca-Mg-SO4 and HCO3-Cl-SO4 type. The comparative studies are also carried out for CBM- and mine-produced water considering the geochemical properties, aquifer type, depth of occurrence and lithological formations. Suitable options like impounding, reverse osmosis, irrigation and industrial use after prerequisite treatments are suggested. However, use of this huge volume of CBM- and mine-produced water for irrigation or other beneficial purposes

  6. A drainage data-based calculation method for coalbed permeability

    International Nuclear Information System (INIS)

    Lai, Feng-peng; Li, Zhi-ping; Fu, Ying-kun; Yang, Zhi-hao

    2013-01-01

    This paper establishes a drainage data-based calculation method for coalbed permeability. The method combines material balance and production equations. We use a material balance equation to derive the average pressure of the coalbed in the production process. The dimensionless water production index is introduced into the production equation for the water production stage. In the subsequent stage, which uses both gas and water, the gas and water production ratio is introduced to eliminate the effect of flush-flow radius, skin factor, and other uncertain factors in the calculation of coalbed methane permeability. The relationship between permeability and surface cumulative liquid production can be described as a single-variable cubic equation by derivation. The trend shows that the permeability initially declines and then increases after ten wells in the southern Qinshui coalbed methane field. The results show an exponential relationship between permeability and cumulative water production. The relationship between permeability and cumulative gas production is represented by a linear curve and that between permeability and surface cumulative liquid production is represented by a cubic polynomial curve. The regression result of the permeability and surface cumulative liquid production agrees with the theoretical mathematical relationship. (paper)

  7. Results of coalbed-methane drilling, Meadowfill Landfill, Harrison County, West Virginia: Chapter G.4 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Fedorko, Nick; Grady, William C.; Eble, Cortland F.; Schuller, William A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The U.S. Environmental Protection Agency funded drilling of a borehole (39.33889°N., 80.26542°W.) to evaluate the potential of enhanced coalbed-methane production from unminable Pennsylvanian coal beds at the Meadowfill Landfill near Bridgeport, Harrison County, W. Va. The drilling commenced on June 17, 2004, and was completed on July 1, 2004. The total depth of the borehole was 1,081 feet (ft) and contained 1,053.95 ft of Pennsylvanian coal-bearing strata, and 27.05 ft of Mississippian strata.

  8. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  9. Controlling Bottom Hole Flowing Pressure Within a Specific Range for Efficient Coalbed Methane Drainage

    Science.gov (United States)

    Zhao, Bin; Wang, Zhi-Yin; Hu, Ai-Mei; Zhai, Yu-Yang

    2013-11-01

    The stress state of coal surrounding a coalbed methane (CBM) production well is affected by the bottom hole flowing pressure (BHFP). The permeability of coal shows a marked change under compression. The BHFP must be restricted to a specific range to favor higher permeability in the surrounding coal and thus higher productivity of the well. A new method to determine this specific range is proposed in this paper. Coal has a rather low tensile strength, which induces tensile failure and rock disintegration. The deformation of coal samples under compression has four main stages: compaction, elastic deformation, strain hardening, and strain softening. Permeability is optimal when the coal samples are in the strain softening stage. The three critical values of BHFP, namely, p wmin, p wmid, and p wupper, which correspond to the occurrence of tensile failure, the start of strain softening, and the beginning of plastic deformation, respectively, are derived from theoretical principles. The permeability of coal is in an optimal state when the BHFP is between p wmin and p wmid. The BHFP should be confined to this specific range for the efficient drainage of CBM wells. This method was applied to field operations in three wells in the Hancheng CBM field in China. A comprehensive analysis of drainage data and of the BHFP indicates that the new method is effective and offers significant improvement to current practices.

  10. MethaneSat: Detecting Methane Emissions in the Barnett Shale Region

    Science.gov (United States)

    Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.

  11. Type and amount of organic amendments affect enhanced biogenic methane production from coal and microbial community structure

    Science.gov (United States)

    Davis, Katherine J.; Lu, Shipeng; Barnhart, Elliott P.; Parker, Albert E.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Slow rates of coal-to-methane conversion limit biogenic methane production from coalbeds. This study demonstrates that rates of coal-to-methane conversion can be increased by the addition of small amounts of organic amendments. Algae, cyanobacteria, yeast cells, and granulated yeast extract were tested at two concentrations (0.1 and 0.5 g/L), and similar increases in total methane produced and methane production rates were observed for all amendments at a given concentration. In 0.1 g/L amended systems, the amount of carbon converted to methane minus the amount produced in coal only systems exceeded the amount of carbon added in the form of amendment, suggesting enhanced coal-to-methane conversion through amendment addition. The amount of methane produced in the 0.5 g/L amended systems did not exceed the amount of carbon added. While the archaeal communities did not vary significantly, the bacterial populations appeared to be strongly influenced by the presence of coal when 0.1 g/L of amendment was added; at an amendment concentration of 0.5 g/L the bacterial community composition appeared to be affected most strongly by the amendment type. Overall, the results suggest that small amounts of amendment are not only sufficient but possibly advantageous if faster in situcoal-to-methane production is to be promoted.

  12. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, David L. [Univ. of Delaware, Lewes, DE (United States)

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  13. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  14. Papers of a Canadian Institute conference : Unconventional gas symposium : Tight gas, gas shales, coalbed methane, gas hydrates

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for participants to learn from gas industry leaders in both Canada and the United States, different strategies to cost-effectively develop unconventional gas resources. In particular, the representative from EnCana Corporation discussed the results of tight gas drilling in Northeastern British Columbia. The speaker for MGV Energy reported on the outcome of test drilling for coalbed methane (CBM) in Southern Alberta. The economic development of tight gas reservoirs in the United States Permian Basin was discussed by the speaker representing BP America Production Company. The role of unconventional gas in the North American natural gas supply and demand picture was dealt with by TransCanada PipeLines Limited and Canadian Gas Potential Committee. The trend for natural gas prices in North America was examined by Conoco Inc. The Geological Survey of Canada addressed the issue of gas hydrate potential in the Mackenzie Delta Mallik Field. In addition, one presentation by El Paso Production Company discussed the successful drilling for deep, tight gas and CBM in the United States. There were nine presentations at this symposium, of which three were indexed separately for inclusion in this database. refs., tabs., figs

  15. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    Science.gov (United States)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  16. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane.

    Science.gov (United States)

    Wang, David T; Gruen, Danielle S; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C; Holden, James F; Hristov, Alexander N; Pohlman, John W; Morrill, Penny L; Könneke, Martin; Delwiche, Kyle B; Reeves, Eoghan P; Sutcliffe, Chelsea N; Ritter, Daniel J; Seewald, Jeffrey S; McIntosh, Jennifer C; Hemond, Harold F; Kubo, Michael D; Cardace, Dawn; Hoehler, Tori M; Ono, Shuhei

    2015-04-24

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. Copyright © 2015, American Association for the Advancement of Science.

  17. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    Science.gov (United States)

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  18. Geological and geochemical characteristics of the secondary biogenic gas in coalbed gases, Huainan coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojun, Zhang; Zhenglin, Cao; Mingxin, Tao; Wanchun, Wang; Jinlong, Ma

    2010-09-15

    The research results show that the compositions of coalbed gases in Huainan coalfield have high content methane, low content heavy hydrocarbons and carbon dioxide, and special dry gas. The evolution coal is at the stage of generation of thermogenic gases, but the d13C1 values within the range of biogenic gas (d13C1 values from -56.7{per_thousand} to -67.9{per_thousand}). The d13C2 value of coalbed gases in Huainan coalfield shows not only the features of the thermogenic ethane, but also the mixed features of the biogenic methane and thermogenic ethane. In geological characteristics, Huainan coalfield has favorable conditions of generation of secondary biogenic gas.

  19. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Energy Technology Data Exchange (ETDEWEB)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-10-04

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (~3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  20. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Science.gov (United States)

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  1. The distribution of methane in groundwater in Alberta (Canada) and associated aqueous geochemistry conditions

    Science.gov (United States)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Millot, Romain; Kloppmann, Wolfram

    2016-04-01

    Development of unconventional energy resources such as shale gas and coalbed methane has generated some public concern with regard to the protection of groundwater and surface water resources from leakage of stray gas from the deep subsurface. In terms of environmental impact to and risk assessment of shallow groundwater resources, the ultimate challenge is to distinguish: (a) natural in-situ production of biogenic methane, (b) biogenic or thermogenic methane migration into shallow aquifers due to natural causes, and (c) thermogenic methane migration from deep sources due to human activities associated with the exploitation of conventional or unconventional oil and gas resources. We have conducted a NSERC-ANR co-funded baseline study investigating the occurrence of methane in shallow groundwater of Alberta (Canada), a province with a long record of conventional and unconventional hydrocarbon exploration. Our objective was to assess the occurrence and sources of methane in shallow groundwaters and to also characterize the hydrochemical environment in which the methane was formed or transformed through redox processes. Ultimately our aim was to determine whether methane was formed in-situ or whether it migrated from deeper formations into shallow aquifers. Combining hydrochemical and dissolved and free geochemical gas data from 372 groundwater samples obtained from 186 monitoring wells of the provincial groundwater observation well network (GOWN) in Alberta, it was found that methane is ubiquitous in groundwater in Alberta and is predominantly of biogenic origin. The highest concentrations of dissolved biogenic methane (> 0.01 mM or > 0.2 mg/L), characterized by δ13CCH4 values deep thermogenic gas that had migrated in significant amounts into shallow aquifers either naturally or via anthropogenically induced pathways. This study shows that the combined interpretation of aqueous geochemistry data in concert with the chemical and isotopic composition of dissolved and

  2. Methane production and methane consumption: a review of processes underlying wetland methane fluxes.

    NARCIS (Netherlands)

    Segers, R.

    1998-01-01

    Potential rates of both methane production and methane consumption vary over three orders of magnitude and their distribution is skew. These rates are weakly correlated with ecosystem type, incubation temperature, in situ aeration, latitude, depth and distance to oxic/anoxic interface. Anaerobic

  3. The future of water quality and the regulatory environment for the oil sands and coalbed methane development

    International Nuclear Information System (INIS)

    Kasperski, K.; Mikula, R.

    2004-01-01

    The use of consolidated tailings in recent years for the surface mined oil sands bitumen extraction process has resulted in major improvements in water consumption because materials are transported more efficiently in a slurry form. Water storage requirements will be reduced as the cost of handling tailings in the conventional manner becomes clearer. Future improvements may be in the form of mine face sand rejection, more advanced tailings treatment, or the use of clays for continuous reclamation. Sand filtering or stacking technologies can improve tailings properties and reduce the amount of water needed per unit of bitumen. It was noted that although the technologies will minimize land disturbance and fresh water consumption, water chemistries will be driven to the point where extraction recovery is impaired and water treatment will be required. The volumes and quality of water that is pumped out to produce coalbed methane (CBM) was also discussed with reference to the origin of water in coal beds, water resource depletion, water disposal, direct land applications, and surface evaporation. The Alberta Energy and Utilities Board and Alberta Environment are responsible for regulating CBM water issues in the province, including water disposal from CBM production. 41 refs., 6 tabs., 8 figs

  4. Seismic modelling of coal bed methane strata, Willow Creek, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.E.; Mayer, R.; Lawton, D.C.; Langenberg, W. [Consortium for Research in Elastic Wave Exploration Seismology, Calgary, AB (Canada)

    2001-07-01

    The purpose is to determine the feasibility of applying high- resolution reflection seismic surveying to coalbed methane (CBM) exploration and development. Numerical reflection seismic methods are examined for measuring the mapping continuity and coherence of coal zones. Numerical modelling of a coal zone in Upper Cretaceous sediments near Willow Creek, Alberta indicates that seismic data that is predominantly of 100 Hz is required to map the coal zone and lateral facies variations within the deposit. For resolution of individual coal seams, a central frequency >150 Hz would be needed. 26 refs., 17 figs., 3 tabs.

  5. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  6. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  7. 水文地质条件对煤层气开采的影响研究%Study on influence of different hydrogeology on coalbed methane exploitation

    Institute of Scientific and Technical Information of China (English)

    夏含峰

    2017-01-01

    为了研究水文地质条件对煤层气开采的影响,以柿庄南区块3号煤层为例,采用现场试井测试以及Visual Modflow模拟软件,研究了煤储层压力、压力梯度以及影响煤层气开采的水文地质因素,模拟分析了不同顶底板渗透率以及顶底板存在关键层裂隙对煤储层压降漏斗半径的影响.研究得出:研究区域储层压力为1.62~4.48 MPa,为欠压储层;当设定煤层渗透率大于顶底板渗透率情况下,随着顶板渗透率的增加,压降漏斗的扩展半径逐渐减小;煤层气在开采的过程中,开采初期压降漏斗还未扩展到煤层顶板关键层导水裂隙时,裂隙以井孔为中心对称扩展,但是当压降漏斗扩展到煤层顶板关键层导水裂隙时,漏斗扩展开始不对称扩展,有顶底板裂隙造裂隙一侧,漏斗扩展速度明显增大,研究为煤层气合理安全开采提供一定的技术支持.%In order to study the influence of different hydrogeology on coalbed methane mining,taking coal seam 3 in Shizhuang South Block as an example,the coal well pressure,pressure gradient and hydrogeological factors affecting the exploitation of coalbed methane,hydrogeological simulation analysis under the presence of the key top base layer of fractured different permeability and a top plate,the influence of the pressure drop funnel radius coal reservoir.Research results:reservoir pressure study area 1.62~4.48 MPa,undervoltage reservoir;set when the roof and floor of coal permeability greater than the permeability,the permeability of the top plate with the increase in pressure drop funnel extended radius gradually decreases;coalbed methane in the process of mining,mining when the initial drop has not been extended to the critical layer funnel water flowing fractured coal seam roof,fracture to the wellbore is symmetrical expansion,but when the pressure drop when the hopper extension key roof coal seam fractured water layer turned to the funnel extension

  8. Modeling of carbon sequestration in coal-beds: A variable saturated simulation

    International Nuclear Information System (INIS)

    Liu Guoxiang; Smirnov, Andrei V.

    2008-01-01

    Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics

  9. Doses from radioactive methane

    International Nuclear Information System (INIS)

    Phipps, A.W.; Kendall, G.M.; Fell, T.P.; Harrison, J.D.

    1990-01-01

    A possible radiation hazard arises from exposure to methane labelled with either a 3 H or a 14 C nuclide. This radioactive methane could be released from a variety of sources, e.g. land burial sites containing radioactive waste. Standard assumptions adopted for vapours would not apply to an inert alkane like methane. This paper discusses mechanisms by which radioactive methane would irradiate tissues and provides estimates of doses. Data on skin thickness and metabolism of methane are discussed with reference to these mechanisms. It is found that doses are dominated by dose from the small fraction of methane which is inhaled and metabolised. This component of dose has been calculated under rather conservative assumptions. (author)

  10. Stored CO2 and Methane Leakage Risk Assessment and Monitoring Tool Development: CO2 Capture Project Phase 2 (CCP2)

    Energy Technology Data Exchange (ETDEWEB)

    Dan Kieki

    2008-09-30

    The primary project goal is to develop and test tools for optimization of ECBM recovery and geologic storage of CO{sub 2} in coalbeds, in addition to tools for monitoring CO{sub 2} sequestration in coalbeds to support risk assessment. Three critical topics identified are (1) the integrity of coal bed methane geologic and engineered systems, (2) the optimization of the coal bed storage process, and (3) reliable monitoring and verification systems appropriate to the special conditions of CO{sub 2} storage and flow in coals.

  11. Martian methane plume models for defining Mars rover methane source search strategies

    Science.gov (United States)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  12. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that

  13. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Hoefman, S.; De Vos, P.; Boeckx, P.; Boon, N.

    2014-01-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (similar to 20 % (v/v)) and low (similar to 100 ppmv) methane

  14. Response of the Black Sea methane budget to massive short-term submarine inputs of methane

    DEFF Research Database (Denmark)

    Schmale, O.; Haeckel, M.; McGinnis, D. F.

    2011-01-01

    A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr(-1). The model predicts that the input of methane is largest at water depths between 600 and 700 m (7......% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e. g. through eruptions of deep......-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption...

  15. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  16. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Standard for baseline water-well testing for coalbed methane/natural gas in coal operations

    International Nuclear Information System (INIS)

    2006-04-01

    Interest in developing coalbed methane (CBM) is increasing with the decline of conventional natural gas reserves. In Alberta, where CBM is in the early stages of development, the drilling, production and operational rules for CBM are the same as those that apply to natural gas. The government of Alberta is presently examining the rules and regulations that apply to CBM to determine if they are appropriate for responsible development and balanced with environmental protection. CBM development has the potential to affect water aquifers and water supply. As such, a new standard has been developed by Alberta Environment in collaboration with the Alberta Energy and Utilities Board which requires that companies involved in the development of shallow CBM must offer to test rural Albertan's water wells prior to drilling. The companies will submit baseline groundwater data to both Alberta Environment and the landowner. The broader application of groundwater testing will also support Alberta Environment's objective of mapping all groundwater resources in the province. This new standard will help achieve continued protection of provincial groundwater resources and Albertan's groundwater supplies. It will also facilitate responsible CBM development and the government's Water for Life strategy. This document explained the protocols for testing, sampling and analyzing groundwater. The standard provides scientific information to support achievement of the outcomes as well as a regulatory basis for water well testing and baseline data collection prior to CBM development. If a landowner registers a complaint regarding a perceived change in well water quantity and quality after CBM development, then the developers must retest the water well to address the landowner's concerns. The tests evaluate water well capacity, water quality, routine potability and analysis for water quality parameters, including major ionic constituents, bacteriological analysis and presence or absence of gas

  18. Global Methane Initiative

    Science.gov (United States)

    The Global Methane Initiative promotes cost-effective, near-term methane recovery through partnerships between developed and developing countries, with participation from the private sector, development banks, and nongovernmental organizations.

  19. Research report for fiscal 1998 on the basic research on the promotion of joint implementation and so forth. Coalbed methane collection and utilization project in China; 1998 nendo Chugoku ni okeru tanko methane gas kaishu riyo project chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    China is surveyed for promotion of joint implementation, which is one of the flexibility measures in the Kyoto Protocol, the Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change. The project aims to collect methane for global warming suppression and to use it as town gas and for power generation as well. The survey covers the 2 coalfields of Yangquan and Panjiang. The Yangquan coalfield is the largest anthracite yielding base in China, with 6 mines in operation. Power generation centering on a 100MW plant is discussed, and generation fired by a mixture of debris out of the coal preparation facility and gas is compared with another fired by town gas, on the assumption that 130-million m{sup 3} is available under the current circumstances. In the case of the Panjiang coalfield, which is expected to develop into a large coal base in the southern part of China, power generation centering on a 50MW plant fired by a mixture of debris and gas is discussed, on the assumption that 63-million m{sup 3} is collectable from the existing 5 mines. Use of town gas is also studied. When Japan's coalbed methane collection technology is applied, the gas drainage rate will be elevated to 40-35% or higher. It is desired that the use of gas drainage will be further diffused for the prevention of disasters of coal mine gas explosion. It is hoped that the use of environmentally friendly energies will be enhanced. (NEDO)

  20. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    Science.gov (United States)

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  1. Water quality changes as a result of coalbed methane development in a Rocky mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W. [Tarleton State University, Stephenville, TX (USA)

    2007-12-15

    Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

  2. Uncertainty assessment of the breath methane concentration method to determine methane production of dairy cows

    NARCIS (Netherlands)

    Wu, Liansun; Groot Koerkamp, Peter W.G.; Ogink, Nico

    2018-01-01

    The breath methane concentration method uses the methane concentrations in the cow's breath during feed bin visits as a proxy for the methane production rate. The objective of this study was to assess the uncertainty of a breath methane concentration method in a feeder and its capability to measure

  3. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries.

    Science.gov (United States)

    Hwang, In Yeub; Lee, Seung Hwan; Choi, Yoo Seong; Park, Si Jae; Na, Jeong Geol; Chang, In Seop; Kim, Choongik; Kim, Hyun Cheol; Kim, Yong Hwan; Lee, Jin Won; Lee, Eun Yeol

    2014-12-28

    Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.

  4. Methane emissions by Chinese economy. Inventory and embodiment analysis

    International Nuclear Information System (INIS)

    Zhang, Bo; Chen, G.Q.

    2010-01-01

    Concrete inventories for methane emissions and associated embodied emissions in production, consumption, and international trade are presented in this paper for the mainland Chinese economy in 2007 with most recent availability of relevant environmental resources statistics and the input-output table. The total CH 4 emission by Chinese economy 2007 estimated as 39,592.70 Gg is equivalent to three quarters of China's CO 2 emission from fuel combustion by the global thermodynamic potentials, and even by the commonly referred lower IPCC global warming potentials is equivalent to one sixth of China's CO 2 emission from fuel combustion and greater than the CO 2 emissions from fuel combustion of many economically developed countries such as UK, Canada, and Germany. Agricultural activities and coal mining are the dominant direct emission sources, and the sector of Construction holds the top embodied emissions in both production and consumption. The emission embodied in gross capital formation is more than those in other components of final demand characterized by extensive investment and limited consumption. China is a net exporter of embodied CH 4 emissions with the emission embodied in exports of 14,021.80 Gg, in magnitude up to 35.42% of the total direct emission. China's exports of textile products, industrial raw materials, and primary machinery and equipment products have a significant impact on its net embodied emissions of international trade balance. Corresponding policy measures such as agricultural carbon-reduction strategies, coalbed methane recovery, export-oriented and low value added industry adjustment, and low carbon energy polices to methane emission mitigation are addressed. (author)

  5. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)

    International Nuclear Information System (INIS)

    Iversen, N.; Jorgensen, B.B.

    1985-01-01

    Concomitant radiotracer measurements were made of in situ rates of sulfate reduction and anaerobic methane oxidation in 2-3-m-long sediment cores. Methane accumulated to high concentrations (> 1 mM CH 4 ) only below the sulfate zone, at 1 m or deeper in the sediment. Sulfate reduction showed a broad maximum below the sediment surface and a smaller, narrow maximum at the sulfate-methane transition. Methane oxidation was low (0.002-0.1 nmol CH 4 cm -3 d -1 ) throughout the sulfate zone and showed a sharp maximum at the sulfate-methane transition, coinciding with the sulfate reduction maximum. Total anaerobic methane oxidation at two stations was 0.83 and 1.16 mmol CH 4 m -2 d -1 , of which 96% was confined to the sulfate-methane transition. All the methane that was calculated to diffuse up into the sulfate-methane transition was oxidized in this zone. The methane oxidation was equivalent to 10% of the electron donor requirement for the total measured sulfate reduction. A third station showed high sulfate concentrations at all depths sampled and the total methane oxidation was only 0.013 mmol m -2 d -1 . From direct measurements of rates, concentration gradients, and diffusion coefficients, simple calculations were made of sulfate and methane fluxes and of methane production rates

  6. Is methane a new therapeutic gas?

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2012-09-01

    Full Text Available Abstract Background Methane is an attractive fuel. Biologically, methanogens in the colon can use carbon dioxide and hydrogen to produce methane as a by-product. It was previously considered that methane is not utilized by humans. However, in a recent study, results demonstrated that methane could exert anti-inflammatory effects in a dog small intestinal ischemia-reperfusion model. Point of view Actually, the bioactivity of methane has been investigated in gastrointestinal diseases, but the exact mechanism underlying the anti-inflammatory effects is required to be further elucidated. Methane can cross the membrane and is easy to collect due to its abundance in natural gas. Although methane is flammable, saline rich in methane can be prepared for clinical use. These seem to be good news in application of methane as a therapeutic gas. Conclusion Several problems should be resolved before its wide application in clinical practice.

  7. Determination of soil-entrapped methane

    Energy Technology Data Exchange (ETDEWEB)

    Alberto, M.C.R.; Neue, H.U.; Lantin, R.S.; Aduna, J.B. [Soil and Water Sciences Division, Manila (Philippines)

    1996-12-31

    A sampling method was developed and modified to sample soil from paddy fields for entrapped methane determination. A 25-cm long plexiglass tube (4.4-cm i.d.) fitted with gas bag was used to sample soil and entrapped gases to a depth of 15-cm. The sampling tube was shaken vigorously to release entrapped gases. Headspace gas in sampling tube and gas bag was analyzed for methane. The procedure was verified by doing field sampling weekly at an irrigated ricefield in the IRRI Research Farm on a Maahas clay soil. The modified sampling method gave higher methane concentration because it eliminated gas losses during sampling. The method gave 98% {+-} 5 recovery of soil-entrapped methane. Results of field sampling showed that the early growth stage of the rice plant, entrapped methane increased irrespective of treatment. This suggests that entrapped methane increased irrespective of treatment. This suggests that entrapped methane was primarily derived from fermentation of soil organic matter at the early growth stage. At the latter stage, the rice plant seems to be the major carbon source for methane production. 7 refs., 4 figs., 4 tabs.

  8. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    Science.gov (United States)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  9. Reaction of methane with coal

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K.; Batts, B.D.; Wilson, M.A.; Gorbaty, M.L.; Maa, P.S.; Long, M.A.; He, S.J.X.; Attala, M.I. [Macquarie University, Macquarie, NSW (Australia). School of Chemistry

    1997-10-01

    A study of the reactivities of Australian coals and one American coal with methane or methane-hydrogen mixtures, in the range 350-400{degree}C and a range of pressures (6.0-8.3 MPa, cold) is reported. The effects of aluminophosphates (AIPO) or zeolite catalysts, with and without exchanged metals, on reactivity have also been examined. Yields of dichloromethane extractable material are increased by using a methane rather than a nitrogen atmosphere and different catalysts assist dissolution to various extends. It appears that surface exchanged catalysts are effective, but incorporating metals during AIPO lattice formation is detrimental. Aluminium phosphate catalysts are unstable to water produced during coal conversion, but are still able to increase extraction yields. For the American coal, under methane-hydrogen and a copper exchanged zeolite, 51.5% conversion was obtained, with a product selectivity close to that obtained under hydrogen alone, and with only 2% hydrogen consumption. The conversion under methane-hydrogen was also to that obtained under hydrogen alone, while a linear dependence of conversion on proportion of methane would predict a 43% conversion under methane-hydrogen. This illustrates a synergistic effect of the methane-hydrogen atmosphere for coal liquefaction using this catalyst systems. 31 refs., 5 figs., 7 tabs.

  10. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  11. A laboratory study of anaerobic oxidation of methane in the presence of methane hydrate

    Science.gov (United States)

    Solem, R.; Bartlett, D.; Kastner, M.; Valentine, D.

    2003-12-01

    In order to mimic and study the process of anaerobic methane oxidation in methane hydrate regions we developed four high-pressure anaerobic bioreactors, designed to incubate environmental sediment samples, and enrich for populations of microbes associated with anaerobic methane oxidation (AMO). We obtained sediment inocula from a bacterial mat at the southern Hydrate Ridge, Cascadia, having cell counts approaching 1010 cells/cc. Ultimately, our goal is to produce an enriched culture of these microbes for characterization of the biochemical processes and chemical fluxes involved, as well as the unique adaptations required for, AMO. Molecular phylogenetic information along with results from fluorescent in situ hybridization indicate that consortia of Archaea and Bacteria are present which are related to those previously described for marine sediment AMO environments. Using a medium of enriched seawater and sediment in a 3:1 ratio, the system was incubated at 4° C under 43 atm of methane pressure; the temperature and pressure were kept constant. We have followed the reactions for seven months, particularly the vigorous consumption rates of dissolved sulfate and alkalinity production, as well as increases in HS-, and decreases in Ca concentrations. We also monitored the dissolved inorganic C (DIC) δ 13C values. The data were reproduced, and indicated that the process is extremely sensitive to changes in methane pressure. The rates of decrease in sulfate and increase in alkalinity concentrations were complimentary and showed considerable linearity with time. When the pressure in the reactor was decreased below the methane hydrate stability field, following the methane hydrate dissociation, sulfate reduction abruptly decreased. When the pressure was restored all the reactions returned to their previous rates. Much of the methane oxidation activity in the reactor is believed to occur in association with the methane hydrate. Upon the completion of one of the experiments

  12. Methane clathrates in the solar system.

    Science.gov (United States)

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  13. Genomic selection for methane emission

    DEFF Research Database (Denmark)

    de Haas, Yvette; Pryce, Jennie E; Wall, Eileen

    2016-01-01

    Climate change is a growing area of international concern, and it is well established that the release of greenhouse gases (GHG) is a contributing factor. Of the various GHG produced by ruminants, enteric methane (CH4 ) is the most important contributor. One mitigation strategy is to reduce methane...... emission through genetic selection. Our first attempt used beef cattle and a GWAS to identify genes associated with several CH4 traits in Angus beef cattle. The Angus population consisted of 1020 animals with phenotypes on methane production (MeP), dry matter intake (DMI), and weight (WT). Additionally......, two new methane traits: residual genetic methane (RGM) and residual phenotypic methane (RPM) were calculated by adjusting CH4 for DMI and WT. Animals were genotyped using the 800k Illumina Bovine HD Array. Estimated heritabilities were 0.30, 0.19 and 0.15 for MeP, RGM and RPM respectively...

  14. Situation of methanization installations in Haute-Normandie. Phase 2: Assessment of the regional sector. Phase 3: Development perspectives for the methanization sector in Haute-Normandie. To understand methanization. Haute-Normandie Commission of expertise on methanization

    International Nuclear Information System (INIS)

    Convert, Mathilde

    2012-10-01

    A first report proposes an analysis of the situation of methanization installations in the Haute-Normandie region while recalling the national context. It briefly reports an analysis and assessment of waste flows, processed effluents, by-products and biomass displaying an energetic potential. It describes methanization installations by addressing the different steps of the methanization process, by presenting the different digestion indicators, by briefly evoking the issue of the return-to-soil of digestates, and by presenting various operational data. Financial aspects are then addressed (investments and subsidies, financial balance of farm-based and collective installations), and an overview of methanization projects in the region and development perspectives is proposed. The second report more precisely analyses development perspectives for the methanization sector in the region through a brief assessment of the methanizable organic substrate resource, a discussion of different associated challenges (energy, agronomic, environmental and societal), a discussion of development levers and brakes, and an analysis of competitions (related to the use of industrial by-products, between processing installations, and related to agricultural soils). Another document proposes an overview of various aspects of methanization: a tool for territorial development, regulatory framework, evolution of installations in the region, assets of methanization, and role of the regional commission of expertise on methanization

  15. Methanization in Burgundy-Franche-Comte - Figures and benchmarks. Agricultural methanization in Franche-Comte - Reflection guide for projects. Methanization development in Burgundy - Assessment 2014. Biogas sector in Burgundy. Methanization development in Burgundy - How to develop a project in Burgundy

    International Nuclear Information System (INIS)

    Aucordonnier, Bertrand; SIBUE, Lionel; Granger, Sylvie; Pervenchon, Frank; Forgue, Isabelle; Lirzin, Frank; Aucordonnier, Bertand; Abrahamse, Philippe; Dondaine, Regis; Rousseau, Christophe; Fevre, Jean-Michel; Carbonnier, Arnaud; Gontier, Thomas; Lemaire, Sylvie; Gallois, Vincent; Lachaize, M.

    2015-03-01

    A first document proposes graphs, figures and maps which illustrate various aspects of the situation and development of methanization in France and in the Burgundy-Franche-Comte region (number and location of installations, production evolution, biomass origins, biogas valorisation). A second document presents methanization (basic principles, process types, valorisation), describes agricultural methanization (substrate origin, use of final energy, use of digestates) and proposes elements of thought for methanization development regarding waste origin, project definition, various concerns (energy, environment, agriculture), digestate use and quantities, methane use, and installation sizing. A publication then proposes a synthetic overview of methanization development in Burgundy: number of supported projects, installations (evolution of their number, used materials, production), and support activities. The next publication proposes an assessment and an overview of the biogas sector in Burgundy: presentation and recommendations, assessment in terms of jobs, activities and expertise, professional education and training. The last document recalls some elements related to the methanization technique, outlines some important issues (materials, valorisation type for biogas and for digestate) to be addressed for an agricultural methanization project, and evokes benefits of methanization and some economic aspects. It also briefly describes how to start a project in the region

  16. Modeling of methane bubbles released from large sea-floor area: Condition required for methane emission to the atmosphere

    OpenAIRE

    Yamamoto, A.; Yamanaka, Y.; Tajika, E.

    2009-01-01

    Massive methane release from sea-floor sediments due to decomposition of methane hydrate, and thermal decomposition of organic matter by volcanic outgassing, is a potential contributor to global warming. However, the degree of global warming has not been estimated due to uncertainty over the proportion of methane flux from the sea-floor to reach the atmosphere. Massive methane release from a large sea-floor area would result in methane-saturated seawater, thus some methane would reach the atm...

  17. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    Science.gov (United States)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  18. Methane emissions from natural wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.L. [Georgia Univ., Athens, GA (United States); Burke, R.A. Jr. [Environmental Protection Agency, Athens, GA (United States). Environmental Research Lab.

    1993-09-01

    Analyses of air trapped in polar ice cores in conjunction with recent atmospheric measurements, indicate that the atmospheric methane concentration increased by about 250% during the past two or three hundred years (Rasmussen and Khalil, 1984). Because methane is a potent ``greenhouse`` gas, the increasing concentrations are expected to contribute to global warning (Dickinson and Cicerone, 1986). The timing of the methane increase suggests that it is related to the rapid growth of the human population and associated industrialization and agricultural development. The specific causes of the atmospheric methane concentration increase are not well known, but may relate to either increases in methane sources, decreases in the strengths of the sinks, or both.

  19. Cryptic Methane Emissions from Upland Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Megonigal, Patrick [Smithsonian Institution, Washington, DC (United States); Pitz, Scott [Johns Hopkins Univ., Baltimore, MD (United States); Smithsonian Institution, Washington, DC (United States)

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  20. Potential for CO2 sequestration and Enhanced Coalbed Methane production in the Netherlands

    International Nuclear Information System (INIS)

    Hamelinck, C.N.; Faaij, A.P.C.; Ruijg, G.J.; Jansen, D.; Pagnier, H.; Van Bergen, F.; Wolf, K.H.; Barzandji, O.; Bruining, H.; Schreurs, H.

    2001-03-01

    The technical and economic feasibility of ECBM (Enhanced Coal Bed Methane) in the Netherlands are explored. The potential and the economic performance are worked out for several ECBM recovery concepts and technological issues are outlined. The research includes the following main activities: Inventory of CO2 sources in the Netherlands and techno-economic analysis of CO2 removal and transport. Several scenarios for CO2 transport of different capacities and distances will be assessed. ECBM production locations are determined by analysis of coal reserves and their characteristics. Four potential areas are assessed: one in eastern Gelderland, two in Limburg and one in Zeeland. Description of ECBM theory and production technology resulting in a time dependent model for ECBM production and CO2 injection. Selection and description of various ECBM production/CO2 sequestration systems. Systems considered include direct delivery of methane to the natural gas grid, production of power (on various scales) and hydrogen. Information from the location assessment is combined with modelling results. Costs of CO2 sequestration are calculated for various scales and configurations. Evaluation of main uncertainties, environmental impacts and sensitivity analyses. Comparison of CBM production systems with reference systems and exploration of potential implementation schemes in the Dutch context. 72 refs

  1. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Romeo M.; Rice, Cynthia A.; Stricker, Gary D.; Warden, Augusta; Ellis, Margaret S. [U.S. Geological Survey, Box 25046, MS 939, Denver, Colorado 80225 (United States)

    2008-10-02

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C{sub 1}/(C{sub 2} + C{sub 3}) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane {delta}{sup 13}C and {delta}D, carbon dioxide {delta}{sup 13}C, and water {delta}D values indicate gas was generated primarily from microbial CO{sub 2} reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO{sub 2} reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane {delta}{sup 13}C is distributed along the basin margins where {delta}D is also depleted, indicating that both CO{sub 2}-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and

  2. Challenges related to methanization - Bibliographical synthesis by France Nature Environnement. Opinion of FNE on methanization: Which challenges and which desirable development? Methascope: assessment support tool for a methanization project

    International Nuclear Information System (INIS)

    Desaunay, Thomas; Mathien, Adeline; Dorioz, Camille; Saint-Aubin, Thibaud; Banaszuk, Agnes; Badereau, Benedicte de; Capiez, Nathalie; Zoffoli, Maxime

    2014-12-01

    A first document proposes a bibliographical synthesis on the various challenges related to methanization. It addresses the following issues: biogas and public policies, methanization as a natural process of transformation of organic matter, different installations for different territories, matters which can be used in methanization, biogas as a renewable and local energy which can be transformed according to needs, properties and uses of digestate, choice between composting and methanization, energetic crops, methanization and nitrates, regulation, potential risks and pollutions, economic profitability of projects. The second document states the FNE's opinion on methanization, its challenges and the associated desirable development. The third document is a guide which aims at providing knowledge on methanization, at easing dialogue between actors of a territory, and at elaborating a position and an opinion with respect to a specific methanization project on a territory

  3. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  4. Global diffusive fluxes of methane in marine sediments

    Science.gov (United States)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  5. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  6. A biomimetic methane-oxidising catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H [Warwick Univ., Coventry (United Kingdom). Dept. of Biological Sciences

    1997-12-31

    The diminishing resources of petroleum oil has meant that there has been considerable efforts in recent years to find a suitable substitute for gasoline as a transportation fuel. Methanol has been identified as a suitable substitute since it is a readily combustible fuel which can be manufactured from a number of different sources. Methane is commonly used as a starting material for the production of synthesis gas (CO + H{sub 2}) and hence methanol. It is well known that the cleavage of the C-H bond of methane is extremely difficult (bond energy is around 104 kcal/mol) and that fairly drastic conditions are required to convert methane into methanol. Temperatures around 1200 deg C and pressures of up to 100 atmospheres over metal catalysts in a series of reactions are required to effect this process. Efforts have been made to reduce the temperature and the number of steps by using lanthanide ruthenium oxide catalyst but such reactions are still thermodynamically endothermic. An energetically more efficient reaction would be the direct conversion of methane to methanol using oxygen as the oxidant: CH{sub 4} + 1/2O{sub 2} -> CH{sub 3}OH {Delta}H deg = - 30.7 kcal/mol. Such a direct oxidation route is manifest in the bacterially-mediated oxidation of methane by methanotrophic bacteria. These organisms effect the direct oxidation of methane to methanol by the enzyme methane monooxygenase (MMO) as part of the reaction sequences to oxidize methane to carbon dioxide. (14 refs.)

  7. A biomimetic methane-oxidising catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H. [Warwick Univ., Coventry (United Kingdom). Dept. of Biological Sciences

    1996-12-31

    The diminishing resources of petroleum oil has meant that there has been considerable efforts in recent years to find a suitable substitute for gasoline as a transportation fuel. Methanol has been identified as a suitable substitute since it is a readily combustible fuel which can be manufactured from a number of different sources. Methane is commonly used as a starting material for the production of synthesis gas (CO + H{sub 2}) and hence methanol. It is well known that the cleavage of the C-H bond of methane is extremely difficult (bond energy is around 104 kcal/mol) and that fairly drastic conditions are required to convert methane into methanol. Temperatures around 1200 deg C and pressures of up to 100 atmospheres over metal catalysts in a series of reactions are required to effect this process. Efforts have been made to reduce the temperature and the number of steps by using lanthanide ruthenium oxide catalyst but such reactions are still thermodynamically endothermic. An energetically more efficient reaction would be the direct conversion of methane to methanol using oxygen as the oxidant: CH{sub 4} + 1/2O{sub 2} -> CH{sub 3}OH {Delta}H deg = - 30.7 kcal/mol. Such a direct oxidation route is manifest in the bacterially-mediated oxidation of methane by methanotrophic bacteria. These organisms effect the direct oxidation of methane to methanol by the enzyme methane monooxygenase (MMO) as part of the reaction sequences to oxidize methane to carbon dioxide. (14 refs.)

  8. Methane in German hard coal mining

    International Nuclear Information System (INIS)

    Martens, P.N.; Den Drijver, J.

    1995-01-01

    Worldwide, hard coal mining is being carried out at ever increasing depth, and has, therefore, to cope with correspondingly increasing methane emissions are caused by coal mining. Beside carbon dioxide, chloro-fluoro-carbons (CFCs) and nitrogen oxides, methane is one of the most significant 'greenhouse' gases. It is mainly through the release of such trace gases that the greenhouse effect is brought about. Reducing methane emissions is therefore an important problem to be solved by the coal mining industry. This paper begins by highlighting some of the fundamental principles of methane in hard coal mining. The methane problem in German hard coal mining and the industry's efforts to reduce methane emissions are presented. The future development in German hard coal mining is illustrated by an example which shows how large methane volumes can be managed, while still maintaining high outputs at increasing depth. (author). 7 tabs., 10 figs., 20 refs

  9. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  10. Methane anomalies in seawaters of the Ragay Gulf, Philippines: methane cycling and contributions to atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    Heggie, D.T.; Evans, D.; Bishop, J.H.

    1999-01-01

    The vertical distribution of methane has been measured in the water column of a semi-enclosed basin, the Ragay Gulf, in the Philippines archipelago. The methane distribution is characterised by unusual mid-water and bottom-water plumes, between 80 and 100 m thick. The plumes are confined to water depths between about 100 and 220 m. where the temperature-depth (a proxy for seawater density) gradient is steepest. Plumes of high methane are 'trapped' within the main thermocline; these are local features, persisting over kilometre-scale distances. Geochemical and geological evidence suggests that the elevated methane concentrations are thermogenic in origin (although an oxidised biogenic origin cannot be ruled out for some of the methane anomalies), and have migrated from the sea floor into the overlying water. The mid and bottom-water methane maxima support fluxes of methane from depth into surface waters and, subsequently, from the oceans to the atmosphere. The average supersaturation of methane in the top 5 m of the sea, at nine locations, was 206±16.5%; range 178-237%. The average estimated sea-air flux was 101 nmole.cm -2 .y -1 and probably represents a minimum flux, because of low wind speeds of <10 knots. These fluxes, we suggest, are supported by seepage from the sea floor and represent naturally occurring fluxes of mostly fossil methane (in contrast to anthropogenic fossil methane), from the sea to the atmosphere. The estimated minimum fluxes of naturally occurring fossil methane are comparable to those biogenic fluxes measured elsewhere in the surface oceans, but are less than those naturally occurring methane inputs from sediments of the Barents Sea. Ragay Gulf fluxes are also less than anthropogenic fluxes measured in areas of petroleum exploration and development, such as the Texas and Louisiana, USA shelf areas

  11. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer

    Science.gov (United States)

    A biofilm anode acclimated with acetate, acetate+methane, and methane growth media for over three years produced a steady current density of 1.6-2.3 mA/m^2 in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for...

  12. Preliminary reservoir model of enhanced coalbed methane (ECBM) in a subbituminous coal seam, Huntly Coalfield, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Zarrouk, Sadiq J. [Department of Engineering Science, University of Auckland, Private Bag 92019, Auckland (New Zealand); Moore, Tim A. [Solid Energy New Zealand Ltd, PO Box. 1303, Christchurch (New Zealand)]|[Department of Geological Sciences, University of Canterbury, Christchurch (New Zealand)

    2009-01-07

    The Huntly coalfield has significant coal deposits that contain biogenically-sourced methane. The coals are subbituminous in rank and Eocene in age and have been previously characterised with relatively low to moderate measured gas (CH{sub 4}) contents (2-4 m{sup 3}/ton). The CO{sub 2} holding capacity is relatively high (18.0 m{sup 3}/ton) compared with that of CH{sub 4} (2.6 m{sup 3}/ton) and N{sub 2} (0.7 m{sup 3}/ton) at the same pressure (4 MPa; all as received basis). The geothermal gradient is also quite high at 55 C/km. A study has been conducted which simulates enhancement of methane recovery (ECBM) from these deposits using a new version of the TOUGH2 (version 2) reservoir simulator (ECBM-TOUGH2) that can handle non-isothermal, multi-phase flows of mixtures of water, CH{sub 4}, CO{sub 2} and N{sub 2}. The initial phase of the simulation is CH{sub 4} production for the first 5 years of the field history. The model indicates that methane production can be significantly improved (from less than 80% recovery to nearly 90%) through injection of CO{sub 2}. However, although an increase in the rate of CO{sub 2} injection increases the amount of CO{sub 2} sequestered, the methane recovery (because of earlier breakthrough with increasing injection rate) decreases. Modeling of pure N{sub 2} injection produced little enhanced CH{sub 4} production. The injection of a hypothetical flue gas mixture (CO{sub 2} and N{sub 2}) also produced little increase in CH{sub 4} production. This is related to the low adsorption capacity of the Huntly coal to N{sub 2} which results in almost instantaneous breakthrough into the production well. (author)

  13. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  14. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  15. Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions

    Directory of Open Access Journals (Sweden)

    Z. M. Loh

    2015-01-01

    Full Text Available This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E. The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS and the CSIRO Conformal-Cubic Atmospheric Model (CCAM. Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a~methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September–October–November, rather than winter, maximum for wetland emissions.

  16. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    Science.gov (United States)

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  17. Methanization of industrial liquid effluents

    International Nuclear Information System (INIS)

    Frederic, S.; Lugardon, A.

    2007-01-01

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  18. The 4-Corners methane hotspot: Mapping CH4 plumes at 60km through 1m resolution using space- and airborne spectrometers

    Science.gov (United States)

    Frankenberg, C.; Thorpe, A. K.; Hook, S. J.; Green, R. O.; Thompson, D. R.; Kort, E. A.; Hulley, G. C.; Vance, N.; Bue, B. D.; Aubrey, A. D.

    2015-12-01

    The SCIAMACHY instrument onboard the European research satellite ENVISAT detected a large methane hotspot in the 4-Corners area, specifically in New Mexico and Colorado. Total methane emissions in this region were estimated to be on the order of 0.5Tg/yr, presumably related to coal-bed methane exploration. Here, we report on NASA efforts to augment the TOPDOWN campaign intended to enable regional methane source inversions and identify source types in this area. The Jet Propulsion Laboratory was funded to fly two airborne imaging spectrometers, viz. AVIRIS-NG and HyTES. In April 2015, we used both instruments to continuously map about 2000km2 in the 4-Corners area at 1-5m spatial resolution, with special focus on the most enhanced areas as observed from space. During our weeklong campaign, we detected more than 50 isolated and strongly enhanced methane plumes, ranging from coal mine venting shafts and gas processing facilities through individual well-pads, pipeline leaks and outcrop. Results could be immediately shared with ground-based teams and TOPDOWN aircraft so that ground-validation and identification was feasible for a number of sources. We will provide a general overview of the JPL-led mapping campaign efforts and show individual results, derive source strength estimates and discuss how the results fit in with space borne estimates.

  19. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  1. Evaluation of methane emissions from Taiwanese paddies

    International Nuclear Information System (INIS)

    Liu, C.-W.; Wu, C.-Y.

    2004-01-01

    The main greenhouse gases are carbon dioxide, methane and nitrous oxide. Methane is the most important because the warming effect of methane is 21 times greater than that of carbon dioxide. Methane emitted from rice paddy fields is a major source of atmospheric methane. In this work, a methane emission model (MEM), which integrates climate change, plant growth and degradation of soil organic matter, was applied to estimate the emission of methane from rice paddy fields in Taiwan. The estimated results indicate that much methane is emitted during the effective tillering and booting stages in the first crop season and during the transplanting stage in the second crop season in a year. Sensitivity analysis reveals that the temperature is the most important parameter that governs the methane emission rate. The order of the strengths of the effects of the other parameters is soil pH, soil water depth (SWD) and soil organic matter content. The masses of methane emitted from rice paddy fields of Taiwan in the first and second crop seasons are 28,507 and 350,231 tons, respectively. The amount of methane emitted during the second crop season is 12.5 times higher than that emitted in the first crop season. With a 12% reduction in planted area during the second crop season, methane emission could be reduced by 21%. In addition, removal of rice straw left from the first crop season and increasing the depth of flooding to 25 cm are also strategies that could help reduce annual emission by up to 18%

  2. Reducing methane emissions from ruminant animals

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, G.W.; Okine, E.K.; McAllister, T.A.; Dong, Y.; Galbraith, J.; Dmytruk, O.I.N. [University of Alberta, Edmonton, AB (Canada). Dept. of Agriculture, Food and Nutrition Science

    1998-09-01

    In 1992 it was estimated that 30 x 10{sup 12}g more methane was emitted into the atmosphere than was removed, with animals being considered the largest single anthropogenic source. Ruminants produce 97% of the methane generated in enteric fermentation by animals. Estimates for methane emissions from animal wastes vary between 6 and 31% of that produced directly by the animal, with the most likely value being between 5 and 10% globally. Methane inhibitors can reduce methane emissions to zero in the short term but due to microbial adaptation the effects of these compounds are quickly neutralized and feed intake is often depressed. Methane emissions per unit of feed consumed from sheep and cattle fed hay diets appear to be quite similar but differences between other ruminants have been measured. The most practical way of influencing methane emissions per unit product is to increase productivity level since the proportion of feed energy required to just maintain the animal will be reduced, methane production falls with increased intake level, and the animal may go to market sooner. The most promising avenues for future research for reducing methanogenesis are the development of new products for reducing protozoal numbers in the rumen and the use of bacterocins or other compounds which specifically target methanogenic bacteria.

  3. Wave-induced release of methane : littoral zones as a source of methane in lakes

    OpenAIRE

    Hofmann, Hilmar; Federwisch, Luisa; Peeters, Frank

    2010-01-01

    This study investigates the role of surface waves and the associated disturbance of littoral sediments for the release and later distribution of dissolved methane in lakes. Surface wave field, wave-induced currents, acoustic backscatter strength, and the concentration and distribution of dissolved methane were measured simultaneously in Lake Constance, Germany. The data indicate that surface waves enhance the release of dissolved methane in the shallow littoral zone via burst-like releases of...

  4. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie; Sun, Miao; Caps, Valerie; Pelletier, Jeremie; Abou-Hamad, Edy

    2013-01-01

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin

  5. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  6. Gas-liquid equilibrium in mixtures of methane + m-xylene, and methane + m-cresol

    Energy Technology Data Exchange (ETDEWEB)

    Simnick, J J; Sebastian, H M; Lin, H M; Chao, K C

    1979-01-01

    Compositions of saturated equilibrium liquid and vapor phases as determined in a flow apparatus for methane + m-xylene mixtures at 370/sup 0/, 450/sup 0/, 520/sup 0/, and 600/sup 0/F (190/sup 0/, 230/sup 0/, 270/sup 0/, and 310/sup 0/C) and up to 200 atm, and for methane + m-cresol at 370/sup 0/, 520/sup 0/, 660/sup 0/, and 730/sup 0/F (190/sup 0/, 270/sup 0/, 350/sup 0/, and 390/sup 0/C) and up to 250 atm. Compared with published data on its solubility in benzene, methane appears to be more soluble in m-xylene at similar conditions but substantially less soluble in m-cresol. This difference indicates that the functional groups CH/sub 3/ and OH play different roles in determining the solubility of methane.

  7. The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep

    Science.gov (United States)

    Mills, Christopher T.; Slater, Gregory F.; Dias, Robert F.; Carr, Stephanie A.; Reddy, Christopher M.; Schmidt, Raleigh; Mandernack, Kevin W.

    2013-01-01

    Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. 14C-dead) carbon to soil microbial communities. Natural abundance 13C and 14C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ13C values of PLFAs common in type I and II methanotrophs were as negative as −67‰ and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ13C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ14C values of select PLFAs (−351 to −936‰) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35–91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.

  8. The Development and Test of a Sensor for Measurement of the Working Level of Gas-Liquid Two-Phase Flow in a Coalbed Methane Wellbore Annulus.

    Science.gov (United States)

    Wu, Chuan; Ding, Huafeng; Han, Lei

    2018-02-14

    Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor's error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term.

  9. The Development and Test of a Sensor for Measurement of the Working Level of Gas–Liquid Two-Phase Flow in a Coalbed Methane Wellbore Annulus

    Directory of Open Access Journals (Sweden)

    Chuan Wu

    2018-02-01

    Full Text Available Coalbed methane (CBM is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor’s error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term.

  10. The Development and Test of a Sensor for Measurement of the Working Level of Gas–Liquid Two-Phase Flow in a Coalbed Methane Wellbore Annulus

    Science.gov (United States)

    Wu, Chuan; Ding, Huafeng; Han, Lei

    2018-01-01

    Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor’s error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term. PMID:29443871

  11. Electrocatalytic oxidation of methane: investigations of new catalysts to be used in a solid polymer electrolyte methane fuel-cell; Oxydation electrocatalytique du methane: recherche de catalyseurs en vue d'une application a une pile au methane a electrolyte polymere solide

    Energy Technology Data Exchange (ETDEWEB)

    Berthelot, S

    1998-07-01

    This thesis evaluated the performances of many catalysts facing the methane oxidation which is a critical step in methane fuel cells development. In a first part the study of the methane electro-oxidation has been realized by classical electrochemical technics on many electrodes to determine the most active ones. In a second part the in situ reflection infra-red spectroscopy allowed to identify, during the methane oxidation, the adsorbed species on the electrode and the reaction products. These results also help the understanding of the part of the concerned materials mechanisms in the methane oxidation and then to optimize them for a whole oxidation of the methane in carbon dioxide. The final objective is the use of the methane in a PEMFC fuel cell type. A comparison with the methanol and C2 hydrocarbons behaviour, such as the ethane the ethylene and the acetylene, has been done to evaluate the performances. (A.L.B.)

  12. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  13. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  14. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  15. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  16. Methane emissions from MBT landfills

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  17. Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Joseph P. Smith

    2014-09-01

    Full Text Available In June 2007 sediment cores were collected in Alaminos Canyon, Gulf of Mexico across a series of seismic data profiles indicating rapid transitions between the presence of methane hydrates and vertical gas flux. Vertical profiles of dissolved sulfate, chloride, calcium, magnesium, and dissolved inorganic carbon (DIC concentrations in porewaters, headspace methane, and solid phase carbonate concentrations were measured at each core location to investigate the cycling of methane-derived carbon in shallow sediments overlying the hydrate bearing strata. When integrated with stable carbon isotope ratios of DIC, geochemical results suggest a significant fraction of the methane flux at this site is cycled into the inorganic carbon pool. The incorporation of methane-derived carbon into dissolved and solid inorganic carbon phases represents a significant sink in local carbon cycling and plays a role in regulating the flux of methane to the overlying water column at Alaminos Canyon. Targeted, high-resolution geochemical characterization of the biogeochemical cycling of methane-derived carbon in shallow sediments overlying hydrate bearing strata like those in Alaminos Canyon is critical to quantifying methane flux and estimating methane hydrate distributions in gas hydrate bearing marine sediments.

  18. Evidence for methane in Martian meteorites.

    Science.gov (United States)

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  19. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    Science.gov (United States)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  20. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.

    Science.gov (United States)

    Deutzmann, Joerg S; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-12-23

    Anaerobic methane oxidation coupled to denitrification, also known as "nitrate/nitrite-dependent anaerobic methane oxidation" (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 µmol CH4⋅m(-2)⋅d(-1)) and actual rates calculated from microsensor profiles (31-437 µmol CH4⋅m(-2)⋅d(-1)) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones.

  1. 46 CFR 154.703 - Methane (LNG).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  2. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    Science.gov (United States)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of plane gas propagation.

  3. Mechanistic insights into heterogeneous methane activation

    International Nuclear Information System (INIS)

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; Yoo, Jong Suk; Kulkarni, Ambarish

    2017-01-01

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.

  4. Supported Catalysts for CO2 Methanation: A Review

    Directory of Open Access Journals (Sweden)

    Patrizia Frontera

    2017-02-01

    Full Text Available CO2 methanation is a well-known reaction that is of interest as a capture and storage (CCS process and as a renewable energy storage system based on a power-to-gas conversion process by substitute or synthetic natural gas (SNG production. Integrating water electrolysis and CO2 methanation is a highly effective way to store energy produced by renewables sources. The conversion of electricity into methane takes place via two steps: hydrogen is produced by electrolysis and converted to methane by CO2 methanation. The effectiveness and efficiency of power-to-gas plants strongly depend on the CO2 methanation process. For this reason, research on CO2 methanation has intensified over the last 10 years. The rise of active, selective, and stable catalysts is the core of the CO2 methanation process. Novel, heterogeneous catalysts have been tested and tuned such that the CO2 methanation process increases their productivity. The present work aims to give a critical overview of CO2 methanation catalyst production and research carried out in the last 50 years. The fundamentals of reaction mechanism, catalyst deactivation, and catalyst promoters, as well as a discussion of current and future developments in CO2 methanation, are also included.

  5. Methane flux from boreal peatlands

    International Nuclear Information System (INIS)

    Crill, P.; Bartlett, K.; Roulet, N.

    1992-01-01

    The peatlands in the boreal zone (roughly 45 deg - 60 degN) store a significant reservoir of carbon, much of which is potentially available for exchange with the atmosphere. The anaerobic conditions that cause these soils to accumulate carbon also makes wet, boreal peatlands significant sources of methane to the global troposphere. It is estimated that boreal wetlands contribute approximately 19.5 Tg methane per year. The data available on the magnitude of boreal methane emissions have rapidly accumulated in the past twenty years. This paper offers a short review of the flux measured (with range roughly 1 - 2000 mg methane/m2d), considers environmental controls of the flux and briefly discusses how climate change might affect future fluxes

  6. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  7. Evaluation of geological conditions for coalbed methane occurrence based on 3D seismic information: a case study in Fowa region, Xinjing coal mine, China

    Science.gov (United States)

    Li, Juanjuan; Li, Fanjia; Hu, Mingshun; Zhang, Wei; Pan, Dongming

    2017-04-01

    The research on geological conditions of coalbed methane (CBM) occurrence is of great significance for predicting the high abundance CBM rich region and gas outburst risk area pre-warning. The No. 3 coal seam, in Yangquan coalfield of Qinshui basin, is the research target studied by 3D seismic exploration technique. The geological factors which affect CBM occurrence are interpreted based on the 3D seismic information. First, the geological structure (faults, folds, and collapse columns) is found out by the 3D seismic structural interpretation and the information of buried depth and thickness of the coal seam is calculated by the seismic horizons. Second, 3D elastic impedance (EI) and natural gamma attribute volumes are generated by prestack EI inversion and multi-attribute probabilistic neural network (PNN) inversion techniques which reflect the information of coal structure types and lithology of the roof and floor. Then, the information of metamorphic degree of seam and hydrogeology conditions can be obtained by the geological data. Consequently, geological conditions of CBM occurrence in No. 3 coal seam are evaluated which will provide scientific reference for high abundance CBM rich region prediction and gas outburst risk area pre-warning.

  8. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of

  9. 3D Geological Modeling of CoalBed Methane (CBM) Resources in the Taldykuduk Block Karaganda Coal Basin, Kazakhstan

    Science.gov (United States)

    Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina

    2015-04-01

    Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has production in a double porosity model considering two domains: the matrix (m) and the fracture (f) for which the initial and boundary conditions are different. The resulting comprehensive 3D models had helped in better understanding the tectonic structures of the region, especially the relationships between the fault systems.

  10. Small Molecule Catalysts for Harvesting Methane Gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ceron-Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-06

    As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseous methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.

  11. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition

    KAUST Repository

    Reddy Enakonda, Linga; Zhou, Lu; Saih, Youssef; Ould-Chikh, Samy; Lopatin, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-01-01

    Activation of Fe2O3-Al2O3 with CH4 (instead of H2) is a meaningful method to achieve catalytic methane decomposition (CMD). This reaction of CMD is more economic and simple against commercial methane steam reforming (MSR) as it produces COx-free H2

  12. Constraining the relationships between anaerobic oxidation of methane and sulfate reduction under in situ methane concentrations

    Science.gov (United States)

    Zhuang, G.; Wegener, G.; Joye, S. B.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important microbial metabolism in the global carbon cycle. In marine methane seeps sediment, this process is mediated by syntrophic consortium that includes anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Stoichiometrically in AOM methane oxidation should be coupled to sulfate reduction (SR) in a 1:1 ratio. However, weak coupling of AOM and SR in seep sediments was frequently observed from the ex situ rate measurements, and the metabolic dynamics of AOM and SR under in situ conditions remain poorly understood. Here we investigated the metabolic activity of AOM and SR with radiotracers by restoring in situ methane concentrations under pressure to constrain the in situ relationships between AOM and SR in the cold seep sediments of Gulf of Mexico as well as the sediment-free AOM enrichments cultivated from cold seep of Italian Island Elba or hydrothermal vent of Guaymas Basin5. Surprisingly, we found that AOM rates strongly exceeded those of SR when high pressures and methane concentrations were applied at seep sites of GC600 and GC767 in Gulf of Mexico. With the addition of molybdate, SR was inhibited but AOM was not affected, suggesting the potential coupling of AOM with other terminal processes. Amendments of nitrate, iron, manganese and AQDS to the SR-inhibited slurries did not stimulate or inhibit the AOM activity, indicating either those electron acceptors were not limiting for AOM in the sediments or AOM was coupled to other process (e.g., organic matter). In the ANME enrichments, higher AOM rates were also observed with the addition of high concentrations of methane (10mM and 50 mM). The tracer transfer of CO2 to methane, i.e., the back reaction of AOM, increased with increasing methane concentrations and accounted for 1%-5% of the AOM rates. AOM rates at 10 mM and 50 mM methane concentration were much higher than the SR rates, suggesting those two processes were not tightly coupled

  13. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry.

    Science.gov (United States)

    Li, Panpan; Yu, Feng; Altaf, Naveed; Zhu, Mingyuan; Li, Jiangbing; Dai, Bin; Wang, Qiang

    2018-01-31

    CH₄ as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH₄ catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO₂ methanation reaction is one of the potent technologies for CO₂ valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs) precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research.

  14. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques...... in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were...

  15. Enteric Methane Emission from Pigs

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Theil, Peter Kappel; Knudsen, Knud Erik Bach

    2011-01-01

    per kg meat produced is increased (Fernández et al. 1983; Lekule et al. 1990). The present chapter will summarise our current knowledge concerning dietary and enteric fermentation that may influence the methane (CH4) emission in pigs. Enteric fermentation is the digestive process by which.......3 % of the worlds pig population. The main number of pigs is in Asia (59.6 %) where the main pig population stay in China (47.8 % of the worlds pig population). The objective of the chapter is therefore: To obtain a general overview of the pigs’ contribution to methane emission. Where is the pigs’ enteric gas...... produced and how is it measured. The variation in methane emission and factors affecting the emission. Possibility for reducing the enteric methane emission and the consequences....

  16. Catalytic aromatization of methane.

    Science.gov (United States)

    Spivey, James J; Hutchings, Graham

    2014-02-07

    Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.

  17. Direct Aromaization of Methane

    Energy Technology Data Exchange (ETDEWEB)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  18. Agricultural methanization

    International Nuclear Information System (INIS)

    2011-01-01

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  19. Low-Altitude Aerial Methane Concentration Mapping

    Directory of Open Access Journals (Sweden)

    Bara J. Emran

    2017-08-01

    Full Text Available Detection of leaks of fugitive greenhouse gases (GHGs from landfills and natural gas infrastructure is critical for not only their safe operation but also for protecting the environment. Current inspection practices involve moving a methane detector within the target area by a person or vehicle. This procedure is dangerous, time consuming, labor intensive and above all unavailable when access to the desired area is limited. Remote sensing by an unmanned aerial vehicle (UAV equipped with a methane detector is a cost-effective and fast method for methane detection and monitoring, especially for vast and remote areas. This paper describes the integration of an off-the-shelf laser-based methane detector into a multi-rotor UAV and demonstrates its efficacy in generating an aerial methane concentration map of a landfill. The UAV flies a preset flight path measuring methane concentrations in a vertical air column between the UAV and the ground surface. Measurements were taken at 10 Hz giving a typical distance between measurements of 0.2 m when flying at 2 m/s. The UAV was set to fly at 25 to 30 m above the ground. We conclude that besides its utility in landfill monitoring, the proposed method is ready for other environmental applications as well as the inspection of natural gas infrastructure that can release methane with much higher concentrations.

  20. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M; Kataja, K [VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  1. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M.; Kataja, K. [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  2. Methane hydroxylation: a biomimetic approach

    International Nuclear Information System (INIS)

    Shilov, Aleksandr E; Shteinman, Al'bert A

    2012-01-01

    The review addresses direct methane oxidation — an important fundamental problem, which has attracted much attention of researchers in recent years. Analysis of the available results on biomimetic and bio-inspired methane oxygenation has demonstrated that assimilating of the experience of Nature on oxidation of methane and other alkanes significantly enriches the arsenal of chemistry and can radically change the character of the entire chemical production, as well as enables the solution of many material, energetic and environmental problems. The bibliography includes 310 references.

  3. Raman studies of methane-ethane hydrate metastability.

    Science.gov (United States)

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  4. Top-down constraints on methane and non-methane hydrocarbon emissions in the US Four Corners

    Science.gov (United States)

    Petron, G.; Miller, B. R.; Vaughn, B. H.; Kofler, J.; Mielke-Maday, I.; Sherwood, O.; Schwietzke, S.; Conley, S.; Sweeney, C.; Dlugokencky, E. J.; White, A. B.; Tans, P. P.; Schnell, R. C.

    2017-12-01

    A NASA and NOAA supported field campaign took place in the US Four Corners in April 2015 to further investigate a regional "methane hotspot" detected from space. The Four Corners region is home to the fossil fuel rich San Juan Basin, which extends between SE Colorado and NE New Mexico. The area has been extracting coal, oil and natural gas for decades. Degassing from the Fruitland coal outcrop on the Colorado side has also been reported. Instrumented aircraft, vans and ground based wind profilers were deployed for the campaign with the goal to quantify and attribute methane and non-methane hydrocarbon emissions in the region. A new comprehensive analysis of the campaign data sets will be presented and top-down emission estimates for methane and ozone precursors will be compared with available bottom-up estimates.

  5. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Greg [Consortium for Ocean Leadership, Washington, DC (United States)

    2014-02-01

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Project Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.

  6. Methane production from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J Q; Liao, P H; Lo, K V

    1988-01-01

    Cheese whey was treated in a 17.5-litre laboratory-scale up-flow anaerobic sludge blanket reactor operated over a range of hydraulic retention times and organic loading rates. The reactor performance was determined in terms of methane production, volatile fatty acids conversion and chemical oxygen demand (COD) reduction. At a constant influent strength, the methane production rate decreased with decreasing hydraulic retention time. At constant hydraulic retention time the methane production rate increased as the influent strength was increased up to a concentration of 28.8 g COD litre/sup -1/. The methane production rate was similar for two influent concentrations studied at hydraulic retention times longer than 10 days. The effect of short hydraulic retention times on methane production rate was more pronounced for the higher influent concentration than for the lower influent concentration. The highest methane production rate of 9.57 litres CH/sub 4/ litre/sup -1/ feed day/sup -1/ was obtained at a loading rate of 5.96 g/sup -1/ COD litre/sup -1/ and an influent concentration of 28.8 g COD litre/sup -1/. A high treatment efficiency in terms of chemical oxygen demand reduction was obtained. In general, over 98% removal of chemical oxygen demand was achieved. The results indicated that anaerobic digestion of cheese whey using an upflow sludge blanket reactor could reduce pollution strength and produce energy for a cheese plant.

  7. The California Baseline Methane Survey

    Science.gov (United States)

    Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.

    2017-12-01

    The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.

  8. Crenothrix are major methane consumers in stratified lakes.

    Science.gov (United States)

    Oswald, Kirsten; Graf, Jon S; Littmann, Sten; Tienken, Daniela; Brand, Andreas; Wehrli, Bernhard; Albertsen, Mads; Daims, Holger; Wagner, Michael; Kuypers, Marcel Mm; Schubert, Carsten J; Milucka, Jana

    2017-09-01

    Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N 2 O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.

  9. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.

    Science.gov (United States)

    Reumer, Max; Harnisz, Monika; Lee, Hyo Jung; Reim, Andreas; Grunert, Oliver; Putkinen, Anuliina; Fritze, Hannu; Bodelier, Paul L E; Ho, Adrian

    2018-02-01

    Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA -based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities. IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment

  10. Differentiation of pre-existing trapped methane from thermogenic methane in an igneous-intruded coal by hydrous pyrolysis

    Science.gov (United States)

    Dias, Robert F.; Lewan, Michael D.; Birdwell, Justin E.; Kotarba, Maciej J.

    2014-01-01

    So as to better understand how the gas generation potential of coal changes with increasing rank, same-seam samples of bituminous coal from the Illinois Basin that were naturally matured to varying degrees by the intrusion of an igneous dike were subjected to hydrous pyrolysis (HP) conditions of 360 °C for 72 h. The accumulated methane in the reactor headspace was analyzed for δ13C and δ2H, and mol percent composition. Maximum methane production (9.7 mg/g TOC) occurred in the most immature samples (0.5 %Ro), waning to minimal methane values at 2.44 %Ro (0.67 mg/g TOC), and rebounding to 3.6 mg/g TOC methane in the most mature sample (6.76 %Ro). Methane from coal with the highest initial thermal maturity (6.76 %Ro) shows no isotopic dependence on the reactor water and has a microbial δ13C value of −61‰. However, methane from coal of minimal initial thermal maturity (0.5 %Ro) shows hydrogen isotopic dependence on the reaction water and has a δ13C value of −37‰. The gas released from coals under hydrous pyrolysis conditions represents a quantifiable mixture of ancient (270 Ma) methane (likely microbial) that was generated in situ and trapped within the rock during the rapid heating by the dike, and modern (laboratory) thermogenic methane that was generated from the indigenous organic matter due to thermal maturation induced by hydrous pyrolysis conditions. These findings provide an analytical framework for better assessment of natural gas sources and for differentiating generated gas from pre-existing trapped gas in coals of various ranks.

  11. Status and potential of bio-methane fuel

    International Nuclear Information System (INIS)

    2008-01-01

    This document first indicates and describes the various bio-methane production processes which can be implemented on a short term (use of organic wastes or effluents), on a medium term (from energetic crops) and on a longer term (gasification). It discusses and assesses the potential production of bio-methane fuel from different sources and processes. It describes the steps of the production of bio-methane fuel from biogas, with notably biogas refinement to produce bio-methane through three processes (de-carbonation, desulfurization, dehydration). Cost productions are assessed. Expected technology advances are evoked. Finally, the authors outline the contribution of bio-methane in the limitation of greenhouse gas emissions in the transport sector

  12. SAES St 909 pilot scale methane cracking tests

    International Nuclear Information System (INIS)

    Klein, J. E.; Sessions, H. T.

    2008-01-01

    Pilot scale (0.5 kg) SAES St 909 methane cracking tests were conducted for potential tritium process applications. Up to 1400 hours tests were done at 700 deg.C, 202.7 kPa (1520 torr) with a 0.03 sLPM feed of methane plus impurities, in a 20 vol% hydrogen, balance helium, stream. Carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered, but equating nitrogen to an equivalent amount of methane was nitrogen feed composition dependent. A decreased hydrogen feed increased methane getter rates while a 30 deg.C drop in one furnace zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate. (authors)

  13. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  14. Depositional sequence stratigraphy and architecture of the cretaceous ferron sandstone: Implications for coal and coalbed methane resources - A field excursion

    Science.gov (United States)

    Garrison, J.R.; Van Den, Bergh; Barker, C.E.; Tabet, D.E.

    1997-01-01

    This Field Excursion will visit outcrops of the fluvial-deltaic Upper Cretaceous (Turonian) Ferron Sandstone Member of the Mancos Shale, known as the Last Chance delta or Upper Ferron Sandstone. This field guide and the field stops will outline the architecture and depositional sequence stratigraphy of the Upper Ferron Sandstone clastic wedge and explore the stratigraphic positions and compositions of major coal zones. The implications of the architecture and stratigraphy of the Ferron fluvial-deltaic complex for coal and coalbed methane resources will be discussed. Early works suggested that the southwesterly derived deltaic deposits of the the upper Ferron Sandstone clastic wedge were a Type-2 third-order depositional sequence, informally called the Ferron Sequence. These works suggested that the Ferron Sequence is separated by a type-2 sequence boundary from the underlying 3rd-order Hyatti Sequence, which has its sediment source from the northwest. Within the 3rd-order depositional sequence, the deltaic events of the Ferron clastic wedge, recognized as parasequence sets, appear to be stacked into progradational, aggradational, and retrogradational patterns reflecting a generally decreasing sediment supply during an overall slow sea-level rise. The architecture of both near-marine facies and non-marine fluvial facies exhibit well defined trends in response to this decrease in available sediment. Recent studies have concluded that, unless coincident with a depositional sequence boundary, regionally extensive coal zones occur at the tops of the parasequence sets within the Ferron clastic wedge. These coal zones consist of coal seams and their laterally equivalent fissile carbonaceous shales, mudstones, and siltstones, paleosols, and flood plain mudstones. Although the compositions of coal zones vary along depositional dip, the presence of these laterally extensive stratigraphic horizons, above parasequence sets, provides a means of correlating and defining the tops

  15. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  16. Methane emission reduction: an application of FUND

    NARCIS (Netherlands)

    Tol, R.S.J.; Heintz, R.J.; Lammers, P.E.M.

    2003-01-01

    Methane is, after carbon dioxide, the most important anthropogenic greenhouse gas. Governments plan to abate methane emissions. A crude set of estimates of reduction costs is included in FUND, an integrated assessment model of climate change. In a cost-benefit analysis, methane emission reduction is

  17. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  18. Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters

    DEFF Research Database (Denmark)

    Tang, Kam W.; McGinnis, Daniel F.; Frindte, Katharina

    2014-01-01

    The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane...... peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope...... analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water...

  19. The determination of methane resources from liquidated coal mines

    Science.gov (United States)

    Trenczek, Stanisław

    2017-11-01

    The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.

  20. 30 CFR 75.323 - Actions for excessive methane.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...

  1. methanization of organic matters. Guide for project developers

    International Nuclear Information System (INIS)

    2015-02-01

    This document aims at informing potential project developers (farmers, local communities, industrials) all along the creation of a methanization unit. It precisely indicates administrative procedures required to complete a project. It first presents some generalities about methanization (matters and their performance, methanization cycle, biogas), describes methanization processes (dry and humid), and valorisation processes (co-generation, hot water production, gas injection into the public network), presents digestate characteristics, and discusses benefits and drawbacks of methanization. The different steps of a project management are then analysed. Additional procedures are indicated, and risks and traps of methanization projects are highlighted. The document comes along with a large number of appendices which can be documents released by professional or public bodies

  2. Raptor nest-site use in relation to the proximity of coalbed methane development

    Science.gov (United States)

    Carlile, J.D.; Sanders, Lindsey E.; Chalfoun, Anna D.; Gerow, K.G.

    2018-01-01

    Raptor nest–site use in relation to the proximity of coalbed–methane development. Energy development such as coalbed–methane (CBM) extraction is a major land use with largely unknown consequences for many animal species. Some raptor species may be especially vulnerable to habitat changes due to energy development given their ecological requirements and population trajectories. Using 12,977 observations of 3,074 nests of 12 raptor species across nine years (2003–2011) in the Powder River Basin, Wyoming, USA, we evaluated relationships between raptor nest–site use and CBM development. Our objectives were to determine temporal trends in nest–use rates, and whether nest–site use was related to the proximity of CBM development. Across the study area, nest–use rates varied across species and years in a non–linear fashion. We developed a novel randomization test to assess differences in use between nests at developed and undeveloped sites, while controlling for annual variation in nest–site use. Red–tailed hawks (Buteo jamaicensis), burrowing owls (Athene cunicularia), and long–eared owls (Asio otus) used nests in undeveloped areas more than nests in developed areas (i.e. nests near CBM development). Differences between development groups were equivocal for the remaining nine species; however, we caution that we likely had lower statistical power to detect differences for rarer species. Our findings suggest potential avoidance of nesting in areas near CBM development by some species and reveal that CBM effects may be fairly consistent across distances between 400–2,415 m from wells. Future work should consider habitat preferences and fitness outcomes, and control for other key factors such as local prey availability, raptor densities, and weather.

  3. International Methane Partnership Fighting Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Due to the growth of international attention on the problem of climate change combined with the attractiveness of methane mitigation technologies, the capture and use of methane in agriculture, coal mines, landfills, and the oil and gas sector has increasingly become popular over the past few years. Highlighting this, several countries hosted the international 'Methane to Market' Partnership Conference and Exposition in October 2007 in Beijing, China.

  4. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  5. Methane yield enhancement via electroporation of organic waste.

    Science.gov (United States)

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar

    2017-08-01

    An experimental study with pulsed electric field (PEF) pre-treatment was conducted to investigate its effect on methane production. PEF pre-treatment converts organic solids into soluble and colloidal forms, increasing bioavailability for anaerobic microorganisms participating in methane generation process. The substrates tested were landfill leachate and fruit/vegetable. Three treatment intensities of 15, 30, and 50kWh/m 3 were applied to investigate the influence of pre-treatment on methane production via biochemical methane potential test. Threshold treatment intensity was found to be around 30kWh/m 3 for landfill leachate beyond which the methane production enhanced linearly with increase in intensity. Methane production of the landfill leachate significantly increased up to 44% with the highest intensity. The result of pulsed electric field pre-treatment on fruit/vegetable showed that 15kWh/m 3 was the intensity by which the highest amount of methane (up to 7%) was achieved. Beyond this intensity, the methane production decreased. Chemical oxygen demand removals were increased up to 100% for landfill leachate and 17% for fruit/vegetable, compared to the untreated slurries. Results indicate that the treatment intensity has a significant effect on the methane production and biosolid removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Investigations of Methane Production in Hypersaline Environments

    Science.gov (United States)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  7. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  8. Methane as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Karlsdottir, S.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Methane is a key component in the atmosphere where its concentration has increased rapidly since pre-industrial time. About 2/3 of it is caused by human activities. Changes in methane will affect the concentrations of other gases, and a model is a very important tool to study sensitivity due to changes in concentration of gases. The author used a three-dimensional global chemistry transport model to study the effect of changes in methane concentration on other trace gases. The model includes natural and anthropogenic emissions of NOx, CO, CH{sub 4} and non-methane hydrocarbons. Wet and dry deposition are also included. The chemical scheme in the model includes 49 compounds, 101 reactions, and 16 photolytic reactions. The trace gas concentrations are calculated every 30 min, using a quasi steady state approximation. Model calculations of three cases are reported and compared. Enhanced methane concentration will have strongest effect in remote regions. In polluted areas local chemistry will have remarked effect. The feedback was always positive. Average atmospheric lifetime calculated in the model was 7.6 years, which agrees with recent estimates based on observations. 8 refs.

  9. Methane emissions from different coastal wetlands in New England, US

    Science.gov (United States)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  10. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  11. Abiotic production of methane in terrestrial planets.

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  12. Methane of the coal

    International Nuclear Information System (INIS)

    Vasquez, H.

    1997-01-01

    In the transformation process of the vegetable material to the coal (Carbonization), the products that are generated include CH 4, CO2, N2 and H2. The methane is generated by two mechanisms: below 50 centigrade degree, as product of microbial decomposition, the methanogenic is generated; and above 50 centigrade degree, due to the effects of the buried and increase of the range of the coal, the thermogenic methane is detachment, as a result of the catagenic. The generated methane is stored in the internal surfaces of the coal, macro and micro pores and in the natural fractures. The presence of accumulations of gas of the coal has been known in the entire world by many years, but only as something undesirable for its danger in the mining exploitation of the coal

  13. Demonstration of an ethane spectrometer for methane source identification.

    Science.gov (United States)

    Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E

    2014-07-15

    Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (6%), pipeline grade natural gas (30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.

  14. The quality of microorganism on coal bed methane processing with various livestock waste in laboratory scale

    Science.gov (United States)

    Marlina, E. T.; Kurnani, Tb. B. A.; Hidayati, Y. A.; Rahmah, K. N.; Joni, I. M.; Harlia, E.

    2018-02-01

    Coal-bed Methane (CBM) is a form of natural gas extracted from coal and has been developed as future energy source. Organic materials are required as nutrition source for methanogenic microbes. The addition of cattle waste in the formation of CBM on coal media can be utilized as organic materials as well as methanogenic microbe sources. This research covered study of total amount of anaerobic microbes, methane production, protozoa, fungi and endoparasites. Descriptive approach is conducted for this study. Media used for culturing methanogens is Nutrient Agar in powder form and Lactose Broth with the addition of rumen fluid. The technique for counting microbes is through Total Plate Count in anaerobic Hungate tube, methane was analyzed using Gas Chromatography (GC), while identification of protozoa, fungi and endoparasites based on its morphology is conducted before and after anaerobic fermentation process. Incubation period is 30 days. The results showed that growth of anaerobic microbes from dairy cattle waste i.e. biogas sludge is 3.57×103 CFU/ml and fresh feces is 3.38 × 104 CFU/ml, growth of anaerobic microbes from beef cattle waste i.e. biogas sludge is 7.0 × 105 CFU/ml; fresh feces is 7.5 x 104 CFU/ml; and rumen contents of about 1.33 × 108 CFU/ml. Methane production in dairy cattle waste in sludge and fresh feces amounted to 10.57% and 2.39%, respectively. Methane production in beef cattle waste in sludge accounted for 5.95%; in fresh feces it is about 0.41%; and rumen contents of 4.92%. Decreasing of protozoa during fermentation to 84.27%, dominated by Eimeria sp. Decreasing of fungi to 16%, dominated by A. Niger, A. Flavus, A. Fumigatus and Monilia sitophila. Decreasing of endoparasitic worms to 15%, dominated by Strongylus sp. and Fasciola sp. The growth of anaerobic microbes and methane production indicated that dairy cattle waste and beef cattle waste have potential as source of methanogenic microbes, meanwhile the decreasing amount of protozoa

  15. Methane emission by bubbling from Gatun Lake, Panama

    Science.gov (United States)

    Keller, Michael; Stallard, Robert F.

    1994-01-01

    We studied methane emission by bubbling from Gatun Lake, Panama, at water depths of less than 1 m to about 10 m. Gas bubbles were collected in floating traps deployed during 12- to 60-hour observation periods. Comparison of floating traps and floating chambers showed that about 98% of methane emission occurred by bubbling and only 2% occurred by diffusion. Average methane concentration of bubbles at our sites varied from 67% to 77%. Methane emission by bubbling occurred episodically, with greatest rates primarily between the hours of 0800 and 1400 LT. Events appear to be triggered by wind. The flux of methane associated with bubbling was strongly anticorrelated with water depth. Seasonal changes in water depth caused seasonal variation of methane emission. Bubble methane fluxes through the lake surface into the atmosphere measured during 24-hour intervals were least (10-200 mg/m2/d) at deeper sites (greater than 7 m) and greatest (300-2000 mg/m2/d) at shallow sites (less than 2 m).

  16. Composite hydrogen-solid methane moderators

    International Nuclear Information System (INIS)

    Picton, D.; Bennington, S.; Ansell, S.; Fernandez-Garcia, J.; Broome, T.

    2004-01-01

    This paper describes the results of Monte-Carlo calculations for a coupled moderator on a low-power pulsed neutron spallation source and is part of the design study for a second target station for the ISIS spallation source. Various options were compared including hydrogen, solid methane, grooving the solid methane and compound moderators made of hydrogen in front of solid methane. To maximise the neutron current at low energies two strategies appear to emerge from the calculations. For instruments that view a large area of moderator surface a layer of hydrogen in front of a thin solid-methane moderator is optimum, giving a gain of about a factor 10 relative to the current liquid hydrogen moderator on the existing ISIS tantalum target. For instruments that only view a restricted area higher flux, corresponding to a gain of 13.5, can be achieved with the use of a single groove or re-entrant hole in the moderator. (orig.)

  17. Coprecipitated nickel-alumina methanation catalysts

    International Nuclear Information System (INIS)

    Kruissink, E.C.

    1981-01-01

    In the last few years there has been a renewed interest in the methanation reaction CO+3H 2 =CH 4 +H 2 O. The investigations described in this thesis were performed in relation to the application of this reaction, within the framework of the so-called 'NFE' project, also called 'ADAM' and 'EVA' project. This project, which has been under investigation in West Germany for some years, aims at the investigation of the feasibility of transporting heat from a nuclear high temperature reactor by means of a chemical cycle. A promising possibility to realize such a cycle exists in applying the combination of the endothermic steam reforming of methane and the exothermic methanation reaction. This thesis describes the investigations into a certain type of methanation catalyst, viz. a coprecipitated nickel-alumina catalyst, with the aim to give more insight into the interrelationship between the preparation conditions on the one hand and catalyst properties such as activity and stability on the other hand. (Auth.)

  18. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  19. Proceedings of the Canadian Institute's conference on fundamentals of coalbed methane and shale gas : comprehensive overviews of leading project management strategies, effective techniques, new regulations, and key measurements for success

    International Nuclear Information System (INIS)

    2005-01-01

    Forecasts have indicated that despite some uncertainties in Coalbed methane (CBM) technology and concerns over the environmental effects of CBM production, the CBM industry is expected to grow rapidly over the next decade. This conference reviewed a variety of CBM project management strategies adopted by Canadian companies, ranging from initial site assessment through to commercial production. Pipeline and infrastructure requirements for the CBM industry were reviewed, and an overview of CBM regulations was provided. Exploration techniques and recommended practices for CBM hydraulic fracturing were presented. It was noted that in addition to environmental concerns over surface water discharge of CBM produced water, subsurface management issues are being increasingly scrutinized by environmentalists. Various commercialization strategies for CBM production were also reviewed, including well spacing management techniques; infrastructure demands and capitalized costs. Factors to ensure cost-effective high volume production in the shale gas industry were also reviewed. Of the 23 presentations given at this conference, 8 were catalogued separately for inclusion in this database. refs., tabs., figs

  20. Methane distribution and methane oxidation in the water column of the Elbe estuary, Germany

    Czech Academy of Sciences Publication Activity Database

    Matoušů, Anna; Osudar, R.; Šimek, Karel; Bussmann, I.

    2017-01-01

    Roč. 79, č. 3 (2017), s. 443-458 ISSN 1015-1621 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : estuary * methane * methane budget * ethane oxidation * River Elbe Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 2.821, year: 2016

  1. Termites facilitate methane oxidation and shape the methanotrophic community

    NARCIS (Netherlands)

    Ho, A.; Erens, H.; Mujinya, B.B.; Boeckx, P.; Baert, G.; Schneider, B.; Frenzel, P.; Boon, N.; Van Ranst, E.

    2013-01-01

    Termite-derived methane contributes 3-4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of methane produced can be consumed by methanotrophs that inhabit the mound material. Yet, methanotroph

  2. Bio-methane. Challenges and technical solutions

    International Nuclear Information System (INIS)

    Blaisonneau, Laurent; Carlu, Elieta; Feuillette, Vincent

    2012-06-01

    Among the new energy sectors in development, biogas has many benefits: several valorization possibilities (bio-methane, electricity and heat), continuous production, easy storage. In Europe, and particularly in France, the bio-methane market will be in the next years a driver for the improvement of the economic, environmental and social performance of the actors of the value chain of biogas. ENEA releases a report on the current state of the bio-methane market in Europe. This publication mainly describes: An outlook of the market evolution and the corresponding stakes for the actors of this sector, the technical and economic characteristics, maturity level and specificities of each biogas upgrading process, An analysis of the French regulatory framework for bio-methane injection into the grid

  3. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  4. Methane adsorption on activated carbon

    NARCIS (Netherlands)

    Perl, Andras; Koopman, Folkert; Jansen, Peter; de Rooij, Marietta; van Gemert, Wim

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room

  5. Exhaled methane concentration profiles during exercise on an ergometer

    Science.gov (United States)

    Szabó, A; Ruzsanyi, V; Unterkofler, K; Mohácsi, Á; Tuboly, E; Boros, M; Szabó, G; Hinterhuber, H; Amann, A

    2016-01-01

    Exhaled methane concentration measurements are extensively used in medical investigation of certain gastrointestinal conditions. However, the dynamics of endogenous methane release is largely unknown. Breath methane profiles during ergometer tests were measured by means of a photoacoustic spectroscopy based sensor. Five methane-producing volunteers (with exhaled methane level being at least 1 ppm higher than room air) were measured. The experimental protocol consisted of 5 min rest—15 min pedalling (at a workload of 75 W)—5 min rest. In addition, hemodynamic and respiratory parameters were determined and compared to the estimated alveolar methane concentration. The alveolar breath methane level decreased considerably, by a factor of 3–4 within 1.5 min, while the estimated ventilation-perfusion ratio increased by a factor of 2–3. Mean pre-exercise and exercise methane concentrations were 11.4 ppm (SD:7.3) and 2.8 ppm (SD:1.9), respectively. The changes can be described by the high sensitivity of exhaled methane to ventilationperfusion ratio and are in line with the Farhi equation. PMID:25749807

  6. Methane: a new stake for negotiations on climate?

    International Nuclear Information System (INIS)

    2008-01-01

    After having outlined that the issue of methane emissions could be, after the reduction of emissions from deforestation and degradation and the reduction of greenhouse gas emissions, an additional matter of discussion for the struggle against climate change, this article comments some data concerning methane emissions in six African countries. Generally, the main source of methane is agriculture (often more than 90 per cent) except in Gambia where wastes represent 77.8 per cent of methane emissions. This high level of methane emissions by agriculture could be a problem for these countries, whereas perspectives of waste valuation already exist

  7. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  8. Martian Methane From a Cometary Source: A Hypothesis

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  9. Methane to bioproducts: the future of the bioeconomy?

    Science.gov (United States)

    Pieja, Allison J; Morse, Molly C; Cal, Andrew J

    2017-12-01

    Methanotrophs have been studied since the 1970s, but interest has increased tremendously in recent years due to their potential to transform methane into valuable bioproducts. The vast quantity of available methane and the low price of methane as natural gas have helped to spur this interest. The most well-studied, biologically-derived products from methane include methanol, polyhydroxyalkanoates, and single cell protein. However, many other high-interest chemicals such as biofuels or high-value products such as ectoine could be made industrially relevant through metabolic engineering. Although challenges must be overcome to achieve commercialization of biologically manufactured methane-to-products, taking a holistic view of the production process or radically re-imagining pathways could lead to a future bioeconomy with methane as the primary feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. An Aerial ``Sniffer Dog'' for Methane

    Science.gov (United States)

    Nathan, Brian; Schaefer, Dave; Zondlo, Mark; Khan, Amir; Lary, David

    2012-10-01

    The Earth's surface and its atmosphere maintain a ``Radiation Balance.'' Any factor which influences this balance is labeled as a mechanism of ``Radiative Forcing'' (RF). Greenhouse Gas (GHG) concentrations are among the most important forcing mechanisms. Methane, the second-most-abundant noncondensing greenhouse gas, is over 25 times more effective per molecule at radiating heat than the most abundant, Carbon Dioxide. Methane is also the principal component of Natural Gas, and gas leaks can cause explosions. Additionally, massive quantities of methane reside (in the form of natural gas) in underground shale basins. Recent technological advancements--specifically the combination of horizontal drilling and hydraulic fracturing--have allowed drillers access to portions of these ``plays'' which were previously unreachable, leading to an exponential growth in the shale gas industry. Presently, very little is known about the amount of methane which escapes into the global atmosphere from the extraction process. By using remote-controlled robotic helicopters equipped with specially developed trace gas laser sensors, we can get a 3-D profile of where and how methane is being released into the global atmosphere.

  11. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  12. What drove the methane cycle in the past - evidence from carbon isotopic data of methane enclosed in polar ice cores

    OpenAIRE

    Möller, Lars

    2013-01-01

    During the last glacial cycle, greenhouse gas concentrations fluctuated on decadal and longer timescales. Concentrations of methane, as measured in polar ice cores, show a close connection with Northern Hemisphere temperature variability, but the contribution of the various methane sources and sinks to changes in concentration is still a matter of debate. This thesis assess changes in methane cycling over the past 160,000 years by measurements of the carbon isotopic composition d13C of methan...

  13. METHANE INCORPORATION BY PROCARYOTIC PHOTOSYNTHETICMICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Charles J.; Kirk, Martha; Calvin, Melvin

    1970-08-01

    The procaryotic photosynthetic microorganisms Anacystis nidulans, Nostoc and Rhodospirillum rubrum have cell walls and membranes that are resistant to the solution of methane in their lipid components and intracellular fluids. But Anacystis nidulans, possesses a limited bioxidant system, a portion of which may be extracellularly secreted, which rapidly oxidizes methane to carbon dioxide. Small C{sup 14} activities derived from CH{sub 4} in excess of experimental error are detected in all the major biochemical fractions of Anacystis nidulans and Nostoc. This limited capacity to metabolize methane appears to be a vestigial potentiality that originated over two billion years ago in the early evolution of photosynthetic bacteria and blue-green algae.

  14. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    Science.gov (United States)

    Borowski, Marek; Kuczera, Zbigniew

    2018-03-01

    Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location

  15. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    Directory of Open Access Journals (Sweden)

    Borowski Marek

    2018-01-01

    Full Text Available Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in

  16. Abiotic Production of Methane in Terrestrial Planets

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  17. Methane-oxidizing seawater microbial communities from an Arctic shelf

    Science.gov (United States)

    Uhlig, Christiane; Kirkpatrick, John B.; D'Hondt, Steven; Loose, Brice

    2018-06-01

    Marine microbial communities can consume dissolved methane before it can escape to the atmosphere and contribute to global warming. Seawater over the shallow Arctic shelf is characterized by excess methane compared to atmospheric equilibrium. This methane originates in sediment, permafrost, and hydrate. Particularly high concentrations are found beneath sea ice. We studied the structure and methane oxidation potential of the microbial communities from seawater collected close to Utqiagvik, Alaska, in April 2016. The in situ methane concentrations were 16.3 ± 7.2 nmol L-1, approximately 4.8 times oversaturated relative to atmospheric equilibrium. The group of methane-oxidizing bacteria (MOB) in the natural seawater and incubated seawater was > 97 % dominated by Methylococcales (γ-Proteobacteria). Incubations of seawater under a range of methane concentrations led to loss of diversity in the bacterial community. The abundance of MOB was low with maximal fractions of 2.5 % at 200 times elevated methane concentration, while sequence reads of non-MOB methylotrophs were 4 times more abundant than MOB in most incubations. The abundances of MOB as well as non-MOB methylotroph sequences correlated tightly with the rate constant (kox) for methane oxidation, indicating that non-MOB methylotrophs might be coupled to MOB and involved in community methane oxidation. In sea ice, where methane concentrations of 82 ± 35.8 nmol kg-1 were found, Methylobacterium (α-Proteobacteria) was the dominant MOB with a relative abundance of 80 %. Total MOB abundances were very low in sea ice, with maximal fractions found at the ice-snow interface (0.1 %), while non-MOB methylotrophs were present in abundances similar to natural seawater communities. The dissimilarities in MOB taxa, methane concentrations, and stable isotope ratios between the sea ice and water column point toward different methane dynamics in the two environments.

  18. Turbulent burning rates of methane and methane-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  19. Could Methane Oxidation in Lakes Be Enhanced by Eutrophication?

    Science.gov (United States)

    Van Grinsven, S.; Villanueva, L.; Harrison, J.; S Sinninghe Damsté, J.

    2017-12-01

    Climate change and eutrophication both affect aquatic ecosystems. Eutrophication is caused by high nutrient inputs, leading to algal blooms, oxygen depletion and disturbances of the natural balances in aquatic systems. Methane, a potent greenhouse gas produced biologically by anaerobic degradation of organic matter, is often released from the sediments of lakes and marine systems to overlying water and the atmosphere. Methane oxidation, a microbial methane consumption process, can limit methane emission from lakes and reservoirs by 50-80%. Here, we studied methane oxidation in a seasonally stratified reservoir: Lacamas Lake in Washington, USA. We found this lake has a large summer storage capacity of methane in its deep water layer, with a very active microbial community capable of oxidizing exceptionally high amounts of methane. The natural presence of terminal electron acceptors is, however, too low to support these high potential rates. Addition of eutrophication-related nutrients such as nitrate and sulfate increased the methane removal rates by 4 to 7-fold. The microbial community was studied using 16S rRNA gene amplicon sequencing and preliminary results indicate the presence of a relatively unknown facultative anaerobic methane oxidizer of the genus Methylomonas, capable of using nitrate as an electron donor. Experiments in which anoxic and oxic conditions were rapidly interchanged showed this facultative anaerobic methane oxidizer has an impressive flexibility towards large, rapid changes in environmental conditions and this feature might be key to the unexpectedly high methane removal rates in eutrophied and anoxic watersheds.

  20. Nonequilibrium clumped isotope signals in microbial methane

    Science.gov (United States)

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-01-01

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  1. Methanization - Technical sheet

    International Nuclear Information System (INIS)

    Bastide, Guillaume

    2015-02-01

    This document explains fundamentals of methanization such as biological reactions and conditions suitable for biogas production (temperature, pH, anaerobic medium, and so on). It also proposes an overview of available techniques, of the present regulation, of environmental impacts, and of costs and profitability of methanization installations. Examples of installations are provided, as well as a set of questions and answers. Perspectives of development are finally discussed in terms of sector development potential, of regulatory evolution, of new perspectives for gas valorisation, of need of acquisition of reference data due to the relatively low number of existing installations, and of research and development

  2. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1    Final Report for DARPA project W911NF1010027  Phytoremediation  of Atmospheric

  3. Sources of atmospheric methane from coastal marine wetlands

    International Nuclear Information System (INIS)

    Harriss, R.C.; Sebacher, D.I.; Bartlett, K.B.; Bartlett, D.S.

    1982-01-01

    Biological methanogenesis in wetlands is believed to be one of the major sources of global tropospheric methane. The present paper reports measurements of methane distribution in the soils, sediments, water and vegetation of coastal marine wetlands. Measurements, carried out in the salt marshes Bay Tree Creek in Virginia and Panacea in northwest Florida, reveal methane concentrations in soils and sediments to vary with depth below the surface and with soil temperature. The fluxes of methane from marsh soils to the atmosphere at the soil-air interface are estimated to range from -0.00067 g CH 4 /sq m per day (methane sink) to 0.024 g CH 4 /sq m per day, with an average value of 0.0066 g CH 4 /sq m per day. Data also demonstrate the important role of tidal waters percolating through marsh soils in removing methane from the soils and releasing it to the atmosphere. The information obtained, together with previous studies, provides a framework for the design of a program based on in situ and remote sensing measurements to study the global methane cycle

  4. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming.

    Science.gov (United States)

    Aghayan, M; Potemkin, D I; Rubio-Marcos, F; Uskov, S I; Snytnikov, P V; Hussainova, I

    2017-12-20

    Efficient capture and recycling of CO 2 enable not only prevention of global warming but also the supply of useful low-carbon fuels. The catalytic conversion of CO 2 into an organic compound is a promising recycling approach which opens new concepts and opportunities for catalytic and industrial development. Here we report about template-assisted wet-combustion synthesis of a one-dimensional nickel-based catalyst for carbon dioxide methanation and methane steam reforming. Because of a high temperature achieved in a short time during reaction and a large amount of evolved gases, the wet-combustion synthesis yields homogeneously precipitated nanoparticles of NiO with average particle size of 4 nm on alumina nanofibers covered with a NiAl 2 O 4 nanolayer. The as-synthesized core-shell structured fibers exhibit outstanding activity in steam reforming of methane and sufficient activity in carbon dioxide methanation with 100% selectivity toward methane formation. The as-synthesized catalyst shows stable operation under the reaction conditions for at least 50 h.

  5. Experimental study of methanic fermentation of straw

    Energy Technology Data Exchange (ETDEWEB)

    Dopter, P; Beerens, H

    1952-12-03

    The amount of liquid manure obtainable was a limiting factor in methanic fermentation of wheat straw. An equal volume of 0.2% aqueous solution of Na formate could be substituted for 90% of the normal requirements of liquid manure. This shortened the preliminary stages of cellulosic fermentation when no methane was produced and slightly increased the subsequent yield of methane.

  6. Coal seam gas-supply and impact on U.S. markets and Canadian producers

    International Nuclear Information System (INIS)

    Kelafant, J.

    1992-01-01

    The basic ways in which coalbed methane differs from natural gas are described. Coalbed methane is stored at a higher capacity in the coal seam, has a different production curve, and exploration costs are lower. Comparing a conventional gas well having 2 billion ft 3 reserves with coalbed methane wells in the San Juan and Warrior basins, gas from the conventional well costs $1.90 per 1,000 ft 3 and methane from the San Juan and Warrior wells costs $1.50 and $2.40 per 1,000 ft 3 respectively. A 90 cent per 1,000 ft 3 tax credit on coalbed methane reduces the two latter costs significantly and is without doubt the driving force behind the coalbed methane industry in some areas. Examples from the Warrior and San Juan basins are described to illustrate the technology driven economics of coalbed methane. Substantial improvements in gas production can be achieved by such means as multiple seam completion technologies, improved well stimulation, optimum well spacing, and the use of cavitation completion. Technically recoverable coalbed methane resources in the USA are estimated at 145 trillion ft 3 , concentrated in the western coal basins. At a wellhead price of $2 per 1,000 ft 3 , the economically recoverable potential is ca 13 trillion ft 3 . Examining future production potential, by developing new technologies or bringing more basins on stream, production could be increased to ca 3 billion ft 3 /d in the late 1990s. It is suggested that the increased volumes of coalbed methane have had minimal impact on gas prices. 9 figs., 12 tabs

  7. Clumped isotope effects during OH and Cl oxidation of methane

    DEFF Research Database (Denmark)

    Whitehill, Andrew R.; Joelsson, Lars Magnus T.; Schmidt, Johan Albrecht

    2017-01-01

    A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH was produ......A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH...... effects for singly substituted species were consistent with previous experimental studies. For doubly substituted methane, 13CH3D, the observed kinetic isotope effects closely follow the product of the kinetic isotope effects for the 13C and deuterium substituted species (i.e., 13,2KIE = 13KIE × 2KIE...... reactions. In a closed system, however, this effect is overtaken by the large D/H isotope effect, which causes the residual methane to become anti-clumped relative to the initial methane. Based on these results, we demonstrate that oxidation of methane by OH, the predominant oxidant for tropospheric methane...

  8. Validation of landfill methane measurements from an unmanned aerial system

    DEFF Research Database (Denmark)

    Allen, Grant; Williams, Paul; Ricketts, hugo

    Landfill gas is made up of roughly equal amounts of methane and carbon dioxide. Modern UK landfills capture and use much of the methane gas as a fuel. But some methane escapes and is emitted to the atmosphere. Methane is an important greenhouse gas and controls on methane emissions are a part...... of international and national strategies to limit climate change. Better estimates of methane emissions from landfills and other similar sources would allow the UK to improve the quantification and control of greenhouse gas emissions. This project tested the accuracy of methane measurement using an unmanned aerial...

  9. Handbook methane potential; Handbok metanpotential

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My (AnoxKaldnes AB (Sweden)); Schnurer, Anna (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    2011-07-15

    Before using a organic material for biogas production it is essential to evaluate the methane production potential. The methane potential is one important tool possible to use during planning of new plants but also when new materials are considered for already running biogas plants. The chemical composition of different organic material varies extensively and this will have an impact on both the degradability and the methane potential. Information about the methane potential of a specific material can sometimes be found in the literature or can be calculated after a chemical/ physical or biological characterization. Here, the BMP test (Biochemical Methane Potential) is a commonly used method. Today the BMP test is a commonly used method to determine the methane potential. Many national and international research groups, consultants as well as personal at biogas plants are using this method and there is a lot of data available in the literature from such tests. In addition there are several protocols giving guidelines on how to execute a BMP-test. The BMP-test is performed in many different ways, not always under optimized conditions, and there is a lack of information on how to interpret the obtained data. This report summarizes knowledge from the literature and the experience from a Swedish referee group, consisting of persons being active performers of BMP-tests. The report does not include a standardized protocol as the procedure can be performed in different ways depending on available equipment and on the type of material to be tested. Instead the report discusses different factors of great importance for a successful test giving reliable results. The report also summarizes important information concerning the interpretation and how to present results in order to allow comparison of data from different test.

  10. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters.

    Science.gov (United States)

    Yoon, Sukhwan; Carey, Jeffrey N; Semrau, Jeremy D

    2009-07-01

    Methane is a potent greenhouse gas with a global warming potential ~23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500-6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98-35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO(2) removal using these systems is $90-$910 ($2,070-$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO(2) credits is increased, can also be economically attractive.

  11. Potential for reduction of methane emissions from dairy cows

    DEFF Research Database (Denmark)

    Johannes, Maike; Hellwing, Anne Louise Frydendahl; Lund, Peter

    2010-01-01

    Methane is a gas cows naturally produce in the rumen. However, it is also a potential greenhouse gas. Therefore, there is a certain interest from an environmental point of view to reduce methane emissions from dairy cows. Estimates from earlier studies indicate that there is a potential to reduce...... methane production by 10 to 25% by changing the feeding strategies. Several feedstuffs influence methane production, such as additional fat. The increase of the concentrate proportion can potentially decrease methane by decreasing the rumen degradability of the diet or by changing the rumen fermentation......, while fibre and sugar enhance methane emissions. Fat can be regarded as the most promising feed additive at the moment. At AU, respiration chambers have been installed to enable methane measurements from dairy cows combined with digestibility trials, and at present studies are being conducted concerning...

  12. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  13. High-pressure raman study on single crystalline methane hydrate surrounded by methane in a diamond anvil cell

    International Nuclear Information System (INIS)

    Ohno, Y; Sasaki, S; Kume, T; Shimizu, H

    2008-01-01

    High-pressure Raman measurements have been performed for single crystalline methane hydrate (MH) surrounded by fluid or solid methane in a diamond anvil cell. We successfully obtained the pure O-H stretching and lattice vibration spectra in MH-sI and MH-II phases. In these Raman spectra, there is no Raman band from water or ice-VI. The observed pressure of phase transformation from MH-sI to MH-II is 0.9 GPa, which is the same result as methane hydrate surrounded by water

  14. Enteric methane emissions from German pigs

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Schulz, Joachim; Klausing, Heinrich Kleine

    2012-01-01

    Methane emissions from enteric fermentation of pigs are object of emission reporting. Hitherto they were treated as part of the energy balance of pigs, in accordance with IPCC guidance documents. They were calculated from the gross energy intake rate and a constant methane conversion ratio....... Meanwhile numerous experimental data on methane emissions from enteric fermentation is available in Germany and abroad; the results are compiled in this work. These results also allow for a description of transformation processes in the hind gut and a subsequent establishment of models that relate emissions...... to feed and performance data. The model by Kirchgeßner et al. (1995) is based on German experimental data and reflects typical national diet compositions. It is used to quantify typical emissions and methane conversion ratios. The results agree with other experimental findings at home and abroad...

  15. Bioelectrochemical approach for control of methane emission from wetlands.

    Science.gov (United States)

    Liu, Shentan; Feng, Xiaojuan; Li, Xianning

    2017-10-01

    To harvest electricity and mitigate methane emissions from wetlands, a novel microbial fuel cell coupled constructed wetland (MFC-CW) was assembled with an anode placing in the rhizosphere and a cathode on the water surface. Plant-mediated methane accounted for 71-82% of the total methane fluxes. The bioanode served as an inexhaustible source of electron acceptors and resulted in reduced substantial methane emissions owing to electricigens outcompeting methanogens for carbon and electrons when substrate was deficient. However, when supplying sufficient organic carbon, both electricity and methane increased, indicating that electrogenesis and methanogenesis could co-exist in harmony. Direct methane emission (diffusion/ebullition) and plant-mediated methane emission were affected by operating conditions. Methanogenesis was significantly suppressed (∼98%) at HRT of 96h and with external resistance of 200Ω, accompanied with improved coulombic efficiency of 14.9% and current density of 187mA/m 2 . Contrarily, change of electrode polarity in the rhizosphere led to more methane efflux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Trace methane oxidation studied in several Euryarchaeota under diverse conditions

    Directory of Open Access Journals (Sweden)

    James J. Moran

    2005-01-01

    Full Text Available We used 13C-labeled methane to document the extent of trace methane oxidation by Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, Archaeoglobus profundus, Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Methanosarcina acetivorans. The results indicate trace methane oxidation during growth varied among different species and among methanogen cultures grown on different substrates. The extent of trace methane oxidation by Mb. thermoautotrophicum (0.05 ± 0.04%, ± 2 standard deviations of the methane produced during growth was less than that by M. barkeri (0.15 ± 0.04%, grown under similar conditions with H2 and CO2. Methanosarcina acetivorans oxidized more methane during growth on trimethylamine (0.36 ± 0.05% than during growth on methanol (0.07 ± 0.03%. This may indicate that, in M. acetivorans, either a methyltransferase related to growth on trimethylamine plays a role in methane oxidation, or that methanol is an intermediate of methane oxidation. Addition of possible electron acceptors (O2, NO3–, SO22–, SO32– or H2 to the headspace did not substantially enhance or diminish methane oxidation in M. acetivorans cultures. Separate growth experiments with FAD and NAD+ showed that inclusion of these electron carriers also did not enhance methane oxidation. Our results suggest trace methane oxidized during methanogenesis cannot be coupled to the reduction of these electron acceptors in pure cultures, and that the mechanism by which methane is oxidized in methanogens is independent of H2 concentration. In contrast to the methanogens, species of the sulfate-reducing genus Archaeoglobus did not significantly oxidize methane during growth (oxidizing 0.003 ± 0.01% of the methane provided to A. fulgidus, 0.002 ± 0.009% to A. lithotrophicus and 0.003 ± 0.02% to A. profundus. Lack of observable methane oxidation in the three Archaeoglobus species examined may indicate that methyl-coenzyme M reductase, which is not present in

  17. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  18. Carbon and hydrogen isotope composition and C-14 concentration in methane from sources and from the atmosphere: Implications for a global methane budget

    Science.gov (United States)

    Wahlen, Martin

    1994-01-01

    The topics covered include the following: biogenic methane studies; forest soil methane uptake; rice field methane sources; atmospheric measurements; stratospheric samples; Antarctica; California; and Germany.

  19. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    Science.gov (United States)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas

  20. Global diffusive fluxes of methane in marine sediments

    NARCIS (Netherlands)

    Egger, M.; Riedinger, N.; Mogollón, J.M.; Jørgensen, B.B.

    2018-01-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of

  1. Estimating historical landfill quantities to predict methane emissions

    NARCIS (Netherlands)

    Lyons, S.; Murphy, L.; Tol, R.S.J.

    2010-01-01

    There are no observations for methane emissions from landfill waste in Ireland. Methane emissions are imputed from waste data. There are intermittent data on waste sent to landfill. We compare two alternative ways to impute the missing waste " data" and evaluate the impact on methane emissions. We

  2. Cultivation of methanogenic community from 2-km deep subseafloor coalbeds using a continuous-flow bioreactor

    Science.gov (United States)

    Imachi, H.; Tasumi, E.; Morono, Y.; Ito, M.; Takai, K.; Inagaki, F.

    2013-12-01

    Deep subseafloor environments associated with hydrocarbon reservoirs have been least explored by previous scientific drilling and hence the nature of deep subseafloor life and its ecological roles in the carbon cycle remain largely unknown. In this study, we performed cultivation of subseafloor methanogenic communities using a continuous-flow bioreactor with polyurethane sponges, called down-flow hanging sponge (DHS) reactor. The sample used for the reactor cultivation was obtained from 2 km-deep coalbeds off the Shimokita Peninsula of Japan, the northwestern Pacific, during the Integrated Ocean Drilling Program (IODP) Expedition 337 using a riser drilling technology of the drilling vessel Chikyu. The coalbed samples were incubated anaerobically in the DHS reactor at the in-situ temperature of 40°C. Synthetic seawater supplemented with a tiny amount of yeast extract, acetate, propionate and butyrate was provided into the DHS reactor. After 34 days of the bioreactor operation, a small production of methane was observed. The methane concentration was gradually increased and the stable carbon isotopic composition of methane was consistency 13C-depleted during the bioreactor operation, indicating the occurrence of microbial methanogenesis. Microscopic observation showed that the enrichment culture contained a variety of microorganisms, including methanogen-like rod-shaped cells with F420 auto-fluorescence. Interestingly, many spore-like particles were observed in the bioreactor enrichment. Phylogenetic analysis of 16S rRNA genes showed the growth of phylogenetically diverse bacteria and archaea in the DHS reactor. Predominant archaeal components were closely related to hydrogenotrophic methanogens within the genus Methanobacterium. Some predominant bacteria were related to the spore-formers within the class Clostridia, which are overall in good agreement with microscopic observations. By analyzing ion images using a nano-scale secondary ion mass spectrometry (Nano

  3. Enteric methane emissions from German dairy cows

    DEFF Research Database (Denmark)

    Dammgen, U; Rosemann, C; Haenel, H D

    2012-01-01

    Up to now, the German agricultural emission inventory used a model for the assessment of methane emissions from enteric fermentation that combined an estimate of the energy and feed requirements as a function of performance parameters and diet composition, with the constant methane conversion rate......, as stated by IPCC. A methane emission model was selected here that is based on German feed data. It was combined with the hitherto applied model describing energy requirements. The emission rates thus calculated deviate from those previously obtained. In the new model, the methane conversion rate is back......-calculated from emission rates and gross energy intake rates. For German conditions of animal performance and diet composition, the national means of methane conversion rates range between 71 kJ MJ(-1) and 61 kJ MJ(-1) for low and high performances (4700 kg animal(-1) a(-1) in 1990 to 7200 kg animal(-1) a(-1...

  4. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  5. Decarbonisation of fossil energy via methane pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kreysa, G.; Agar, D.W.; Schultz, I. [Technische Univ. Dortmund (Germany)

    2010-12-30

    Despite the rising consumption of energy over the last few decades, the proven reserves of fossil fuels have steadily increased. Additionally, there are potentially tremendous reserves of methane hydrates available, which remain to be exploited. The use of fossil energy sources is thus increasingly being dictated less by supply than by the environmental concerns raised by climate change. In the context of the decarbonisation of the global energy system that this has stimulated, new means must be explored for using methane as energy source. Noncatalytic thermal pyrolysis of methane is proposed here as a promising concept for utilising methane with low to zero carbon dioxide emissions. Following cracking, only the energy content of the hydrogen is used, while the carbon can be stored safely and retrievably in disused coal mines. The thermodynamics and different process engineering concepts for the technical realisation of such a carbon moratorium technology are discussed. The possible contribution of methane pyrolysis to carbon negative geoengineering is also addressed. (orig.)

  6. Effect of bubble size and density on methane conversion to hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  7. Methane emissions from the natural gas industry

    International Nuclear Information System (INIS)

    Harrison, M.R.; Cowgill, R.M.; Campbell, L.M.; Lott, R.A.

    1993-01-01

    The U.S. EPA and the United Nation's Intergovernmental Panel on Climate Change (IPCC) have suggested that global warming could be reduced if more energy was generated using natural gas rather than fuels such as coal. An increased use of natural gas instead of coal would decrease global warming since methane emits less carbon dioxide (CO 2 ) than any fossil fuel. However, methane is a more potent as a greenhouse gas than CO 2 , and leakage from the gas system could reduce or eliminate the inherent advantage of natural gas. For this reason, methane emissions must be quantified before a national policy on preferred fuels is developed. Therefore, GRI and EPA have developed this confunded program to quantify methane emissions from the U.S. gas industry. This paper presents, for general industry review, the approach and methodology that the project is using to determine the emissions. The study will measure or calculate all gas industry methane emissions - from production at the wellhead, through the system, to the customer's meter. When these data are combined with data from other studies, a definitive comparison of the relative environmental impact of using methane versus other fuels will be possible. The study will also provide data that can be used by the industry to identify cost-effective mitigation techniques to reduce losses. The methane emissions project is being conducted in three phases: the first two phases have identified and ranked all known potential methane-emitting sources and established methods for measuring, calculating, and extrapolating emissions from those sources. The third phase, which is currently in progress, will gather sufficient data to achieve the accuracy goal. This paper briefly summarizes the methodology being used for the completion of the third phase

  8. Removal of methane from compressed natural gas fueled vehicle exhaust

    International Nuclear Information System (INIS)

    Subramanian, S.; Kudla, R.J.; Chattha, M.S.

    1992-01-01

    The objective of this paper is to investigate the modes of methane (CH 4 ) removal from simulated compressed natural gas (CNG) fueled vehicle exhaust under net oxidizing, net reducing, and stoichiometric conditions. Model reaction studies were conducted. The results suggest that the oxidation of methane with oxygen contributes to the removal of methane under net oxidizing conditions. In contrast, the oxidation of methane with oxygen as well as nitric oxide contributes to its removal under net reducing conditions. The steam reforming reaction does not significantly contribute to the removal of methane. The methane conversions under net reducing conditions are higher than those observed under net oxidizing conditions. The study shows that the presence of carbon monoxide in the feed gas leads to a gradual decrease in the methane conversion with increasing redox ratio, under net oxidizing conditions. a minimum in methane conversion is observed at a redox ratio of 0. 8. The higher activity for the methane-oxygen reaction resulting from a lowering in the overall oxidation state of palladium and the contribution of the methane-nitric oxide reaction toward the removal of CH 4 appear to account for the higher CH 4 conversions observed under net reducing conditions

  9. methanization development in Ile-de-France - Ile-de-France region. Synthesis. The Regional Council strategy for methanization development

    International Nuclear Information System (INIS)

    2013-06-01

    A first document reports the study of methanization development in the Ile-de-France region by addressing biomass produced on the region territory. It aimed at identifying and assessing the existing and potential physical resource while introducing mobilisation rates in order to define different scenarios. A situational analysis of operated and projected methanization installations has also been performed. These projects have been classified according to a typology, and analysed according to the proposed scenarios. The position of methanization with respect to other biomass valorisation sectors, as well as the impact of mobilisation with respect to a return-to-soil of organic matters have also been discussed. A second document proposes a synthetic version of this study. The third document presents the Regional Council's policy and strategy regarding methanization development: challenges and prospective scenarios, importance of a sustainable methanization at the service of territory development, regulation for a call for projects, project assessment and selection, project footprint, inputs qualities and supplies, energetic and agronomic valorisation, and grid for project analysis. An appendix contains a synthetic version of the first document

  10. Methane storage capacity of the early martian cryosphere

    Science.gov (United States)

    Lasue, Jeremie; Quesnel, Yoann; Langlais, Benoit; Chassefière, Eric

    2015-11-01

    Methane is a key molecule to understand the habitability of Mars due to its possible biological origin and short atmospheric lifetime. Recent methane detections on Mars present a large variability that is probably due to relatively localized sources and sink processes yet unknown. In this study, we determine how much methane could have been abiotically produced by early Mars serpentinization processes that could also explain the observed martian remanent magnetic field. Under the assumption of a cold early Mars environment, a cryosphere could trap such methane as clathrates in stable form at depth. The extent and spatial distribution of these methane reservoirs have been calculated with respect to the magnetization distribution and other factors. We calculate that the maximum storage capacity of such a clathrate cryosphere is about 2.1 × 1019-2.2 × 1020 moles of CH4, which can explain sporadic releases of methane that have been observed on the surface of the planet during the past decade (∼1.2 × 109 moles). This amount of trapped methane is sufficient for similar sized releases to have happened yearly during the history of the planet. While the stability of such reservoirs depends on many factors that are poorly constrained, it is possible that they have remained trapped at depth until the present day. Due to the possible implications of methane detection for life and its influence on the atmospheric and climate processes on the planet, confirming the sporadic release of methane on Mars and the global distribution of its sources is one of the major goals of the current and next space missions to Mars.

  11. Secondary biological coalbed gas in the Xinji area, Anhui province, China: Evidence from the geochemical features and secondary changes

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Mingxin [Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, College of Resources Sciences and Technology, Beijing Normal University, Beijing 100875 (China); Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shi, Baoguang; Wang, Wanchun; Li, Xiaobin; Gao, Bo [Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Jinying [Material and Environment College, Qindao University of Science and Technology, Qindao 266042 (China)

    2007-07-02

    In order to ascertain the origin of the coalbed gas in the Xinji area, Anhui Province of China, the paper examined the geochemical features and secondary changes of CH{sub 4}, C{sub 2}H{sub 6}, CO{sub 2} and N{sub 2} from the coalbed gas. The related gas composition, carbon isotope and tracer geochemical data are as follows: 0.993 to 1.0 for C{sub 1}/C{sub 1-n}, 188.6 to 2993.7 for C{sub 1}/C{sub 2}, < 2% for CO{sub 2}, 0.64 to 3.06% for [CO{sub 2}/(CO{sub 2} + CH{sub 4})]100%, - 50.7 permille to - 61.3 permille for {delta}{sup 13}C{sub 1} with the average value of - 56.6 permille, - 15.9 permille to - 26.7 permille for {delta}{sup 13}C{sub 2}, - 10.8 permille to - 25.3 permille for {delta}{sup 13}C{sub 3}, - 6.0 permille to - 39.0 permille for {delta}{sup 13}C{sub CO2} with the average value of - 17.9 permille, 30.7 permille to 43.9 permille for {delta}{delta}{sup 13}C{sub C2-C1}, and 17.2 permille to 50 permille for {delta}{delta}{sup 13}C{sub CO2-C1}, - 1 permille to + 1 permille for {delta}{sup 15}N{sub N2}, 1.13 x 10{sup -7} to 3.20 x 10{sup -7} for {sup 3}He/{sup 4}He with R/Ra ratios range from 0.08 to 0.23. The Ro values of the coal range from 0.88% to 0.91%. The trends of the {delta}{sup 13}C{sub 1} values and {delta}{sup 13}C{sub CO2} values downward in the stratigraphic profile are opposite: the former appears as a slight light-heavy-light trend, but the latter appears as a heavy-light-heavy trend. The {delta}{sup 13}C{sub 1} values have a negative correlation with the {delta}{sup 13}C{sub CO2} values. However, the {delta}{sup 13}C{sub 2} values have no correlation with the {delta}{sup 13}C{sub 1} values due to its complicated variation. The thermal evolution of the coal in the Xinji area is in the phase of a lot of wet gas generation, but most of the CO{sub 2} and heavy hydrocarbons have been reduced or degraded by microbes and have changed into biogenic methane. The coalbed gas is comprised of secondary biogenic methane, thermogenic methane, the

  12. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  13. Reaction between infusion water and methane

    Energy Technology Data Exchange (ETDEWEB)

    Ettinger, I L

    1977-09-01

    This paper discusses the effect of infused water on the initial gas emission rate and on the pore structure of the coal. Water traps methane in micro-pores, so that lengthy periods are needed for the methane to penetrate large voids and cavities.

  14. Formation temperatures of thermogenic and biogenic methane

    Science.gov (United States)

    Stolper, D.A.; Lawson, M.; Davis, C.L.; Ferreira, A.A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, Anna M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J.M.

    2014-01-01

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models.

  15. Bacterial overgrowth and methane production in children with encopresis.

    Science.gov (United States)

    Leiby, Alycia; Mehta, Devendra; Gopalareddy, Vani; Jackson-Walker, Susan; Horvath, Karoly

    2010-05-01

    To assess the prevalence of small intestinal bacterial overgrowth (SIBO) and methane production in children with encopresis. Radiographic fecal impaction (FI) scores were assessed in children with secondary, retentive encopresis and compared with the breath test results. Breath tests with hypoosmotic lactulose solution were performed in both the study patients (n = 50) and gastrointestinal control subjects (n = 39) groups. The FI scores were significantly higher in the patients with encopresis who were methane producers (P encopresis and 9 of 39 (23%) of control subjects (P = .06). Methane was produced in 56% of the patients with encopresis versus 23.1% of the control subjects in the gastrointestinal group (P encopresis had a higher prevalence of SIBO, elevated basal methane levels, and higher methane production. Methane production was associated with more severe colonic impaction. Further study is needed to determine whether methane production is a primary or secondary factor in the pathogenesis of SIBO and encopresis.

  16. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  17. Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion

    Science.gov (United States)

    Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.

    2018-07-01

    Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.

  18. Factors Controlling Methane in Arctic Lakes of Southwest Greenland.

    Science.gov (United States)

    Northington, Robert M; Saros, Jasmine E

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region.

  19. Methane storage in porous activated carbons

    NARCIS (Netherlands)

    András Perl; prof. dr. Wim van Gemert

    2014-01-01

    Locally produced methane, - either as biomethane or power-to-gas product, has to be stored to provide a reliable gas source for the fluctuating demand of any local gas distribution network. Additionally, methane is a prominent transportation fuel but its suitability for vehicular application depends

  20. Molecular dynamics study of methane hydrate formation at a water/methane interface.

    Science.gov (United States)

    Zhang, Junfang; Hawtin, R W; Yang, Ye; Nakagava, Edson; Rivero, M; Choi, S K; Rodger, P M

    2008-08-28

    We present molecular dynamics simulation results of a liquid water/methane interface, with and without an oligomer of poly(methylaminoethylmethacrylate), PMAEMA. PMAEMA is an active component of a commercial low dosage hydrate inhibitor (LDHI). Simulations were performed in the constant NPT ensemble at temperatures of 220, 235, 240, 245, and 250 K and a pressure of 300 bar. The simulations show the onset of methane hydrate growth within 30 ns for temperatures below 245 K in the methane/water systems; at 240 K there is an induction period of ca. 20 ns, but at lower temperatures growth commences immediately. The simulations were analyzed to calculate hydrate content, the propensity for hydrogen bond formation, and how these were affected by both temperature and the presence of the LDHI. As expected, both the hydrogen bond number and hydrate content decreased with increasing temperature, though little difference was observed between the lowest two temperatures considered. In the presence of PMAEMA, the temperature below which sustained hydrate growth occurred was observed to decrease. Some of the implications for the role of PMAEMA in LDHIs are discussed.

  1. Methane storage in metal-organic frameworks.

    Science.gov (United States)

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  2. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands

    Science.gov (United States)

    Hu, Bao-lan; Shen, Li-dong; Lian, Xu; Zhu, Qun; Liu, Shuai; Huang, Qian; He, Zhan-fei; Geng, Sha; Cheng, Dong-qing; Lou, Li-ping; Xu, Xiang-yang; Zheng, Ping; He, Yun-feng

    2014-01-01

    The process of nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and shown to be mediated by “Candidatus Methylomirabilis oxyfera” (M. oxyfera). Here, evidence for n-damo in three different freshwater wetlands located in southeastern China was obtained using stable isotope measurements, quantitative PCR assays, and 16S rRNA and particulate methane monooxygenase gene clone library analyses. Stable isotope experiments confirmed the occurrence of n-damo in the examined wetlands, and the potential n-damo rates ranged from 0.31 to 5.43 nmol CO2 per gram of dry soil per day at different depths of soil cores. A combined analysis of 16S rRNA and particulate methane monooxygenase genes demonstrated that M. oxyfera-like bacteria were mainly present in the deep soil with a maximum abundance of 3.2 × 107 gene copies per gram of dry soil. It is estimated that ∼0.51 g of CH4 m−2 per year could be linked to the n-damo process in the examined wetlands based on the measured potential n-damo rates. This study presents previously unidentified confirmation that the n-damo process is a previously overlooked microbial methane sink in wetlands, and n-damo has the potential to be a globally important methane sink due to increasing nitrogen pollution. PMID:24616523

  3. Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills.

    Science.gov (United States)

    Thompson, Shirley; Sawyer, Jennifer; Bonam, Rathan; Valdivia, J E

    2009-07-01

    The German EPER, TNO, Belgium, LandGEM, and Scholl Canyon models for estimating methane production were compared to methane recovery rates for 35 Canadian landfills, assuming that 20% of emissions were not recovered. Two different fractions of degradable organic carbon (DOC(f)) were applied in all models. Most models performed better when the DOC(f) was 0.5 compared to 0.77. The Belgium, Scholl Canyon, and LandGEM version 2.01 models produced the best results of the existing models with respective mean absolute errors compared to methane generation rates (recovery rates + 20%) of 91%, 71%, and 89% at 0.50 DOC(f) and 171%, 115%, and 81% at 0.77 DOC(f). The Scholl Canyon model typically overestimated methane recovery rates and the LandGEM version 2.01 model, which modifies the Scholl Canyon model by dividing waste by 10, consistently underestimated methane recovery rates; this comparison suggested that modifying the divisor for waste in the Scholl Canyon model between one and ten could improve its accuracy. At 0.50 DOC(f) and 0.77 DOC(f) the modified model had the lowest absolute mean error when divided by 1.5 yielding 63 +/- 45% and 2.3 yielding 57 +/- 47%, respectively. These modified models reduced error and variability substantially and both have a strong correlation of r = 0.92.

  4. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie

    2013-07-15

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin structure: H.sub.4SiW.sub.12O.sub.40, H.sub.3PW.sub.12O.sub.40, H.sub.4SiMo.sub.12O.sub.40, or H.sub.3PMo.sub.12O.sub.40, can be when supported on silica.

  5. Working group report: methane emissions from coal mining

    International Nuclear Information System (INIS)

    Kruger, D.

    1993-01-01

    The process of coalification inherently generates methane and other byproducts. The amount of methane released during coal mining is a function of coal rank and depth, gas content, and mining methods, as well as other factors such as moisture. In most underground mines, methane is removed by drawing large quantities of air through the mine releasing the air into the atmosphere. In surface mines, exposed coal faces and surfaces, as well as areas of coal rubble created by blasting operations are believed to be the major sources of methane. A portion of the methane emitted from coal mining comes from post-mining activities such as coal processing, transportation, and utilisation. Some methane is also released from coal waste piles and abandoned mines. This paper highlights difficulties with previous methane emission studies namely: absence of data on which to base estimates; use of national data to develop global estimates; failure to include all possible emission sources; overreliance on statistical estimation methodologies. It recommends a 'tiered' approach for the estimation of emissions from underground mines, surface mines and post-mining activities. For each source, two or more approaches (or 'tiers') are presented, with the first tier requiring basic and readily available data and higher tiers requiring additional data. 29 refs., 3 tabs

  6. On-line monitoring of methane in sewer air.

    Science.gov (United States)

    Liu, Yiwen; Sharma, Keshab R; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-10-16

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R(2) > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air.

  7. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  8. Technical Note: Methionine, a precursor of methane in living plants

    Science.gov (United States)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  9. Global climate: Methane contribution to greenhouse effect

    International Nuclear Information System (INIS)

    Metalli, P.

    1992-01-01

    The global atmospheric concentration of methane greatly contributes to the severity of the greenhouse effect. It has been estimated that this concentration, due mainly to human activities, is growing at the rate of roughly 1.1% per year. Environmental scientists suggest that a reduction, even as small as 10%, in global methane emissions would be enough to curtail the hypothetical global warning scenarios forecasted for the up-coming century. Through the recovery of methane from municipal and farm wastes, as well as, through the control of methane leaks and dispersions in coal mining and petrochemical processes, substantial progress towards the abatement of greenhouse gas effects could be achieved without having to resort to economically detrimental limitations on the use of fossil fuels

  10. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    Jennervik, A.

    1992-01-01

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  11. Multiparametric methane sensor for environmental monitoring

    Science.gov (United States)

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six

  12. IPNS grooved, solid methane moderator

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Schulke, A.W.; Scott, T.L.; Wozniak, D.G.; Benson, B.E.; Leyda, B.D.

    1985-01-01

    There are two motives for using cold moderators in pulsed neutron sources, to provide higher fluxes of long-wavelength neutrons, and to extend the epithermal range with its short pulse structure to lower energies. For both these purposes solid methane, operated at the lowest possible temperatures, is the best material we know of. Two problems accompany the use of solid methane in high power sources, namely heat transport in view of the low thermal conductivity of solid methane, and deterioration due to radiation damage. We have designed a system suitable to operate in IPNS, subject to nuclear heating of about 25 W, which incorporates an aluminum foam matrix to conduct the heat from within the moderator. We report the results of the first few months' operation and of a few tests that we have performed

  13. Energy sector methane recovery and use: the importance of policy

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kerr; Michelle Hershman

    2009-08-15

    To raise awareness about appropriate policy options to advance methane recovery and use in the energy sector, the IEA has conducted a series of analyses and studies over the past few years. This report continues IEA efforts by providing policy makers with examples and best practices in methane mitigation policy design and implementation. This report offers an overview of four types of methane mitigation projects that have the strongest links to the energy sector: oil and gas methane recovery and reduction of leaks and losses; coal mine methane; landfill methane; and manure methane recovery and use. It identifies successful policies that have been used to advance these important projects. This information is intended to guide policy makers as they search for low-cost, near-term solutions to climate change. 38 refs., 10 figs., 1 app.

  14. 30 CFR 75.1106-1 - Test for methane.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for methane. 75.1106-1 Section 75.1106-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-1 Test for methane. Until December 31, 1970, a permissible flame safety lamp may be used to make tests for methane required by the...

  15. Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment

    Science.gov (United States)

    Davis, Katherine J.; Barnhart, Elliott P.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Addition of organic amendments to coal-containing systems can increase the rate and extent of biogenic methane production for 60–80 days before production slows or stops. Understanding the effect of repeated amendment additions on the rate and extent of enhanced coal-dependent methane production is important if biological coal-to-methane conversion is to be enhanced on a commercial scale. Microalgal biomass was added at a concentration of 0.1 g/L to microcosms with and without coal on days 0, 76, and 117. Rates of methane production were enhanced after the initial amendment but coal-containing treatments produced successively decreasing amounts of methane with each amendment. During the first amendment period, 113% of carbon added as amendment was recovered as methane, whereas in the second and third amendment periods, 39% and 32% of carbon added as amendment was recovered as methane, respectively. Additionally, algae-amended coal treatments produced ∼38% more methane than unamended coal treatments and ∼180% more methane than amended coal-free treatments after one amendment. However, a second amendment addition resulted in only an ∼25% increase in methane production for coal versus noncoal treatments and a third amendment addition resulted in similar methane production in both coal and noncoal treatments. Successive amendment additions appeared to result in a shift from coal-to-methane conversion to amendment-to-methane conversion. The reported results indicate that a better understanding is needed of the potential impacts and efficiencies of repeated stimulation for enhanced coal-to-methane conversion.

  16. Methane fluxes and inventories in the accretionary prism of southwestern Taiwan

    Science.gov (United States)

    Lin, L. H.; Chen, N. C.; Yang, T. F.; Hong, W. L.; Chen, H. W.; Chen, H. C.; Hu, C. Y.; Huang, Y. C.; Lin, S.; Su, C. C.; Liao, W. Z.; Sun, C. H.; Wang, P. L.; Yang, T.; Jiang, S. Y.; Liu, C. S.; Wang, Y.; Chung, S. H.

    2017-12-01

    Sediments distributed across marine and terrestrial realms represent the largest methane reservoir on Earth. The degassing of methane facilitated through either geological structures or perturbation would contribute significantly to global climatic fluctuation and elemental cycling. The exact fluxes and processes governing methane production, consumption and transport in a geological system remain largely unknown in part due to the limited coverage and access of samples. In this study, more than 200 sediment cores were collected from offshore and onshore southwestern Taiwan and analyzed for their gas and aqueous geochemistry. These data combined with published data and existing parameters of subduction system were used to calculate methane fluxes across different geochemical transitions and to develop scenarios of mass balance to constrain deep microbial and thermogenic methane production rates within the Taiwanese accretionary prism. The results showed that high methane fluxes tend to be associated with structural features, suggesting a strong structural control on methane transport. A significant portion of ascending methane (>50%) was consumed by anaerobic oxidation of methane at most sites. Gas compositions and isotopes revealed a transition from the predominance of microbial methane in the passive margin to thermogenic methane at the upper slope of the active margin and onshore mud volcanoes. Methane production and consumption at shallow depths were nearly offset with a small fraction of residual methane discharged into seawater or the atmosphere. The flux imbalance arose primarily from the deep microbial and thermogenic production and could be likely accounted for by the sequestration of methane into hydrate forms, and clay absorption.

  17. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years

    Science.gov (United States)

    Wooller, Matthew J.; Pohlman, John W.; Gaglioti, Benjamin V.; Langdon, Peter; Jones, Miriam; Anthony, Katey M. Walter; Becker, Kevin W.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2012-01-01

    Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000 year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000 years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000 cal year BP sediments have δ13C values that range from ~−39 to −31‰, suggesting peak methane carbon assimilation at that time. These low δ13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500 cal year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640 cal year BP, and fossil chironomids from 1,500 cal year BP in the core illustrate that ‘old’ carbon has also contributed to the development of the aquatic ecosystem since ~1,500 cal year BP. The relatively low δ13C values of aquatic invertebrates (as low as −40.5‰) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.

  18. Interference-free mid-IR laser absorption detection of methane

    International Nuclear Information System (INIS)

    Pyun, Sung Hyun; Cho, Jungwan; Davidson, David F; Hanson, Ronald K

    2011-01-01

    A novel, mid-IR scanned-wavelength laser absorption diagnostic was developed for time-resolved, interference-free, absorption measurement of methane concentration. A differential absorption (peak minus valley) scheme was used that takes advantage of the structural differences of the absorption spectrum of methane and other hydrocarbons. A peak and valley wavelength pair was selected to maximize the differential cross-section (σ peak minus valley ) of methane for the maximum signal-to-noise ratio, and to minimize that of the interfering absorbers. Methane cross-sections at the peak and valley wavelengths were measured over a range of temperatures, 1000 to 2000 K, and pressures 1.3 to 5.4 atm. The cross-sections of the interfering absorbers were assumed constant over the small wavelength interval between the methane peak and valley features. Using this diagnostic, methane concentration time histories during n-heptane pyrolysis were measured behind reflected shock waves in a shock tube. The differential absorption scheme efficiently rejected the absorption interference and successfully recovered the vapor-phase methane concentration. These measurements allowed the comparison with methane concentration time-history simulations derived from a current n-heptane reaction mechanism (Sirjean et al 2009 A high-temperature chemical kinetic model of n-alkane oxidation JetSurF version 1.0)

  19. Termites facilitate methane oxidation and shape the methanotrophic community.

    Science.gov (United States)

    Ho, Adrian; Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Boon, Nico; Van Ranst, Eric

    2013-12-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.

  20. Development and governance of renewable methane use in transport

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Renewable methane is promoted in many countries as a sustainable alternative to fossil fuels in all types of transport applications. This article examines development, governance and motives for the use of biogas, synthetic biogas, wind methane and other types of renewable methane in transport. Fossil methane fuels, such as natural gas, shale gas and synthetic natural gas, are included as a comparison. Compressed town gas played an important role in the adoption of methane for traffic use, so its history is also examined. Three waves of development in the use of traffic biogas are identified: the Second World War, the 1970s oil crises, and the present day quest for sustainability. While biogas has been used in transport since the 1930s, the other renewable methane fuels are now emerging in the commercial market with only a few years of history. The article looks at the use of renewable methane in a global perspective, although most of the examples are from Europe, as the majority of the technological and political advances have been European.

  1. Methane Fluxes in West Siberia: 3-D Regional Model Simulation

    International Nuclear Information System (INIS)

    Jagovkina, S. V.; Karol, I. L.; Zubov, V. A.; Lagun, V. E.; Reshetnikov, A. I.; Rozanov, E. V.

    2001-01-01

    The West Siberian region is one of the main contributors of the atmospheric greenhouse gas methane due to the large areas of wetlands, rivers, lakes and numerous gas deposits situated there.But there are no reliable estimations of integral methane flux from this area into the atmosphere. For assessment of methane fluxes in West Siberia the specially constructed 3-D regional chemical transport model was applied. The 3-D distribution of methane is calculated on the basis of the current meteorological data fields(wind, temperature, geopotential) updated 4 times a day. The methane concentrations measured near the main gas fields of West Siberia in the summer season of 1999, were used for correction of methane flux intensity estimates obtained previously by comparison of measurements carried out in summer 1993 and 1996 with modelled methane mixing ratio distribution. This set of field and model experiments confirmed the preliminary conclusion about low leakage intensity: anthropogenic methane flux does not exceed 5-15% of total summer methane flux, estimated as 11-12 Mt CH 4 in summer from this region, in spite of the large areas of gas deposits located there

  2. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  3. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... from the olive pulp, and c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  4. Methane emissions and climate compatibility of fossil fuels

    International Nuclear Information System (INIS)

    Meier, B.

    1992-01-01

    Methane contributes directly and indirectly to the additional greenhouse effect caused by human activities. The vast majority of the anthropogenic methane release occurs worldwide in non-fossil sources such as rice cultivation, livestock operations, sanitary landfills and combustion of bio-mass. Methane emissions also occur during production, distribution and utilisation of fossil fuels. Also when considering the methane release and CO 2 -emissions of processes upstream of combustion, the ranking of environmental compatibility of natural gas, fuel oil and cool remains unchanged. Of all fossil fuels, natural gas contributes the least to the greenhouse effect. (orig.) [de

  5. Raman and FTIR spectroscopy of methane in olivine

    Science.gov (United States)

    Smith, A.; Oze, C.; Rossman, G. R.; Celestian, A. J.

    2017-12-01

    Olivine has been proposed to be a direct source of methane (CH4) in serpentinization systems and experiments. Here, Raman and Fourier Transform Infrared (FTIR) spectroscopy were used to verify the presence and abundance of CH4 in olivine samples from nine localities, including the San Carlos olivine. Raman analyses did not identify any methane in the olivine samples. As olivine is orthorhombic, three polarized FTIR spectra were obtained for the olivine samples. No methane was detected in any of the olivine samples using FTIR. Overall, olivine investigated in this study does not appear to be a primary source of methane.

  6. GOSAT-2014 methane spectral line list

    International Nuclear Information System (INIS)

    Nikitin, A.V.; Lyulin, O.M.; Mikhailenko, S.N.; Perevalov, V.I.; Filippov, N.N.; Grigoriev, I.M.; Morino, I.; Yoshida, Y.; Matsunaga, T.

    2015-01-01

    The updated methane spectral line list GOSAT-2014 for the 5550–6240 cm −1 region with the intensity cutoff of 5×10 –25 cm/molecule at 296 K is presented. The line list is based on the extensive measurements of the methane spectral line parameters performed at different temperatures and pressures of methane without and with buffer gases N 2 , O 2 and air. It contains the following spectral line parameters of about 12150 transitions: line position, line intensity, energy of lower state, air-induced and self-pressure-induced broadening and shift coefficients and temperature exponent of air-broadening coefficient. The accuracy of the line positions and intensities are considerably improved in comparison with the previous version GOSAT-2009. The improvement of the line list is done mainly due to the involving to the line position and intensity retrieval of six new spectra recorded with short path way (8.75 cm). The air-broadening and air-shift coefficients for the J-manifolds of the 2ν 3 (F 2 ) band are refitted using the new more precise values of the line positions and intensities. The line assignment is considerably extended. The lower state J-value was assigned to 6397 lines representing 94.4% of integrated intensity of the considering wavenumber region. The complete assignment was done for 2750 lines. - Highlights: • The upgrade of the GOSAT methane line list in the 5550–6240 cm −1 region is done. • 12,146 experimental methane line positions and intensities are retrieved. • 6376 lower energy levels for methane lines are determined

  7. Assessing dissolved methane patterns in central New York groundwater

    Directory of Open Access Journals (Sweden)

    Lauren E. McPhillips

    2014-07-01

    New hydrological insights for this region: There was no significant difference between methane concentrations in valleys versus upslope locations, in water wells less than or greater than 1 km from a conventional gas well, and across different geohydrologic units. Methane concentrations were significantly higher in groundwater dominated by sodium chloride or sodium bicarbonate compared with groundwater dominated by calcium bicarbonate, indicating bedrock interactions and lengthy residence times as controls. A multivariate regression model of dissolved methane using only three variables (sodium, hardness, and barium explained 77% of methane variability, further emphasizing the dominance of geochemistry and hydrogeology as controls on baseline methane patterns.

  8. Methane emission by adult ostriches (Struthio camelus).

    Science.gov (United States)

    Frei, Samuel; Dittmann, Marie T; Reutlinger, Christoph; Ortmann, Sylvia; Hatt, Jean-Michel; Kreuzer, Michael; Clauss, Marcus

    2015-02-01

    Ostriches (Struthio camelus) are herbivorous birds with a digestive physiology that shares several similarities with that of herbivorous mammals. Previous reports, however, claimed a very low methane emission from ostriches, which would be clearly different from mammals. If this could be confirmed, ostrich meat would represent a very attractive alternative to ruminant-and generally mammalian-meat by representing a particularly low-emission agricultural form of production. We individually measured, by chamber respirometry, the amount of oxygen consumed as well as carbon dioxide and methane emitted from six adult ostriches (body mass 108.3±8.3 kg) during a 24-hour period when fed a pelleted lucerne diet. While oxygen consumption was in the range of values previously reported for ostriches, supporting the validity of our experimental setup, methane production was, at 17.5±3.2 L d(-1), much higher than previously reported for this species, and was of the magnitude expected for similar-sized, nonruminant mammalian herbivores. These results suggest that methane emission is similar between ostriches and nonruminant mammalian herbivores and that the environmental burden of these animals is comparable. The findings furthermore indicate that it appears justified to use currently available scaling equations for methane production of nonruminant mammals in paleo-reconstructions of methane production of herbivorous dinosaurs. Copyright © 2014. Published by Elsevier Inc.

  9. Mars methane rises and falls with the seasons

    Science.gov (United States)

    Hand, Eric

    2018-01-01

    On Earth, atmospheric methane is a prominent sign of life. On Mars, the story is more complicated. Trace detections of methane, alongside glimpses of larger spikes, have fueled debates about biological and nonbiological sources of the gas. Now, NASA scientists have announced a new twist in the tale: Methane regularly rises to a peak in late northern summer in a seasonal pattern. The swings are larger than can be explained by the planet's seasonal freeze-thaw cycles. The wiggles are a mystery within a larger mystery: claims of methane spikes an order of magnitude or two higher than the background. Some scientists say meteor showers could be responsible, by depositing carbonaceous material in the atmosphere that reacts to form methane. A close encounter on 24 January with debris from a comet could provide a chance to test the hypothesis.

  10. Significance of dissolved methane in effluents of anaerobically ...

    Science.gov (United States)

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  11. Designing and implementing science-based methane policies

    Science.gov (United States)

    George, F.

    2017-12-01

    The phenomenal growth in shale gas production across the U.S. has significantly improved the energy security and economic prospects of the country. Natural gas is a "versatile" fuel that has application in every major end-use sector of the economy, both as a fuel and a feedstock. Natural gas has also played a significant role in reducing CO2 emissions from the power sector by displacing more carbon intensive fossil fuels. However, emissions of natural gas (predominantly methane) from the wellhead to the burner tip can erode this environmental benefit. Preserving the many benefits of America's natural gas resources requires smart, science-based policies to optimize the energy delivery efficiency of the natural gas supply chain and ensure that natural gas remains a key pillar in our transition to a low-carbon economy. Southwestern Energy (SWN) is the third largest natural gas producer in the United States. Over the last several years, SWN has participated in a number of scientific studies with regulatory agencies, academia and non-governmental entities that have led to over a dozen peer-reviewed papers on methane emissions from oil and gas operations. This presentation will review how our participation in these studies has informed our internal policies and procedures, as well as our external programs, including the ONE Future coalition (ONE Future). In particular, the presentation will highlight the impact of such studies on our Leak Detection and Repair (LDAR) program, designing new methane research and on the ONE Future initiatives - all with the focus of improving the delivery efficiency of oil and gas operations. Our experience supports continued research in the detection and mitigation of methane emissions, with emphasis on longer duration characterization of methane emissions from oil and gas facilities and further development of cost-effective methane detection and mitigation techniques. We conclude from our scientific and operational experiences that a

  12. Development of methane conversion improvement method by recycling of residual methane for steam reforming as a part of R and D of HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Hino, Ryutaro; Koiso, Hiroshi.

    1998-01-01

    The purpose of the present study is to improve methane conversion for an HTGR-steam reforming system by recycling of residual methane. The residual methane in a product gas after steam reforming was recycled with a gas separator of polyimide membrane. Gas separation characteristics of the separator were investigated experimentally and numerically, and an experimental study on recycling system was carried out. The results showed that the recycling system improves apparent methane conversion, ratio of methane conversion to methane supply from a cylinder, from 20 to 32% compared with those without recycling. (author)

  13. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    Science.gov (United States)

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  14. Remote Sensing Applications for Antrim Shale Fracture Characterization, Michigan Basin

    Science.gov (United States)

    Kuuskraa, Vello

    1997-01-01

    Advanced Research International (ARI) sent seven staff members to the 1997 International Coalbed Methane Symposium, held in Tuscaloosa, Alabama from May 12-17. ARI gave a short course on risk reduction strategies, including remote fracture detection, for coalbed methane exploration and development that was attended by about 25 coalbed methane industry professionals; and presented a paper entitled 'Optimizing coalbed methane cavity completion operations with the application of a new discrete element model.' We met with many potential clients and discussed our fracture detection services. China has vast coalbed methane resources, but is still highly dependent on coal-and wood-burning. This workshop, sponsored by the United Nations, was intended to help China develop its less-polluting energy reserves. ARI is successfully finding new applications for its fracture detection services. Coalbed methane exploration became an important market in this quarter, with the inception of a joint industry/government collaboration between ARI, Texaco and DOE to use remote fracture detection to identify areas with good potential for coalbed methane production in the Ferron Coal Trend of central Utah. Geothermal energy exploration is another emerging market for ARI, where fracture detection is applied to identify pathways for groundwater recharge, movement, and the locations of potential geothermal reservoirs. Ari continued work on two industry/government collaborations to demonstrate fracture detection to potential clients. Also completed the technical content layout for multimedia CD-ROM that describes our remote fracture detection services.

  15. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed....

  16. Aquatic herbivores facilitate the emission of methane from wetlands

    NARCIS (Netherlands)

    Dingemans, B.J.J.; Bakker, E.S.; Bodelier, P.L.E.

    2011-01-01

    Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on

  17. Methane Seepage on Mars: Where to Look and Why.

    Science.gov (United States)

    Oehler, Dorothy Z; Etiope, Giuseppe

    2017-12-01

    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key

  18. Methanization, new opportunities for territories. National technical day - 13 May 2014, Paris. Collection of interventions. The Methanization Autonomy Nitrogen energy plan

    International Nuclear Information System (INIS)

    Bastide, Guillaume; Guilet, Marie; Banville, Sandrine; Rocher, Franck; Brosset, Denis; Chapelat, Nicolas; Le Roy, Philippe; Leboucher, Anne; Boucher, Sophie; Bolduan, Rainer; Pislor, Emilie; Desbles, Matthieu; Garoche, David; Decoopman, Bertrand; Deshayes, Odile; Mazzenga, Anthony; Quaak, Mauritz; Berthelot, Corinne

    2014-05-01

    This publication contains proceedings of a conference on methanization projects and techniques, notably in rural areas (there were 140 rural installations in France in 2014 and 20 centralised ones). Contributions thus give an overview of the present development of this sector, and of its perspectives over the medium to long term. A first set of contributions addressed the performance of a panel of farm-based and centralised methanization installations with technical, energy, environmental, agronomic and social assessments for 8 units (lessons learned from installation follow-up, recommendations for operation optimisation of 2 units), and a profitability study performed on 21 installations (lessons learned, profitability evolution for 2 installations). The second set of contributions addressed development perspectives of the methanization sector over the medium to long term. Contributions addressed the following issues: how to mobilise and process bio-wastes from big producers, other possible sources (energetic crops, intermediate crops for energy purposes or CIVE or crop residues), the use of digestate to reduce the use of mineral fertilizers, and emerging energetic valorisations of biogas. A last part presents the Methanization Autonomy Nitrogen Energy Plan (the EMAA plan) which aims at managing and valorising nitrogen (notably from breeding effluents), at developing a French model of agricultural methanization. The stakes of methanization for energy transition are outlined, and the operation of a methanization installation is described

  19. Methane source identification in Boston, Massachusetts using isotopic and ethane measurements

    Science.gov (United States)

    Down, A.; Jackson, R. B.; Plata, D.; McKain, K.; Wofsy, S. C.; Rella, C.; Crosson, E.; Phillips, N. G.

    2012-12-01

    Methane has substantial greenhouse warming potential and is the principle component of natural gas. Fugitive natural gas emissions could be a significant source of methane to the atmosphere. However, the cumulative magnitude of natural gas leaks is not yet well constrained. We used a combination of point source measurements and ambient monitoring to characterize the methane sources in the Boston urban area. We developed distinct fingerprints for natural gas and multiple biogenic methane sources based on hydrocarbon concentration and isotopic composition. We combine these data with periodic measurements of atmospheric methane and ethane concentration to estimate the fractional contribution of natural gas and biogenic methane sources to the cumulative urban methane flux in Boston. These results are used to inform an inverse model of urban methane concentration and emissions.

  20. Market research on biogas valorizations and methanization. Final report

    International Nuclear Information System (INIS)

    2010-09-01

    This market research aims at giving an overview of the existing methanization installations and of their dynamics in France, at assessing biogas production and use, at analyzing the methanization market, and at defining development perspectives for this sector by 2020. Based on a survey of methanization installations, on interviews with many actors of this sector, and on a seminar organized on this topic, this report presents and comments market data for biogas valorization and methanization in different sectors: household, agricultural, and industrial and waste water processing plants. It comments evolution trends by 2020 for these sectors, and the role that the emerging sector of centralized methanization could have in the years to come

  1. Effect of hemicellulolytic enzymes on mesophilic methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Oi, S; Matsui, Y; Iizuka, M; Yamamoto, T

    1977-01-01

    Mesophilic methane fermentation was examined using soybean seed coat, a waste from soybean processing for oil manufacture, with or without treatment with hemicellulolytic enzymes of Aspergillus niger, and the following results were obtained: (1) The methane fermentation bacteria acclimated to soybean seed coat medium were shown to consume monosaccharides and evolve methane in the following decreasing order: glucose, fructose, mannose > xylose, galactose, glucosamine, galacturonic acid > arabinose. The bacteria were also shown to form methane from a gas mixture of hydrogen and carbon dioxide. (2) In fermentation of soybean seed coat treated with the fungal enzyme, about 70% of the total sugar content as consumed in four weeks, and the gas evolution was about twice that without the fungal enzyme. The gas evolved was composed of 60% methane and 36% carbon dioxide. In general, vigorous evolution of hydrogen and carbon dioxide occurred at a very early stage of fermentation, and was followed by formation of methane. The maximum gas evolution of the enzyme-treated mash took place in 6 days while that of untreated mash occurred one week later. Chemical oxygen demand of the supernatant of the former mash was decreased by fermentation to 7.0% of the initial level.

  2. Working group report: methane emissions from biomass burning

    International Nuclear Information System (INIS)

    Delmas, R.A.; Ahuja, D.

    1993-01-01

    Biomass burning is a significant source of atmospheric methane. Like most other sources of methane, it has both natural and anthropogenic causes, although anthropogenic causes now predominate. Most of the estimates of methane emissions from biomass burning in the past have relied on a uniform emission factor for all types of burning. This results in the share of trace gas emissions for different types of burning being the same as the amounts of biomass burned in those types. The Working Group endorsed the extension of an approach followed for Africa by Delmas et al. (1991) to use different emission factors for different types of biomass burning to estimate national emissions of methane. This is really critical as emission factors present important variations. While the focus of discussions of the Working Group was on methane emissions from biomass burning, the Group endorsed the IPCC-OECD methodology of estimating all greenhouse related trace gases from biomass burning. Neither the IPCC-OECD nor the methodology suggested here applies to estimation of trace gas emissions from the processing of biomass to upgraded fuels. They must be estimated separately. The Group also discussed technical options for controlling methane emissions from biomass. 12 refs

  3. Cometary origin of atmospheric methane variations on Mars unlikely

    Science.gov (United States)

    Roos-Serote, M.; Atreya, S. K.; Webster, C. R.; Mahaffy, P. R.

    2016-10-01

    The detection of methane in the atmosphere of Mars was first reported in 2004. Since then a number of independent observations of methane have been reported, all showing temporal variability. Up until recently, the origin of methane was attributed to sources either indigenous to Mars or exogenous, where methane is a UV degradation byproduct of organics falling on to the surface. Most recently, a new hypothesis has been proposed that argues that the appearance and variation of methane are correlated with specific meteor events at Mars. Indeed, extraplanetary material can be brought to a planet when it passes through a meteoroid stream left behind by cometary bodies orbiting the Sun. This occurs repeatedly at specific times in a planet's year as streams tend to be fairly stable in space. In this paper, we revisit this latest hypothesis by carrying out a complete analysis of all available data on Mars atmospheric methane, including the very recent data not previously published, together with all published predicted meteor events for Mars. Whether we consider the collection of individual data points and predicted meteor events, whether we apply statistical analysis, or whether we consider different time spans between high methane measurements and the occurrence of meteor events, we find no compelling evidence for any correlation between atmospheric methane and predicted meteor events.

  4. Methane gas from cow dung

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The Khadi and Village Industries Commission offers a gobar gas (methane gas) production scheme. The gas plant, available in sizes of 60 to 3000 cu ft, requires only low maintenance expenditures. The cow dung, which is at present being wasted or burned as domestic fuel, can be used for manufacturing methane for fuel gas. The residue will be a good fertilizer for increasing food production. There are now about 4000 gobar gas plants in India.

  5. A Possible Sink for Methane on Mars

    NARCIS (Netherlands)

    Nørnberg, P.; Jensen, S. J. K.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, E.; Iversen, J. J.; Kondrup, J. C.

    2014-01-01

    Mechanical simulated wind activation of mineral surfaces act as a trap for Methane through formation of covalent Si-C bonds stable up to temperatures above 250 C. This mechanism is proposed as a Methane sink on Mars.

  6. Upward revision of global fossil fuel methane emissions based on isotope database.

    Science.gov (United States)

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  7. Methane layering in bord and pillar workings.

    CSIR Research Space (South Africa)

    Creedy, DP

    1997-08-01

    Full Text Available This report reviews the state of knowledge on the occurrence, investigation, detection, monitoring, prevention and dispensation of methane layers in coal mines. Mining practice throughout the world in respect of methane layering is generally reliant...

  8. 14C measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1978-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 CCH 4 > -45% 0 and microbially-produced or biogenic methane had delta 13 CCH 4 0 . Groundwaters containing significant biogenic methane had abnormally heavy delta 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate, have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. (orig.) [de

  9. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...

  10. Biological conversion of coal gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S; Vega, J L; Clausen, E C; Gaddy, J L

    1988-08-01

    Biological conversion of low-Btu coal synthesis gas to higher Btu methane was demonstrated using both pure co-cultures and/or adapted-mixed anaerobic bacteria. Peptostreptococcus productus metabolized coal gas to mainly acetate and CO/sub 2/. The co-cultures containing methanogens converted these products to methane. In mixed culture studies, CH/sub 4/ and small amounts of acetate were produced. Reactor studies using stirred-tank and immobilized cell reactors exhibited excellent potential to convert CO, CO/sub 2/ and H/sub 2/ to methane at higher gas flow rates. Gas retention times ranging from 0.7 to 2 hours and high agitation were required for 90 percent CO conversion in these systems. This paper also illustrates the potential of biological methanation and demonstrates the need for good mass transfer in converting gas phase substrates. 21 refs., 1 fig., 7 tabs.

  11. Process for separating nitrogen from methane using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Marysville, OH; Qiu, Dongming [Dublin, OH; Dritz, Terence Andrew [Worthington, OH; Neagle, Paul [Westerville, OH; Litt, Robert Dwayne [Westerville, OH; Arora, Ravi [Dublin, OH; Lamont, Michael Jay [Hilliard, OH; Pagnotto, Kristina M [Cincinnati, OH

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  12. A marine microbial consortium apparently mediating anaerobic oxidation of methane

    DEFF Research Database (Denmark)

    Boetius, A.; Ravenschlag, K.; Schubert, CJ

    2000-01-01

    microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria(5-7). Here we provide microscopic...... cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane.......A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments(1). Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles(2), radiotracer experiments(3) and stable carbon isotope data(4). But the elusive...

  13. Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle.

    Science.gov (United States)

    Hayes, B J; Donoghue, K A; Reich, C M; Mason, B A; Bird-Gardiner, T; Herd, R M; Arthur, P F

    2016-03-01

    Enteric methane emissions from beef cattle are a significant component of total greenhouse gas emissions from agriculture. The variation between beef cattle in methane emissions is partly genetic, whether measured as methane production, methane yield (methane production/DMI), or residual methane production (observed methane production - expected methane production), with heritabilities ranging from 0.19 to 0.29. This suggests methane emissions could be reduced by selection. Given the high cost of measuring methane production from individual beef cattle, genomic selection is the most feasible approach to achieve this reduction in emissions. We derived genomic EBV (GEBV) for methane traits from a reference set of 747 Angus animals phenotyped for methane traits and genotyped for 630,000 SNP. The accuracy of GEBV was tested in a validation set of 273 Angus animals phenotyped for the same traits. Accuracies of GEBV ranged from 0.29 ± 0.06 for methane yield and 0.35 ± 0.06 for residual methane production. Selection on GEBV using the genomic prediction equations derived here could reduce emissions for Angus cattle by roughly 5% over 10 yr.

  14. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  15. Methane, where does it come from and what is its impact on climate?

    International Nuclear Information System (INIS)

    Andre, Jean-Claude; Boucher, Olivier; Bousquet, Philippe; Chanin, Marie-Lise; Chappellaz, Jerome; Tardieu, Bernard; Denegre, Jean; Beauvais, Muriel; Lefaudeux, Francois; Appert, Olivier; Desmarest, Patrice; Feillet, Pierre; Jarry, Bruno; Minster, Jean-Francois; Masson-Delmotte, Valerie; Dessus, Benjamin; Le Treut, Herve

    2013-01-01

    This report proposes a detailed presentation of knowledge on methane and on its role in the atmosphere. The first part addresses methane and the greenhouse effect: general considerations on methane in the atmosphere, radiative properties and importance with respect to the greenhouse effect, methane and future climate change. The second part proposes a presentation of methane sources and sinks. The third part addresses the study of methane fluxes: possible approaches to assess methane fluxes, measurement of atmospheric methane, the issue of atmospheric inversion (an approach to convert atmospheric observations into methane fluxes, lessons learned from atmospheric inversions, perspectives to improve knowledge on methane fluxes). The next chapters discuss the past, present and future evolution of methane in the atmosphere, discuss the carbon equivalence of methane (Kyoto protocol, policies of climate change, global warming power, role of methane, metrics, emission reduction), and comment the current perceivable evolutions, propose some methodological recommendations and actions to be implemented on the short term with no regret

  16. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  17. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  18. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    Science.gov (United States)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  19. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  20. Methane distribution and oxidation around the Lena Delta in summer 2013

    Science.gov (United States)

    Bussmann, Ingeborg; Hackbusch, Steffen; Schaal, Patrick; Wichels, Antje

    2017-11-01

    The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis), as well as the methane distribution (via a headspace method) and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L-1 for riverine water (salinity (S) 20). The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L-1 d-1), despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We postulate the presence of a riverine methanotrophic population that is limited by sub-optimal temperatures and substrate concentrations and a polar

  1. Relating gas hydrate saturation to depth of sulfate-methane transition

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    The stability of gas hydrates which often form in pore spaces of marine sediment along continental margins, depends on temperature, pressure, salinity and gas composition. Gas hydrate can precipitate in pore space of marine sediment when gas concentrations exceed solubility conditions within a gas hydrate stability zone (GHSZ). The amount of gas hydrate present in the GHSZ can vary significantly because it relates to dynamic inputs and outputs of gas, primarily methane, over a long timescale. In anoxic marine sediments, depletion of pore water sulfate occurs when sulfate is reduced through bacteria or when anaerobic oxidation of methane occurs. The presence of gas hydrates in shallow sediments implies a significant methane flux towards the seafloor, which can make the second route for sulfate depletion significant. This paper presented a numerical model that incorporates a dynamic sulfate-methane transition (SMT) for gas hydrate systems where methane is supplied from depth. The approach has the advantage of needing only pore water data from shallow piston cores. The analytical expressions are only valid for steady-state systems in which all gas is methane, all methane enters the GHSZ from the base, and no methane escapes the top through seafloor venting. These constraints mean that anaerobic oxidation of methane (AOM) is the only sink of gas, allowing a direct coupling of SMT depth to net methane flux. This study showed that a basic gas hydrate saturation profile can be determined from the SMT depth via analytical expressions if site-specific parameters such as sedimentation rate, methane solubility and porosity are known. This analytical model was verified at gas hydrate bearing sites along the Cascadia margin where methane is mostly sourced from depth. It was concluded that the analytical expressions provides a fast and convenient method to calculate gas hydrate saturation for a given geologic setting, including deep-source systems. 28 refs., 2 tabs., 5 figs., 1

  2. methanization development scheme in the Maine-et-Loire district - Synthesis June 2016

    International Nuclear Information System (INIS)

    2016-06-01

    After a presentation of the situation of methanization in France and in the Pays-de-la-Loire region, this report proposes an overview of the situation of methanization in the district and recalls objectives defined in its methanization development scheme. Then, it describes methanization principles (definition, operation and techniques, project typology, project development steps), proposes an overview of conditions for a successful methanization project development (substrate typology, biogas energetic valorisation, digestate valorisation, project financial and economic impact, social acceptability of methanization projects), gives an assessment of methanization development potential in the district through an assessment of methanizable resources and of energy outlets. It presents and comments a map of methanization development opportunities in the district

  3. Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations

    Science.gov (United States)

    Levine, J. S.; Summers, M. E.; Ewell, M.

    2010-01-01

    The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.

  4. Nitrogen as a regulatory factor of methane oxidation in soils and sediments

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Laanbroek, H.J.

    2004-01-01

    The oxidation of methane by methane-oxidising microorganisms is an important link in the global methane budget. Oxic soils are a net sink while wetland soils are a net source of atmospheric methane. It has generally been accepted that the consumption of methane in upland as well as lowland systems

  5. LOW-TEMPERATURE EQUATION OF STATE OF SOLID METHANE

    Directory of Open Access Journals (Sweden)

    L. N. Yakub

    2016-02-01

    Full Text Available The theoretical equation of state for solid methane, developed within the framework of perturbation theory, with the crystal consisting of spherical molecules as zero-order approximation, and octupole – octupole interaction of methane molecules as a perturbation, is proposed. Thermodynamic functions are computed on the sublimation line up to the triple point. The contribution of the octupole – octupole interaction to the thermodynamic properties of solid methane is estimated.

  6. Biologically Produced Methane as a Renewable Energy Source.

    Science.gov (United States)

    Holmes, D E; Smith, J A

    2016-01-01

    Methanogens are a unique group of strictly anaerobic archaea that are more metabolically diverse than previously thought. Traditionally, it was thought that methanogens could only generate methane by coupling the oxidation of products formed by fermentative bacteria with the reduction of CO 2 . However, it has recently been observed that many methanogens can also use electrons extruded from metal-respiring bacteria, biocathodes, or insoluble electron shuttles as energy sources. Methanogens are found in both human-made and natural environments and are responsible for the production of ∼71% of the global atmospheric methane. Their habitats range from the human digestive tract to hydrothermal vents. Although biologically produced methane can negatively impact the environment if released into the atmosphere, when captured, it can serve as a potent fuel source. The anaerobic digestion of wastes such as animal manure, human sewage, or food waste produces biogas which is composed of ∼60% methane. Methane from biogas can be cleaned to yield purified methane (biomethane) that can be readily incorporated into natural gas pipelines making it a promising renewable energy source. Conventional anaerobic digestion is limited by long retention times, low organics removal efficiencies, and low biogas production rates. Therefore, many studies are being conducted to improve the anaerobic digestion process. Researchers have found that addition of conductive materials and/or electrically active cathodes to anaerobic digesters can stimulate the digestion process and increase methane content of biogas. It is hoped that optimization of anaerobic digesters will make biogas more readily accessible to the average person. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Methanization of domestic and industrial wastes

    International Nuclear Information System (INIS)

    2011-01-01

    After having recalled that methanization helps meeting objectives of the Grenelle de l'Environnement regarding waste valorisation and production of renewable heat and electricity, this publication presents the methanization process which produces a humid product (digestate) and biogas by using various wastes (from agriculture, food industry, cities, households, sludge and so on). The numbers of existing and planned methanization units are evoked. The publication discusses the main benefits (production of renewable energy, efficient waste processing, and compact installations), drawbacks (costs, necessary specific abilities, impossibility to treat all organic materials) and associated recommendations. Actions undertaken by the ADEME are evoked. In conclusion, the publication outlines some priorities related to the development of this sector, its benefits, and the main strategic recommendations

  8. 60-MW/sub t/ methanation plant design for HTGR process heat

    International Nuclear Information System (INIS)

    Davis, C.R.; Arcilla, N.T.; Hui, M.M.; Hutchins, B.A.

    1982-07-01

    This report describes a 60 MW(t) Methanation Plant for generating steam for industrial applications. The plant consists of four 15 MW(t) methanation trains. Each train is connected to a pipeline and receives synthesis gas (syngas) from a High Temperature Gas-Cooled Reactor Reforming (HTGR-R) plant. Conversion of the syngas to methane and water releases exothermic heat which is used to generate steam. Syngas is received at the Methanation Plant at a temperature of 80 0 F and 900 psia. One adiabatic catalytic reactor and one isothermal catalytic reactor, in each methanation train, converts the syngas to 92.2% (dry bases) methane. Methane and condensate are returned at temperatures of 100 to 125 0 F and at pressures of 860 to 870 psia to the HTGR-R plant for the reproduction of syngas

  9. Quantification of seep-related methane gas emissions at Tommeliten, North Sea

    NARCIS (Netherlands)

    Schneider von Deimling, J.S.; Rehder, G.; Greinert, J.; McGinnnis, D.F.; Boetius, A.; Linke, P.

    2011-01-01

    Tommeliten is a prominent methane seep area in the Central North Sea. Previous surveys revealed shallow gas-bearing sediments and methane gas ebullition into the water column. In this study, the in situ methane flux at Tommeliten is re-assessed and the potential methane transport to the atmosphere

  10. Microbial methane production in oxygenated water column of an oligotrophic lake

    Science.gov (United States)

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  11. Precise structural analysis of methane hydrate by neutron diffraction

    International Nuclear Information System (INIS)

    Igawa, Naoki; Hoshikawa, Akinori; Ishii, Yoshinobu

    2006-01-01

    Methane hydrate has attracted great interest as an energy resource to replace natural gas since this material is deposited in the seafloor and the deposits are estimated to exceed those of natural gas. Understanding the physical proprieties, such as the temperature dependence of the crystal structure, helps to specify the optimum environmental temperature and pressure during drilling, transport, and storage of methane hydrate. Clathrate hydrates consisted of encaging atomic and/or molecular species as a guest and host water formed by a hydrogen bonding. Although many studies on the clathrate hydrate including methane hydrate were reported, no detailed crystallographic property has yet been cleared. We focused on the motion of methane in the clathrate hydrate by the neutron diffraction. The crystal structure of the methane hydrate was analyzed by the applying the combination of the Rietveld refinement and the maximum entropy method (MEM) to neutron powder diffraction. Temperature dependence of the scattering-length density distribution maps revealed that the motion of methane molecules differs between the shapes of dodecahedron and tetrakaidecahedron. (author)

  12. Physics of coal methane: decisive role of iron compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavriljuk, V. G., E-mail: gavr@imp.kiev.ua; Skoblik, A. P. [G.V. Kurdyumov Institute for Metal Physics (Ukraine); Shanina, B. D.; Konchits, A. A. [V. Ye. Lashkarev Institute for Semiconductor Physics (Ukraine)

    2016-12-15

    The role of iron in formation of the coal methane is clarified based on the studies performed on the coal samples taken from different mines in Donetsk coal basin. Using Mössbauer spectroscopy, a correlation is found between the iron content and methane capacity of coal seams. By means of electron paramagnetic resonance, it is found that iron increases the concentration of non-compensated electron spins, i.e. dangled bonds at the carbon atoms. These bonds can be occupied by hydrogen atoms as a prerequisite of methane formation. The two-valence iron is shown to be the most effective in the increase of spin concentration. By using the ion mass spectrometry, the modelling of methane formation is carried out on the mechanical mixture of the iron-free reactor graphite, iron compounds and diluted sulphuric acid as a source of hydrogen atoms. The proposed mechanism is also confirmed by methane formation in the mixture of iron compounds and the coal from the mine where the iron and methane are practically absent.

  13. Status of the methanization sector in France

    International Nuclear Information System (INIS)

    2011-09-01

    This report aims at describing the status of methanization installations, either operating or under construction, on the French national territory, all sectors included (industry, agriculture, sewage treatment, municipal wastes). In a first part, the authors propose a definition of methanization, a presentation of the various implementation techniques, a presentation of the different sectors using methanization (industry, agriculture and breeding, sewage treatment plants, household wastes), and a presentation of a survey. Then, they comment and discuss more precisely the different sectors, their history, their geographical distribution in France, their technologies, their effluents, their production, their economic data, their perspectives

  14. Landfill Methane

    Science.gov (United States)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  15. Methane Production and Transport within the Marsh Biome of Biosphere 2

    Science.gov (United States)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    In recent decades, the concentration of methane in the earth's atmosphere increased 1-2% annually. It's rate of increases, combined with methane's effectiveness as a greenhouse gas, has led to an intensive research effort to determine the sources and sinks of the gas in the environment. Biosphere 2 offers a unique opportunity to contribute to the effort because it lacks a major photochemical sink present in the Earth's atmosphere. Researchers can therefore concentrate on biological processes involved in methane cycles. Wetlands are a large source of atmospheric methane, due to anoxic conditions in the sediments and the abundance of organic materials. In order to determine if these conditions in Biosphere 2 also promote methane production, this study looked for the fluxes of methane and methods of transport of the gas from from the water and sediments to the atmosphere in the Marsh Biome. Fluxes of methane from the sediments and waters were measured using static chambers, peepers, and leaf bags. Fluxes and vertical profiles of methane in the sediments show that substantial amounts of methane are being produced in the marsh and are being transported into the Biosphere 2 environment.

  16. Analysis and Assessment of Parameters Shaping Methane Hazard in Longwall Areas

    Directory of Open Access Journals (Sweden)

    Eugeniusz Krause

    2013-01-01

    Full Text Available Increasing coal production concentration and mining in coal seams of high methane content contribute to its growing emission to longwall areas. In this paper, analysis of survey data concerning the assessment of parameters that influence the level of methane hazard in mining areas is presented. The survey was conducted with experts on ventilation and methane hazard in coal mines. The parameters which influence methane hazard in longwall areas were assigned specific weights (numerical values. The summary will show which of the assessed parameters have a strong, or weak, influence on methane hazard in longwall areas close to coal seams of high methane content.

  17. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.

    Science.gov (United States)

    Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J; Jilbert, Tom; Jetten, Mike S M; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F; Slomp, Caroline P

    2015-01-06

    Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.

  18. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  19. Coupled models of free methane gas and anaerobic oxidation of methane : from core to regional scales. Geologica Ultraiectina (339)

    NARCIS (Netherlands)

    Mogollón, J.M.

    2011-01-01

    Methane is a potent greenhouse gas that is produced in marine sediments containing high amounts of degrading organic carbon. It is therefore not surprising that marine sediments contain vast amounts of methane (500-5000 gigatons) present in dissolved (aqueous), free gas (gaseous), and solid

  20. A review of the radiolysis of methane

    International Nuclear Information System (INIS)

    Norfolk, D.J.

    1975-08-01

    The review had three objectives: to determine the yields of the primary products and to describe the sequence of reactions in which they take part; to ascertain the effect on these reactions of changes in the physical state of the methane and the quantum energy of the radiation, and of the presence of chemically inert sensitisers; and to identify the situation most similar to the adsorbed phase radiolysis of methane on alumina, and so to predict the likely radiolytic reactions in this system. The main primary product yields in methane gas under γ-irradiation are estimated to be G(CH 4 +) approximately 1.75, G(CH 3 +) approximately 1.46, G(CH 3 ) approximately 1.4 and G(CH 2 ) approximately 1.0. The situation most similar to adsorbed phase radiolysis is inert gas sensitised photolysis at energies below 12.6eV. In this system the major primary process is homolytic dissociation of methane to CH 3 +H. (author)

  1. The drift velocity of excess electrons in fluid methane, argon and mixtures of methane and argon

    International Nuclear Information System (INIS)

    Engels, J.M.L.

    1979-01-01

    A description is given of an experimental investigation of the drift velocity of excess electrons in fluid methane at temperatures between 91K and 215K, and at pressures up to 65X10 5 Pa. These measurements that have become possible especially due to the improved purification techniques of the liquids under investigation. The purification prevents the electron from being captured too soon by an electron-impurity. From the results of the measurements in methane it appeared that in some respects the behaviour of excess electrons in methane is qualitatively similar to that in argon. For this reason a number of measurements of the electron drift velocity have been carried out in argon and in mixtures of methane and argon as well. A detailed description of the experimental set-up is presented. The excess electrons are generated with a high-voltage electron gun, which produces a pulse of highly energetic electrons. A fraction of these electrons enters the liquid sample by passing through a thin metal foil which separates the liquid sample and the vacuum present in the electron gun. At the same time the foil is used as one of two plane-parallel electrodes of the measuring capacitor in which the drift velocity of the excess electrons is to be measured. (Auth.)

  2. Modeling and simulation of CO methanation process for renewable electricity storage

    International Nuclear Information System (INIS)

    Er-rbib, Hanaâ; Bouallou, Chakib

    2014-01-01

    In this paper, a new approach of converting renewable electricity into methane via syngas (a mixture of CO and H 2 ) and CO methanation is presented. Surplus of electricity is used to electrolyze H 2 O and CO 2 to H 2 and CO by using a SOEC (Solid Oxide Electrolysis Cell). Syngas produced is then converted into methane. When high consumption peaks appear, methane is used to produce electricity. The main conversion step in this process is CO methanation. A modeling of catalytic fixed bed methanation reactor and a design of methanation unit composed of multistage adiabatic reactors are carried out using Aspen plus™ software. The model was validated by comparing the simulated results of gas composition (CH 4 , CO, CO 2 and H 2 ) with industrial data. In addition, the effects of recycle ratio on adiabatic reactor stages, outlet temperature, and H 2 and CO conversions are carefully investigated. It is found that for storing 10 MW of renewable electricity, methanation unit is composed of three adiabatic reactors with recycle loop and intermediate cooling at 553 K and 1.5 MPa. The methanation unit generates 3778.6 kg/h of steam at 523.2 K and 1 MPa (13.67 MW). - Highlights: • A catalytic fixed bed reactor of CO methanation was modeled. • The maximum relative error of the methanation reactor model is 12%. • For 10 MW storage of renewable electricity, three adiabatic reactors are required. • The recycle ratio affects the reactor outlet temperature and CO conversion

  3. Halite as a Methane Sequestration Host: A Possible Explanation for Periodic Methane Release on Mars, and a Surface-accessible Source of Ancient Martian Carbon

    Science.gov (United States)

    Fries, M. D.; Steele, Andrew; Hynek, B. M.

    2015-01-01

    We present the hypothesis that halite may play a role in methane sequestration on the martian surface. In terrestrial examples, halite deposits sequester large volumes of methane and chloromethane. Also, examples of chloromethane-bearing, approximately 4.5 Ga old halite from the Monahans meteorite show that this system is very stable unless the halite is damaged. On Mars, methane may be generated from carbonaceous material trapped in ancient halite deposits and sequestered. The methane may be released by damaging its halite host; either by aqueous alteration, aeolian abrasion, heating, or impact shock. Such a scenario may help to explain the appearance of short-lived releases of methane on the martian surface. The methane may be of either biogenic or abiogenic origin. If this scenario plays a significant role on Mars, then martian halite deposits may contain samples of organic compounds dating to the ancient desiccation of the planet, accessible at the surface for future sample return missions.

  4. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Chiemchaisri Wilai

    2001-01-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell's internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidation

  5. Estimation of methane generation based on anaerobic digestion ...

    African Journals Online (AJOL)

    Drake

    Technology ... generation of methane from waste at Kiteezi landfill was measured using .... estimate methane gas generation by the anaerobic decomposition ..... Z (2007). Climate Change 2007. The Physical Science Basis. Contribution of ...

  6. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    Science.gov (United States)

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  7. Methane from the East Siberian Arctic shelf

    DEFF Research Database (Denmark)

    Petrenko...[], Vasilii V.; Etheridge, David M.

    2010-01-01

    In their Report “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf” (5 March, p. 1246), N. Shakhova et al. write that methane (CH4) release resulting from thawing Arctic permafrost “is a likely positive feedback to climate warming.” They add...

  8. Methane, a greenhouse gas: measures to reduce and valorize anthropogenic emissions

    International Nuclear Information System (INIS)

    2010-03-01

    This report first presents the greenhouse effect properties of methane (one of the six gases the emissions of which must be reduced according to the Kyoto protocol), comments the available data on methane emission assessment in the World, in Europe and in France, and outlines the possibilities of improvement of data and indicators on a short and middle term. It describes how methane can be captured and valorized, indicates the concerned quantities. Notably, it discussed the management of methane generating and spreading practices (from waste water treatment, from domestic wastes), how to reduce methane emissions in agriculture. It finally proposes elements aimed at elaborating a national and international policy regarding methane emission reductions

  9. Methane oxidation in anoxic lake waters

    Science.gov (United States)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  10. Methane emissions from termites - landscape level estimates and methods of measurement

    Science.gov (United States)

    Jamali, Hizbullah; Livesley, Stephen J.; Hutley, Lindsay B.; Arndt, Stefan K.

    2013-04-01

    Termites contribute between mound-building termite species diurnally and seasonally in tropical savannas in the Northern Territory, Australia. Our results showed that there were significant diel and seasonal variations of methane emissions from termite mounds and we observed large species-specific differences. On a diurnal basis, methane fluxes were least at the coolest time of the day and greatest at the warmest for all species for both wet and dry seasons. We observed a strong and significant positive correlation between methane flux and mound temperature for all species. Fluxes in the wet season were 5-26-fold greater than those in the dry season and this was related to population dynamics of the termites. We observed significant relationships between mound methane flux and mound carbon dioxide flux, enabling the prediction of methane flux from measured carbon dioxide flux. However, these relationships were clearly termite species specific. We also determined significant relationships between mound flux and gas concentration inside mound, for both gases, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Consequently, there was no generic relationship that would enable an easier prediction of methane flux from termite mounds. On a landscape scale we estimated that termites were a methane source of +0.24 kg methane-C ha-1 year-1 whilst savanna soils were a methane sink of 1.14 kg methane-C ha-1 year-1. Termites therefore only offset 21% of methane consumed by savanna soil resulting in net sink strength of -0.90 kg methane-C ha-1 year-1 for these savannas. Assuming a similar contribution of termites in the savannas and tropical rain forests worldwide, termites would globally produce around 27 Tg CO2-e year-1, which is 0.2% of the global methane source budget or an order of magnitude smaller than many of the previous estimates.

  11. Ecosystem and physiological controls over methane production in northern wetlands

    Science.gov (United States)

    Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.

    1994-01-01

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.

  12. Simplifiying global biogeochemistry models to evaluate methane emissions

    Science.gov (United States)

    Gerber, S.; Alonso-Contes, C.

    2017-12-01

    Process-based models are important tools to quantify wetland methane emissions, particularly also under climate change scenarios, evaluating these models is often cumbersome as they are embedded in larger land-surface models where fluctuating water table and the carbon cycle (including new readily decomposable plant material) are predicted variables. Here, we build on these large scale models but instead of modeling water table and plant productivity we provide values as boundary conditions. In contrast, aerobic and anaerobic decomposition, as well as soil column transport of oxygen and methane are predicted by the model. Because of these simplifications, the model has the potential to be more readily adaptable to the analysis of field-scale data. Here we determine the sensitivity of the model to specific setups, parameter choices, and to boundary conditions in order to determine set-up needs and inform what critical auxiliary variables need to be measured in order to better predict field-scale methane emissions from wetland soils. To that end we performed a global sensitivity analysis that also considers non-linear interactions between processes. The global sensitivity analysis revealed, not surprisingly, that water table dynamics (both mean level and amplitude of fluctuations), and the rate of the carbon cycle (i.e. net primary productivity) are critical determinants of methane emissions. The depth-scale where most of the potential decomposition occurs also affects methane emissions. Different transport mechanisms are compensating each other to some degree: If plant conduits are constrained, methane emissions by diffusive flux and ebullition compensate to some degree, however annual emissions are higher when plants help to bypass methanotrophs in temporally unsaturated upper layers. Finally, while oxygen consumption by plant roots help creating anoxic conditions it has little effect on overall methane emission. Our initial sensitivity analysis helps guiding

  13. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event.

    Science.gov (United States)

    Petrenko, Vasilii V; Smith, Andrew M; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F; Severinghaus, Jeffrey P

    2017-08-23

    Methane (CH 4 ) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane ( 14 CH 4 ) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today's natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  14. Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event

    Science.gov (United States)

    Petrenko, Vasilii V.; Smith, Andrew M.; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F.; Severinghaus, Jeffrey P.

    2017-08-01

    Methane (CH4) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (14CH4) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today’s natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.

  15. Low Upper Limit to Methane Abundance on Mars

    Science.gov (United States)

    Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Flesch, Gregory J.; Farley, Kenneth A.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Grotzinger, John; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Elvira, Javier Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Soler, Javier Martín; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mueller-Mellin, Reinhold; Wimmer-Schweingruber, Robert; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-10-01

    By analogy with Earth, methane in the Martian atmosphere is a potential signature of ongoing or past biological activity. During the past decade, Earth-based telescopic observations reported “plumes” of methane of tens of parts per billion by volume (ppbv), and those from Mars orbit showed localized patches, prompting speculation of sources from subsurface bacteria or nonbiological sources. From in situ measurements made with the Tunable Laser Spectrometer (TLS) on Curiosity using a distinctive spectral pattern specific to methane, we report no detection of atmospheric methane with a measured value of 0.18 ± 0.67 ppbv corresponding to an upper limit of only 1.3 ppbv (95% confidence level), which reduces the probability of current methanogenic microbial activity on Mars and limits the recent contribution from extraplanetary and geologic sources.

  16. Photofragment imaging of methane

    International Nuclear Information System (INIS)

    Heck, A.J.; Zare, R.N.; Chandler, D.W.

    1996-01-01

    The photolysis of methane is studied using photofragment imaging techniques. Our study reveals that the photolysis of methane proceeds via many different pathways. The photofragment imaging technique is used to resolve and characterize these various pathways and provides therefore unique insight into the dynamical processes that govern this photodissociation. The formation of H-atom photofragments following absorption of a Lyman-α photon, and H 2 photofragments following absorption of two ultraviolet photons (λ=210 endash 230 nm) are studied. The measured H-atom photofragment images reveal that a channel that produces fast H atoms concomitant with methyl fragments is dominant in the Lyman-α photolysis of methane. This channel leads to an anisotropic recoil of the fragments. A secondary channel is observed leading to the formation of somewhat slower H atoms, but an unique identification of this second channel is not possible from the data. At least part of these slower H atoms are formed via a channel that produces H atoms concomitant with CH and H 2 photofragments. The recoil of these slower H atoms appears to be isotropic. The measured, state-resolved H 2 (v,J), photofragment images reveal that two channels lead to H 2 photofragments from the two-photon photolysis of methane: a channel that leads to H 2 products concomitant with methylene fragments; and a channel that leads to H 2 products concomitant with CH and H fragments. H 2 (v,J) rotational and vibrational distributions are measured for each of these two channels separately. The H 2 products formed via the H 2 +CH 2 channel are rotationally and vibrationally highly excited, whereas those formed via the H 2 +CH+H channel are rotationally and vibrationally cooler. Rotational distributions of H 2 formed via the H 2 +CH+H channel are well reproduced by Boltzmann distributions. (Abstract Truncated)

  17. Methane dynamics in Northern Wetlands: Significance of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Joabsson, Anna

    2001-09-01

    The studies presented illustrate several different aspects of the impact of vascular plants on methane emissions from northern natural wetlands. The subject has been approached on different scales, ranging from the study of microbial substrates in the vicinity of a single plant root, to an attempt to extrapolate some of the results to the entire northern hemisphere north of 50 meridian. The main overall conclusions from the papers are that vascular plants affect net methane emissions 1) by offering an efficient route of transport to the atmosphere so that methane oxidation in oxic surface soils is avoided, and 2) by being sources of methanogenic substrate. The degree to which vascular wetland plants affect methane emissions seems to be dependent on species-specific differences in both the capacity to act as gas conduits and the exudation of labile carbon compounds to the soil. An intimate coupling between vascular plant production and methane emission was found in an Arctic tundra wetland, although other environmental variables (water table, temperature) also contributed significantly to the explained variation in methane exchange. Studies of vascular plant extidation of organic acids suggest that the available pool of methanogenic substrates is both qualitatively and quantitatively correlated to vascular plant production (photosynthetic rate). On global scales, vascular plant production as a single factor does not seem to be sufficient to explain the majority of variation in methane flux patterns. Based on comparable experiments at five different sites in the northwestern Eurasian and Greenlandic North, we suggest that mean seasonal soil temperature is the best predictor of methane exchange on broad spatial and temporal scales.

  18. Dynamic viscosity modeling of methane plus n-decane and methane plus toluene mixtures: Comparative study of some representative models

    DEFF Research Database (Denmark)

    Baylaucq, A.; Boned, C.; Canet, X.

    2005-01-01

    Viscosity measurements of well-defined mixtures are useful in order to evaluate existing viscosity models. Recently, an extensive experimental study of the viscosity at pressures up to 140 MPa has been carried out for the binary systems methane + n-decane and methane toluene, between 293.15 and 3...

  19. Methane distribution and oxidation around the Lena Delta in summer 2013

    Directory of Open Access Journals (Sweden)

    I. Bussmann

    2017-11-01

    Full Text Available The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The predicted increases in global temperatures are expected to cause the permafrost areas surrounding the Lena Delta to melt at increasing rates. This melting will result in high amounts of methane reaching the waters of the Lena and the adjacent Laptev Sea. The only biological sink that can lower methane concentrations within this system is methane oxidation by methanotrophic bacteria. However, the polar estuary of the Lena River, due to its strong fluctuations in salinity and temperature, is a challenging environment for bacteria. We determined the activity and abundance of aerobic methanotrophic bacteria by a tracer method and by the quantitative polymerase chain reaction. We described the methanotrophic population with a molecular fingerprinting method (monooxygenase intergenic spacer analysis, as well as the methane distribution (via a headspace method and other abiotic parameters, in the Lena Delta in September 2013. The median methane concentrations were 22 nmol L−1 for riverine water (salinity (S  < 5, 19 nmol L−1 for mixed water (5 < S < 20 and 28 nmol L−1 for polar water (S > 20. The Lena River was not the source of methane in surface water, and the methane concentrations of the bottom water were mainly influenced by the methane concentration in surface sediments. However, the bacterial populations of the riverine and polar waters showed similar methane oxidation rates (0.419 and 0.400 nmol L−1 d−1, despite a higher relative abundance of methanotrophs and a higher estimated diversity in the riverine water than in the polar water. The methane turnover times ranged from 167 days in mixed water and 91 days in riverine water to only 36 days in polar water. The environmental parameters influencing the methane oxidation rate and the methanotrophic population also differed between the water masses. We

  20. Microbial diversity and dynamics during methane production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu [Civil and Environmental Engineering, Colorado State University, Ft. Collins, CO 80532 (United States); Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wolfe, Georgia L., E-mail: gwolfe@wisc.edu [Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (United States); McMahon, Katherine D., E-mail: tmcmahon@engr.wisc.edu [Bacteriology, Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Civil and Environmental Engineering, Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  1. Microbial diversity and dynamics during methane production from municipal solid waste

    International Nuclear Information System (INIS)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-01-01

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  2. Methane Hydrate in Confined Spaces: An Alternative Storage System.

    Science.gov (United States)

    Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin

    2018-03-14

    Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sediment trapping by dams creates methane emission hot spots

    DEFF Research Database (Denmark)

    Maeck, A.; Delsontro, T.; McGinnis, Daniel F.

    2013-01-01

    Inland waters transport and transform substantial amounts of carbon and account for similar to 18% of global methane emissions. Large reservoirs with higher areal methane release rates than natural waters contribute significantly to freshwater emissions. However, there are millions of small dams...... worldwide that receive and trap high loads of organic carbon and can therefore potentially emit significant amounts of methane to the atmosphere. We evaluated the effect of damming on methane emissions in a central European impounded river. Direct comparison of riverine and reservoir reaches, where...... sedimentation in the latter is increased due to trapping by dams, revealed that the reservoir reaches are the major source of methane emissions (similar to 0.23 mmol CH4 m(-2) d(-1) vs similar to 19.7 mmol CH4 m(-2) d(-1), respectively) and that areal emission rates far exceed previous estimates for temperate...

  4. Biochemical composition and methane production correlations

    OpenAIRE

    Charnier, Cyrille; Latrille, Eric; Moscoviz, Roman; Miroux, Jérémie; Steyer, Jean-Philippe

    2016-01-01

    Substrates for anaerobic digestion are composed of heterogeneous and complex organic matter. General parameters of the organic matter can be used to describe its composition such as sugar, protein and lipid contents, Chemical Oxygen Demand (COD), Biochemical Methane Potential (BMP) and kinetic of methane production. These parameters are required for the monitoring of digesters but their characterization are time consuming and expensive; thus, these parameters are rarely assessed all together....

  5. Methane Steam Reforming Kinetics for a Rhodium-Based Catalyst

    DEFF Research Database (Denmark)

    Jakobsen, Jon Geest; Jakobsen, M.; Chorkendorff, Ib

    2010-01-01

    Methane steam reforming is the key reaction to produce synthesis gas and hydrogen at the industrial scale. Here the kinetics of methane steam reforming over a rhodium-based catalyst is investigated in the temperature range 500-800 A degrees C and as a function of CH4, H2O and H-2 partial pressures....... The methane steam reforming reaction cannot be modeled without taking CO and H coverages into account. This is especially important at low temperatures and higher partial pressures of CO and H-2. For methane CO2 reforming experiments, it is also necessary to consider the repulsive interaction of CO...

  6. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-01-01

    Hydrothermal waste package interaction tests were conducted with a mixture of crushed glass, basalt, and steel in methane-containing synthetic basalt groundwater. In the absence of gamma radiolysis, methane was found to have little influence on the corrosion behavior of the waste package constituents. Under gamma radiolysis, methane was found to significantly lower the solution oxidation potential when compared to identical tests without methane. In addition, colloidal hydrocarbon polymers that have been produced under the irradiation conditions of these experiments were not formed. The presence of the waste package constituents apparently inhibited the formation of the polymers. However, the mechanism which prevented their formation was not determined

  7. Environmental impact of coal mine methane emissions and responding strategies in China

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.P.; Wang, L.; Zhang, X.L. [China University of Mining & Technology, Xuzhou (China)

    2011-01-15

    The impact on global climate change from coal mine methane emissions in China has been drawing attention as coal production has powered its economic development. Data on coal mine methane emissions from the State Administration of Coal Mine Safety of China has been analyzed. It is estimated that the methane emission from coal mining in China reached 20 billions of cubic meters in 2008, most of which comes from state-owned coal mines with high-gas content. China releases six times as much of methane from coal mines as compared to the United States. However, Chinese methane emission from coal production accounts for only a very small proportion on the environmental impact when compared to emissions of carbon dioxide from fossil fuel consumption. The Chinese government has shown environmental awareness and resolution on the mitigation and utilization of coal mine methane emissions. Measures have been taken to implement the programs of mitigation and utilization of coal mine methane, and at the same time, to ensure mining safety. Nearly 7.2 billions of cubic meters of methane were drained from the coal mines, and 32% of it was utilized in 2008. The slow advancement of technologies for the drainage and utilization of low-concentration methane from ventilation air hinders the progress of mitigation of atmospheric methane and the utilization of coal mine methane emissions.

  8. The Methanizer : A Small Scale Biogas Reactor for a Restaurant

    NARCIS (Netherlands)

    Vasudevan, R.; Karlsson, O.; Dhejne, K.; Derewonko, P.; Brezet, J.C.

    2010-01-01

    The purpose of this study is to determine the technical and economic feasibility of a smallscale bioreactor called the Methanizer for a restaurant. The bioreactor converts organic waste produced by the restaurant into methane. This methane can be used to power the restaurant’s cooking stoves. The

  9. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    International Nuclear Information System (INIS)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik; Yasin, Muhammad; Park, Shinyoung; Chang, In Seop; Lee, Eun Yeol

    2015-01-01

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k L a). The feasibility of the new reactor was demonstrated by measuring k L a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k L a value of 102.9 h -1 was obtained

  10. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    Science.gov (United States)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  11. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water.

    Science.gov (United States)

    Song, Bin; Molinero, Valeria

    2013-08-07

    Hydrophobic interactions are responsible for water-driven processes such as protein folding and self-assembly of biomolecules. Microscopic theories and molecular simulations have been used to study association of a pair of methanes in water, the paradigmatic example of hydrophobic attraction, and determined that entropy is the driving force for the association of the methane pair, while the enthalpy disfavors it. An open question is to which extent coarse-grained water models can still produce correct thermodynamic and structural signatures of hydrophobic interaction. In this work, we investigate the hydrophobic interaction between a methane pair in water at temperatures from 260 to 340 K through molecular dynamics simulations with the coarse-grained monatomic water model mW. We find that the coarse-grained model correctly represents the free energy of association of the methane pair, the temperature dependence of free energy, and the positive change in entropy and enthalpy upon association. We investigate the relationship between thermodynamic signatures and structural order of water through the analysis of the spatial distribution of the density, energy, and tetrahedral order parameter Qt of water. The simulations reveal an enhancement of tetrahedral order in the region between the first and second hydration shells of the methane molecules. The increase in tetrahedral order, however, is far from what would be expected for a clathrate-like or ice-like shell around the solutes. This work shows that the mW water model reproduces the key signatures of hydrophobic interaction without long ranged electrostatics or the need to be re-parameterized for different thermodynamic states. These characteristics, and its hundred-fold increase in efficiency with respect to atomistic models, make mW a promising water model for studying water-driven hydrophobic processes in more complex systems.

  12. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.; Sessions, Alex L.; Lawson, Michael; Shuai, Yanhua; Bishop, Andrew; Podlaha, Olaf G.; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Niemann, Martin; Steen, Arne S.; Huang, Ling; Chimiak, Laura; Valentine, David L.; Fiebig, Jens; Luhmann, Andrew J.; Seyfried, William E.; Etiope, Giuseppe; Schoell, Martin; Inskeep, William P.; Moran, James J.; Kitchen, Nami

    2017-11-01

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here we present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.

  13. A simple headspace equilibration method for measuring dissolved methane

    Science.gov (United States)

    Magen, C; Lapham, L.L.; Pohlman, John W.; Marshall, Kristin N.; Bosman, S.; Casso, Michael; Chanton, J.P.

    2014-01-01

    Dissolved methane concentrations in the ocean are close to equilibrium with the atmosphere. Because methane is only sparingly soluble in seawater, measuring it without contamination is challenging for samples collected and processed in the presence of air. Several methods for analyzing dissolved methane are described in the literature, yet none has conducted a thorough assessment of the method yield, contamination issues during collection, transport and storage, and the effect of temperature changes and preservative. Previous extraction methods transfer methane from water to gas by either a "sparge and trap" or a "headspace equilibration" technique. The gas is then analyzed for methane by gas chromatography. Here, we revisit the headspace equilibration technique and describe a simple, inexpensive, and reliable method to measure methane in fresh and seawater, regardless of concentration. Within the range of concentrations typically found in surface seawaters (2-1000 nmol L-1), the yield of the method nears 100% of what is expected from solubility calculation following the addition of known amount of methane. In addition to being sensitive (detection limit of 0.1 ppmv, or 0.74 nmol L-1), this method requires less than 10 min per sample, and does not use highly toxic chemicals. It can be conducted with minimum materials and does not require the use of a gas chromatograph at the collection site. It can therefore be used in various remote working environments and conditions.

  14. Preliminary Evaluation of Method to Monitor Landfills Resilience against Methane Emission

    Science.gov (United States)

    Chusna, Noor Amalia; Maryono, Maryono

    2018-02-01

    Methane emission from landfill sites contribute to global warming and un-proper methane treatment can pose an explosion hazard. Stakeholder and government in the cities in Indonesia been found significant difficulties to monitor the resilience of landfill from methane emission. Moreover, the management of methane gas has always been a challenging issue for long waste management service and operations. Landfills are a significant contributor to anthropogenic methane emissions. This study conducted preliminary evaluation of method to manage methane gas emission by assessing LandGem and IPCC method. From the preliminary evaluation, this study found that the IPCC method is based on the availability of current and historical country specific data regarding the waste disposed of in landfills while from the LandGEM method is an automated tool for estimating emission rates for total landfill gas this method account total gas of methane, carbon dioxide and other. The method can be used either with specific data to estimate emissions in the site or default parameters if no site-specific data are available. Both of method could be utilize to monitor the methane emission from landfill site in cities of Central Java.

  15. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  16. Mitigation and recovery of methane emissions from tropical hydroelectric dams

    Energy Technology Data Exchange (ETDEWEB)

    Bambace, L.A.W.; Ramos, F.M.; Lima, I.B.T.; Rosa, R.R. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos (Brazil)

    2007-06-15

    Tropical hydroelectric reservoirs generally constitute an appreciable source of methane to the atmosphere. This paper proposes simple mitigation and recovery procedures to substantially reduce atmospheric methane emissions from hydroelectric reservoirs. We aim at transforming existing methane stocks of tropical reservoirs into a clean, renewable energy source. The recovered gas methane may be pumped to large consuming centers, stocked locally and burned in gas turbines to generate electricity during high demand periods, or even purified for transport applications. Our simulations show that the use of biogenic methane may increase considerably the energy supply in countries like Brazil. As a result, it would be possible to reduce the need of additional hydroelectric dams, protecting important pristine biomes, and avoiding the resettlement of villages and indigenous reserves. (author)

  17. Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils

    NARCIS (Netherlands)

    Bodelier, P.L.E.

    2011-01-01

    Recent dynamics and uncertainties in global methane budgets necessitate research of controls of sources and sinks of atmospheric methane. Production of methane by methanogenic archaea in wetlands is a major source while consumption by methane oxidizing bacteria in upland soils is a major sink.

  18. Mars methane detection and variability at Gale crater

    Science.gov (United States)

    Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Flesch, Gregory J.; Mischna, Michael A.; Meslin, Pierre-Yves; Farley, Kenneth A.; Conrad, Pamela G.; Christensen, Lance E.; Pavlov, Alexander A.; Martín-Torres, Javier; Zorzano, María-Paz; McConnochie, Timothy H.; Owen, Tobias; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Steele, Andrew; Malespin, Charles A.; Archer, P. Douglas; Sutter, Brad; Coll, Patrice; Freissinet, Caroline; McKay, Christopher P.; Moores, John E.; Schwenzer, Susanne P.; Bridges, John C.; Navarro-Gonzalez, Rafael; Gellert, Ralf; Lemmon, Mark T.; MSL Science Team; Abbey, William; Achilles, Cherie; Agard, Christophe; Alexandre Alves Verdasca, José; Anderson, Dana; Anderson, Robert C.; Anderson, Ryan B.; Appel, Jan Kristoffer; Archer, Paul Douglas; Arevalo, Ricardo; Armiens-Aparicio, Carlos; Arvidson, Raymond; Atlaskin, Evgeny; Atreya, Andrew Sushil; Azeez, Aubrey Sherif; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Battalio, Michael; Beach, Michael; Bean, Keri; Beck, Pierre; Becker, Richard; Beegle, Luther; Behar, Alberto; Belgacem, Inès; Bell, James F., III; Bender, Steven; Benna, Mehdi; Bentz, Jennifer; Berger, Jeffrey; Berger, Thomas; Berlanga, Genesis; Berman, Daniel; Bish, David; Blacksberg, Jordana; Blake, David F.; José Blanco, Juan; Blaney, Ávalos Diana; Blank, Jennifer; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Bonnet, Jean-Yves; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, William; Braswell, Shaneen; Breves, Elly; Bridges, John C.; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Burton, John; Buz, Jennifer; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John L.; Cantor, Bruce; Caplinger, Michael; Clifton, Carey, Jr.; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Cavanagh, Patrick; Charpentier, Antoine; Chipera, Steve; Choi, David; Christensen, Lance; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Coman, Ecaterina I.; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy A.; Cropper, Kevin; Cros, Alain; Cucinotta, Francis; d'Uston, Claude; Davis, Scott; Day, Mackenzie; Daydou, Yves; DeFlores, Lauren; Dehouck, Erwin; Delapp, Dorothea; DeMarines, Julia; Dequaire, Tristan; Des Marais, David; Desrousseaux, Roch; Dietrich, William; Dingler, Robert; Domagal-Goldman, Shawn; Donny, Christophe; Downs, Robert; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason P.; Dyar, M. Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher S.; Edwards, Laurence; Edwards, Peter; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jennifer; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Fairén, Alberto; Farley, Kenneth; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Fendrich, Kim; Fischer, Erik; Fisk, Martin; Fitzgibbon, Mike; Flesch, Gregory; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fox, Valerie; Fraeman, Abigail; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Getty, Stephanie; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Graham, Heather; Grant, John; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Victoria; Hand, Kevin; Hardgrove, Craig; Hardy, Keian; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alexander; Herkenhoff, Kenneth; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Stephen; Israël, Guy; Jackson, Ryan Steele; Jacob, Samantha; Jakosky, Bruce; Jean-Rigaud, Laurent; Jensen, Elsa; Kløvgaard Jensen, Jaqueline; Johnson, Jeffrey R.; Johnson, Micah; Johnstone, Stephen; Jones, Andrea; Jones, John H.; Joseph, Jonathan; Joulin, Mélissa; Jun, Insoo; Kah, Linda C.; Kahanpää, Henrik; Kahre, Melinda; Kaplan, Hannah; Karpushkina, Natalya; Kashyap, Srishti; Kauhanen, Janne; Keely, Leslie; Kelley, Simon; Kempe, Fabian; Kemppinen, Osku; Kennedy, Megan R.; Keymeulen, Didier; Kharytonov, Alexander; Kim, Myung-Hee; Kinch, Kjartan; King, Penelope; Kirk, Randolph; Kirkland, Laurel; Kloos, Jacob; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kotrc, Benjamin; Kozyrev, Alexander; Krau, Johannes; Krezoski, ß. Gillian; Kronyak, Rachel; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean-Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lapôtre, Mathieu; Larif, Marie-France; Lasue, Jérémie; Le Deit, Laetitia; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lee, Rebekka; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette, Alain; Lepore, Malvitte Kate; Leshin, Laurie; Léveillé, Richard; Lewin, Éric; Lewis, Kevin; Li, Shuai; Lichtenberg, Kimberly; Lipkaman, Leslie; Lisov, Denis; Little, Cynthia; Litvak, Maxim; Liu, Lu; Lohf, Henning; Lorigny, Eric; Lugmair, Günter; Lundberg, Angela; Lyness, Eric; Madsen, Morten Bo; Magee, Angela; Mahaffy, Paul; Maki, Justin; Mäkinen, Teemu; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gerard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, David K.; Martin, Mildred; Martin, Peter; Martínez Martínez, Germán; Martínez-Frías, Jesús; Martín-Sauceda, Jaime; Martín-Soler, Martín Javier; Martín-Torres, F. Javier; Mason, Emily; Matthews, Tristan; Matthiä, Daniel; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McBride, Marie; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLain, Hannah; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Mendaza de Cal, Teresa; Merikallio, Sini; Merritt, Sean; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Milkovich, Sarah; Millan, Maëva; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitchell, Julie; Mitrofanov, Igor; Moersch, Jeffrey; Mokrousov, Maxim; Molina, Antonio; Moore, Jurado Casey; Moores, John E.; Mora-Sotomayor, Luis; Moreno, Gines; Morookian, John Michael; Morris, Richard V.; Morrison, Shaunna; Mousset, Valérie; Mrigakshi, Alankrita; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Muñoz Caro, Guillermo; Nachon, Marion; Nastan, Abbey; Navarro López, Sara; Navarro González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Nikitczuk, Matthew; Niles, Paul; Nixon, Brian; Noblet, Audrey; Noe, Eldar; Nolan, Dobrea Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; Orthen, Tobias; Owen, Tobias; Ozanne, Marie; de Pablo Hernández, Miguel Ángel; Pagel, Hannah; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Parra, Alex; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alexander; Pavri, Betina; Peinado-González, Verónica; Pepin, Robert; Peret, Laurent; Pérez, René; Perrett, Glynis; Peterson, Joseph; Pilorget, Cedric; Pinet, Patrick; Pinnick, Veronica; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Rapin, William; Raulin, François; Ravine, Michael; Reitz, Günther; Ren, Jun; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Ritter, Birgit; Rivera-Hernández, Frances; Robert, François; Robertson, Kevin; Rodriguez Manfredi, José Antonio; José Romeral-Planelló, Julio; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Said, David; Salamon, Andrew; Sanin, Anton; Sans Fuentes, Sara Alejandra; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne P.; Sciascia Borlina, Cauê; Scodary, Anthony; Sebastián Martínez, Eduardo; Sengstacken, Aaron; Shechet, Jennifer Griffes; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, John J.; Sirven, Jean-Baptiste; Slavney, Susan; Sletten, Ronald; Smith, Michael D.; Sobron Sanchez, Pablo; Spanovich, Nicole; Spray, John; Spring, Justin; Squyres, Steven; Stack, Katie; Stalport, Fabien; Starr, Richard; Stein, Andrew Steele Thomas; Stern, Jennifer; Stewart, Noel; Stewart, Wayne; Stipp, Svane Susan Louise; Stoiber, Kevin; Stolper, Edward; Sucharski, Robert; Sullivan, Robert; Summons, Roger; Sumner, Dawn Y.; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge Loes; Thomas, Alicia; Thomas, Peter; Thompson, Lucy; Thuillier, Franck; Thulliez, Emmanual; Tokar, Robert; Toplis, Michael; de la Torre Juárez, Manuel; Torres Redondo, Josefina; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Ullán-Nieto, Aurora; Urqui-O'Callaghan, Roser; Valentín-Serrano, Patricia; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin R.; Vasconcelos, Paulo; de Vicente-Retortillo Rubalcaba, Álvaro; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Watkins, Jessica; Webster, Christopher R.; Weigle, Gerald; Wellington, Danika; Westall, Frances; Wiens, Roger; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B.; Williford, Kenneth; Wilson, Michael A.; Wilson, Sharon A.; Wimmer-Schweingruber, Robert; Wolff, Michael; Wong, Michael; Wray, James; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Zorzano Mier, María-Paz

    2015-01-01

    Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source.

  19. Mitigation options for methane emissions from rice fields in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  20. Vista-LA: Mapping methane-emitting infrastructure in the Los Angeles megacity

    Science.gov (United States)

    Carranza, Valerie; Rafiq, Talha; Frausto-Vicencio, Isis; Hopkins, Francesca M.; Verhulst, Kristal R.; Rao, Preeti; Duren, Riley M.; Miller, Charles E.

    2018-03-01

    Methane (CH4) is a potent greenhouse gas (GHG) and a critical target of climate mitigation efforts. However, actionable emission reduction efforts are complicated by large uncertainties in the methane budget on relevant scales. Here, we present Vista, a Geographic Information System (GIS)-based approach to map potential methane emissions sources in the South Coast Air Basin (SoCAB) that encompasses Los Angeles, an area with a dense, complex mixture of methane sources. The goal of this work is to provide a database that, together with atmospheric observations, improves methane emissions estimates in urban areas with complex infrastructure. We aggregated methane source location information into three sectors (energy, agriculture, and waste) following the frameworks used by the State of California GHG Inventory and the Intergovernmental Panel on Climate Change (IPCC) Guidelines for GHG Reporting. Geospatial modeling was applied to publicly available datasets to precisely geolocate facilities and infrastructure comprising major anthropogenic methane source sectors. The final database, Vista-Los Angeles (Vista-LA), is presented as maps of infrastructure known or expected to emit CH4. Vista-LA contains over 33 000 features concentrated on Vista-LA is used as a planning and analysis tool for atmospheric measurement surveys of methane sources, particularly for airborne remote sensing, and methane hotspot detection using regional observations. This study represents a first step towards developing an accurate, spatially resolved methane flux estimate for point sources in SoCAB, with the potential to address discrepancies between bottom-up and top-down methane emissions accounting in this region. The Vista-LA datasets and associated metadata are available from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC; https://doi.org/10.3334/ORNLDAAC/1525).

  1. Atmospheric methane: Sources, sinks, and role in global change

    International Nuclear Information System (INIS)

    Khalil, M.A.K.

    1993-01-01

    Atmospheric methane is thought to be the most important trace gas involved in man-made climate change. It may be second only to carbon dioxide in causing global warming. Methane affects also the oxidizing capacity of the atmosphere by controlling tropospheric OH radicals and creating O 3 , and it affects the ozone layer in the stratosphere by contributing water vapor and removing chlorine atoms. In the long term, methane is a natural product of life on earth, reaching high concentrations during warm and biologically productive epochs. Yet the scientific understanding of atmospheric methane has evolved mostly during the past decade after it was shown that concentrations were rapidly rising. Because of the environmental importance of methane, North Atlantic Treaty Organization's Scientific and Environmental Affairs Division commissioned an Advanced Research Workshop. This book is the result of such a conference held during the week of 6 October 1991 at Timberline Lodge on Mount Hood near Portland, Oregon. (orig./KW)

  2. Wide area methane emissions mapping with airborne IPDA lidar

    Science.gov (United States)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  3. Microtopography and methane flux in boreal peatlands, northern Ontario, Canada

    International Nuclear Information System (INIS)

    Bubier, J.; Costello, A.; Moore, T.R.; Roulet, N.T.; Savage, K.

    1993-01-01

    Peatlands act as a major sink of carbon dioxide and a source of methane. Fluxes of methane were measured by a static chamber technique at hummock, hollow, and lawn microtopographic locations in 12 peatland sites near Cochrane, northern Ontario, from May to October 1991. Average fluxes (mg/m 2 /d) were 2.3 at hummocks, 44.4 at hollows, and 15.6 at lawns. Methane flux was negatively correlated with average water table position based on the 36 locations, with hummocks having a smaller flux than hollows or lawns, where the water table depth was <25 cm. Peat samples from a bog hummock and hollow failed to produce methane during anaerobic incubations in the laboratory; samples from a poor fen hollow produced <1.4 μg/g/d. The production decreased with depth but was greater than the rates observed during incubation of samples from an adjacent hummock. Rates of methane consumption during aerobic incubations ranged from 1 to 55 μg/g/d and were greatest in the surface layers and decreased with depth. Differences in methane emissions between hummocks and hollows appear to be controlled primarily by greater methane production rates in hollows compared with hummocks. Of secondary importance are the capacity of the peat profiles to consume methane during its transport to the peat surface and warmer temperatures at the water table beneath hollows compared with hummocks. 29 refs., 4 figs., 2 tabs

  4. Upconversion detector for methane atmospheric sensor

    DEFF Research Database (Denmark)

    Meng, Lichun; Fix, Andreas; Høgstedt, Lasse

    2017-01-01

    We demonstrate an efficient upconversion detector (UCD) for a methane (CH4) atmospheric sensor. The UCD shows comparable performance with a conventional detector when measuring the backscattered signal from the hard target located 2.3 km away.......We demonstrate an efficient upconversion detector (UCD) for a methane (CH4) atmospheric sensor. The UCD shows comparable performance with a conventional detector when measuring the backscattered signal from the hard target located 2.3 km away....

  5. Methane activation using Kr and Xe in a dielectric barrier discharge reactor

    International Nuclear Information System (INIS)

    Jo, Sungkwon; Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Woo Seok; Song, Young-Hoon

    2014-01-01

    Methane has interested many researchers as a possible new energy source, but the high stability of methane causes a bottleneck in methane activation, limiting its practical utilization. To determine how to effectively activate methane using non-thermal plasma, the conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—Ar, Kr, and Xe—as additives. In addition to the methane conversion results at various applied voltages, the discharge characteristics such as electron temperature and electron density were calculated through zero-dimensional calculations. Moreover, the threshold energies of excitation and ionization were used to distinguish the dominant particle for activating methane between electrons, excited atoms, and ionized atoms. From the experiments and calculations, the selection of the additive noble gas is found to affect not only the conversion of methane but also the selectivity of product gases even under similar electron temperature and electron density conditions

  6. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik [Sogang University, Seoul (Korea, Republic of); Yasin, Muhammad; Park, Shinyoung; Chang, In Seop [Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lee, Eun Yeol [Kyung Hee University, Yongin (Korea, Republic of)

    2015-06-15

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k{sub L}a). The feasibility of the new reactor was demonstrated by measuring k{sub L}a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k{sub L}a value of 102.9 h{sup -1} was obtained.

  7. Numerical Simulation of Methane Slip in Dual Fuel Marine Engines

    OpenAIRE

    Han, Jaehyun; Jensen, Michael Vincent; Pang, Kar Mun; Walther, Jens Honore; Schramm, Jesper; Bae, Choongsik

    2017-01-01

    The methane slip is the problematic issue for the engines using natural gas(NG). Because methane is more powerful greenhouse gas (GHG) than CO2, understanding of the methane slip during gas exchange process of the engines is essential. In this study, the influence of the gas pipe geometry and the valve timings on the methane slip was investigated. MAN L28/32DF engine was modeled to simulate the gas exchange process of the four stroke NG-diesel dual fuel engines. The mesh size of the model was...

  8. Atmospheric Methane characterisation over the South African interior

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2016-10-01

    Full Text Available The concentrations of atmospheric methane have an important impact on the global climate system and are important in the production of tropospheric ozone as it acts as an ozone precursor. The ambient concentrations of methane have increased more...

  9. Formation of methane and nitrous oxide in plants

    Science.gov (United States)

    Keppler, Frank; Lenhart, Katharina

    2017-04-01

    Methane, the second important anthropogenic greenhouse gas after carbon dioxide, is the most abundant reduced organic compound in the atmosphere and plays a central role in atmospheric chemistry. The global atmospheric methane budget is determined by many natural and anthropogenic terrestrial and aquatic surface sources, balanced primarily by one major sink (hydroxyl radicals) in the atmosphere. Natural sources of atmospheric methane in the biosphere have until recently been attributed to originate solely from strictly anaerobic microbial processes in wetland soils and rice paddies, the intestines of termites and ruminants, human and agricultural waste, and from biomass burning, fossil fuel mining and geological sources including mud volcanoes and seeps. However, recent studies suggested that terrestrial vegetation, fungi and mammals may also produce methane without the help of methanogens and under aerobic conditions (e.g. Keppler et al. 2009, Wang et al. 2013). These novel sources have been termed "aerobic methane production" to distinguish them from the well-known anaerobic methane production pathway. Nitrous oxide is another important greenhouse gas and major source of ozone-depleting nitric oxide. About two thirds of nitrous oxide emissions are considered to originate from anthropogenic and natural terrestrial sources, and are almost exclusively related to microbial processes in soils and sediments. However, the global nitrous oxide budget still has major uncertainties since it is unclear if all major sources have been identified but also the emission estimates of the know sources and stratospheric sink are afflicted with high uncertainties. Plants contribute, although not yet quantified, to nitrous oxide emissions either indirectly as conduits of soil derived nitrous oxide (Pihlatie et al. 2005), or directly via generation of nitrous oxide in leaves (Dean & Harper 1986) or on the leaf surface induced by UV irradiation (Bruhn et al. 2014). Moreover, lichens

  10. Gas hydrates: entrance to a methane age or climate threat?

    International Nuclear Information System (INIS)

    Krey, Volker; Nakicenovic, Nebojsa; Grubler, Arnulf; O'Neill, Brian; Riahi, Keywan; Canadell, Josep G; Abe, Yuichi; Andruleit, Harald; Archer, David; Hamilton, Neil T M; Johnson, Arthur; Kostov, Veselin; Lamarque, Jean-Francois; Langhorne, Nicholas; Nisbet, Euan G; Riedel, Michael; Wang Weihua; Yakushev, Vladimir

    2009-01-01

    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity provided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates-in particular if combined with carbon capture and storage-to be used as a 'bridge fuel' between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  11. [Agroindustrial wastes methanization and bacterial composition in anaerobic digestion].

    Science.gov (United States)

    González-Sánchez, María E; Pérez-Fabiel, Sergio; Wong-Villarreal, Arnoldo; Bello-Mendoza, Ricardo; Yañez-Ocampo, Gustavo

    2015-01-01

    The tons of organic waste that are annually generated by agro-industry, can be used as raw material for methane production. For this reason, it is important to previously perform biodegradability tests to organic wastes for their full scale methanization. This paper addresses biodegradability, methane production and the behavior of populations of eubacteria and archaeabacteria during anaerobic digestion of banana, mango and papaya agroindustrial wastes. Mango and banana wastes had higher organic matter content than papaya in terms of their volatile solids and total solid rate (94 and 75% respectively). After 63 days of treatment, the highest methane production was observed in banana waste anaerobic digestion: 63.89ml CH4/per gram of chemical oxygen demand of the waste. In the PCR-DGGE molecular analysis, different genomic footprints with oligonucleotides for eubacteria and archeobacteria were found. Biochemical methane potential results proved that banana wastes have the best potential to be used as raw material for methane production. The result of a PCR- DGGE analysis using specific oligonucleotides enabled to identify the behavior of populations of eubacteria and archaeabacteria present during the anaerobic digestion of agroindustrial wastes throughout the process. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments.

    Science.gov (United States)

    Delsontro, Tonya; McGinnis, Daniel F; Sobek, Sebastian; Ostrovsky, Ilia; Wehrli, Bernhard

    2010-04-01

    Methane emission pathways and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using gas traps indicated very high ebullition rates, but due to the stochastic nature of ebullition a mass balance approach was crucial to deduce system-wide methane sources and losses. Methane diffusion from the sediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane measured in the reservoir discharge. A strong positive correlation between water temperature and the observed dissolved methane concentration enabled us to quantify the dissolved methane addition from bubble dissolution using a system-wide mass balance. Finally, knowing the contribution due to bubble dissolution, we used a bubble model to estimate bubble emission directly to the atmosphere. Our results indicated that the total methane emission from Lake Wohlen was on average >150 mg CH(4) m(-2) d(-1), which is the highest ever documented for a midlatitude reservoir. The substantial temperature-dependent methane emissions discovered in this 90-year-old reservoir indicate that temperate water bodies can be an important but overlooked methane source.

  13. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    International Nuclear Information System (INIS)

    Mitchell, Jonathan L.

    2012-01-01

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or ∼0.04 W m –2 , is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is ∼0.5-1 W m –2 in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  14. The Potential for Methane Isotopologue Channels in GOSAT-2

    Science.gov (United States)

    Malina, Edward; Yoshida, Yukio; Matsunaga, Tsuneo; Muller, Jan-Peter

    2017-04-01

    Of the major Greenhouse Gases (GHGs) currently considered as having a major impact on atmospheric chemistry, Methane is amongst the most important (IPCC, 2014). Methane concentration in the atmosphere has been documented to be rising steadily over the past century, aside from an unexplained short period in the middle of the last decade (Heimann., 2011), leading to renewed efforts to understand global atmospheric Methane. Atmospheric Methane is primarily composed of two key isotopologues, 12CH4 and 13CH4, which have a natural abundance of about 98% and 1.1% respectively. It is a well-established fact that different sources of Methane (i.e. biogenic sources such as methanogens, or non-biogenic such as industrial hydrocarbon burning) vary in the abundance of these isotopologues (Etiope, 2009). The global identification of the ratios of these isotopologues could vastly increase knowledge of global Methane sources, and shed some light on global Methane growth. GOSAT-2 due to be launched in 2018 is a follow on from the original GOSAT mission launched in 2009. GOSAT-2 aims to continue the legacy of GOSAT by providing global measurements of Methane and Carbon Dioxide on a global basis in order to monitor GHG emissions. GOSAT-2 in the context of this study has a significant advantage over GOSAT, which is the extension of the sensitivity of band 3 to 2330nm from 2080nm where significant numbers of Methane spectral lines are located. In this study we apply the well-established Information Content (IC) analysis techniques originally proposed by Rodgers (2000) to determine the potential benefit of retrieving total column Methane isotopologue concentrations assuming bands 2 and 3 of the GOSAT-2/TANSO-FTS-2 instrument. The value of such studies has been proven on multiple occasions and can provide guidance on appropriate potential retrieval setups. Due to the fact that there has been limited research in this area, no 'a priori' state vectors or Variance Covariance Matrices (VCMs

  15. Surface Assisted Formation of methane Hydrates on Ice and Na Montmorillonite Clay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teich-McGoldrick, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cygan, Randall Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Methane hydrates are extremely important naturally-occurring crystalline materials that impact climate change, energy resources, geological hazards, and other major environmental issues. Whereas significant experimental effort has been completed to understanding the bulk thermodynamics of methane hydrate assemblies, little is understood on heterogeneous nucleation and growth of methane hydrates in clay-rich environments. Controlled synthesis experiments were completed at 265-285 K and 6.89 MPa to examine the impact of montmorillonite surfaces in clay-ice mixtures to nucleate and form methane hydrate. The results suggest that the hydrophilic and methane adsorbing properties of Namontmorillonite reduce the nucleation period of methane hydrate formation in pure ice systems.

  16. The social cost of methane: theory and applications.

    Science.gov (United States)

    Shindell, D T; Fuglestvedt, J S; Collins, W J

    2017-08-24

    Methane emissions contribute to global warming, damage public health and reduce the yield of agricultural and forest ecosystems. Quantifying these damages to the planetary commons by calculating the social cost of methane (SCM) facilitates more comprehensive cost-benefit analyses of methane emissions control measures and is the first step to potentially incorporating them into the marketplace. Use of a broad measure of social welfare is also an attractive alternative or supplement to emission metrics focused on a temperature target in a given year as it incentivizes action to provide benefits over a broader range of impacts and timescales. Calculating the SCM using consistent temporal treatment of physical and economic processes and incorporating climate- and air quality-related impacts, we find large SCM values, e.g. ∼$2400 per ton and ∼$3600 per ton with 5% and 3% discount rates respectively. These values are ∼100 and 50 times greater than corresponding social costs for carbon dioxide. Our results suggest that ∼110 of 140 Mt of identified methane abatement via scaling up existing technology and policy options provide societal benefits that outweigh implementation costs. Within the energy sector, renewables compare far better against use of natural gas in electricity generation when incorporating these social costs for methane. In the agricultural sector, changes in livestock management practices, promoting healthy diets including reduced beef and dairy consumption, and reductions in food waste have been promoted as ways to mitigate emissions, and these are shown here to indeed have the potential to provide large societal benefits (∼$50-150 billion per year). Examining recent trends in methane and carbon dioxide, we find that increases in methane emissions may have offset much of the societal benefits from a slowdown in the growth rate of carbon dioxide emissions. The results indicate that efforts to reduce methane emissions via policies spanning a wide

  17. The integrated nitrous oxide and methane grassland project

    Energy Technology Data Exchange (ETDEWEB)

    Leffelaar, P.A.; Langeveld, C.A.; Hofman, J.E.; Segers, R.; Van den Pol-van Dasselaar, A.; Goudriaan, J.; Rabbinge, R.; Oenema, O. [Department of Theoretical Production Ecology, Wageningen Agricultural University, Wageningen (Netherlands)

    2000-07-01

    The integrated nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) grassland project aims to estimate and explain emissions of these greenhouse gases from two ecosystems, namely drained agricultural peat soil under grass at the experimental farm Zegveld and undrained peat in the nature preserve Nieuwkoopse Plassen, both Netherlands. Peat soils were chosen because of their expected considerable contribution to the greenhouse gas budget considering the prevailing wet and partial anaerobic conditions. The emission dynamics of these ecosystems are considered representatives of large peat areas because the underlying processes are rather general and driven by variables like organic matter characteristics, water and nutrient conditions and type of vegetation. The research approach comprises measurements and modelling at different integration levels relating to the microbiology of the production and consumption of N{sub 2}O and CH{sub 4} (laboratory studies), their movement through peat soil (rhizolab and field studies), and the resulting fluxes (field studies). Typical emissions from drained soil were 15-40 kg ha{sup -1} y{sup -1} N{sub 2}O and virtually zero for CH{sub 4}. The undrained soil in the nature preserve emitted 100-280 kg ha{sup -1} y{sup -1} CH{sub 4}, and probably little N{sub 2}O. The process knowledge, collected and partly integrated in the models, helps to explain these data. For example, the low methane emission from drained peat can more coherently be understood and extrapolated because: (1) upper soil layers are aerobic, thus limiting methane production and stimulating methane oxidation, (2) absence of aerenchymatous roots of wetland plants that connect deeper anaerobic soil layers where methane is produced to the atmosphere and supply labile carbon, (3) a low methane production potential in deep layers due to the low decomposability of organic matter, and (4) long anaerobic periods needed in the topsoil to develop a methane production potential. This

  18. Global health benefits of mitigating ozone pollution with methane emission controls.

    Science.gov (United States)

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  19. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean.

    Science.gov (United States)

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by (13)C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO(2) was confirmed in a (13)C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 10(9) cells cm(-3) sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD-FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible.

  20. Methane from dairy waste

    Energy Technology Data Exchange (ETDEWEB)

    1982-10-22

    This short article describes a facility which will incorporate features to allow for the recovery of the methane gas that is produced in the manufacture of cheese and spray-dried whey powder at the site. The dairy plant is expected to produce about 1,385 m/sup 3//day of methane which will supplement the operation of oil burners and replace the annual consumption of 4,000 bbl of heavy fuel oil. In addition, development of the treatment system would eliminate the consumption of 7,200 kWh/day of electrical energy that would otherwise be required to operate an aerobic disposal system. Total annual energy savings, when the project is fully operational in the spring of 1984, are expected to reach $321,000.

  1. Effect of weir impoundments on methane dynamics in a river

    Czech Academy of Sciences Publication Activity Database

    Bednařík, A.; Blaser, M.; Matoušů, Anna; Hekera, P.; Rulík, M.

    2017-01-01

    Roč. 584, April (2017), s. 164-174 ISSN 0048-9697 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : methane production * methane emission * methane ebullition * river impoundment * river sediment Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 4.900, year: 2016

  2. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov (United States)

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  3. Reduce the methane hazards in collieries, vol. 1.

    CSIR Research Space (South Africa)

    Van Zyl, FJ

    1996-10-01

    Full Text Available In an effort to improve safety in the underground environment of a mechanical miner section, with relation to the methane hazard a data obtained with the multi-channel methane monitoring unit, combined with situ and laboratory coal analysis data...

  4. Feeding strategies to reduce methane loss in cattle

    NARCIS (Netherlands)

    Tamminga, S.; Bannink, A.; Dijkstra, J.; Zom, R.L.G.

    2007-01-01

    This report presents an overview of the enteric methane production in cattle. The possibilities are discussed to influence methane production by feeding measures and the use of feed additives, and by management measures. The possibilities are discussed against the background of Dutch cattle

  5. Large methane releases lead to strong aerosol forcing and reduced cloudiness

    Directory of Open Access Journals (Sweden)

    T. Kurtén

    2011-07-01

    Full Text Available The release of vast quantities of methane into the atmosphere as a result of clathrate destabilization is a potential mechanism for rapid amplification of global warming. Previous studies have calculated the enhanced warming based mainly on the radiative effect of the methane itself, with smaller contributions from the associated carbon dioxide or ozone increases. Here, we study the effect of strongly elevated methane (CH4 levels on oxidant and aerosol particle concentrations using a combination of chemistry-transport and general circulation models. A 10-fold increase in methane concentrations is predicted to significantly decrease hydroxyl radical (OH concentrations, while moderately increasing ozone (O3. These changes lead to a 70 % increase in the atmospheric lifetime of methane, and an 18 % decrease in global mean cloud droplet number concentrations (CDNC. The CDNC change causes a radiative forcing that is comparable in magnitude to the longwave radiative forcing ("enhanced greenhouse effect" of the added methane. Together, the indirect CH4-O3 and CH4-OH-aerosol forcings could more than double the warming effect of large methane increases. Our findings may help explain the anomalously large temperature changes associated with historic methane releases.

  6. Screening boreal energy crops and crop residues for methane biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.; Rintala, J.A. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Viinikainen, T.A. [Department of Chemistry, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2008-06-15

    The purpose of the study was to screen potential boreal energy crops and crop residues for their suitability in methane production and to investigate the effect of harvest time on the methane production potential of different crops. The specific methane yields of crops, determined in 100-200 d methane potential assays, varied from 0.17 to 0.49 m{sup 3} CH{sub 4} kg{sup -1} VS{sub added} (volatile solids added) and from 25 to 260 m{sup 3} CH{sub 4} t{sub ww}{sup -1} (tonnes of wet weight). Jerusalem artichoke, timothy-clover grass and reed canary grass gave the highest potential methane yields of 2900-5400 m{sup 3} CH{sub 4} ha{sup -1}, corresponding to a gross energy yield of 28-53 MWh ha{sup -1} and ca. 40,000-60,000 km ha{sup -1} in passenger car transport. The effect of harvest time on specific methane yields per VS of crops varied a lot, whereas the specific methane yields per t{sub ww} increased with most crops as the crops matured. (author)

  7. Health and Safety Management for Small-scale Methane Fermentation Facilities

    Science.gov (United States)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  8. Large methane releases lead to strong aerosol forcing and reduced cloudiness

    DEFF Research Database (Denmark)

    Kurten, T.; Zhou, L.; Makkonen, R.

    2011-01-01

    forcing that is comparable in magnitude to the long-wave radiative forcing ("enhanced greenhouse effect") of the added methane. Together, the indirect CH4-O-3 and CH4-OHaerosol forcings could more than double the warming effect of large methane increases. Our findings may help explain the anomalously......The release of vast quantities of methane into the atmosphere as a result of clathrate destabilization is a potential mechanism for rapid amplification of global warming. Previous studies have calculated the enhanced warming based mainly on the radiative effect of the methane itself, with smaller...... contributions from the associated carbon dioxide or ozone increases. Here, we study the effect of strongly elevated methane (CH4) levels on oxidant and aerosol particle concentrations using a combination of chemistry-transport and general circulation models. A 10-fold increase in methane concentrations...

  9. Methods for Detecting Microbial Methane Production and Consumption by Gas Chromatography.

    Science.gov (United States)

    Aldridge, Jared T; Catlett, Jennie L; Smith, Megan L; Buan, Nicole R

    2016-04-05

    Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO 2 . Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al. , 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al. , 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al. , 2015). Here we describe the end point and kinetic assays that can be used to measure methane production by methanogens or methane consumption by methanotrophic microbes. The protocols can be used for measuring methane production or consumption by microbial pure cultures or by enrichment cultures.

  10. Ground truthing for methane hotspots at Railroad Valley, NV - application to Mars

    Science.gov (United States)

    Detweiler, A. M.; Kelley, C. A.; Bebout, B.; McKay, C. P.; DeMarines, J.; Yates, E. L.; Iraci, L. T.

    2011-12-01

    During the 2010 Greenhouse gas Observing SATellite (GOSAT) calibration and validation campaign at Railroad Valley (RRV) playa, NV, unexpected methane and carbon dioxide fluctuations were observed at the dry lakebed. Possible sources included the presence of natural gas (thermogenic methane) from oil deposits in the surrounding playa, and/or methane production from microbial activity (biogenic) in the subsurface of the playa. In the summer of 2011, measurements were undertaken to identify potential methane sources at RRV. The biogenicity of the methane was determined based on δ13C values and methane/ethane ratios. Soil gas samples and sediments were collected at different sites in the playa and surrounding areas. The soils of the playa consist of a surface crust layer (upper ~ 10 cm) grading to a dense clay below about 25 cm. Soil gas from the playa, sampled at about 20 and 80 cm depths, reflected atmospheric methane concentrations, ranging from 2 to 2.4 ppm, suggesting that no methane was produced within the playa. Natural springs on the northeast and western border of the playa, detected as methane hotspots from a flyover by the Sensor Integrated Environmental Remote Research Aircraft (SIERRA), were also sampled. Bubbles in these springs had methane concentrations that ranged from 69 to 84% by volume. In addition, ethane was detected at very low concentrations, giving methane/ethane ratios in excess of 100,000, indicating biogenic methane in the springs. Soils and sediments collected at the playa and spring sites were incubated in vials over a period of ~23 days. Methane production was observed in the spring sites (avg. 228.6 ± 49.1 nmol/g/d at Kate Springs), but was not evident for the playa sites. The incubation data, therefore, corroborated in situ methane concentration measurements. Particulate organic carbon (POC) was low for all sites samples (0.05-0.38%), with the exception of Kate Springs, which had a much higher POC concentration of 3.4 ± 0

  11. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    Science.gov (United States)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  12. Options for cost-effectively reducing atmospheric methane concentrations from anthropogenic biomass sources

    International Nuclear Information System (INIS)

    Roos, K.F.; Jacobs, C.; Orlic, M.

    1993-01-01

    Methane is a major greenhouse gas, second only to carbon dioxide in its contribution to future global warming. Methane concentrations have more than doubled over the last two centuries and continue to rise annually. These increases are largely correlated with increasing human populations. Methane emissions from human related activities currently account for about 70 percent of annual emissions. Of these human related emissions, biomass sources account for about 75 percent and non-biomass sources about 25 percent. Because methane has a shorter lifetime than other major greenhouse gases, efforts to reduce methane emissions may fairly quickly be translated into lower atmospheric concentrations of methane and lower levels of radiative forcing. This fairly quick response would have the benefit of slowing the rate of climate change and hence allow natural ecosystems more time to adapt. Importantly, methane may be cost-effectively reduced from a number of biomass and non-biomass sources in the United States and worldwide. Methane is a valuable fuel, not just a waste by-product, and often systems may be reconfigured to reap the fuel value of the methane and more than justify the necessary expenditures. Such options for reducing methane emission from biomass sources exist for landfills, livestock manures, and ruminant livestock, and have been implemented to varying degrees in countries around the world. However, there are a number of barriers that hinder the more widespread use of technologies, including institutional, financial, regulatory, informational, and other barriers. This paper describes an array of available options that may be cost-effectively implemented to reduce methane emissions from biomass sources. This paper also discusses a number of programs that have been developed in the United States and internationally to promote the implementation of these methane reduction options and overcome existing barriers

  13. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-11-01

    Hydrothermal waste package interaction tests with methane-containing synthetic basalt groundwater have shown that in the absence of gamma radiolysis, methane has little influence on the glass dissolution rate. Gamma radiolysis tests at fluxes of 5.5 x 10 5 and 4.4 x 10 4 R/hr showed that methane-saturated groundwater was more reducing than identical experiments where Ar was substituted for CH 4 . Dissolved methane, therefore, may be beneficial to the waste package in limiting the solubility of redox sensitive radionuclides such a 99 Tc. Hydrocarbon polymers known to form under the irradiation conditions of these tests were not produced. The presence of the waste package constituents apparently inhibited the formation of the polymers, however, the mechanism which prevented their formation was not determined

  14. A Review of the Methane Hydrate Program in Japan

    Directory of Open Access Journals (Sweden)

    Ai Oyama

    2017-09-01

    Full Text Available In this paper, methane hydrate R&D in Japan was examined in the context of Japan’s evolving energy policies. Methane hydrates have been studied extensively in Japanese national R&D programs since 1993, with the goal of utilizing them as an energy resource. Currently, the Research Consortium for Methane Hydrate Resources in Japan (MH 21 is in the third phase of a project that began in early 2002. Based on publicly available reports and other publications, and presentations made at the ten International Workshops for Methane Hydrate Research and Development, we have attempted to provide a timeline and a succinct summary of the major technical accomplishments of MH 21 during project Phases 1, 2, and 3.

  15. The photochemical reaction of 1,1-dicyano-3-phenylbut-1-ene. Simultaneous occurrence of p-methane and di-p-methane rearrangements

    Directory of Open Access Journals (Sweden)

    Silva Francisco A. da

    1999-01-01

    Full Text Available The direct photolysis of 1,1-dicyano-3-phenylbut-1-ene (3-MDCN was investigated at room temperature in solvents of different polarities (hexane, dichloromethane and acetonitrile. Cyclopropanes arising from both the di-pi-methane and pi-methane (1,2-H migration processes were obtained as photoproducts. The structures of the products were elucidated by ¹H-NMR, GC/MS, IR and chromatography. Relative quantum yield determination and GC analysis of sequential irradiations gave evidence that: i no secondary reactions occur, even at high conversions; ii the di-pi-methane rearrangement is significantly more affected by the solvent variation than the pi-methane reaction. Photosensitization with acetophenone or acetone did not yield any observable products. The existence of the simultaneous mechanisms and the observed effects were considered as evidence of a possible differentiation between localized and delocalized excitation on the excited state surface.

  16. Methanization of industrial liquid effluents; Methanisation des effluents industriels liquides

    Energy Technology Data Exchange (ETDEWEB)

    Frederic, S.; Lugardon, A. [Societe Naskeo Environnement, 92 - Levallois-Perret (France)

    2007-09-15

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  17. Uncertainty of Methane Fluxes in a Northern Peatland under Global Climate Change

    Science.gov (United States)

    MA, S.; Jiang, J.; Huang, Y.; Luo, Y.

    2016-12-01

    Large uncertainty exists in predicting responses of methane fluxes to future climate change. How the uncertainty is related to methane production, oxidation, diffusion, ebullition and plant mediated transportation is still poorly understood, despite of the fact that these processes related to methane emission have been theoretically well represented. At the same time, in methane models many of the parameters are given to an empirical value according to measurements or models decades ago. It is unrealistic to testify all the parameters included in methane modules by actual in situ measurements due to the fact of high temporal and spatial variation. However it would be convincible and feasible to measure in field if models could offer better sampling strategy by telling which parameter is more important for estimation of methane emission, and project a constrained value for key parameters in each process. These feedbacks from field measurements could in turn testify the model accuracy for methane emission projection, as well as the optimization of model structures. We incorporated methane module into an existing process-based Terrestrial ECOsystem model (TECO), to simulate methane emission in a boreal peatland forest, northern Minnesota (Spruce and Peatland Responses Under Climatic and Environmental Change Experiment, SPRUCE). We performed sensitivity test and picked key parameters from the five processes for data assimilation using the Bayesian probability inversion and a Markov Chain Monte Carlo (MCMC) technique. We were able to constrain key parameters related to the five processes in the TECO-SPRUCE Methane model. The constrained model simulated daily methane emission fitted quite well with the data from field measurements. The improvement of more realistic and site-specific parameter values allow for reasonable projections of methane emission under different global changing scenarios, warming and elevated CO2, for instance, given the fact that methane emission

  18. Methane emissions from bald cypress tree trunks in a bottomland forest

    Science.gov (United States)

    Schile, L. M.; Pitz, S.; Megonigal, P.

    2013-12-01

    Studies on natural methane emissions predominantly have occurred on wetland soils with herbaceous plant species. Less attention, however, has been placed on the role of woody wetland plant species in the methane cycle. Recent studies on methane emissions from tree trunks document that they are a significant source of emissions that previously has been not accounted for. In this study, we examine methane emissions from trunks of mature bald cypress (Taxodium distichum), which is a dominant tree species in bottomland hardwood forests of the Southeastern United States. To date, little is known about soil methane emissions in these systems, and published tree emissions have been limited to a single study conducted on bald cypress knees. In May 2013, we established a plot in a monospecific bald cypress stand planted approximately 70 years ago on the Chesapeake Bay in Maryland and are monitoring methane emissions on 12 tree trunks, soil chambers, and pore-water over the course of a year. Custom-made 30 cm tall open face rectangular tree chambers were constructed out of white acrylic sheets and secured on each tree at a midpoint of 45 cm above the soil surface. Chambers were lined with neoprene along the tree surface and sealed with an epoxy. On three trees that varied in trunk diameter, chambers were placed at average heights of 95, 145, 195, and 345 cm from the soil surface in order to calculate a decay curve of methane emissions. Once a month, chambers were sealed with lids and head-space samples were collected over the course of an hour. Methane flux was calculated and compared to emissions from soil chambers. Average cypress trunk methane fluxes ranged from 17.7 μmole m-2 hr-1 in May to 49.5 and 116.5 μmole m-2 hr-1 in June and July, respectively. Soil fluxes averaged 28.5 μmole m-2 hr-1 in May and June, and decreased to 13.7 μmole m-2 hr-1 in July. Methane emissions decreased exponentially up the tree trunk, with fluxes of 2 μmole m-2 hr-1 and less calculated

  19. Landscape-level terrestrial methane flux observed from a very tall tower

    Science.gov (United States)

    Desai, Ankur R.; Xu, Ke; Tian, Hanqin; Weishampel, Peter; Thom, Jonthan; Baumann, Daniel D.; Andrews, Arlyn E.; Cook, Bruce D.; King, Jennifer Y.; Kolka, Randall

    2015-01-01

    Simulating the magnitude and variability of terrestrial methane sources and sinks poses a challenge to ecosystem models because the biophysical and biogeochemical processes that lead to methane emissions from terrestrial and freshwater ecosystems are, by their nature, episodic and spatially disjunct. As a consequence, model predictions of regional methane emissions based on field campaigns from short eddy covariance towers or static chambers have large uncertainties, because measurements focused on a particular known source of methane emission will be biased compared to regional estimates with regards to magnitude, spatial scale, or frequency of these emissions. Given the relatively large importance of predicting future terrestrial methane fluxes for constraining future atmospheric methane growth rates, a clear need exists to reduce spatiotemporal uncertainties. In 2010, an Ameriflux tower (US-PFa) near Park Falls, WI, USA, was instrumented with closed-path methane flux measurements at 122 m above ground in a mixed wetland–upland landscape representative of the Great Lakes region. Two years of flux observations revealed an average annual methane (CH4) efflux of 785 ± 75 mg CCH4 m−2 yr−1, compared to a mean CO2 sink of −80 g CCO2 m−2 yr−1, a ratio of 1% in magnitude on a mole basis. Interannual variability in methane flux was 30% of the mean flux and driven by suppression of methane emissions during dry conditions in late summer 2012. Though relatively small, the magnitude of the methane source from the very tall tower measurements was mostly within the range previously measured using static chambers at nearby wetlands, but larger than a simple scaling of those fluxes to the tower footprint. Seasonal patterns in methane fluxes were similar to those simulated in the Dynamic Land Ecosystem Model (DLEM), but magnitude depends on model parameterization and input data, especially regarding wetland extent. The model was unable to simulate short

  20. Methane production from fermentation of winery waste

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K V; Liao, P H

    1986-01-01

    A laboratory-scale reactor receiving a mixture of screened dairy manure and winery waste was studied at 35 degrees C and a hydraulic retention time of 4 days. The maximum methane production rate of 8.14 liter CH/sub 4//liter/day was achieved at a loading rate of 7.78 g VS/liter/day (VS = volatile solids). The corresponding methane yield was 1.048 liter CH/sub 4//g VS added. Using a mixture of winery wastes and screened dairy manure as the feed material to anaerobic reactor resulted in a significant increase in total methane production compared to that from screened dairy manure alone. The biodegradation efficiency increased with the addition of winery wastes to screened dairy manure. 18 references.

  1. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial temperature over 920 K, the threshold temperature for autoignition in methane jets, exhibited features typical of either a tribrachial edge or mild combustion depending on fuel mole fraction and the liftoff height increased with jet velocity. The liftoff height in the hydrogen-assisted autoignition regime was dependent on the square of the adiabatic ignition delay time for the addition of small amounts of hydrogen, as was the case for pure methane jets. When the initial temperature was below 920 K, where the methane fuel did not show autoignition behavior, the flame was autoignited by the addition of hydrogen, which is an ignition improver. The liftoff height demonstrated a unique feature in that it decreased nonlinearly as the jet velocity increased. The differential diffusion of hydrogen is expected to play a crucial role in the decrease in the liftoff height with increasing jet velocity.

  2. Migration of methane into groundwater from leaking production wells near Lloydminster

    International Nuclear Information System (INIS)

    1995-03-01

    The problem of migration of methane from leaking oil and gas wells into aquifers in the Lloydminster area in Saskatchewan, was discussed. A study was conducted to determine if the methane in shallow aquifers near the leaking wells, came from the wells or occurred naturally. Migration rate in aquifers, concentration gradients and approximate flux rates of methane from leaking wells to shallow aquifers, were studied. The methods of investigation included drilling of test holes at selected sites, installation of monitoring wells, purging of wells, pumping tests and water level monitoring, sampling and analyses for dissolved methane. The relatively high methane concentrations in many of the monitoring wells indicated the presence of a methane plume that has migrated from the production well. It was suggested that other leaky well sites in the area should be investigated to determine if similar plumes were present. 18 refs., 5 tabs., 13 figs

  3. Ignition-promoting effect of NO2 on methane, ethane and methane/ethane mixtures in a rapid compression machine

    DEFF Research Database (Denmark)

    Gersen, S.; Mokhov, A.V.; Darmeveil, J.H.

    2011-01-01

    Autoignition delay times of stoichiometric methane, ethane and methane/ethane mixtures doped with 100 and 270ppm of NO2 have been measured in a RCM in the temperature range 900–1050K and pressures from 25 to 50bar. The measurements show that addition of NO2 to CH4/O2/N2/Ar and CH4/C2H6/O2/N2/Ar...

  4. Investigating observational constraints on the contemporary methane budget

    NARCIS (Netherlands)

    Monteil, G.A.

    2014-01-01

    Methane (CH4) is an important greenhouse gas, naturally produced by bio-degradation of organic material (mainly in wetlands), by continuous and eruptive releases from mud volcanoes, and by combustion of organic material in forest and peat fires. Large quantities of methane are also emitted by human

  5. Mangosteen peel can reduce methane production and rumen ...

    African Journals Online (AJOL)

    Mangosteen peel (MP), an agricultural by-product of tropical countries, has been reported to contain condensed tannins and saponins, which can affect rumen microbes to reduce enteric methane emission. In the present study, the effects of mangosteen peel on in vitro ruminal fermentation, gas production, methane ...

  6. Estimation of methane generation based on anaerobic digestion ...

    African Journals Online (AJOL)

    ... comparable (within 14%) to the amount estimated by laboratory-scale anaerobic digestion experiment (1.43 Gg methane/month). It is a worthwhile undertaking to further investigate the potential of commercially producing methane from Kiteezi landfill as an alternative source of green and clean energy for urban masses.

  7. Pretreatment of wheat straw for fermentation to methane

    International Nuclear Information System (INIS)

    Hashimoto, A.G.

    1986-01-01

    The effects of pretreating wheat straw with gamma-ray irradiation, ammonium hydroxide, and sodium hydroxide on methane yield, fermentation rate constant, and loss of feedstock constituents were evaluated using laboratory-scale batch fermentors. Results showed that methane yield increased as pretreatment alkali concentration increased, with the highest yield being 37% over untreated straw for the pretreatment consisting of sodium hydroxide dosage of 34 g OH - /kg volatile solids, at 90 0 C for 1 h. Gamma-ray irradiation had no significant effect on methane yield. Alkaline pretreatment temperatures above 100 0 C caused a decrease in methane yield. After more than 100 days of fermentation, all of the hemicellulose and more than 80% of the cellulose were degraded. The loss in cellulose and hemicellulose accounted for 100% of the volatile solids lost. No consistent effect of pretreatments on batch fermentation rates was noted. Semicontinuous fermentations of straw-manure mixtures confirmed the relative effectiveness of sodium- and ammonium-hydroxide pretreatments

  8. Virginia oil and gas production, exploration and development

    International Nuclear Information System (INIS)

    Stern, M.

    1990-01-01

    This paper reports that although production and drilling declined in Virginia in 1989, there were interesting projects that should impact Virginal's future oil and gas potential. In Dickenson County, Equitable Resources (EREX) began development on two areas of coalbed methane and extended the limits of the Nora Coalbed Methane Field with an exploratory well. In Westmoreland County, Texaco drilled a deep test well in the Taylorsville Basin. While a depressed market caused a decline in natural gas production of four percent, there was significant new production from ten coalbed methane wells in Dickenson County. The coalbed methane wells produced 181,526 Mcf or over one percent of the total production in the state. The 1989 total of 17,935,376 Mcf produced from 752 wells was a four percent decline from the 1988 figure of 18,682,350 Mcf from 728 wells

  9. Controls on tree species stem transport and emission of methane from tropical peatlands

    Science.gov (United States)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2016-12-01

    Methane emissions from wetlands dominate the global budget and are most likely responsible for the annual variability in emissions. Methane is produced and consumed by microbial activity and then transported to the atmosphere. Plants have been shown to facilitate the transport of methane to significant amounts, but broad surveys across multiple sites have been lacking. We present data collected from multiple peatland and wetland sites south of Iquitos Peru and varzea sites from Santarem Brazil and compare our results to the limited literature of tree stem fluxes. The survey suggests that methane stem emissions might be conserved at the genera level, but not the family level. Large emitters exist in the Aracaceae, Euphorbiaceae, and Sapotaceae, however, other genera within the same families do not emit any methane. Certain genera are consistent pan-tropical methane emitters. The methane emission from the stems decreases generally with height, suggesting a diffusion constrained stem flux. Further constraints on the methane emissions from tree stems involve soil methane concentration and wood density, which is likely an indicator for stem conductivity. Diurnal cycles, flooding level and tree leaves appear to have less of an influence on the tree methane emissions though flooding can lead to a translocation of emissions up the stem to above the flooding level. Methane emissions and the plant transport pathways appear to be constrained at the genera level within wetlands.

  10. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  11. Heritability estimates for methane emission in Holstein cows using breath measurements

    DEFF Research Database (Denmark)

    Lassen, Jan; Madsen, Jørgen; Løvendahl, Peter

    2012-01-01

    Enteric methane emission from ruminants contributes substantially to the greenhouse effect. Few studies have focused on the genetic variation in enteric methane emission from dairy cattle. The objective of this study was to estimate the heritability for enteric methane emission from Danish Holste...... to ketosis....

  12. Methane from wood

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S

    2005-07-15

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  13. Methane from wood

    International Nuclear Information System (INIS)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S.

    2005-07-01

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  14. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    Energy Technology Data Exchange (ETDEWEB)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily

  15. Different Abilities of Eight Mixed Cultures of Methane-oxidizing Bacteria to Degrade TCE

    DEFF Research Database (Denmark)

    Broholm, Kim; Christensen, Thomas Højlund; Jensen, Bjørn K.

    1993-01-01

    The ability of eight mixed cultures of methane-oxidizing bacteria to degrade trichloroethylene (TCE) was examined in laboratory batch experiments. This is one of the first reported works studying TCE degradation by mixed cultures of methane-oxidizing bacteria at 10°C, a common temperature for soils...... methanol, but only for a limited time period of about 5 days. Several explanations for the discontinued degradation of TCE are given. An experiment carried out to re-activate the methane-oxidizing bacteria after 8 days of growth on methanol by adding methane did not immediately result in degradation...... of methane and TCE. During the first 10–15 days after the addition of methane a significant degradation of methane and a minor degradation of TCE were observed. This experiment revealed that the ability of mixed cultures of methane-oxidizing bacteria to degrade TCE varied significantly even though...

  16. Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    OpenAIRE

    Emma eAronson; Emma eAronson; Steven eAllison; Steven eAllison; Brent R Helliker

    2013-01-01

    Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5-15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and call for novel approaches in order to predict future atmospheric methane trends....

  17. Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    OpenAIRE

    Aronson, Emma L; Allison, Steven D; Helliker, Brent R

    2013-01-01

    Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5?15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and calls for novel approaches in order to predict future atmospheric methane trends...

  18. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  19. Ceramic Proppant Design for In-situ Microbially Enhanced Methane Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, Taylor D. [Univ. of Utah, Salt Lake City, UT (United States); Mclennan, John [Univ. of Utah, Salt Lake City, UT (United States); Fuertez, John [Univ. of Utah, Salt Lake City, UT (United States); Han, Kyu-Bum [Univ. of Utah, Salt Lake City, UT (United States)

    2017-12-29

    This project designed a new type of multi-functional lightweight proppant. The proppant is utilized as the conventional lightweight proppant but also transports microorganisms to coalbed reservoirs. The proppant is coated with a polymer which protects the methanogenic microorganisms and serves as a time-release delivery for methane generation. To produce the multifunctional proppant, we assigned five tasks: 1) culturing methanogenic microbes from natural carbon sources; 2) identifying optimized growth and methanogenesis conditions for the microbial consortia; 3) synthesizing the lightweight ceramic proppant; 4) encapsulating the consortia and proppant; and 5) demonstrating lab scale simulated performance by monitoring in-situ methane generation and hydraulic conductivity. Task 1) To evaluate the feasibility of ex-situ cultivation, natural microbial populations were collected from various hydrocarbon-rich environments and locations characterized by natural methanogenesis. Different rank coals, complex hydrocarbon sources, hydrocarbon seeps, and natural biogenic environments were incorporated in the sampling. Three levels of screening allowed selection of microbial populations, favorable nutrient amendments, sources of the microbial community, and quantification of methane produced from various coal types. Incubation periods of up to 24 weeks were evaluated at 23°C. Headspace concentrations of CH4 and CO2 were analyzed by gas chromatography. After a two-week incubation period of the most promising microbes, generated headspace gas concentrations reached 873,400 ppm for methane and 176,370 ppm for carbon dioxide. Task 2) A central composite design (CCD) was used to explore a broad range of operational conditions, examine the effects of the important environmental factors, such as temperature, pH and salt concentration, and query a feasible region of operation to maximize methane production from coal. Coal biogasification was optimal for this

  20. Methanation: reality or fiction?

    International Nuclear Information System (INIS)

    Gay, Michel

    2015-01-01

    The author discusses whether it is possible to partly replace oil and natural gas by electricity-based gas, i.e. to produce methane from water by electrolysis, or by using molecule cracking in dedicated nuclear reactors, and carbon dioxide. He outlines the benefits of this perspective in terms of reduction of imports, and of national electricity production optimisation. He also discusses the drawbacks: it will be difficult to produce the huge required quantity of CO 2 ; it will be even more difficult to produce the required quantity of electricity; the e-methane production cost is much higher than that of the currently imported natural gas. In appendix, the author discusses some key figures related to energy in France (consumption, shares, imports, crucial role of nuclear energy for the future)

  1. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico

    Science.gov (United States)

    Chuang, P.-C.; Young, M. B.; Dale, A. W.; Miller, L. G.; Herrera-Silveira, J. A.; Paytan, A.

    2017-05-01

    Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m-2 d-1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.

  2. What's the Deal with Methane at LUST Spill Sites? Part 1

    Science.gov (United States)

    This article is specifically intended to discuss methane produced from releases of ethanol and gasoline-ethanol mixtures. There may be other sources of methane at a site, including leaks of natural gas or methane produced from the natural decay of buried plant tissues or from th...

  3. Numerical Simulation of Methane Slip in Dual Fuel Marine Engines

    DEFF Research Database (Denmark)

    Han, Jaehyun; Jensen, Michael Vincent; Pang, Kar Mun

    2017-01-01

    estimations. The simulations with various gas pipe geometries were conducted. It seemed that the effect of the change in injection direction is more dominant than the change in the gas hole configuration. The favorable injection direction for minimum amount of methane slip was discovered as the direction...... which helps developing the flow of methane far from the exhaust ports. The effects of various valve timing settings were also simulated. The advancement of the exhaust valve closing was more efficient than the retardation of the intake valve opening. A little retardation of the intake valve opening even......The methane slip is the problematic issue for the engines using natural gas(NG). Because methane is more powerful greenhouse gas (GHG) than CO2, understanding of the methane slip during gas exchange process of the engines is essential. In this study, the influence of the gas pipe geometry...

  4. New materials for methane capture from dilute and medium-concentration sources

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Maiti, A; Lin, LC; Stolaroff, JK; Smit, B; Aines, RD

    2013-04-16

    Methane (CH4) is an important greenhouse gas, second only to CO2, and is emitted into the atmosphere at different concentrations from a variety of sources. However, unlike CO2, which has a quadrupole moment and can be captured both physically and chemically in a variety of solvents and porous solids, methane is completely non-polar and interacts very weakly with most materials. Thus, methane capture poses a challenge that can only be addressed through extensive material screening and ingenious molecular-level designs. Here we report systematic in silico studies on the methane capture effectiveness of two different materials systems, that is, liquid solvents (including ionic liquids) and nanoporous zeolites. Although none of the liquid solvents appears effective as methane sorbents, systematic screening of over 87,000 zeolite structures led to the discovery of a handful of candidates that have sufficient methane sorption capacity as well as appropriate CH4/CO2 and/or CH4/N-2 selectivity to be technologically promising.

  5. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  6. Electron energy distribution functions and thermalization times in methane and in argon--methane mixtures: An effect of vibrational excitation processes

    International Nuclear Information System (INIS)

    Krajcar-Bronic, I.; Kimura, M.

    1995-01-01

    Electron thermalization in methane and argon--methane mixtures is studied by using the Boltzmann equation. The presence of low-lying vibrational excited states in methane significantly changes electron energy distribution functions and relaxation times. We found that (i) the mean electron energy just below the first vibrational excited state is reached faster by 1000 times when the vibrational states are taken into account, and (ii) electron energy distribution functions have distinct peaks at energy intervals equal to the vibrational threshold energies. Both these effects are due to large vibrational stopping cross section. The thermalization time in mixtures of argon--methane (without vibrational states) smoothly changes as the mixture composition varies, and no significant difference in the electron energy distribution function is observed. When the vibrational excited states are taken into account, thermalization is almost completely defined by CH 4 , even at very low fractional concentrations of CH 4 . The sensitivity of the electron energy distribution functions on the momentum transfer cross sections used in calculation on the thermalization is discussed. copyright 1995 American Institute of Physics

  7. Hydrogen production by methane reforming based on micro-gap discharge

    International Nuclear Information System (INIS)

    Liu, N N; Wang, M X; Liu, K Y; Bai, M D

    2013-01-01

    Based on micro-gap strong ionization discharge, this paper presents a study of hydrogen production by methane reforming at room temperature and atmospheric pressure without catalyst. Influence rules of conversion of methane and production of hydrogen were studied by changing discharge power and feed gas flow rate. Results show that when the discharge power was about 341 W, the discharge gap was 0.47 mm and the flow rate of feed gas was 100 mL min −1 , the conversion of methane and yield of hydrogen reached optimization. The conversion rate of methane and the highest yield of hydrogen were 68.14 % and 51.34 %, respectively.

  8. Advances in the Partial Oxidation of Methane to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    Quanli Zhu; Xutao Zhao; Youquan Deng

    2004-01-01

    The conversion and utilization of natural gas is of significant meaning to the national economy,even to the everyday life of people. However, it has not become a popular industrial process as expected due to the technical obstacles. In the past decades, much investigation into the conversion of methane,predominant component of natural gas, has been carried out. Among the possible routes of methane conversion, the partial oxidation of methane to synthesis gas is considered as an effective and economically feasible one. In this article, a brief review of recent studies on the mechanism of the partial oxidation of methane to synthesis gas together with catalyst development is wherein presented.

  9. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Chouinard, Y.

    2003-01-01

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  10. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms.

    Science.gov (United States)

    Meyer, Kyle M; Klein, Ann M; Rodrigues, Jorge L M; Nüsslein, Klaus; Tringe, Susannah G; Mirza, Babur S; Tiedje, James M; Bohannan, Brendan J M

    2017-03-01

    Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils. © 2017 John Wiley & Sons Ltd.

  11. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Yang, Jinhai; Okwananke, Anthony; Tohidi, Bahman; Chuvilin, Evgeny; Maerle, Kirill; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2017-01-01

    Highlights: • Flue gas was injected for both methane recovery and carbon dioxide sequestration. • Kinetics of methane recovery and carbon dioxide sequestration was investigated. • Methane-rich gas mixtures can be produced inside methane hydrate stability zones. • Up to 70 mol% of carbon dioxide in the flue gas was sequestered as hydrates. - Abstract: Flue gas injection into methane hydrate-bearing sediments was experimentally investigated to explore the potential both for methane recovery from gas hydrate reservoirs and for direct capture and sequestration of carbon dioxide from flue gas as carbon dioxide hydrate. A simulated flue gas from coal-fired power plants composed of 14.6 mol% carbon dioxide and 85.4 mol% nitrogen was injected into a silica sand pack containing different saturations of methane hydrate. The experiments were conducted at typical gas hydrate reservoir conditions from 273.3 to 284.2 K and from 4.2 to 13.8 MPa. Results of the experiments show that injection of the flue gas leads to significant dissociation of the methane hydrate by shifting the methane hydrate stability zone, resulting in around 50 mol% methane in the vapour phase at the experimental conditions. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure generated methane-rich gas mixtures with up to 80 mol% methane. Meanwhile, carbon dioxide hydrate and carbon dioxide-mixed hydrates were formed while the methane hydrate was dissociating. Up to 70% of the carbon dioxide in the flue gas was converted into hydrates and retained in the silica sand pack.

  12. Tidal influence on subtropical estuarine methane emissions

    Science.gov (United States)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period

  13. Methane emissions during storage of different treatments from cattle manure in Tianjin

    Institute of Scientific and Technical Information of China (English)

    Jiajun Wang; Chiqing Duan; Yaqin Ji; Yichao Sun

    2010-01-01

    Many studies on methane emissions from animal manure have revealed that animal manure is a major source of methane emissions to the atmosphere that can have negative consequences for people,animals and environment.In general,the release of methane can be influenced by the type of feed taken by animals,temperature,manure characteristics and so on.This study aimed at quantifying and comparing methane release from dairy manure with different piling treatments.Four treatments were designed including manure piling height 30,45,60 cm and adding 6 cm manure every day until the piling height was 60 cm.Static chamber method and gas chromatography were adopted to measure the methane emissions from April to June in 2009.Methane emission rates of all four manure treatments were low in the first week and then increased sharply until reaching the peak values.Subsequently,all the methane emission rates decreased and fluctuated within the steady range till the end of the experiment.Wilcoxon nonparametric tests analysis indicated that methane emission rate was greatly influenced by manure piling height and manner.There were no significant relationships between methane emission rates and the temperatures of ambience and heap.However,regression analysis showed that the quadratic equations were found between emission rates of all treatments and the gas temperature in the barrels.

  14. Combustion and emissions control in diesel-methane dual fuel engines: The effects of methane supply method combined with variable in-cylinder charge bulk motion

    International Nuclear Information System (INIS)

    Carlucci, Antonio P.; Laforgia, Domenico; Saracino, Roberto; Toto, Giuseppe

    2011-01-01

    Highlights: → We studied dual fuel combustion in diesel engines. → Bulk flow structure of in-cylinder charge and methane supply method were investigated. → Swirl charge motion is capable to enhance air-methane mixture oxidation at low loads. → Methane port injection is capable to reduce unburned hydrocarbons and nitric oxides. - Abstract: In this paper, the results of an extensive experimental campaign about dual fuel combustion development and the related pollutant emissions are reported, paying particular attention to the effect of both the in-cylinder charge bulk motion and methane supply method. A diesel common rail research engine was converted to operate in dual fuel mode and, by activating/deactivating the two different inlet valves of the engine (i.e. swirl and tumble), three different bulk flow structures of the charge were induced inside the cylinder. A methane port injection method was proposed, in which the gaseous fuel was injected into the inlet duct very close to the intake valves, in order to obtain a stratified-like air-fuel mixture up to the end of the compression stroke. For comparison purposes, a homogeneous-like air-fuel mixture was obtained injecting methane more upstream the intake line. Combining the different positions of the methane injector and the three possible bulk flow structures, seven different engine inlet setup were tested. In this way, it was possible to evaluate the effects on dual fuel combustion due to the interaction between methane injector position and charge bulk motion. In addition, methane injection pressure and diesel pilot injection parameters were varied setting the engine at two operating conditions. For some interesting low load tests, the combustion development was studied more in detail by means of direct observation of the process, using an in-cylinder endoscope and a digital CCD camera. Each combustion image was post-processed by a dedicated software, in order to extract only those portions with flame

  15. Manufacture of Methane Hydrate using Carbon Nano Tubes

    International Nuclear Information System (INIS)

    Park, Sung Seek

    2010-02-01

    Methane hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. More than 99% of naturally produced methane hydrate consists of methane, and is widely dispersed in the continental slope and continental Shelf of the Pacific and the Atlantic, the Antarctica etc. The reserve of fossil fuel is 500 billion carbon ton and the reserve of methane is 360 million carbon ton. The reserve of gas hydrate is more than 1 trillion carbon ton, which is twice the fossil fuel. Therefore, natural gas hydrate as a kind of gas hydrate is expected to replace fossil fuel as new energy source of 21st century. Also 1 m 3 hydrate of pure methane can be decomposed to the maximum of 216 m 3 methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18∼25% less than the liquefied transportation. However, when natural gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and increases gas consumption by adding MWCNT and NaCl into pure water. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions

  16. Methane recovery from landfill in China

    Energy Technology Data Exchange (ETDEWEB)

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  17. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede

    2013-01-01

    The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spat......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...

  18. Methanator fueled engines for pollution control

    Science.gov (United States)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  19. Effect of hydrogen addition on autoignited methane lifted flames

    KAUST Repository

    Choin, Byung Chul; Chung, Suk-Ho

    2012-01-01

    Autoignited lifted flames in laminar jets with hydrogen-enriched methane fuels have been investigated experimentally in heated coflow air. The results showed that the autoignited lifted flame of the methane/hydrogen mixture, which had an initial

  20. Clumped isotopologue constraints on the origin of methane at seafloor hot springs

    Science.gov (United States)

    Wang, David T.; Reeves, Eoghan P.; McDermott, Jill M.; Seewald, Jeffrey S.; Ono, Shuhei

    2018-02-01

    Hot-spring fluids emanating from deep-sea vents hosted in unsedimented ultramafic and mafic rock commonly contain high concentrations of methane. Multiple hypotheses have been proposed for the origin(s) of this methane, ranging from synthesis via reduction of aqueous inorganic carbon (∑CO2) during active fluid circulation to leaching of methane-rich fluid inclusions from plutonic rocks of the oceanic crust. To further resolve the process(es) responsible for methane generation in these systems, we determined the relative abundances of several methane isotopologues (including 13CH3D, a "clumped" isotopologue containing two rare isotope substitutions) in hot-spring source fluids sampled from four geochemically-distinct hydrothermal vent fields (Rainbow, Von Damm, Lost City, and Lucky Strike). Apparent equilibrium temperatures retrieved from methane clumped isotopologue analyses average 310-42+53 °C, with no apparent relation to the wide range of fluid temperatures (96-370 °C) and chemical compositions (pH, [H2], [∑CO2], [CH4]) represented. Combined with very similar bulk stable isotope ratios (13C/12C and D/H) of methane across the suite of hydrothermal fluids, all available geochemical and isotopic data suggest a common mechanism of methane generation at depth that is disconnected from active fluid circulation. Attainment of equilibrium amongst methane isotopologues at temperatures of ca. 270-360 °C is compatible with the thermodynamically-favorable reduction of CO2 to CH4 at temperatures at or below ca. 400 °C under redox conditions characterizing intrusive rocks derived from sub-ridge melts. Collectively, the observations support a model where methane-rich aqueous fluids, known to be trapped in rocks of the oceanic lithosphere, are liberated from host rocks during hydrothermal circulation and perhaps represent the major source of methane venting with thermal waters at unsedimented hydrothermal fields. The results also provide further evidence that water