WorldWideScience

Sample records for coalbed brine disposal

  1. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.

    1994-01-01

    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  2. Grain Size Data from the Brine Disposal Program, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are part of the Brine Disposal Program funded by NOAA in the US Gulf of Mexico, compiled by NOAA/CEAS and partially conducted by R. W. Hann of Texas A and...

  3. Fate of Brine Applied to Unpaved Roads at a Radioactive Waste Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Larry C. Hull; Carolyn W. Bishop

    2004-01-01

    Between 1984 and 1993, MgCl 2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl - might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl - in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl - concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl - concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl - was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl - remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl - in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area

  4. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.)

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  5. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  6. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    International Nuclear Information System (INIS)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated

  7. Coalbed gas development

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book includes: Overview of coalbed gas development; Coalbed gas development in the West Coalbed gas development on Indian lands; Multi-mineral development conflicts; Statutory solutions to ownership disputes; State and local regulation; Environmental regulations; Status of the section 29 tax credit extension; Using the section 29 credit; Leasing coalbed gas prospects; Coalbed gas joint operating agreements and Purchase and sale agreements for coalbed gas properties

  8. Fate of Magnesium Chloride Brine Applied to Suppress Dust from Unpaved Roads at the INEEL Subsurface Disposal Area

    International Nuclear Information System (INIS)

    Larry Hull; Carolyn Bishop

    2004-01-01

    Between 1984 and 1993, MgCl 2 brine was used to suppress dust on unpaved roads at a radioactive waste subsurface disposal area. Because Cl - might enhance corrosion of buried metals in the waste, we investigated the distribution and fate of Cl - in the vadose zone using pore water samples collected from suction lysimeters and soluble salt concentrations extracted from sediment samples. The Cl/Br mass ratio and the total dissolved Cl - concentration of pore water show that brine contamination occurs primarily within 13 m of treated roads, but can extend as much as 30 m laterally in near-surface sedimentary deposits. Within the deep vadose zone, which consists of interlayered basalt lava flows and sedimentary interbeds, brine has moved up to 110 m laterally. This lateral migration suggests formation of perched water and horizontal transport during periods of high recharge. In a few locations, brine migrated to depths of 67 m within 3 to 5 yr. Elevated Cl - concentrations were found to depths of 2 m in roadbed material. In drainage ditches along roads, where runoff accumulates and recharge of surface water is high, Cl - was flushed from the sediments in 3 to 4 yr. In areas of lower recharge, Cl - remained in the sediments after 5 yr. Vertical brine movement is directly related to surface recharge through sediments. The distribution of Cl - in pore water and sediments is consistent with estimates of vadose zone residence times and spatial distribution of surface water recharge from other investigations at the subsurface disposal area

  9. Brine migration in salt and its implications in the geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Jenks, G.H.; Claiborne, H.C.

    1981-12-01

    This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references

  10. Minimizing the Environmental Impact of Sea Brine Disposal by Coupling Desalination Plants with Solar Saltworks: A Case Study for Greece

    Directory of Open Access Journals (Sweden)

    Stylianos Gialis

    2010-02-01

    Full Text Available The explosive increase in world population, along with the fast socio-economic development, have led to an increased water demand, making water shortage one of the greatest problems of modern society. Countries such as Greece, Saudi Arabia and Tunisia face serious water shortage issues and have resorted to solutions such as transporting water by ships from the mainland to islands, a practice that is expensive, energy-intensive and unsustainable. Desalination of sea-water is suitable for supplying arid regions with potable water, but extensive brine discharge may affect marine biota. To avoid this impact, we explore the option of directing the desalination effluent to a solar saltworks for brine concentration and salt production, in order to achieve a zero discharge desalination plant. In this context, we conducted a survey in order to evaluate the potential of transferring desalination brine to solar saltworks, so that its disposal to the sea is avoided. Our analysis showed that brine transfer by trucks is prohibitively expensive. In order to make the zero discharge desalination plant economically feasible, efforts should be directed into developing a more efficient technology that will result in the production of only a fraction of the brine that is produced from our systems today.

  11. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, year 1 report. Volume 1. Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site located 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. During the study period, the daily discharge averaged 529,000 barrels of 216 0/00 brine, representing a loading of 18,000 metric tons of salt per day. The objective of this study are: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. This report describes the methodology and significant results of the first year's monitoring effort of the West Hackberry brine disposal site. The investigative tasks, presented as separate sections, are: Physical Oceanography, Estuarine Hydrology and Hydrography, Analysis of Discharge Plume, Water and Sediment Quality, Special Pollutant Surveys, Benthos, Nekton, Phytoplankton, Zooplankton and Data Management.

  12. Possible salt mine and brined cavity sites for radioactive waste disposal in the northeastern southern peninsula of Michigan

    International Nuclear Information System (INIS)

    Landes, K.K.; Bourne, H.L.

    1976-01-01

    A reconnaissance report on the possibilities for disposal of radioactive waste covers Michigan only, and is more detailed than an earlier one involving the northeastern states. Revised ''ground rules'' for pinpointing both mine and dissolved salt cavern sites for waste disposal include environmental, geologic, and economic factors. The Michigan basin is a structural bowl of Paleozoic sediments resting on downwarped Precambrian rocks. The center of the bowl is in Clare and Gladwin Counties, a short distance north of the middle of the Southern Peninsula. The strata dip toward this central area, and some stratigraphic sequences, including especially the salt-containing Silurian section, increase considerably in thickness in that direction. Lesser amounts of salt are also present in the north central part of the Lower Peninsula. Michigan has been an oil and gas producing state since 1925 and widespread exploration has had two effects on the selection of waste disposal sites: (1) large areas are leased for oil and gas; and (2) the borehole concentrations, whether producing wells, dry holes, or industrial brine wells that penetrated the salt section, should be avoided. Two types of nuclear waste, low level and high level, can be stored in man-made openings in salt beds. The storage facilities are created by (1) the development of salt mines where the depths are less than 3000 ft, and (2) cavities produced by pumping water into a salt bed, and bringing brine back out. The high level waste disposal must be confined to mines of limited depth, but the low level wastes can be accommodated in brine cavities at any depth. Seven potential prospects have been investigated and are described in detail

  13. Impact of colloid formation on safety assessment of waste disposal in brine

    International Nuclear Information System (INIS)

    Nagasaki, S.

    2014-01-01

    The transport model, which had been developed at low ionic strength in an ion - colloid - solid ternary system, was applied to the transport of Np(V) (NpO 2 + ) and humic acid through a quartz-packed column at 2 M NaCl. It was found that the model was useful to simulate the transport behaviors of Np(V) and humic acid by the modification of filtration coefficient which depends on the colloid size. Using this model, the impact of colloids on the transport of actinides was evaluated. It was found that the influence of the colloids in brine is limited or negligible. (author)

  14. Impact of colloid formation on safety assessment of waste disposal in brine

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, S. [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    The transport model, which had been developed at low ionic strength in an ion - colloid - solid ternary system, was applied to the transport of Np(V) (NpO{sub 2}{sup +} ) and humic acid through a quartz-packed column at 2 M NaCl. It was found that the model was useful to simulate the transport behaviors of Np(V) and humic acid by the modification of filtration coefficient which depends on the colloid size. Using this model, the impact of colloids on the transport of actinides was evaluated. It was found that the influence of the colloids in brine is limited or negligible. (author)

  15. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  16. Mechanics of coalbed methane production

    Energy Technology Data Exchange (ETDEWEB)

    Creel, J C; Rollins, J B [Crawley, Gillespie and Associates, Inc. (United Kingdom)

    1994-12-31

    Understanding the behaviour of coalbed methane reservoirs and the mechanics of production is crucial to successful management of coalbed methane resources and projects. This paper discusses the effects of coal properties and coalbed methane reservoir characteristics on gas production rates and recoveries with a review of completion techniques for coalbed methane wells. 4 refs., 17 figs.

  17. Coalbed Methane Outreach Program

    Science.gov (United States)

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  18. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  19. Coal-bed methane water: effects on soil properties and camelina productivity

    Science.gov (United States)

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  20. Electrochemical corrosion studies on a selected carbon steel for application in nuclear waste disposal containers: Influence of radiolytic products on corrosion in brines

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Smailos, E.

    1994-07-01

    In previous corrosion studies, carbon steels were identified as promising materials for the manufacturing of long-lived high-level waste containers that could act as a radionuclide barrier in a rock-salt repository. In the present work, the influence of some important oxidizing radiolytic products generated in gamma irradiated brines on the electrochemical corrosion behaviour of the preselected fine-grained steel TStE 355 was studied. The steel was examined by potentiodynamic and potentiostatic polarization methods at 90 C in a disposal relevant NaCl-rich brine containing radiolytic products such as H 2 O 2 , ClO - , ClO 3 - and ClO 4 - at concentrations between 10 -4 and 10 -2 M/l. The significance of the radiolytic products to steel corrosion depends on their concentration at the metal-brine interface, which in turn, depends on many factors such as the dose rate, the amount of water present in the disposal area, the escape of gases (e.g. H 2 )

  1. Coalbed methane: new frontier

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.

    2003-02-01

    There are large numbers of stacked coal seams permeated with methane or natural gas in the Western Canadian Sedimentary Basin, and approximately 20 coalbed methane pilot projects are operating in the area, and brief descriptions of some of them were provided. Coalbed methane reserves have a long life cycle. A definition of coalbed methane can be a permeability challenged reservoir. It is not uncommon for coalbed methane wells to flow water for periods varying from 2 to 6 months after completion before the production of natural gas. A made-in-Canada technological solution is being developed by CDX Canada Inc., along with its American parent company. The techniques used by CDX are a marriage between coal mining techniques and oil and gas techniques. A brief description of coalification was provided. Nexen is participating in the production of gas from an Upper Mannville coal at 1 000-metres depth in a nine-well pilot project. The Alberta Foothills are considered prime exploration area since older coal is carried close to the surface by thrusting. CDX Canada uses cavitation completion in vertical wells. Cavitation consists in setting the casing above the coal seam and drilling ahead under balanced. The design of wells for coalbed methane gas is based on rock and fluid mechanics. Hydraulic fracturing completions is also used, as are tiltmeters. An enhanced coalbed methane recovery pilot project is being conducted by the Alberta Research Council at Fenn-Big Valley, located in central Alberta. It injects carbon dioxide, which shows great potential for the reduction of greenhouse gas emissions. 1 figs.

  2. Electrochemical corrosion studies on a selected carbon steel for application in nuclear waste disposal containers: Influence of chemical species in brines on corrosion

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Smailos, E.

    1994-04-01

    In previous corrosion studies, carbon steels were identified as promising materials for the manufacture of long-lived high-level waste containers that could act as an engineered barrier in a rock-salt repository. In this paper, the influence of chemical species, potentially present in salt brines, on the electrochemical corrosion behavior of the preselected fine-grained steel TStE 355 was studied. The steel was examined at 90 C in a disposal relevant NaCl-rich brine containing various species (Br - , I - , Cu 2+ , Mn 2+ , S 2- , B(OH )4 - and Fe 3+ ) at concentrations between 10 -5 M/I and 10 -1 M/I. (orig.) [de

  3. Evaluation of brine disposal from the Bryan Mound site of the strategic petroleum reserve program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Case, Robert J.; Chittenden, Jr, Mark E.; Harper, Jr, Donald E.; Kelly, Jr, Francis J.; Loeblich, Laurel A.; McKinney, Larry D.; Minello, Thomas J.; Park, E. Taisoo; Randall, Robert E.; Slowey, J. Frank

    1981-01-01

    On March 10, 1980, the Department of Energy's Strategic Petroleum Reserve Program began leaching the Bryan Mound salt dome and discharging the resulting brine into the coastal waters off Freeport, Texas. During the months of March and April, a team of scientists and engineers from Texas A and M University conducted an intensive environmental study of the area surrounding the diffuser site. A pipeline has been laid from the Bryan Mound site to a location 12.5 statute miles (20 km) offshore. The last 3060 ft (933 m) of this pipeline is a 52-port diffuser through which brine can be discharged at a maximum rate of 680,000 barrels per day. Initially, 16 ports were open which permitted a maximum discharge rate of 350,000 barrels per day and a continuous brine discharge was achieved on March 13, 1980. The purpose of this report is to describe the findings of the project team during the intensive postdisposal study period of March and April, 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management.

  4. Soil washing for brine removal

    International Nuclear Information System (INIS)

    Ayyachamy, J.S.; Atalay, A.; Zaman, M.

    1992-01-01

    During the exploration for oil and thereafter, brine transfer lines get ruptured releasing the brine which contaminates the surrounding soil. The salinity level in brine is very high, sometimes approaching or exceeding that of sea water. Soils contaminated with brine are unproductive and unsuitable for plant growth. Several investigators have documented the pollution of surface water and groundwater due to brine disposal from oil and needed to clean up such sites. The objective of this study is to develop a soil washing technique that can be used to remove brine sites were collected and used in the study. This paper reports on results which indicate that soil washing using various surface active agents is effective in removing the brine

  5. Environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks, New Jersey Coastal Plain, USA: migration to the water table.

    Science.gov (United States)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2010-01-01

    Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly 5.3, indicating sequestration; when pH was septic-tank effluents (maximum, 0.243 Bq L(-1))), indicating Ra mobilization from leachfield sediments. Confidence in quantification of Ra mass balance was reduced by study design limitations, including synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.

  6. Evaluation of brine disposal from the Bryan Mound site of the Strategic Petroleum Reserve Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hann, R.W. Jr.; Randall, R.E. (eds.)

    1980-12-01

    The purpose of this report is to describe the environmental conditions found by the principal investigators during the predisposal study conducted from September 1977 through February 1980 prior to the start of brine discharge in March 1980. The major areas of investigation are physical oceanography, analysis of the discharge plume, water and sediment quality, nekton, benthos, phytoplankton, zooplankton, and data management. Volume 1 describes the results of the predisposal study, and it is divided into eight chapters entitled: Physical Oceanography, Analysis of the Discharge Plume, Water and Sediment Quality, Nekton, Benthos, Zooplankton, Phytoplankton, and Data Management. Volume 2 consists of appendices which contain additional supporting data in the form of figures and tables.

  7. Heavy metal contamination in sand and sediments near to disposal site of reject brine from desalination plant, Arabian Gulf: Assessment of environmental pollution.

    Science.gov (United States)

    Alshahri, Fatimh

    2017-01-01

    Accumulation of heavy metals in environment may cause series potential risk in the living system. This study was carried out to investigate heavy metal contamination in sand samples and sediments along the beach near to disposal site of reject brine from Alkhobar desalination plant, which is one of the oldest and largest reverse osmosis desalination plants in eastern Saudi Arabia, Arabian Gulf. Fourteen heavy metals (U, Ca, Fe, Al, Ti, Sr, Rb, Ni, Pb, Cd, Cr, Cu, As, and Zr) were measured using gamma-ray spectrometry, atomic absorption spectrometer (AAS) and energy dispersive X-ray fluorescence spectrometer (EDX). The obtained data revealed that the concentrations of these metals were higher than the values in sediment and soil for other studies in Arabian Gulf. Furthermore, the mean values of Fe, Mn, Cr, Cu, As, Sr, and Zr concentrations in sand and sediments were higher than the geochemical background values in shale. The contamination factor (CF), modified degree of contamination (mC d ) and pollution load index (PLI) were assessed. According to contamination factors (CF > 1), the results showed elevated levels of Cu, Cr, Mn, Zr, and As in all samples. The highest value of contamination factor was found for As. Based on PLI (PLI > 1), the values of all sampling sites indicate a localized pollution in the study area. Current study could be useful as baseline data for heavy metals in sand and sediments nearby a desalination plant.

  8. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  9. Waste isolation pilot plant performance assessment: Radionuclide release sensitivity to diminished brine and gas flows to/from transuranic waste disposal areas

    Energy Technology Data Exchange (ETDEWEB)

    Day, Brad A.; Camphouse, R. C.; Zeitler, Todd R. [Sandia National Laboratories, Carlsbad (United States)

    2017-03-15

    Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP) areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

  10. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume II. Physical and chemical oceanography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Contents of Volume II include: introduction; physical oceanography; estuarine hydrology and hydrography; analysis of discharge plume; and water and sediment quality.

  11. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume IV. Bibliography and supporting data for physical oceanography. Final report. [421 references

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which is located in southwestern Louisiana and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume IV contains the following: bibliography; appendices for supporting data for physical oceanography, and summary of the physical oceanography along the western Louisiana coast.

  12. Concentrations and environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks and accumulation in sludge, New Jersey Coastal Plain, USA

    Science.gov (United States)

    Szabo, Z.; Jacobsen, E.; Kraemer, T.F.; Parsa, B.

    2008-01-01

    Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra (226Ra plus 228Ra) concentrations commonly exceed 0.185 Bq L-1) were determined. Softeners, when maintained, reduced combined Ra about 10-fold (septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg-1 dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg-1), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region.

  13. Coalbed methane: from hazard to resource

    Science.gov (United States)

    Flores, R.M.

    1998-01-01

    Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 yr. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (eg, tunnels, vertical and horizontal drillholes, shsfts) and by drainage boreholes. The 1970s 'energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been pursued vigorously during the past two decades. Since the 1970s research investigations on the causes and effects of coal mine outbursts and gas emissions have led to major advances towards the recovery and development of coalbed methane for commercial use. Thus, coalbed methane as a mining hazard was harnessed as a conventional gas resource.Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 years. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (e.g., tunnels, vertical and horizontal drillholes, shafts) and by drainage boreholes. The 1970's `energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been

  14. Coiled Brine Recovery Assembly (CoBRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable...

  15. Forward Osmosis Brine Drying

    Science.gov (United States)

    Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek

    2015-01-01

    The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.

  16. The potential for coalbed methane (CBM) development in Alberta

    International Nuclear Information System (INIS)

    2001-09-01

    This report presents fiscal and regulatory recommendations of the coalbed methane (CBM) Advisory Committee which consists of representatives from Alberta's oil and gas industry who participated in a study to determine the potential for coalbed methane development in the province. CBM is a natural gas produced as a by-product of the coal formation process. This study examined the CBM reserve base in Alberta along with the necessary steps and strategies required to develop it. There is increased interest in natural gas from Alberta's coal resources because of the forecast for reasonable natural gas prices coupled with an increase in energy demand. The remaining established natural gas reserves are estimated at 43 trillion cubic feet and unconventional supplies of natural gas will be needed by 2008 to meet this increasing demand. The recoverable reserves of CBM are estimated to be between 0 and 135 trillion cubic feet. This report discussed the following mitigation strategies suggested by industry that may applicable to CBM development in Alberta: (1) potential technical mitigation strategies, (2) potential land access and tenure strategies, (3) potential water disposal and diversion mitigation strategies, (4) potential non-technical mitigation strategies, and (5) potential economic mitigation strategies. The study concluded that since no two CBM basins are the same, it is necessary to have good baseline resource inventory data. It was also noted that evolving management, drilling and completion techniques will continue to enhance the economic understanding of Alberta's extensive coal beds. It was suggested that lessons from CBM development in the United States can be useful for development in Alberta since there are currently no publicly recognized commercial production of CBM in Alberta. 24 refs., 6 tabs., 25 figs

  17. An assessment of coalbed methane exploration projects in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, F.M.; Marchioni, D.L.; Anderson, T.C.; McDougall, W.J. [Suncor Energy Inc., Calgary, AB (Canada)

    2000-07-01

    A critical assessment of coalbed methane exploration opportunities is presented. Geological and production data from 59 well bores drilled in Canada's major coal basins are evaluated to assess the coalbed methane potential of the deposits. Data acquisition, geology, gas content, coal quality, adsorption isotherms, formation testing, and a technical assessment are presented for each area. Areas with the best potential for economic coalbed methane accumulations are indicated. 6 refs., 153 figs., 99 tabs.

  18. Electrodialysis reversal: Process and cost approximations for treating coal-bed methane waters

    Energy Technology Data Exchange (ETDEWEB)

    Sajtar, E.T.; Bagley, D.M. [University of Wyoming, Laramie, WY (United States)

    2009-02-15

    Brackish waters with total dissolved solids (TDS) concentrations less than 10,000 mg/L are extracted from coal-beds in the Wyoming Powder River basin to facilitate the production of coal-bed methane. These waters frequently require treatment before disposal or use. Electrodialysis reversal (EDR) has not yet been used to treat these waters but this technology should be suitable. The question is whether EDR would be cost-effective. The purpose of this work, then, was to develop models for predicting the cost of EDR for brackish waters. These models, developed from data available in the literature, were found to predict actual EDR costs as a function of TDS removal, influent flow rate, chemical rejection efficiency, water recovery, electricity use, and labor cost within 10% of reported values. The total amortized cost for removing 1,000 mg/L of TDS from 10,000 m{sup 3}/day of influent assuming no concentrate disposal costs was predicted to range from $0.23/m{sup 3} to $0.85/m{sup 3} and was highly dependent on capital cost and facility life. Concentrate disposal costs significantly affected total treatment cost, providing a total treatment cost range from $0.38/m{sup 3} to $6.38/m{sup 3}, depending on concentrate disposal cost and water recovery. Pilot demonstrations of EDR in the Powder River basin should be conducted to determine the achievable water recovery when treating these waters.

  19. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, Jack [Geological Survey Of Alabama, Tuscaloosa, AL (United States); McIntyre-Redden, Marcella [Geological Survey Of Alabama, Tuscaloosa, AL (United States); Mann, Steven [Geological Survey Of Alabama, Tuscaloosa, AL (United States); Merkel, David [Geological Survey Of Alabama, Tuscaloosa, AL (United States)

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  20. Geology and coal-bed methane resources of the northern San Juan Basin, Colorado and New Mexico

    International Nuclear Information System (INIS)

    Fassett, J.E.

    1988-01-01

    This guidebook is the first of its kind: A focused look at coal-bed methane in a large Rocky Mountain Laramide basin. The papers in this volume cover every aspect of coal-bed methane in the San Juan Basin, including: The geology, environments of deposition, and geometry of the coal beds that contain the resource; the origin and migration history of the gas; basin-wide resource estimates; the engineering aspects of getting the gas out of the ground; the marketing and economics of producing coal-bed methane in the San Juan Basin; the legal ownership of the gas; state regulations governing well spacing and field rules; disposal of produced water; and land and mineral ownership patterns in the northern part of the basin. Also included are detailed papers on all of the major coal-bed methane fields in the basin, and in a paper on the history of Fruitland gas production, a discussion of most of the not-so-major fields. A small section of the book deals with geophysical methods, as yet still experimental, for surface detection of underground hydrocarbon resources. Individual papers have been processed separately for inclusion on the data base

  1. Coalbed-methane reservoir simulation: an evolving science

    Energy Technology Data Exchange (ETDEWEB)

    Bybee, K.

    2004-04-01

    Correctly determining what to model in a coalbed-methane (CBM) reservoir simulation is almost as daunting a task as the simulation work itself. The full-length paper discusses how the exploitation and development of coalbed resources throughout the world are changing and how CBM reservoir simulation is changing as well.

  2. Relationships between water and gas chemistry in mature coalbed methane reservoirs of the Black Warrior Basin

    Science.gov (United States)

    Pashin, Jack C.; McIntyre-Redden, Marcella R.; Mann, Steven D.; Kopaska-Merkel, David C.; Varonka, Matthew S.; Orem, William H.

    2014-01-01

    Water and gas chemistry in coalbed methane reservoirs of the Black Warrior Basin reflects a complex interplay among burial processes, basin hydrodynamics, thermogenesis, and late-stage microbial methanogenesis. These factors are all important considerations for developing production and water management strategies. Produced water ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride brine. The hydrodynamic framework of the basin is dominated by structurally controlled fresh-water plumes that formed by meteoric recharge along the southeastern margin of the basin. The produced water contains significant quantities of hydrocarbons and nitrogen compounds, and the produced gas appears to be of mixed thermogenic-biogenic origin.Late-stage microbial methanogenesis began following unroofing of the basin, and stable isotopes in the produced gas and in mineral cements indicate that late-stage methanogenesis occurred along a CO2-reduction metabolic pathway. Hydrocarbons, as well as small amounts of nitrate in the formation water, probably helped nourish the microbial consortia, which were apparently active in fresh to hypersaline water. The produced water contains NH4+ and NH3, which correlate strongly with brine concentration and are interpreted to be derived from silicate minerals. Denitrification reactions may have generated some N2, which is the only major impurity in the coalbed gas. Carbon dioxide is a minor component of the produced gas, but significant quantities are dissolved in the formation water. Degradation of organic compounds, augmented by deionization of NH4+, may have been the principal sources of hydrogen facilitating late-stage CO2 reduction.

  3. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  4. Essentials for profitable coalbed methane production in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Creel, J.C.; Rollins, J.B. [Cawley, Gillespie & Associates, Inc. (United Kingdom)

    1995-12-31

    The UK coalbed methane industry is now poised for a continuation of its growth. For this potential growth to be realized, coalbed methane production must be profitable for producers. Commercial viability of coalbed methane production in the UK depends on th fulfilment of essential technical, regulatory, and economic conditions. Technically, coalbed methane reservoirs must have an adequate thickness of permeable gas saturated coal. The regulatory environment must offer favorable treatment regarding taxation, royalties, and policies on well spacing, wellsite locations, and market accessibility. Economically, gas prices and initial capital costs must be sufficiently favorable to yield an acceptable rate of return. If these essential conditions can be fulfilled, UK coalbed methane production can be expected to be a commercially viable industry. 6 refs., 6 figs., 2 tabs.

  5. Analysis of hydrocarbons generated in coalbeds

    Science.gov (United States)

    Butala, Steven John M.

    This dissertation describes kinetic calculations using literature data to predict formation rates and product yields of oil and gas at typical low-temperature conditions in coalbeds. These data indicate that gas formation rates from hydrocarbon thermolysis are too low to have generated commercial quantities of natural gas, assuming bulk first-order kinetics. Acid-mineral-catalyzed cracking, transition-metal-catalyzed hydrogenolysis of liquid hydrocarbons, and catalyzed CO2 hydrogenation form gas at high rates. The gaseous product compositions for these reactions are nearly the same as those for typical natural coalbed gases, while those from thermal and catalytic cracking are more representative of atypical coalbed gases. Three Argonne Premium Coals (Upper-Freeport, Pittsburgh #8 and Lewiston-Stockton) were extracted with benzene in both Soxhlet and elevated pressure extraction (EPE) systems. The extracts were compared on the basis of dry mass yield and hydrocarbon profiles obtained by gas chromatography/mass spectrometry. The dry mass yields for the Upper-Freeport coal gave consistent results by both methods, while the yields from the Pittsburgh #8 and Lewiston-Stockton coals were greater by the EPE method. EPE required ˜90 vol. % less solvent compared to Soxhlet extraction. Single-ion-chromatograms of the Soxhlet extracts all exhibited bimodal distributions, while those of the EPE extracts did not. Hydrocarbons analyzed from Greater Green River Basin samples indicate that the natural oils in the basin originated from the coal seams. Analysis of artificially produced oil indicates that hydrous pyrolysis mimics generation of C15+ n-alkanes, but significant variations were found in the branched alkane, low-molecular-weight n-alkanes, and high-molecular-weight aromatic hydrocarbon distributions.

  6. Research and Development Concerning Coalbed Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    William Ruckelshaus

    2008-09-30

    The Powder River Basin in northeastern Wyoming is one of the most active areas of coalbed natural gas (CBNG) development in the western United States. This resource provides clean energy but raises environmental concerns. Primary among these is the disposal of water that is co-produced with the gas during depressurization of the coal seam. Beginning with a few producing wells in Wyoming's Powder River Basin (PRB) in 1987, CBNG well numbers in this area increased to over 13,600 in 2004, with projected growth to 20,900 producing wells in the PRB by 2010. CBNG development is continuing apace since 2004, and CBNG is now being produced or evaluated in four other Wyoming coal basins in addition to the PRB, with roughly 3500-4000 new CBNG wells permitted statewide each year since 2004. This is clearly a very valuable source of clean fuel for the nation, and for Wyoming the economic benefits are substantial. For instance, in 2003 alone the total value of Wyoming CBNG production was about $1.5 billion, with tax and royalty income of about $90 million to counties, $140 million to the state, and $27 million to the federal government. In Wyoming, cumulative CBNG water production from 1987 through December 2004 was just over 380,000 acre-feet (2.9 billion barrels), while producing almost 1.5 trillion cubic feet (tcf) of CBNG gas statewide. Annual Wyoming CBNG water production in 2003 was 74,457 acre-feet (577 million barrels). Total production of CBNG water across all Wyoming coal fields could total roughly 7 million acre-feet (55.5 billion barrels), if all of the recoverable CBNG in the projected reserves of 31.7 tcf were produced over the coming decades. Pumping water from coals to produce CBNG has been designated a beneficial water use by the Wyoming State Engineer's Office (SEO), though recently the SEO has limited this beneficial use designation by requiring a certain gas/water production ratio. In the eastern part of the PRB where CBNG water is generally of good

  7. Results for the Brine Evaporation Bag (BEB) Brine Processing Test

    Science.gov (United States)

    Delzeit, Lance; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Howard, Kevin

    2015-01-01

    The recent Brine Processing Test compared the NASA Forward Osmosis Brine Dewatering (FOBD), Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB). This paper reports the results of the BEB. The BEB was operated at 70 deg C and a base pressure of 12 torr. The BEB was operated in a batch mode, and processed 0.4L of brine per batch. Two different brine feeds were tested, a chromic acid-urine brine and a chromic acid-urine-hygiene mix brine. The chromic acid-urine brine, known as the ISS Alternate Pretreatment Brine, had an average processing rate of 95 mL/hr with a specific power of 5kWhr/L. The complete results of these tests will be reported within this paper.

  8. Coalbed methane: Clean energy for the world

    Science.gov (United States)

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  9. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  10. British Columbia's new coalbed methane royalty regime

    International Nuclear Information System (INIS)

    Molinski, D.

    2002-01-01

    The British Columbia Ministry of Energy and Mines is promoting the development of the coalbed methane (CBM) industry in the province in order to make CBM a viable and competitive investment option for industry. It is establishing a regulatory and fiscal regime for CBM development. Issues of concern regarding CBM development include water production, gas production rates, well numbers, and marginal economics. The features of the CBM royalty regime include a new producer cost of service allowance, the creation of a CBM royalty tax bank to collect excess PCOS allowances, and a royalty tax credit for wells drilled by the end of February, 2004. The marginal well adjustment factor threshold has been raised from 180 mcf per day to 600 mcf per day for CBM only. It was noted that royalties will probably not be payable for several years following the first commercial well because royalties are very depending on capital and operating costs, local infrastructure and price. Royalty regimes cannot save CBM from low gas prices, poor resources or economics. 2 figs

  11. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  12. Exploiting coalbed methane and protecting the global environment

    Energy Technology Data Exchange (ETDEWEB)

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  13. Coalbed methane and salmon : assessing the risks

    International Nuclear Information System (INIS)

    Wendling, G.; Vadgama, J.; Holmes, R.

    2008-05-01

    The harmful environmental impacts from coalbed methane (CBM) development on land, water and wildlife have all been well documented based on experience in the United States and elsewhere. However, proposals to develop CBM resources in the headwaters region of northwest British Columbia raise a new issue regarding the impacts of CBM extraction on salmon. In order to begin addressing this knowledge gap and provide essential information for communities, this report presented an assessment of the risks of CBM development on salmon, with a specific focus on a tenure held by Shell Canada Limited in the Klappan region of Northwest British Columbia. The report provided a general overview of the CBM extraction process and of the environmental impacts typically associated with commercial-scale production. The Klappan Tenure location and geology were described along with the significance of its CBM reserves. The report also addressed the question of salmon presence within the tenure, drawing on existing field research to identify streams where coho, chinook and sockeye salmon have been observed. The report also contained assessments of potential risks associated with the two primary impact pathways, notably runoff and erosion effects arising from land disturbance, and stream flow and temperature effects arising from groundwater extraction. The report provided a brief overview of additional CBM-related impacts which could have indirect effects on salmon. Last, the report considered factors external to the Klappan project which could influence the nature and severity of impacts on salmon, including climate change; inadequate regulations; and cumulative impacts. It was concluded that CBM development should not occur without social license. Communities need to be empowered to decide whether or not they support CBM extraction in their area before development proceeds. 73 refs., 3 tabs., 26 figs

  14. Brine Sampling and Evaluation Program

    International Nuclear Information System (INIS)

    Deal, D.E.; Case, J.B.; Deshler, R.M.; Drez, P.E.; Myers, J.; Tyburski, J.R.

    1987-12-01

    The Brine Sampling and Evaluation Program (BSEP) Phase II Report is an interim report which updates the data released in the BSEP Phase I Report. Direct measurements and observations of the brine that seeps into the WIPP repository excavations were continued through the period between August 1986 and July 1987. That data is included in Appendix A, which extends the observation period for some locations to approximately 900 days. Brine observations at 87 locations are presented in this report. Although WIPP underground workings are considered ''dry,'' small amounts of brine are present. Part of that brine migrates into the repository in response to pressure gradients at essentially isothermal conditions. The data presented in this report is a continuation of moisture content studies of the WIPP facility horizon that were initiated in 1982, as soon as underground drifts began to be excavated. Brine seepages are manifested by salt efflorescences, moist areas, and fluid accumulations in drillholes. 35 refs., 6 figs., 11 tabs

  15. A drainage data-based calculation method for coalbed permeability

    International Nuclear Information System (INIS)

    Lai, Feng-peng; Li, Zhi-ping; Fu, Ying-kun; Yang, Zhi-hao

    2013-01-01

    This paper establishes a drainage data-based calculation method for coalbed permeability. The method combines material balance and production equations. We use a material balance equation to derive the average pressure of the coalbed in the production process. The dimensionless water production index is introduced into the production equation for the water production stage. In the subsequent stage, which uses both gas and water, the gas and water production ratio is introduced to eliminate the effect of flush-flow radius, skin factor, and other uncertain factors in the calculation of coalbed methane permeability. The relationship between permeability and surface cumulative liquid production can be described as a single-variable cubic equation by derivation. The trend shows that the permeability initially declines and then increases after ten wells in the southern Qinshui coalbed methane field. The results show an exponential relationship between permeability and cumulative water production. The relationship between permeability and cumulative gas production is represented by a linear curve and that between permeability and surface cumulative liquid production is represented by a cubic polynomial curve. The regression result of the permeability and surface cumulative liquid production agrees with the theoretical mathematical relationship. (paper)

  16. Improving the performance of brine wells at Gulf Coast strategic petroleum reserve sites

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L.B.; Quong, R. (eds.)

    1979-11-05

    At the request of the Department of Energy, field techniques were developed to evaluate and improve the injection of brine into wells at Strategic Petroleum Reserve (SPR) sites. These wells are necessary for the disposal of saturated brine removed from salt domes where oil is being stored. The wells, which were accepting brine at 50 percent or less of their initial design rates, were impaired by saturated brine containing particulates that deposited on the sand face and in the geologic formation next to the wellbore. Corrosion of the brine-disposal pipelines and injection wells contributed to the impairment by adding significant amounts of particulates in the form of corrosion products. When tests were implemented at the SPR sites, it was found that the poor quality of injected brines was the primary cause of impaired injection; that granular-media filtration, when used with chemical pretreatment, is an effective method for removing particulates from hypersaline brine; that satisfactory injection-well performance can be attained with prefiltered brines; and that corrosion rates can be substantially reduced by oxygen-scavenging.

  17. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    Science.gov (United States)

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    from hydrocarbon generation as they form, and this overpressuring is probably responsible for driving out most of the water. Sandstone permeabilities are low, in part because of diagenesis caused by highly reactive water given off during the early stages of coalification. Coals within these basin-centered deposits commonly have high gas contents and produce little water, but they generally occur at depths greater than 5000 ft and have low permeabilities. Significant uplift and removal of overburden has occurred throughout the Rocky Mountain region since the end of the Eocene, and much of this erosion occurred after regional uplift began about 10 Ma. The removal of overburden generally causes methane saturation levels in coals to decrease, and thus a significant drop in pressure is required to initiate methane production. The most successful coalbed methane production in the Rocky Mountain region occurs in areas where gas contents were increased by post-Eocene thermal events and/or the generation of late-stage biogenic gas. Methane-generating bacteria were apparently reintroduced into the coals in some areas after uplift and erosion, and subsequent changes in pressure and temperature, allowed surface waters to rewater the coals. Groundwater may also help open up cleat systems making coals more permeable to methane. If water production is excessive, however, the economics of producing methane are impacted by the cost of water disposal.The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 to 1981 m from coal of lignite to low volatile bituminous rank. Despite more than two decades of exploration for coalbed methane in Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Sources of coalbed gases can be early biogenic, formed during the main stages of coa

  18. Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments

    International Nuclear Information System (INIS)

    Sharma, Shikha; Baggett, Joshua K.

    2011-01-01

    Highlights: → Coalbed natural gas extraction results in large amount of produced water. → Risk of deterioration of ambient water quality. → Carbon isotope natural tracer for detecting seepage from produced water impoundments. - Abstract: Coalbed natural gas (CBNG) production from coal bed aquifers requires large volumes of produced water to be pumped from the subsurface. The produced water ranges from high quality that meets state and federal drinking water standards to low quality due to increased salinity and/or sodicity. The Powder River Basin of northeastern Wyoming is a major coalbed natural gas producing region, where water quality generally decreases moving from the southeastern portion of the basin towards the center. Most produced water in Wyoming is disposed into impoundments and other surface drainages, where it may infiltrate into shallow groundwater. Groundwater degradation caused by infiltration of CBNG produced water holding impoundments into arid, soluble salt-rich soils is an issue of immense importance because groundwater is a major source for stock water, irrigation, and drinking water for many small communities in these areas. This study examines the potential of using stable C isotope signatures of dissolved inorganic C (δ 13 C DIC ) to track the fate of CBNG produced water after it is discharged into the impoundments. Other geochemical proxies like the major cations and major anions were used in conjunction with field water quality measurements to understand the geochemical differences between CBNG produced waters and ambient waters in the study area. Samples were collected from the CBNG discharge outfalls, produced water holding impoundments, and monitoring wells from different parts of the Powder River Basin and analyzed for δ 13 C DIC . The CBNG produced waters from outfalls and impoundments have positive δ 13 C DIC values that fall within the range of +12 per mille to +22 per mille, distinct from the ambient regional surface and

  19. Thermal-gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables

  20. An approach to assessing risk in coalbed methane prospect evaluation

    International Nuclear Information System (INIS)

    Vanorsdale, C.R.

    1991-01-01

    The economic evaluation of drilling prospects requires assessing the degree of risk involved and its impact on reserve estimates. In developed areas, risk can be determined in a fairly straightforward manner. In remote wildcat areas, risk can almost never be adequately identified or quantified. Between these extremes lie complex reservoirs -- reservoirs to heterogeneous that each well drilled could exhibit production characteristics unlike those of its neighbors. This paper illustrates the use of a risk assessment methodology in a case study of Fruitland coal prospects in the San Juan Basin of New Mexico. This approach could be applied to coalbed methane prospects or any unconventional or highly heterogeneous reservoir with appropriate modification. The utility of this approach is made apparent in a graphical analysis that relates reserves, rate of return and payout time for managerial or financial presentation. This graphical technique and the underlying risk assessment were used to aid a conservative management team in evaluating participation in a multi-well coalbed project

  1. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  2. Concentration of saline produced water from coalbed methane gas wells in multiple-effect evaporator using waste heat from the gas compressor and compressor drive engine

    International Nuclear Information System (INIS)

    Sadler, L.Y.; George, O.

    1995-01-01

    The use of heat of compression from the gas compressor and waste heat from the diesel compressor drive engine in a triple-effect feed forward evaporator was studied as a means of concentrating saline produced water to facilitate its disposal. The saline water, trapped in deeply buried coal seams, must be continuously pumped from coalbed natural gas wells so that the gas can desorb from the coal and make its way to the wellbore. Unlike conventional natural gas which is associated with petroleum and usually reaches the wellhead at high pressure, coalbed natural gas reaches the wellhead at low pressure, usually around 101 kPa (1 atm), and must be compressed near the well site for injection into gas transmission pipelines. The water concentration process was simulated for a typical 3.93 m 3 /s (500 MCF/h), at standard conditions (101 kPa, 289K), at the gas production field in the Warrior Coal Basin of Alabama, but has application to the coalbed gas fields being brought into production throughout the world. It was demonstrated that this process can be considered for concentrating saline water produced with natural gas in cases where the gas must be compressed near the wellhead for transportation to market. 9 refs., 1 fig., 2 tabs

  3. Coalbed methane production base established in Southeast Kansas

    International Nuclear Information System (INIS)

    Stoeckinger, W.T.

    1992-01-01

    This paper reports that revenue from coalbed methane gas sales is growing and currently far exceeds that of what little conventional gas is produced in southeastern Kansas. And this only 2-1/2 years after Stroud Oil Properties, Wichita, brought in the first coalbed methane well in the Sycamore Valley in Montgomery County 6 miles north of Independence. Another operator contributing to the success is Conquest Oil, Greeley, Colo. Conquest acquired a lease with 20 old wells near Sycamore, recompleted five of them in Weir coal, and has installed a compressor. It hopes to being selling a combined 300 Mcfd soon. Great Eastern Energy, Denver, reportedly can move 2 MMcfd from its Sycamore Valley holdings. The fever is spreading into Northeast Kansas, where a venture headed by Duncan Energy Co. and Farleigh Oil Properties, also of Denver, plan 12 coalbed methane wildcats. The two companies received in October 1991 from the Kansas Corporation Commission (KCC) a 40 acre well spacing for seven counties and an exclusion from burdensome gas testing procedures. The test procedures are on the books but not applicable to coal gas wells

  4. Protein removal from waste brines generated during ham salting through acidification and centrifugation.

    Science.gov (United States)

    Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel

    2014-03-01

    The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®

  5. Weeks Island brine diffuser site study: baseline conditions and environmental assessment technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-12

    This technical report presents the results of a study conducted at two alternative brine diffuser sites (A and B) proposed for the Weeks Island salt dome, together with an analysis of the potential physical, chemical, and biological effects of brine disposal for this area of the Gulf of Mexico. Brine would result from either the leaching of salt domes to form or enlarge oil storage caverns, or the subsequent use of these caverns for crude oil storage in the Strategic Petroleum Reserve (SPR) program. Brine leached from the Weeks Island salt dome would be transported through a pipeline which would extend from the salt dome either 27 nautical miles (32 statute miles) for Site A, or 41 nautical miles (47 statute miles) for Site B, into Gulf waters. The brine would be discharged at these sites through an offshore diffuser at a sustained peak rate of 39 ft/sup 3//sec. The disposal of large quantities of brine in the Gulf could have a significant impact on the biology and water quality of the area. Physical and chemical measurements of the marine environment at Sites A and B were taken between September 1977 and July 1978 to correlate the existing environmental conditions with the estimated physical extent of tthe brine discharge as predicted by the MIT model (US Dept. of Commerce, 1977a). Measurements of wind, tide, waves, currents, and stratification (water column structure) were also obtained since the diffusion and dispersion of the brine plume are a function of the local circulation regime. These data were used to calculate both near- and far-field concentrations of brine, and may also be used in the design criteria for diffuser port configuration and verification of the plume model. Biological samples were taken to characterize the sites and to predict potential areas of impact with regard to the discharge. This sampling focused on benthic organisms and demersal fish. (DMC)

  6. Coalbed natural gas exploration, drilling activities, and geologic test results, 2007-2010

    Science.gov (United States)

    Clark, Arthur C.

    2014-01-01

    The U.S. Geological Survey, in partnership with the U.S. Bureau of Land Management, the North Slope Borough, and the Arctic Slope Regional Corporation conducted a four-year study designed to identify, define, and delineate a shallow coalbed natural gas (CBNG) resource with the potential to provide locally produced, affordable power to the community of Wainwright, Alaska. From 2007 through 2010, drilling and testing activities conducted at three sites in or near Wainwright, identified and evaluated an approximately 7.5-ft-thick, laterally continuous coalbed that contained significant quantities of CBNG. This coalbed, subsequently named the Wainwright coalbed, was penetrated at depths ranging from 1,167 ft to 1,300 ft below land surface. Core samples were collected from the Wainwright coalbed at all three drill locations and desorbed-gas measurements were taken from seventeen 1-ft-thick sections of the core. These measurements indicate that the Wainwright coalbed contains enough CBNG to serve as a long-term energy supply for the community. Although attempts to produce viable quantities of CBNG from the Wainwright coalbed proved unsuccessful, it seems likely that with proper well-field design and by utilizing currently available drilling and reservoir stimulation techniques, this CBNG resource could be developed as a long-term economically viable energy source for Wainwright.

  7. Brine Sampling and Evaluation Program, 1991 report

    Energy Technology Data Exchange (ETDEWEB)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J. [International Technology Corp., Albuquerque, NM (United States); Belski, D.S. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  8. Influence of biogenic gas production on coalbed methane recovery index

    Directory of Open Access Journals (Sweden)

    Hongyu Guo

    2017-05-01

    Full Text Available In investigating the effect of biogenic gas production on the recovery of coalbed methane (CBM, coal samples spanning different ranks were applied in the microbial-functioned simulation experiments for biogenic methane production. Based on the biogenic methane yield, testing of pore structures, and the isothermal adsorption data of coals used before and after the simulation experiments, several key parameters related to the recovery of CBM, including recovery rate, gas saturation and ratio of critical desorption pressure to reservoir pressure, etc., were calculated and the corresponding variations were further analyzed. The results show that one of the significant functions of microbial communities on coal is possibly to weaken its affinity for methane gas, especially with the advance of coal ranks; and that by enhancing the pore system of coal, which can be evidenced by the increase of porosity and permeability, the samples collected from Qianqiu (Yima in Henan and Shaqu (Liulin in Shanxi coal mines all see a notable increase in the critical desorption pressure, gas saturation and recovery rate, as compared to the moderate changes of that of Guandi (Xishan in Shanxi coal sample. It is concluded that the significance of enhanced biogenic gas is not only in the increase of CBM resources and the improvement of CBM recoverability, but in serving as an engineering reference for domestic coalbed biogenic gas production.

  9. Methane-fueled vehicles: A promising market for coalbed methane

    International Nuclear Information System (INIS)

    Deul, M.

    1993-01-01

    The most acceptable alternative fuel for motor vehicles is compressed natural gas (CNG). An important potential source of such gas is coalbed methane, much of which is now being wasted. Although there are no technological impediments to the use of CNG it has not been adequately promoted for a variety of reasons: structural, institutional and for coalbed gas, legal. The benefits of using CNG fuel are manifold: clean burning, low cost, abundant, and usable in any internal combustion engine. Even though more than 30,000 CNG vehicles are now in use in the U.S.A., they are not readily available, fueling stations are not easily accessible, and there is general apathy on the part of the public because of negligence by such agencies as the Department of Energy, the Department of Transportation and the Environmental Protection Agency. The economic benefits of using methane are significant: 100,000 cubic feet of methane is equivalent to 800 gallons of gasoline. Considering the many millions of cubic feet methane wasted from coal mines conservation and use of this resource is a worthy national goal

  10. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  11. Brine Generation Study

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions

    2000-01-01

    In a May 1995 inspection of the WIPP-site Exhaust Shaft indicated that water was seeping through the shaft's concrete liner at depths of 50 to 85 feet below ground surface. In March 1996 a catch basin was installed at the base of the Exhaust Shaft to intercept and prevent fluid from entering the repository horizon. Analyses of fluid samples collected from the catch basin indicated that some samples had concentration levels that exceeded U.S. Environmental Protection Agency (EPA) toxicity characteristics for lead under Title 40 Code of Federal Regulations (CFR) (section) 261.24. Ventilation system operations, weather conditions, and seepage into the Exhaust Shaft have resulted in operational problems. First, increased moisture in the shaft has affected air filters on sampling probes located near the top of the Exhaust Shaft, thus preventing analysis of air samples. Second, production of fluid in the shaft reporting to the catch basin created a disposal problem of the fluid which has been classified as a hazardous material under 40 CFR (section) 261.24 for lead. Though these problems do not effect the stability of the shaft they are a nuisance in that they increase operational costs and impact operation of the Exhaust Shaft air-monitoring system

  12. Possible Mars brines - Equilibrium and kinetic considerations

    Science.gov (United States)

    Zent, A. P.; Fanale, F. P.

    1986-01-01

    To determine the fate of postulated near surface brines on Mars, the rate of H2O mass loss from subsurface brines was calculated as a function of latitude, depth, regolith porosity, eutectic temperature, and pore size. A model for a chemically reasonable brine that could reproduce Martian radar results was developed, and the escape rate of H2O molecules from such a brine was estimated. It is suggested that the presence of a low-permeability duricrust may be required to preserve such a brine for reasonable periods, and to prevent detection of an extensive subsurface system by the Viking MAWD instrument.

  13. Brine Sampling and Evaluation Program, 1990 report

    International Nuclear Information System (INIS)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Case, J.B.; Martin, M.L.; Roggenthen, W.M.; Belski, D.S.

    1991-08-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry

  14. Brine Sampling and Evaluation Program, 1990 report

    Energy Technology Data Exchange (ETDEWEB)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Case, J.B.; Martin, M.L.; Roggenthen, W.M. [International Technology Corp., Albuquerque, NM (United States); Belski, D.S. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1991-08-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry.

  15. Piezophilic Bacteria Isolated from Sediment of the Shimokita Coalbed, Japan

    Science.gov (United States)

    Fang, J.; Kato, C.; Hori, T.; Morono, Y.; Inagaki, F.

    2013-12-01

    The Earth is a cold planet as well as pressured planet, hosting both the surface biosphere and the deep biosphere. Pressure ranges over four-orders of magnitude in the surface biosphere and probably more in the deep biosphere. Pressure is an important thermodynamic property of the deep biosphere that affects microbial physiology and biochemistry. Bacteria that require high-pressure conditions for optimal growth are called piezophilic bacteria. Subseafloor marine sediments are one of the most extensive microbial habitats on Earth. Marine sediments cover more than two-thirds of the Earth's surface, and represent a major part of the deep biosphere. Owing to its vast size and intimate connection with the surface biosphere, particularly the oceans, the deep biosphere has enormous potential for influencing global-scale biogeochemical processes, including energy, climate, carbon and nutrient cycles. Therefore, studying piezophilic bacteria of the deep biosphere has important implications in increasing our understanding of global biogeochemical cycles, the interactions between the biosphere and the geosphere, and the evolution of life. Sediment samples were obtained during IODP Expedition 337, from 1498 meters below sea floor (mbsf) (Sample 6R-3), 1951~1999 mbsf (19R-1~25R-3; coalbed mix), and 2406 mbsf (29R-7). The samples were mixed with MB2216 growth medium and cultivated under anaerobic conditions at 35 MPa (megapascal) pressure. Growth temperatures were adjusted to in situ environmental conditions, 35°C for 6R-3, 45°C for 19R-1~25R-3, and 55°C for 29R-7. The cultivation was performed three times, for 30 days each time. Microbial cells were obtained and the total DNA was extracted. At the same time, isolation of microbes was also performed under anaerobic conditions. Microbial communities in the coalbed sediment were analyzed by cloning, sequencing, and terminal restriction fragment length polymorphism (t-RFLP) of 16S ribosomal RNA genes. From the partial 16S r

  16. Sorption-reagent treatment of brines produced by reverse osmosis unit for liquid radioactive waste management

    International Nuclear Information System (INIS)

    Avramenko, V. A.; Zheleznov, V. V.; Sergienko, V. I.; Chizhevsky, I. Yu

    2003-01-01

    The results of the pilot plant tests (2002-2003) of the sorption-reagent decontamination of high salinity radioactive waste (brines) remaining after the low-salinity liquid radioactive waste (LRW) treatment in the reverse-osmosis unit from long-lived radionuclides are presented. The sorption-reagent materials used in this work were developed in the Institute of Chemistry FEDRAS. They enable one to decontaminate brines with total salt content up to 50 g/l from long-lived radionuclides of Cs, Sr and Co. At joint application of the reverse-osmosis and sorption-reagent technologies total volume of solid radioactive waste (SRW) decreases up to 100-fold as compared to the technology of cementation of reverse osmosis brines. In this case total cost of LRW treatment and SRW disposal decreases more than 10-fold. Brines decontaminated from radionuclides are then diluted down to the ecologically safe total salts content in water to be disposed of. Tests were performed to compare the efficiency of technologies including evaporation of brines remaining after reverse osmosis process and their decontamination by means of the sorption-reagent method. It was shown that, as compared to evaporation, the sorption-reagent technology provides substantial advantages as in regard to radioactive waste total volume reduction as in view of total cost of the waste management

  17. Advanced Heterogeneous Fenton Treatment of Coalbed Methane-Produced Water Containing Fracturing Fluid

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    2018-04-01

    Full Text Available This study investigated the heterogeneous Fenton treatment to process coalbed methane-produced water containing fracturing fluid and chose the development region of coalbed methane in the Southern Qinshui Basin as a research area. We synthesized the catalyst of Fe-Co/γ-Al2O3 by homogeneous precipitation method and characterized it by BET, XRD, SEM-EDS, FTIR, and XPS. Based on the degradation rate, we studied the influences of the heterogeneous Fenton method on the coalbed methane output water treatment process parameters, including initial pH, H2O2 concentration, and the catalyst concentration. We also investigated the impacts of overall reaction kinetics of heterogeneous catalytic oxidation on coalbed methane-produced water containing fracturing fluid. Results showed that Fe-Co/γ-Al2O3 as a Fenton catalyst has a good catalytic oxidation effect and can effectively process coalbed methane-produced water. This reaction also followed first-order kinetics. The optimal conditions were as follows: the initial pH of 3.5, a H2O2 concentration of 40 mol L−1, a catalyst concentration of 4 g/L, and an apparent reaction rate constant of 0.0172 min−1. Our results provided a basis to establish methods for treating coalbed methane-produced water.

  18. Financing considerations for international coalbed methane projects - a case history

    International Nuclear Information System (INIS)

    Mize, J.S.

    1990-01-01

    This presentation on financing of international, coalbed methane fueled Cogen projects is intended to provide the reader with some insight into the key steps and issues involved in financing an outside-the-USA project. No claim is made as to whether the strategy employed for the China projects will be suitable for other projects. The presentation is made from the perspective of an entrepreneur seeking a workable financial structure to address the concerns of risk, return, technology transfer to a third world country, and stage-wise development from prefeasibility assessment through complete resource development and gas utilization. The China projects referred to in this paper are not yet fully financed. Final project approvals for financing awaiting a request by the USA group for China to confirm that their 50% funding is available, and that initial funds have been transferred to the USA group's bank account

  19. Economic evaluation of coalbed methane production in China

    International Nuclear Information System (INIS)

    Luo Dongkun; Dai Youjin

    2009-01-01

    Roaring natural gas demand, energy security and environment protection concerns coupled with stringent emission reduction requirement have made China's abundant coalbed methane (CBM) resource an increasingly valuable energy source. However, not all of China's CBM resource is economic to develop under current technological condition and economic situation. In order to locate the CBM resource with economic viability to develop in China, economic evaluation of CBM production is conducted by applying net present value (NPV) method. The results indicate that more than half of CBM resource in China is economic to develop. It shows that CBM price, production rate and operating costs are the three major factors with most impact on the economic viability of the CBM development in target areas in China. The result also demonstrates that the economic limit production is roughly 1200 cubic meters per day. These economic evaluation results provide important information for both CBM companies and China government.

  20. Coalbed methane produced water in China: status and environmental issues.

    Science.gov (United States)

    Meng, Yanjun; Tang, Dazhen; Xu, Hao; Li, Yong; Gao, Lijun

    2014-01-01

    As one of the unconventional natural gas family members, coalbed methane (CBM) receives great attention throughout the world. The major associated problem of CBM production is the management of produced water. In the USA, Canada, and Australia, much research has been done on the effects and management of coalbed methane produced water (CMPW). However, in China, the environmental effects of CMPW were overlooked. The quantity and the quality of CMPW both vary enormously between coal basins or stratigraphic units in China. The unit produced water volume of CBM wells in China ranges from 10 to 271,280 L/well/day, and the concentration of total dissolved solids (TDS) ranges from 691 to 93,898 mg/L. Most pH values of CMPW are more than 7.0, showing the alkaline feature, and the Na-HCO3 and Na-HCO3-Cl are typical types of CMPW in China. Treatment and utilization of CMPW in China lag far behind the USA and Australia, and CMPW is mainly managed by surface impoundments and evaporation. Currently, the core environmental issues associated with CMPW in China are that the potential environmental problems of CMPW have not been given enough attention, and relevant regulations as well as environmental impact assessment (EIA) guidelines for CMPW are still lacking. Other potential issues in China includes (1) water quality monitoring issues for CMPW with special components in special areas, (2) groundwater level decline issues associated with the dewatering process, and (3) potential environmental issues of groundwater pollution associated with hydraulic fracturing.

  1. Brine Sampling and Evaluation Program: 1988 report

    International Nuclear Information System (INIS)

    Deal, D.E.; Abitz, R.J.; Case, J.B.; Crawley, M.E.; Deshler, R.M.; Drez, P.E.; Givens, C.A.; King, R.B.; Myers, J.; Pietz, J.M.; Roggenthen, W.M.; Tyburski, J.R.; Belski, D.S.; Niou, S.; Wallace, M.G.

    1989-12-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1988. These activities, which are a continuation and update of studies that began in 1982 as part of the Site Validation Program, were formalized as the BSEP in 1985 to document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation, and seepage of that brine into the excavations at the WIPP. Previous BSEP reports (Deal and Case, 1987; Deal and others, 1987) described the results of ongoing activities that monitor brine inflow into boreholes in the facility, moisture content of the Salado Formation, brine geochemistry, and brine weeps and crusts. The information provided in this report updates past work and describes progress made during the calendar year 1988. During 1988, BSEP activities focused on four major areas to describe and quantify brine activity: (1) monitoring of brine inflow parameters, e.g., measuring brines recovered from holes drilled upward from the underground drifts (upholes), downward from the underground drifts (downholes), and near-horizontal holes; (2) characterizing the brine, e.g., the geochemistry of the brine and the presence of bacteria and their possible interactions with experiments and operations; (3) characterizing formation properties associated with the occurrence of brine; e.g., determining the water content of various geologic units, examining these units in boreholes using a video camera system, and measuring their resistivity (conductivity); and (4) modeling to examine the interaction of salt deformation near the workings and brine seepage through the deforming salt. 77 refs., 48 figs., 32 tabs

  2. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    International Nuclear Information System (INIS)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed

  3. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  4. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Energy Technology Data Exchange (ETDEWEB)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-10-04

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (~3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  5. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Science.gov (United States)

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  6. The future of water quality and the regulatory environment for the oil sands and coalbed methane development

    International Nuclear Information System (INIS)

    Kasperski, K.; Mikula, R.

    2004-01-01

    The use of consolidated tailings in recent years for the surface mined oil sands bitumen extraction process has resulted in major improvements in water consumption because materials are transported more efficiently in a slurry form. Water storage requirements will be reduced as the cost of handling tailings in the conventional manner becomes clearer. Future improvements may be in the form of mine face sand rejection, more advanced tailings treatment, or the use of clays for continuous reclamation. Sand filtering or stacking technologies can improve tailings properties and reduce the amount of water needed per unit of bitumen. It was noted that although the technologies will minimize land disturbance and fresh water consumption, water chemistries will be driven to the point where extraction recovery is impaired and water treatment will be required. The volumes and quality of water that is pumped out to produce coalbed methane (CBM) was also discussed with reference to the origin of water in coal beds, water resource depletion, water disposal, direct land applications, and surface evaporation. The Alberta Energy and Utilities Board and Alberta Environment are responsible for regulating CBM water issues in the province, including water disposal from CBM production. 41 refs., 6 tabs., 8 figs

  7. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  8. Origin of the yellow brine and the black brine in Sichuan Basin

    International Nuclear Information System (INIS)

    Wang Dongsheng

    1988-01-01

    The spring water, geothermal water and Cretaceous brine in the outer zone of the Sichuan Basin has the Craig relationship, and they are cycling waters. The brine in the inner zone is mainly metasedimentary water. A basic feature of them is poor in 2 H, but rich in 18 O. The δD-values of the yellow brine in Jurassic and Upper Triassic aquifer of continental facies varies from -62.25 to -22.4, and the δ 18 O-values are -6.72 - +6.02. The δD-values of the black brine in marine aquifer (T 2 ,T 1 ,P,C,O and so on) varies from -49 to -25.1, and the 18 O values are +3.89 - +6.14. The δD of yellow brine is similar to that of meteoric water, and the δD of the black brine is around that of crystallization water expelled from gypsum by anhydritization. Increases of salinity in Jurassic yellow brine result primarily from the evapotranspiration process. The salinity in Upper Triassic yellow brine in Aa sub-area originated from underlying rock salt which was leached by paleometeoric water. Triassic black brine derived from the mixing of the crystallization water leached from rock salt with the residual sea water after salt crystallization. In Zhigong, the composition of yellow brine has mainly been changed by the mixing of the yellow brine with the black brine. (author). 2 refs, 2 figs, 2 tabs

  9. REFUSE OF FERMENTATION BRINES IN THE CUCUMBER PICKLING INDUSTRY

    Science.gov (United States)

    The project evaluated on a commercial scale the technological and economic feasibility of recycling spent cucumber fermentation brine. Two brine treatment procedures, heat treatment and chemical treatment, were used. The results showed that brine recycling was practical on a comm...

  10. On the physico-chemical characteristics of brines

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Rao, P.V.S.S.D.P.; Singbal, S.Y.S.

    Analyses of the natural brines form the salt lakes, salt pans and the artificial brines obtained after the solar desalination of seawater respectively, showed wide differences in their physico-chemical characteristics. The natural brines are markEd...

  11. Modeling gas and brine migration for assessing compliance of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Vaughn, P.; Butcher, B.; Helton, J.; Swift, P.

    1993-10-01

    At the request of the WIPP Project Integration Office (WPIO) of the DOE, the WIPP Performance Assessment (PA) Department of Sandia National Laboratories (SNL) has completed preliminary uncertainty and sensitivity analyses of gas and brine migration away from the undisturbed repository. This paper contains descriptions of the numerical model and simulations, including model geometries and parameter values, and a summary of major conclusions from sensitivity analyses. Because significant transport of contaminants can only occur in a fluid (gas or brine) medium, two-phase flow modeling can provide an estimate of the distance to which contaminants can migrate. Migration of gas or brine beyond the RCRA ''disposal-unit boundary'' or the Standard's accessible environment constitutes a potential, but not certain, violation and may require additional evaluations of contaminant concentrations

  12. China coalbed methane summary : on the edge of commercial development

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. [Far East Energy Co., Houston, TX (United States)

    2003-07-01

    Total coalbed methane (CBM) resources in China are estimated at 30 to 35 trillion cubic metres. China also produces nearly 1 billion tons of coal per year, and is considered to be one of the largest emitters of methane in the world. Methane emissions from coal mining are estimated at 8 to 10 billion cubic metres per year. CBM is only in the early stages of development in China, with 210 drilled CBM wells. The China United Coalbed Methane Co. was formed in 1996 as the state company responsible for CBM development. With exclusive rights for exploration, development and production of CBM, the company has signed 19 CBM contracts with foreign companies for a total foreign investment of $90 million U.S. The multinational companies involved include Amoco, Arco, Phillips-Conoco, and Chevron-Texaco. Far East Energy Co. is one of the many independent companies involved with CBM development in China. Exploration and development has been concentrated in Shanxi, Shaanxi, Henan, Hebei, Liaoning, Heilongjiang, and Anhui provinces. The coal deposits vary in age, structural complexity and rank, with the most of the CBM potential located in the Carboniferous, Permian and Jurassic age coals. This paper briefly described the unique coal basin geology within the north and south regions of China with reference to the tectonic events and marine transgressions that led to coal deposition. A history of CBM exploration was included along with licensing requirements. This paper also described the involvement of Far East Energy Company in CBM development in the Yunnan Province, Panjiang coal mining areas, and Qinshui Basin. Petro China, Shell, ExxonMobil and Gazprom are working on a joint venture to construct a 3,800 km pipeline to bring the CBM to markets. The West-East Gas Pipeline Project will weave its wave through the Tarim Basin, the Ordos Basin, the North China Basin, and the Bohai Gulf Basin. If approved, this joint venture would be the second largest modern engineering project in

  13. The technology of extracting gaseous fuel based on comprehensive in situ gasification and coalbed degassing

    Directory of Open Access Journals (Sweden)

    А. Н. Шабаров

    2016-08-01

    Full Text Available The study considers a comprehensive technology (designed and patented by the authors of developing coal and methane deposits which combines in situ gasification of lower coalbeds in the suite of rock bump hazardous gassy beds, extraction of coal methane and mechanized mining of coal. The first stage of the technology consists in mining gaseous fuel that enables one to extract up to 15-20 % of total energy from the suite of coalbeds. Geodynamic zoning is used to select positions for boring wells. Using the suggested technology makes it possible to solve a number of tasks simultaneously. First of all that is extracting gaseous fuel from the suite of coalbeds without running any mining works while retaining principal coalbeds in the suite and preparing them for future processing (unloading and degassing. During the first phase the methane-coal deposit works as a gas deposit only, the gas having two sources – extracted methane (which includes its locked forms, absorbed and adsorbed and the products of partial incineration of thin coalbeds, riders and seams from thee suite. The second stage consists in deep degassing and unloading of coal beds which sharply reduces the hazards of methane explosion and rock bumps, thus increasing the productivity of mechanized coal mining. During the second stage coal is mined in long poles with the account of degassing and unloading of coal beds, plus the data on gas dynamic structure of coal rock massif.

  14. Solubility of Nd in brine

    International Nuclear Information System (INIS)

    Khalili, F.I.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1994-01-01

    The solubility of Nd(III) has been measured at 23±3 C in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl 2 with an ionic strength of 7.8 M (9.4 m) a solid compound of Nd(III) at each pcH was assigned from X-ray diffraction patterns. The log values of the experimental solubilities decrease fomr -3 at pcH 6.4 to -5.8 at pcH 8.4; at pcH 10.4 and 12.4 the solubility was below the detection limit of -7.5. The experimental solubility does not follow closely the variation with pcH estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. (orig.)

  15. Coalbed methane-produced water quality and its management options in Raniganj Basin, West Bengal, India

    Science.gov (United States)

    Mendhe, Vinod Atmaram; Mishra, Subhashree; Varma, Atul Kumar; Singh, Awanindra Pratap

    2017-06-01

    Coalbed methane (CBM) recovery is associated with production of large quantity of groundwater. The coal seams are depressurized by pumping of water for regular and consistent gas production. Usually, CBM operators need to pump >10 m3 of water per day from one well, which depends on the aquifer characteristics, drainage and recharge pattern. In India, 32 CBM blocks have been awarded for exploration and production, out of which six blocks are commercially producing methane gas at 0.5 million metric standard cubic feet per day. Large amount of water is being produced from CBM producing blocks, but no specific information or data are available for geochemical properties of CBM-produced water and its suitable disposal or utilization options for better management. CBM operators are in infancy and searching for the suitable solutions for optimal management of produced water. CBM- and mine-produced water needs to be handled considering its physical and geochemical assessment, because it may have environmental as well as long-term impact on aquifer. Investigations were carried out to evaluate geochemical and hydrogeological conditions of CBM blocks in Raniganj Basin. Totally, 15 water samples from CBM well head and nine water samples from mine disposal head were collected from Raniganj Basin. The chemical signature of produced water reveals high sodium and bicarbonate concentrations with low calcium and magnesium, and very low sulphate in CBM water. It is comprehend that CBM water is mainly of Na-HCO3 type and coal mine water is of Ca-Mg-SO4 and HCO3-Cl-SO4 type. The comparative studies are also carried out for CBM- and mine-produced water considering the geochemical properties, aquifer type, depth of occurrence and lithological formations. Suitable options like impounding, reverse osmosis, irrigation and industrial use after prerequisite treatments are suggested. However, use of this huge volume of CBM- and mine-produced water for irrigation or other beneficial purposes

  16. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  17. British Columbia's new coalbed methane royalty regime

    Energy Technology Data Exchange (ETDEWEB)

    Molinski, D. [British Columbia Ministry of Energy and Mines, Victoria, BC (Canada). Energy and Minerals Div.

    2002-07-01

    The British Columbia Ministry of Energy and Mines is promoting the development of the coalbed methane (CBM) industry in the province in order to make CBM a viable and competitive investment option for industry. It is establishing a regulatory and fiscal regime for CBM development. Issues of concern regarding CBM development include water production, gas production rates, well numbers, and marginal economics. The features of the CBM royalty regime include a new producer cost of service allowance, the creation of a CBM royalty tax bank to collect excess PCOS allowances, and a royalty tax credit for wells drilled by the end of February, 2004. The marginal well adjustment factor threshold has been raised from 180 mcf per day to 600 mcf per day for CBM only. It was noted that royalties will probably not be payable for several years following the first commercial well because royalties are very depending on capital and operating costs, local infrastructure and price. Royalty regimes cannot save CBM from low gas prices, poor resources or economics. 2 figs.

  18. Technology spurs growth of U.S. coalbed methane

    International Nuclear Information System (INIS)

    Stevens, S.H.; Kuuskraa, J.A.; Schraufnagel, R.A.

    1996-01-01

    Since the late 1980s, more than $2 billion in capital investments and continued technological advances have harnessed an entirely new source of natural gas -- coalbed methane (CBM). From its roots as an experimental coal mine degasification method, the CBM industry today has grown into significant component of US natural gas supply. This report, the second of a four part series assessing unconventional gas development in the US, examines the state of the CBM industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. Parts of the industry believed that CBM was largely a tax credit play that would die out once supports were removed. Now that several years have passed, however, it is becoming clear that the CBM industry has legs sturdy enough to carry it into the 21st century without special tax breaks. This article presents the post 1992 drilling and production data, coupled with detailed assessments of specific CBM projects, which together paint a portrait of a CBM industry that overall continues to thrive without tax credits, thanks to improving E and P technology and continued identification of favorable reservoir settings

  19. Migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1982-01-01

    Theories of the migration of brine inclusions in salt are interpreted as simple physical processes, and theories by Russian and U.S. workers are shown to yield the same results. The migration theory is used to predict threshold temperature gradients below which migration of brine inclusions should not occur. The predicted threshold gradients are compared with the temperature gradients expected at the Waste Isolation Pilot Plant in New Mexico. The theory of a threshold gradient helps explain the existence of brine inclusions in natural salt deposits

  20. Zooplankton at deep Red Sea brine pools

    KAUST Repository

    Kaartvedt, Stein

    2016-03-02

    The deep-sea anoxic brines of the Red Sea comprise unique, complex and extreme habitats. These environments are too harsh for metazoans, while the brine–seawater interface harbors dense microbial populations. We investigated the adjacent pelagic fauna at two brine pools using net tows, video records from a remotely operated vehicle and submerged echosounders. Waters just above the brine pool of Atlantis II Deep (2000 m depth) appeared depleted of macrofauna. In contrast, the fauna appeared to be enriched at the Kebrit Deep brine–seawater interface (1466 m).

  1. Waste glass/metal interactions in brines

    International Nuclear Information System (INIS)

    Shade, J.W.; Pederson, L.R.; McVay, G.L.

    1983-05-01

    Leaching studies of MCC 76-68 glass in synthetic brines high in NaCl were performed from 50 to 150 0 C and included interactive testing with ductile iron and titanium. Hydrolysis of the glass matrix was generally slower in saturated brines than in deionized water, due to a lower solubility of silica in the brines. Inclusion of ductile iron in the tests resulted in accelerated leach rates because irion-silica reactions occurred which reduced the silica saturation fraction. At 150 0 C, iron also accelerated the rate of crystalline reaction product formation which were primarily Fe-bearing sepiolite and talc. 16 references

  2. Coalbed methane and tight gas no longer unconventional resources

    International Nuclear Information System (INIS)

    Gatens, M.

    2006-01-01

    Unconventional gas refers to natural gas contained in difficult-to-produce formations that require special drilling and completion techniques to achieve commercial production. It includes tight gas, coal seams, organic shales, and gas hydrates. Canada's vast unconventional gas resource is becoming an increasingly important part of the country's gas supply. The emergence of unconventional gas production in Canada over the past several years has made the unconventional increasingly conventional in terms of industry activity. It was suggested that in order to realize the potential for unconventional gas in Canada, all stakeholders should engage to ensure the development is environmentally responsible. Unconventional gas accounts for nearly one third of U.S. gas production. It also accounts for nearly 5 Bcf per day and growing. The impetus to this sudden growth has been the gradual and increasing contribution of tight sands and limes to Canadian production, which accounts for more than 4 Bcf per day. Coalbed methane (CBM) is at 0.5 Bcf per day and growing. In response to expectations that CBM will reach 2 to 3 Bcf per day over the next 2 decades, Canadian producers are placing more emphasis on unconventional resource plays, including organic shales and gas hydrates. As such, significant growth of unconventional gas is anticipated. This growth will be facilitated by the adoption of U.S..-developed technologies and new Canadian technologies. It was suggested that research and development will be key to unlocking the unconventional gas potential. It was also suggested that the already existing, strong regulatory structure should continue in order to accommodate this growth in a sustainable manner. figs

  3. Noise considerations in the development of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    DeGagne, D.C. [Noise Solutions Inc., Calgary, AB (Canada); Burke, D. [Energy Resources Conservation Board, Calgary, AB (Canada)

    2009-07-01

    Since coalbed methane (CBM) development remains a secure option for meeting energy demands, industry will need to deal effectively with noise to reduce landowner concerns. This paper presented lessons learned and case histories for the successful approach to noise solutions accepted by regulatory agencies and industry clients. The complexities of acoustical engineering practices were discussed along with the most significant points to meeting regulatory requirements for environmental noise as stated in the Energy Resources Conservation Board (ERCB) Directive 038. The focus of the paper was on the management of environmental noise that will affect nearby residents. Noise is generally viewed as one of a number of general biological stressors. Although there is no health risk from short term exposure to noise, excessive exposure to noise might be considered a health risk as noise may contribute to the development of stress related conditions. Sleep disturbance is the most significant contributor to a stress response due to annoyance from industrial noise. This presentation demonstrated that environmental noise can be managed efficiently and in a cost effective manner. Noise control technology allows companies to meet nearly any level of noise control necessary to be in compliance with regulations. The following are commonly used in CBM operations: noise impact assessments; engine exhaust silencers; cooler silencers; acoustical buildings; building ventilation; and landscape friendly buildings. It was concluded that companies that invest in state of the art noise control combined with a stakeholder consultation program that respects the community's needs and concerns will be able to operate harmoniously with both regulators and community residents. 49 refs., 3 tabs., 4 figs.

  4. Enhanced Brine Dewatering System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide an easily scalable means of completely recovering usable water from byproducts created by...

  5. Brine Dewatering Using Ultrasonic Nebulization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recovery of water from brine is critically important for manned space exploration. Resupply of water is prohibitively costly for extended missions. It is anticipated...

  6. Ice Control with Brine on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars

    traffic flow the spread rate of pure sodium chloride (and thus the environmental impact) in the pre-salting operations was cut back by more than one third. Compared to neighbouring counties the use of salt is less than fifty percent per square meter. In addition, supply of brine from two mixer...... of interpreting this information. The improvements gained by the county of Funen were mainly due to the use of technologies (brine spreading with nozzles) giving a more precise spread pattern than the traditional gritting of pre-wetted salt. Major challenges in the process have been to verify the higher quality...... of the nozzles spread pattern, to ensure maximum utilization of volume of brine carried by the spreading vehicles and to control the mixing of brine without getting stratification in the mixture. Moreover, of course, to ensure political approval of abandoning a well-served technology and to organize...

  7. Brine Dewatering Using Ultrasonic Nebulization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Recovery of water from brine is critically important for future manned space exploration. Resupply of water is prohibitively costly for such extended missions. Water...

  8. Distillation Brine Purification for Resource Recovery Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Wastewater processing systems for space generate residual brine that contains water and salts that could be recovered to reduce life support consumables. The project...

  9. Enhanced Brine Dewatering System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide a scalable means of completely recovering usable water from byproducts created by reverse...

  10. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  11. FIELD IMPLEMENTATION PLAN FOR A WILLISTON BASIN BRINE EXTRACTION AND STORAGE TEST

    Energy Technology Data Exchange (ETDEWEB)

    Hamling, John; Klapperich, Ryan; Stepan, Daniel; Sorensen, James; Pekot, Lawrence; Peck, Wesley; Jacobson, Lonny; Bosshart, Nicholas; Hurley, John; Wilson, William; Kurz, Marc; Burnison, Shaughn; Salako, Olarinre; Musich, Mark; Botnen, Barry; Kalenze, Nicholas; Ayash, Scott; Ge, Jun; Jiang, Tao; Dalkhaa, Chantsalmaa; Oster, Benjamin; Peterson, Kyle; Feole, Ian; Gorecki, Charles; Steadman, Edward

    2016-03-31

    The Energy & Environmental Research Center (EERC) successfully completed all technical work of Phase I, including development of a field implementation plan (FIP) for a brine extraction and storage test (BEST) in the North Dakota portion of the Williston Basin. This implementation plan was commissioned by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) as a proxy for managing formation pressure plumes and measuring/monitoring the movement of differential pressure and CO2 plumes in the subsurface for future saline CO2 storage projects. BEST comprises the demonstration and validation of active reservoir management (ARM) strategies and extracted brine treatment technologies. Two prospective commercial brine injection sites were evaluated for BEST to satisfy DOE’s goals. Ultimately, an active saltwater disposal (SWD) site, Johnsons Corner, was selected because it possesses an ideal combination of key factors making it uniquely suited to host BEST. This site is located in western North Dakota and operated by Nuverra Environmental Solutions (Nuverra), a national leader in brine handling, treatment, and injection. An integrated management approach was used to incorporate local and regional geologic characterization activities with geologic and simulation models, inform a monitoring, verification, and accounting (MVA) plan, and to conduct a risk assessment. This approach was used to design a FIP for an ARM schema and an extracted brine treatment technology test bed facility. The FIP leverages an existing pressure plume generated by two commercial SWD wells. These wells, in conjunction with a new brine extraction well, will be used to conduct the ARM schema. Results of these tests will be quantified based on their impact on the performance of the existing SWD wells and the surrounding reservoir system. Extracted brine will be injected into an underlying deep saline formation through a new injection well. The locations of proposed

  12. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  13. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  14. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage.

    Science.gov (United States)

    Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin

    2017-09-18

    Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.

  15. Sage-Grouse and Coal-Bed Methane: Can They Coexist within the Powder River Basin?

    Science.gov (United States)

    Duncan, Michael B.

    2010-01-01

    Concerns are growing regarding the availability of sustainable energy sources due to a rapidly growing human population and a better understanding of climate change. In recent years, the United States has focused much attention on developing domestic energy sources, which include coal-bed methane (CBM). There are vast deposits of the natural gas…

  16. Coal-bed methane water effects on dill and essential oils

    Science.gov (United States)

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...

  17. In-situ fracture mapping using geotomography and brine tracers

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Ramirez, A.L.; Lytle, R.J.

    1981-01-01

    The Lawrence Livermore National Laboratory is currently assessing the capabilities of high resolution geophysical methods to characterize geologic sites for the disposal of high level nuclear waste. A successful experiment has recently been performed in which salt water tracers and high frequency electromagnetic waves were utilized to map rock mass fracture zones in-situ. Multiple cross-borehole EM transmissions were used to generate a tomographic image of the fractured rock region between two boreholes. The tomographs obtained correlate well with conventional wireline geophysical logs which can be used to infer the location of fractured zones in the rock mass. This indirect data suggests that the geotomography and brine tracer technique may have merit in mapping fractured zones between boreholes

  18. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality

    International Nuclear Information System (INIS)

    Jin, Hui; Schimmelmann, Arndt; Mastalerz, Maria; Pope, James; Moore, Tim A.

    2010-01-01

    Desorption canisters are routinely employed to quantify coalbed gas contents in coals. If purging with inert gas or water flooding is not used, entrapment of air with ∝ 78.08 vol.% nitrogen (N 2 ) in canisters during the loading of coal results in contamination by air and subsequent overestimates of N 2 in desorbed coalbed gas. Pure coalbed gas does not contain any elemental oxygen (O 2 ), whereas air contamination originally includes ∝ 20.95 vol.% O 2 and has a N 2 /O 2 volume ratio of ∝ 3.73. A correction for atmospheric N 2 is often attempted by quantifying O 2 in headspace gas and then proportionally subtracting atmospheric N 2 . However, this study shows that O 2 is not a conservative proxy for air contamination in desorption canisters. Time-series of gas chromatographic (GC) compositional data from several desorption experiments using high volatile bituminous coals from the Illinois Basin and a New Zealand subbituminous coal document that atmospheric O 2 was rapidly consumed, especially during the first 24 h. After about 2 weeks of desorption, the concentration of O 2 declined to near or below GC detection limits. Irreversible loss of O 2 in desorption canisters is caused by biological, chemical, and physical mechanisms. The use of O 2 as a proxy for air contamination is justified only immediately after loading of desorption canisters, but such rapid measurements preclude meaningful assessment of coalbed gas concentrations. With increasing time and progressive loss of O 2 , the use of O 2 content as a proxy for atmospheric N 2 results in overestimates of N 2 in desorbed coalbed gas. The indicated errors for nitrogen often range in hundreds of %. Such large analytical errors have a profound influence on market choices for CBM gas. An erroneously calculated N 2 content in CBM would not meet specifications for most pipeline-quality gas. (author)

  19. Electrochemical corrosion studies of the TStE 355 fine-grained structural steel in sulfide containing brine

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Berg, H. von.

    1994-04-01

    Previous corrosion studies have shown that the unalloyed fine-grained steel TStE 355 (Material No. 1.0566) is a promising material for the manufacturing of long-lived high-level waste (HLW) containers that could act as a barrier in a rock-salt repository. Considering this fact, further electrochemical corrosion tests were performed in order to determine the influence of sulfide ions (1 -200 ppm), present as salt impurities in disposal relevant NaCl-brine (T = 55 -90 C), on the corrosion behaviour of this steel grade. For comparison, tests were carried out in the sulfide-free brine, too. (orig.) [de

  20. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    Science.gov (United States)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  1. Ocean waste disposal. A bibliography with abstracts. Search period covered 1964--May 1975

    International Nuclear Information System (INIS)

    1975-01-01

    The majority of the cited topics discuss the ocean disposal of sewage, sewage sludge, and dredged material, although reports on the disposal of radioactive wastes, brines, and industrial wastes are also covered. The ecological effects are included, as is research on the pollution of the New York Bight. However, studies on the discharge of heated effluents is excluded. Contains 164 abstracts. (auth)

  2. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  3. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  4. Brine Sampling and Evaluation Program: Phase 1 report

    International Nuclear Information System (INIS)

    Deal, D.E.; Case, J.B.

    1987-01-01

    This interim report presents preliminary data obtained in the course of the WIPP Brine Sampling and Evaluation Program. The investigations focus on the brine present in the near-field environment around the WIPP underground workings. Although the WIPP underground workings are considered dry, small amounts of brine are present. This amount of brine is not unexpected in rocks of marine sedimentary origin. Part of that brine can and does migrate into the repository in response to pressure gradients, at essentially isothermal conditions. These small volumes of brine have little effect on the day-to-day operations, but are pervasive throughout the repository and may contribute enough moisture over a period of years to affect resaturation and repressurization after sealing and closure. Gas bubbles are observed in many of the brine occurrences. Gas is also known to exsolve from solution as the brine is poured from container to container. 68 refs., 9 figs., 2 tabs

  5. Portable brine evaporator unit, process, and system

    Science.gov (United States)

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  6. Geological and geochemical characteristics of the secondary biogenic gas in coalbed gases, Huainan coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojun, Zhang; Zhenglin, Cao; Mingxin, Tao; Wanchun, Wang; Jinlong, Ma

    2010-09-15

    The research results show that the compositions of coalbed gases in Huainan coalfield have high content methane, low content heavy hydrocarbons and carbon dioxide, and special dry gas. The evolution coal is at the stage of generation of thermogenic gases, but the d13C1 values within the range of biogenic gas (d13C1 values from -56.7{per_thousand} to -67.9{per_thousand}). The d13C2 value of coalbed gases in Huainan coalfield shows not only the features of the thermogenic ethane, but also the mixed features of the biogenic methane and thermogenic ethane. In geological characteristics, Huainan coalfield has favorable conditions of generation of secondary biogenic gas.

  7. Application of fission track method in the development study of coalbed methane

    International Nuclear Information System (INIS)

    Li Xiaoming; Peng Gelin

    2002-01-01

    In order to explore potential resource of coalbed methane in Xinji coal deposit of Huainan coalfield, its tectonic-thermal evolution history was studied by using fission track technique. The results showed that there had been 3 or more times of significant thermal events occurred in this area since the late Paleozoic Era. The paleo-geothermal gradient was higher than that of the present. It was estimated that the denudation thickness in this area should be over 2000 m. Mainly formed between 240-140 Ma, no abundant methane could be generated in such condition. Furthermore, the tectonic-thermal events would release the most of methane gases. So, the potential resource of the coalbed methane in this are might be limited

  8. Experimental research on coalbed gas drainage effect and economy of long directional borehole in roof

    Science.gov (United States)

    Yang, Huiming; Hu, Liangping

    2017-05-01

    In order to study the coalbed gas drainage effect and economy of long directional roof borehole, 2 boreholes were laid out in Xinji No. 2 mine to analyze its gas drainage and investment costs comparing with high position roof borehole and high position roof roadway. The result indicates that the long directional roof borehole save investment by 44.8% and shorten the construction period by 30%, comparing with high position roof roadway for controlling gas in the working face. Investment slightly less and shorten the construction period by 47.5%, comparing with the roof high position borehole. Therefore, the method of the long directional roof borehole to drain coalbed gas in working face is the most cost-effective.

  9. Raton basin assessment of coalbed methane resources. [USA - Colorado and New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S H; Kelso, B S; Lombardi, T E; Coates, J -M [Advanced Research International, Arlington, VA (USA)

    1993-02-01

    Coalbed methane resources of the Raton basin were assessed through an analysis of public and proprietary sources encompassing stratigraphic, structural, hydrologic, coal rank, and gas-content data. Mapping of coal seams within the Vermejo Formation and Raton Formation revealed several net-coal thickness maxima of 80 ft along the synclinal axis of the basin. However, this sizable coal resource is distributed among multiple, thin, laterally discontinuous coal seams; approximately 60 percent of the total coal in the Raton Formation and 50 percent in the Vermejo Formation occur in seams thinner than 4 ft. Coal rank of the basal Vermejo Formation ranges from high-volatile C to low-volatile bituminous, indicating adequate thermal maturity for methane-generation. Coal seam gas contents show considerable scatter, ranging from 4 to 810 CF/T (ash free), and vary more closely with depth below the hydrologic potentiometric surface than with depth below ground level. Exclusive of shallow and intruded coal seams, in-place coalbed methane resources are estimated at 8.4 to 12.1 TCF, with a mean average of 10.2 TCF. The apparent highest concentration of coalbed methane (24 BCF/mi[sup 2]) occurs along the La Veta trough in Colorado in an area that is geologically less well studied. A second maximum of 8 BCF/mi[sup 2] occurs southeast of Vermejo Park in New Mexico. Successful coalbed methane development in the Raton basin will require favourable coal seam geometry, depth, and reservoir properties in addition to sufficient in-place resources. Local fracturing and enhanced permeability may occur along folds, such as the Vermejo anticline, that splay off the Sangre de Cristo thrust belt. 16 refs., 9 figs.

  10. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    OpenAIRE

    Lei Wang; Hongjun Yin; Xiaoshuang Yang; Chuncheng Yang; Jing Fu

    2015-01-01

    Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare wi...

  11. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    Science.gov (United States)

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  12. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    Science.gov (United States)

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  13. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: direct brine release

    International Nuclear Information System (INIS)

    Stoelzel, D.M.; O'Brien, D.G.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; Smith, L.N.

    2000-01-01

    The following topics related to the treatment of direct brine releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (i) mathematical description of models; (ii) uncertainty and sensitivity analysis results arising from subjective (i.e. epistemic) uncertainty for individual releases; (iii) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e. aleatory) uncertainty; and (iv) uncertainty and sensitivity analysis results for CCDFs. The presented analyses indicate that direct brine releases do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for direct brine releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  14. Research on control system of truck-mounted rig for coalbed methane

    Directory of Open Access Journals (Sweden)

    Wang Hejian

    2018-01-01

    Full Text Available The coal-bed methane (CBM as a kind energy is clean and efficient, also it can become a security risk in mining process if it could not get out of the coal seam. In view of the current large-scale exploitation of coal-bed methane resources, the development of drilling rig for CBM drilling is needed. The parameters and structures were introduced in the paper. The rig uses a highly integrated approach that integrates the required functions on the chassis of the vehicle to meet the needs of rapid installation and transportation. Drilling control system uses hydraulic control and electro-hydraulic control dual control mode, can achieve short-range and remote control operations. The control system include security circuits and electric control system. Through the field trial, it is shown that the rig can meet the construction of the majority of coalbed methane drilling in the country and the performance is stable and the operation is simple.

  15. Determination of coalbed methane potential and gas adsorption capacity in Western Kentucky coals

    Science.gov (United States)

    Mardon, S.M.; Takacs, K.G.; Hower, J.C.; Eble, C.F.; Mastalerz, Maria

    2006-01-01

    The Illinois Basin has not been developed for Coalbed Methane (CBM) production. It is imperative to determine both gas content and other parameters for the Kentucky portion of the Illinois Basin if exploration is to progress and production is to occur in this area. This research is part of a larger project being conducted by the Kentucky Geological Survey to evaluate the CBM production of Pennsylvanian-age western Kentucky coals in Ohio, Webster, and Union counties using methane adsorption isotherms, direct gas desorption measurements, and chemical analyses of coal and gas. This research will investigate relationships between CBM potential and petrographic, surface area, pore size, and gas adsorption isotherm analyses of the coals. Maceral and reflectance analyses are being conducted at the Center for Applied Energy Research. At the Indiana Geological Survey, the surface area and pore size of the coals will be analyzed using a Micrometrics ASAP 2020, and the CO2 isotherm analyses will be conducted using a volumetric adsorption apparatus in a water temperature bath. The aforementioned analyses will be used to determine site specific correlations for the Kentucky part of the Illinois Basin. The data collected will be compared with previous work in the Illinois Basin and will be correlated with data and structural features in the basin. Gas composition and carbon and hydrogen isotopic data suggest mostly thermogenic origin of coalbed gas in coals from Webster and Union Counties, Kentucky, in contrast to the dominantly biogenic character of coalbed gas in Ohio County, Kentucky.

  16. Slumping of brine mounds : bounds on behaviour

    NARCIS (Netherlands)

    Philips, J.R.; Duijn, van C.J.

    1996-01-01

    Two modifications of the approximate analysis of interface motion during two-fluid density-driven flows of De Josselin de Jong (Proc. Euromech., 143: 75–82, 1981) are applied to the slumping of finite two-dimensional and axisymmetric brine mounds. Both lead to simple similarity solutions. One

  17. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hui; Schimmelmann, Arndt [Indiana University, Dept. of Geological Sciences, Bloomington, IN 47405-1405 (United States); Mastalerz, Maria [Indiana University, Indiana Geological Survey, Bloomington, IN 47405-2208 (United States); Pope, James [CRL Energy Ltd., 123 Blenheim Road, Christchurch (New Zealand); University of Canterbury, Dept. of Geological Sciences, Christchurch (New Zealand); Moore, Tim A. [University of Canterbury, Dept. of Geological Sciences, Christchurch (New Zealand); P.T. Arrow Energy Indonesia, Wisma Anugraha, Jl. Taman Kemang No. 32B, Jakarta Selatan (Indonesia)

    2010-01-07

    Desorption canisters are routinely employed to quantify coalbed gas contents in coals. If purging with inert gas or water flooding is not used, entrapment of air with {proportional_to} 78.08 vol.% nitrogen (N{sub 2}) in canisters during the loading of coal results in contamination by air and subsequent overestimates of N{sub 2} in desorbed coalbed gas. Pure coalbed gas does not contain any elemental oxygen (O{sub 2}), whereas air contamination originally includes {proportional_to} 20.95 vol.% O{sub 2} and has a N{sub 2}/O{sub 2} volume ratio of {proportional_to} 3.73. A correction for atmospheric N{sub 2} is often attempted by quantifying O{sub 2} in headspace gas and then proportionally subtracting atmospheric N{sub 2}. However, this study shows that O{sub 2} is not a conservative proxy for air contamination in desorption canisters. Time-series of gas chromatographic (GC) compositional data from several desorption experiments using high volatile bituminous coals from the Illinois Basin and a New Zealand subbituminous coal document that atmospheric O{sub 2} was rapidly consumed, especially during the first 24 h. After about 2 weeks of desorption, the concentration of O{sub 2} declined to near or below GC detection limits. Irreversible loss of O{sub 2} in desorption canisters is caused by biological, chemical, and physical mechanisms. The use of O{sub 2} as a proxy for air contamination is justified only immediately after loading of desorption canisters, but such rapid measurements preclude meaningful assessment of coalbed gas concentrations. With increasing time and progressive loss of O{sub 2}, the use of O{sub 2} content as a proxy for atmospheric N{sub 2} results in overestimates of N{sub 2} in desorbed coalbed gas. The indicated errors for nitrogen often range in hundreds of %. Such large analytical errors have a profound influence on market choices for CBM gas. An erroneously calculated N{sub 2} content in CBM would not meet specifications for most pipeline

  18. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  19. Brine Extraction and Treatment Strategies to Enhance Pressure Management and Control of CO2 Plumes in Deep Geologic Formations

    Energy Technology Data Exchange (ETDEWEB)

    Okwen, Roland [Univ. of Illinois, Champaign, IL (United States). Prairie Research Inst.; Frailey, Scott [Univ. of Illinois, Champaign, IL (United States). Prairie Research Inst.; Dastgheib, Seyed [Univ. of Illinois, Champaign, IL (United States). Prairie Research Inst.

    2017-06-14

    availability of cased-hole logs and cross-well tomography to monitor CO2 saturation and plume distribution, respectively. Because of the proximity of the horizontal well option to two existing wells, no additional monitoring well (or caprock penetration) is required. The recommended brine extraction pilot design options are (1) a horizontal extraction well at the base of the Middle Mt. Simon, which is 350–520 ft (107–158 m) above the CO2 plume at CCS#1 and VW#1; or (2) a vertical extraction well 0.5 mi (0.8 km) from CCS#2 in a direction approximately southeast of CCS#2, perpendicular to the direction of high hydraulic connectivity. A horizontal extraction well has advantages over a vertical extraction well, including less risk of drilling into an existing CO2 plume and it can be located between two other wells that can be used for monitoring. Thus, because the two existing wells can serve as monitoring wells, it eliminates the need for a third verification well and allows for a lower extraction rate to control the CO2 plume and pressure. Managing pressure and the CO2 plume distribution via brine extraction creates the obvious and important challenge of handling and treating the extracted brine. There were three options for brine disposal: (1) underground injection control (UIC) disposal well, (2) brine treatment and industrial use, and (3) brine pretreatment and discharge into municipal wastewater system. The primary design elements were budget and permitting requirements. The disposal well would be a vertical well drilled and completed into the Potosi Dolomite. For the range of extraction rates anticipated, the cost of this well is relatively constant. The cost of brine treatment is highly depends on the extraction rate, which depends on the well orientation. If relatively high rates are required, the vertical disposal well option is more favorable; for relatively lower rates, the two brine treatment options have

  20. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  1. Ocean waste disposal. Volume 2. 1977-July, 1978 (a bibliography with abstracts). Report for 1977-July 1978

    International Nuclear Information System (INIS)

    Brown, R.J.

    1978-07-01

    The majority of the cited topics cover the ocean disposal of sewage, sewage sludge, and dredged material, although reports on the disposal of radioactive wastes, brines, and industrial wastes are also included. The ecological affects are given, as is research on the pollution of the New York Bight. However, studies on the discharge of heated effluents are excluded

  2. Approach to recover strategic metals from brines

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E.; Harrar, J.; Gregg, D.

    1981-09-16

    The objective of the proposed research is to evaluate hypersaline brines from geothermal sources and salt domes as possible sources for some strategic metals. This research is suggested because several previous analyses of brine from geothermal wells in the Imperial Valley, California, and from Gulf Coast salt domes, indicate near commercial values for platinum as well as other metals (i.e., gold, silver). Extraction of the platinum should be technically feasible. A research program should include more complete systematic sampling and analysis for resource delineation, followed by bench-scale investigation of several potential extraction processes. This could be followed by engineering feasibility and design studies, for extraction of the metals either as a by-product of other operations or in a stand-alone process.

  3. Formation of brine channels in sea ice.

    Science.gov (United States)

    Morawetz, Klaus; Thoms, Silke; Kutschan, Bernd

    2017-03-01

    Liquid salty micro-channels (brine) between growing ice platelets in sea ice are an important habitat for CO 2 -binding microalgaea with great impact on polar ecosystems. The structure formation of ice platelets is microscopically described and a phase field model is developed. The pattern formation during solidification of the two-dimensional interstitial liquid is considered by two coupled order parameters, the tetrahedricity as structure of ice and the salinity. The coupling and time evolution of these order parameters are described by a consistent set of three model parameters. They determine the velocity of the freezing process and the structure formation, the phase diagram, the super-cooling and super-heating region, and the specific heat. The model is used to calculate the short-time frozen micro-structures. The obtained morphological structure is compared with the vertical brine pore space obtained from X-ray computed tomography.

  4. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    Energy Technology Data Exchange (ETDEWEB)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  5. Modeling of brine migration in halite

    International Nuclear Information System (INIS)

    Cheung, H.; Fuller, M.E.; Gaffney, E.S.

    1979-01-01

    When canisters containing radwastes are emplaced in a repository the heat produced by the decaying radwaste will cause moderate thermal gradients to develop which will cause the brine present in a halite medium (salt deposits) to accumulate around the canister. Four different models of the migration process have been reviewed to determine their suitability as a working model. One model predicts that inclusions smaller than 0.1 mm dimension probably will not migrate. The other models do not consider size as a factor. Thermal diffusion (Soret effect) is considered insignificant in three models, while in the fourth model it is added to the concentration diffusion term. The following conclusions can be made: Temperature is the most significant parameter in all models and must be known as a function of time, and distance from the canister. All four models predict about the same migration velocity for it is a given set of conditions; for 100 0 C and 1 0 C/cm thermal gradient, it is 3.0, 4.8, 5.6 and 6.4 mm/y. Diffusion of ions through the brine inclusions is the rate controlling mechanism. The difference between the thermal gradients in the liquid and in the solid should always be considered and is a function of droplet shape. The model based upon work by Nernst is easiest to use, but it predicts the lowest migration rate. The maximum volume of pure brine accumulated at the canister surface would be less than 20-40 liters in 50 years, for a canister initial thermal power of 3.5 kW.Bitterns would migrate proportionately less volume. A computer code, BRINE, was developed to make these calculations by means of any of the four models

  6. Assessment of Contaminated Brine Fate and Transport in MB139 at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research Dept.; Malama, Bwalya [Sandia National Lab., Carlsbad, NM (United States). Performance Assessment Dept.

    2014-07-01

    Following the radionuclide release event of February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), actinide contamination has been found on the walls and floor in Panel 7 as a result of a release in Room 7 of Panel 7. It has been proposed to decontaminate Panel 7 at the WIPP by washing contaminated surfaces in the underground with fresh water. A cost-effective cleanup of this contamination would allow for a timely return to waste disposal operations at WIPP. It is expected that the fresh water used to decontaminate Panel 7 will flow as contaminated brine down into the porosity of the materials under the floor – the run-of-mine (ROM) salt above Marker Bed 139 (MB139) and MB139 itself – where its fate will be controlled by the hydraulic and transport properties of MB139. Due to the structural dip of MB139, it is unlikely that this brine would migrate northward towards the Waste-Handling Shaft sump. A few strategically placed shallow small-diameter observation boreholes straddling MB139 would allow for monitoring the flow and fate of this brine after decontamination. Additionally, given that flow through the compacted ROM salt floor and in MB139 would occur under unsaturated (or two-phase) conditions, there is a need to measure the unsaturated flow properties of crushed WIPP salt and salt from the disturbed rock zone (DRZ).

  7. Evolution of hydrologic systems and brine geochemistry in a deforming salt medium: Data from WIPP brine seeps

    International Nuclear Information System (INIS)

    Deal, D.E.; Roggenthen, W.M.

    1991-01-01

    The Brine Sampling and Evaluation Program (BSEP) is a formalized continuation of studies that began in 1982 as part of the Site Validation Program. The program was established in 1985. The mission was to document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and the seepage of that brine into the WIPP excavations. This document focuses on the cumulative data obtained from the BSEP. The overall activities of the BSEP described and quantified the brine. It includes documentation and study of brine inflow into boreholes in the facility. The BSEP investigated the occurrence and development of brine weeps, crusts, and brine geochemistry. The presence of salt-tolerant bacteria in the workings was recorded and their possible interactions with experiments and operations, was assessed. The formation properties associated with the occurrence of brine was characterized. The determination of formation properties included the water content of various geologic units, direct examination of these units in boreholes using a video camera system, and measurement of electrical properties relatable to the brine contents. Modeling examined the interaction of salt deformation near the workings and the flow of brine through the deforming rocks. 34 refs

  8. Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane

    International Nuclear Information System (INIS)

    Li, Q.Y.; Wang, L.; Ju, Y.L.

    2011-01-01

    Highlights: → A novel liquefaction and distillation process is designed for oxygen bearing coal-bed methane. → Oxygen contained in coal-bed methane is removed in distillation process. → Flammability limits are analyzed for the whole operation process. → We find explosion hazard may exist in distillation tower. → Effective measures are proposed to ensure the operation safety in distillation tower. - Abstract: A novel liquefaction and distillation process has been proposed and designed for the typical oxygen-bearing coal-bed methane (CBM), in which the impurities of the oxygen and nitrogen components are removed in the distillation column. The flammability limit theory combining with HYSYS simulation results are employed to analyze and calculate the flammability limits and the results indicate that no flammability hazard exists in the stages of compression, liquefaction and throttling. However, flammability hazard exists at the top the distillation column because the methane mole fraction decreases to the value below the upper flammability limit (UFL). The safety measures of initially removing oxygen content from the feed gas combining with the control of the bottom flowrate (flowrate of the liquid product at column bottom) are proposed to ensure the operation safety of the liquefaction process. The results reveal that the operation safety of the whole process can be guaranteed, together with high methane recovery rate and high purity of the liquid product. The applicability of the liquefaction process has also been analyzed in this paper. The simulation results can offer references for the separation of oxygen from CBM, the analysis of flammability limits and the safety measures for the whole process.

  9. Subsidence interactions related to longwall mining of the upper and lower Kittanning coalbeds

    International Nuclear Information System (INIS)

    Chekan, G.J.; Bauer, E.R.

    1992-01-01

    The U.S. Bureau of Mines, in an effort to improve coal conservation and utilization, is currently investigating longwall panel layouts to maximize coal recovery and minimize interactive problems in multiple-seam operations. When longwalling coalbeds in ascending order, subsidence of the overlying strata is an interactive problem that may influence the stability of the gate roads and longwall panels in the upper mine. To control interactive problems, two fundamental design approaches involved either offsetting of superimposing the gate roads and longwall panels. This paper involves analytical predictions and underground observations of longwall development ground control problems at a south-central Pennsylvania coal mine where gate road superpositioning was practiced

  10. The Brine Sampling and Evaluation Program (PSEP) at WIPP

    International Nuclear Information System (INIS)

    Deal, D.E.; Roggenthen, W.M.

    1989-01-01

    The Permian salt beds of the WIPP facility are virtually dry. The amount of water present in the rocks exposed in the excavations that is free to migrate under pressure gradients was estimated by heating salt samples to 95 degrees C and measuring weight loss. Clear balite contains about 0.22 weight percent water and the more argillaceous units average about 0.75 percent. Measurements made since 1984 as part of the Brine Sampling and Evaluation Program (BSEP) indicate that small amounts of this brine can migrate into the excavations and does accumulate in the underground environment. Brine seepage into drillholes monitored since thy were drilled show that brine seepage decreases with time and that many have dried up entirely. Weeping of brine from the walls of the repository excavations also decreases after two or more years. Chemical analyses of brines shows that they are sodium-chloride saturated and magnesium-rich

  11. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    International Nuclear Information System (INIS)

    Economy, Kathleen M.; Helton, Jon Craig; Vaughn, Palmer

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  12. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a

  13. OUT Success Stories: Chemical Treatments for Geothermal Brines

    International Nuclear Information System (INIS)

    Burr, R.

    2000-01-01

    DOE research helped develop the large, untapped geothermal resource beneath the Salton Sea in California's Imperial Valley. The very hot brines under high pressure make them excellent for electric power production. The brines are very corrosive and contain high concentrations of dissolved silica. DOE worked with San Diego Gas and Electric Company to find a solution to the silica-scaling problem. This innovative brine treatment eliminated scaling and made possible the development of the Salton Sea geothermal resource

  14. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    Energy Technology Data Exchange (ETDEWEB)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  15. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  16. Evaluation of Brine Processing Technologies for Spacecraft Wastewater

    Science.gov (United States)

    Shaw, Hali L.; Flynn, Michael; Wisniewski, Richard; Lee, Jeffery; Jones, Harry; Delzeit, Lance; Shull, Sarah; Sargusingh, Miriam; Beeler, David; Howard, Jeanie; hide

    2015-01-01

    Brine drying systems may be used in spaceflight. There are several advantages to using brine processing technologies for long-duration human missions including a reduction in resupply requirements and achieving high water recovery ratios. The objective of this project was to evaluate four technologies for the drying of spacecraft water recycling system brine byproducts. The technologies tested were NASA's Forward Osmosis Brine Drying (FOBD), Paragon's Ionomer Water Processor (IWP), NASA's Brine Evaporation Bag (BEB) System, and UMPQUA's Ultrasonic Brine Dewatering System (UBDS). The purpose of this work was to evaluate the hardware using feed streams composed of brines similar to those generated on board the International Space Station (ISS) and future exploration missions. The brine formulations used for testing were the ISS Alternate Pretreatment and Solution 2 (Alt Pretreat). The brines were generated using the Wiped-film Rotating-disk (WFRD) evaporator, which is a vapor compression distillation system that is used to simulate the function of the ISS Urine Processor Assembly (UPA). Each system was evaluated based on the results from testing and Equivalent System Mass (ESM) calculations. A Quality Function Deployment (QFD) matrix was also developed as a method to compare the different technologies based on customer and engineering requirements.

  17. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    Science.gov (United States)

    Rosenbauer, R.J.; Koksalan, T.; Palandri, J.L.

    2005-01-01

    Deep-saline aquifers are potential repositories for excess CO2, currently being emitted to the atmosphere from anthropogenic activities, but the reactivity of supercritical CO2 with host aquifer fluids and formation minerals needs to be understood. Experiments reacting supercritical CO2 with natural and synthetic brines in the presence and absence of limestone and plagioclase-rich arkosic sandstone showed that the reaction of CO2-saturated brine with limestone results in compositional, mineralogical, and porosity changes in the aquifer fluid and rock that are dependent on initial brine composition, especially dissolved calcium and sulfate. Experiments reacting CO2-saturated, low-sulfate brine with limestone dissolved 10% of the original calcite and increased rock porosity by 2.6%. Experiments reacting high-sulfate brine with limestone, both in the presence and absence of supercritical CO2, were characterized by the precipitation of anhydrite, dolomitization of the limestone, and a final decrease in porosity of 4.5%. However, based on favorable initial porosity changes of about 15% due to the dissolution of calcite, the combination of CO2 co-injection with other mitigation strategies might help alleviate some of the well-bore scale and formation-plugging problems near the injection zone of a brine disposal well in Paradox Valley, Colorado, as well as provide a repository for CO2. Experiments showed that the solubility of CO2 is enhanced in brine in the presence of limestone by 9% at 25 ??C and 6% at 120 ??C and 200 bar relative to the brine itself. The solubility of CO2 is enhanced also in brine in the presence of arkosic sandstone by 5% at 120 ??C and 300 bar. The storage of CO 2 in limestone aquifers is limited to only ionic and hydraulic trapping. However, brine reacted with supercritical CO2 and arkose yielded fixation and sequestration of CO2 in carbonate mineral phases. Brine desiccation was observed in all experiments containing a discrete CO2 phase

  18. Selective Recovery of Metals from Geothermal Brines

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, Susanna [SRI International, Menlo Park, CA (United States); Bhamidi, Srinivas [SRI International, Menlo Park, CA (United States); Hornbostel, Marc [SRI International, Menlo Park, CA (United States); Nagar, Anoop [SRI International, Menlo Park, CA (United States); Perea, Elisabeth [SRI International, Menlo Park, CA (United States)

    2016-12-16

    The objective of this project was to determine the feasibility of developing a new generation of highly selective low-cost ion-exchange resins based on metal-ion imprinted polymers for the separation of metals from geothermal fluids. Expansion of geothermal energy production over the entire U.S. will involve exploitation of low-to-medium temperature thermal waters. Creating value streams from the recovery of critical and near-critical metals from these thermal waters will encourage geothermal expansion. Selective extraction of metals from geothermal fluids is needed to design a cost-effective process for the recovery of lithium and manganese-two near-critical metals with well-known application in the growing lithium battery industry. We have prepared new lithium- and manganese-imprinted polymers in the form of beads by crosslinking polymerization of a metal polymerizable chelate, where the metal acts as a template. Upon leaching out the metal template, the crosslinked polymer is expected to leave cavities defined by the ligand functional group with enhanced selectivity for binding the template metal. We have demonstrated that lithium- and manganese-imprinted polymer beads can be used as selective solid sorbents for the extraction of lithium and manganese from brines. The polymers were tested both in batch extractions and packed bed lab-scale columns at temperatures of 45-100°C. Lithium-imprinted polymers were found to have Li+ adsorption capacity as high as 2.8 mg Li+/g polymer at 45°C. Manganese-imprinted polymers were found to have a Mn2+ adsorption capacity of more than 23 mg Mn2+/g polymer at 75°C. The Li+ extraction efficiency of the Li-imprinted polymer was found to be more that 95% when a brine containing 390 ppm Li+, 410 ppm Na+, and 390 ppm K+ was passed through a packed bed of the polymer in a lab-scale column at 45°C. In brines containing 360 ppm Li

  19. Modeling of carbon sequestration in coal-beds: A variable saturated simulation

    International Nuclear Information System (INIS)

    Liu Guoxiang; Smirnov, Andrei V.

    2008-01-01

    Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics

  20. Consolidation and permeability of salt in brine

    International Nuclear Information System (INIS)

    Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.

    1981-07-01

    The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0) 3 ), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl 2 showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85 0 C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste

  1. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    Science.gov (United States)

    McLaughlin, J.F.; Frost, C.D.; Sharma, Shruti

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  2. Pressure-driven brine migration in a salt repository

    International Nuclear Information System (INIS)

    Hwang, Y.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1989-01-01

    The traditional view is that salt is the ideal rock for isolation of nuclear waste because it is ''dry'' and probably ''impermeable.'' The existence of salt through geologic time is prima facie evidence of such properties. Experiments and experience at potential salt sites for geologic repositories have indicated that while porosity and permeability of salt are low, the salt may be saturated with brine. If this hypothesis is correct, then it is possible to have brine flow due to pressure differences within the salt. If there is pressure-driven brine migration in salt repositories then it is paramount to know the magnitude of such flow because inward brine flow would affect the corrosion rate of nuclear waste containers and outward brine flow might affect radionuclide transport rates. Brine exists in natural salt as inclusions in salt crystals and in grain boundaries. Brine inclusions in crystals move to nearby grain boundaries when subjected to a temperature gradient, because of temperature-dependent solubility of salt. Brine in grain boundaries moves under the influence of a pressure gradient. When salt is mined to create a waste repository, brine from grain boundaries will migrate into the rooms, tunnels and boreholes because these cavities are at atmospheric pressure. After a heat-emitting waste package is emplaced and backfilled, the heat will impose a temperature gradient in the surrounding salt that will cause inclusions in the nearby salt to migrate to grain boundaries within a few years, adding to the brine that was already present in the grain boundaries. The formulation of brine movement with salt as a thermoelastic porous medium, in the context of the continuum theory of mixtures, has been described. In this report we show the mathematical details and discuss the results predicted by this analysis

  3. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  4. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  5. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    International Nuclear Information System (INIS)

    Butcher, B.M.; Novak, C.F.; Jercinovic, M.

    1991-04-01

    A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., ≤ 10 -18 m 2 ) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs

  6. Domal salt brine migration experiments at Avery Island, Louisiana

    International Nuclear Information System (INIS)

    Krause, W.B.; Gnirk, P.F.

    1981-01-01

    Three in-situ brine migration experiments were performed in domal salt in the Avery Island mine located in southwestern Louisiana. The primary measurements included temperature, moisture collection, and pre- and post-test permeability at the experimental sites. Experimental data are discussed and compared with calculations based on the single-crystal brine migration theory. Comparisons indicate reasonable agreement between experiment and theory

  7. Strontium isotope detection of brine contamination in the East Poplar oil field, Montana

    Science.gov (United States)

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Oliver, Thomas A.

    2010-01-01

    Brine contamination of groundwater in the East Poplar oil field was first documented in the mid-1980s by the U.S. Geological Survey by using hydrochemistry, with an emphasis on chloride (Cl) and total dissolved solids concentrations. Supply wells for the City of Poplar are located downgradient from the oil field, are completed in the same shallow aquifers that are documented as contaminated, and therefore are potentially at risk of being contaminated. In cooperation with the Office of Environmental Protection of the Fort Peck Tribes, groundwater samples were collected in 2009 and 2010 from supply wells, monitor wells, and the Poplar River for analyses of major and trace elements, including strontium (Sr) concentrations and isotopic compositions. The ratio of strontium-87 to strontium-86 (87Sr/86Sr) is used extensively as a natural tracer in groundwater to detect mixing among waters from different sources and to study the effects of water/rock interaction. On a plot of the reciprocal strontium concentration against the 87Sr/86Sr ratio, mixtures of two end members will produce a linear array. Using this plotting method, data for samples from most of the wells, including the City of Poplar wells, define an array with reciprocal strontium values ranging from 0.08 to 4.15 and 87Sr/86Sr ratios ranging from 0.70811 to 0.70828. This array is composed of a brine end member with an average 87Sr/86Sr of 0.70822, strontium concentrations in excess of 12.5 milligrams per liter (mg/L), and chloride concentrations exceeding 8,000 mg/L mixing with uncontaminated water similar to that in USGS06-08 with 18.0 mg/L chloride, 0.24 mg/L strontium, and a 87Sr/86Sr ratio of 0.70811. The position of samples from the City of Poplar public-water supply wells within this array indicates that brine contamination has reached all three wells. Outliers from this array are EPU-4G (groundwater from the Cretaceous Judith River Formation), brine samples from disposal wells (Huber 5-D and EPU 1-D

  8. Assessment of brine migration risks along vertical pathways due to CO2 injection

    Science.gov (United States)

    Kissinger, Alexander; Class, Holger

    2015-04-01

    Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, 'renewable' methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas and coal. Additionally, these technologies may also create conflicts with essential public interests such as water supply. For example, the injection of CO2 into the subsurface causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. In this work we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. In contrast to modeling on the reservoir scale the spatial scale required for this work is much larger in both vertical and lateral direction, as the regional hydrogeology has to be considered. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt domes are considered as potential pathways for displaced fluids into shallow systems and their influence has to be taken into account. We put the focus of our investigations on the latter type of scenario, since there is still a poor understanding of the role that salt diapirs would play in CO2 storage projects. As there is hardly any field data available on this scale, we compare different levels of model complexity in order to identify the relevant processes for brine displacement and simplify the modeling process wherever possible, for example brine injection vs. CO2 injection, simplified geometries vs. the complex formation geometry and the role of salt induced density differences on flow. Further we investigate the impact of the

  9. Ocean waste disposal (a bibliography with abstracts). Report for 1964--Jun 1976

    International Nuclear Information System (INIS)

    Brown, R.J.

    1976-07-01

    The majority of the cited topics discuss the ocean disposal of sewage, sewage sludge, and dredged material, although reports on the disposal of radioactive wastes, brines and industrial wastes are also covered. The ecological affects are included as is research on the pollution of the New York Bight. However, studies on the discharge of heated effluents are excluded. (This updated bibliography contains 231 abstracts, 67 of which are new entries to the previous edition.)

  10. Cultivation of methanogenic community from 2-km deep subseafloor coalbeds using a continuous-flow bioreactor

    Science.gov (United States)

    Imachi, H.; Tasumi, E.; Morono, Y.; Ito, M.; Takai, K.; Inagaki, F.

    2013-12-01

    Deep subseafloor environments associated with hydrocarbon reservoirs have been least explored by previous scientific drilling and hence the nature of deep subseafloor life and its ecological roles in the carbon cycle remain largely unknown. In this study, we performed cultivation of subseafloor methanogenic communities using a continuous-flow bioreactor with polyurethane sponges, called down-flow hanging sponge (DHS) reactor. The sample used for the reactor cultivation was obtained from 2 km-deep coalbeds off the Shimokita Peninsula of Japan, the northwestern Pacific, during the Integrated Ocean Drilling Program (IODP) Expedition 337 using a riser drilling technology of the drilling vessel Chikyu. The coalbed samples were incubated anaerobically in the DHS reactor at the in-situ temperature of 40°C. Synthetic seawater supplemented with a tiny amount of yeast extract, acetate, propionate and butyrate was provided into the DHS reactor. After 34 days of the bioreactor operation, a small production of methane was observed. The methane concentration was gradually increased and the stable carbon isotopic composition of methane was consistency 13C-depleted during the bioreactor operation, indicating the occurrence of microbial methanogenesis. Microscopic observation showed that the enrichment culture contained a variety of microorganisms, including methanogen-like rod-shaped cells with F420 auto-fluorescence. Interestingly, many spore-like particles were observed in the bioreactor enrichment. Phylogenetic analysis of 16S rRNA genes showed the growth of phylogenetically diverse bacteria and archaea in the DHS reactor. Predominant archaeal components were closely related to hydrogenotrophic methanogens within the genus Methanobacterium. Some predominant bacteria were related to the spore-formers within the class Clostridia, which are overall in good agreement with microscopic observations. By analyzing ion images using a nano-scale secondary ion mass spectrometry (Nano

  11. Numerical Simulation of CO2 Flooding of Coalbed Methane Considering the Fluid-Solid Coupling Effect.

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    Full Text Available CO2 flooding of coalbed methane (CO2-ECBM not only stores CO2 underground and reduces greenhouse gas emissions but also enhances the gas production ratio. This coupled process involves multi-phase fluid flow and coal-rock deformation, as well as processes such as competitive gas adsorption and diffusion from the coal matrix into fractures. A dual-porosity medium that consists of a matrix and fractures was built to simulate the flooding process, and a mathematical model was used to consider the competitive adsorption, diffusion and seepage processes and the interaction between flow and deformation. Due to the effects of the initial pressure and the differences in pressure variation during the production process, permeability changes caused by matrix shrinkage were spatially variable in the reservoir. The maximum value of permeability appeared near the production well, and the degree of rebound decreased with increasing distance from the production well.

  12. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  13. Mantle helium in the Red Sea brines

    International Nuclear Information System (INIS)

    Lupton, J.E.; Weiss, R.F.; Craig, H.

    1977-01-01

    It is stated that He isotope studies of terrestrial samples have shown the existence of two He components that are clearly distinct from atmospheric He. These are termed 'crustal' He and 'mantle' He; the latter was discovered as 'excess 3 He' in deep ocean water and attributed to a flux of primordial He from the mantle. Studies of the 3 He/ 4 He ratio in deep Pacific water and in He trapped in submarine basalt glasses showed that this 'mantle' component is characterised by ratios about ten times the atmospheric ratio and 100 times the ratio in 'crustal' He. Basalt glasses from other deep sea waters also showed similar ratios, and it is indicated that 'mantle' He in areas in which new lithosphere is being formed has a unique and uniform isotopic signature. Measurements of He and Ne are here reported that reveal additional information on the origin of Red Sea brines and their relationship to the Red Sea rifts. (U.K.)

  14. Radionuclide transport in sandstones with WIPP brine

    International Nuclear Information System (INIS)

    Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

    1981-02-01

    Retardation factors (R) have been measured for the transport of 3 H, /sup 95m/Tc, and 85 Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for 85 Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for 85 Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta

  15. Evaporation Rates of Brine on Mars

    Science.gov (United States)

    Sears, D. W. G.; Chittenden, J.; Moore, S. R.; Meier, A.; Kareev, M.; Farmer, C. B.

    2004-01-01

    While Mars is now largely a dry and barren place, recent data have indicated that water has flowed at specific locations within the last approx. 10(exp 6) y. This had led to a resurgence of interest in theoretical and experimental work aimed at understanding the behavior of water on Mars. There are several means whereby the stability of liquid water on Mars could be increased, one being the presence solutes that would depress the freezing point. Salt water on Earth is about 0.5M NaCl, but laboratory experiments suggest that martian salt water is quite different. We recently began a program of laboratory measurements of the stability of liquid water, ice and ice-dust mixtures under martian conditions and here report measurements of the evaporation rate of 0.25M brine.

  16. Drilling and Testing the DOI041A Coalbed Methane Well, Fort Yukon, Alaska

    Science.gov (United States)

    Clark, Arthur; Barker, Charles E.; Weeks, Edwin P.

    2009-01-01

    The need for affordable energy sources is acute in rural communities of Alaska where costly diesel fuel must be delivered by barge or plane for power generation. Additionally, the transport, transfer, and storage of fuel pose great difficulty in these regions. Although small-scale energy development in remote Arctic locations presents unique challenges, identifying and developing economic, local sources of energy remains a high priority for state and local government. Many areas in rural Alaska contain widespread coal resources that may contain significant amounts of coalbed methane (CBM) that, when extracted, could be used for power generation. However, in many of these areas, little is known concerning the properties that control CBM occurrence and production, including coal bed geometry, coalbed gas content and saturation, reservoir permeability and pressure, and water chemistry. Therefore, drilling and testing to collect these data are required to accurately assess the viability of CBM as a potential energy source in most locations. In 2004, the U.S. Geological Survey (USGS) and Bureau of Land Management (BLM), in cooperation with the U.S. Department of Energy (DOE), the Alaska Department of Geological and Geophysical Surveys (DGGS), the University of Alaska Fairbanks (UAF), the Doyon Native Corporation, and the village of Fort Yukon, organized and funded the drilling of a well at Fort Yukon, Alaska to test coal beds for CBM developmental potential. Fort Yukon is a town of about 600 people and is composed mostly of Gwich'in Athabascan Native Americans. It is located near the center of the Yukon Flats Basin, approximately 145 mi northeast of Fairbanks.

  17. Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China

    Science.gov (United States)

    Li, Xin; Fu, Xuehai; Yang, Xuesong; Ge, Yanyan; Quan, Fangkai

    2018-07-01

    The Junggar Basin is a potential replacement area of coalbed methane (CBM) development in China. To improve the efficiency of CBM exploration, we investigated CBM accumulation and dissipation patterns of coal profiles located in the northwestern, southern, eastern, and central Junggar Basin based on the following criteria: burial depth, hydrogeological zone, CBM origin, CBM phase, and CBM migration type. We identified four types of CBM accumulation patterns: (1) a self-sourcing CBM pattern containing adsorbed gas of biogenic origin from shallow-depth coal within a weak runoff zone; (2) an endogenic migration pattern containing adsorbed gas of thermogenic origin from the medium and deep coals within a stagnant zone; (3) an exogenic migration pattern containing adsorbed gas of thermogenic origin from deep coal within a stagnant zone; and (4) an exogenic migration pattern containing adsorbed and free gas of thermogenic origin from ultra-deep coal within a stagnant zone. We also identified two types of CBM dissipation patterns: (1) shallow-depth coal within a runoff zone with mixed origin CBM; and (2) shallow and medium-deep coal seams with mixed origin CBM. CBM migration in low-rank coals was more substantial than that adsorbed in high-rank coal. CBM in shallow coal could easily escape, in the absence of closed structures or hydrogeological seals. CBM reservoirs occurred in deep coal where oversaturated gas may accumulate. Future exploration should focus on gas-water sealing structures in shallow coalbeds. CBM that occurred in adsorbed and free phases and other unconventional natural gas dominated by free gas in the coal stratum should be co-explored and co-developed.

  18. Drainage feature about coalbed methane wells in different hydrogeological conditions in Fanzhuaug area

    Institute of Scientific and Technical Information of China (English)

    NI Xiao-ming; LIN Ran; WANG Yan-bin

    2012-01-01

    It is aa important guarantee to enhance the production of coalbed methane (CBM) and reduce the project investment by finding out the drainage feature about CBM wells in different hydrogeological conditions.Based on the CBM exploration and development data on the Fanzhuang block in southeast Qinshui Basin and combined with the seepage principle and lithology on the roof and the bottom coalbed,the mathematical model of integrated permeability was established.By permeability experiments of the different lithologies on the roof and the floor within the 20 m range combined with the log curves,the integrated permeability of different lithological combinations were obtained.The starting pressure gradient and permeability of the roof and the floor for different lithologies was tested by "differential pressure-flow method".The relationships between the starting pressure gradient and the integrated permeability were obtained.The critical distance of limestone water penetrating into coal reservoirs was calculated.According to the drainage feature of CBM wells combined with the drainage data of some CBM wells,the results show that,when limestone water can penetrate into coal reservoirs,the daily water production is high and the daily gas production is low although there is no gas at the beginning of the drainage process,the CBM wells stop discharging water within 6 months after the gas began to come out,and the gas production is steadily improved.When limestone water can not penetrate into coal reservoirs,the daily water production is low and the daily gas production is high at the beginning of the drainage process,and it almost stops discharging water after some time when the gas come out,the daily gas production increases,and the cumulative water production is much lower.

  19. Brine migration in hot-pressed polycrystalline sodium chloride

    International Nuclear Information System (INIS)

    Biggers, J.V.; Dayton, G.O.

    1982-12-01

    This report describes experiments designed to provide data on brine migration in polycrystalline salt. Polycrystalling samples of various grain sizes, density, and purity were prepared from several commercial-grade salts by hot-pressing. Three distinct experimental set-ups were used to place salt billets in an induced thermal gradient in contact with brine source. The test designs varied primarily in the way in which the thermal gradient was applied and monitored and the way in which brine migration was determined. All migration was in enclosed vessels which precluded visual observation of brine movement through the microstructure. Migration velocities were estimated either by the timed appearance of brine at the hot face of the sample, or by determination of the penetration distance of migration artifacts in the microstructure after tests of fixed duration. For various reasons both of these methods were subject to a large degree of error. Our results suggest, however, that the migration velocity in dense polycrystalline salt may be at least an order of magnitude greater than that suggested by single-crystal experiments. Microstructural analysis shows that brine prefers to migrate along paths of high crystalline activity such as grain and subgrain boundaries and is dispersed rather quickly in the microstructure. A series of tests were performed using various types of tracers in brine in order to flag migration paths and locate brine in the microstructure more decisively. These attempts failed and it appears that only the aqueous portion of the brine moves through the microstructure with the dissolved ions being lost and replaced rather quickly. This suggests the use of deuterium as a tracer in future work

  20. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-01-01

    In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections

  1. Effect of different brine concentrations and ripening period on some ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    25240, Erzurum, Turkey. Accepted 25 ... ripened soft cheese that is maturated in brine to develop the desired ... functions, salt exerts a number of important effects on cheese. ..... In: Fox PF (ed) Cheese: chemistry, physics and.

  2. determination of toxicity levels of some savannah plants using brine

    African Journals Online (AJOL)

    DR. AMINU

    DETERMINATION OF TOXICITY LEVELS OF SOME SAVANNAH PLANTS. USING BRINE ... Adoum, O. A.. Department of Pure and Industrial Chemistry, Bayero University, P.M.B. 3011, Kano – Nigeria. ... 1000, 100, and 10 µg/ml, respectively.

  3. A network model for characterizing brine channels in sea ice

    Science.gov (United States)

    Lieblappen, Ross M.; Kumar, Deip D.; Pauls, Scott D.; Obbard, Rachel W.

    2018-03-01

    The brine pore space in sea ice can form complex connected structures whose geometry is critical in the governance of important physical transport processes between the ocean, sea ice, and surface. Recent advances in three-dimensional imaging using X-ray micro-computed tomography have enabled the visualization and quantification of the brine network morphology and variability. Using imaging of first-year sea ice samples at in situ temperatures, we create a new mathematical network model to characterize the topology and connectivity of the brine channels. This model provides a statistical framework where we can characterize the pore networks via two parameters, depth and temperature, for use in dynamical sea ice models. Our approach advances the quantification of brine connectivity in sea ice, which can help investigations of bulk physical properties, such as fluid permeability, that are key in both global and regional sea ice models.

  4. Brine treatment, smoking and storage techniques: their effects on the ...

    African Journals Online (AJOL)

    Journal of Food Technology in Africa ... Brine treatment, smoking and storage techniques: their effects on the microbial quality of smoked mackerel. ... off odour development, softening of the fish and positively affected personal preference.

  5. Monitoring of Miit glass solution interactions by brine analysis

    International Nuclear Information System (INIS)

    Sassoon, R.E.; Gong, M.; Adel-Hadadi, M.; Brandys, M.; Barkatt, A.; Macedo, P.B.

    1989-01-01

    Analyses of brine samples taken from borehole MIIT=8 at the WIPP site were carried out in order to study the leaching behavior of the brine in this system. The standard addition method was used with the analytical techniques of AA, DCP and ICP-MS to determine the concentration of the components in the brine. The changes in the concentration of the major components, Na, Mg and K can be explained by reactions of the brine with the rock salt walls of the borehole. From the data obtained for the other components no leaching of the SRL-Y glass discs in the test could be observed. It was however possible to determine an upper limit for leaching of the glass from isotope ratio studies made on Li which yielded a value for the leach rate of lithium from the glass of 0.117 g m -2 d -1

  6. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  7. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  8. Geochemistry of inorganic nitrogen in waters released from coal-bed natural gas production wells in the Powder River Basin, Wyoming

    Science.gov (United States)

    Smith, Richard L.; Repert, Deborah A.; Hart, Charles P.

    2009-01-01

    Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 μM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, of total dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n = 13), DIN concentrations were >300 μM, with pH > 8.5, after 5 km of transport. Ammonium represented 25−30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day−1entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.

  9. Coal facies evolution of the main minable coal-bed in the Heidaigou Mine, Jungar Coalfield, Inner Mongolia, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, S.F.; Ren, D.Y.; Li, S.S.; Zhao, L.; Zhang, Y. [China University of Mining & Technology, Beijing (China)

    2007-11-15

    The No. 6 Coal-bed from the Heidaigou Mine, Jungar Coalfield, Inner Mongolia is a super-large Ga deposit. The dominant carrier of Ga is boehmite in coal. The study of coal facies may provide genetic enrichment information of Ga and its carrier (boehmite) in the Ga deposit. On the basis of study on coal petrology and mineralogy, it was found that the No. 6 Coal-bed from the Heidaigou Mine of Jungar was enriched in inertinites and the microlithotypes were dominated by clarodurite. The maceral morphological features and association indicate that the coal-bed was formed in a dry sedimentary environment or in a periodic dry sedimentary environment caused by the alternating variations of groundwater level. The optimum conditions for the enrichment of Ga and its particular carrier (boehmite) were dominated by four transitional conditions: (1) the upper delta plain which was the transitional zone between alluvial and lower delta plains, (2) the transitional zone between the dry and wet forest swamps, being slightly apt to the dry one, (3) the transitional tree density between the thick and loose ones, and (4) the low moor that was the transitional zone between two high moors during peat accumulation.

  10. Assessment of Surface Water Contamination from Coalbed Methane Fracturing-Derived Volatile Contaminants in Sullivan County, Indiana, USA.

    Science.gov (United States)

    Meszaros, Nicholas; Subedi, Bikram; Stamets, Tristan; Shifa, Naima

    2017-09-01

    There is a growing concern over the contamination of surface water and the associated environmental and public health consequences from the recent proliferation of hydraulic fracturing in the USA. Petroleum hydrocarbon-derived contaminants of concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)] and various dissolved cations and anions were spatially determined in surface waters around 15 coalbed methane fracking wells in Sullivan County, IN, USA. At least one BTEX compound was detected in 69% of sampling sites (n = 13) and 23% of sampling sites were found to be contaminated with all of the BTEX compounds. Toluene was the most common BTEX compound detected across all sampling sites, both upstream and downstream from coalbed methane fracking wells. The average concentration of toluene at a reservoir and its outlet nearby the fracking wells was ~2× higher than other downstream sites. However, one of the upstream sites was found to be contaminated with BTEX at similar concentrations as in a reservoir site nearby the fracking well. Calcium (~60 ppm) and sulfates (~175 ppm) were the dominant cations and anions, respectively, in surface water around the fracking sites. This study represents the first report of BTEX contamination in surface water from coalbed methane hydraulic fracturing wells.

  11. Physiological characteristics of bacteria isolated from water brines within permafrost

    Science.gov (United States)

    Shcherbakova, V.; Rivkina, E.; Laurinavichuis, K.; Pecheritsina, S.; Gilichinsky, D.

    2004-01-01

    In the Arctic there are lenses of overcooled water brines (cryopegs) sandwiched within permafrost marine sediments 100 120 thousand years old. We have investigated the physiological properties of the pure cultures of anaerobic Clostridium sp. strain 14D1 and two strains of aerobic bacteria Psychrobacter sp. isolated from these cryopegs. The structural and physiological characteristics of new bacteria from water brines have shown their ability to survive and develop under harsh conditions, such as subzero temperatures and high salinity.

  12. Calcium extraction from brine water and seawater using oxalic acid

    Science.gov (United States)

    Natasha, Nadia Chrisayu; Lalasari, Latifa Hanum

    2017-01-01

    Calcium can be extracted not only from rocks but also from natural liquor such as seawater and brine water. In order to extract the calcium from seawater and brine water, oxalic acid was used in this research. Effect of variations of the volume of the oxalic acid at a constant concentration in seawater and brine water to produce calcium was investigated. The concentration of oxalic acid was 100 g/l and the variations of its volume were 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml, and 50 ml. The used seawater and brine water were firstly evaporated from 100 ml into 50 ml and then the oxalic acid was added into them with mixing to produce the calcium precipitates. The precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) and the filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES). The SEM analysis showed that the precipitates from brine water were consisted of only calcium compound while from seawater sodium one was also found along with calcium compound. The XRD analysis showed that the calcium was present in the form of calcium oxalate for both seawater and brine water. The ICP-OES analysis of the filtrate from seawater precipitation showed that the its calcium content was decreased from 826.20 ppm to 0.04 ppm while from brine water, it decreased from 170.06 ppm to 1.96 ppm. These results showed that both seawater and brine water have the potential to be a raw material for calcium production.

  13. Safety studies of HLW-disposal in the Mors salt dome - Support to the salt option of the Pagis project

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1987-01-01

    The study, which is a support to the Pagis project, covers three tasks concerning the evaluation of the Danish salt dome Mors (variant disposal site): evaluation of the human intrusion scenario where a cavern is excavated near the HLW-repository by solution mining technique. The waste is supposed to be leached during the operation period until the abandoned cavern is closed by convergence and the contaminated brine is pressed up into the overburden. Evaluation of the brine intrusion scenario, where the HLW-repository is inadvertently located close to a major brine pocket which subsequently releases its brine content through defects in the repository to the discharge stream for the catchment area. Collection and description of hydrological data of surface and deep layers (down to circa 700 metres) in the repository region. The data will be used by GSF to calculate the radionuclide migration in the geosphere

  14. Thermal-gradient migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-02-01

    It has been proposed that the high level nuclear waste be buried deep underground in a suitable geologic formation. Natural salt deposits have been under active consideration as one of the geologic formations where a nuclear waste repository may be built in future. The salt deposits, however, are known to contain a small amount (about 0.5 vol.%) of water in the form of brine inclusions which are dispersed throughout the medium. The temperature gradients imposed by the heat generating nuclear waste will mobilize these brine inclusions. It is important to know the rate and the amount of brine accumulating at the waste packages to properly evaluate the performance of a nuclear waste repository. An extensive experimental investigation of the migration velocities of brine inclusions in synthetic single crystals of NaCl and in polycrystalline natural salt crystals has been conducted. The results show that in a salt repository the brine inclusions within a grain would move with the diffusion controlled velocities. The brine reaching a grain boundary may be swept across, if the thermal gradient is high enough. Grain boundaries in polycrystalline rock salt are apparently quite weak and open up due to drilling the hole for a waste canister and to the thermal stresses which accompany the thermal gradient produced by the heat generating waste. The enhanced porosity allows the water reaching the grain boundary to escape by a vapor transport process

  15. Brine chemistry and control of adverse chemical reactions with natural gas production. Annual report, July 1990-June 1991

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, J.E.; Kan, A.T.; Cao, X.; Hunter, M.; Tomson, M.B.

    1991-08-01

    A significant quantity of brine is produced along with nearly all gas production. In addition to disposal, three specific chemistry problems occur: (1) scale formation; (2) carbon dioxide corrosion; (3) solids or turbidity production. Additionally, there are numerous specific analytical chemistry issues which require attention. Several research oriented small test squeezes were performed in the Delee Well. Results of these test squeezes were used to better design a full-sized squeeze at the O'Daniels No. 2 Well in the Alta Loma East field, near Galveston, Texas. Sulfate scale formation is common in offshore gas production, because of the high sulfate content in sea water. Preliminary work has been completed on sulfate scale prediction for the common scales of calcium, strontium and barium. These predictive algorithms have been developed for field use and are based upon readily measured brine parameters. Corresponding laboratory work on sulfate inhibition has been started using a newly developed high temperature and pressure flow through apparatus. Flow through core tests have been conducted to determine the important mechanisms of inhibition retention and release in the field. These results are summarized along with their major implications to squeeze design. Also, a new method has been developed and a patent application filed for low level phosphonate inhibition analysis in produced brines.

  16. Brine: a computer program to compute brine migration adjacent to a nuclear waste canister in a salt repository

    International Nuclear Information System (INIS)

    Duckworth, G.D.; Fuller, M.E.

    1980-01-01

    This report presents a mathematical model used to predict brine migration toward a nuclear waste canister in a bedded salt repository. The mathematical model is implemented in a computer program called BRINE. The program is written in FORTRAN and executes in the batch mode on a CDC 7600. A description of the program input requirements and output available is included. Samples of input and output are given

  17. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density

    DEFF Research Database (Denmark)

    Yan, Wei; Huang, Shengli; Stenby, Erling Halfdan

    2011-01-01

    over climate change and energy security. This work is an experimental and modeling study of two fundamental properties in high pressure CO2–NaCl brine equilibrium, i.e., CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. A literature review of the available data was presented first...

  18. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    Science.gov (United States)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress

  19. Production and disposal of waste materials from gas and oil extraction from the Marcellus Shale Play in Pennsylvania

    Science.gov (United States)

    Maloney, Kelly O.; Yoxtheimer, David A.

    2012-01-01

    The increasing world demand for energy has led to an increase in the exploration and extraction of natural gas, condensate, and oil from unconventional organic-rich shale plays. However, little is known about the quantity, transport, and disposal method of wastes produced during the extraction process. We examined the quantity of waste produced by gas extraction activities from the Marcellus Shale play in Pennsylvania for 2011. The main types of wastes included drilling cuttings and fluids from vertical and horizontal drilling and fluids generated from hydraulic fracturing [i.e., flowback and brine (formation) water]. Most reported drill cuttings (98.4%) were disposed of in landfills, and there was a high amount of interstate (49.2%) and interbasin (36.7%) transport. Drilling fluids were largely reused (70.7%), with little interstate (8.5%) and interbasin (5.8%) transport. Reported flowback water was mostly reused (89.8%) or disposed of in brine or industrial waste treatment plants (8.0%) and largely remained within Pennsylvania (interstate transport was 3.1%) with little interbasin transport (2.9%). Brine water was most often reused (55.7%), followed by disposal in injection wells (26.6%), and then disposed of in brine or industrial waste treatment plants (13.8%). Of the major types of fluid waste, brine water was most often transported to other states (28.2%) and to other basins (9.8%). In 2011, 71.5% of the reported brine water, drilling fluids, and flowback was recycled: 73.1% in the first half and 69.7% in the second half of 2011. Disposal of waste to municipal sewage treatment plants decreased nearly 100% from the first half to second half of 2011. When standardized against the total amount of gas produced, all reported wastes, except flowback sands, were less in the second half than the first half of 2011. Disposal of wastes into injection disposal wells increased 129.2% from the first half to the second half of 2011; other disposal methods decreased. Some

  20. Effects of brine migration on waste storage systems. Final report

    International Nuclear Information System (INIS)

    Gaffney, E.S.; Nickell, R.E.

    1979-01-01

    Processes which can lead to mobilization of brine adjacent to spent fuel or nuclear waste canisters and some of the thermomechanical consequences have been investigated. Velocities as high as 4 x 10 -7 m s -1 (13 m y -1 ) are calculated at the salt/canister boundary. As much as 40 liters of pure NaCl brine could accumulate around each canister during a 10-year storage period. Accumulations of bittern brines would probably be less, in the range of 2 to 5 liters. With 0.5% water, NaCl brine accumulation over a 10-year storage cycle around a spent fuel canister producing 0.6 kW of heat is expected to be less than 1 liter for centimeter-size inclusions and less than 0.5 liter for millimeter-size inclusions. For bittern brines, about 25 years would be required to accumulate 0.4 liter. The most serious mechanical consequence of brine migration would be the increased mobility of the waste canister due to pressure solution. In pressure solution enhanced deformation, the existence of a thin film of fluid either between grains or between media (such as between a canister and the salt) provides a pathway by which the salt can be redistributed leading to a marked increase in strain rates in wet rock relative to dry rock. In salt, intergranular water will probably form discontinuous layers rather than films so that they would dominate pressure solution. A mathematical model of pressure solution indicates that pressure solution will not lead to appreciable canister motions except possibly in fine grained rocks (less than 10 -4 m). In fine grained salts, details of the contact surface between the canister and the salt bed may lead to large pressure solution motions. A numerical model indicates that heat transfer in the brine layer surrounding a spent fuel canister is not conduction dominated but has a significant convective component

  1. Thermal gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-01-01

    Natural salt deposits, which are being considered for high-level nuclear wastes repositories, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In the present work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boudaries was observed

  2. Making effective use of rod pumping systems in coalbed methane applications

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, A. [eProduction Solutions Inc., Kingwood, TX (United States)

    2003-07-01

    The advantages of optimizing coalbed methane (CBM) operations are increased production, reduced expenses, improved efficiency, and better inventory. The author discussed the CBM production cycle and the possible artificial lift options, including electric submersible pump (ESP), plunger lift, primary coolant pump (PCP), and reciprocating rod lift. The presentation focused on the rod lift, as it represents a low to moderate capital expenditure, has good system efficiency, an excellent fluid volume range, an excellent salvage value, excellent familiarity with equipment, and has readily available parts and service. The major disadvantage of the rod lift is that the fixed operating range does not adapt to changing reservoir characteristics. A comparison between the rod pump controller and the variable speed drive was presented. The well can be operated at or near the pumped off condition with variable speed drives with rod pumping intelligence. The author provided a closer examination of the variable frequency drive and the vector flux drive. The presentation also included a discussion of prime movers, drive and inclinometer, gearbox loading, rod load limiter, and dynamometer cards. Three case studies were presented: CSW1, CSW2, and CSW3. It was concluded that wells must be kept pumping, and that a Flux Vector Drive should be used along with an NEMA B motor and properly sized pumping unit and pump. tabs., figs.

  3. Analytical modeling of pressure transient behavior for coalbed methane transport in anisotropic media

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Xiaodong

    2014-01-01

    Resulting from the nature of anisotropy of coal media, it is a meaningful work to evaluate pressure transient behavior and flow characteristics within coals. In this article, a complete analytical model called the elliptical flow model is established by combining the theory of elliptical flow in anisotropic media and Fick's laws about the diffusion of coalbed methane. To investigate pressure transient behavior, analytical solutions were first obtained through introducing a series of special functions (Mathieu functions), which are extremely complex and are hard to calculate. Thus, a computer program was developed to establish type curves, on which the effects of the parameters, including anisotropy coefficient, storage coefficient, transfer coefficient and rate constant, were analyzed in detail. Calculative results show that the existence of anisotropy would cause great pressure depletion. To validate new analytical solutions, previous results were used to compare with the new results. It is found that a better agreement between the solutions obtained in this work and the literature was achieved. Finally, a case study is used to explain the effects of the parameters, including rock total compressibility coefficient, coal medium porosity and anisotropic permeability, sorption time constant, Langmuir volume and fluid viscosity, on bottom-hole pressure behavior. It is necessary to coordinate these parameters so as to reduce the pressure depletion. (paper)

  4. Coalbed methane multi-stakeholder advisory committee recommendations : progress update : year 3

    International Nuclear Information System (INIS)

    2009-11-01

    The coalbed methane (CBM) multi-stakeholder advisory committee (MAC) was formed in 2003 to address public concerns related to CBM development in Alberta. This progress update discussed activities and recommendations made by the MAC, with particular reference to the following 4 main areas: (1) protecting water resources, (2) enhancing information and knowledge, (3) minimizing surface impacts, and (4) communication and consultation. A second MAC was formed by members from environmental organizations, landowners, the energy industry, and government agencies in 2006 to review progress on the implementation of the recommendations. Members of the committee agree that significant progress has been achieved in relation to the recommendations made by the original MAC. A large number of new directives, guidelines, processes and best management practices have been established, or are currently under development. Approximately 19,000 CBM wells have been developed since the MAC was established in 2003. It was concluded that ongoing work related to the recommendations will ensure that CBM in Alberta continues to be developed in a responsible manner. 1 tab.

  5. Controlling Bottom Hole Flowing Pressure Within a Specific Range for Efficient Coalbed Methane Drainage

    Science.gov (United States)

    Zhao, Bin; Wang, Zhi-Yin; Hu, Ai-Mei; Zhai, Yu-Yang

    2013-11-01

    The stress state of coal surrounding a coalbed methane (CBM) production well is affected by the bottom hole flowing pressure (BHFP). The permeability of coal shows a marked change under compression. The BHFP must be restricted to a specific range to favor higher permeability in the surrounding coal and thus higher productivity of the well. A new method to determine this specific range is proposed in this paper. Coal has a rather low tensile strength, which induces tensile failure and rock disintegration. The deformation of coal samples under compression has four main stages: compaction, elastic deformation, strain hardening, and strain softening. Permeability is optimal when the coal samples are in the strain softening stage. The three critical values of BHFP, namely, p wmin, p wmid, and p wupper, which correspond to the occurrence of tensile failure, the start of strain softening, and the beginning of plastic deformation, respectively, are derived from theoretical principles. The permeability of coal is in an optimal state when the BHFP is between p wmin and p wmid. The BHFP should be confined to this specific range for the efficient drainage of CBM wells. This method was applied to field operations in three wells in the Hancheng CBM field in China. A comprehensive analysis of drainage data and of the BHFP indicates that the new method is effective and offers significant improvement to current practices.

  6. Discrete Fracture Modeling of 3D Heterogeneous Enhanced Coalbed Methane Recovery with Prismatic Meshing

    Directory of Open Access Journals (Sweden)

    Yongbin Zhang

    2015-06-01

    Full Text Available In this study, a 3D multicomponent multiphase simulator with a new fracture characterization technique is developed to simulate the enhanced recovery of coalbed methane. In this new model, the diffusion source from the matrix is calculated using the traditional dual-continuum approach, while in the Darcy flow scale, the Discrete Fracture Model (DFM is introduced to explicitly represent the flow interaction between cleats and large-scale fractures. For this purpose, a general formulation is proposed to model the multicomponent multiphase flow through the fractured coal media. The S&D model and a revised P&M model are incorporated to represent the geomechanical effects. Then a finite volume based discretization and solution strategies are constructed to solve the general ECBM equations. The prismatic meshing algorism is used to construct the grids for 3D reservoirs with complex fracture geometry. The simulator is validated with a benchmark case in which the results show close agreement with GEM. Finally, simulation of a synthetic heterogeneous 3D coal reservoir modified from a published literature is performed to evaluate the production performance and the effects of injected gas composition, well pattern and gas buoyancy.

  7. Coalbed methane : evaluating pipeline and infrastructure requirements to get gas to market

    International Nuclear Information System (INIS)

    Murray, B.

    2005-01-01

    This Power Point presentation evaluated pipeline and infrastructure requirements for the economic production of coalbed methane (CBM) gas. Reports have suggested that capital costs for CBM production can be minimized by leveraging existing oil and gas infrastructure. By using existing plant facilities, CBM producers can then tie in to existing gathering systems and negotiate third party fees, which are less costly than building new pipelines. Many CBM wells can be spaced at an equal distance to third party gathering systems and regulated transmission meter stations and pipelines. Facility cost sharing, and contracts with pipeline companies for compression can also lower initial infrastructure costs. However, transmission pressures and direct connect options for local distribution should always be considered during negotiations. The use of carbon dioxide (CO 2 ) commingling services was also recommended. A map of the North American gas network was provided, as well as details of Alberta gas transmission and coal pipeline overlays. Maps of various coal zones in Alberta were provided, as well as a map of North American pipelines. refs., tabs., figs

  8. In situ and laboratory toxicity of coalbed natural gas produced waters with elevated sodium bicarbonate

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.; Skaar, Don

    2014-01-01

    Some tributaries in the Powder River Structural Basin, USA, were historically ephemeral, but now contain water year round as a result of discharge of coalbed natural gas (CBNG)-produced waters. This presented the opportunity to study field sites with 100% effluent water with elevated concentrations of sodium bicarbonate. In situ experiments, static renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory demonstrated that CBNG-produced water reduces survival of fathead minnow (Pimephales promelas) and pallid sturgeon (Scaphirhynchus albus). Age affected survival of fathead minnow, where fish 2 d posthatch (dph) were more sensitive than 6 dph fish, but pallid sturgeon survival was adversely affected at both 4 and 6 dph. This may have implications for acute assays that allow for the use of fish up to 14 dph. The survival of early lifestage fish is reduced significantly in the field when concentrations of NaHCO3 rise to more than 1500 mg/L (also expressed as >1245 mg HCO3 (-) /L). Treatment with the Higgin's Loop technology and dilution of untreated water increased survival in the laboratory. The mixing zones of the 3 outfalls studied ranged from approximately 800 m to 1200 m below the confluence. These experiments addressed the acute toxicity of effluent waters but did not address issues related to the volumes of water that may be added to the watershed.

  9. Chemistry of glass corrosion in high saline brines

    International Nuclear Information System (INIS)

    Grambow, B.; Mueller, R.

    1990-01-01

    Corrosion data obtained in laboratory tests can be used for the performance assessment of nuclear waste glasses in a repository if the data are quantitatively described in the frame of a geochemical model. Experimental data were obtained for conventional pH values corrected for liquid junction, amorphous silica solubility and glass corrosion in concentrated salt brines. The data were interpreted with a geochemical model. The brine chemistry was described with the Pitzer formalism using a data base which allows calculation of brine compositions in equilibrium with salt minerals at temperatures up to 200C. In MgCl 2 dominated brines Mg silicates form and due to the consumption of Mg the pH decreases with proceeding reaction. A constant pH (about 4) and composition of alteration products is achieved, when the alkali release from the glass balances the Mg consumption. The low pH results in high release of rare earth elements REE (rare earth elements) and U from the glass. In the NaCl dominated brine MgCl 2 becomes exhausted by Mg silicate formation. As long as there is still Mg left in solution the pH decreases. After exhaustion of Mg the pH rises with the alkali release from the glass and analcime is formed

  10. Searching for brine on Mars using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    2016-07-01

    In the last few years, water ice and perchlorate salts capable of melting this ice and producing liquid solutions have been discovered at the surface and shallow subsurface of Mars. In addition to via melting of ice, perchlorate salts may also form liquid solutions by absorbing water vapor when the relative humidity is above a certain threshold in a process known as deliquescence. Formed either by melting or deliquescence, liquid solutions (brine) are the most likely way of liquid water activity on the Martian surface and in the shallow subsurface and are therefore important to understand the habitability of Mars. Using Raman spectroscopy, we provide reference spectra of various mixing states of liquid water, water ice and calcium perchlorate, all of which can occur during brine formation. We focus on the perchlorate symmetric stretching band and the O-H stretching vibrational band to distinguish brine from crystalline salt and water ice. We show that perchlorate brines can be identified by analyzing the peaks and their widths in the decomposed Raman spectra of the investigated samples. This serves as an important reference for future in-situ Raman spectrometers on Mars, such as those on the ExoMars and Mars 2020 rovers and can aid in the detection of brine formation on Mars. (Author)

  11. Stability of polyvinyl alcohol-coated biochar nanoparticles in brine

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher, E-mail: cgriffith@utexas.edu; Daigle, Hugh [University of Texas at Austin, Department of Petroleum and Geosystems Engineering (United States)

    2017-01-15

    This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from ~3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of ~500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of ~330 nm.

  12. Long-term gas and brine migration at the Waste Isolation Pilot Plant: Preliminary sensitivity analyses for post-closure 40 CFR 268 (RCRA), May 1992

    International Nuclear Information System (INIS)

    1992-12-01

    This report describes preliminary probabilistic sensitivity analyses of long term gas and brine migration at the Waste Isolation Pilot Plant (WIPP). Because gas and brine are potential transport media for organic compounds and heavy metals, understanding two-phase flow in the repository and the surrounding Salado Formation is essential to evaluating long-term compliance with 40 CFR 268.6, which is the portion of the Land Disposal Restrictions of the Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act that states the conditions for disposal of specified hazardous wastes. Calculations described here are designed to provide guidance to the WIPP Project by identifying important parameters and helping to recognize processes not yet modeled that may affect compliance. Based on these analyses, performance is sensitive to shaft-seal permeabilities, parameters affecting gas generation, and the conceptual model used for the disturbed rock zone surrounding the excavation. Brine migration is less likely to affect compliance with 40 CFR 268.6 than gas migration. However, results are preliminary, and additional iterations of uncertainty and sensitivity analyses will be required to provide the confidence needed for a defensible compliance evaluation. Specifically, subsequent analyses will explicitly include effects of salt creep and, when conceptual and computational models are available, pressure-dependent fracturing of anhydrite marker beds

  13. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  14. Brine Migration in Heated Salt: Lessons Learned from Field Experiments

    Science.gov (United States)

    Kuhlman, K. L.; Matteo, E. N.; Mills, M.

    2017-12-01

    We summarize several interesting brine migration related phenomena hinted at in field experiments from field testing related to salt radioactive waste repositories in Germany and the US. Past heater tests in salt have shown 1) thermal-hydrological-mechanical coupling is quite strong during both heating and cooling; 2) chemical composition of brine evolves during heating, and comprises a mix of several water sources; and 3) acid gas (HCl) generation has been observed during past heater tests and may have multiple mechanisms for formation. We present a heated brine migration test design, formulated with these complexities in mind. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  15. Microbially mediated barite dissolution in anoxic brines

    International Nuclear Information System (INIS)

    Ouyang, Bingjie; Akob, Denise M.; Dunlap, Darren; Renock, Devon

    2017-01-01

    Fluids injected into shale formations during hydraulic fracturing of black shale return with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium (Ba) and radium (Ra). Barite, BaSO_4, has been implicated as a possible source of Ba as well as a problematic mineral scale that forms on internal well surfaces, often in close association with radiobarite, (Ba,Ra)SO_4. The dissolution of barite by abiotic processes is well quantified. However, the identification of microbial communities in flowback and produced water necessitates the need to understand barite dissolution in the presence of bacteria. Therefore, we evaluated the rates and mechanisms of abiotic and microbially-mediated barite dissolution under anoxic and hypersaline conditions in the laboratory. Barite dissolution experiments were conducted with bacterial enrichment cultures established from produced water from Marcellus Shale wells located in northcentral Pennsylvania. These cultures were dominated by anaerobic halophilic bacteria from the genus Halanaerobium. Dissolved Ba was determined by ICP-OES and barite surfaces were investigated by SEM and AFM. Our results reveal that: 1) higher amounts of barium (up to ∼5 × ) are released from barite in the presence of Halanaerobium cultures compared to brine controls after 30 days of reaction, 2) etch pits that develop on the barite (001) surface in the presence of Halanaerobium exhibit a morphology that is distinct from those that form during control experiments without bacteria, 3) etch pits that develop in the presence of Halanaerobium exhibit a morphology that is similar to the morphology of etch pits formed in the presence of strong organic chelators, EDTA and DTPA, and 4) experiments using dialysis membranes to separate barite from bacteria suggest that direct contact between the two is not required in order to promote dissolution. These results suggest that Halanaerobium increase the rate of barite dissolution in anoxic

  16. Guidelines to Facilitate the Evaluation of Brines for Winter Roadway Maintenance Operations.

    Science.gov (United States)

    2017-09-19

    This document presents guidelines to facilitate the evaluation of brines for winter weather roadway maintenance applications in Texas. Brines are used in anti-icing applications which typically consist of placing liquid snow and ice control chemicals...

  17. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege; Kaartvedt, Stein

    2015-01-01

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013

  18. Environmental efficiency and legal possibility of mineralized water dispose in the suprasalt sequence of the verkhnekamskoe deposit

    Directory of Open Access Journals (Sweden)

    С. Ю. Квиткин

    2017-12-01

    Full Text Available The production of potash fertilizers at PJSC Uralkali is accompanied by the formation of excess solutions/brines, located on the sludge dump, where also comes water from salt brines and tailing piles, clay-salt slimes and atmospheric precipitation. After mechanical purification and reduction of the solutions/brines mineralization in the order of 5 million m3/year are emitted into surface waters. The studies carried out by Uralkali in 2000-2006 at the Verkhnekamskoe field, revealed an opportunity of underground disposal of mineralized brines/wastewater in the upper part of the salt-marl layer, directly overlapping the salt deposits and situated at depths not exceeding 300 m. Obtained results are confirmed by the state geological commission of the Federal Agency on Mineral Resources. The location of mineralized solutions in reservoir beds with an almost unlimited capacitive potential does not lead to the change in the hydrodynamic and hydrochemical regime of the underground hydrosphere and lessen the burden on the environment. To implement underground disposal of mineralized process brines/wastewater, it is necessary to amend the «Concerning Subsurface Resources» Federal Law. Proposals of Uralkali to amend the «Concerning Subsurface Resources» Federal Law are supported by the Federal Agency for Mineral Resources and Federal Service for Supervision of Natural Resources.

  19. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.; Webb, S.W.

    1995-01-01

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described

  20. Effect of explicit representation of detailed stratigraphy on brine and gas flow at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Christian-Frear, T.L.; Webb, S.W.

    1996-04-01

    Stratigraphic units of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) disposal room horizon includes various layers of halite, polyhalitic halite, argillaceous halite, clay, and anhydrite. Current models, including those used in the WIPP Performance Assessment calculations, employ a ''composite stratigraphy'' approach in modeling. This study was initiated to evaluate the impact that an explicit representation of detailed stratigraphy around the repository may have on fluid flow compared to the simplified ''composite stratigraphy'' models currently employed. Sensitivity of model results to intrinsic permeability anisotropy, interbed fracturing, two-phase characteristic curves, and gas-generation rates were studied. The results of this study indicate that explicit representation of the stratigraphy maintains higher pressures and does not allow as much fluid to leave the disposal room as compared to the ''composite stratigraphy'' approach. However, the differences are relatively small. Gas migration distances are also different between the two approaches. However, for the two cases in which explicit layering results were considerably different than the composite model (anisotropic and vapor-limited), the gas-migration distances for both models were negligible. For the cases in which gas migration distances were considerable, van Genuchten/Parker and interbed fracture, the differences between the two models were fairly insignificant. Overall, this study suggests that explicit representation of the stratigraphy in the WIPP PA models is not required for the parameter variations modeled if ''global quantities'' (e.g., disposal room pressures, net brine and gas flux into and out of disposal rooms) are the only concern

  1. Effect of explicit representation of detailed stratigraphy on brine and gas flow at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Christian-Frear, T.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

    1996-04-01

    Stratigraphic units of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) disposal room horizon includes various layers of halite, polyhalitic halite, argillaceous halite, clay, and anhydrite. Current models, including those used in the WIPP Performance Assessment calculations, employ a ``composite stratigraphy`` approach in modeling. This study was initiated to evaluate the impact that an explicit representation of detailed stratigraphy around the repository may have on fluid flow compared to the simplified ``composite stratigraphy`` models currently employed. Sensitivity of model results to intrinsic permeability anisotropy, interbed fracturing, two-phase characteristic curves, and gas-generation rates were studied. The results of this study indicate that explicit representation of the stratigraphy maintains higher pressures and does not allow as much fluid to leave the disposal room as compared to the ``composite stratigraphy`` approach. However, the differences are relatively small. Gas migration distances are also different between the two approaches. However, for the two cases in which explicit layering results were considerably different than the composite model (anisotropic and vapor-limited), the gas-migration distances for both models were negligible. For the cases in which gas migration distances were considerable, van Genuchten/Parker and interbed fracture, the differences between the two models were fairly insignificant. Overall, this study suggests that explicit representation of the stratigraphy in the WIPP PA models is not required for the parameter variations modeled if ``global quantities`` (e.g., disposal room pressures, net brine and gas flux into and out of disposal rooms) are the only concern.

  2. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  3. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  4. Standard for baseline water-well testing for coalbed methane/natural gas in coal operations

    International Nuclear Information System (INIS)

    2006-04-01

    Interest in developing coalbed methane (CBM) is increasing with the decline of conventional natural gas reserves. In Alberta, where CBM is in the early stages of development, the drilling, production and operational rules for CBM are the same as those that apply to natural gas. The government of Alberta is presently examining the rules and regulations that apply to CBM to determine if they are appropriate for responsible development and balanced with environmental protection. CBM development has the potential to affect water aquifers and water supply. As such, a new standard has been developed by Alberta Environment in collaboration with the Alberta Energy and Utilities Board which requires that companies involved in the development of shallow CBM must offer to test rural Albertan's water wells prior to drilling. The companies will submit baseline groundwater data to both Alberta Environment and the landowner. The broader application of groundwater testing will also support Alberta Environment's objective of mapping all groundwater resources in the province. This new standard will help achieve continued protection of provincial groundwater resources and Albertan's groundwater supplies. It will also facilitate responsible CBM development and the government's Water for Life strategy. This document explained the protocols for testing, sampling and analyzing groundwater. The standard provides scientific information to support achievement of the outcomes as well as a regulatory basis for water well testing and baseline data collection prior to CBM development. If a landowner registers a complaint regarding a perceived change in well water quantity and quality after CBM development, then the developers must retest the water well to address the landowner's concerns. The tests evaluate water well capacity, water quality, routine potability and analysis for water quality parameters, including major ionic constituents, bacteriological analysis and presence or absence of gas

  5. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    Science.gov (United States)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  6. Extension of the Parana Basin to offshore Brazil: Implications for coalbed methane evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Holz, M.; Kalkreuth, W.; Rolim, S.B.A. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2010-05-15

    Coalbed methane (CBM) is a worldwide exploration target of the petroleum industry. In Brazil, the most important coal-bearing succession is associated with the Permian Rio Bonito Formation of the Parana Basin. The gas-prone areas are located at the southeastern margin of the Parana Basin and possibly in the offshore region of the northern part of the Pelotas Basin. Coalfields end abruptly at the present day shoreline, a result of rifting of Gondwana and the evolution of the South Atlantic Ocean. All geologic indicators suggest that in pre-rift times the coal seams extended further eastwards, probably now lying deeply buried below the sedimentary succession of the Pelotas Basin. The present paper discusses structural, stratigraphic, seismic and aeromagenetic data that support the preservation of continental crust beneath ocean sediment. If the coal beds had similar lateral extent to known onshore coals, and coal beds extended across the projected extension of the Parana basin, and there was a conservative 5 m of cumulative coal thickness, then a potential methane volume can be estimated for this newly inferred resource. Average onshore coal gas content is 32 scf/ton (1.00 m(3)/ton). If this is similar in the offshore coal deposits, then the hypothetical methane volume in the offshore area could be in excess of 1.9 x 10(12) scf (56 x 10(9) m(3)). Metamorphism from dikes associated with rifting are potential complicating factors in these deposits, and since no borehole reaching the deep-lying strata in the offshore area are available, this is a hypothetical gas resource with a certain level of uncertainty which should be tested in the future by drilling a deep borehole.

  7. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  8. The origin and fate of arsenic in coalbed natural gas-produced water ponds.

    Science.gov (United States)

    Sowder, J T; Kelleners, T J; Reddy, K J

    2010-01-01

    Coalbed natural gas (CBNG)-produced water contains small amounts of trace metals that can accumulate over time in produced water retention ponds. Within the Powder River Basin (PRB) of Wyoming, high concentrations of trace metals in pond water and their effect on shallow groundwater are potential concerns. A pond with a maximum As concentration of 146 microg L(-1) was studied in detail to determine the potential for groundwater pollution and to explain the cause for the high concentration of As. Infiltration characteristics, subsurface hydrology, our fall and pond water quality, isotope signatures, and trace metal balances were examined to assess the hydrology and geochemistry of the pond. The results indicated minimum or no infiltration of pond water and no measurable contamination of the shallow groundwater. The high As concentrations in the pond were determined to be the result of semi-continuous inputs of CBNG-produced water with low As concentrations (0.20-0.48 microg L(-1)), exasperated by low pond volumes during drought conditions. Because of reduced infiltration and high evaporation rates, As became concentrated over time. Reduced infiltration was most likely caused by the high sodium concentration and high sodium adsorption ratio of the CBNG-produced water, which disrupt soil structure. The findings for the pond and the techniques used may serve as a template for future impact assessments of other CBNG-produced water ponds and are relevant for the approximately 4000 ponds currently permitted in the PRB and for future ponds. Further studies are recommended in the use of playa landforms to store marginal-quality produced water.

  9. Water quality changes as a result of coalbed methane development in a Rocky mountain watershed

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W. [Tarleton State University, Stephenville, TX (USA)

    2007-12-15

    Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

  10. Treatment of Simulated Coalbed Methane Produced Water Using Direct Contact Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Dong-Wan Cho

    2016-05-01

    Full Text Available Expolitation of coalbed methane (CBM involves production of a massive amount saline water that needs to be properly managed for environmental protection. In this study, direct contact membrane distillation (DCMD was utilized for treatment of CBM-produced water to remove saline components in the water. Simulated CBM waters containing varying concentrations of NaCl (1, 20, and 500 mM and NaHCO3 (1 and 25 mM were used as feed solutions under two transmembrane temperatures (Δ40 and 60 °C. In short-term distillation (~360 min, DCMD systems showed good performance with nearly 100% removal of salts for all solutes concentrations at both temperatures. The permeate flux increased with the feed temperature, but at a given temperature, it remained fairly stable throughout the whole operation. A gradual decline in permeate flux was observed at Δ60 °C at high NaHCO3 concentration (25 mM. In long-term distillation (5400 min, the presence of 25 mM NaHCO3 further decreased the flux to 25%–35% of the initial value toward the end of the operation, likely due to membrane fouling by deposition of Ca-carbonate minerals on the pore openings. Furthermore, pore wetting by the scalants occurred at the end of the experiment, and it increased the distillate conducitivity to 110 µS·cm−1. The precipitates formed on the surface were dominantly CaCO3 crystals, identified as aragonite.

  11. Powder River Basin Coalbed Methane Development and Produced Water Management Study

    International Nuclear Information System (INIS)

    2002-01-01

    Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown

  12. Experimental and numerical study of radial lateral fracturing for coalbed methane

    International Nuclear Information System (INIS)

    Fu, Xuan; Li, Gensheng; Huang, Zhongwei; Liang, Yuesong; Xu, Zhengming; Jin, Xiao

    2015-01-01

    Drilling ultra-short radius horizontal laterals in a vertical well and then operating hydraulic fracturing (radial lateral fracturing, abbreviated as RLF) is proposed as a prospective novel method to increase the single-well productivity for coalbed methane (CBM) development. The objective of this article is to find the best fracture network profile RLF can generate and what kind of formation is suitable for this fracturing technique. Experiments using a true tri-axial fracturing simulation system are designed to analyse the influence of different lateral length, count and azimuth on the fracturing initiation and propagation. A numerical simulation is also carried out to study the sensitivity of the coal integrity and in situ stress state on the fracture initiation type. Our work shows that: the best effect of RLF is achieved when it initiates from the bedding plane where the laterals lie and forms a fracture network with one main horizontal fracture connecting multiple vertical fractures; the breakdown and injection pressure will be decreased by increasing the lateral length and count; increasing the lateral length can enlarge the horizontal fracture area; the optimal lateral design for horizontal initiation is four laterals with the phase of 90° and each lateral is at 45° from the horizontal stress; RLF is suitable for the intact coal seams in which cracks or cleats are not well developed and the overburden stress should be close to or less than the maximum horizontal stress. This paper will provide the experimental support and theoretical bases for CBM RLF design. (paper)

  13. Transport of barium through dolomite rocks under the presence of guar gum and brine salinities of hydraulic fracturing wastewater

    Science.gov (United States)

    Ebrahimi, P.; Vilcaez, J.

    2017-12-01

    Hydraulic fracturing wastewater (HFW) containing high concentrations of Ba, is commonly disposed into the deep saline aquifers. We investigate the effect of brine salinity, competing cations (Ca and Mg), and guar gum (most common fracturing viscosifier) on the sorption and transport of Ba through dolomite rocks. To this aim, we have conducted batch sorption and core-flooding experiments at both ambient (22°C) and deep subsurface (60°C) temperature conditions. The effect of mineral composition is assessed by comparing batch and core-flooding experimental results obtained with sandstone and dolomite rocks. Batch sorption experiments conducted using powdered dolomite rocks (500-600 µm particle size) revealed that Ba sorption on dolomite greatly decreases with increasing brine salinity (0 - 180,000 mg-NaCl/L), and that at brine salinities of HFW, chloro-complexation reactions between Ba and Cl ions and changes in pH (that results from dolomite dissolution) are the controlling factors of Ba sorption on dolomite. Organo-complexation reactions between Ba and guar gum, and competition of Ba with common cations (Ca and Mg) for hydration sites of dolomite, play a secondary role. This finding is in accordance with core-flooding experimental results, showing that the transport of Ba through synthetic dolomite rocks of high flow properties (25-29.6% porosity, 9.6-13.7 mD permeability), increases with increasing brine salinity (0-180,000 mg-NaCl/L), while the presence of guar gum (50-500 mg/L) does not affect the transport of Ba. On the other hand, core-flooding experiments conducted using natural dolomite core plugs (6.5-8.6% porosity, 0.06-0.3 mD permeability), indicates that guar gum can clog the pore throats of tight dolomite rocks retarding the transport of Ba. Results of our numerical simulation studies indicate that the mechanism of Ba sorption on dolomite can be represented by a sorption model that accounts for both surface complexation reactions on three distinct

  14. Solar desalination, brine and fine chemicals - a preliminary report

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Nagarajan, R.

    Solar stills put into operation by taking known quantities of sea water of different salinities varying from 27.75-36.27 x 10 super(3) during April-May 1990, indicated fresh water yield of 55-68% (av. 64). The volumes of brine as well as those...

  15. Durability of concrete materials in high-magnesium brine

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation

  16. Brine transport in porous media self-similar solutions

    NARCIS (Netherlands)

    C.J. van Duijn (Hans); L.A. Peletier (Bert); R.J. Schotting (Ruud)

    1996-01-01

    textabstractIn this paper we analyze a model for brine transport in porous media, which includes a mass balance for the fluid, a mass balance for salt, Darcy's law and an equation of state, which relates the fluid density to the salt mass fraction. This model incorporates the effect of local volume

  17. Brine Shrimp Toxicity Evaluation Of Some Tanzanian Plants Used ...

    African Journals Online (AJOL)

    Plants which are used by traditional healers in Tanzania have been evaluated to obtain preliminary data of their toxicity using the brine shrimps test. The results indicate that 9 out of 44 plant species whose extracts were tested exhibited high toxicity with LC50 values below 20μg/ml. These include Aloe lateritia Engl.

  18. Comparison of antimicrobial activities of brine salting, Chlorinated ...

    African Journals Online (AJOL)

    Chemical preservatives can be used to reduce the overall microbial populations in fish and fish products. This study was set to determine the antimicrobial activities of brine salting, chlorinated solution, and Moringa oleifera plant extracts treatments on enteric bacteria in Rastrineobola argentea and Oreochromis niloticus fish ...

  19. Modeling the morphogenesis of brine channels in sea ice.

    Science.gov (United States)

    Kutschan, B; Morawetz, K; Gemming, S

    2010-03-01

    Brine channels are formed in sea ice under certain constraints and represent a habitat of different microorganisms. The complex system depends on a number of various quantities as salinity, density, pH value, or temperature. Each quantity governs the process of brine channel formation. There exists a strong link between bulk salinity and the presence of brine drainage channels in growing ice with respect to both the horizontal and vertical planes. We develop a suitable phenomenological model for the formation of brine channels both referring to the Ginzburg-Landau theory of phase transitions as well as to the chemical basis of morphogenesis according to Turing. It is possible to conclude from the critical wave number on the size of the structure and the critical parameters. The theoretically deduced transition rates have the same magnitude as the experimental values. The model creates channels of similar size as observed experimentally. An extension of the model toward channels with different sizes is possible. The microstructure of ice determines the albedo feedback and plays therefore an important role for large-scale global circulation models.

  20. Solar desalination, brine and fine chemicals - a preliminary report

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Nagarajan, R.

    from 3.65 - 4.63 ppm. The definite volumes of seawater samples (3.7 litres) taken in stills for desalination correspond to 13.08 - 31.16 mg of net boron content. Analyses on the recovery of the total content of boron in brines as well as in the bitterns...

  1. [Experimental interaction of halophilic prokaryotes and opportunistic bacteria in brine].

    Science.gov (United States)

    Selivanova, E A; Nemtseva, N V

    2013-01-01

    Study the effect of extremely halophilic archaea and moderately halophilic bacteria on preservation of opportunistic bacteria in brine. 17 strains of moderately halophilic bacteria and 2 strains of extremely halophilic archaea were isolated from continental hypersaline lake Razval of Sol-Iletsk area of Orenburg Region. Identification of pure cultures of prokaryotes was carried out taking into account their phenotype properties and based on determination of 16S RNA gene sequence. The effect of halophilic prokaryote on elimination of Escherichia coli from brine was evaluated during co-cultivation. Antagonistic activity of cell extracts of the studied microorganisms was evaluated by photometric method. A more prolonged preservation of an E. coli strain in brine in the presence of live cells of extremely halophilic archaea Halorubrum tebenquichense and moderately halophilic bacteria Marinococcus halophilus was established. Extracts of cells of extremely halophilic archaea and moderately halophilic bacteria on the contrary displayed antagonistic activity. The protective effect of live cells of halophilic prokaryotes and antagonistic activity of their cell extracts change the period of conservation of opportunistic bacteria in brine that regulates inter-microbial interactions and changes the period of self-purification that reflects the sanitary condition of a hypersaline water body.

  2. A carbon inventory for Orca Basin brines and sediments

    International Nuclear Information System (INIS)

    Sackett, W.M.; Brooks, J.M.; Bernard, B.B.; Schwab, C.R.; Chung, H.; Parker, R.A.

    1979-01-01

    Orca Basin, an intraslope depression at a depth of about 2400 m on the continental slope of the north-central Gulf of Mexico, contains an anoxic, hypersaline brine similar to composition to those reported in the Red Sea. Concentrations and stable carbon isotope compositions of various inorganic and organic carbon species have been determined on the brine and sediments in order to gain an understanding of the origin and cycling of carbon in this unique environment. ΣCO 2 in the brine (55 mg C/l) is about twice seawater with delta 13 C sub(PDB)=-16.4per thousand and Δ 14 C=-501per thousand. CH 4 has a concentration of 12 mg C/l and delta 13 C=-73.5per thousand. Dissolved and particulate organic carbon concentrations are seven times higher and have delta 13 C values several permil different than the overlying seawater, ΣCO 2 and CH 4 in the interstitial waters are considerably higher in concentrations and isotropically light than the overlying brine. Solution of near-surface salt deposits by seawater with subsequent microbial production and consumption of methane can be used to explain most of the data. (Auth.)

  3. Permeability of salt-crystal interfaces to brine

    International Nuclear Information System (INIS)

    Gilpatrick, L.O.; Baes, C.F. Jr.; Shor, A.J.; Canonico, C.M.

    1982-06-01

    To investigate the movement of brine along grain boundaries in polycrystalline salt, measurements have been made of the radial flow of brine through the interface between cylindrical salt crystals under axial stresses to 140 bar and temperatures to 80 0 C. For constant conditions, the total flow of brine showed a linear dependence on the logarithm of time, and the reciprocal permeability increased linearly with time. Loss of salt from the interface by pressure solution effects was more than enough to account for the decrease in the apparent thickness of the interface (i.e., that which may be estimated for an interface of the same permeability formed by plane parallel surfaces). This apparent thickness, initially as large as 10 μm, decreased to as little as 0.2 μm with exposure to stress and flowing brine. It decreased quickly with sudden increases in axial stress and usually increased, though not reversibly, with decreases in stress. The rate of increase in the reciprocal permeability with time was roughly proportional to the stress and to the square of the hydraulic pressure drop. Assuming similar apparent thicknesses for the grain boundaries in polycrystalline salt, permeabilities are predicted that are quite consistent with the low values reported for stressed core specimens

  4. Thermal loading effects on geological disposal

    International Nuclear Information System (INIS)

    Come, B.; Venet, P.

    1984-01-01

    A joint study on the thermal loading effects on geological disposal was carried out within the European Community Programme on Management and Storage of Radioactive Waste by several laboratories in Belgium, France and the Federal Republic of Germany. The purpose of the work was to review the thermal effects induced by the geological disposal of high-level wastes and to assess their consequences on the 'admissible thermal loading' and on waste management in general. Three parallel studies dealt separately with the three geological media being considered for HLW disposal within the CEC programme: granite (leadership: Commissariat a l'energie atomique (CEA), France), salt (leadership: Gesellschaft fuer Strahlen- und Umweltforschung (GSF), Federal Republic of Germany), and clay (leadership: Centre d'etude de l'energie nucleaire (CEN/SCK), Belgium). The studies were based on the following items: only vitrified high-level radioactive waste was considered; the multi-barrier confinement concept was assumed (waste glass, container (with or without overpack), buffer material, rock formation); the disposal was foreseen in a deep mined repository, in an 'in-land' geological formation; only normal situations and processes were covered, no 'accident' scenario being taken into account. Although reasonably representative of a wide variety of situations, the data collected and the results obtained are generic for granite, formation-specific for salt (i.e. related to the north German Zechstein salt formation), and site-specific for clay (i.e. concentrated on the Boom clay layer at the Mol site, Belgium). For each rock type, realistic temperature limits were set, taking into account heat propagation, thermo-mechanical effects inside the rock formations, induced or modified groundwater or brine movement, effects on the buffer material as well as effects on the waste glass and canister, and finally, nuclide transport

  5. Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed.

    Science.gov (United States)

    Singh, Durgesh Narain; Tripathi, Anil Kumar

    2013-01-01

    A strain of Pseudomonas stutzeri was isolated form an enrichment of perchlorate reducing bacteria from the formation water collected from an Indian coalbed which solubilized coal and produced copious amount of biosurfactant when coal was added to the medium. It produced maximum biosurfactant with lignite coal followed by olive oil and soybean oil which was able to emulsify several aromatic hydrocarbons including kerosene oil, diesel oil, hexane, toluene etc. Haemolytic test, growth inhibition of Bacillus subtilis and FTIR analysis showed rhamnolipid nature of the biosurfactant. The stability of the coal induced biosurfactant in pH range of 4-8 and up to 25% NaCl concentration and 100 °C temperature suggests that due to its ability to produce biosurfactant and solubilize coal P. stutzeri may be useful in the coalbed for in situ biotransformation of coal into methane and in the bioremediation of PAHs from oil contaminated sites including marine environments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Organic geochemical investigation and coal-bed methane characteristics of the Guasare coals (Paso Diablo mine, western Venezuela)

    Science.gov (United States)

    Quintero, K.; Martinez, M.; Hackley, P.; Marquez, G.; Garban, G.; Esteves, I.; Escobar, M.

    2011-01-01

    The aim of this work was to carry out a geochemical study of channel samples collected from six coal beds in the Marcelina Formation (Zulia State, western Venezuela) and to determine experimentally the gas content of the coals from the Paso Diablo mine. Organic geochemical analyses by gas chromatography-mass spectrometry and isotopic analyses on-line in coalbed gas samples were performed. The results suggest that the Guasare coals were deposited in a continental environment under highly dysoxic and low salinity conditions. The non-detection of 18??(H)-oleanane does not preclude that the organic facies that gave rise to the coals were dominated by angiosperms. In addition, the presence of the sesquiterpenoid cadalene may indicate the subordinate contribution of gymnosperms (conifers) in the Paleocene Guasare mire. The average coalbed gas content obtained was 0.6 cm3/g. ??13C and D values indicate that thermogenic gas is prevalent in the studied coals. Copyright ?? Taylor & Francis Group, LLC.

  7. Mosquito larval habitat mapping using remote sensing and GIS: Implications of coalbed methane development and West Nile virus

    Energy Technology Data Exchange (ETDEWEB)

    Zou, L.; Miller, S.N.; Schmidtmann, E.T. [University of Wyoming, Laramie, WY (United States). Dept. of Renewable Resources

    2006-09-15

    Potential larval habitats of the mosquito Culex tarsalis (Coquillett), implicated as a primary vector of West Nile virus in Wyoming, were identified using integrated remote sensing and geographic information system (GIS) analyses. The study area is in the Powder River Basin of north central Wyoming, an area that has been undergoing a significant increase in coalbed methane gas extractions since the late 1990s. Large volumes of water are discharged, impounded, and released during the extraction of methane gas, creating aquatic habitats that have the potential to support immature mosquito development. Landsat TM and ETM + data were initially classified into spectrally distinct water and vegetation classes, which were in turn used to identify suitable larval habitat sites. This initial habitat classification was refined using knowledge-based GIS techniques requiring spatial data layers for topography, streams, and soils to reduce the potential for overestimation of habitat. Accuracy assessment was carried out using field data and high-resolution aerial photography commensurate with one of the Landsat images. The classifier can identify likely habitat for ponds larger than 0.8 ha (2 acres) with generally satisfactory results (72.1%) with a lower detection limit of approximate to 0.4 ha (1 acre). Results show a 75% increase in potential larval habitats from 1999 to 2004 in the study area, primarily because of the large increase in small coalbed methane water discharge ponds. These results may facilitate mosquito abatement programs in the Powder River Basin with the potential for application throughout the state and region.

  8. Origin, distribution, and movement of brine in the Permian Basin (U.S.A.). A model for displacement of connate brine

    International Nuclear Information System (INIS)

    Bein, A.; Dutton, A.R.

    1993-01-01

    Na-Cl, halite Ca-Cl, and gypsum Ca-Cl brines with salinities from 45 to >300 g/L are identified and mapped in four hydrostratigraphic units in the Permian Basin area beneath western Texas and Oklahoma and eastern New Mexico, providing spatial and lithologic constraints on the interpretation of the origin and movement of brine. Na-Cl brine is derived from meteoric water as young as 5-10 Ma that dissolved anhydrite and halite, whereas Ca-Cl brine is interpreted to be ancient, modified-connate Permian brine that now is mixing with, and being displaced by, the Na-Cl brine. Displacement fronts appear as broad mixing zones with no significant salinity gradients. Evolution of Ca-Cl brine composition from ideal evaporated sea water is attributed to dolomitization and syndepositional recycling of halite and bittern salts by intermittent influx of fresh water and sea water. Halite Ca-Cl brine in the evaporite section in the northern part of the basin differs from gypsum Ca-Cl brine in the south-central part in salinity and Na/Cl ratio and reflects segregation between halite- and gypsum-precipitating lagoons during the Permian. Ca-Cl brine moved downward through the evaporite section into the underlying Lower Permian and Pennsylvanian marine section that is now the deep-basin brine aquifer, mixing there with pre-existing sea water. Buoyancy-driven convection of brine dominated local flow for most of basin history, with regional advection governed by topographically related forces dominant only for the past 5 to 10 Ma. 71 refs., 11 figs

  9. Admissible thermal loading in geological formations. Consequences on radioactive waste disposal methods

    International Nuclear Information System (INIS)

    1982-01-01

    The thermal loading in salt formation is studied for the disposal of high-level radioactive waste embedded in glass. Temperature effect on glass leaching, stability of gel layer on glass surface, quantity of leaching solution available in the borehole and corrosion resistance of materials used for containers are examined. The geological storage medium must satisfy particularly complex requirements: stratigraphy, brine migration, permeability, fissuring, mechanical strength, creep, thermal expansion, cavity structure ..

  10. Stratification and space-time variability of Red Sea hot brines

    Energy Technology Data Exchange (ETDEWEB)

    Monin, A S; Plakhin, E A

    1982-11-01

    The results of hydrophysical studies in Red Sea hot brines prefaced with historical information are presented. The CTD-recorder readings show stratification of the upper brine in the Atlantis II Deep into meter-scale layers, in agreement with laboratory findings. Repeated soundings with the AIST CTD meter of the upper brine interface in the Valdivia Deep recorded internal waves of 3 to 4-h periods. The observations show the different nature of brines in the four deeps studied and the lack of contact between the brine layers of the Chain and Discovery deeps.

  11. Toxicity of Sodium Bicarbonate to Fish from Coal-Bed Natural Gas Production in the Tongue and Powder River Drainages, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    This study evaluates the sensitivity of aquatic life to sodium bicarbonate (NaHCO3), a major constituent of coal-bed natural gas-produced water. Excessive amounts of sodium bicarbonate in the wastewater from coal-bed methane natural gas production released to freshwater streams and rivers may adversely affect the ability of fish to regulate their ion uptake. The collaborative study focuses on the acute and chronic toxicity of sodium bicarbonate on select fish species in the Tongue and Powder River drainages in southeastern Montana and northeastern Wyoming. Sodium bicarbonate is not naturally present in appreciable concentrations within the surface waters of the Tongue and Powder River drainages; however, the coal-bed natural gas wastewater can reach levels over 1,000 milligrams per liter. Large concentrations have been shown to be acutely toxic to native fish (Mount and others, 1997). In 2003, with funding and guidance provided by the U.S. Environmental Protection Agency, the Montana Fish, Wildlife, and Parks and the U.S. Geological Survey initiated a collaborative study on the potential effects of coal-bed natural gas wastewater on aquatic life. A major goal of the study is to provide information to the State of Montana Water Quality Program needed to develop an aquatic life standard for sodium bicarbonate. The standard would allow the State, if necessary, to establish targets for sodium bicarbonate load reductions.

  12. Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: The geologic factor

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Romeo M.; Rice, Cynthia A.; Stricker, Gary D.; Warden, Augusta; Ellis, Margaret S. [U.S. Geological Survey, Box 25046, MS 939, Denver, Colorado 80225 (United States)

    2008-10-02

    Coal-bed gas of the Tertiary Fort Union and Wasatch Formations in the Powder River Basin in Wyoming and Montana, U.S. was interpreted as microbial in origin by previous studies based on limited data on the gas and water composition and isotopes associated with the coal beds. To fully evaluate the microbial origin of the gas and mechanisms of methane generation, additional data for 165 gas and water samples from 7 different coal-bed methane-bearing coal-bed reservoirs were collected basinwide and correlated to the coal geology and stratigraphy. The C{sub 1}/(C{sub 2} + C{sub 3}) ratio and vitrinite reflectance of coal and organic shale permitted differentiation between microbial gas and transitional thermogenic gas in the central part of the basin. Analyses of methane {delta}{sup 13}C and {delta}D, carbon dioxide {delta}{sup 13}C, and water {delta}D values indicate gas was generated primarily from microbial CO{sub 2} reduction, but with significant gas generated by microbial methyl-type fermentation (aceticlastic) in some areas of the basin. Microbial CO{sub 2} reduction occurs basinwide, but is generally dominant in Paleocene Fort Union Formation coals in the central part of the basin, whereas microbial methyl-type fermentation is common along the northwest and east margins. Isotopically light methane {delta}{sup 13}C is distributed along the basin margins where {delta}D is also depleted, indicating that both CO{sub 2}-reduction and methyl-type fermentation pathways played major roles in gas generation, but gas from the latter pathway overprinted gas from the former pathway. More specifically, along the northwest basin margin gas generation by methyl-type fermentation may have been stimulated by late-stage infiltration of groundwater recharge from clinker areas, which flowed through highly fractured and faulted coal aquifers. Also, groundwater recharge controlled a change in gas composition in the shallow Eocene Wasatch Formation with the increase of nitrogen and

  13. Evaluation and analysis of underground brine resources in the southern coastal area of Laizhou Bay

    Science.gov (United States)

    Tian, M.; Zhu, H. T.; Feng, J.; Zhao, Q. S.

    2016-08-01

    The southern coastal districts of Laizhou Bay are some of the most important areas for underground brine exploitation in Shandong Province. Recently, these areas have been gradually developed by the underground brine mining industry. Such economic interest has led to brine exploitation so that underground brine resources are running out. Based on this phenomenon, this study describes the supply, runoff and draining conditions of the area by collecting and organizing the background information of the studied area. Hydrogeological parameters are then calculated according to pumping tests, and the amount of sustainable resources in the coastal areas of the Southern Bank of Laizhou Bay are then calculated based on the uniform distribution of wells. Under the circumstances of underground brine mining, the exploitation potential of the underground brine is evaluated in accordance with the calculation results of exploitation quantum. Finally, suggestions are provided for the sustainable exploitation of underground brine in the area.

  14. Using TOUGH2 to model the coupled effects of gas generation, repository consolidation, and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.; Webb, S.W.

    1995-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy facility designed to demonstrate the safe underground disposal of transuranic waste. Following waste emplacement, each room will be backfilled with crushed salt. Due to deviatoric stress introduced by excavation, the walls of the waste disposal rooms in the repository will deform over time, consolidating waste containers and salt backfill, thereby decreasing the void volume of the repository. Long-term repository assessment must consider the processes of gas generation, room closure and expansion due to salt creep, and multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. Stone (1992) used the mechanical creep closure code SANCHO to simulate the closure of a single, perfectly sealed disposal room filled with waste and backfill. The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined by Freeze et al. TOUGH2 was employed to couple the processes of gas generation, room closure/consolidation, and multiphase brine and gas flow. Two empirically-based methods for approximating salt creep and room consolidation were implemented in TOUGH2: the pressure-time-porosity line interpolation approach and the fluid-phase-salt approach. Both approaches utilized links to the SANCHO f-series simulation results to calculate room-void-volume changes with time during a simulation

  15. Salted herring brine as a coating or additive for herring (Clupea harengus) products — A source of natural antioxidants?

    DEFF Research Database (Denmark)

    Albertos, Irene; Gringer, Nina; Rico, Daniel

    2016-01-01

    The objective of this study was to characterise herring brine and assess its use as natural antioxidant in herring preservation. Herring brines from different marinated products (brine from fillet-ripened spice-cured herring SC, traditional barrel-salted spice-cured herring TSp and brine from...

  16. Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process

    International Nuclear Information System (INIS)

    Franks, Carrie J.; Quach, Anh P.; Birnie, Dunbar P.; Ela, Wendell P.; Saez, Avelino E.; Zelinski, Brian J.; Smith, Harry D.; Smith, Gary Lynn L.

    2004-01-01

    Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing waste water residuals that minimize waste volume, water content and the long-term environmental risk from related by products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hours time. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic

  17. Enhanced microbial coalbed methane generation: A review of research, commercial activity, and remaining challenges

    Science.gov (United States)

    Ritter, Daniel J.; Vinson, David S.; Barnhart, Elliott P.; Akob, Denise M.; Fields, Matthew W.; Cunningham, Al B.; Orem, William H.; McIntosh, Jennifer C.

    2015-01-01

    Coalbed methane (CBM) makes up a significant portion of the world’s natural gas resources. The discovery that approximately 20% of natural gas is microbial in origin has led to interest in microbially enhanced CBM (MECoM), which involves stimulating microorganisms to produce additional CBM from existing production wells. This paper reviews current laboratory and field research on understanding processes and reservoir conditions which are essential for microbial CBM generation, the progress of efforts to stimulate microbial methane generation in coal beds, and key remaining knowledge gaps. Research has been primarily focused on identifying microbial communities present in areas of CBM generation and attempting to determine their function, in-situ reservoir conditions that are most favorable for microbial CBM generation, and geochemical indicators of metabolic pathways of methanogenesis (i.e., acetoclastic or hydrogenotrophic methanogenesis). Meanwhile, researchers at universities, government agencies, and companies have focused on four primary MECoM strategies: 1) microbial stimulation (i.e., addition of nutrients to stimulate native microbes); 2) microbial augmentation (i.e., addition of microbes not native to or abundant in the reservoir of interest); 3) physically increasing microbial access to coal and distribution of amendments; and 4) chemically increasing the bioavailability of coal organics. Most companies interested in MECoM have pursued microbial stimulation: Luca Technologies, Inc., successfully completed a pilot scale field test of their stimulation strategy, while two others, Ciris Energy and Next Fuel, Inc., have undertaken smaller scale field tests. Several key knowledge gaps remain that need to be addressed before MECoM strategies can be implemented commercially. Little is known about the bacterial community responsible for coal biodegradation and how these microorganisms may be stimulated to enhance microbial methanogenesis. In addition, research

  18. Gypsum and hydrohalite dynamics in sea ice brines

    Science.gov (United States)

    Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary

    2017-09-01

    Mineral authigenesis from their dissolved sea salt matrix is an emergent feature of sea ice brines, fuelled by dramatic equilibrium solubility changes in the large sub-zero temperature range of this cryospheric system on the surface of high latitude oceans. The multi-electrolyte composition of seawater results in the potential for several minerals to precipitate in sea ice, each affecting the in-situ geochemical properties of the sea ice brine system, the habitat of sympagic biota. The solubility of two of these minerals, gypsum (CaSO4 ·2H2O) and hydrohalite (NaCl · 2H2O), was investigated in high ionic strength multi-electrolyte solutions at below-zero temperatures to examine their dissolution-precipitation dynamics in the sea ice brine system. The gypsum dynamics in sea ice were found to be highly dependent on the solubilities of mirabilite and hydrohalite between 0.2 and - 25.0 ° C. The hydrohalite solubility between - 14.3 and - 25.0 ° C exhibits a sharp change between undersaturated and supersaturated conditions, and, thus, distinct temperature fields of precipitation and dissolution in sea ice, with saturation occurring at - 22.9 ° C. The sharp changes in hydrohalite solubility at temperatures ⩽-22.9 °C result from the formation of an ice-hydrohalite aggregate, which alters the structural properties of brine inclusions in cold sea ice. Favourable conditions for gypsum precipitation in sea ice were determined to occur in the region of hydrohalite precipitation below - 22.9 ° C and in conditions of metastable mirabilite supersaturation above - 22.9 ° C (investigated at - 7.1 and - 8.2 ° C here) but gypsum is unlikely to persist once mirabilite forms at these warmer (>-22.9 °C) temperatures. The dynamics of hydrohalite in sea ice brines based on its experimental solubility were consistent with that derived from thermodynamic modelling (FREZCHEM code) but the gypsum dynamics derived from the code were inconsistent with that indicated by its

  19. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-03-01

    Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data

  20. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  1. Uncertainty and sensitivity analyses for gas and brine migration at the Waste Isolation Pilot Plant, May 1992

    International Nuclear Information System (INIS)

    Helton, J.C.; Bean, J.E.; Butcher, B.M.; Garner, J.W.; Vaughn, P.; Schreiber, J.D.; Swift, P.N.

    1993-08-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant (WIPP), which is being developed by the US Department of Energy as a disposal facility for transuranic waste. The analyses consider either a single waste panel or the entire repository in conjunction with the following cases: (1) fully consolidated shaft, (2) system of shaft seals with panel seals, and (3) single shaft seal without panel seals. The purpose of this analysis is to develop insights on factors that are potentially important in showing compliance with applicable regulations of the US Environmental Protection Agency (i.e., 40 CFR 191, Subpart B; 40 CFR 268). The primary topics investigated are (1) gas production due to corrosion of steel, (2) gas production due to microbial degradation of cellulosics, (3) gas migration into anhydrite marker beds in the Salado Formation, (4) gas migration through a system of shaft seals to overlying strata, and (5) gas migration through a single shaft seal to overlying strata. Important variables identified in the analyses include initial brine saturation of the waste, stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, gas barrier pressure in the anhydrite marker beds, shaft seal permeability, and panel seal permeability

  2. Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

  3. Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas

    International Nuclear Information System (INIS)

    1993-09-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022

  4. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    Science.gov (United States)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  5. Geochemical evolution of brines in the Salar of Uyuni, Bolivia.

    Science.gov (United States)

    Rettig, S.L.; Jones, B.F.; Risacher, F.

    1980-01-01

    Recent analyses of brines from the Salars of Uyuni and Coipasa have been compared with published data for Lakes Titicaca and Poopo to evaluate solute compositional trends in these remnants of two large Pleistocene lakes once connected by overflow from the N to the S of the Bolivian Altiplano. From Titicaca to Poopo the water shows an increase in Cl and N somewhat greater than the total solutes. Ca and SO4 increase to a lesser extent than total dissolved solids, and carbonate species are relatively constant. Between Poopo and Coipasa proportions of Ca, SO4 and CO3 continue to decrease. At Coipasa and Uyuni, the great salars frequently evaporate to halite saturation. Halite crystallization is accompanied by an increased K, Mg and SO4 in residual brines. - from Authors

  6. An improved brine shrimp larvae lethality microwell test method.

    Science.gov (United States)

    Zhang, Yi; Mu, Jun; Han, Jinyuan; Gu, Xiaojie

    2012-01-01

    This article described an improved brine shrimp larvae lethality microwell test method. A simply designed connecting vessel with alternative photoperiod was used to culture and collect high yield of active Artemia parthenogenetica nauplii for brine shrimp larvae lethality microwell test. Using this method, pure A. parthenogenetica nauplii suspension was easily cultured and harvested with high density about 100-150 larvae per milliliter and the natural mortality was reduced to near zero by elimination of unnecessary artificial disturbance. And its sensitivity was validated by determination of LC(50)-24 h of different reference toxicants including five antitumor agents, two pesticides, three organic pollutants, and four heavy metals salts, most of which exhibited LC(50)-24 h between 0.07 and 58.43 mg/L except for bleomycin and mitomycin C with LC(50)-24 h over 300 mg/L.

  7. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  8. Brine crude oil interactions at the oil-water interface

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    The impact of brine salinity and its ionic composition on oil displacement efficiency has been investigated extensively in recent years due to the potential of enhanced oil recovery (EOR). Wettability alterations through relative interactions at the mineral surface have been the basis of proposed...... in enhancing oil emulsion formation by increasing interactions between polar acids and brine solutions. The results propose the potential use of HPO42- ions in reservoirs having inactive mineral surfaces. The relative oil affinity of different ions including K+, Na+, Mg2+, and Ca2+ (cations), and Cl-, SO42...... and thus reduces the interfacial viscoelasticity of the trapped oil. These results show significant correlation between oil emulsion formation and increased oil recovery. Copyright 2015; Society of Petroleum Engineers...

  9. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  10. Inhibition of Weld Corrosion in Flowing Brines Containing Carbon Dioxide

    OpenAIRE

    Alawadhi, Khaled

    2009-01-01

    The aim of this research was to study the effectiveness of a typical oilfield corrosion inhibitor, which is considered to be a green inhibitor (non toxic to the environment) in controlling internal corrosion of welded X65 pipeline steel in brines saturated with carbon dioxide at one bar pressure, under dynamic flowing conditions, over a range of temperatures. Several experimental configurations were used ranging from a simple flat plate design to a novel rotating cylinder electrode, to all...

  11. Uranium, RADON and radon isotopes in selected brines of Poland

    International Nuclear Information System (INIS)

    Kozlowska, B.; Walencik, A.; Zipper, W.; Dorda, J.; Przylibski, T.A.

    2010-01-01

    Natural radioactive isotopes were studied in nine different types of brines from four locations in Poland. Investigated brines are exploited from various geological structures composed of the rocks of different chemical and mineral composition as well as different age and depth. All investigated brines are used in balneotherapy (i.e. baths, inhalations, showers). The main goal of this study was to obtain some basic knowledge on the activity range of natural elements such as uranium, RADON and radon in different brine types in Poland and their variability depending on their location in certain geological structures. Activities of 234,238 U, 226,228 Ra and 222 Rn isotopes were measured with the use of two nuclear spectrometry techniques: liquid scintillation and alpha spectrometry. The activity concentrations of 222 Rn vary from below 1 to 76.1±3.7 Bq/l, for the 226 Ra isotope from 0.19±0.01 to 85.5±0.4 Bq/l and for 228 Ra from below 0.03 to 2.17±0.09 Bq/l. For uranium isotopes, the concentrations are in the range from below 0.5 to 5.1±0.4 mBq/l for 238 U and from 1.6±0.4 to 45.6±2.0 mBq/l for 2 34U . The obtained results indicate high RADON activity concentrations corresponding to high mineralization of waters. (authors)

  12. Effect of different brine concentrations and ripening period on some ...

    African Journals Online (AJOL)

    Cheeses made from pasteurized milk (65°C for 30 min) were ripened in 11, 14 and 17 g 100 ml-1 NaCl for 90 days at 7±1°C. Some physicochemical and biochemical analyses were carried out during storage time. The effects of brine concentrations on total solids, protein, ash, salt, pH, and WSN values were found to be ...

  13. Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine.

    Science.gov (United States)

    Yang, Ting; Doudrick, Kyle; Westerhoff, Paul

    2013-03-01

    Nitrate is often removed from groundwater by ion exchange (IX) before its use as drinking water. Accumulation of nitrate in IX brine reduces the efficiency of IX regeneration and the useful life of the regeneration brine. For the first time, we present a strategy to photocatalytically reduce nitrate in IX brine, thereby extending the use of the brine. Titanium dioxide (Evonik P90), acting as photocatalyst, reduced nitrate effectively in both synthetic brines and sulfate-removed IX brine when formic acid (FA) was used as the hole scavenger (i.e., electron donor) and the initial FA to nitrate molar ratio (IFNR) was 5.6. Increasing the NaCl level in the synthetic brine slowed the nitrate reduction rate without affecting by-product selectivity of ammonium and gaseous N species (e.g., N(2), N(2)O). In a non-modified IX brine, nitrate removal was greatly inhibited owing to the presence of sulfate, which competed with nitrate for active surface sites on P90 and induced aggregation of P90 nanoparticles. After removing sulfate through barium sulfate precipitation, nitrate was effectively reduced; approximately 3.6 × 10(24) photons were required to reduce each mole of nitrate to 83% N Gases and 17% NH(4)(+). To make optimum use of FA and control the residual FA level in treated brine, the IFNR was varied. High IFNRs (e.g., 4, 5.6) were found to be more efficient for nitrate reduction but left higher residual FA in brine. IX column tests were performed to investigate the impact of residual FA for brine reuse. The residual FA in the brine did not significantly affect the nitrate removal capacity of IX resins, and formate contamination of treated water could be eliminated by rinsing with one bed volume of fresh brine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  15. Reverse osmosis brine for phosphorus recovery from source separated urine.

    Science.gov (United States)

    Tian, Xiujun; Wang, Guotian; Guan, Detian; Li, Jiuyi; Wang, Aimin; Li, Jin; Yu, Zhe; Chen, Yong; Zhang, Zhongguo

    2016-12-01

    Phosphorus (P) recovery from waste streams has recently been recognized as a key step in the sustainable supply of this indispensable and non-renewable resource. The feasibility of using brine from a reverse osmosis (RO) membrane unit treating cooling water as a precipitant for P recovery from source separated urine was evaluated in the present study. P removal efficiency, process parameters and precipitate properties were investigated in batch and continuous flow experiments. More than 90% of P removal was obtained from both undiluted fresh and hydrolyzed urines by mixing with RO brine (1:1, v/v) at a pH over 9.0. Around 2.58 and 1.24 Kg of precipitates could be recovered from 1 m 3 hydrolyzed and fresh urine, respectively, and the precipitated solids contain 8.1-19.0% of P, 10.3-15.2% of Ca, 3.7-5.0% of Mg and 0.1-3.5% of ammonium nitrogen. Satisfactory P removal performance was also achieved in a continuous flow precipitation reactor with a hydraulic retention time of 3-6 h. RO brine could be considered as urinal and toilet flush water despite of a marginally higher precipitation tendency than tap water. This study provides a widely available, low - cost and efficient precipitant for P recovery in urban areas, which will make P recovery from urine more economically attractive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Certain questions about analysis of natural gas disolved in brine

    Energy Technology Data Exchange (ETDEWEB)

    Tezuka, M; Nakamura, M; Omi, K

    1983-01-01

    The composition of the gaseous phase of stratum brines is determined and the analysis technique is described. Ordinary analysis is performed with the assumptions that the contents of small components (excluding C02 and N2) are ignorably small and that the gas contains no 02. The determined concentrations of 02 and the proportional share of N2 are calculated from results of analysis as bound with pollutants. The high sensitivity of modern analytical methods makes it possible to identify quite small and trace concentrations of components, but corrections for air contamination may partially depreciate these results. Data are cited from gas chromatographic identifications of the components of gases disolved in the stratum brines of a Japanese deposit. C2H6 is established in all samples and C3H8 in two thirds of the samples, where H2 and helium were not detected anywhere. The concentrations of the gas phase on the whole in the brine were low. 02 falls into the samples in a water dissolved state; this demands the use of unconventional proportion of 02 to N2 (1 to 3.55), which is characteristic for air and a proportion of 1 to 2 which is characteristic for disolved air. With the conventional ordinary technique the consideration of the air contamination leads to a substantial underestimate of the N2 results. At the same time, the incorrect introduction of corrections for N2 has no effect on the heat creativity of the disolved gas.

  17. Brine migration test - Asse salt mine, Federal Republic of Germany

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1988-03-01

    This document is the final report on the Cooperative German-American 'Brine Migration Tests' that were performed at the Asse Salt Mine in the Federal Republic of Germany (FRG), the Office of Nuclear Waste Isolation (ONWI), Columbus, Ohio, and the Institut fuer Tieflagerung (IfT), Braunschweig, of the Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF). Final test and equipment design as well as manufacturing and installation was carried out by Westinghouse Electric Corporation. The tests were designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. The performance of an array of candidate waste package materials, test equipment and procedures under repository conditions will be evaluated with a view towards future in-depth testing of potential repository sites. (orig./RB)

  18. Fluid inclusion brine compositions from Palo Duro Basin salt sites

    International Nuclear Information System (INIS)

    Moody, J.B.

    1987-01-01

    The fluid inclusion analyses were done on salt samples from Lower San Andres Cycle 4 and 5. The stable isotope composition of the fluid inclusion brines was measured on duplicate samples taken from the same fluid inclusion brine for correlation of geochemical content with the stable isotopic content. The analyzed Palo Duro Basin salt fluid inclusions are predominantly one phase, i.e., the presence of a fluid only. However, many of the larger fluid inclusions do have a small vapor bubble. This liquid/vapor ratio is so high in these vapor-containing fluid inclusions that their behavior in a thermal gradient would be almost identical to that of all liquid inclusions. Closely associated with the fluid inclusions are cryptomelane where some fibers penetrate into halite host crystal. The fluid inclusions have a wide variability in content for those components that were analyzed, even within the same salt type. The fluid inclusion brines are also acidic, ranging from 3 to 6 as measured with pH test papers

  19. CO2/Brine transport into shallow aquifers along fault zones.

    Science.gov (United States)

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  20. Secondary biological coalbed gas in the Xinji area, Anhui province, China: Evidence from the geochemical features and secondary changes

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Mingxin [Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, College of Resources Sciences and Technology, Beijing Normal University, Beijing 100875 (China); Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shi, Baoguang; Wang, Wanchun; Li, Xiaobin; Gao, Bo [Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Jinying [Material and Environment College, Qindao University of Science and Technology, Qindao 266042 (China)

    2007-07-02

    In order to ascertain the origin of the coalbed gas in the Xinji area, Anhui Province of China, the paper examined the geochemical features and secondary changes of CH{sub 4}, C{sub 2}H{sub 6}, CO{sub 2} and N{sub 2} from the coalbed gas. The related gas composition, carbon isotope and tracer geochemical data are as follows: 0.993 to 1.0 for C{sub 1}/C{sub 1-n}, 188.6 to 2993.7 for C{sub 1}/C{sub 2}, < 2% for CO{sub 2}, 0.64 to 3.06% for [CO{sub 2}/(CO{sub 2} + CH{sub 4})]100%, - 50.7 permille to - 61.3 permille for {delta}{sup 13}C{sub 1} with the average value of - 56.6 permille, - 15.9 permille to - 26.7 permille for {delta}{sup 13}C{sub 2}, - 10.8 permille to - 25.3 permille for {delta}{sup 13}C{sub 3}, - 6.0 permille to - 39.0 permille for {delta}{sup 13}C{sub CO2} with the average value of - 17.9 permille, 30.7 permille to 43.9 permille for {delta}{delta}{sup 13}C{sub C2-C1}, and 17.2 permille to 50 permille for {delta}{delta}{sup 13}C{sub CO2-C1}, - 1 permille to + 1 permille for {delta}{sup 15}N{sub N2}, 1.13 x 10{sup -7} to 3.20 x 10{sup -7} for {sup 3}He/{sup 4}He with R/Ra ratios range from 0.08 to 0.23. The Ro values of the coal range from 0.88% to 0.91%. The trends of the {delta}{sup 13}C{sub 1} values and {delta}{sup 13}C{sub CO2} values downward in the stratigraphic profile are opposite: the former appears as a slight light-heavy-light trend, but the latter appears as a heavy-light-heavy trend. The {delta}{sup 13}C{sub 1} values have a negative correlation with the {delta}{sup 13}C{sub CO2} values. However, the {delta}{sup 13}C{sub 2} values have no correlation with the {delta}{sup 13}C{sub 1} values due to its complicated variation. The thermal evolution of the coal in the Xinji area is in the phase of a lot of wet gas generation, but most of the CO{sub 2} and heavy hydrocarbons have been reduced or degraded by microbes and have changed into biogenic methane. The coalbed gas is comprised of secondary biogenic methane, thermogenic methane, the

  1. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  2. Fouling-Resistant Membranes for Treating Concentrated Brines for Water Reuse in Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States)

    2014-10-14

    The high total dissolved solids (TDS) levels in the wastewater quality generated from unconventional oil and gas development make the current state-of-the art approach to water treatment/disposal untenable. Our proposed membrane technology approach addresses the two major challenges associated with this water: 1) the membrane distillation process removes the high TDS content, which is often 8 times higher than that of seawater, and 2) our novel membrane coating prevents the formation of scale that would otherwise pose a significant operational hurdle. This is accomplished through next-generation electrically conductive membranes that mitigate fouling beyond what is currently possible, and allow for the flexibility to treat to the water to levels desirable for multiple reuse options, thus reducing fresh water withdrawal, all the way to direct disposal into the environment. The overall project objective was to demonstrate the efficacy of membrane distillation (MD) as a cost-savings technology to treat concentrated brines (such as, but not limited to, produced waters generated from fossil fuel extraction) that have high levels of TDS for beneficial water reuse in power production and other industrial operations as well as agricultural and municipal water uses. In addition, a novel fouling-resistant nanocomposite membrane was developed to reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS waters and improve overall MD performance via an electrically conductive membrane distillation process (ECMD). This anti-fouling membrane technology platform is based on incorporating carbon nanotubes (CNTs) into the surface layer of existing, commercially available MD membranes. The CNTs impart electrical conductivity to the membrane surface to prevent membrane scaling and fouling when an electrical potential is applied.

  3. Effect of iron cation on geochemical trapping of CO2 in brine

    Science.gov (United States)

    Liu, Qi; Maroto-Valer, Mercedes

    2014-05-01

    Carbon dioxide sequestration using brines has emerged as a promising technology to mitigate the adverse impacts of climate change due to its large storage capacity and favorable chemistries. However, the permanent storage (mineral trapping) of CO2 in brines takes significantly long periods of time as the formation and precipitation of carbonates is very slow .[1]. The main parameters reported to effect on mineral trapping of CO2 sequestration in brines are brine composition, brine pH, system temperature and pressure.[2, 3]. It is suggested that the precipitation of mineral carbonates is mostly dependent on brine pH. Previous studies by the authors concluded that iron in natural brines causes pH instability, but it was not ascertained whether ferric iron or ferrous iron caused pH instability .[4]. Accordingly, the aim of this project is to study synthetic brines mimicking the major ions found in natural brines and including different concentrations of ferric and ferrous iron. Three brines were prepared, as follows: Brine 1 was prepared with ferric Fe3+ iron, Brine 2 prepared with ferrous Fe2+ iron and Brine 3 prepared with no iron. A series of pH stability studies and carbonation reactions were conducted using the above three brines. It is concluded that the ferrous iron causes pH instability, while ferric iron might promote carbonate precipitation. .1. Garcia, S., et al., Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories. International Journal of Greenhouse Gas Control, 2012. 7: p. 89-97. 2. Liu, Q. and M.M. Maroto-Valer, Investigation of the pH effect of a typical host rock and buffer solution on CO 2 sequestration in synthetic brines. Fuel Processing Technology, 2010. 91(10): p. 1321-1329. 3. Liu, Q. and M.M. MarotoValer, Parameters affecting mineral trapping of CO2 sequestration in brines. Greenhouse Gases: Science and Technology, 2011. 1(3): p. 211-222. 4. Druckenmiller, M.L. and M.M. Maroto-Valer, Carbon

  4. Thermal maturity and organic composition of Pennsylvanian coals and carbonaceous shales, north-central Texas: Implications for coalbed gas potential

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Paul C. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Guevara, Edgar H.; Hentz, Tucker F. [Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78713 (United States); Hook, Robert W. [1301 Constant Springs Drive, Austin, TX 78746 (United States)

    2009-01-31

    Thermal maturity was determined for about 120 core, cuttings, and outcrop samples to investigate the potential for coalbed gas resources in Pennsylvanian strata of north-central Texas. Shallow (< 600 m; 2000 ft) coal and carbonaceous shale cuttings samples from the Middle-Upper Pennsylvanian Strawn, Canyon, and Cisco Groups in Archer and Young Counties on the Eastern Shelf of the Midland basin (northwest and downdip from the outcrop) yielded mean random vitrinite reflectance (R{sub o}) values between about 0.4 and 0.8%. This range of R{sub o} values indicates rank from subbituminous C to high volatile A bituminous in the shallow subsurface, which may be sufficient for early thermogenic gas generation. Near-surface (< 100 m; 300 ft) core and outcrop samples of coal from areas of historical underground coal mining in the region yielded similar R{sub o} values of 0.5 to 0.8%. Carbonaceous shale core samples of Lower Pennsylvanian strata (lower Atoka Group) from two deeper wells (samples from {proportional_to} 1650 m; 5400 ft) in Jack and western Wise Counties in the western part of the Fort Worth basin yielded higher R{sub o} values of about 1.0%. Pyrolysis and petrographic data for the lower Atoka samples indicate mixed Type II/Type III organic matter, suggesting generated hydrocarbons may be both gas- and oil-prone. In all other samples, organic material is dominated by Type III organic matter (vitrinite), indicating that generated hydrocarbons should be gas-prone. Individual coal beds are thin at outcrop (< 1 m; 3.3 ft), laterally discontinuous, and moderately high in ash yield and sulfur content. A possible analog for coalbed gas potential in the Pennsylvanian section of north-central Texas occurs on the northeast Oklahoma shelf and in the Cherokee basin of southeastern Kansas, where contemporaneous gas-producing coal beds are similar in thickness, quality, and rank. (author)

  5. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  6. Microbial changes and growth of Listeria monocytogenes during chilled storage of brined shrimp ( Pandalus borealis )

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Kjeldgaard, J.; Modberg, A.

    2008-01-01

    Thirteen storage trials and ten challenge tests were carried out to examine microbial changes, spoilage and the potential growth of Listeria monocytogenes in brined shrimp (Pandalus borealis). Shrimp in brine as well as brined and drained shrimp in modified atmosphere packaging (MAP) were produced...... and lactic acids were studied. Furthermore, the effect of adding diacetate to brined shrimp was evaluated. A single batch of cooked and peeled shrimp was used to study both industrially and manually processed brined shrimp with respect to the effect of process hygiene on microbial changes and the shelf life...... of products. Concentrations of microorganisms on newly produced brined shrimp from an industrial scale processing line were 1.0-2.3 log (CFU g(-1)) higher than comparable concentrations in manually processed samples. This resulted in a substantially shorter shelf life and a more diverse spoilage microflora...

  7. Pressurized brines in continental Antarctica as a possible analogue of Mars.

    Science.gov (United States)

    Forte, Emanuele; Dalle Fratte, Michele; Azzaro, Maurizio; Guglielmin, Mauro

    2016-09-12

    Interest in brines in extreme and cold environments has recently increased after they have been found on Mars. Those brines can be potential new subsurface habitats for peculiar ecosystems. In the McMurdo Dry Valleys of the Antarctic, the best analogue for Mars conditions, only a few cases of brines have been identified in some perennially frozen lakes and in one case in an underground aquifer. Here, we present the occurrence of pressurized brines in a shallow perennially ice-covered lake south of 70°S in an ice-free area of Victoria Land, Antarctica. For the first time, we also imaged, by means of ground penetrating radar data, the existence of a pingo-like-feature (PLF) formed by the extrusion of brines, which has also been confirmed by borehole evidence. Those brines are fed by an underground talik external to the lake basin, enhancing the possibility of unexploited ecosystems that could find an analogue in Martian environments.

  8. Contaminant Characterization of Effluent from Pennsylvania Brine Treatment, Inc., Josephine Facility: Implications for Disposal of Oil and Gas Flowback Fluids from Brine Treatment Plants

    Science.gov (United States)

    The PBT-Josephine Facility accepts only wastewater from the oil and gas industry. This report describes the concentrations of selected contaminants in the effluent water and compares the contaminant effluent concentrations to state and federal standards.

  9. The technology of uranium extraction from the brine with high chlorine-ion content

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.; Negmatov, Sh.I.; Barotov, B.B.

    2010-01-01

    Present article is devoted to technology of uranium extraction from the brine with high chlorine-ion content. The research results on uranium extraction from the brine of Sasik-Kul Lake by means of sorption method were considered. The chemical composition of salt was determined. The process of uranium sorption was described and analyzed. The technology of uranium extraction from the brine with high chlorine-ion content was proposed.

  10. Pressure-induced brine migration in consolidated salt in a repository

    International Nuclear Information System (INIS)

    Hwang, Y.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This report describes a mathematical model for brine migration through intact salt near a radioactive waste package emplaced in salt. Solutions indicate limited movement following ten years emplacement

  11. Pressurized brines in continental Antarctica as a possible analogue of Mars

    OpenAIRE

    Forte, Emanuele; Dalle Fratte, Michele; Azzaro, Maurizio; Guglielmin, Mauro

    2016-01-01

    Interest in brines in extreme and cold environments has recently increased after they have been found on Mars. Those brines can be potential new subsurface habitats for peculiar ecosystems. In the McMurdo Dry Valleys of the Antarctic, the best analogue for Mars conditions, only a few cases of brines have been identified in some perennially frozen lakes and in one case in an underground aquifer. Here, we present the occurrence of pressurized brines in a shallow perennially ice-covered lake sou...

  12. Strontium isotope evidence on the history of oilfield brines, Mediterranean Coastal Plain, Israel

    International Nuclear Information System (INIS)

    Starinsky, A.; Bielski, M.; Lazar, B.; Steinitz, G.; Raab, M.

    1983-01-01

    The isotopic composition of Sr in oil field brines from the Mediterranean Coastal Plain was determined in 18 drillholes. The brines are characterized by salinities ranging from 35 to 93 g/l (TDS), Sr from 28 to 350 mg/l, Sr/Ca molar ratios from 0.011 to 0.053 and 87 Sr/ 86 Sr ratios from 0.7075 to 0.7090. E and A = 0.7081 +- 0.0004 (2σ). The brines are classified into two groups: (a) Mavqi'im group - brines with relatively high 87 Sr/ 86 Sr ratios, sampled from clastics, dolomites and anhydrites of Upper Miocene age. (b) Heletz group - brines with relatively low 87 Sr/ 86 Sr ratios, sampled from sandstones and dolomites of Lower Cretaceous age. Equations were derived to show the relations between 87 Sr/ 86 Sr ratio of the brines and the processes through which they evolved. It is suggested that both groups of brines originated from Mediterranean evaporated seawater during the Messinian desiccation. The strontium isotope composition of the seawater is reflected in that of both groups of brines, the Mavqi'im group containing the original 87 Sr/ 86 Sr ratio. The Heletz group evolved later on, through exchange reactions of those primary brines with a carbonate sequence of Cretaceous age and consequently new 87 Sr/ 86 Sr ratios could have been developed. (author)

  13. Brine migrations in the Athabasca Basin platform, alteration and associated fluid-rock exchanges

    International Nuclear Information System (INIS)

    Mercadier, J.; Cathelineau, M.; Richard, A.; Boiron, M.Ch.; Cuney, M.; Milesi, J.P.

    2009-01-01

    Uranium deposits of Athabasca Basin (Saskatchewan, Canada) are considered as the richest in the world. They result from massive percolation of basin brines in the underlying platform. The authors describe the brine movements and how structures and micro-fractures promoted this percolation until very important depths (hundreds of meters under the discordance), and their chemical modifications as they interacted with platform rocks, thus promoting the transformation of an initially sodic brine into a uranium-enriched calcic brine which is essential to the formation of discordance-type deposit

  14. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  15. Coal rank, distribution and coalbed methane potential of the lower cretaceous luscar group, Bow River to Blackstone River, Central Alberta Foothills. Bulletin No. 473

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, F M

    1994-12-31

    Renewed interest in coal for alternative sources of energy such as coalbed methane have led to an expansion of exploration efforts into areas where the distribution and characterization of the coal resources is not well documented. This paper provides a geological compilation and assessment of the coal distribution and characterization of the Lower Cretaceous Luscar Group for the foothills area from the Bow River to Blackstone River in west-central Alberta. Included with the report are a series of geological maps and cross-sections that highlight the distribution of the coal-bearing strata and potential coalbed methane exploration targets. Field mapping of the area was carried out during the summers of 1988, 1989, and 1990.

  16. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.

    Science.gov (United States)

    Ullinger, Heather L; Kennedy, Marla J; Schneider, William H; Miller, Christopher M

    2016-01-01

    The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.

  17. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.

    Directory of Open Access Journals (Sweden)

    Heather L Ullinger

    Full Text Available The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.

  18. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  19. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  20. Study of rhyolitic glasses alteration in contact with natural brines (Bolivia). Application to the study of the long-term behaviour of the R7T7 nuclear glass

    International Nuclear Information System (INIS)

    Abdelouas, A.

    1996-01-01

    The purpose of this work is to complement an experimental program on the R7T7 nuclear waste glass alteration in brines at 190 deg C in Germany by the analysis of the structure and the chemical composition of the alteration layers, and to study the alteration of rhyolitic glasses in natural brines from Bolivia as analogue for nuclear waste glasses disposed in salt formations. Alteration experiments with the R7T7 and basaltic glasses and obsidian in MgCl 2 -CaCl 2 -saturated brine at 190 deg. C were also conducted in order to study the influence of the glass composition on the nature of the secondary phases. The experiments with the R7T7 glass in three salt brines, saturated respectively in MgCl 2 , MgCl 2 -CaCl 2 and NaCl, showed that the solubilities of most radionuclides are controlled by the secondary phases. Nd, La, and Pr are trapped in powellite, Ce in cerianite, U in coffinite, and Sr is partially immobilized in barite. These phases are stable for more than one year. There is a good similarity between the secondary phases formed experimentally on volcanic glasses and the R7T7 glass altered in MgCl 2 -CaCl 2 -saturated brine. The abundance of Mg in solution permits the formation of similar magnesian clays on the glass samples independently of the nature of the initial glasses. These results support the use of volcanic glasses alteration patterns in Mg-rich solutions to understand the long-term behavior of nuclear waste glasses and to evaluate the stability of the secondary phases. The study of the sediments of Uyuni (Bolivia) showed that the corrosion rate of the rhyolitic glass in brines at 10 deg. C is 12 to 30 time lower than those of rhyolitic glasses altered in high dilute conditions. The low alteration rate of rhyolitic glasses in brines and the formation of secondary phases such as smectite, barite and cerianite (also formed during the experimental alteration of the R7T7 glass), permit us to expect the low alteration of nuclear waste glasses at long

  1. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    International Nuclear Information System (INIS)

    Xu, Tianfu

    2008-01-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO 2 geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation

  2. Radiation chemistry of salt-mine brines and hydrates

    International Nuclear Information System (INIS)

    Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

    1981-07-01

    Certain aspects of the radiation chemistry of NaCl-saturated MgCl 2 solutions and MgCl 2 hydrates at temperatures in the range of 30 to 180 0 C were investigated through experiments. A principal objective was to establish the values for the yields of H 2 [G(H 2 )] and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H 2 ) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143 0 C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45 0 C. Changes in the relative amounts of MgCl 2 and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O 2 into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H 2 was present as O 2 . We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H 2 from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85 0 C, to about 30 and 40% for temperatures in the ranges 100 to 143 0 C and 30 to 45 0 C, respectively. We did not establish the mechanism whereby the air affected the yields of H 2 and O 2 . The values found in this work for G(H 2 ) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H 2 in pure H 2 O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H 2 ) in 2 M NaCl solutions at room temperature

  3. Modeling of nonuniform corrosion in salt brines: Salt Repository Project

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1988-03-01

    A mechanistic approach to modeling nonuniform corrosion in brines is presented in this report. Equations are derived for completely describing the electrochemical environment within a localized corrosion cavity, and appropriate initial and boundary conditions are invoked to obtain a solvable system of equations. The initial and boundary conditions can be adjusted to simulate pitting, crevice corrosion, or stress corrosion cracking. Although no numerical results are presented, a numerical strategy for solving the equations is presented. The report focuses on the nonuniform corrosion behavior of mild steel; however, the modeling approach presented is expected to apply to a broad range of metallic materials. 34 refs., 5 figs., 2 tabs

  4. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  5. Disposal leachates treatment

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, I.; Renaud, P. (SITA, 75 - Paris (France)); Courant, P. (FD Conseil, 78 - Gargenville (France)); Manem, J.; Mandra, V.; Trouve, E. (Lyonnaise des Eaux-Dumez, 78 - Le Pecq (France))

    1993-12-01

    Disposal leachates are complex and variable effluents. The use of a bioreactor with membranes, coupled with a reverse osmosis unit, gives a new solution to the technical burying centers. Two examples are explained here.

  6. Safe Disposal of Pesticides

    Science.gov (United States)

    ... Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science ... or www.earth911.com . Think before disposing of extra pesticides and containers: Never reuse empty pesticide containers. ...

  7. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  8. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  9. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  10. Shallow land disposal technology

    Energy Technology Data Exchange (ETDEWEB)

    Pillette-Cousin, L. [Nuclear Environment Technology Insitute, Taejon (Korea, Republic of Korea )

    1997-12-31

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L`Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs.

  11. Shallow land disposal technology

    International Nuclear Information System (INIS)

    Pillette-Cousin, L.

    1997-01-01

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L'Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs

  12. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  13. Fermentation cover brine reformulation for cucumber processing with low salt to reduce bloater defect

    Science.gov (United States)

    Reformulation of calcium chloride cover brine for cucumber fermentation was explored as a mean to minimize the incidence of bloater defect. This study particularly focused on cover brine supplementation with calcium hydroxide, sodium chloride (NaCl), and acids to enhance buffer capacity, inhibit the...

  14. Brine Pockets in the Icy Shell on Europa: Distribution, Chemistry, and Habitability

    Science.gov (United States)

    Zolotov, M. Yu; Shock, E. L.; Barr, A. C.; Pappalardo, R. T.

    2004-01-01

    On Earth, sea ice is rich in brine, salt, and gas inclusions that form through capturing of seawater during ice formation. Cooling of the ice over time leads to sequential freezing of captured sea-water, precipitation of salts, exsolution of gases, and formation of brine channels and pockets. Distribution and composition of brines in sea ice depend on the rate of ice formation, vertical temperature gradient, and the age of the ice. With aging, the abundance of brine pockets decreases through downward migration. De- spite low temperatures and elevated salinities, brines in sea ice provide a habitat for photosynthetic and chemosynthetic organisms. On Europa, brine pockets and channels could exist in the icy shell that may be from a few km to a few tens of km thick and is probably underlain by a water ocean. If the icy shell is relatively thick, convection could develop, affecting the temperature pattern in the ice. To predict the distribution and chemistry of brine pockets in the icy shell we have combined numerical models of the temperature distribution within a convecting shell, a model for oceanic chemistry, and a model for freezing of Europan oceanic water. Possible effects of brine and gas inclusions on ice rheology and tectonics are discussed.

  15. Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes

    DEFF Research Database (Denmark)

    Gringer, Nina; Hosseini, Seyed Vali; Svendsen, Tore

    2015-01-01

    Marinated herring processing brines, which are usually discarded, are rich in salt, protein, non-protein nitrogen, iron, fatty acids, antioxidant and even possess enzymatic activity. This study investigated the performance of ceramic ultrafiltration of two herring spice brines with a major focus...

  16. Corrosion and hydrogen permeation of A216 Grade WCA steel in hydrothermal magnesium-containing brines

    International Nuclear Information System (INIS)

    Haberman, J.H.; Frydrych, D.J.; Westerman, R.E.

    1988-03-01

    Corrosion rates determined at 1 month in 150/degree/C brine increased with magnesium concentration. The structure of the corrosion product, as determined by x-ray diffraction, depended upon the magnesium concentration. In brines with less than 10,000 ppM magnesium, the primary corrosion product had a spinel structure characteristic of magnetite or magnesioferrite. In brines containing magnesium concentrations greater than 20,000 ppM, the primary corrosion product had the amakinite structure characteristic of a complex iron-magnesium hydroxide. The high corrosion rates observed in brines containing high magnesium concentrations suggest that the corrosion products having the amakinite structure is less protective than corrosion products having the spinel structure. Corrosion rates in high-magnesium (inclusion) brine determined over a 6-month test duration were essentially constant. Hydrogen permeation rates observed in exposing mild steel to high-Mg/sup 2/plus// brine at 150/degree/C could be potentially damaging to a mild steel waste package container. The rate of hydrogen permeation was proportional to the brine flow rate in the autoclave. Thiourea additions to the brine increased the hydrogen permeation rate; sulfate and bromide ion additions did not. The maximum gaseous hydrogen pressure attainable is not known (based on 3Fe /plus/ 4H 2 O /plus/ Fe(sub 3)O /plus/ 4H 2 , would be /approximately/900 atmospheres), and the dependence of permeation rate on temperature is not known. 8 refs., 13 figs., 3 tabs

  17. Geochemistry of Salado Formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository

    International Nuclear Information System (INIS)

    Abitz, R.; Myers, J.; Drez, P.; Deal, D.

    1990-01-01

    Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogenous with respect to composition, but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs

  18. Geochemistry of Salado formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository

    International Nuclear Information System (INIS)

    Abitz, R.; Myers, J.; Drez, P.; Deal, D.

    1990-01-01

    Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogeneous with respect to composition but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs

  19. Water Recovery from Brine in the Short and Long Term: A KSC Approach

    Science.gov (United States)

    Lunn, Griffin; Melendez, Orlando; Anthony, Steve

    2014-01-01

    KSC has spent many years researching Hollow Fiber Membrane Bioreactors as well as research encompassing:Alternate ammonia removal/Advanced oxidation. Brine purification technologies KSC-ISRU has built an electrolysis cell for the removal of acids in ISRU mining brines. Our goal is to combine all such technologies.

  20. The use of bacconcentrate Herobacterin in brine cheese technology

    Directory of Open Access Journals (Sweden)

    I. Slyvka:

    2017-12-01

    Full Text Available In the article a comparative analysis of the use of the bacterial preparation Herobacterin and the starter RSF-742 (Chr. Hansen, Denmark in the technology of brine cheese was conducted. Herobacterin is a bacterial preparation created using bacteria Lactococcus lactis, Lactobacillus plantarum, Enterococcus faecium, Leuconostoc mesenteroides and Lactococcus garvieae, isolated from traditional Carpathian brine cheese brynza and identified using classical microbiological and modern molecular genetic methods (RAPD-PCR, RFLP-PCR, sequencing of the 16S rRNA gene. The results of investigations of organoleptic, physico-chemical, syneretical and microbiological parameters of cheese brynza with use of preparation Herobacterin are presented in comparison with the starter RSF-742, which includes cultures: Lactococcus lactis subsp. сremoris, Lactococcus lactis subsp. lactis, Streptococcus thermophilus, Lactobacillus helveticus. The use of Herobacterin has a positive effect on organoleptic, physico-chemical and microbiological parameters, all parameters complied with the requirements of DSTU 7065:2009. The level of survival of lactic acid bacteria in brynza during maturation and storage is high, which confirms the correctness of the selection of strains to preparation Herobakterin, which demonstrated good adaptability to the composition and properties of ewe's milk.

  1. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson

    2018-02-01

    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  2. Observations of brine plumes below melting Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  3. Evolution of mineralizing brines in the east Tennessee Mississippi Valley-type ore field

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; Gesink, J.A.; Haynes, F.M. (Univ. of Michingan, Ann Arbor (USA))

    1989-05-01

    The east Tennessee Mississippi Valley-type (MVT) ore field contains barite-fluorite and sphalterite deposits in a continuous paleoaquifer consisting of breccia zones in the Upper Cambrian-Lower Ordovician Knox Group. Paragenetic observations and fluid inclusion compositions in these deposits indicate that the Knox paleoaquifer was invaded first by Ca-rich brines (Ca:Na about 1) that deposited fluorite and barite, and later by Na-Ca brines (Ca:Na = 0.1 to 0.5) that deposited sphalerite. Geologic relation sindicate that these brines were derived from the southeast, in the area of the Middle Ordovician Servier foreland shale basin, and that imposed by fluorite solubility indicate further that all original connate water in the Sevier basin was required to deposit the estimated flourite reserves of the ore field.Thus, the later, sphalerite-depositing brines represent recycled meteoric water from the Sevier basin or connate brines from underlying (Cambrian) shales.

  4. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  5. Indoor tests to investigate the effect of brine depth on the performance of solar still

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Marwah A.W.; Jabbar N. Khalifa, Abdul [Nahrain University, College of Engineering, Jadiriya, P.O. Box 64040, Baghdad (Iraq)

    2013-07-01

    Many experimental and numerical studies have been done on different configurations of solar stills to optimize the design by examining the effect of climatic, operational and design parameters on its performance. One of the most important of the operational parameters that has received a considerable attention in the literature is the brine depth. This paper reports indoor experimental investigations on the effect of brine depth on the productivity and efficiency of the solar stills at four different brine depths of 1.5, 2, 4 and 5.5 cm. Indoor tests were used by simulating the solar input by proper electric heaters located at the bottom of the still for heating the water contained in the basin of the still. The present study validated the decreasing trend in productivity with the increase of brine depth and showed that the still productivity could be influenced by the brine depth by up to 24%.

  6. Ecosystem effects from produced water and potash mine disposal activities

    International Nuclear Information System (INIS)

    Roy, R.; Davis, D.; Hopkins, S.

    1993-01-01

    This study was initiated to determine the chemical, physical, and ecosystem effects of produced water and potash mine disposal practices upon naturally occurring-hypersaline playas in southeast New Mexico, Several playas that receive discharges were compared to several nearby reference playas. Results revealed that the treatment playas had been significantly altered when compared to the reference playas. For example, the salinity of treatment playas were greater than 300 per-thousand and those of reference playas were less than 200 per-thousand. The dominant ions in water and sediments of treatment playas were sodium and chloride. The major ions in reference playa water and sediments were sodium, calcium, chloride, and sulfate. In some instances aromatic hydrocarbon concentrations exceeded 13,000 ng/g in sediments from treatment playas. Aromatic hydrocarbon concentrations were less than 100 ng/g in sediments from reference playas. Surveys revealed that treatment playas supported few, if any, invertebrates. On the other hand, reference playas supported dense populations of brine shrimp Artemis and brine fly Hydropyrus larvae. Surveys also indicated that reference playas were used by shorebirds for nesting and feeding, whereas treatment playas were used as loafing areas by waterfowl. Unfortunately, dead waterfowl were found along the shores of several treatment playas. Necropsies revealed that the most likely cause of death was salt toxicosis

  7. Oil exudation and histological structures of duck egg yolks during brining.

    Science.gov (United States)

    Lai, K M; Chung, W H; Jao, C L; Hsu, K C

    2010-04-01

    Changes in oil exudation and histological structures of salted duck egg yolks during brining up to 5 wk were investigated. During brining, the salt contents of albumen, exterior yolk (hardened portion), and interior yolk (soft or liquid portion) gradually increased accompanied by slight decreases in moisture content. The hardening ratio of salted egg yolks increased rapidly to about 60% during the first week of brining and then reached 100% at the end of brining. After brining, part of the lipids in salted egg yolk became free due to the structural changes of low-density lipoprotein induced by dehydration and increase of salt content, and more free lipids in salted egg yolk were released after the cooking process. With the brining time increased up to 5 wk, the outer region of the cooked salted yolk gradually changed into dark brown, brown, orange, and then dark brown, whereas the center region changed into light yellow, yellow, dark yellow, and then yellow again. The microstructures of cooked salted egg yolks showed that the yolk spheres in the outer and middle regions retained their original shape, with some shrinking and being packed more loosely when brining time increased, and the exuded oil filled the space between the spheres. Furthermore, the yolk spheres in the center region transformed to a round shape but still showed granulation after 4 wk of brining, whereas they were mostly disrupted after 2 to 5 wk of brining. One of the most important characteristics of cooked salted egg yolks, gritty texture, contributed to oil exudation and granulated yolk spheres were observed at the brining time of 4 wk.

  8. The International intraval project. Phase 1, test case 13: Experimental study of brine transport in porous media

    International Nuclear Information System (INIS)

    Glasbergen, P.

    1992-01-01

    INTRAVAL is an international coordinated research program for predicting the potential radionuclide migration in the geosphere with the use of mathematical models. Such models are used to help assess the long-term safety of radioactive waste disposal systems. This report describes the findings of the project teams involved in test case 13 of INTRAVAL Phase 1. The test case is based on laboratory experiments dealing with flow and dispersion of brine in a porous medium. The purpose of these experiments was twofold : (i) to investigate some of the relevant processes in brine transport in porous media, and (ii) to provide sets of data to be used for (partial) validation of transport models. The experiments were carried out in a column packed with glass beads of diameter 0.40 to 0.52 mm. Salt water was injected through nine holes at the bottom and withdrawn through nine holes at the top. Initially a low salt concentration was used which was then displaced with higher concentrated salt water. The salt mass-fraction was detected using an array of electrodes such that breakthrough curves were obtained at five different levels in the column. The report reviews a number of conceptual models and the corresponding numerical codes employed by different modelling teams. The experiments on one- and two-dimensional flow and transport were simulated by various groups. The question underlying the experiments, namely the applicability of Fick's laws over the whole range of salt concentration, could be addressed satisfactorily. All models could simulate low-concentration experiment using a dispersivity value of 0.8 mm to 1.00 mm. However, using the same dispersivity value, it was not possible to simulate high concentration experiments. Another question intended to be studied by the experiments was the validity of Darcy's law at high concentrations. Two-dimensional experiments were carried out for this purpose. In practice, calculations were hampered by extremely high demand on

  9. Deep underground disposal of radioactive wastes: Near field effects

    International Nuclear Information System (INIS)

    1985-01-01

    This report reviews the important near-field effects of the disposal of wastes in deep rock formations. The basic characteristics of waste form, container and package, buffer and backfill materials and potential host-rock types are discussed from the perspective of the performance requirements of the total repository system. Effects of waste emplacement on the separate system components and on the system as a whole are discussed. The effects include interactions between groundwater and brines and the other system components, thermal and thermo-mechanical effects, and chemical and geochemical reactions. Special consideration is given to the radiation field that exists in proximity to the waste containers and also to the coupled effects of different phenomena

  10. Papers of a Canadian Institute conference : Unconventional gas symposium : Tight gas, gas shales, coalbed methane, gas hydrates

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for participants to learn from gas industry leaders in both Canada and the United States, different strategies to cost-effectively develop unconventional gas resources. In particular, the representative from EnCana Corporation discussed the results of tight gas drilling in Northeastern British Columbia. The speaker for MGV Energy reported on the outcome of test drilling for coalbed methane (CBM) in Southern Alberta. The economic development of tight gas reservoirs in the United States Permian Basin was discussed by the speaker representing BP America Production Company. The role of unconventional gas in the North American natural gas supply and demand picture was dealt with by TransCanada PipeLines Limited and Canadian Gas Potential Committee. The trend for natural gas prices in North America was examined by Conoco Inc. The Geological Survey of Canada addressed the issue of gas hydrate potential in the Mackenzie Delta Mallik Field. In addition, one presentation by El Paso Production Company discussed the successful drilling for deep, tight gas and CBM in the United States. There were nine presentations at this symposium, of which three were indexed separately for inclusion in this database. refs., tabs., figs

  11. The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep

    Science.gov (United States)

    Mills, Christopher T.; Slater, Gregory F.; Dias, Robert F.; Carr, Stephanie A.; Reddy, Christopher M.; Schmidt, Raleigh; Mandernack, Kevin W.

    2013-01-01

    Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. 14C-dead) carbon to soil microbial communities. Natural abundance 13C and 14C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ13C values of PLFAs common in type I and II methanotrophs were as negative as −67‰ and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ13C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ14C values of select PLFAs (−351 to −936‰) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35–91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.

  12. Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander

    Science.gov (United States)

    Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu

    2017-12-01

    Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.

  13. Landfill disposal risk assessment

    International Nuclear Information System (INIS)

    Mininni, G.; Passino, R.; Spinosa, L.

    1993-01-01

    Landfill disposal is the most used waste disposal system in Italy, due to its low costs and also to the great opposition of populations towards new incineration plants and the adjustment of the existing ones. Nevertheless, landfills may present many environmental problems as far as leachate and biogas are concerned directly influencing water, air and soil. This paper shows the most important aspects to be considered for a correct evaluation of environmental impacts caused by a landfill of urban wastes. Moreover, detection systems for on site control of pollution phenomena are presented and some measures for an optimal operation of a landfill are suggested

  14. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  15. Reversible deep disposal

    International Nuclear Information System (INIS)

    2009-10-01

    This presentation, given by the national agency of radioactive waste management (ANDRA) at the meeting of October 8, 2009 of the high committee for the nuclear safety transparency and information (HCTISN), describes the concept of deep reversible disposal for high level/long living radioactive wastes, as considered by the ANDRA in the framework of the program law of June 28, 2006 about the sustainable management of radioactive materials and wastes. The document presents the social and political reasons of reversibility, the technical means considered (containers, disposal cavities, monitoring system, test facilities and industrial prototypes), the decisional process (progressive development and blocked off of the facility, public information and debate). (J.S.)

  16. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  17. Quorum Quenching Bacillus sonorensis Isolated from Soya Sauce Fermentation Brine

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-03-01

    Full Text Available An N-acylhomoserine lactone (AHL-degrading bacterial strain, L62, was isolated from a sample of fermentation brine of Chinese soya sauce by using rich medium agar supplemented with soya sauce (10% v/v. L62, a rod-shaped Gram positive bacterium with amylolytic activity, was phylogentically related to Bacillus sonorensis by 16S ribosomal DNA and rpoB sequence analyses. B. sonorensis L62 efficiently degraded N-3-oxohexanoyl homoserine lactone and N-octanoylhomoserine lactone. However, the aiiA homologue, encoding an autoinducer inactivation enzyme catalyzing the degradation of AHLs, was not detected in L62, suggesting the presence of a different AHL-degrading gene in L62. To the best of our knowledge, this is the first report of AHL-degrading B. sonorensis from soya sauce liquid state fermentation.

  18. Guiding brine shrimp through mazes by solving reaction diffusion equations

    Science.gov (United States)

    Singal, Krishma; Fenton, Flavio

    Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.

  19. Ice Control with Brine Spread with Nozzles on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars; Fonnesbech, Jens Kristian

    2010-01-01

    on the major roads (150 km) in the municipality of North Funen from the winter 2007/8. The result has been a dramatically reduction in the number of traffic accidents on slippery roads during the winter season. From 7 and 5 accidents in the previous 2 winters to 1 accident in the winter 2007/8. Neighbouring...... municipalities had an increasing number of traffic accidents on slippery roads in the same period.......During the years 1996-2006, the former county of Funen, Denmark, gradually replaced pre-wetted salt with brine spread with nozzles as anti-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor traffic flow...

  20. CO2/ brine substitution experiments at simulated reservoir conditions

    Science.gov (United States)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  1. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa

    2016-09-06

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  2. Distribution of Cathepsin D Activity between Lysosomes and a Soluble Fraction of Marinating Brine.

    Science.gov (United States)

    Szymczak, Mariusz

    2016-08-01

    This paper is the first ever to describe the phenomenon of bimodal distribution of cathepsin D in the lysosomal and soluble fractions of brine left after herring marinating. Up to 2 times higher cathepsin D activity was observed in the lysosome fraction. Activity of cathepsin D in brine increased according to the logarithmic function during low frequency-high power ultrasounds treatment or according to the linear function after multiple freezing-thawing of brine. Activity enhancement was achieved only in the brine devoid of lipids and suspension. Study results show also that measurement of lysosomal cathepsin D activity in the marinating brine requires also determining cathepsin E activity. Decreasing pore size of microfilter from 2.7 to 0.3 μm significantly reduced the lysosome content in the brine. The presence of lysosomes and the possibility of their separation as well as the likely release of cathepsins shall be considered during industrial application of the marinating brine, as new cathepsins preparations in fish and meat technology. © 2016 Institute of Food Technologists®

  3. Alcohol Brine Freezing of Japanese Horse Mackerel (Trachurus japonicus) for Raw Consumption

    Science.gov (United States)

    Maeda, Toshimichi; Yuki, Atsuhiko; Sakurai, Hiroshi; Watanabe, Koichiro; Itoh, Nobuo; Inui, Etsuro; Seike, Kazunori; Mizukami, Yoichi; Fukuda, Yutaka; Harada, Kazuki

    In order to test the possible application of alcohol brine freezing to Japanese horse mackerel (Trachurus japonicus) for raw consumption, the quality and taste of fish frozen by direct immersion in 60% ethanol brine at -20, -25 and -30°C was compared with those by air freezing and fresh fish without freezing. Cracks were not found during the freezing. Smell of ethanol did not remain. K value, an indicator of freshness, of fish frozen in alcohol brine was less than 8.3%, which was at the same level as those by air freezing and fresh fish. Oxidation of lipid was at the same level as air freezing does, and lower than that of fresh fish. The pH of fish frozen in alcohol brine at -25 and -30°C was 6.5 and 6.6, respectively, which were higher than that by air freezing and that of fresh fish. Fish frozen in alcohol brine was better than that by air and at the same level as fresh fish in total evaluation of sensory tests. These results show that the alcohol brine freezing is superior to air freezing, and fish frozen in alcohol brine can be a material for raw consumption. The methods of thawing in tap water, cold water, refrigerator, and at room temperature were compared. Thawing in tap water is considered to be convenient due to the short thaw time and the quality of thawed fish that was best among the methods.

  4. Migration rates of brine inclusions in single crystals of NaCl

    International Nuclear Information System (INIS)

    Chou, I.M.

    1982-01-01

    Rock-salt deposits have been considered as a possible medium for the permanent storage of high-level radioactive wastes and spent fuel. Brine inclusions present in natural salt can migrate toward the waste if the temperature and the temperature gradients in the vicinity of the radioactive waste are large enough. This migration is due to the dissolution of salt at the hot side of the salt-brine interface, ion diffusion through the brine droplet, and the precipitation of salt at the cold side of the salt brine interface. In order to quantify the problem, the migration rate of these brine inclusions must be estimated under various repository conditions. This paper estimates migration rates for all-liquid brine inclusions in single crystals of NaCl by utilizing recent data for brines and the model of Anthony and Cline [T.R. Anthony and H.E. Cline, J. Appl. Phys., 42, pp. 3380-387 (1971)]. The predictions are compared with experimentally measured migration rates. 4 figures, 6 tables

  5. Uranium mobility in non-oxidizing brines: field and experimental evidence

    International Nuclear Information System (INIS)

    Giblin, A.M.; Appleyard, E.C.

    1987-01-01

    The present distribution of U in the Wollaston Sediments in Saskatchewan can be related to the movement of brines as revealed in Na-Ca-Mg-Cl-metasomes. Experiments were conducted at 60 and 200 0 C under stringently non-oxidizing conditions using solvents ranging from distilled water to a Ca-Na-K brine formulated to simulate the major element composition of the Salton Sea geothermal brines. The experiments were conducted on natural pitchblende (UOsub(2.67)) and synthetic uraninite (UOsub(2.01)). Natural pitchblende was more strongly dissolved than the synthetic uraninite, and the synthetic Salton Sea brine was a more potent solvent than distilled water, 1:4 diluted Salton Sea brine, or pure NaCl brine. Within analytical limits of detection the dissolved U is present in the uranous (U 4+ ) state. The evidence demonstrates empirically the mechanism of dissolution of naturally occurring U minerals in reduced brines and describes a geological case where this appears to have happened. (author)

  6. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  7. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    Nolvi, L.

    2009-12-01

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  8. Oil ''rig'' disposal

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A comparison of the environmental impacts of disposing of the Brent Spar oil platform on land and at sea is presented, with a view to establishing the best decommissioning option in the light of recent controversy. The document is presented as an aid to comprehension of the scientific and engineering issues involved for Members of Parliament. (UK)

  9. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Lindblom, U.; Gnirk, P.

    1982-01-01

    The subject is discussed under the following headings: the form and final disposal of nuclear wastes; the natural rock and groundwater; the disturbed rock and the groundwater; long-term behavior of the rock and the groundwater; nuclear waste leakage into the groundwater; what does it all mean. (U.K.)

  10. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  11. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  12. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    1996-01-01

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  13. Plumbing and Sewage Disposal.

    Science.gov (United States)

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of plumbing and sewage disposal used by Marine Hygiene Equipment Operators to perform their mission. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the…

  14. Radwaste treatment and disposal

    International Nuclear Information System (INIS)

    Ehn, L.; Breza, M.; Pekar, A.

    2000-01-01

    In this lecture is given the basic information, that is concerning on the RAW treatment and long term disposal of the treated RAW in repository at Mochovce. Then here is given the basic technical and technological information, that is concerning bituminization, plant, the vitrification unit, center for the RAW-treatment (BSC) and repository at Mochovce. (authors)

  15. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  16. Modeling brine inflow to Room Q: A numerical investigation of flow mechanisms

    International Nuclear Information System (INIS)

    Freeze, G.A.; Christian-Frear, T.L.; Webb, S.W.

    1997-04-01

    A hydrologic modeling study was performed to gain insight into the flow mechanisms around Room Q. A summary of hydrologic and structural data and of predictive fluid flow models from Room Q are provided. Six years of measured data are available from the time of excavation. No brine accumulation in Room Q was measured in the first two years following excavation. However, there is considerable uncertainty associated with this early-time data due to inadequate sealing of the room. Brine may have been lost to evaporation or it may have flowed into newly created disturbed rock zone (DRZ) porosity resulting from excavation. Non-zero brine accumulation rates were measured from 2--5 years, but brine accumulation within the room dropped to zero after 5.5 years. A conceptual model for brine inflow to Room Q was developed which assumes far-field Darcy flow combined with an increasing DRZ pore volume. Numerical simulations employed TOUGH28W and used predictive DRZ porosity increase with time from SPECTROM-32 rock deformation simulations. Simulated brine inflow showed good agreement with measured brine accumulation rates for the first five years. Two important conclusions were drawn from the simulation results: (1) early-time brine inflow to the room can be reduced to zero if the DRZ pore volume increases with time, and (2) brine accumulation (inflow) rates from 2 to 5 years suggest a far-field permeability of 5 x 10 -22 m 2 with a bulk rock compressibility of 5.4 x 10 -12 Pa -1

  17. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation.

    Science.gov (United States)

    Li, Qi; Huang, Bin; Chen, Xin; Shi, Yi

    2015-05-15

    Bioregeneration of nitrate-laden ion exchange brine is desired to minimize its environmental impacts, but faces common challenges, i.e., enriching sufficient salt-tolerant denitrifying bacteria and stabilizing brine salinity and alkalinity for stable brine biotreatment and economically removing undesired organics derived in biotreatment. Incorporation of 0.25 M bicarbonate in 0.5 M chloride brine little affected resin regeneration but created a benign alkaline condition to favor bio-based brine regeneration. The first-quarter sulfate-mainly enriched spent brine (SB) was acidified with carbon source acetic acid for using CaCl2 at an efficiency >80% to remove sulfate. Residual Ca(2+) was limited below 2 mM by re-mixing the first-quarter and remained SB to favor denitrification. Under [Formula: see text] system buffered pH condition (8.3-8.8), nitrate was removed at 0.90 gN/L/d by hematite-enriched well-settled activated sludge (SVI 8.5 ml/g) and the biogenic alkalinity was retained as bicarbonate. The biogenic alkalinity met the need of alkalinity in removing residual Ca(2+) after sulfate removal and in CaCl2-induced CaCO3 flocculation to remove 63% of soluble organic carbon (SOC) in biotreated brine. Carbon-limited denitrification was also operated after activated sludge acclimation with sulfide to cut SOC formation during denitrification. Overall, this bicarbonate-incorporation approach, stabilizing the brine salinity and alkalinity for stable denitrification and economical removal of undesired SOC, suits long-term cost-effective brine bioregeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  19. Threshold temperature gradient effect on migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1987-01-01

    Theories of the migration of brine inclusions in salt were interpreted as simple physical processes, and theories by Russian and US workers were shown to yield the same results. The migration theory was used to predict threshold temperature gradients below which migration of brine inclusions should not occur. The predicted threshold gradients were compared with the temperature gradients expected at the Waste Isolation Pilot Plant in New Mexico. The theory of threshold gradients helps explain the existence of brine inclusions in natural salt deposits

  20. Evaluation of the bioactivities of some Myanmar medicinal plants using brine shrimp (Artemia salina) toxicity test

    International Nuclear Information System (INIS)

    Sabai; Khin Khin Win Aung; Nwe Ni Thin; Kyi Shwe; Tin Myint Htwe

    2001-01-01

    For a variety of toxic substances, brine shrimp larvae (Artemia salina) are usually used as a simple bioassay method and it is also applied for natural product research. The brine shrimp larvae (nauplii) are obtained by natural hatching method from Artemia cysts. By using the larvae, the results from these experiments lead to the lethal dose, LD 50 values of extracts of selected medicinal plants. Activities of a broad range of plant extracts are manifested as toxicity to the brine shrimp. Screening results with six plant extracts are compared with pure caffeine. This method is rapid, reliable, inexpensive and convenient. (author)

  1. Deep brine recognition upstream the EBE syndicate. Geochemical and isotopic investigations. Final report

    International Nuclear Information System (INIS)

    2009-01-01

    The authors report and discuss the results obtained after performing a drilling upstream the drinkable water harnessing field of a water supply syndicate in Alsace (Ensisheim, Bollwiller and surroundings), in order to confirm the existence of a deep brine source. This brine is diluted by recent waters. The first isotopic investigations do not allow the origin of this brine to be identified, but fractures due to some seismic events are suspected. The report presents the drilling and the various aspects of the chemical and isotopic studies (sampling, physico-chemical analysis, dating, identification of various isotopes)

  2. Ring Resonator for Detection of Melting Brine Under Shallow Subsurface of Mars

    Science.gov (United States)

    Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximilian C.

    2016-01-01

    Laboratory experimental evidence using Raman spectroscopy has shown that liquid brine may form below the shallow subsurface of Mars. A simpler experimental method to verify the presence of liquid brine or liquid water below Mars surface is needed. In this paper, a ring resonator is used to detect the phase change between frozen water and liquid water below a sandy soil that simulates the Mars surface. Experimental data shows that the ring resonator can detect the melting of thin layers of frozen brine or water up to 15 mm below the surface.

  3. HLW disposal dilemma

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.

    2003-01-01

    The radioactive waste is an inevitable residue from the use of radioactive materials in industry, research and medicine, and from the operation of generating electricity nuclear power stations. The management and disposal of such waste is therefore an issue relevant to almost all countries. Undoubtedly the biggest issue concerning radioactive waste management is that of high level waste. The long-lived nature of some types of radioactive wastes and the associated safety implications of disposal plans have raised concern amongst those who may be affected by such facilities. For these reasons the subject of radioactive waste management has taken on a high profile in many countries. Not one Member State in the European Union can say that their high level waste will be disposed of at a specific site. Nobody can say 'that is where it is going to go'. Now, there is a very broad consensus on the concept of geological disposal. The experts have little, if any doubt that we could safely dispose of the high level wastes. Large sectors of the public continue to oppose to most proposals concerning the siting of repositories. Given this, it is increasingly difficult to get political support, or even political decisions, on such sites. The failure to advance to the next step in the waste management process reinforces the public's initial suspicion and resistance. In turn, this makes the political decisions even harder. In turn, this makes the political decisions even harder. The management of spent fuel from nuclear power plant became a crucial issue, as the cooling pond of the Romanian NPP is reaching saturation. During the autumn of 2000, the plant owner proceeded with an international tendering process for the supply of a dry storage system to be implemented at the Cernavoda station to store the spent fuel from Unit 1 and eventually from Unit 2 for a minimum period of 50 years. The facility is now in operation. As concern the disposal of the spent fuel, the 'wait and see

  4. The Development and Test of a Sensor for Measurement of the Working Level of Gas–Liquid Two-Phase Flow in a Coalbed Methane Wellbore Annulus

    OpenAIRE

    Chuan Wu; Huafeng Ding; Lei Han

    2018-01-01

    Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pres...

  5. Coal rank, distribution, and coalbed methane potential of the Lower Cretaceous Luscar Group, Bow River to Blackstone River, central Alberta foothills

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, F M; Kalkreuth, W D

    1994-12-31

    Mapping data on Lower Cretaceous Luscar Group coals in the central Alberta foothills is presented. The coals outcrop in the Inner Foothills from the Bow River to the boundary between Alberta and British Columbia, north of Grande Cache. Both subsurface and surface mapping data is presented. The coal rank is highly variable and depends on sample location and depth, as established by vitrinite reflectance studies on trench samples and cuttings gathered from petroleum exploration wells. The conventional coal resource potential and the coalbed methane potential for the area are discussed with reference to the map sheets provided. 29 refs., 45 figs., 3 tabs., 3 apps.

  6. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  7. Depositional sequence stratigraphy and architecture of the cretaceous ferron sandstone: Implications for coal and coalbed methane resources - A field excursion

    Science.gov (United States)

    Garrison, J.R.; Van Den, Bergh; Barker, C.E.; Tabet, D.E.

    1997-01-01

    This Field Excursion will visit outcrops of the fluvial-deltaic Upper Cretaceous (Turonian) Ferron Sandstone Member of the Mancos Shale, known as the Last Chance delta or Upper Ferron Sandstone. This field guide and the field stops will outline the architecture and depositional sequence stratigraphy of the Upper Ferron Sandstone clastic wedge and explore the stratigraphic positions and compositions of major coal zones. The implications of the architecture and stratigraphy of the Ferron fluvial-deltaic complex for coal and coalbed methane resources will be discussed. Early works suggested that the southwesterly derived deltaic deposits of the the upper Ferron Sandstone clastic wedge were a Type-2 third-order depositional sequence, informally called the Ferron Sequence. These works suggested that the Ferron Sequence is separated by a type-2 sequence boundary from the underlying 3rd-order Hyatti Sequence, which has its sediment source from the northwest. Within the 3rd-order depositional sequence, the deltaic events of the Ferron clastic wedge, recognized as parasequence sets, appear to be stacked into progradational, aggradational, and retrogradational patterns reflecting a generally decreasing sediment supply during an overall slow sea-level rise. The architecture of both near-marine facies and non-marine fluvial facies exhibit well defined trends in response to this decrease in available sediment. Recent studies have concluded that, unless coincident with a depositional sequence boundary, regionally extensive coal zones occur at the tops of the parasequence sets within the Ferron clastic wedge. These coal zones consist of coal seams and their laterally equivalent fissile carbonaceous shales, mudstones, and siltstones, paleosols, and flood plain mudstones. Although the compositions of coal zones vary along depositional dip, the presence of these laterally extensive stratigraphic horizons, above parasequence sets, provides a means of correlating and defining the tops

  8. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  9. A Dual-Continuum Model for Brine Migration in Salt Associated with Heat-Generating Nuclear Waste: Fully Coupled Thermal-Hydro-Mechanical Analysis

    Science.gov (United States)

    Hu, M.; Rutqvist, J.

    2017-12-01

    The disposal of heat-generating nuclear waste in salt host rock establishes a thermal gradient around the waste package that may cause brine inclusions in the salt grains to migrate toward the waste package. In this study, a dual-continuum model is developed to analyze such a phenomenon. This model is based on the Finite Volume Method (FVM), and it is fully thermal-hydro-mechanical (THM) coupled. For fluid flow, the dual-continuum model considers flow in the interconnected pore space and also in the salt grains. The mass balance of salt and water in these two continua is separately established, and their coupling is represented by flux associated with brine migration. Together with energy balance, such a system produces a coupled TH model with strongly nonlinear features. For mechanical analysis, a new formulation is developed based on the Voronoi tessellated mesh. By relating each cell to several connected triangles, first-order approximation is constructed. The coupling between thermal and mechanical fields is only considered in terms of thermal expansion. And the coupling between the hydraulic and mechanical fields in terms of pore-volume effects is consistent with Biot's theory. Therefore, a fully coupled THM model is developed. Several demonstration examples are provided to verify the model. Last the new model is applied to analyze coupled THM behavior and the results are compared with experimental data.

  10. Disposal of fly ash

    International Nuclear Information System (INIS)

    Singh, B.; Foley, C.

    1991-01-01

    Theoretical arguments and pilot plant results have shown that the transport of fly-furnace ash from the power station to the disposal area as a high concentration slurry is technically viable and economically attractive. Further, lack of free water, when transported as a high concentration slurry, offers significant advantages in environmental management and rehabilitation of the disposal site. This paper gives a basis for the above observations and discusses the plans to exploit the above advantages at the Stanwell Power Station. (4 x 350 MWe). This will be operated by the Queensland Electricity Commission. The first unit is to come into operation in 1992 and other units are to follow progressively on a yearly basis

  11. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  12. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  13. Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Scott Reeves; George Koperna

    2008-09-30

    The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale

  14. Integrated treatment process using a natural Wyoming clinoptilolite for remediating produced waters from coalbed natural gas operations

    Science.gov (United States)

    Zhao, H.; Vance, G.F.; Urynowicz, M.A.; Gregory, R.W.

    2009-01-01

    Coalbed natural gas (CBNG) development in western U.S. states has resulted in an increase in an essential energy resource, but has also resulted in environmental impacts and additional regulatory needs. A concern associated with CBNG development relates to the production of the copious quantities of potentially saline-sodic groundwater required to recover the natural gas, hereafter referred to as CBNG water. Management of CBNG water is a major environmental challenge because of its quantity and quality. In this study, a locally available Na-rich natural zeolite (clinoptilolite) from Wyoming (WY) was examined for its potential to treat CBNG water to remove Na+ and lower the sodium adsorption ratio (SAR, mmol1/2 L- 1/2). The zeolite material was Ca-modified before being used in column experiments. Column breakthrough studies indicated that a metric tonne (1000??kg) of Ca-WY-zeolite could be used to treat 60,000??L of CBNG water in order to lower SAR of the CBNG water from 30 to an acceptable level of 10??mmol1/2 L- 1/2. An integrated treatment process using Na-WY-zeolite for alternately treating hard water and CBNG water was also examined for its potential to treat problematic waters in the region. Based on the results of this study, use of WY-zeolite appears to be a cost-effective water treatment technology for maximizing the beneficial use of poor-quality CBNG water. Ongoing studies are evaluating water treatment techniques involving infiltration ponds lined with zeolite. ?? 2008 Elsevier B.V. All rights reserved.

  15. Laboratory and field studies on an Indian strain of the brine shrimp Artemia

    Digital Repository Service at National Institute of Oceanography (India)

    Royan, J.P.

    The Tuticorin strain of the brine shrimp @iArtemia@@ was studied under both laboratory and field conditions. Studies on the survival of the nauplii at different temperatures and salinities revealed that the nauplii preferred a salinity of 35 ppt...

  16. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes

    KAUST Repository

    Antunes, Andre; Ngugi, David; Stingl, Ulrich

    2011-01-01

    environments on Earth. After 50 years of research mostly driven by chemists, geophysicists and geologists, the microbiology of the brines has been receiving increased interest in the last decade. Recent molecular and cultivation-based studies have provided us

  17. Bead Evaporator for Complete Water and Salt Recovery from Brine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Brine Evaporation and Mineralization System (BEMS) is proposed for 100% water recovery from highly contaminated wastewater as well as water...

  18. Brine shrimp lethality and antibacterial activity of extracts from the bark of Schleichera oleosa

    Directory of Open Access Journals (Sweden)

    Laxman Pokhrel

    2015-08-01

    Full Text Available Objective: To determine the antibacterial efficacy and brine shrimp toxicity of extracts (hexane, dichloromethane, ethyl acetate, methanol and water obtained from the bark of Schleichera oleosa. Methods: The powdered bark sample was Soxhlet extracted sequentially in hexanes, dichloromethane, ethyl acetate, methanol and water. Antibacterial evaluation was carried out by following the agar diffusion method and amoxicillin disc was used as a reference. Slightly modified Meyer’s method was used to determine the toxicity of the extracts in brine shrimps. Results: Among the nine bacterial strains tested, the methanolic and aqueous extracts showed promising antibacterial efficacy against Serratia marcescens, Escherarichia coli, Bacillus subtilis and Micrococcus luteus. None of the extracts were found significantly toxic to brine shrimps. Conclusions: Strong antibacterial activity and low brine shrimp toxicity of methanolic and aqueous extracts can provide new antibacterial compounds.

  19. Attempt to enrich of a new spontaneous fissioning nuclide by evaporation of natural brine

    International Nuclear Information System (INIS)

    Adamek, A.; Zhuravleva, E.L.; Constantinescu, M.; Constantinescu, o.; Chuburkov, Yu.T.

    1983-01-01

    The enrichment of the new spontaneous fissioning nuclide discovered in the Cheleken brine, was made by evaporation. The purpose of this work was the comparison of behaviour of the new spontaneous fissioning nuclide with that of the known elements in the formation processes of the high concentration brines. Spontaneous fission of the nuclide was measured by means of the counters for multiple emission of neutrons. It is shown that the new spontaneous fissioning nuclide was enriched as well as other trace elements (Hg, Tl, Bi and Pb) in a solution remained after the evaporation of the initial solution. The conclusion is drawn that from the sea water brines could be obtained by evaporation which are enriched in trace elements with an enrichment degree higher than the natural brines

  20. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula

    KAUST Repository

    Chehab, Noura A.; Ortiz-Madina, Juan F.; Katuri, Krishna; Rao, Hari Ananda; Amy, Gary L.; Logan, Bruce E.; Saikaly, Pascal

    2017-01-01

    environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool.

  1. Genomic and Transcriptomic Evidence for Carbohydrate Consumption among Microorganisms in a Cold Seep Brine Pool

    KAUST Repository

    Zhang, Weipeng; Ding, Wei; Yang, Bo; Tian, Renmao; Gu, Shuo; Luo, Haiwei; Qian, Pei-Yuan

    2016-01-01

    the Thuwal cold seep brine pool of the Red Sea. The recovered metagenome-assembled genomes (MAGs) belong to six different phyla: Actinobacteria, Proteobacteria, Candidatus Cloacimonetes, Candidatus Marinimicrobia, Bathyarchaeota, and Thaumarchaeota

  2. Whither nuclear waste disposal?

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1990-01-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site

  3. Disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-11-15

    A discussion on the disposal of radioactive wastes was held in Vienna on 20 September 1960. The three scientists who participated in the discussion were Mr. Harry Brynielsson (Sweden), Head of the Swedish Atomic Energy Company; Mr. H. J. Dunster (United Kingdom), Health Physics Adviser to the United Kingdom Atomic Energy Authority; and Mr. Leslie Silverman (United States), Professor of Harvard University, and Chairman of the US AEC Advisory Committee on Reactor Safeguards, as well as consultant on air cleaning

  4. Whither nuclear waste disposal?

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, T A [JK Research Associates, Silver Spring, MD (United States)

    1990-07-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site.

  5. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Critchley, R.J.; Swindells, R.J.

    1984-01-01

    A method and apparatus for charging radioactive waste into a disposable steel drum having a plug type lid. The drum is sealed to a waste dispenser and the dispenser closure and lid are withdrawn into the dispenser in back-to-back manner. Before reclosing the dispenser the drum is urged closer to it so that on restoring the dispenser closure to the closed position the lid is pressed into the drum opening

  6. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  7. Disposing of fluid wastes

    International Nuclear Information System (INIS)

    Bradley, J.S.

    1984-01-01

    Toxic liquid waste, eg liquid radioactive waste, is disposed of by locating a sub-surface stratum which, before removal of any fluid, has a fluid pressure in the pores thereof which is less than the hydrostatic pressure which is normal for a stratum at that depth in the chosen area, and then feeding the toxic liquid into the stratum at a rate such that the fluid pressure in the stratum never exceeds the said normal hydrostatic pressure. (author)

  8. Rock disposal problems identified

    Energy Technology Data Exchange (ETDEWEB)

    Knox, R

    1978-06-01

    Mathematical models are the only way of examining the return of radioactivity from nuclear waste to the environment over long periods of time. Work in Britain has helped identify areas where more basic data is required, but initial results look very promising for final disposal of high level waste in hard rock repositories. A report by the National Radiological Protection Board of a recent study, is examined.

  9. The potential effects of sodium bicarbonate, a major constituent from coalbed natural gas production, on aquatic life

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.

    2012-01-01

    The production water from coalbed natural gas (CBNG) extraction contains many constituents. The U.S. Environmental Protection Agency has established aquatic life criteria for some of these constituents, and it is therefore possible to evaluate their risk to aquatic life. However, of the major ions associated with produced waters, chloride is the only one with an established aquatic life criterion (U.S. Environmental Protection Agency, 1988). The focus of this research was NaHCO3, a compound that is a major constituent of coalbed natural gas produced waters in the Tongue and Powder River Basins. This project included laboratory experiments, field in situ experiments, a field mixing zone study, and a fishery presence/absence assessment. Though this investigation focuses on the Tongue and Powder River Basins, the information is applicable to other watersheds where sodium bicarbonate is a principle component of product water either from CBNG or from traditional or unconventional oil and gas development. These data can also be used to separate effects of saline discharges from those potentially posed by other constituents. Finally, this research effort and the additional collaboration with USGS Water Resources and Mapping, Bureau of Land Management, US Environmental Protection Agency, State of Montana, State of Wyoming, Montana State University, University of Wyoming, and others as part of a Powder River Aquatic Task Group, can be used as a model for successful approaches to studying landscapes with energy development. The laboratory acute toxicity experiments were completed with a suite of organisms, including 7 species of fish, 5 species of invertebrates, and 1 amphibian species. Experiments performed on these multiple species resulted in LC50s that ranged from 1,120 to greater than (>) 8,000 milligrams sodium bicarbonate per liter (mg NaHCO3/L) (also defined as 769 to >8,000 milligrams bicarbonate per liter (mg HCO3-/L) or total alkalinity expressed as 608 to >4

  10. Self-oscillations in large storages of highly mineralized brines

    Science.gov (United States)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Tsiberkin, Kirill; Parshakova, Yanina

    2014-05-01

    One of the stages of the production process at large enrichment plants is settling of aqueous solutions in large technological storages. The present work is devoted to the modeling of hydrodynamic regimes of large storage of highly mineralized brines. The density of brines in these objects depends not only on the content of dissolved macrocomponents, but also on the concentration of fine particulate matter. This leads to the need to consider the dynamics of the suspended sediment under significant density stratification, which greatly complicates the problem. Because of that it is important to develop hydrodynamical models of these objects. A peculiarity of these systems is the possibility of self-oscillatory regimes the mechanism of which is as follows. In warm sunny days, with high solar insolation, the heating of the sediments and bottom water takes place. The bottom water warming and the decrease of its density give rise to flow. The slurry particles composing the sediments are involved in the flow. The heated particles entrained by the flow transfer the heat to the surrounding liquid and increase the absorption of the solar radiation in the volume, which leads to equalization of temperature and convective flow damping. After the particle settling on the bottom the process is repeated. We study the stability of equilibrium of the horizontal liquid layer containing heavy insoluble particles in the presence of evaporation from the free surface and solar radiation absorption by insoluble particles. The time-dependent solution of heat transfer problem is obtained and used for estimate of time of instability onset. It is found that for the layer of saturated brines of potassium chloride of the thickness about 10 m the time for instability onset is about one hour. By using analytical estimates based on the empirical model of turbulence by Prandtl we confirmed the time for the onset of instability and obtained the estimates for the period of self

  11. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Ferguson, D.E.; Croff, A.G.

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  12. Greater-confinement disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Schubert, J.P.

    1989-01-01

    Greater-confinement disposal (GCD) is a general term for low-level waste (LLW) disposal technologies that employ natural and/or engineered barriers and provide a degree of confinement greater than that of shallow-land burial (SLB) but possibly less than that of a geologic repository. Thus GCD is associated with lower risk/hazard ratios than SLB. Although any number of disposal technologies might satisfy the definition of GCD, eight have been selected for consideration in this discussion. These technologies include: (1) earth-covered tumuli, (2) concrete structures, both above and below grade, (3) deep trenches, (4) augered shafts, (5) rock cavities, (6) abandoned mines, (7) high-integrity containers, and (8) hydrofracture. Each of these technologies employ several operations that are mature,however, some are at more advanced stages of development and demonstration than others. Each is defined and further described by information on design, advantages and disadvantages, special equipment requirements, and characteristic operations such as construction, waste emplacement, and closure

  13. Waste and Disposal: Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2002-01-01

    Within the Belgian R and D programme on geological disposal, demonstration experiments have become increasingly important. In this contribution to the scientific report 2001, an overview is given of SCK-CEN's activities and achievements in the field of large-scale demonstration experiments. In 2001, main emphasis was on the PRACLAY project, which is a large-scale experiment to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In the context of PRACLAY, a surface experiment (OPHELIE) has been developed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory. In 2001, efforts were focussed on the operation of the OPHELIE mock-up. SCK-CEN also contributed to the SELFRAC roject which studies the self-healing of fractures in a clay formation

  14. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  15. Meltability and Stretchability of White Brined Cheese: Effect of Emulsifier Salts

    OpenAIRE

    Khaled Abu-Alruz; Ayman S. Mazahreh; Ali F. Al-Shawabkeh; Amer A. Omari; Jihad M. Quasem

    2009-01-01

    Problem statement: This study was based on the hypothesis that by adding low concentrations of emulsifier salts, may specifically act on the cross linking bonds of the protein matrix, to the original brine (storage medium) it would be possible to induce meltability and stretchability in white brined cheese. Approach: A new apparatus for measuring the actual stretchability was designed and constructed; measurements on different cheese samples proved its validity and reliability to measure stre...

  16. Antagonism Between Osmophilic Lactic Acid Bacteria and Yeasts in Brine Fermentation of Soy Sauce

    OpenAIRE

    Noda, Fumio; Hayashi, Kazuya; Mizunuma, Takeji

    1980-01-01

    Brine fermentation by osmophilic lactic acid bacteria and yeasts for long periods of time is essential to produce a good quality of shoyu (Japanese fermented soy sauce). It is well known that lactic acid fermentation by osmophilic lactic acid bacteria results in the depression of alcoholic fermentation by osmophilic yeasts, but the nature of the interaction between osmophilic lactic acid bacteria and yeasts in brine fermentation of shoyu has not been revealed. The inhibitory effect of osmophi...

  17. CONTACT ANGLE OF YUCCA MOUNTAIN WELDED TUFF WITH WATER AND BRINES

    International Nuclear Information System (INIS)

    H. Kalia

    2006-01-01

    A number of tests were performed to acquire contact angles between Yucca Mountain welded tuff from Topopah Springs Lower Lithophysal geologic unit and various brine solutions. The tests were performed on core disks received from Sample Management Facility (SMF), oven dried to a constant weight and the core disks vacuum saturated in: distilled water, J-13 water, calcium chloride brine and sodium chloride brine to constant weight. The contact angles were acquired from eight points on the surface of the core disks, four on rough surface, and four on polished surface. The contact angle was measured by placing a droplet of the test fluid, distilled water, J-13 water, calcium chloride brine and sodium chloride brine on the core disks. The objective of this test was to acquire contact angles as a potential input to estimating capillary forces in accumulated dust on the waste packages and drip shields slated for the proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada. It was noted that once the droplet contacts the test surface, it continues to spread hence the contact angle continues to decrease with elapsed time. The maximum observed angle was at time 0 or when the drop contacted the rock surface. The measured contact angle, in all cases has significant scatter. In general, the time zero contact angles for core disks saturated in sodium chloride brine were smaller than those saturated in calcium chloride brine, distilled water, and J-13 water. The contact angles for samples saturated in distilled water, J-13 water and calcium chloride brine at time zero were similar. There was slight difference between the observed contact angles for smooth and rough surface of the test samples. The contact angles for smooth surfaces were smaller than for the rough surfaces

  18. Nuclear waste repository simulation experiments (brine migration), Asse Mine of the Federal Republic of Germany: Quarterly brine migration data report, October--December 1985

    International Nuclear Information System (INIS)

    Eckert, J.L.; Kalia, H.N.; Coyle, A.J.

    1988-03-01

    The tenth brine migration data report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through December 1985. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report includes test data for 31 months of operations on brine migration rates, borehole pressure, salt temperatures and thermomechanical behavior of the salt. 3 refs., 118 figs., 93 tabs

  19. Quarterly brine migration data report, May-September 1983: Nuclear Waste Repository simulation experiments (brine migration), Asse Mine of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Coyle, A.J.; Kalia, H.N.; Eckert, J.L.

    1987-04-01

    The first quarterly brine migration data report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through September 1983. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report also includes test data for the first 4 months of operations on brine migration rates, borehole pressure, salt temperatures, and thermomechanical behavior of the salt. The duration of the experiments will be approximately 2 years, ending in December 1985. 83 figs., 55 tabs

  20. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  1. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  2. Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic

    Science.gov (United States)

    Grasby, Stephen E.; Rod Smith, I.; Bell, Trevor; Forbes, Donald L.

    2013-06-01

    Two informally named basins (Mirabilite Basins 1 and 2) along a submergent coastline on Banks Island, Canadian Arctic Archipelago, host up to 1 m-thick accumulations of mirabilite (Na2SO4·10H2O) underlying stratified water bodies with basal anoxic brines. Unlike isostatically uplifting coastlines that trap seawater in coastal basins, these basins formed from freshwater lakes that were transgressed by seawater. The depth of the sill that separates the basins from the sea is shallow (1.15 m), such that seasonal sea ice formation down to 1.6 m isolates the basins from open water exchange through the winter. Freezing of seawater excludes salts, generating dense brines that sink to the basin bottom. Progressive freezing increases salinity of residual brines to the point of mirabilite saturation, and as a result sedimentary deposits of mirabilite accumulate on the basin floors. Brine formation also leads to density stratification and bottom water anoxia. We propose a model whereby summer melt of the ice cover forms a temporary freshwater lens, and rather than mixing with the underlying brines, it is exchanged with seawater once the ice plug that separates the basins from the open sea melts. This permits progressive brine development and density stratification within the basins.

  3. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  4. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    Science.gov (United States)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  5. Water Recovery from Brines to Further Close the Water Recovery Loop in Human Spaceflight

    Science.gov (United States)

    Jackson, W. Andrew; Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin E.; Hanford, Anthony J.; Shull, Sarah A.; Carter, D. Layne

    2014-01-01

    Further closure of water recovery systems will be necessary for future long duration human exploration missions. NASA's Space Technology Roadmap for Human Health, Life Support and Habitation Systems specified a milestone to advance water management technologies during the 2015 to 2019 timeframe to achieve 98% H2O recovery from a mixed wastewater stream containing condensate, urine, hygiene, laundry, and water derived from waste. This goal can only be achieved by either reducing the amount of brines produced by a water recovery system or by recovering water from wastewater brines. NASA convened a Technical Interchange Meeting (TIM) on the topic of Water Recovery from Brines (WRB) that was held on January14-15th, 2014 at Johnson Space Center. Objectives of the TIM were to review systems and architectures that are sources of brines and the composition of brines they produce, review the state of the art in NASA technology development and perspectives from other industries, capture the challenges and difficulties in developing brine processing hardware, identify key figures of merit and requirements to focus technology development and evaluate candidate technologies, and identify other critical issues including microgravity sensitivity, and concepts of operation, safety. This paper represents an initial summary of findings from the workshop.

  6. Kinetics of radioisotope exchange between brine and rock in a geothermal system

    International Nuclear Information System (INIS)

    Hammond, D.E.; Zukin, J.G.; Teh-Lung Ku

    1988-01-01

    A wide range of isotopes in the /sup 238/U, /sup 235/U, and /sup 232/Th decay chains was measured in geothermal brines collected from two production zones at 1898 and 3220 m in the Salton Sea Scientific Drilling Project well. High concentrations of radium, radon, and lead isotopes are generated and maintained by the input of these isotopes from solid phases into brine by both recoil and leaching processes, by the high chloride content of the brine which complexes radium and lead, and by the apparent absence of suitable unoccupied adsorption sites. In contrast, uranium, thorium, actinium, bismuth, and polonium isotopes all have low concentrations due to their efficient sorption from brine to rock. Measurements of short-lived isotopes in these decay series yield insights regarding the mechanisms controlling radioisotope exchange, and they permit estimation of rates of brine-rock interaction. For example, the /sup 228/Ac//sup 228/Ra activity ratio of 0.2 in brines indicates that the mean residence time of actinium in solution before sorption onto solid surfaces is less than 2.5 hours

  7. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  8. Chemistry of Uranium in brines related to the spent fuel disposal in a salt repository. Part I

    International Nuclear Information System (INIS)

    Diaz Arocas, P.; Grambow, B.

    1993-01-01

    This report describes the work performed from september 1991 to december 1992. Our work is focused on the chemistry of uranium in highly saline solution. Experiments were performed to study the formation process and the stability of solid phases of U(VI) in NaCl solution at different ionic strength. The characterization of solid phases and of uranium concentration in solution are reported as a function of time. Experiments in NaClO 4 at low concentration have been performed for comparison. A method is proposed for uranium analyses in highly concentrated salt solution. The work has been carried out in KfK (INE), Germany. (Author) 10 figs

  9. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    Science.gov (United States)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to

  10. Disposal of high-level waste from nuclear power plants in Denmark. Salt dome investigations. v.4

    International Nuclear Information System (INIS)

    1981-01-01

    The present report deals with construction, operation and sealing of disposal facilities for high-level waste in a salt dome. It is volume 4 of five volumes that together constitute the final report on the Danish utilities' salt dome investigations. The safety investigations were carried out for a deep-hole disposal facility located in the salt dome on Mors. In principle the results of the investigations also apply to a shaft/mine disposal facility. The facility is designed for the disposal of vitrified high-level waste in the shape of glass canisters. There is a low concentration of waste in each canister, approx. 10%. Furthermore, it was selected to place the waste in an intermediate storage for about 40 years prior to its final disposal. Consequently, heat generation in the waste at the time of final disposal will be modest, resulting in low temperature increase in the salt. As an example, the highest temperature increase will be approx. 40 deg. C. and it will occur at the edge of the hole five years after disposal has taken place. Prior to disposal, the glass canisters are encased in steel casks with 15 cm thick walls. Three canisters are placed in each cask, and 215 casks are stacked on top on one another in each deep-hole from a depth of 1200 m to 2500 m underground. The additional encasing is designed to protect the glass from dissolution should any brine reach the disposal facility. Furthermore, the steel cask protects the glass canisters against pressure from the wall of the hole. The technical design of the disposal facility gives it a considerable safety margin against unexpected events. The investigations proved Cretaceous strata to constitute an effective secondary barrier that would prevent radioactive matter from travelling from the underlying disposal facility to the biosphere. (BP)

  11. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  12. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  13. Actinide biocolloid formation in brine by halophilic bacteria

    International Nuclear Information System (INIS)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-01-01

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  14. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    International Nuclear Information System (INIS)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-01-01

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  15. Actinide biocolloid formation in brine by halophilic bacteria

    International Nuclear Information System (INIS)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.B.; Papenguth, H.W.

    1998-01-01

    The authors examined the ability of a halophilic bacterium (WIPP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited solubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellularly as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  16. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  17. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-04-01

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  18. Municipal sludge disposal economics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [SRI International, Menlo Park, CA; Bomberger, Jr, D C; Lewis, F M

    1977-10-01

    Costs for disposal of sludges from a municipal wastewater treatment plant normally represents greater than or equal to 25% of the total plant operating cost. The following 5 sludge handling options are considered: chemical conditioning followed by vacuum filtration, and incineration; high-pressure wet-air oxidation and vacuum filtration or filter press prior to incineration; thermal conditioning, vacuum filtraton, and incineration; high-pressure wet-air oxidation and vacuum filtration, with ash to landfill; aerobic or anaerobic digestion, followed by chemical conditioning, vacuum filtration, and disposal on land; and chemical conditioning, followed by a filter press, flash dryer, and sale as fertilizer. The 1st 2 options result in the ultimate disposal of small amounts of ash in a landfill; the digestion options require a significant landfill; the fertilizer option requires a successful marketing and sales effort. To compare the economies of scale for the options, analyses were performed for 3 plant capacities - 10, 100, and 500 mgd; as plant size increases, the economies of scale for incineration system are quite favorable. The anaerobic digestion system has a poorer capital cost-scaling factor. The incinerator options which start with chemical conditioning consume much less electrical power at all treatment plant sizes; incinerator after thermal conditioning uses more electricity but less fuel. Digestion requires no direct external fossil fuel input. The relative use of fuel is constant at all plant sizes for other options. The incinerator options can produce a significant amount of steam which may be used. The anaerobic digestion process can be a significant net producer of fuel gas.

  19. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  20. Radioactive waste material disposal

    Science.gov (United States)

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  1. Disposal - practical problems

    International Nuclear Information System (INIS)

    Hycnar, J.; Pinko, L.

    1995-01-01

    Most Polish power plants have stockyards for storage of fly ash and slag. This paper describes the: methods of fly ash and slag storage used, methods of conveying the waste to the stockpiles (by railway cars, trucks, belt conveyors or hydraulically); construction of wet stockyards and dry stockyards and comparison of the ash dumped, development of methods of ash disposal in mine workings; composition and properties of fly ash and slag from hard coal; and the effects of ash storage yards on the environment (by leaching of trace elements, dust, effect on soils, and noise of machinery). 16 refs., 3 figs., 6 tabs

  2. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  3. Waste disposal experts meet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    Problems connected with the disposal into the sea of radioactive wastes from peaceful uses of atomic energy are being examined by a panel of experts, convened by the International Atomic Energy Agency. These experts from eight different countries held a first meeting at IAEA headquarters in Vienna from 4-9 December 1958, under the chairmanship of Dr. Harry Brynielsson, Director General of the Swedish Atomic Energy Company. The countries represented are: Canada, Czechoslovakia, France, Japan, Netherlands, United Kingdom and United States. The group will meet again in 1959. (author)

  4. HLW Disposal System Development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y. (and others)

    2007-06-15

    A KRS is suggested through design requirement analysis of the buffer and the canister which are the constituent of disposal system engineered barrier and HLW management plans are proposed. In the aspect of radionuclide retention capacity, the thickness of the buffer is determined 0.5m, the shape to be disc and ring and the dry density to be 1.6 g/cm{sup 3}. The maximum temperature of the buffer is below 100 .deg. which meets the design requirement. And bentonite blocks with 5 wt% of graphite showed more than 1.0 W/mK of thermal conductivity without the addition of sand. The result of the thermal analysis for proposed double-layered buffer shows that decrease of 7 .deg. C in maximum temperature of the buffer. For the disposal canister, the copper for the outer shell material and cast iron for the inner structure material is recommended considering the results analyzed in terms of performance of the canisters and manufacturability and the geochemical properties of deep groundwater sampled from the research area with granite, salt water intrusion, and the heavy weight of the canister. The results of safety analysis for the canister shows that the criticality for the normal case including uncertainty is the value of 0.816 which meets subcritical condition. Considering nation's 'Basic Plan for Electric Power Demand and Supply' and based on the scenario of disposing CANDU spent fuels in the first phase, the disposal system that the repository will be excavated in eight phases with the construction of the Underground Research Laboratory (URL) beginning in 2020 and commissioning in 2040 until the closure of the repository is proposed. Since there is close correlation between domestic HLW management plans and front-end/back-end fuel cycle plans causing such a great sensitivity of international environment factor, items related to assuring the non-proliferation and observing the international standard are showed to be the influential factor and acceptability

  5. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  6. Borehole disposal design concept

    International Nuclear Information System (INIS)

    RANDRIAMAROLAHY, J.N.

    2007-01-01

    In Madagascar, the sealed radioactive sources are used in several socioeconomic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become radioactive waste and can be still dangerous because they can cause harmful effects to the public and the environment. This work entitled 'Borehole disposal design concept' consists in putting in place a site of sure storage of the radioactive waste, in particular, sealed radioactive sources. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeologic, geochemical, meteorological and demographic conditions. This type of storage is favorable for the developing countries because it is technologically simple and economic. The cost of construction depends on the volume of waste to store and the depth of the Borehole. The Borehole disposal concept provides a good level of safety to avoid the human intrusion. The future protection of the generations against the propagation of the radiations ionizing is then assured. [fr

  7. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  8. Geoenvironment and waste disposal

    International Nuclear Information System (INIS)

    1983-07-01

    Within the activities planned by UNESCO in its Water and Earth Science programme, an interdisciplinary meeting on geology and environment was scheduled by this organization to be held by the beginning of 1983. At this meeting it was intended to consider geological processes in the light of their interaction and influence on the environment with special emphasis on the impact of various means of waste disposal on geological environment and on man-induced changes in the geological environment by mining, human settlements, etc. Considering the increasing interest shown by the IAEA in the field, through environmental studies, site studies, and impact studies for nuclear facilities and particularly nuclear waste disposal, UNESCO expressed the wish to organize the meeting jointly so as to take into account the experience gained by the Agency, and in order to avoid any duplication in the activities of the two organizations. This request was agreed to by the IAEA Secretariat and as a result, the meeting was organized by both organizations and held at IAEA Headquarters in Vienna from 21-23 March 1983. The report of this meeting is herewith presented

  9. Mine tailings disposal

    International Nuclear Information System (INIS)

    Gonzales, P.A.; Adams, B.J.

    1980-06-01

    The hydrologic evaluation of mine tailings disposal sites after they are abandoned is considered in relation to their potential environmental impact on a long term basis. There is a direct relation between the amounts and types of water leaving a disposal site and the severity of the potential damage to the environment. The evaluation of the relative distribution of the precipitation reaching the ground into evaporation, runoff and infiltration is obtained for a selected site and type of tailings material whose characteristics and physical properties were determined in the soils laboratory. A conceptual model of the hydrologic processes involved and the corresponding mathematical model were developed to simulate the physical system. A computer program was written to solve the set of equations forming the mathematical model, considering the physical properties of the tailings and the rainfall data selected. The results indicate that the relative distribution of the precipitation depends on the surface and upper layer of the tailings and that the position of the groundwater table is governed by the flow through the bottom of the profile considered. The slope of the surface of the mass of tailings was found to be one of the principal factors affecting the relative distribution of precipitation and, therefore, the potential pollution of the environment

  10. Sorption of cesium and strontium from concentrated brines by backfill barrier materials

    International Nuclear Information System (INIS)

    Winslow, C.D.

    1981-03-01

    The sorption of radionuclides from potentially intruding groundwater at a nuclear waste repository is a major chemical function of backfill barriers. In this study, various materials (including clays, zeolites and an inorganic ion exchanger) were screened for the sorption of the fission products cesium and strontium in concentrated brines. Representative brines A and B for the Waste Isolation Pilot Plant (WIPP), a proposed radioactive waste repository and test facility in bedded salt were used. Sorption properties were quantified using empirical distribution coefficients, k/sub d/. Of the materials examined, sodium titanate had the highest k/sub d/ for the sorption of Sr(II) in both brine A (k/sub d/ = 125 ml/g) and brine B(k/sub d/ = 500 to 600 ml/g). A mordenite-type zeolite was the most effective getter for Cs(I) in brine A (k/sub d = 27 ml/g), while illite yielded the highest k/sub d/ for Cs(I) in brine B (k/sub d/ = 115 ml/g). The relative merit of these k/sub d/ values is evaluated in terms of calculated estimates of breakthrough times for a backfill barrier containing the getter. Results show that a backfill mixture containing these getters is potentially an effective barrier to the migration of Sr(II) and Cs(I), although further study (especially for the sorption of cesium from brine A) is recommended. Initial mechanistic studies revealed competing ion effects which would support an ion exchange mechanism. K/sub d/'s were constant over a Sr(II) concentration range of 10 -11 to 10 -5 M and a Cs(I) concentration range of 10 -8 to 10 -5 M, supporting the choice of a linear sorption isotherm as a model for the results. Constant batch composition was shown to be attained within one week

  11. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    Directory of Open Access Journals (Sweden)

    Rehab Z. Abdallah

    2014-09-01

    Full Text Available The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I and the Kebrit Deep Upper (KB-U and Lower (KB-L brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.

  12. Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore

    Science.gov (United States)

    Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni

    2018-03-01

    Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.

  13. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  14. State-of-the-art review of brine migration studies in salt. Technical memorandum report RSI-0075

    International Nuclear Information System (INIS)

    Gnirk, P.F.; Krause, W.B.; Fossum, A.F.

    1981-09-01

    This report provides a state-of-the-art review of brine migration studies in rock salt. Emphasis is placed on the review of literature relating to brine migration phenomena around nuclear waste canisters. This review includes experimental work which has been conducted in the laboratory and in the field. In addition to the literature review, some additional thoughts on brine migration are given and a series of laboratory experiments is proposed. The proposed laboratory experiments are designed to determine whether or not a relationship exists between brine migration and temperature, temperature gradient and stress in rock salt. 34 references, 9 figures, 3 tables

  15. The brine shrimp Artemia: adapted to critical life conditions

    Directory of Open Access Journals (Sweden)

    Gonzalo M Gajardo

    2012-06-01

    Full Text Available The brine shrimp Artemia is a micro-crustacean, well adapted to the harsh conditions that severely hypersaline environments impose on survival and reproduction. Adaptation to these conditions has taken place at different functional levels or domains, from the individual (molecular-cellular-physiological to the population level. Such conditions are experienced by very few equivalent macro-planktonic organisms; thus, Artemia can be considered a model animal extremophile offering a unique suite of adaptations that are the focus of this review. The most obvious is a highly efficient osmoregulation system to withstand up to 10 times the salt concentration of ordinary seawater. Under extremely critical environmental conditions, for example when seasonal lakes dry out, Artemia takes refuge by producing a highly resistant encysted gastrula embryo (cyst capable of severe dehydration enabling an escape from population extinction. Cysts can be viewed as gene banks that store a genetic memory of historical population conditions. Their occurrence is due to the evolved ability of females to perceive forthcoming unstable environmental conditions expressed by their ability to switch reproductive mode, producing either cysts (oviparity when environmental conditions become deleterious or free-swimming nauplii (ovoviviparity that are able to maintain the population under suitable conditions.At the population level the trend is for conspecific populations to be fragmented into locally adapted populations, whereas species are restricted to salty lakes in particular regions (regional endemism. The Artemia model depicts adaptation as a complex response to critical life conditions, integrating and refining past and present experiences at all levels of organization. Although we consider an invertebrate restricted to a unique environment, the processes to be discussed are of general biological interest. Finally, we highlight the benefits of understanding the stress

  16. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  17. Near-field environment research at PNL relevant to brine migration phenomena

    International Nuclear Information System (INIS)

    Pederson, L.R.; Gray, W.J.; Hodges, F.N.

    1987-01-01

    Heat and radiation resulting from emplacement of a high level nuclear waste package in a repository in salt will cause physical and chemical changes in the host rock and any brines present. These changes may alter the performance of waste package materials. Gamma radiolysis decomposes water into hydrogen and oxygen, hydrogen peroxide, and various other free radical and ionic species. Gamma ray irradiation of rock salt decomposes that salt to sodium metal colloids and neutral chlorine (unknown form), changing both its physical and chemical properties. Sodium metal will react, if contacted by water, to form sodium hydroxide plus hydrogen gas, while chlorine will react to form hydrochloric plus hypochlorous acids. If irradiated salts are completely dissolved, little impact on the chemical environment is expected because the acids and bases formed will neutralize each other. Heat from the waste package can alter the chemistry of the host rock. Changes in temperature can also alter the chemistry of brines by precipitation of phases with retrograde solubility, addition of more soluble salt components to the brine, and by reaction with clays and other impurities in the salt. Some of these reactions could be accompanied by significant shifts in the pH. In experiments to date, no important changes in chemistry have been observed when typical Permian Basin intrusion or inclusion brines were heated up to 150 0 C with no excess site-specific salt present. When excess salt was included, acidic shifts were noted, increasing with brine-salt interaction time and temperature

  18. Lithium recovery from salt lake brine by H2TiO3.

    Science.gov (United States)

    Chitrakar, Ramesh; Makita, Yoji; Ooi, Kenta; Sonoda, Akinari

    2014-06-21

    The details of the ion exchange properties of layered H2TiO3, derived from the layered Li2TiO3 precursor upon treatment with HCl solution, with lithium ions in the salt lake brine (collected from Salar de Uyuni, Bolivia) are reported. The lithium adsorption rate is slow, requiring 1 d to attain equilibrium at room temperature. The adsorption of lithium ions by H2TiO3 follows the Langmuir model with an adsorptive capacity of 32.6 mg g(-1) (4.7 mmol g(-1)) at pH 6.5 from the brine containing NaHCO3 (NaHCO3 added to control the pH). The total amount of sodium, potassium, magnesium and calcium adsorbed from the brine was lithium ions from the brine containing competitive cations such as sodium, potassium, magnesium and calcium in extremely large excess. The results indicate that the selectivity order Li(+) ≫ Na(+), K(+), Mg(2+), Ca(2+) originates from a size effect. The H2TiO3 can be regenerated and reused for lithium exchange in the brine with an exchange capacity very similar to the original H2TiO3.

  19. Design calculations for a combined ventilation and brine injection experiment at the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Finsterle, S.; Pruess, K.

    1993-07-01

    A combined ventilation and brine injection test is planned at the Grimsel Test Site. The objective of the experiment is to study the transport of liquid and gas in the vicinity of a ventilated drift in order to evaluate the impact of the drying process on the characterization of the rock matrix. The proposed test sequence includes a desaturation-resaturation cycle. In addition, brine and fresh water will be injected from a borehole as trace electrolytes in order to better track the propagation of the individual phases. Results of design calculations using the TOUGH2 code show that injection of brine may significantly influence the unsaturated flow behavior by changing the pressure and saturation distribution around the borehole. Transport velocity is predicted to be very slow, requiring several months for the brine to reach the draft wall. However, the presence of preferential flow paths may reduce travel time and alter brine content and saturation distribution so that certain sensors may respond earlier or not at all

  20. Subsurface transport of inorganic and organic solutes from experimental road spreading of oil-field brine

    International Nuclear Information System (INIS)

    Bair, E.S.; Digel, R.K.

    1990-01-01

    A study designed to evaluate ground water quality changes resulting from spreading oil-field brine on roads for ice and dust control was conducted using a gravel roadbed that received weekly applications of brine eight times during the winter phase and 11 times during the summer phase of the study. A network of 11 monitoring wells and five pressure-vacuum lysimeters was installed to obtain ground water and soil water samples. Thirteen sets of water-quality samples were collected and analyzed for major ions, trace metals, and volatile organic compounds. Two sets of samples were taken prior to brine spreading, four sets during winter-phase spreading, five sets during summer-phase spreading, and two sets during the interim between the winter and summer phases. A brine plume delineated by elevated specific-conductance values and elevated chloride concentrations in ground water samples to exceed US EPA public drinking-water standards by two-fold during the winter phase and five-fold during the summer phase. No other major ions, trace metals, or volatile organic compounds exceeded the standards during the winter or summer phases. More than 99% dilution of the solutes in the brine occurred between the roadbed surface and the local ground water flow system. Further attenuation of calcium, sodium, potassium, and strontium resulted from adsorption, whereas further attenuation of benzene resulted from volatilization and adsorption

  1. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  2. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    Science.gov (United States)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  3. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  4. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA

    International Nuclear Information System (INIS)

    Haluszczak, Lara O.; Rose, Arthur W.; Kump, Lee R.

    2013-01-01

    Large quantities of highly saline brine flow from gas wells in the Marcellus Formation after hydraulic stimulation (“fracking”). This study assesses the composition of these flowback waters from the Marcellus shale in Pennsylvania, USA. Concentrations of most inorganic components of flowback water (Cl, Br, Na, K, Ca, Mg, Sr, Ba, Ra, Fe, Mn, total dissolved solids, and others) increase with time from a well after hydraulic stimulation. Based on results in several datasets reported here, the greatest concentration of Cl − in flowback water is 151,000 mg/L. For total Ra (combined 226 Ra and 228 Ra) in flowback, the highest level reported is 6540 pCi/L. Flowback waters from hydraulic fracturing of Marcellus wells resemble brines produced from conventional gas wells that tap into other Paleozoic formations in the region. The Br/Cl ratio and other parameters indicate that both types of brine formed by the evaporation of seawater followed by dolomitization, sulfate reduction and subsurface mixing with seawater and/or freshwater. Trends and relationships in brine composition indicate that (1) increased salt concentration in flowback is not mainly caused by dissolution of salt or other minerals in rock units, (2) the flowback waters represent a mixture of injection waters with highly concentrated in situ brines similar to those in the other formations, and (3) these waters contain concentrations of Ra and Ba that are commonly hundreds of times the US drinking water standards.

  5. Effects of gamma radiation on the survival and growth of brine shrimp, Artemia salina

    International Nuclear Information System (INIS)

    Engel, D.W.; Davis, E.M.

    1976-01-01

    To determine the effects of gamma radiation on the survival and growth of brine shrimp, nauplii and adults were exposed to different doses of radiation and maintained at different salinities and temperatures. The LD 50 determination demonstrated that nauplii were thirty to forty times more sensitive than the adults and had a 25-day LD 50 of 450 rads. Radiation and salinity reduced survival of adult female brine shrimp more than the males. The interaction of salinity, 5 and 50 ppt, temperature, 10, 20 and 30 0 C, and radiation, 25 to 100 kilorads, decreased the survival of both male and female brine shrimp, with the males having the greater sensitivity. Brine shrimp nauplii irradiated with doses of 500 and 2,500 rads had accelerated growth and matured earlier than the controls. A test of the effect of crowding on growth showed that volume per individual was important, and a dose of 500 rads accelerated brine shrimp growth in all concentrations, with the greatest increase at 8 ml/nauplius

  6. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  7. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  8. Disposal of tritiated effluents

    International Nuclear Information System (INIS)

    Hartmann, K.; Bruecher, H.

    1981-06-01

    After some introductory remarks on the origin of tritium, its properties and its behaviour in a reprocessing plant three alternative methods for the disposal of tritiated effluents produced during reprocessing are described (deep well injection, in-situ solidification, deep-sea dumping) and compared with each other under various aspects. The study is based on the concept of a 1400 t/a reprocessing plant for LWR fuel, which annually produces 3000 m 3 of tritiated waste water with a tritium content of 6.5 x 10 12 Bq/m 3 as well as a residual fission product and actinide content. An assessment of the three methods under the aspects of simplicity, reliability, safety, costs, state of development and materials handling revealed advantages in favour of 'injection', followed by 'dumping' and 'in-situ solidification'. (orig./HP) [de

  9. Toxic waste liquor disposal

    International Nuclear Information System (INIS)

    Burton, W.R.

    1985-01-01

    Toxic waste liquors, especially radio active liquors, are disposed in a sub-zone by feeding down a bore hole a first liquid, then a buffer liquid (e.g. water), then the toxic liquors. Pressure variations are applied to the sub-zone to mix the first liquid and liquors to form gels or solids which inhibit further mixing and form a barrier between the sub-zone and the natural waters in the environment of the sub-zone. In another example the location of the sub-zone is selected so that the environement reacts with the liquors to produce a barrier around the zone. Blind bore holes are used to monitor the sub-zone profile. Materials may be added to the liquor to enhance barrier formation. (author)

  10. Radwaste Disposal Safety Analysis

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, C. H.; Lee, Y. M.; Lee, S. H.; Jeong, J. T.; Choi, J. W.; Park, S. W.; Lee, H. S.; Kim, J. H.; Jeong, M. S.

    2010-02-01

    For the purpose of evaluating annual individual doses from a potential repository disposing of radioactive wastes from the operation of the prospective advanced nuclear fuel cycle facilities in Korea, the new safety assessment approaches are developed such as PID methods. The existing KAERI FEP list was reviewed. Based on these new reference and alternative scenarios are developed along with a new code based on the Goldsim. The code based on the compartment theory can be applied to assess both normal and what if scenarios. In addition detailed studies on THRC coupling is studied. The oriental biosphere study ends with great success over the completion of code V and V with JAEA. The further development of quality assurance, in the form of the CYPRUS+ enables handy use of it for information management

  11. Composition and Structure of Microalgae Indicated in Raman and Hyperspectral Spectra and Scanning Electron Microscopy: from Cyanobacteria to Isolates from Coal-bed Methane Water Ponds

    Science.gov (United States)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2017-12-01

    Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and

  12. Cost effective disposal of whey

    Energy Technology Data Exchange (ETDEWEB)

    Zall, R R

    1980-01-01

    Means of reducing the problem of whey disposal are dealt with, covering inter alia the pre-treatment of cheese milk e.g., by ultrafiltration to lower the whey output, utilization of whey constituents, use of liquid whey for feeding, fermenting whey to produce methane and alcohol, and disposal of whey by irrigation of land or by purification in sewage treatment plants.

  13. Melter Disposal Strategic Planning Document

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  14. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  15. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  16. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  17. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  18. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  19. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  20. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  1. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Blair, I.

    1985-01-01

    The paper defends the case for marine disposal of radioactive wastes. The amount of packaged waste disposed; the site for marine disposal; the method of disposal; the radioactivity arising from the disposal; and safety factors; are all briefly discussed. (U.K.)

  2. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  3. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  4. Influence of radiolytic products on the chemistry of uranium VI in brines

    International Nuclear Information System (INIS)

    Lucchini, J-F.; Reed, D.T.; Borkowski, M.; Rafalski, A.; Conca, J.

    2004-01-01

    In the near field of a salt repository of nuclear waste, ionizing radiations can strongly affect the chemistry of concentrated saline solutions. Radiolysis can locally modify the redox conditions, speciation, solubility and mobility of the actinide compounds. In the case of uranium VI, radiolytic products can not only reduce U(VI), but also react with uranium species. The net effect on the speciation of uranyl depends on the relative kinetics of the reactions and the buildup of molecular products in brine solutions. The most important molecular products in brines are expected to be hypochlorite ion, hypochlorous acid and hydrogen peroxide. Although U(VI) is expected not to be significantly affected by radiolysis, the combined effects of the major molecular radiolytic products on the chemistry of U(VI) in brines have not been experimentally established previously. (authors)

  5. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    Science.gov (United States)

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  6. In situ brine migration experiments at the Avery Island salt mine

    International Nuclear Information System (INIS)

    Krause, W.B.; Van Sambeek, L.L.; Stickney, R.G.

    1980-01-01

    An in situ brine movement study was conducted at the Avery Island Salt Mine of the International Salt Company in southwestern Louisiana. The objective of the in situ experiments was to relate field measurements to previously determined laboratory and analytical results for the purpose of determining the rate and amount of brine movement through dome salt when subjected to heating. The heating in the experiments was provided by electrical heaters emplaced in the salt mine floor. An understanding of thermally induced brine movement is essential from the standpoint of identifying conditions which may influence the physical integrity of the nuclear waste canisters or impede the functional performance of the waste package system in a nuclear waste repository in geologic salt. 28 refs

  7. Brine migration resulting from pressure increases in a layered subsurface system

    Science.gov (United States)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each

  8. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege

    2015-02-26

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.

  9. Efficacy of chlorine dioxide against Listeria monocytogenes in brine chilling solutions.

    Science.gov (United States)

    Valderrama, W B; Mills, E W; Cutter, C N

    2009-11-01

    Chilled brine solutions are used by the food industry to rapidly cool ready-to-eat meat products after cooking and before packaging. Chlorine dioxide (ClO(2)) was investigated as an antimicrobial additive to eliminate Listeria monocytogenes. Several experiments were performed using brine solutions made of sodium chloride (NaCl) and calcium chloride (CaCl(2)) inoculated with L. monocytogenes and/or treated with 3 ppm of ClO(2). First, 10 and 20% CaCl(2) and NaCl solutions (pH 7.0) were inoculated with a five-strain cocktail of L. monocytogenes to obtain approximately 7 log CFU/ml and incubated 8 h at 0 degrees C. The results demonstrated that L. monocytogenes survived in 10% CaCl(2), 10 and 20% NaCl, and pure water. L. monocytogenes levels were reduced approximately 1.2 log CFU/ml in 20% CaCl(2). Second, inoculated ( approximately 7 log CFU/ml) brine solutions (10 and 20% NaCl and 10% CaCl(2)) treated with 3 ppm of ClO(2) resulted in a approximately 4-log reduction of the pathogen within 90 s. The same was not observed in a solution of 20% CaCl(2); further investigation demonstrated that high levels of divalent cations interfere with the disinfectant. Spent brine solutions from hot dog and ham chilling were treated with ClO(2) at concentrations of 3 or 30 ppm. At these concentrations, ClO(2) did not reduce L. monocytogenes. Removal of divalent cations and organic material in brine solutions prior to disinfection with ClO(2) should be investigated to improve the efficacy of the compound against L. monocytogenes. The information from this study may be useful to processing establishments and researchers who are investigating antimicrobials in chilling brine solutions.

  10. Biological screening of chitosan derivatives using Artemia spp. (brine shrimp test)

    International Nuclear Information System (INIS)

    Rozaini Mohd Zohdi; Norimah Yusof; Asnah Hassan

    2006-01-01

    The present study reported on the screening of six selected chitosan derivatives using the brine shrimp lethality bioassay. In addition, the irradiation effects towards the compounds at 25 kGy were also studied. Chitosan is a natural polysaccharide derived from chitin, extracted from the exoskeletons of crustaceans and insects as well as walls of some bacteria and fungi. Brine shrimp test is employed for the screening of toxicity of chitosan derivatives. Toxicity test was carried out by adding different concentrations of tested samples to approximately 5 to 15 Artemia salina larvae. Biological activity using the brine shrimp bioassay was recorded as LC 50 i.e. lethal concentration that kills 50% of the larvae within 24 hours of contact with the samples. Compounds are considered toxic when the LC 50 value is lower than 1 mg/ml by brine shrimp bioassay and practically non-toxic when the value is larger. Of the samples tested, none were toxic to the brine shrimp (LC 50 > 1 mg/ml). The LC 50 values of all chitosan derivatives tested, control and irradiated at 25 kGy were above 1 mg/ml thus all tested samples are considered non-toxic. This study demonstrated that irradiation at 25 kGy showed no significant effects towards the toxicity of the chitosan derivatives. After irradiation, only NO-CMC exhibited marked decrease in LC 50 value, reduced by 3-fold from 34.96 mg/ml to 11.07 mg/ml while O-CMC (5.45 mg/ml to 5 mg/ml) showed no clear differences based on rough estimation. This study suggested that brine shrimp bioassay is a simple, reliable and convenient method that could provide useful clues of the relative toxic potential of the sample tested. (Author)

  11. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  12. Production and characterization of a functional Iranian white brined cheese by replacement of dairy fat with vegetable oils.

    Science.gov (United States)

    Achachlouei, B Fathi; Hesari, J; Damirchi, S Azadmard; Peighambardoust, Sh; Esmaiili, M; Alijani, S

    2013-10-01

    Full-fat cheese usually contains high amounts of saturated fatty acids and cholesterol, which may have negative health effects. In this study, full-fat white brined cheese, as a control sample, and experimental cheeses with olive and canola oils (T1, white brined cheese containing 50% canola oil, T2, white brined cheese containing 50% olive oil, T3, white brined cheese containing 100% canola oil and T4, white brined cheese containing 100% olive oil) were prepared from bovine milk. Physicochemical properties, lipolysis, proteolysis patterns and sensorial properties in the prepared samples were determined during 80 days of storage at 20-day intervals. Cheese incorporating vegetable oils showed lower amounts of saturated fatty acids and higher amounts of unsaturated fatty acids compared with the full-fat cheese (control) samples. Moisture, pH, lipolysis value, as assessed by the acid-degree value, and proteolysis values (pH 4.6 SN/TN% and NPN/TN%) significantly (p titrable acidity decreased during 40 days of ripening but then increased slightly. Sensory properties of white brined cheese incorporating with vegetable oils were different from those of full-fat cheese samples. White brined cheese containing olive and canola oils (100% fat substitution) received better sensory scores compared to other samples. The results showed that it is possible to replace dairy fat with olive and canola oils, which can lead to produce a new healthy and functional white brined cheese.

  13. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  14. Handling the problem of the brine tubing bend on the basis of experiences gained during UGS - Mogilno construction

    International Nuclear Information System (INIS)

    Zola, P.; Skwarczynski, S.

    2005-01-01

    In the article problems of brine tubing bending and bent string cutting methods in the well conditions has been described. Implementation of safety joint in the brine string as an alternative solution that eliminates the need of cutting has been presented as well. (authors)

  15. Vertical distributions and speciation of dissolved rare earth elements in the anoxic brines of Bannock Basin, eastern Mediterranean Sea

    NARCIS (Netherlands)

    Schijf, Johan; Baar, Hein J.W. de; Millero, Frank J.; Byrne, R.H.

    1995-01-01

    Vertical distributions of dissolved rare earth elements (REEs) are presented for the anoxic, highly sulfidic brines of Bannock Basin in the eastern Mediterranean Sea. REE concentrations at the seawater-brine interface are the highest ever recorded in the water column of an anoxic basin and

  16. ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT STABILIZED BASIN 43 GROUNDWATER BRINE

    International Nuclear Information System (INIS)

    COOKE GA; DUNCAN JB; LOCKREM LL

    2008-01-01

    This report is an initial report on the laboratory effort executed under RPP-PLAN-33338, Test Plan for the Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine. This report delineates preliminary data obtained under subcontract 21065, release 30, from the RJ Lee Group, Inc., Center for Laboratory Sciences. The report is predicated on CLS RPT-816, Draft Report: Assessment of Technetium Leachability in Cement Stabilized Basin 43 Groundwater Brine. This document will be revised on receipt of the final RJ Lee Group, Inc., Center for Laboratory Sciences report, which will contain data subjected to quality control and quality assurance criteria

  17. Brine transport studies in the bedded salt of the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    McTigue, D.F.; Nowak, E.J.

    1987-01-01

    Brine flow has been measured to unheated boreholes for periods of a few days and to heated holes for two years in the WIPP facility. It is suggested that Darcy flow may dominate the observed influx of brine. Exact solutions to a linearized model for one-dimensional, radial flow are evaluated for conditions approximating the field experiments. Flow rates of the correct order of magnitude are calculated for permeabilities in the range 10 -21 to 10 -20 m 2 (1 to 10 nanodarcy) for both the unheated and heated cases. 20 refs., 3 figs., 1 tab

  18. Salting by vacuum brine impregnation in nitrite-free lonza: effect on Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Annalisa Serio

    2017-01-01

    Full Text Available Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or straindependent. This result is of particular importance for future applications of VBI in lonza manufacturing.

  19. Salting by Vacuum Brine Impregnation in Nitrite-Free Lonza: Effect on Enterobacteriaceae.

    Science.gov (United States)

    Serio, Annalisa; Chaves-López, Clemencia; Rossi, Chiara; Pittia, Paola; Rosa, Marco Dalla; Paparella, Antonello

    2017-01-24

    Lonza is a traditional Italian meat product made from whole pork muscles, which is typically cured by dry salting. In this work, we study the effects of vacuum brine impregnation (VBI) as an alternative salting method on the survival of Enterobacteriaceae, in presence and in absence of nitrites. In comparison with the traditional brining process, VBI contributed to reducing the Enterobacteriaceae population on product surface but induced contamination of the inner muscle tissues. Our results suggest that the species isolated became adapted to processing conditions, and salt tolerance was species- or strain-dependent. This result is of particular importance for future applications of VBI in lonza manufacturing.

  20. Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine

    DEFF Research Database (Denmark)

    Taheri, Ali; Farvin, Sabeena; Jacobsen, Charlotte

    2014-01-01

    In the present study proteins isolated from herring brine, which is a by-product of marinated herring production were evaluated for their functional properties and antioxidant activity. Herring brine was collected from the local herring industry and proteins were precipitated by adjusting the p...... to delay iron catalyzed lipid oxidation in 5% fish oil in water emulsions and the 10–50kDa fraction was the best. These results show the potential of proteins and peptide fractions recovered from waste water from the herring industry as source of natural antioxidants for use in food products....

  1. Long-term brine migration through an engineered shaft seal system

    International Nuclear Information System (INIS)

    Fryar, D.G.; Beach, J.A.; Kelley, V.A.; Knowles, M.K.

    1997-01-01

    The shaft seal system for the Waste Isolation Pilot Plant (WIPP) must provide a barrier to the migration of fluids within the shafts to prevent the release of contaminants to the accessible environment. To investigate the performance of the shaft seal system, a set of fluid flow performance models was developed based upon the physical characteristics of the WIPP shaft seal system and the surrounding geologic media. This paper describes the results of a numerical model used to investigate the long-term potential for brine migration through the shaft seal system. Modeling results demonstrate that the WIPP shaft seal system will effectively limit brine migration within the repository shafts

  2. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  3. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-01-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone ''Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures'' (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  4. Nuclear waste repository simulation experiments (brine migration), Asse Mine of the Federal of Germany: Quarterly brine migration data report, July-September 1984

    International Nuclear Information System (INIS)

    Coyle, A.J.; Kalia, H.N.; Eckert, J.L.

    1986-10-01

    The fifth brine migration data status report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through September 1984. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report also includes test data for the first 16 months of operations on brine migration rates, borehole pressure, salt temperatures, and thermomechanical behavior of the salt. Annual reports have been prepared for the years 1983 and 1984, describing the test activities on a yearly basis (Rothfuchs et al., 1984, 1986). The duration of the experiments will be approximately 2 years, ending in December 1985. 2 refs., 118 figs., 91 tabs

  5. Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A

    Science.gov (United States)

    Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.

    2008-01-01

    New coal-gas exploration and production in northern Louisiana and south-central Mississippi, Gulf of Mexico Basin, is focused on the Wilcox Group (Paleocene–Eocene), where the depth to targeted subbituminous C to high volatile C bituminous coal beds ranges from 300 to 1680 m, and individual coal beds have a maximum thickness of about 6 m. Total gas content (generally excluding residual gas) of the coal beds ranges from less than 0.37 cm3/g (as-analyzed or raw basis; 1.2 cm3/g, dry, ash free basis, daf) at depths less than 400 m, to greater than 7.3 cm3/g (as-analyzed basis; 8.76 cm3/g, daf) in deeper (> 1,500 m) parts of the basin. About 20 Wilcox coal-gas wells in northern Louisiana produce from 200 to 6485 m3 of gas/day and cumulative gas production from these wells is approximately 25 million m3 (as of December, 2006). U.S. Geological Survey assessment of undiscovered, technically recoverable gas resources in the Gulf of Mexico Coastal Plain, including northern and south-central Mississippi, indicates that coal beds of the Wilcox Group contain an estimated mean total 109.3 million m3 (3.86 trillion ft3) of producible natural gas.To determine the origin of the Wilcox Group coal gases in northern Louisiana, samples of gas, water, and oil were collected from Wilcox coal and sandstone reservoirs and from under- and overlying Late Cretaceous and Eocene carbonate and sandstone reservoirs. Isotopic data from Wilcox coal-gas samples have an average δ13CCH4 value of − 62.6‰ VPDB (relative to Vienna Peedee Belemnite) and an average δDCH4 value of − 199.9‰ VSMOW (relative to Vienna Standard Mean Ocean Water). Values of δ13CCO2 range from − 25.4 to 3.42‰ VPDB. Produced Wilcox saline water collected from oil, conventional gas, and coalbed gas wells have δDH2O values that range from − 27.3 to − 18.0‰ VSMOW. These data suggest that the coal gases primarily are generated in saline formation water by bacterial reduction of CO2

  6. Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Peter D.; Hackley, Paul C. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Breland, F. Clayton Jr. [Louisiana Department of Natural Resources, 617 North 3rd Street, Baton Rouge, LA 70802 (United States)

    2008-10-02

    New coal-gas exploration and production in northern Louisiana and south-central Mississippi, Gulf of Mexico Basin, is focused on the Wilcox Group (Paleocene-Eocene), where the depth to targeted subbituminous C to high volatile C bituminous coal beds ranges from 300 to 1680 m, and individual coal beds have a maximum thickness of about 6 m. Total gas content (generally excluding residual gas) of the coal beds ranges from less than 0.37 cm{sup 3}/g (as-analyzed or raw basis; 1.2 cm{sup 3}/g, dry, ash free basis, daf) at depths less than 400 m, to greater than 7.3 cm{sup 3}/g (as-analyzed basis; 8.76 cm{sup 3}/g, daf) in deeper (> 1,500 m) parts of the basin. About 20 Wilcox coal-gas wells in northern Louisiana produce from 200 to 6485 m{sup 3} of gas/day and cumulative gas production from these wells is approximately 25 million m{sup 3} (as of December, 2006). U.S. Geological Survey assessment of undiscovered, technically recoverable gas resources in the Gulf of Mexico Coastal Plain, including northern and south-central Mississippi, indicates that coal beds of the Wilcox Group contain an estimated mean total 109.3 million m{sup 3} (3.86 trillion ft{sup 3}) of producible natural gas. To determine the origin of the Wilcox Group coal gases in northern Louisiana, samples of gas, water, and oil were collected from Wilcox coal and sandstone reservoirs and from under- and overlying Late Cretaceous and Eocene carbonate and sandstone reservoirs. Isotopic data from Wilcox coal-gas samples have an average {delta}{sup 13}C{sub CH4} value of - 62.6 permille VPDB (relative to Vienna Peedee Belemnite) and an average {delta}D{sub CH4} value of - 199.9 permille VSMOW (relative to Vienna Standard Mean Ocean Water). Values of {delta}{sup 13}C{sub CO2} range from - 25.4 to 3.42 permille VPDB. Produced Wilcox saline water collected from oil, conventional gas, and coalbed gas wells have {delta}D{sub H2O} values that range from - 27.3 to - 18.0 permille VSMOW. These data suggest that the

  7. Experimental alteration of R7T7 glass in salt brines at 90 deg C and 150 deg C

    International Nuclear Information System (INIS)

    Godon, N.; Vernaz, E.; Gin, S.; Beaufort, D.; Thomassin, J.H.

    1991-01-01

    Static experiments have been developed to investigate the R7T7 glass corrosion in four natural salt brines (brines 1 and 3: pure halite, brines 2 and 4: high Mg, K fluid inclusions rich halite), at 90 deg C and 150 deg C with 0.7 cm -1 S/V ratio and at 11 different running times. Analysis of brines after alteration (pHmeter and ICP) added to a detailed study of the crystalline phases developed at the interface glass-brine (XRD,SEM and Microprobe), showed that the influence of the compositional difference is more important on the nature of the secondary phases formed than on the corrosion rate of the glass. After 91 days of alteration at 150 deg C stady states to be reached (after 40 days at 90 deg C). A long term experiment (1 year) is necessary to confirm this hypothesis. 7 refs., 7 figs., 2 tabs

  8. Kinetic Effect on the Freezing of Ammonium-Sodium-Carbonate-Chloride Brines and Implications for Origin of Ceres' Bright Spots

    Science.gov (United States)

    Hodyss, R. P.; Thomas, E. C.; Vu, T. H.; Johnson, P. V.; Choukroun, M.

    2017-12-01

    Subsurface brines on Ceres containing natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3 have been proposed to reach the dwarf planet's surface from an internal reservoir, where the brines freeze and result in bright spots across Ceres. Kinetically frozen solutions containing the likely constituents of Ceres' subsurface brines (ammonium, sodium, carbonate, and chloride ions) were studied via infrared and micro-Raman spectroscopy, where the flash-frozen mixtures were found to preferentially form ammonium chloride and ammonium bicarbonate, even in sodium-dominated solutions. Additionally, sodium chloride only formed when sodium or chloride (or both) were present in excess in the brine solutions. Raman spectroscopy was further employed to analyze the effect of vacuum exposure on these frozen brines over longer periods of time to simulate the surface conditions of Ceres.

  9. Geological disposal system development

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected

  10. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  11. Researching radioactive waste disposal

    International Nuclear Information System (INIS)

    Feates, F.; Keen, N.

    1976-01-01

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared. (U.K.)

  12. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  13. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  14. Radwaste disposal drum centrifuge

    International Nuclear Information System (INIS)

    Rubin, L.S.; Deltete, C.P.; Crook, M.R.

    1988-01-01

    The drum or processing bowl of the DDC becomes the disposal container when the filling operation is completed. Rehandling of the processed resin is eliminated. By allowing the centrifugally compacted resin to remain in the processing container, extremely efficient waste packaging can be achieved. The dewatering results and volume reductions reported during 1986 were based upon laboratory scale testing sponsored by the Electric Power Research Institute (EPRI) and the Department of Energy (DOE). Since the publication of these preliminary results, additional testing using a full-scale prototype DDC has been completed, again under the auspices of the DOE. Full-scale testing has substantiated the results of earlier testing and has formed the basis for preliminary discussions with the U.S. Nuclear Regulatory Commission (NRC) regarding DDC licensing for radioactive applications. A comprehensive Topical Report and Process Control Program is currently being prepared for submittal to the NRC for review under a utility licensing action. Detailed cost-benefit analyses for actual plant operations have been prepared to substantiate the attractiveness of the DDC. Several methods to physically integrate a DDC into a nuclear power plant have also been developed

  15. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  16. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  17. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  18. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    More than 90 percent of the volume of radioactive waste that are generated in France can be managed in surface disposal facilities. Two facilities are presently operated by ANDRA: the Centre de l'Aube disposal facility that is dedicated to low and intermediate short lived waste and the Morvilliers facility for very low level waste. The Centre de l'Aube facility was designed at the end of the years 1980 to replace the Centre de la Manche facility that ended operation in 1994. In order to achieve as low external exposure as possible for workers it was decided to use remote handling systems as much as possible. Therefore it was necessary to standardize the types of waste containers. But taking into account the fact that these waste were conditioned in existing facilities, it was not possible to change a major part of existing packages. As a consequence, 6 mobile roofs were constructed to handle 12 different types of waste packages in the disposal vaults. The scope of Centre de l'Aube was mainly to dispose operational waste. However some packages, as 5 or 10 m 3 metallic boxes, could be used for larger waste generated by decommissioning activities. The corresponding flow was supposed to be small. After the first years of operations, it appeared interesting to develop special procedures to dispose specific large waste in order to avoid external exposure costly cutting works in the generating facilities. A 40 m 3 box and a large remote handling device were disposed in vaults that were currently used for other types of packages. Such a technique could not be used for the disposal of vessel heads that were replaced in 55 pressurised water power reactors. The duration of disposal and conditioning operation was not compatible with the flow of standard packages that were delivered in the vaults. Therefore a specific type of vault was designed, including handling and conditioning equipment. The first pressure vessel head was delivered on the 29 of July 2004, 6 heads have been

  19. Disposal Site Information Management System

    International Nuclear Information System (INIS)

    Larson, R.A.; Jouse, C.A.; Esparza, V.

    1986-01-01

    An information management system for low-level waste shipped for disposal has been developed for the Nuclear Regulatory Commission (NRC). The Disposal Site Information Management System (DSIMS) was developed to provide a user friendly computerized system, accessible through NRC on a nationwide network, for persons needing information to facilitate management decisions. This system has been developed on NOMAD VP/CSS, and the data obtained from the operators of commercial disposal sites are transferred to DSIMS semiannually. Capabilities are provided in DSIMS to allow the user to select and sort data for use in analysis and reporting low-level waste. The system also provides means for describing sources and quantities of low-level waste exceeding the limits of NRC 10 CFR Part 61 Class C. Information contained in DSIMS is intended to aid in future waste projections and economic analysis for new disposal sites

  20. Disposal of old printed journals

    Indian Academy of Sciences (India)

    2018-02-21

    Feb 21, 2018 ... Notice inviting Tender for Disposal of Old Printed Journals & Old News Papers. Indian Academy of ... The competent authority also reserves the right to reject any or all the tenders without assigning any reason thereof. 19.