WorldWideScience

Sample records for coal-seam seismic waves

  1. In-seam seismics for coal

    Energy Technology Data Exchange (ETDEWEB)

    Saviron Cidon, L [OCICARBON, Madrid (Spain)

    1989-11-01

    The project objective is to assess the degree of applicability of in-seam seismic technology in Spanish coal mines for use as a tool to predict the presence of irregularities in coal seams. By the very nature of coal mining, a large number of in-seam seismic research results are put directly to the test by the ensuing underground operations. The statistics from this continuous process of verification in other countries show this method to be extremely successful. Indeed, the use of the method has become habitual and it is recognised as an efficient instrument for aiding the location of faults and other irregularities in coal seams. 3 figs., 2 tabs.

  2. On the quantitative determination of coal seam thickness by means of in-seam seismic surveys

    Czech Academy of Sciences Publication Activity Database

    Schott, W.; Waclawik, Petr

    2015-01-01

    Roč. 52, č. 10 (2015), s. 1496-1504 ISSN 0008-3674. [International Colloquium on Geomechanics and Geophysics /5./. Karolinka, 25.06.2014-27.06.2014] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : in-seam seismic (ISS) * ISS wave * Love wave * coal seam thickness * dispersion Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 1.877, year: 2015 http://www.nrcresearchpress.com/doi/full/10.1139/cgj-2014-0466#.VgqE1Zc70mt

  3. Detecting voids in a 0. 6m coal seam, 7m deep, using seismic reflection

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.D.; Steeples, D.W. (University of Kansas, Lawrence, KS (USA). Kansas Geological Survey)

    1991-07-01

    Surface collapse over abandoned subsurface coal mines is a problem in many parts of the world. High-resolution P-wave reflection seismology was successfully used to evaluate the risk of an active sinkhole to a main north-south railroad line in an undermined area of southeastern Kansas, USA. Water-filled cavities responsible for sinkholes in this area are in a 0.6 m thick coal seam, 7 m deep. Dominant reflection frequencies in excess of 200 Hz enabled reflections from the coal seam to be discerned from the direct wave, refractions, air wave, and ground roll on unprocessed field files. Repetitive void sequences within competent coal on three seismic profiles are consistent with the 'room and pillar' mining technique practiced in this area near the turn of the century. The seismic survey showed that the apparent active sinkhole was not the result of reactivated subsidence but probably the results of erosion. 14 refs., 6 figs.

  4. In-seam seismic surveys at Polio and Santiago collieries during the month of January

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In-seam seismic surveys were carried out over the last two weekends in January in order to assess two coal panels, one in seam Cuatro at Polio colliery between levels 4 and 5 of the Centella field and the other in the Mariana seam at Santiago colliery between levels 3,5, and 7 in the Desquite zone. Geological research called in-seam seismics, which is just being developed in Spain, is a geophysical method developed specially for detailed investigation of coal seams.

  5. Effects of torpedo blasting on rockburst prevention during deep coal seam mining in the Upper Silesian Coal Basin

    Directory of Open Access Journals (Sweden)

    Ł. Wojtecki

    2017-08-01

    Full Text Available In the Upper Silesian Coal Basin (USCB, coal seams are exploited under progressively more difficult geological and mining conditions (greater depth, higher horizontal stress, more frequent occurrence of competent rock layers, etc.. Mining depth, dislocations and mining remnants in coal seams are the most important factors responsible for the occurrence of rockburst hazards. Longwall mining next to the mining edges of neighbouring coal seams is particularly disadvantageous. The levels of rockburst hazards are minimised via the use of rockburst prevention methods. One active prevention method is torpedo blasting in roof rocks. Torpedo blastings are performed in order to decrease local stress concentrations in rock masses and to fracture the roof rocks to prevent or minimise the impact of high-energy tremors on excavations. The estimation of the effectiveness of torpedo blasting is particularly important when mining is under difficult geological and mining conditions. Torpedo blasting is the main form of active rockburst prevention in the assigned colliery in the Polish part of the USCB. The effectiveness of blasting can be estimated using the seismic effect method, in which the seismic monitoring data and the mass of explosives are taken into consideration. The seismic effect method was developed in the Czech Republic and is always being used in collieries in the Czech part of the coal basin. Now, this method has been widely adopted for our selected colliery in the Polish part of the coal basin. The effectiveness of torpedo blastings in the faces and galleries of the assigned longwall in coal seam 506 has been estimated. The results show that the effectiveness of torpedo blastings for this longwall was significant in light of the seismic effect method, which corresponds to the in situ observations. The seismic effect method is regularly applied to estimating the blasting effectiveness in the selected colliery.

  6. Indication to distinguish the burst region of coal gas from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Jian-yuan Cheng; Hong-wei Tang; Lin Xu; Yan-fang Li [China Coal Research Institute, Xi' an (China). Xi' an Research Institute

    2009-09-15

    The velocity of an over-burst coal seam is about 1/3 compared to a normal coal seam based on laboratory test results. This can be considered as a basis to confirm the area of coal and gas burst by seismic exploration technique. Similarly, the simulation result of the theoretical seismic model shows that there is obvious distinction between over-burst coal and normal coal based on the coal reflection's travel-time, energy and frequency. The results from the actual seismic data acquired in the coal and gas over-burst cases is consistent with that of the laboratory and seismic modeling; that is, in the coal and gas burst region, seismic reflection travel time is delayed, seismic amplitude is weakened and seismic frequency is reduced. Therefore, it can be concluded that seismic exploration technique is promising for use in distinguishing coal and gas over-burst regions based on the variation of seismic reflection travel time, amplitude and frequency. 7 refs., 6 figs.

  7. Seismic characterization of CO{sub 2} in coals

    Energy Technology Data Exchange (ETDEWEB)

    McCrank, J.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    The Mynheer coal seam was targeted for an enhanced coalbed methane (CBM) experiment. During initial testing of the reservoir permeability, 180 tonnes of carbon dioxide (CO{sub 2}) was injected into the seam. The objective of the study was to characterize the coal zones and to determine if the small volume of CO{sub 2} in the thinly bedded and seismically tuned reservoir can be detected in the 3D surface seismic data. The multi-well pilot project took place in the Pembina Field of west-central Alberta. The Ardley coals were tested for CO{sub 2} injection, enhanced CBM production, and CO{sub 2} sequestration. The seismic survey captured the condition of the reservoir after formation permeability tests. It was concluded that the anomalies seen in the seismic data can be attributed to changes in the physical properties of the coal due to CO{sub 2} adsorption. 2 refs., 5 figs.

  8. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  9. Seismic applications in CBM exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.E.; Lawton, D.C. [Calgary Univ., AB (Canada)

    2002-07-01

    This Power Point presentation reviewed seismic methods, coal seam seismology, seismology and coalbed methane (CBM) development, and time-lapse seismic imaging with reference to numerical modelling and physical testing. The issue of resolution versus detection in various seismic methods was discussed. The thinnest resolvable beds are usually about 1.0 m thick. Coal zones with thin seams can be mapped using seismic reflection, but individual seams are difficult to resolve in field data. In terms of coal seismology, it was noted that seismic surveys make it possible to identify seam thickness, field geometry, subsurface structuring and facies changes. Facies model make it possible to determine the depositional environment, coal type, coal quality and lateral continuity. Some successes in coal seismology include the Cedar Hill and Ferron fields in the San Juan Basin. Numerical modelling methods include digital dipole compressional sonic and density well logs through Ardley Coal Zone, P-wave synthetic seismograms generated in SYNTH (MATLAB), and the alteration of density/velocity values to create new seismograms. Another numerical method is to take the difference between original and altered seismograms. It was shown that dewatering causes a decrease in velocity of about 20 per cent, and a 15 per cent decrease in density. Changes as small as 5 per cent in reservoir properties can be successfully imaged. It was concluded that the identification of dewatered zones allow for optimal positioning of development wells. Further physical testing will involve wet and dry p-wave velocities, s-wave velocities will be tested, and velocities will be measured under pressure. 2 tabs., 10 figs.

  10. Workability of coal seams in the Upper Silesian Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Fels, M; Soltysik, K

    1978-04-01

    This paper presents results of an investigation on workability of coal seams of stratigraphic groups from 100 to 700 in the: Upper Silesian Coal Basin. Analyzed are 2900 petrographic logs taken in the longwall workings and in narrow openings as well as about 9000 individual samples. Workability of coal seams, floors and partings is determined. Workability is described by the indicator f, (according to the Protodyakonov shatter method) and the indicator U, (compression strength of the unshaped test samples). The mean percentage content of indivi dual petrographic groups of coal as well as the mean workability indicator, f, of coals in the stratigraphic groups of coal seams in Upper Silesia are also determined.

  11. Density-based reflectivity in seismic exploration for coal in Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C.; Lyatsky, H.V. (University of Calgary, AB (Canada). Dept. of Geology and Geophysics)

    1991-01-01

    At a coal field in central Alberta, Canada, the acoustic reflectivity of shallow coal seams was found to be dominated by the density contrast between coal and host bentonitic sediments. Sonic logs and a check-shot survey showed that the compressional-wave velocity is almost constant through the coal zone and the overlying sediments, and ranges in value between 2000 m/s and 2350 m/s over different parts of the coal field. The average coal density is 1400 kg/m{sup 3}, whereas the density of the sediments is about 2200 kg/m{sup 3}. Results are illustrated using logs from a typical drillhole in the coal field. At this location, the time reflectivity sequence based on both the density and sonic logs is very similar to that obtained when the density log only is used, with a constant velocity assumed through the coal zone. At another drillhole location in the coal field, where reflection seismic data had been acquired, a synthetic seismogram generated from the density log closely matches the stacked seismic section. 6 refs., 4 figs.

  12. Seismic modelling of coal bed methane strata, Willow Creek, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.E.; Mayer, R.; Lawton, D.C.; Langenberg, W. [Consortium for Research in Elastic Wave Exploration Seismology, Calgary, AB (Canada)

    2001-07-01

    The purpose is to determine the feasibility of applying high- resolution reflection seismic surveying to coalbed methane (CBM) exploration and development. Numerical reflection seismic methods are examined for measuring the mapping continuity and coherence of coal zones. Numerical modelling of a coal zone in Upper Cretaceous sediments near Willow Creek, Alberta indicates that seismic data that is predominantly of 100 Hz is required to map the coal zone and lateral facies variations within the deposit. For resolution of individual coal seams, a central frequency >150 Hz would be needed. 26 refs., 17 figs., 3 tabs.

  13. Mining the 510 coal seam prone to rock bursts and below a coal support pillar in a seam above

    Energy Technology Data Exchange (ETDEWEB)

    Major, M; Gebala, W

    1983-10-01

    The 510 coal seam, situated at a depth of 760 m below a support pillar left in an overlying coal seam, was mined by a system of longwall faces from 1979 to 1982. The seam was prone to rock bursts. Energy of rock bursts which occurred in the mine ranged from 10/SUP/5 to 10/SUP/6 J. The coal seam, 10 m thick, was mined by slicing. Faces were 140 m long. Stress concentrations caused by the suppport pillar left in the overlying coal seam were calculated. Curves which describe stress fluctuations were plotted. Rock burst hazards were determined by drilling. Drilling intervals depended on hazard degree and position of the test site in relation to the support pillar in the overlying coal seam. The face was 3 m high. Supports used in 2 gate roads were reinforced by steel and timber supports. Strong timber boards were placed at canopies of powered supports used at the working face. The face was situated at an angle of 10 degrees to the pillar axis. In the zone of critical stresses water infusion and shock blasting were used for rock burst prevention. These methods, plus reinforcement of the supports in gate roads and at the working face, guaranteed safe mining and prevented rock bursts. (8 refs.)

  14. Computer-aided planning of brown coal seam mining in regard to coal quality

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, R.; Lehmann, A.; Rabe, H.; Richter, S.

    1988-09-01

    Discusses features of the geologic SORVER software developed at the Freiberg Fuel Institute, GDR. The program processes geologic data from exploratory wells, petrographic characteristics of a coal seam model, technological mining parameters and coal quality requirements of consumers. Brown coal reserves of coking coal, gasification coal, briquetting coal and steam coal are calculated. Vertical seam profiles and maps of seam horizon isolines can be plotted using the program. Coal quality reserves along the surface of mine benches, mining block widths and lengths for excavators, maximum possible production of individual coal qualities by selective mining, and coal quality losses due to mining procedures are determined. The program is regarded as a means of utilizing deposit reserves more efficiently. 5 refs.

  15. Palaeoenvironmental reconstruction of Hüsamlar coal seam, SW

    Indian Academy of Sciences (India)

    The Ören and Yatağan Basins in SW Turkey host several Miocene coal deposits currently under exploitation for power generation. The present study aims to provide insight into the palaeoenvironmental conditions, which controlled the formation of the Hüsamlar coal seam located in Ören Basin. The coal seam displays ...

  16. Classification of coal seam outburst hazards and evaluation of the importance of influencing factors

    OpenAIRE

    Shi Xianzhi; Song Dazhao; Qian Ziwei

    2017-01-01

    Coal and gas outbursts are the result of several geological factors related to coal seam gas (coal seam gas pressure P, coal seam sturdiness coefficient f and coal seam gas content W), and these parameters can be used to classify the outburst hazard level of a coal seam.

  17. 18 CFR 270.302 - Occluded natural gas produced from coal seams.

    Science.gov (United States)

    2010-04-01

    ... produced from coal seams. 270.302 Section 270.302 Conservation of Power and Water Resources FEDERAL ENERGY... produced from coal seams. A person seeking a determination that natural gas is occluded natural gas produced from coal seams must file an application with the jurisdictional agency which contains the...

  18. A Comprehensive Overview of CO2 Flow Behaviour in Deep Coal Seams

    Directory of Open Access Journals (Sweden)

    Mandadige Samintha Anne Perera

    2018-04-01

    Full Text Available Although enhanced coal bed methane recovery (ECBM and CO2 sequestration are effective approaches for achieving lower and safer CO2 levels in the atmosphere, the effectiveness of CO2 storage is greatly influenced by the flow ability of the injected CO2 through the coal seam. A precious understanding of CO2 flow behaviour is necessary due to various complexities generated in coal seams upon CO2 injection. This paper aims to provide a comprehensive overview on the CO2 flow behaviour in deep coal seams, specifically addressing the permeability alterations associated with different in situ conditions. The low permeability nature of natural coal seams has a significant impact on the CO2 sequestration process. One of the major causative factors for this low permeability nature is the high effective stresses applying on them, which reduces the pore space available for fluid movement with giving negative impact on the flow capability. Further, deep coal seams are often water saturated where, the moisture behave as barriers for fluid movement and thus reduce the seam permeability. Although the high temperatures existing at deep seams cause thermal expansion in the coal matrix, reducing their permeability, extremely high temperatures may create thermal cracks, resulting permeability enhancements. Deep coal seams preferable for CO2 sequestration generally are high-rank coal, as they have been subjected to greater pressure and temperature variations over a long period of time, which confirm the low permeability nature of such seams. The resulting extremely low CO2 permeability nature creates serious issues in large-scale CO2 sequestration/ECBM projects, as critically high injection pressures are required to achieve sufficient CO2 injection into the coal seam. The situation becomes worse when CO2 is injected into such coal seams, because CO2 movement in the coal seam creates a significant influence on the natural permeability of the seams through CO2

  19. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    Science.gov (United States)

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  20. Temperature field distribution of coal seam in heat injection

    OpenAIRE

    Zhang Zhizhen; Peng Weihong; Shang Xiaoji; Wang Kun; Li Heng; Ma Wenming

    2017-01-01

    In this article, we present a natural boundary element method (NBEM) to solve the steady heat flow problem with heat sources in a coal seam. The boundary integral equation is derived to obtain the temperature filed distribution of the coal seam under the different injecting conditions.

  1. Stochastic reservoir simulation for the modeling of uncertainty in coal seam degasification

    Science.gov (United States)

    Karacan, C. Özgen; Olea, Ricardo A.

    2015-01-01

    Coal seam degasification improves coal mine safety by reducing the gas content of coal seams and also by generating added value as an energy source. Coal seam reservoir simulation is one of the most effective ways to help with these two main objectives. As in all modeling and simulation studies, how the reservoir is defined and whether observed productions can be predicted are important considerations.

  2. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    Science.gov (United States)

    Post, David

    2017-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. The bioregional assessment programme has modelled the impacts of coal seam gas development on surface and groundwater resources in three regions of eastern Australia, namely the Clarence-Moreton, Gloucester, and Namoi regions. This presentation will discuss the

  3. Geomechanics of subsidence above single and multi-seam coal mining

    Directory of Open Access Journals (Sweden)

    A.M. Suchowerska Iwanec

    2016-06-01

    Full Text Available Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be extracted from seams either above or below previously extracted coal seams, a practice known as multi-seam mining. In order to accurately predict the subsidence above single and multi-seam longwall panels using numerical methods, constitutive laws need to appropriately represent the mechanical behaviour of coal measure strata. The choice of the most appropriate model is not always straightforward. This paper compares predictions of surface subsidence obtained using the finite element method, considering a range of well-known constitutive models. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate predictions of subsidence when compared to field measurements. The advantages and limitations of using each particular constitutive law are discussed. A comparison of the numerical predictions and field measurements of surface subsidence is also provided.

  4. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama.

    Science.gov (United States)

    Karacan, C Özgen

    2013-07-30

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.

  5. Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Fangtian Wang

    2017-09-01

    Full Text Available A thin coal seam mined as a protective coal seam above a gas outburst coal seam plays a central role in decreasing the degree of stress placed on a protected seam, thus increasing gas permeability levels and desorption capacities to dramatically eliminate gas outburst risk for the protected seam. However, when multiple layers of coal seams are present, stress-relieved gas from adjacent coal seams can cause a gas explosion. Thus, the post-drainage of gas from fractured and de-stressed strata should be applied. Comprehensive studies of gas permeability evolution mechanisms and gas seepage rules of protected seams close to protective seams that occur during protective seam mining must be carried out. Based on the case of the LongWall (LW 23209 working face in the Hancheng coal mine, Shaanxi Province, this paper presents a seepage model developed through the FLAC3D software program (version 5.0, Itasca Consulting Group, Inc., Minneapolis, MI, USA from which gas flow characteristics can be reflected by changes in rock mass permeability. A method involving theoretical analysis and numerical simulation was used to analyze stress relief and gas permeability evolution mechanisms present during broken rock mass compaction in a goaf. This process occurs over a reasonable amount of extraction time and in appropriate locations for comprehensive gas extraction technologies. In using this comprehensive gas drainage technological tool, the safe and efficient co-extraction of thin coal seams and gas resources can be realized, thus creating a favorable environment for the safe mining of coal and gas outburst seams.

  6. Evaluation of geological conditions for coalbed methane occurrence based on 3D seismic information: a case study in Fowa region, Xinjing coal mine, China

    Science.gov (United States)

    Li, Juanjuan; Li, Fanjia; Hu, Mingshun; Zhang, Wei; Pan, Dongming

    2017-04-01

    The research on geological conditions of coalbed methane (CBM) occurrence is of great significance for predicting the high abundance CBM rich region and gas outburst risk area pre-warning. The No. 3 coal seam, in Yangquan coalfield of Qinshui basin, is the research target studied by 3D seismic exploration technique. The geological factors which affect CBM occurrence are interpreted based on the 3D seismic information. First, the geological structure (faults, folds, and collapse columns) is found out by the 3D seismic structural interpretation and the information of buried depth and thickness of the coal seam is calculated by the seismic horizons. Second, 3D elastic impedance (EI) and natural gamma attribute volumes are generated by prestack EI inversion and multi-attribute probabilistic neural network (PNN) inversion techniques which reflect the information of coal structure types and lithology of the roof and floor. Then, the information of metamorphic degree of seam and hydrogeology conditions can be obtained by the geological data. Consequently, geological conditions of CBM occurrence in No. 3 coal seam are evaluated which will provide scientific reference for high abundance CBM rich region prediction and gas outburst risk area pre-warning.

  7. Characterization of Coal Quality Based On Ash Content From M2 Coal-Seam Group, Muara Enim Formation, South Sumatra Basin

    Directory of Open Access Journals (Sweden)

    Frillia Putri Nasution

    2017-09-01

    Full Text Available Muara Enim Formation is well known as coal-bearing formation in South Sumatra Basin. As coal-bearing formation, this formation was subjects of many integrated study. Muara Enim Formation can be divided into four coal-seam group, M1, M2, M3, and M4. The M2 group comprising of Petai (C, Suban (B, Lower Mangus (A2, and Upper Mangus (A1. Depositional environments of Group M2 is transitional lower delta plain with sub-depositional are crevasse splay and distributary channel. The differentiation of both sub-depositional environments can be caused the quality of coal deposit. One of quality aspects is ash content. This research conducted hopefully can give better understanding of relationship between depositional environments to ash content. Group M2 on research area were found only Seam C, Seam B, and Seam A2, that has distribution from north to central so long as 1400 m. Coal-seam thickness C ranged between 3.25-9.25 m, Seam B range 7.54-13.43 m, and Seam C range 1.53-8.37 m, where all of coal-seams thickening on the central part and thinning-splitting to northern part and southern part. The ash content is formed from burning coal residue material. Ash contents on coal seam caused by organic and inorganic compound which resulted from mixing modified material on surrounded when transportation, sedimentation, and coalification process. There are 27 sample, consists of 9 sample from Seam C, 8 sample from Seam B, and 10 sample from Seam A2. Space grid of sampling is 100-150 m. Ash content influenced by many factors, but in research area, main factor is existence of inorganic parting. Average ash content of Seam C is 6,04%, Seam B is 5,05%, and Seam A2 is 3,8%. Low ash content influenced by settle environment with minor detrital material. High ash content caused by oxidation and erosional process when coalification process. Ash content on coal in research area originated from detritus material carried by channel system into brackish area or originated

  8. Influence of Mining Thickness on the Rationality of Upward Mining in Coal Seam Group

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-04-01

    Full Text Available This study aimed to determine the influence of mining thickness on the rationality of upward mining in coal seam group. Numerical simulation and theoretical analysis were performed to investigate the influence of the mining thicknesses of initial mining seam on the destruction and pressure relief effect of the upper coal seam in a high-gas coal seam group. The mechanical model of the roof failure based on the mining thickness was established by assuming that the gob formed after adjacent panels have fully been caved is the infinite plane. On the basis of this model, an equation was derived to calculate the roof failure height of the panel. Considering the geological conditions of No. 9 and No. 12 coal seams of Zhaogezhuang Coal Mine, economic effectiveness, and proposed techniques, we concluded that the top layer (4 m of the No. 12 coal seam should be mined first. The top layer of the No. 9 coal seam should be subsequently mined. The topcaving technique was applied to the exploitation of the lower layer of the No. 12 coal seam. Practically monitored data revealed that the deformation and failure of the No. 2699 panel roadway was small and controllable, the amount of gas emission was reduced significantly, and the effect of upward mining was active. The results of this study provide theory basics for mine designing, and it is the provision of a reference for safe and efficient coal exploitation under similar conditions.

  9. The relation between district raise in the multiple coal seams and its pillars

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, X. [Jiaozuo Institute of Technology, Jiaozuo (China). Dept. of Mining Engineering

    2002-02-01

    Based on the geological condition of multiple coal seams mining in No.8 Colliery of Pingdingshan Coal Group, the behaviours of the front abutment pressure in each of the coal seams and the fixed abutment pressure are observed. The main cause of deformation and damage to the galleries is the increasing value of the valid load coefficient of the surrounding rock. The rational pillar width of the district raise is studied when its two side seams have been mined, and the layout question of district raise in the different set of seams is also studied. The conclusions derived from the study are useful guiding reference for the design of district raise layout in deep multiple coal seams mining. 6 refs., 3 figs., 1 tab.

  10. Polymer Drilling Fluid with Micron-Grade Cenosphere for Deep Coal Seam

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-01-01

    Full Text Available Traditional shallow coal seam uses clean water, solid-free system, and foam system as drilling fluid, while they are not suitable for deep coal seam drilling due to mismatching density, insufficient bearing capacity, and poor reservoir protection effect. According to the existing problems of drilling fluid, micron-grade cenosphere with high bearing capacity and ultralow true density is selected as density regulator; it, together with polymer “XC + CMC” and some other auxiliary agents, is jointly used to build micron-grade polymer drilling fluid with cenosphere which is suitable for deep coal seam. Basic performance test shows that the drilling fluid has good rheological property, low filtration loss, good density adjustability, shear thinning, and thixotropy; besides, drilling fluid flow is in line with the power law rheological model. Compared with traditional drilling fluid, dispersion stability basically does not change within 26 h; settlement stability evaluated with two methods only shows a small amount of change; permeability recovery rate evaluated with Qinshui Basin deep coal seam core exceeds 80%. Polymer drilling fluid with cenosphere provides a new thought to solve the problem of drilling fluid density and pressure for deep coal seam drilling and also effectively improves the performance of reservoir protection ability.

  11. Innovative Extraction Method for a Coal Seam with a Thick Rock-Parting for Supporting Coal Mine Sustainability

    Directory of Open Access Journals (Sweden)

    Meng Li

    2017-10-01

    Full Text Available As thick rock partings delay the efficient mining of coal seams and constrain the sustainable development of coal mines, an innovative extraction method for a coal seam with thick rock parting was proposed. The coal seams were divided into different sub-zones according to the thickness of rock parting and then the sub-zones were mined by separately using three mining schemes involving full-seam mining, combined mining using backfill and caving (CMBC, and reducing height mining. Afterwards, the study introduced the basic mechanism and key devices for the CMBC and analysed the working state of the backfill support in detail. Moreover, the method for calculating the length of the backfill zone was proposed to design the length of backfill zone and the influences of four factors (including bulking coefficient of rock parting on the length of the backfill zone were also explored. By taking the No. 22203 panel, Buertai mine, Inner Mongolia, China as an example, the mined coal resource by using the CMBC extraction method will increase by 1.83 × 106 tons and the recovery ratio will rise from 56.2% to 92.4% compared with mining of the 2-2 upper coal seam alone. Moreover, by applying CMBC, a series of environmental and ecological problems caused by rock parting is reduced, which can improve the environment in mined areas. The research can provide technological guidance for mining panels of a coal seam with a thick rock parting and the disposal thereof under similar conditions.

  12. Evaluation of coal bed methane potential of coal seams of Sawang ...

    Indian Academy of Sciences (India)

    This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17 m3/t (Std. daf), at maximum pressure of 5.92 MPa ... vast coal reserves are ideal reservoirs for the gen- eration and accumulation of CBM. ... of gases in coal seams, such as, compression as free gas in the pore spaces, condensed ...

  13. On the problem of technological innovations in driving preparatory workings in thin coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Peknik, J

    1980-03-01

    Possibilities of mechanizing preparation of thin coal seams for longwall mining are discussed. Until now preparatory workings in the Ostrava Karvina coal region have been driven mainly by manual work or blasting. Tables show the total length of preparatory workings driven in the period 1973-1978 and the average advance of preparatory working per day and per shift. Factors influencing mechanization of preparatory working drivage are: geological disturbances, angle of seam inclination and its changes, thickness of the seam and strength of coal. Some types of mining machines which can be used for driving preparatory workings in thin, horizontal and inclined coal seams and produced in the USSR and United Kingdom are reviewed. Two sets of machines used in coal seams inclined up to 18 or 20 degrees are presented: KN produced in the USSR and 'In seam Miner' produced by the Dosco firm in the UK. Parameters of both machines are compared. The following Soviet machines for driving preparatory workings in inclined seams are also reviewed: 2 KNP (slope 45-80 degrees), KMD-72 (slope 45-80 degrees, height of the seam 0.6 m to 1.2 m), MRS-2 (slope 45-90 degrees, height of the seam 0.55 m to 1.0 m). (7 refs.) (In Czech)

  14. Petrographic properties of major coal seams in Turkey and their formation

    Energy Technology Data Exchange (ETDEWEB)

    Toprak, Selami [Mineral Research and Exploration Directorate (MTA), 06520 Ankara (Turkey)

    2009-06-01

    Most types of coal in Turkey are generally low in rank: lignite, and subbituminous. Most of the coal was formed during the Miocene, Eocene, and Pliocene ages. There are only a few thin Jurassic-age coal occurrences in Turkey. Pennsylvanian age bituminous coal is found on the Black Sea coast. General implications of the petrographic properties of Turkey's coal seams and coal deposits have not yet been taken into consideration comparatively or as a whole. For this study, about 190 channel samples were collected from different locales. The composite profile samples of the seams were taken into considerations. The content and depositional properties as well as some chemical and physical properties of the main coal seams are compared. All coal samples tend to have similar coal petrographic properties and were deposited in intermontane lacustrine basins. Later, they were affected by faulting and post-depositional volcanic activity. As a result, there are variations in the properties and rank of the coal samples. The most abundant coal maceral group is huminite and the most abundant maceral is gelinite. The liptinite and inertinite contents of the coal are low and the maceral contents of the coals show great similarity. The depositional environments of the all coals are lacustrine dominated. (author)

  15. Principles of integrated modeling of coal seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Magda, R

    1983-01-01

    Mathematical modeling of underground coal mining is discussed. Construction of a mathematical model of an underground mine is analyzed. The model is based on integrating the elementary units (modules). A so-called elementary mining field is defined with the example of a longwall face. A model of an elementary coal seam zone is constructed by integrating the elementary mining fields (in time and space) and supplementing them with a suitable model of mine roadway structure. By integrating the elementary coal seam zones a model of mining level is constructed. Such a mathematical model is used for optimizing the selected mining parameters e.g. structure of mine roadways, size of a coal mine, and organizational scheme of underground mining in a mine or in a mine section using the standardized optimization criterion e.g. investment. Use of the integration model of underground mining for optimizing coal mine construction is evaluated. The following elements of investment and operating cost are considered: shaft excavation, shaft equipment, investment in mining sections, ventilation, mine draining etc. 1 reference.

  16. Permeability Prediction in Deep Coal Seam: A Case Study on the No. 3 Coal Seam of the Southern Qinshui Basin in China

    Science.gov (United States)

    2013-01-01

    The coal permeability is an important parameter in mine methane control and coal bed methane (CBM) exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture) under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability) firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability) increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress. PMID:24396293

  17. Coal petrology of coal seams from the Leao-Butia Coalfield, Lower Permian of the Parana Basin, Brazil - Implications for coal facies interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.B. [Laboratorio de Oceanografia Geologica, Departamento de Geociencias, Fundacao Universidade Federal do Rio Grande, FURG, Av. Italia km 08, Campus Carreiros, 96201-900, Rio Grande, RS (Brazil); Kalkreuth, W.; Holz, M. [Instituto de Geociencias, UFRGS, Av. Bento Goncalves, 9500 91501-970 Porto Alegre, RS (Brazil)

    2008-02-01

    In the Leao-Butia Coalfield, Rio Grande do Sul the coal seams occur in the Rio Bonito Formation, Guata Group, Tubarao Supergroup of the Parana Basin, Brazil and are of Permian (Artinskian-Kungurian) age. This study is the first detailed investigation on the coal petrographic characterization of the coal-bearing sequence in relation to the depositional settings of the precursor mires, both in terms of whole seam characterization and in-seam variations. The study is based on the analyses of nine coal seams (I2, CI, L4, L3, L2, L1, S3, S2, S1), which were selected from core of borehole D-193, Leao-Butia and represent the entire coal-bearing sequence. The interpretation of coal facies and depositional environment is based on lithotype, maceral and microlithotype analyses using different facies-critical petrographic indices, which were displayed in coal facies diagrams. The seams are characterized by the predominance of dull lithotypes (dull, banded dull). The dullness of the coal is attributed to relatively high mineral matter, inertinite and liptinite contents. The petrographic composition is dominated by vitrinite (28-70 vol.% mmf) and inertinite (> 30 vol.% mmf) groups. Liptinite contents range from 7 to 30 vol.% (mmf) and mineral matter from 4-30 vol.%. Microlithotypes associations are dominated by vitrite, duroclarite, carbominerite and inertite. It is suggested that the observed vertical variations in petrographic characteristics (lithotypes, microlithotypes, macerals, vitrinite reflectance) were controlled by groundwater level fluctuations in the ancient mires due to different accommodation/peat accumulation rates. Correlation of the borehole strata with the general sequence-stratigraphical setting suggests that the alluvial fan system and the coal-bearing mudstone succession are linked to a late transgressive systems tract of sequence 2. Based on average compositional values obtained from coal facies diagrams, a deposition in a limno-telmatic to limnic coal

  18. Thin seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W [Politechnika Slaska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1989-06-01

    Discusses thin seam mining in Poland and its prospects. There were 194 working faces in coal seams to 1.5 m thick in Poland in 1988. Of them, 115 fell on faces with powered supports, 79 on faces with SHC-40 and Valent props; 108 shearer loaders and 45 coal plows were used for longwall mining of thin coal seams. Drilling and blasting was used to mine 21 working faces. Longwall faces in seams to 1.0 m thick gave 2.0% coal output, faces in coal seams 1.01-1.5 m thick gave 12.2% of daily coal output of underground mining. Structure of daily coal output of faces in thin seams was the following: 52 faces below 300 t/day, 42 from 301-500 t/day, 63 from 501 to 1,000 t/day, 17 faces above 1,000 t/day. Prospects for increasing coal output of faces in thin seams are discussed. 7 refs.

  19. Modeling of Three Flat Coal Seams Strata Developing at Open Pit Miming

    Science.gov (United States)

    Gvozdkova, Tatiana; Markov, Sergey; Demirel, Nuray; Anyona, Serony

    2017-11-01

    The use of low-cost direct dumpling technology, as is well known, has a relatively limited field of application: flat coal seams, and the higher the dip angle of the seam, the more difficult it is to place the necessary volume of overburden rock in the dumping layers. For this, we have to pour four-tier dumps. In this article, four possible options for piling the dump have been studied and prerequisites have been made for further research aimed at improving the efficiency of the use of direct dumpling technology in the development of flat coal seams.

  20. Method of gas emission control for safe working of flat gassy coal seams

    Science.gov (United States)

    Vinogradov, E. A.; Yaroshenko, V. V.; Kislicyn, M. S.

    2017-10-01

    The main problems at intensive flat gassy coal seam longwall mining are considered. For example, mine Kotinskaja JSC “SUEK-Kuzbass” shows that when conducting the work on the gassy coal seams, methane emission control by means of ventilation, degassing and insulated drain of methane-air mixture is not effective and stable enough. It is not always possible to remove the coal production restrictions by the gas factor, which leads to financial losses because of incomplete using of longwall equipment and the reduction of the technical and economic indicators of mining. To solve the problems, the authors used a complex method that includes the compilation and analysis of the theory and practice of intensive flat gassy coal seam longwall mining. Based on the results of field and numerical researches, the effect of parameters of technological schemes on efficiency of methane emission control on longwall panels, the non-linear dependence of the permissible according to gas factor longwall productivity on parameters of technological schemes, ventilation and degassing during intensive mining flat gassy coal seams was established. The number of recommendations on the choice of the location and the size of the intermediate section of coal heading to control gassing in the mining extracted area, and guidelines for choosing the parameters of ventilation of extracted area with the help of two air supply entries and removal of isolated methane-air mixture are presented in the paper. The technological scheme, using intermediate entry for fresh air intake, ensuring effective management gassing and allowing one to refuse from drilling wells from the surface to the mined-out space for mining gas-bearing coal seams, was developed.

  1. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    Science.gov (United States)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  2. Law of Strata Pressure Behavior in Shallow Coal Seam

    Science.gov (United States)

    Zhao, Jian; Liu, Leibin; Zheng, Zhiyang

    2018-02-01

    The law of strata pressure behavior in shallow coal seam is analyzed, according to the load data of Jinjie Coal Mine 31109 working face hydraulic supports. The first weighting distance of main roof is 80 m, and the periodic weighting distance of main roof is about 20 m. And according to the load data in the middle and both ends of the working face, the working resistance of hydraulic supports and the setting load are a bit small, so they couldn’t meet the needs of supporting roof. Then, the front abutment pressure of working face is analyzed by numerical simulation. It does not only explain the reason that the load is too big, but also explains the reason that the strata pressure behavior in shallow coal seam is serious. The length of undamaged main roof rock beam verifies the correctness of the periodic weighting distance.

  3. Stress distribution characteristics in the vicinity of coal seam floor

    Science.gov (United States)

    Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe

    2018-01-01

    Although longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method in recent years, roadway floor heave and rock bursts frequently appear when exploiting such coal seams with large dip angle. This paper proposes addressing this problem by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress distribution characteristics in the vicinity of coal seam floor based on the stress slip line field theory. In the second step, numerical calculation using FLAC3D was conducted. Finally, an evaluation of the 3-D RLSA for solving this particular issue was given. Results indicate that for this particular mine the proposed 3-D RLSA results in 24% increase in the coal recovery ratio and a modest reduction in excavation and maintenance costs compared to the conventional LTCC method.

  4. FY 1998 basic survey for coal resource development. Data collection of the joint research of new technology in the geophysical exploration of coal resources (land area shallow seam survey); 1998 nendo sekitan shigen kaihatsu kiso chosa shiryoshu. Shintansa gijutsu chosa kaihatsu (rikuiki senso tansa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This is a compilation of the data on the coal resource land area shallow seam survey conducted in FY 1998 as the basic survey for coal resource development. The trend survey was made from July 26 to August 6, 1998. The purposes of the survey are to study the image analysis method, examples of application of the reflection seismic survey to coal, and inversion technology. The data compilation includes the following: 1. Minutes of the proceedings of the FY 1998 Japan-Australia steering committee (in English). 2. Data/proceedings of the FY 1998 Japan-Australia technical study committee (in English). 3. Results of the GPS measurement of reflection seismic survey traverse lines in Caroona district. 4. List of parameters in the FY 1998 reflection seismic survey data processing. 5. Report on the work of inspection/repair of seismic pulse generator. 6. List of the data on diameter of the test boring conducted in FY 1998. 7. NEDO-DMR CAROONA DDH borehole core pictures. 8. Estimated curves. 9. Report on the trend survey of the FY 1998 coal resource development basic survey (land area shallow seam survey). 10. Pictures. 11. Data on the 1st (FY 1998) new exploration technology study committee. (NEDO)

  5. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  6. Spatio-temporal evolution of apparent resistivity during coal-seam hydraulic flushing

    Science.gov (United States)

    Li, Dexing; Wang, Enyuan; Song, Dazhao; Qiu, Liming; Kong, Xiangguo

    2018-06-01

    Hydraulic flushing in gas predrainage is widely used, but the hydraulic-flushing effect is evaluated in a traditional way, by determining the desorption volume, moisture content, gas drainage rate and other conventional indices. To verify the rationality and feasibility of the multielectrode resistivity method in the evaluation of coal-seam hydraulic flushing and to research the spatio-temporal evolution of apparent resistivity during hydraulic flushing, a field test was conducted in 17# coal seam at Nuodong Mine, Guizhou. During hydraulic flushing, four stages were defined according to the variation in coal rock resistivity with time, namely, the preparation stage, the sharply decreasing stage, the rapidly increasing stage and the steady stage. The apparent resistivity of the coal rock mass is affected mainly by its own degree of fragmentation and flushing volume. A more serious rupture and a greater flushing volume yield a smaller apparent resistivity during the sharply decreasing stage and a higher resistivity during the stable stage. After three months of gas predrainage, the residual gas content and the gas pressure at different points in the expected affected area decrease below the critical value. Changes in the residual gas content and gas pressure at these points are consistent with the apparent resistivity, which validates the rationality and feasibility of the multielectrode resistivity method in evaluating coal-seam hydraulic flushing.

  7. Detecting voids in coal seams in surface mining by means of a biophysical method

    Energy Technology Data Exchange (ETDEWEB)

    Bek, E.

    1985-07-01

    Soviet research institutes, in cooperation with research intitutes from other countries, developed the Radar 1 system for detecting abandoned workings in coal seams in surface mines. The system will be used for detecting voids in seams at depths to 50 m. The Academy of Sciences of Czechoslovakia tested use of dowsing for detecting abandoned workings in the Pohranicni straz, the Brezova and the Medard coal surface mines. The workings were situated at depths from 2 to 12 m from the ground surface (dowser position). The dowser was not informed of position or dimensions of the workings. Accuracy of determining position of abandoned workings in coal seams was high. Results of dowsing were checked by drilling. 4 references.

  8. Coal forming conditions for coal seams and coal measures of the Heshan Group Upper Permian Series in Guangxi Province (part 1)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.

    1980-10-01

    Coal forming conditions for the coal measures of the Heshan Group are discussed based on the analysis of the historical background and paleogeographical environment of the Permian in Guangxi Province. The roof, floor, and partings of the seams are composed of algal micritic limestone, therefore affirming that the central part of Guangxi Province in the late Permian was a typical epi-continental sea. The compensative deposit of algea on the carbonate platform in very shallow water created the conditions for the occurrence of the peat swamp and established the supra-tidal swampy facies. The environment for the accumulation of the major coal seams are analyzed. (In Chinese)

  9. Behaviors of overlying strata in extra-thick coal seams using top-coal caving method

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2016-04-01

    Full Text Available Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos. 3–5 in Datong coal mine with top-coal caving method, which significantly hampers the mine's normal production. To understand the mechanism of strata failure, this paper presented a structure evolution model with respect to strata behaviors. Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis, physical simulation, and field measurement. The results show that the key strata, which are usually thick-hard strata, play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method. The structural model of far-field key strata presents a “masonry beam” type structure when “horizontal O-X” breakage type happens. The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway. This can induce excessive deformation of roadway near the goaf. Besides, this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting. It could effectively reduce stress concentration and release the accumulated energy of the strata, when mining underground coal resources with top-coal caving method.

  10. Geological evaluation on productibility of coal seam gas; Coal seam gas no chishitsugakuteki shigen hyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K [University of Shizuoka, Shizuoka (Japan). Faculty of Education

    1996-09-01

    Coal seam gas is also called coal bed methane gas, indicating the gas existing in coal beds. The gas is distinguished from the oil field based gas, and also called non-conventional type gas. Its confirmed reserve is estimated to be 24 trillion m {sup 3}, with the trend of its development seen worldwide as utilization of unused resource. For the necessity of cultivating relevant technologies in Japan, this paper considers processes of production, movement, stockpiling, and accumulation of the gas. Its productibility is controlled by thickness of a coal bed, degree of coalification, gas content, permeability, groundwater flow, and deposition structure. Gas generation potential is evaluated by existing conditions of coal and degree of coalification, and methane production by biological origin and thermal origin. Economically viable methane gas is mainly of the latter origin. Evaluating gas reserve potential requires identification of the whole mechanism of adsorption, accumulation and movement of methane gas. The gas is expected of effect on environmental aspects in addition to availability as utilization of unused energy. 5 figs.

  11. The age, palaeoclimate, palaeovegetation, coal seam architecture/mire types, paleodepositional environments and thermal maturity of syn-collision paralic coal from Mukah, Sarawak, Malaysia

    Science.gov (United States)

    Sia, Say-Gee; Abdullah, Wan Hasiah; Konjing, Zainey; Koraini, Ahmad Munif

    2014-02-01

    The Mukah coal accumulated in the Balingian Formation where the time-stratigraphic position is poorly defined by fauna, though a probable Late Miocene age has always been assigned to this formation. Samples collected in the present study that yielded an abundance of Casuarina pollen associated with occurrences of Dacrydium, Stenochlaena palustris, Florschuetzia levipoli and also Stenochlaena areolaris spores, compare closely to zone PR9 of the palynological zonation of the Malay Basin, and can be tied to depositional sequences of Malay Basin Seismic sequences I2000/I3000, indicating an Early Miocene age for the studied coal. The Early Miocene age shows that the Mukah coal was formed during the collision between Luconia Block-Dangerous Grounds with the Borneo that lasted from Late Eocene to late Early Miocene. The rapid increase of deposition base-level caused by the collision is clearly reflected by the architecture of the Mukah coal seams that were generally thin, and also by the reverse order of the paleo-peat bodies.

  12. Sequence stratigraphy, organic petrology and chemistry applied to the upper and lower coal seams in the Candiota Coalfield, Parana Basin, RS, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J.S. de; Kalkreuth, W. [Instituto de Geociencias, UFRGS, Porto Alegre (Brazil)

    2010-12-01

    The Permian age coal seams in the Candiota Coalfield represent the largest coal deposit of the country. Currently two seams are mined, called ''Camada Candiota Superior'' and ''Camada Candiota Inferior''. The other coal seams of the coalfield, seams S1-S9 (upper seams) and I1-I5 (lower seams) have as yet not been exploited. The objective of this paper is to perform a detailed sequence stratigraphic, petrologic and chemical study of the upper and lower coal seams, thereby generating data for assisting in the development and better use of the coal-bearing interval. The methodology includes application of the concepts of sequence stratigraphy, which includes the lithological interpretation of the core to establish the depositional environments and genetic correlation between facies associations to define parasequences and bounding surfaces; coal petrology (analysis of the reflectance of vitrinite, determination of the petrographic composition of the coals by maceral analyses), and chemical analyses such as sulphur determination, proximate analyses (ash, moisture, volatile matter, and fixed carbon), and elemental analyses. Three main depositional systems were so far identified: alluvial fan, fluvial system, lagoonal estuary system. This study shows that coal development was controlled by accommodation/accumulation rates, with coal seams with greater thickness and lateral continuity being formed within the transgressive systems tract (lagoonal depositional system) of parasequence 2 (PS2), indicating that the accumulation rates of the peat and distribution of the coal seams were controlled by stratigraphic setting. Vitrinite reflectances for the upper and lower coal seams are indicative of subbituminous rank (Rrandom = 0.36-0.47%), with evidence that anomalously low reflectance values are related to high mineral-matter contents. Maceral composition is highly variable, with some coal seams being extremely rich in inertinite (up to

  13. Coal seam has boom - powering North Queensland industrial growth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    Reduced operating costs, lower greenhouse gas emissions and security of supply are being cited by North Queensland industry leaders as the reasons for investing more than A$550 million to expand operations and convert to coal seam gas as their preferred fuel source. The article, by Enertrade, reports that just a few months after commissioning its North Queensland Gas Pipeline to transport coal seam gas from Moranbah to Townsville, Enertrade has signed contracts that will see combined cycle gas-fired baseload electricity generated in Townsville and the Queensland Nickel Refinery, and Xstrata Copper Refinery switch from liquid fuels to gas. The development has been driven by state government policy that 13% of Queensland's electricity be sourced from gas-fired power generation from 1 January 2005. Further information is available from Enertrade on Tel +617 3331 9929. 2 photos.

  14. The Method of Validity Evaluation of Hard Coal Excavation in Residual Seam Parts

    Science.gov (United States)

    Wodarski, Krzysztof; Bijańska, Jolanta; Gumiński, Adam

    2017-12-01

    The excavation of residual seam parts should be justified by positive assessment of the purposefulness, technical feasibility and economic effectiveness. The results of the profitability evaluation are crucial in a decision making process. The excavation of residual seam parts, even if it is possible from a technical point of view, should not be implemented if it is economically inefficient or when accompanied by a very high risk of non-recovery of invested capital resources. The article presents the evaluation method of possibilities of excavating hard coal from residual seam parts, and the example of its use in one of collieries in the Upper Silesian Coal Basin. Working in line with the developed method, allows to indicate the variant of residual seam part exploitation, which is feasible to implement from a technical point of view, and which is characterized by the highest economic effectiveness and lowest risk.

  15. Analysis of support installation and strata control in ventilation tunnels and coal chutes in steep seams

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, V D; Belyaev, A N; Kostyuk, I S

    1984-01-01

    The VNIMI and the Donugi branch in Gorlovka developed and tested a system for strata control in gate roads for ventilation and in coal chutes in inclined and steep medium and thick coal seams. The roof is supported by cribbings made of slabs of reinforced concrete with yielding elements. Timber is used as yielding material. Tests showed that thickness of yielding layers between concrete slabs should range from 15 to 20% of coal seam thickness. Yielding elements increase yield strength of the system to about 2 MN (load distribution is more regular). The tests show that the cribbings are an efficient system for strata control in workings driven in coal seams with dip angle from 35 to 60 degrees. Performance of concrete cribbings in ventilation gate roads and coal chutes in selected mines of the Ukrainian SSR is analyzed.

  16. 4D seismic data acquisition method during coal mining

    International Nuclear Information System (INIS)

    Du, Wen-Feng; Peng, Su-Ping

    2014-01-01

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions. (paper)

  17. A comparison of geochemical features of extracts from coal-seams source rocks with different polarity solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianping; Deng, Chunping; Wang, Huitong

    2009-02-15

    There exists a great difference in group-type fractions and biomarker distributions of chloroform extracts from coals and coal-seams oils, which makes the source identification of coal-seams oils in sedimentary basins rather difficult. The experiment, in which four different polarity solvents, n-hexane, benzene, dichloromethane and chloroform, were used to extract 9 coal-seams source rocks and 3 typical lacustrine source rocks, showed that the yield of extracts increased gradually with increasing solvent polarity. The distribution features of their n-alkanes, isoprenoids and sterane and terpane biomarkers remained, in general, similar, showing no distinct enrichment or depletion for a certain fraction by any solvent. The compositional analysis on n-hexane and chloroform extracts showed that the absolute amount (concentration) of biomarkers was relatively low for the n-hexane extract but comparatively high for the chloroform extract, this difference became great among coal-seams source rocks but small among lacustrine mudstones. The statistical analysis on the relative amount of the 18 major biomarkers in n-hexane and chloroform extracts from 10 source rock samples showed that extracts with a proportional error for the same biomarker of less than 5% (including the analytical error) accounted for 84% while those with a proportional error over 10% amounted to below 5%. This suggested that the outcome of oil-source correlation made by these biomarkers will be independent of variations in amounts of saturates and biomarkers arising from solvent polarity. Therefore, biomarkers obtained from organic-rich source rocks including coals by the extraction with the commonly used chloroform solvent can be applied for the oilsource correlation of coal-seams petroliferous basins.

  18. Palynological dating of a coal seam in Ayyanapalem area, Khamman District, Andhra Pradesh, India

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.R.; Lakshminarayana, G.; Ramanujam, C.G.K. (Geological Survey of India, Hyderabad (India). Southern Region)

    1990-05-25

    A palynological study of five subsurface samples of a coal seam near Ayyanapalem, Chintalapudi sub-basin of Godavari valley, Andhra Pradesh, was carried out. Twenty-five genera, including monosaccate, striate and nonstriate bisaccate, and trilete sporomorphs were identified; striate bisaccates predominate. Based on occurrence of {ital Rhizomaspora, Microbaculispora, Indotriradites, Crucisaccites ital} and {ital Corisaccites}, the coal seam is inferred to be similar in age to the Permian age Barakar Formation of the Lower Gondwana. 3 refs., 2 figs.

  19. 3D Discrete element approach to the problem on abutment pressure in a gently dipping coal seam

    Science.gov (United States)

    Klishin, S. V.; Revuzhenko, A. F.

    2017-09-01

    Using the discrete element method, the authors have carried out 3D implementation of the problem on strength loss in surrounding rock mass in the vicinity of a production heading and on abutment pressure in a gently dripping coal seam. The calculation of forces at the contacts between particles accounts for friction, rolling resistance and viscosity. Between discrete particles modeling coal seam, surrounding rock mass and broken rocks, an elastic connecting element is introduced to allow simulating coherent materials. The paper presents the kinematic patterns of rock mass deformation, stresses in particles and the graph of the abutment pressure behavior in the coal seam.

  20. Determination of Destress Blasting Effectiveness Using Seismic Source Parameters

    Science.gov (United States)

    Wojtecki, Łukasz; Mendecki, Maciej J.; Zuberek, Wacaław M.

    2017-12-01

    Underground mining of coal seams in the Upper Silesian Coal Basin is currently performed under difficult geological and mining conditions. The mining depth, dislocations (faults and folds) and mining remnants are responsible for rockburst hazard in the highest degree. This hazard can be minimized by using active rockburst prevention, where destress blastings play an important role. Destress blastings in coal seams aim to destress the local stress concentrations. These blastings are usually performed from the longwall face to decrease the stress level ahead of the longwall. An accurate estimation of active rockburst prevention effectiveness is important during mining under disadvantageous geological and mining conditions, which affect the risk of rockburst. Seismic source parameters characterize the focus of tremor, which may be useful in estimating the destress blasting effects. Investigated destress blastings were performed in coal seam no. 507 during its longwall mining in one of the coal mines in the Upper Silesian Coal Basin under difficult geological and mining conditions. The seismic source parameters of the provoked tremors were calculated. The presented preliminary investigations enable a rapid estimation of the destress blasting effectiveness using seismic source parameters, but further analysis in other geological and mining conditions with other blasting parameters is required.

  1. Preparation and extraction of sloping seams without leaving inter-drift coal pillars

    Energy Technology Data Exchange (ETDEWEB)

    Artamonov, N S; Bormotov, I N; Brovko, I I

    1977-10-01

    A description is given of mining three coal seams in the Kuznetsk Basin without leaving coal pillars because they could not withstand the stress of the induced reference pressure. This system reduced coal losses in 1976 in comparison to 1970 and eliminated local accumulations of methane by withdrawing it through the excavated area. The system was noted to have the disadvantage of additional expenditures for timber supports. 2 figures.

  2. Determination of mineral matter distribution in a coal seam using O sub 2 chemisorption technique

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.D.; Goulet, J.-C.; Grandsen, J.; Price, J.T.; Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1990-08-01

    A series of samples taken from different depths of the seam of a bituminous coal in Western Canada was used to determine the mineral matter distribution. The measurements were carried out using the O{sub 2} chemisorption based on a thermogravimetric technique. The O{sub 2} chemisorption increased with decreasing mineral matter content. The employed technique was found to be suitable for identifying the portion of coal seam least contaminated with mineral matter. 5 refs., 3 figs., 1 tab.

  3. Geological storage of carbon dioxide in the coal seams: from material to the reservoir

    International Nuclear Information System (INIS)

    Nikoosokhan, S.

    2012-01-01

    CO 2 emissions into the atmosphere are recognized to have a significant effect on global warming. Geological storage of CO 2 is widely regarded as an essential approach to reduce the impact of such emissions on the environment. Moreover, injecting carbon dioxide in coal bed methane reservoirs facilitates the recovery of the methane naturally present, a process known as enhanced coal bed methane recovery (ECBM). But the swelling of the coal matrix induced by the preferential adsorption by coal of carbon dioxide over the methane in place leads to a closure of the cleat system (a set of small natural fractures) of the reservoir and therefore to a loss of injectivity. This PhD thesis is dedicated to a study of how this injectivity evolves in presence of fluids. We derive two poro-mechanical dual-porosity models for a coal bed reservoir saturated by a pure fluid. The resulting constitutive equations enable to better understand and model the link between the injectivity of a coal seam and the adsorption-induced swelling of coal. For both models, the pore space of the reservoir is considered to be divided into the macroporous cleats and the pores of the coal matrix. The two models differ by how adsorption of fluid is taken into account: the first model is restricted to surface adsorption, while the second model can be applied for adsorption in a medium with a generic pore size distribution and thus in a microporous medium such as coal, in which adsorption mostly occurs by micropore filling. The latter model is calibrated on two coals with different sorption and swelling properties. We then perform simulations at various scales (Representative Elementary Volume, coal sample, coal seam). In particular, we validate our model on experimental data of adsorption-induced variations of permeability of coal. We also perform simulations of seams from which methane would be produced (CBM) or of methane-free seams into which CO 2 would be injected. We study the effect of various

  4. Element geochemistry and cleaning potential of the No. 11 coal seam from Antaibao mining district

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.F.; Qin, Y.; Song, D.Y.; Sang, S.X.; Jiang, B.; Zhu, Y.M.; Fu, X.H. [China University of Mining & Technology, Xuzhou (China). College for Resources & Geoscience

    2005-12-15

    Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine, Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution of the elements in the seam profile, their geochemical partitioning behavior during the coal cleaning and the genetic relationships between the both are studied. The coal-forming environment was probably invaded by sea water during the post-stage of peatification, which results in the fact that the contents of As, Fe, S, etc. associated closely with sea water tend to increase toward the top of the seam. These elements studied are dominantly associated with kaolinite, pyrite, illite, montmorillonite, etc., of which the As, Pb, Mn, Cs, Co, Ni, etc. are mainly associated with sulfides, the Mo, V, Nb, Hf, REEs, Ta etc. mainly with kaolinite, the Mg, Al etc. mainly with epigenetic montmorillonite, and the Rb, Cr, Ba, Cu, K, Hg, etc. mainly with epigenetic illite. The physical coal cleaning is not only effective in the removal of ash and sulfur, but also in reducing the concentration of most major and trace elements. The elements Be, U, Sb, W, Br, Se, P, etc. are largely or partly organically bound showing a relatively low removability, while the removability of the other elements studied is more than 20%, of which the Mg, Mn, Hg, Fe, As, K, AI, Cs, and Cr associated mostly with the coarser or epigenetic minerals show a higher removability than that of ash. The distribution of the elements in the seam profile controls their partitioning behavior to a great degree during the coal cleaning processes.

  5. Depositional environments of the Jurassic Maghara main coal seam in north central Sinai, Egypt

    Science.gov (United States)

    Edress, Nader Ahmed Ahmed; Opluštil, Stanislav; Sýkorová, Ivana

    2018-04-01

    Twenty-eight channel samples with a cumulative thickness of about 4 m collected from three sections of the Maghara main coal seam in the middle Jurassic Safa Formation have been studied for their lithotype and maceral compositions to reconstruct the character of peat swamp, its hydrological regime and the predominating type of vegetation. Lithotype composition is a combination of dully lithotypes with duroclarain (19% of total cumulative thickness), clarodurain (15%), black durain (15%), and shaly coal (15%) and bright lithotypes represented by clarain (23%), vitrain (12%) and a small proportion of wild fire-generated fusain (1%). Maceral analyses revealed the dominance of vitrinite (70.6% on average), followed by liptinite (25.2%) and inertinite (8.1%). Mineral matter content is ∼9% on average and consists of clay, quartz and pyrite concentrate mostly at the base and the roof of the seam. Dominantly vitrinite composition of coal and extremely low fire- and oxidation-borne inertinite content, together with high Gelification Indices imply predomination of waterlogged anoxic conditions in the precursing mire with water tables mostly above the peat surface throughout most of the time during peat swamp formation. Increases in collotelinite contents and Tissue Preservation Index up the section, followed by a reversal trend in upper third of the coal section, further accompanied by a reversal trend in collodetrinite, liptodetrinite, alginite, sporinite and clay contents records a transition from dominately limnotelmatic and limnic at the lower part to dominately limnotelmatic with increase telmatic condition achieved in the middle part of coal. At the upper part of coal seam an opposite trend marks the return to limnic and limnotelmatic conditions in the final phases of peat swamp history and its subsequent inundation. The proportion of arborescent (mostly coniferous) and herbaceous vegetation varied throughout the section of the coal with tendency of increasing

  6. Adult Education and Radical Habitus in an Environmental Campaign: Learning in the Coal Seam Gas Protests in Australia

    Science.gov (United States)

    Ollis, Tracey; Hamel-Green, Michael

    2015-01-01

    This paper examines the adult learning dimensions of protestors as they participate in a campaign to stop coal seam gas exploration in Gippsland in Central Victoria, Australia. On a global level, the imposition of coal seam gas exploration by governments and mining companies has been the trigger for movements of resistance from environmental…

  7. Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths

    Science.gov (United States)

    Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni

    2014-10-01

    Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to

  8. Phosphorus minerals in tonstein; coal seam 405 at Sośnica-Makoszowy coal mine, Upper Silesia, southern Poland

    Science.gov (United States)

    Kokowska-Pawłowska, Magdalena; Nowak, Jacek

    2013-06-01

    Kokowska-Pawłowska, M. and Nowak, J. 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica- Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63 (2), 271-281. Warszawa. The paper presents results of research on tonstein, which constitutes an interburden in coal seam 405 at the Sośnica- Makoszowy coal mine, Makoszowy field (mining level 600 m), Upper Silesia, southern Poland. The mineral and chemical compositions of the tonstein differ from the typical compositions described earlier for tonsteins from Upper Silesia Coal Basin area. Additionally, minerals present in the tonsteins include kaolinite, quartz, kaolinitised biotite and feldspars. The presence of the phosphatic minerals apatite and goyazite has been recognized. The presence of gorceixite and crandallite is also possible. The contents of CaO (5.66 wt%) and P2O5 (6.2 wt%) are remarkably high. Analysis of selected trace elements demonstrated high contents of Sr (4937 ppm) and Ba (4300 ppm), related to the phosphatic minerals. On the basis of mineral composition the tonstein has been identified as a crystalline tonstein, transitional to a multiplied one.

  9. Influence of a Large Pillar on the Optimum Roadway Position in an Extremely Close Coal Seam

    Directory of Open Access Journals (Sweden)

    Li Yang

    2016-01-01

    Full Text Available Based on the mining practice in an extremely close coal seam, theoretical analysis was conducted on the vertical stress distribution of the floor strata under a large coal pillar. The vertical stress distribution regulation of a No. 5 coal seam was revealed. To obtain the optimum position of the roadway that bears the supporting pressure of a large coal pillar, numerical modeling was applied to analyze the relation among the stress distribution of the roadway surrounding the rock that bears the supporting pressure of a large coal pillar, the plastic zone distribution of the roadway surrounding the rock, the surrounding rock deformation, and the roadway layout position. The theoretical calculation results of the stress value, stress variation rate, and influencing range of the stress influencing angle showed that the reasonable malposition of the No. 5 coal seam roadway was an inner malposition of 4 m. The mining practice showed the following: the layout of No. 25301 panel belt roadway at the position of the inner malposition of 4 m was reasonable, the roadway support performance was favourable without deformation, and ground pressure was not obvious. The research achievement of this study is the provision of a reference for roadway layouts under similar conditions.

  10. Analysis of US underground thin seam mining potential. Volume 1. Text. Final technical report, December 1978. [In thin seams

    Energy Technology Data Exchange (ETDEWEB)

    Pimental, R. A; Barell, D.; Fine, R. J.; Douglas, W. J.

    1979-06-01

    An analysis of the potential for US underground thin seam (< 28'') coal mining is undertaken to provide basic information for use in making a decision on further thin seam mining equipment development. The characteristics of the present low seam mines and their mining methods are determined, in order to establish baseline data against which changes in mine characteristics can be monitored as a function of time. A detailed data base of thin seam coal resources is developed through a quantitative and qualitative analysis at the bed, county and state level. By establishing present and future coal demand and relating demand to production and resources, the market for thin seam coal has been identified. No thin seam coal demand of significance is forecast before the year 2000. Current uncertainty as to coal's future does not permit market forecasts beyond the year 2000 with a sufficient level of reliability.

  11. A Comparison between Model Base Hardconstrain, Bandlimited, and Sparse-Spike Seismic Inversion: New Insights for CBM Reservoir Modelling on Muara Enim Formation, South Sumatra

    Science.gov (United States)

    Mohamad Noor, Faris; Adipta, Agra

    2018-03-01

    Coal Bed Methane (CBM) as a newly developed resource in Indonesia is one of the alternatives to relieve Indonesia’s dependencies on conventional energies. Coal resource of Muara Enim Formation is known as one of the prolific reservoirs in South Sumatra Basin. Seismic inversion and well analysis are done to determine the coal seam characteristics of Muara Enim Formation. This research uses three inversion methods, which are: model base hard- constrain, bandlimited, and sparse-spike inversion. Each type of seismic inversion has its own advantages to display the coal seam and its characteristic. Interpretation result from the analysis data shows that the Muara Enim coal seam has 20 (API) gamma ray value, 1 (gr/cc) – 1.4 (gr/cc) from density log, and low AI cutoff value range between 5000-6400 (m/s)*(g/cc). The distribution of coal seam is laterally thinning northwest to southeast. Coal seam is seen biasedly on model base hard constraint inversion and discontinued on band-limited inversion which isn’t similar to the geological model. The appropriate AI inversion is sparse spike inversion which has 0.884757 value from cross plot inversion as the best correlation value among the chosen inversion methods. Sparse Spike inversion its self-has high amplitude as a proper tool to identify coal seam continuity which commonly appears as a thin layer. Cross-sectional sparse spike inversion shows that there are possible new boreholes in CDP 3662-3722, CDP 3586-3622, and CDP 4004-4148 which is seen in seismic data as a thick coal seam.

  12. Multicomponent seismic applications in coalbed methane development

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  13. Selection of an Appropriate Mechanized Mining Technical Process for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2015-01-01

    Full Text Available Mechanized mining technical process (MMTP related to the control method of the shearer is a vital process in thin coal seam mining operations. An appropriate MMTP is closely related to safety, productivity, labour intensity, and efficiency. Hence, the evaluation of alternative MMTP is an important part of the mining design. Several parameters should be considered in MMTP evaluation, so the evaluation is complex and must be compliant with a set of criteria. In this paper, two multiple criteria decision-making (MCDM methods, Analytic Hierarchy Process (AHP and Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE, were adopted for this evaluation. Then, the most appropriate MMTP for a thin coal seam working face was selected in China.

  14. An influence function method based subsidence prediction program for longwall mining operations in inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Yi Luo; Jian-wei Cheng [West Virginia University, Morgantown, WV (United States). Department of Mining Engineering

    2009-09-15

    The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorporated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model. 9 refs., 8 figs.

  15. Prediction and control of rock burst of coal seam contacting gas in deep mining

    Energy Technology Data Exchange (ETDEWEB)

    En-yuan Wang; Xiao-fei Liu; En-lai Zhao; Zhen-tang Liu [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering

    2009-06-15

    By analyzing the characteristics and the production mechanism of rock burst that goes with abnormal gas emission in deep coal seams, the essential method of eliminating abnormal gas emission by eliminating the occurrence of rock burst or depressing the magnitude of rock burst was considered. The No.237 working face in Nanshan coal mine was selected as the typical working face contacting gas in deep mining; aimed at this working face, a system of rock burst prediction and control for coal seam contacting gas in deep mining was established using the three-dimensional distinct element code software 3DEC. This system includes three parts: (1) regional prediction of rock burst hazard before mining; (2) local prediction of rock burst hazard during mining; and (3) rock burts control by an electromagnetic radiation method and specific drilling method. 8 refs., 4 figs., 1 tab.

  16. "Knitting Nannas" and "Frackman": A Gender Analysis of Australian Anti-Coal Seam Gas Documentaries (CSG) and Implications for Environmental Adult Education

    Science.gov (United States)

    Larri, Larraine J.; Newlands, Maxine

    2017-01-01

    "Frackman" ("FM") and "Knitting Nannas" ("KN") are two documentaries about the anti-coal seam gas movement in Australia. "Frackman" features a former construction worker turned eco-activist, Dayne Pratzky (DP), fighting coal seam gas extraction. "Knitting Nannas" follows a group of women…

  17. Time-lapse analysis of methane quantity in Mary Lee group of coal seams using filter-based multiple-point geostatistical simulation

    Science.gov (United States)

    Karacan, C. Özgen; Olea, Ricardo A.

    2013-01-01

    Coal seam degasification and its success are important for controlling methane, and thus for the health and safety of coal miners. During the course of degasification, properties of coal seams change. Thus, the changes in coal reservoir conditions and in-place gas content as well as methane emission potential into mines should be evaluated by examining time-dependent changes and the presence of major heterogeneities and geological discontinuities in the field. In this work, time-lapsed reservoir and fluid storage properties of the New Castle coal seam, Mary Lee/Blue Creek seam, and Jagger seam of Black Warrior Basin, Alabama, were determined from gas and water production history matching and production forecasting of vertical degasification wellbores. These properties were combined with isotherm and other important data to compute gas-in-place (GIP) and its change with time at borehole locations. Time-lapsed training images (TIs) of GIP and GIP difference corresponding to each coal and date were generated by using these point-wise data and Voronoi decomposition on the TI grid, which included faults as discontinuities for expansion of Voronoi regions. Filter-based multiple-point geostatistical simulations, which were preferred in this study due to anisotropies and discontinuities in the area, were used to predict time-lapsed GIP distributions within the study area. Performed simulations were used for mapping spatial time-lapsed methane quantities as well as their uncertainties within the study area.

  18. Coal Mining and Coal Seam Gas on Gomeroi country: Sacred lands, economic futures and shifting alliances

    International Nuclear Information System (INIS)

    Norman, Heidi

    2016-01-01

    North western NSW has seen a host of interest groups working in alliance opposing coal and coal seam gas mining. These groups - farmers, residents and environmentalists share concerns about the impact on the unique black soil and aquifer, of fossil fuel more broadly. While these shared alliances across class, gender and generations are emergent, Aboriginal citizens are uniquely placed in this contest over land, environment and resources. This paper sets out to show the historical and contemporary significance of the place of Aboriginal people in the debate over land use, arguing that, for the first time in history, Aboriginal worlds are central to community futures. In this space, new relationships are being forged and new discourse is required to comprehend the complex position Aboriginal citizens have as custodians of place and at the same time, the responsibility to provide for families and communities, otherwise excluded from the prevailing modern economy. With reference to the history of both relationship to land and land usage over Gomeroi country, and drawing on ethnographic along with archival research, this article seeks to contribute to a critical understanding of Aboriginal people's dealings in relation to their land, their cultural and economic interests with in an emerging regional coal economy, and in turn how they are redefining the context for energy resource extraction, and energy policy. - Highlights: • Aboriginal worlds are central to community futures in Australia. • Prospecting for coal and coal seam gas is forcing Aboriginal land holders into new relationships. • The nexus between the coal economy & Aboriginal self-determination is deeply contested. • New discourses are emerging to comprehend the custodianship of place in the context of mining.

  19. Field trials of aquifer protection in longwall mining of shallow coal seams in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.S.; Fan, G.W.; Liu, Y.D.; Ma, L.Q. [State Key Laboratory of Coal Resource & Mine Safety, Xuzhou (China)

    2010-09-15

    The large-scale mining of shallow coal seams has a significant impact on the overlying aquifers and surface ecological environment. To protect the aquifers and maximize the coal resource recovery, field trials were undertaken during the operation of the LW32201 in Bulianta coal mine, Shendong, China. With a severely weathered rock (SWR) layer and two key strata (KS) in the overlying strata, aquifer protection in longwall mining (APLM) relies mainly on the rapid advance. In some localized zones, special measures should be taken to achieve the APLM, including lowering mining height, backfill and slurry injection. To further understand the mechanism and applicable conditions of the APLM and validate the effectiveness of the APLM, variation of the water table in the aquifer was observed as the longwall face passed through the zone. This paper also discusses the mechanism and basic requirements of the APLM and the relationship between the fall of the water table and the surface subsidence. The results of the field trials indicated that APLM in shallow coal seams could be successful under suitable conditions.

  20. Development of the first coal seam gas exploration program in Indonesia: Reservoir properties of the Muaraenim Formation, south Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Sosrowidjojo, I.B. [R and D Centre for Oil and Gas Technology, LEMIGAS, Jakarta (Indonesia); Saghafi, A. [CSIRO Energy Technology, P O Box 330, Newcastle, NSW, 2300 (Australia)

    2009-09-01

    The Late Miocene Muaraenim Formation in southern Sumatra contains thick coal sequences, mostly of low rank ranging from lignite to sub-bituminous, and it is believed that these thick low rank coals are the most prospective for the production of coal seam gas (CSG), otherwise known as coalbed methane (CBM), in Indonesia. As part of a major CSG exploration project, gas exploration drilling operations are being undertaken in Rambutan Gasfields in the Muaraenim Formation to characterize the CSG potential of the coals. The first stage of the project, which is described here, was designed to examine the gas reservoir properties with a focus on coal gas storage capacity and compositional properties. Some five CSG exploration boreholes were drilled in the Rambutan Gasfield, south of Palembang. The exploration boreholes were drilled to depths of {proportional_to} 1000 m into the Muaraenim Formation. Five major coal seams were intersected by these holes between the depths of 450 and 1000 m. The petrography of coal samples collected from these seams showed that they are vitrinite rich, with vitrinite contents of more than 75% (on a mineral and moisture free basis). Gas contents of up to 5.8 m{sup 3}/t were measured for the coal samples. The gas desorbed from coal samples contain mainly methane (CH{sub 4}) ranging from 80 to 93% and carbon dioxide (CO{sub 2}) ranging from 6 to 19%. The composition of the gas released into the production borehole/well is, however, much richer in CH{sub 4} with about 94 to 98% CH{sub 4} and less than 5% CO{sub 2}. The initial results of drilling and reservoir characterization studies indicate suitable gas recovery parameters for three of the five coal seams with a total thickness of more than 30 m. (author)

  1. New method for protecting mine roadways in thin coal seams by means of prefabricated yielding blocks

    Energy Technology Data Exchange (ETDEWEB)

    Peknik, J

    1983-05-01

    The use of concrete blocks for strata control in mine roadways driven in thin coal seams is evaluated. Two types of prefabricated blocks are used: BZT blocks made of reinforced concrete and yielding elements or popilbet blocks made of a mixture of fly ash (from coal power plants) and concrete. When the popilbet blocks were used no yielding elements were necessary. Mechanical properties of blocks made of reinforced concrete were controlled by yielding elements. Mechanical properties (compression strength) of the popilbet blocks were controlled by proportion of water, cement and fly ash. The BZT and the popilbet blocks were used for strata control in mine roadways in coal seams from 60 to 80 cm thick and dip angle from 5 to 18 degrees. Use of the BZT and the popilbet blocks reduced roadway deformation by about 50% in comparison to traditional strata control methods (timber cribbings, use of waste rock, etc.). Use of the blocks is explained. The BZT and the popilbet blocks were placed in a roadway wall. Height of the block wall equaled coal seam thickness. Yielding arched steel supports and timber liners were used for strata control in the roadway. The popilbet blocks were 50% less expensive than the BZT blocks. 9 references

  2. Study of geological and technologic evaluation for steeply inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiao-bing; Wang Zhong-qiang; Zhang Wei (and others) [China University of Mining & Technology, Beijing (China). School of Resources and Safety Engineering

    2007-07-01

    In order to predict the mining effect and choice of the technical decision comprehensive evaluation on steep coal seams was taken. Based on technical test, mining practice and analysis of statistic data, the hierarchical structure of evaluation about steeply inclined coal seam was obtained. In the structure, there are 8 multiple factors, which can divide 13 fundamental factors. Using the method of comprehensive evaluation with multi-index and fuzzy mathematics, the evaluation functions of the influencing factors are structured, and the model of fuzzy evaluation is proposed. 289 mining faces in Datai mine were evaluated using this model and the single outputs of these faces were predicted. The result shows that the number of mining faces in the first class is 27, covering 9.43% of the total, the number of the second class is 87, covering 30.1% of the total, the number of the third class is 112, covering 38.75%, and the number of the fourth class is 63, covering 21.8%.The evaluation and the reality are largely uniform. 8 refs., 3 tabs.

  3. Coiled-tubing fracturing of coal seams on the Vermejo Park Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Bybee, K.

    2003-06-01

    Coiled-tubing (CT) fracturing currently is used to stimulate the Vermejo and Raton coal seams on the Vermejo Park Ranch in northern New Mexico. The CT fracturing process increased the number of stimulation stages from 4 to 18 per well. CT fracturing results in more accurate proppant placement and more effective stimulation of the producing zones.

  4. 保护层开采被保护层卸压增透效果的应用研究%Effect of protective seam mining on pressure relief and permeability enhancement of protected coal seam

    Institute of Scientific and Technical Information of China (English)

    冯拥军; 周玉军; 张喜传

    2014-01-01

    In view of the coal seam occurrence condition and geological condition of the west-ern region of Henan Province,the gas pressure releasing and drainage in protective coal seam was designed and the drilling design was investigated. In addition,the gas parameters and the dis-placement of roof and floor of B1 coal seam were determined. The research results showed that after the protective seam mining,coal seam gas pressure was decreased from the original 0.9 MPa to 0.12 MPa,the original gas content was reduced from the previous 6.52 m3/t to 3.1 m3/t,the expansion deformation of roof and floor reached 20.6 ‰,and the coal seam permeability coefficient was increased 810 times,so that the outburst danger at No. 12112 working face of B1 coal seam was eliminated in the pressure released area.%针对豫西煤田煤层赋存情况及地质状况,设计了被保护层的卸压抽采方案及考察钻孔,对瓦斯基础参数和二1煤层的煤层顶底板移近量进行了测定.研究结果表明,二1煤层在受到保护层开采后,煤层瓦斯压力由原始的0.9 MP a降为0.12 MP a ,原始瓦斯含量由以前的6.52 m3/t降为3.1 m3/t,顶底板膨胀变形量达到20.6‰,煤层透气性系数增大了810倍,在卸压区内完全消除了二1煤层12112工作面的突出危险性.

  5. Time-Lapse Analysis of Methane Quantity in the Mary Lee Group of Coal Seams Using Filter-Based Multiple-Point Geostatistical Simulation.

    Science.gov (United States)

    Karacan, C Özgen; Olea, Ricardo A

    2013-08-01

    Coal seam degasification and its success are important for controlling methane, and thus for the health and safety of coal miners. During the course of degasification, properties of coal seams change. Thus, the changes in coal reservoir conditions and in-place gas content as well as methane emission potential into mines should be evaluated by examining time-dependent changes and the presence of major heterogeneities and geological discontinuities in the field. In this work, time-lapsed reservoir and fluid storage properties of the New Castle coal seam, Mary Lee/Blue Creek seam, and Jagger seam of Black Warrior Basin, Alabama, were determined from gas and water production history matching and production forecasting of vertical degasification wellbores. These properties were combined with isotherm and other important data to compute gas-in-place (GIP) and its change with time at borehole locations. Time-lapsed training images (TIs) of GIP and GIP difference corresponding to each coal and date were generated by using these point-wise data and Voronoi decomposition on the TI grid, which included faults as discontinuities for expansion of Voronoi regions. Filter-based multiple-point geostatistical simulations, which were preferred in this study due to anisotropies and discontinuities in the area, were used to predict time-lapsed GIP distributions within the study area. Performed simulations were used for mapping spatial time-lapsed methane quantities as well as their uncertainties within the study area. The systematic approach presented in this paper is the first time in literature that history matching, TIs of GIPs and filter simulations are used for degasification performance evaluation and for assessing GIP for mining safety. Results from this study showed that using production history matching of coalbed methane wells to determine time-lapsed reservoir data could be used to compute spatial GIP and representative GIP TIs generated through Voronoi decomposition

  6. FY 1997 basic survey for coal resource development. Data collection of the joint research of new technology in the geophysical exploration of coal resources (water area medium depth seam survey); 1997 nendo sekitan shigen kaihatsu kiso chosa shiryoshu. Shintansa gijutsu chosa kaihatsu (suiiki chushindoso tansa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In 'the new exploration technology test on coal resource' (water area medium depth seam exploration) jointly conducted between Japan and China, tests have been carried out for 5 years on the BDR-5 test boring measurement monitoring system and the diamond bit which are items of the technology development of high resolution seismic survey system and high efficiency test boring system. As a result, the new technology test was successful, and technical economic effects were obtained. The situation of the test was summarized. The following data were compiled as shown in Data No.1-12. 1. The proceedings of the FY 1997 Japan-China steering committee (No.9). 2. Report on the survey of China verification field South Sihu water level situation. 3. The proceedings of the FY 1997 Japan-China steering committee (final). 4. Report on the FY 1997 reflection seismic exploration survey. 5. Report on the FY 1997 No.2 test boring survey. 6. Summarization of the test on 'the new exploration technology of coal source' conducted between Japan and China. 7. Report on the drilling data measurement. 8. Various sections of the reflection seismic survey data processing. 9. Traverse line chart. 10. T3 isochrone chart. 11. T3 depth structural chart. 12. Report on the new exploration technology survey development (water area medium depth seam exploration) geological model making. (NEDO)

  7. Pore pressure propagation in a permeable thin-layer coal seam based on a dual porosity model: A case of risk prediction of water inrush in coalmines

    Science.gov (United States)

    Zhu, B.; Gao, F.; Yang, J. W.; Zhou, G. Q.

    2016-08-01

    Thin-layer coal seams, a type of filling coal rock body, are considered aquifer systems made up of dual porosity medium with immediate floor. A numerical simulation for the pore pressure propagation along a thin-layer coal seam was carried out for the case of the Zhaogezhuang coalmine in China. By valuing the permeability (Kf ) of the thin-layer coal seam, pore pressure variation with time was simulated and compared to the analytical solutions of a dual porosity model (DPM). The main conclusions were drawn as follow: (1) Seepage in the thin-layer coal seam was predominant in the whole process, and the distance of seepage was lengthened and the pore pressure decreased with increased Kf , (2) A series of simulated hydraulic graphs demonstrated that the pore pressure characteristics of peak-occurring and time-lag effects agreed with the analytical solutions of DPM; (3) By adjusting the parameters of DPM, two results of analytical solutions and numerical solutions fit well, particularly in the thin-layer coal seam, (4) The power law relationship between the peak-values and lag time of pore pressure were derived statistically under consideration of the Kf parameter in the range of 10-8 to 10-10 m2/pa-s orders, and it was reasonable that the Kf of the thin-layer coal seam was in the range of 10-8 m2/pa-s orders. The results were significantly helpful in decision-making for mining water prevention and prediction in practice.

  8. An Innovative Approach for Gob-Side Entry Retaining in Thick Coal Seam Longwall Mining

    Directory of Open Access Journals (Sweden)

    Manchao He

    2017-11-01

    Full Text Available Gob-side entry retaining (GER is a popular non-pillar mining technique regarding how to reserve a gateroad for the use of next panel mining. When used in thick coal seams, the conventional entry retaining method requires a huge amount of filling materials and may cause entry (gateroad accidents. Thus, an innovative non-pillar longwall mining approach is introduced. First, structural and mechanical models were built to explore the mechanism of the new approach. The modeling results indicate that effective bulking of the gob roof and reasonable support of the entry roof were key governing factors in improving entry stabilities and reducing roof deformations. Accordingly, a directional roof fracturing technique was proposed to contribute to gob roof caving, and a constant resistance and large deformation anchor (CRLDA cable was used to stabilize the entry roof. Subsequently, the evolutionary laws of the roof structure and stresses were explored using numerical simulation. It was found that the structure of the surrounding rocks around the retained entry changed significantly after roof fracturing. The stress-bearing center was transferred to the gob area, and the entry roof was in a low stress environment after adopting the approach. Finally, the approach was tested on a thick coal seam longwall mining panel. Field monitoring indicates that the retained entry was in a stable state and the index of the retained entry met the requirement of the next mining panel. This work provides an effective and economical approach to non-pillar longwall mining in thick coal seams.

  9. Case study on ground surface deformation induced by CO2 injection into coal seam

    International Nuclear Information System (INIS)

    Li Hong; Tang Chun'an

    2010-01-01

    To monitor a geomechanical response of injecting CO 2 into relatively shallow coal seams, tiltmeters were set as an array to cover the ground surface area surrounding the injection well, and to measure the ground deformation during a well fracturing stimulation and a short-term CO 2 injection test. In this paper, an attempt to establish a quantitative relationship between the in-situ coal swelling and the corresponding ground deformation was made by means of numerical simulation study. (authors)

  10. Numerical Study on 4-1 Coal Seam of Xiaoming Mine in Ascending Mining

    Science.gov (United States)

    Tianwei, Lan; Hongwei, Zhang; Sheng, Li; Weihua, Song; Batugin, A. C.; Guoshui, Tang

    2015-01-01

    Coal seams ascending mining technology is very significant, since it influences the safety production and the liberation of dull coal, speeds up the construction of energy, improves the stability of stope, and reduces or avoids deep hard rock mining induced mine disaster. Combined with the Xiaoming ascending mining mine 4-1, by numerical calculation, the paper analyses ascending mining 4-1 factors, determines the feasibility of ascending mining 4-1 coalbed, and proposes roadway layout program about working face, which has broad economic and social benefits. PMID:25866840

  11. A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief

    International Nuclear Information System (INIS)

    Kong, Shengli; Cheng, Yuanping; Ren, Ting; Liu, Hongyong

    2014-01-01

    Highlights: • The gas reservoirs characteristics are measured and analyzed. • A sequential approach to control gas of multi-gassy coal seams is proposed. • The design of gas drainage wells has been improved. • The utilization ways of different concentrations of gas production are shown. - Abstract: As coal resources become exhausted in shallow mines, mining operations will inevitably progress from shallow depth to deep and gassy seams due to increased demands for more coal products. However, during the extraction process of deeper and gassier coal seams, new challenges to current gas control methods have emerged, these include the conflict between the coal mine safety and the economic benefits, the difficulties in reservoirs improvement, as well as the imbalance between pre-gas drainage, roadway development and coal mining. To solve these problems, a sequential approach is introduced in this paper. Three fundamental principles are proposed: the mining-induced stress relief effect of the first-mined coalbed should be sufficient to improve the permeability of the others; the coal resource of the first-mined seams must be abundant to guarantee the economic benefits; the arrangement of the vertical wells must fit the underground mining panel. Tunlan coal mine is taken as a typical example to demonstrate the effectiveness of this approach. The approach of integrating surface coalbed methane (CBM) exploitation with underground gas control technologies brings three major benefits: the improvement of underground coal mining safety, the implementation of CBM extraction, and the reduction of greenhouse gas emissions. This practice could be used as a valuable example for other coal mines having similar geological conditions

  12. FY 2000 report on the survey of the overseas geological structure. Japan-China joint coal exploration - Yu Xian project; 2000 nendo kaigai chishitsu kozo nado chosa hokokusho. Nippon Chugoku sekitan kyodo tansa Yu Xian project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The geological survey was carried out which is needed for coal mine design in the Yu Xian coal mine area, Yu Xian coal field, Hebei province, China. The term of survey was 5 years from 1996 to 2000. Activities are mainly for seismic survey and boring survey. Japan was in charge of the seismic survey, and China in charge of the boring survey. Both attained the goal. The results of the activities were summed up in the following 7 items: 1) outline of the survey; 2) general investigation; 3) state of the exploration related materials/machinery; 4) field survey; 5) items of survey; 6) results of the survey; 7) conclusion. In 6), the geological analysis, coal quality survey and coal amount survey were conducted. In the geological analysis, analyzed were the succession of strata, geological structure, and the situation of existence of coal seams. In 7), the following were made clear: geological structure of the survey area, coal seam, coal quality, hydrological geology, other conditions of drilling technology, and coal amount. The coal amount was 328.34 million tons in a total of A/B/C class coals. The total coal amount of Nos. 1 and 5 coal seams was 259.79 million tons, which was 79.1% of the total coal amount in all area. The average thickness of Nos. 1 and 5 coal seams, which are the main minable coal seams, was 3.10m and 2.66m, respectively. (NEDO)

  13. Probabilistic modelling and uncertainty analysis of flux and water balance changes in a regional aquifer system due to coal seam gas development.

    Science.gov (United States)

    Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian

    2018-09-01

    Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights

  14. Analysis of the Harmfulness of Water-Inrush from Coal Seam Floor Based on Seepage Instability Theory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group, Xuzhou.Based on the stratum column chart in this coal mine, the distribution of stress in mining floors when the long-wall mining was respectively pushed along to 100 m and to 150 m was simulated by using the numerical software (RFPA2D).The permeability parameters of the coal seam floor are described given the relationship between permeability parameters.Strain and the water-inrush-indices were calculated.The water-inrush-index was 67.2% when the working face was pushed to 100 m, showing that water-inrush is possible and it was 1630% when the working face was pushed to 150 m, showing that water-inrush is quite probable.The results show that as long-wall mining is pushed along, the failure zone is enlarged, the strain increased, and fissures developed correspondingly, resulting in the formation of water-inrush channels.Accompanied by the failure of the strata, the permeability increased exponentially.In contrast, the non-Darcy flow β factor and the acceleration coefficient decreased exponentially, while the increase in the water-inrush-index was nearly exponential and the harmfulness of water-inrush in the coal mine increased accordingly.

  15. Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Directory of Open Access Journals (Sweden)

    Fa-qiang Su

    2018-04-01

    Full Text Available The Underground Coal Gasification (UCG system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining.

  16. SULPHIDE MINERALIZATION IN UPPER WESTPHALIAN COAL SEAMS FROM THE EASTERN PART OF THE UPPER SILESIAN COAL BASIN

    Directory of Open Access Journals (Sweden)

    Lipiarski Ireneusz

    1997-10-01

    Full Text Available Morphologically diversified sulphide mineralization has been found in No. 301 and 302 coal seams (Westphalian B. The main sulphide is pyrite which forms veinlets cross-cutting the sedimentary fabrics of the coal, encrusts the cellular structures and intergrowths with oxysulphides. Two generations of pyrites were observed: the preceding and the following the oxysulphides. Pyrite composition is stoichiometric, rare admixtures are up to(in wt.%: Mn - 0.19, Co - 0.48, Ni - 0.42 and As - 1.41. Iron oxysulphides contain up to 35.06 wt.% oxygen. Their composition varies between FeS2O and FeS2O3. Increased contents of As (up to 1.46 wt.% and Pb (up to 0.96 wt.% were detected.

  17. Fiscal 1998 overseas geological structure survey. Japan-China joint coal survey Mei-Xian project; 1998 nendo kaigai chishitsu kozo nado chosa hokokusho. Nippon Chugoku sekitan kyodo tansa Mei-Xian project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Japan-China joint coal survey was made through seismic prospecting by Japanese group and drilling prospecting by Chinese group. Mei-Xian mine property includes coal seams of the Jurassic period, and is covered with the quaternary period stratum without any coal seam. The base of the quaternary period stratum exists at depth of 50-400m, while the coal seams at depth of 300-700m. Among 11 existing seams, the 1st and 5th seams are main objects for prospecting. The 5th seam of 0.2-8.96m (2.95m in average) thick is the most expected important one, distributing all over the mine property. The 5th seam also has branch seams spreading over 2.5km from east to west and 1.2km from south to north in the center part of the mine property. The 1st seam of 0-8.62m (2.90m in average) thick is most thick in the south part of the mine property. The theoretical amount of coal deposits in the whole coal seam is estimated to be nearly 290,000,000t by Chinese group (nearly 50% of it in the 5th seam). That is also estimated to be nearly 346,000,000t by Japanese group (155,000,000t in the 5th seam). Both 1st and 5th seams are composed of sub-bituminous coal. (NEDO)

  18. Characteristics of the Roof Behaviors and Mine Pressure Manifestations During the Mining of Steep Coal Seam

    Science.gov (United States)

    Hong-Sheng, Tu; Shi-Hao, Tu; Cun, Zhang; Lei, Zhang; Xiao-Gang, Zhang

    2017-12-01

    A steep seam similar simulation system was developed based on the geological conditions of a steep coal seam in the Xintie Coal Mine. Basing on similar simulation, together with theoretical analysis and field measurement, an in-depth study was conducted to characterize the fracture and stability of the roof of steep working face and calculate the width of the region backfilled with gangue in the goaf. The results showed that, as mining progressed, the immediate roof of the steep face fell upon the goaf and backfilled its lower part due to gravity. As a result, the roof in the lower part had higher stability than the roof in the upper part of the working face. The deformation and fracture of main roof mainly occurred in the upper part of the working face; the fractured main roof then formed a "voussoir beam" structure in the strata's dip direction, which was subjected to the slip- and deformation-induced instability. The stability analysis indicated that, when the dip angle increased, the rock masses had greater capacity to withstand slip-induced instability but smaller capacity to withstand deformation-induced instability. Finally, the field measurement of the forces exerted on the hydraulic supports proved the characteristics of the roof's behaviors during the mining of a steep seam.

  19. The forecast of mining-induced seismicity and the consequent risk of damage to the excavation in the area of seismic event

    Directory of Open Access Journals (Sweden)

    Jan Drzewiecki

    2017-01-01

    forecast of the seismic energy of a shock with the defined location of its source: value of the coefficient λ of dispersion/attenuation of seismic energy and the flux of seismic energy at predetermined distances r from the tremor source. The proposed solution for forecasting the seismic energy of tremors and the level of risk of damage to the excavation during the functioning of mining operations is helpful in the development of bump prevention. Changing the intensity of mining operations enables the level of the seismic energy induced by the operations both at the stage of its development and during the excavation of a seam using the longwall method to be “controlled”. The presented solution has been produced for an area disturbed by the mining of coal seam 510 in the hard coal mine, Jas-Mos. An original program developed by CMI was used for the calculations.

  20. A case study of multi-seam coal mine entry stability analysis with strength reduction method.

    Science.gov (United States)

    Tulu, Ihsan Berk; Esterhuizen, Gabriel S; Klemetti, Ted; Murphy, Michael M; Sumner, James; Sloan, Michael

    2016-03-01

    In this paper, the advantage of using numerical models with the strength reduction method (SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated. A coal mine under variable topography from the Central Appalachian region is used as a case study. At this mine, unexpected roof conditions were encountered during development below previously mined panels. Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels. Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries. The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations. The SRM-calculated stability factors were compared with observations made during the site visits, and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case. It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.

  1. High resolution reflection seismic mapping of shallow coal seams

    CSIR Research Space (South Africa)

    Mngadi, SB

    2013-10-01

    Full Text Available the extent of the mine workings. Two 94 m profiles (tied to boreholes) were surveyed using a sledgehammer source. Processing was optimized to image the shallow reflections. The refraction seismic models and stacked time sections were compared and integrated...

  2. Novel pre-treatment of zeolite materials for the removal of sodium ions: potential materials for coal seam gas co-produced wastewater.

    Science.gov (United States)

    Santiago, Oscar; Walsh, Kerry; Kele, Ben; Gardner, Edward; Chapman, James

    2016-01-01

    Coal seam gas (CSG) is the extraction of methane gas that is desorbed from the coal seam and brought to the surface using a dewatering and depressurisation process within the saturated coalbed. The extracted water is often referred to as co-produced CSG water. In this study, co-produced water from the coal seam of the Bowen Basin (QLD, Australia) was characterised by high concentration levels of Na(+) (1156 mg/L), low concentrations of Ca(2+) (28.3 mg/L) and Mg(2+) (5.6 mg/L), high levels of salinity, which are expected to cause various environmental problems if released to land or waters. The potential treatment of co-produced water using locally sourced natural ion exchange (zeolite) material was assessed. The zeolite material was characterized for elemental composition and crystal structure. Natural, untreated zeolite demonstrated a capacity to adsorb Na(+) ions of 16.16 mEq/100 g, while a treated zeolite using NH4 (+) using a 1.0 M ammonium acetate (NH4C2H3O2) solution demonstrated an improved 136 % Na(+) capacity value of 38.28 mEq/100 g after 720 min of adsorption time. The theoretical exchange capacity of the natural zeolite was found to be 154 mEq/100 g. Reaction kinetics and diffusion models were used to determine the kinetic and diffusion parameters. Treated zeolite using a NH4 (+) pre-treatment represents an effective treatment to reduce Na(+) concentration in coal seam gas co-produced waters, supported by the measured and modelled kinetic rates and capacity.

  3. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    Science.gov (United States)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of

  4. 近距离煤层群上行开采研究%Study on ascending mining of close distance coal seams group

    Institute of Scientific and Technical Information of China (English)

    庞冬冬

    2017-01-01

    为研究8煤开采对上部11煤的影响,综合运用理论分析和数值计算的方法,对上行开采过程中,上部11煤底板位移场.应力场变化规律进行研究.结果表明:11煤位于8煤开采的弯曲下沉带内,煤体有一定的破坏,但保持了很好的连续性,而且14128工作面的开采降低了上煤层的应力,形成应力降低区;同时,增大了11煤的透气性,减小瓦斯压力,卸压效果显著,对高瓦斯的11煤安全开采提供了保障.最后,计算得出了卸压影响范围.%In order to study the influence of No.8 seam mining on the upper No.11 seam,theoretical analysis and numerical calculation were used to study the change law of the displacement field and stress field of the upper No.11 seam floor during ascending mining.The results show that No.11 seam is located in the curve subsidence zone of No.8 seam mining,the coal body has certain damage,but it has a good continuity,and the stress of the upper coal seam is reduced because of the mining of 14128 working face and the stress decreasing zone has formed;at the same time,the permeability of No.11 coal increases,the gas pressure reduces,and pressure-relaxing effect is obvious,and it provides protection for the safe mining of No.11 seam which is of high gas.At last,the influence range of pressure relief is calculated.

  5. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    Science.gov (United States)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  6. Dispersion calculation method based on S-transform and coordinate rotation for Love channel waves with two components

    Science.gov (United States)

    Feng, Lei; Zhang, Yugui

    2017-08-01

    Dispersion analysis is an important part of in-seam seismic data processing, and the calculation accuracy of the dispersion curve directly influences pickup errors of channel wave travel time. To extract an accurate channel wave dispersion curve from in-seam seismic two-component signals, we proposed a time-frequency analysis method based on single-trace signal processing; in addition, we formulated a dispersion calculation equation, based on S-transform, with a freely adjusted filter window width. To unify the azimuth of seismic wave propagation received by a two-component geophone, the original in-seam seismic data undergoes coordinate rotation. The rotation angle can be calculated based on P-wave characteristics, with high energy in the wave propagation direction and weak energy in the vertical direction. With this angle acquisition, a two-component signal can be converted to horizontal and vertical directions. Because Love channel waves have a particle vibration track perpendicular to the wave propagation direction, the signal in the horizontal and vertical directions is mainly Love channel waves. More accurate dispersion characters of Love channel waves can be extracted after the coordinate rotation of two-component signals.

  7. Use of neutron activation analysis to measure the variation in trace element concentrations in a coal seam

    International Nuclear Information System (INIS)

    Fardy, J.J.; Swaine, D.J.

    1985-01-01

    Trace element concentrations were measured by neutron activation on 57 run-of-mine coal samples from several locations in seven mines located in the Lithgow seam in the Western Coalfield, Sydney Basin. Results were tabulated as ratios of the highest to the lowest variance for each element

  8. Relaxation and gas drainage boreholes for high performance longwall operations in low permeability coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Imgrund, Thomas [DMT GmbH und Co. KG, Essen (Germany); Bauer, Frank [Hazemag und EPR GmbH, Duelmen (Germany). Mining

    2013-06-15

    With an increasing depth of cover, gas emission control and gas outbursts prevention has become an increasingly important issue in coal mining. Deep multi-seam mining often requires operation in an environment characterised by a high gas content and gas pressure. Control of gas related risks has to be realised during heading and close to the longwall by proper risk assessment and flexible drilling schemes. These cover exploration and relaxation drilling, in-seam drilling for pre-drainage and cross measure drilling for drainage of roof and the floor gas emissions. DMT provides comprehensive solutions based on a scientific background. These solutions are engineered considering their technical feasibility. Hazemag Mining offers a large number of complete machinery including tools systems for the implementation of those solutions. (orig.)

  9. Effects of torpedo blasting on rockburst prevention during deep coal seam mining in the Upper Silesian Coal Basin

    Czech Academy of Sciences Publication Activity Database

    Wojtecki, Ł.; Koníček, Petr; Schreiber, J.

    2017-01-01

    Roč. 9, č. 4 (2017), s. 694-701 ISSN 1674-7755 Institutional support: RVO:68145535 Keywords : rockburst prevention * torpedo blasting * seismic effect * Upper Silesian Coal Basin (USCB) Subject RIV: DH - Mining, incl. Coal Mining OBOR OECD: Mining and mineral processing http://www.sciencedirect.com/science/article/pii/S1674775517300896

  10. Coal plows in underground mines in Czechoslovakia

    Energy Technology Data Exchange (ETDEWEB)

    Vasek, J.; Klimek, M.

    1980-05-01

    This article discusses factors which influence the possibility of using coal plows for mining black coal seams in Czechoslovakia. Seams inclined at angles up to 40 degrees can be mined by plows. Another factor which influences plow work is ease of separating coal seam from the direct roof: the plow can be used in seams with good or average separation, and can not be used in seams with roofs difficult to separate from the seam. Quality of rocks surrounding the coal seam: If the stability of the roof is low and strength of rock is low and roof falls occur easily coal plows can not be used. From among three classes of rock in Czechoslovakia plows can be used only in the class characterized by the highest strength. Intense seam dislocations are one of the most important difficulties in using coal plows. Plows can be used if height of seam dislocations is not greater than 40% of the seam thickness. Further factors which influence the possibility of using coal plows (coal resistance to cutting, features of cutting elements of the plow, specific features of the plow mechanism etc.) are also discussed. A method for assessing advantages and disadvantages of using coal plows in given circumstances is presented. (10 refs.) (In Czech)

  11. Characterization of Rare Earth Elements in in Clay Deposits Associated with Central Appalachian Coal Seams

    Science.gov (United States)

    Scott, M.; Verba, C.; Falcon, A.; Poston, J.; McKoy, M.

    2017-12-01

    Because of their multiple uses in clean energy technologies, rare earth elements (REE) are critical for national economic and energy security. With no current domestic source, supply remains a major concern for domestic security. Underclay - specifically the layer of stratum beneath a coal bed - is a potentially rich source of REE. This study focuses on the characterization and ion exchange recovery of REE from underclay samples from the Lower Freeport, Middle Kittanning, and Pittsburgh coal seams in West Virginia. Multimodal techniques provided quantitative assessments of REE-bearing mineral phases in select underclays and the influence of organic acid rock treatment on the recovery of REE from both exchangeable and crystalline mineral phases present. All samples are from extensively weathered horizons that contain abundant kaolinite and illite. Total REE concentrations range from 250-450 ppm and all samples have a HREE/LEEE ratio >20%. Rare earth element bearing minerals identified in the clay are monazite, xenotime, florencite, and crandallite. Our selective recovery approach is designed to isolate and recover REE through partial dissolution of the clay matrix and ion exchange rather than dissolution/recovery of phosphate or aluminosilicate bound REE. These results provide a better understanding of coal seam underclay, the affinity of REEs for specific ligands and colloids, and how the rock and ligands respond to different chemical treatments. These processes are important to the development and commercialization of efficient and cost effective methods to extract REE from domestic geologic deposits and recover into salable forms.

  12. Community perspectives of natural resource extraction: coal-seam gas mining and social identity in Eastern Australia

    Directory of Open Access Journals (Sweden)

    David Lloyd

    2013-01-01

    Full Text Available Using a recent case study of community reaction to proposed coal-seam gas mining in eastern Australia, we illustrate the role of community views in issues of natural resource use. Drawing on interviews, observations and workshops, the paper explores the anti-coal-seam gas social movement from its stages of infancy through to being a national debate linking community groups across and beyond Australia. Primary community concerns of inadequate community consultation translate into fears regarding potential impacts on farmland and cumulative impacts on aquifers and future water supply, and questions regarding economic, social and environmental benefits. Many of the community activists had not previously been involved in such social action. A recurring message from affected communities is concern around perceived insufficient research and legislation for such rapid industrial expansion. A common citizen demand is the cessation of the industry until there is better understanding of underground water system interconnectivity and the methane extraction and processing life cycle. Improved scientific knowledge of the industry and its potential impacts will, in the popular view, enable better comparison of power generation efficiency with coal and renewable energy sources and better comprehension of the industry as a transition energy industry. It will also enable elected representatives and policy makers to make more informed decisions while developing appropriate legislation to ensure a sustainable future.

  13. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia.

    Science.gov (United States)

    Ali, A; Strezov, V; Davies, P; Wright, I

    2017-08-01

    The extraction of coal and coal seam gas (CSG) will generate produced water that, if not adequately treated, will pollute surface and groundwater systems. In Australia, the discharge of produced water from coal mining and related activities is regulated by the state environment agency through a pollution licence. This licence sets the discharge limits for a range of analytes to protect the environment into which the produced water is discharged. This study reports on the impact of produced water from coal mine activities located within or discharging into high conservation environments, such as National Parks, in the outer region of Sydney, Australia. The water samples upstream and downstream from the discharge points from six mines were taken, and 110 parameters were tested. The results were assessed against a water quality index (WQI) which accounts for pH, turbidity, dissolved oxygen, biochemical oxygen demand, total dissolved solids, total phosphorus, nitrate nitrogen and E .coli. The water quality assessment based on the trace metal contents against various national maximum admissible concentration (MAC) and their corresponding environmental impacts was also included in the study which also established a base value of water quality for further study. The study revealed that impacted water downstream of the mine discharge points contained higher metal content than the upstream reference locations. In many cases, the downstream water was above the Australia and New Zealand Environment Conservation Council and international water quality guidelines for freshwater stream. The major outliers to the guidelines were aluminium (Al), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn). The WQI of surface water at and downstream of the discharge point was lower when compared to upstream or reference conditions in the majority of cases. Toxicology indices of metals present in industrial discharges were used as an additional tool to assess water quality, and the newly

  14. Determining the hydraulic and fracture properties of the Coal Seam Gas well by numerical modelling and GLUE analysis

    Science.gov (United States)

    Askarimarnani, Sara; Willgoose, Garry; Fityus, Stephen

    2017-04-01

    Coal seam gas (CSG) is a form of natural gas that occurs in some coal seams. Coal seams have natural fractures with dual-porosity systems and low permeability. In the CSG industry, hydraulic fracturing is applied to increase the permeability and extract the gas more efficiently from the coal seam. The industry claims that it can design fracking patterns. Whether this is true or not, the public (and regulators) requires assurance that once a well has been fracked that the fracking has occurred according to plan and that the fracked well is safe. Thus defensible post-fracking testing methodologies for gas generating wells are required. In 2009 a fracked well HB02, owned by AGL, near Broke, NSW, Australia was subjected to "traditional" water pump-testing as part of this assurance process. Interpretation with well Type Curves and simple single phase (i.e. only water, no gas) highlighted deficiencies in traditional water well approaches with a systemic deviation from the qualitative characteristic of well drawdown curves (e.g. concavity versus convexity of drawdown with time). Accordingly a multiphase (i.e. water and methane) model of the well was developed and compared with the observed data. This paper will discuss the results of this multiphase testing using the TOUGH2 model and its EOS7C constitutive model. A key objective was to test a methodology, based on GLUE monte-carlo calibration technique, to calibrate the characteristics of the frack using the well test drawdown curve. GLUE involves a sensitivity analysis of how changes in the fracture properties change the well hydraulics through and analysis of the drawdown curve and changes in the cone of depression. This was undertaken by changing the native coal, fracture, and gas parameters to see how changing those parameters changed the match between simulations and the observed well drawdown. Results from the GLUE analysis show how much information is contained in the well drawdown curve for estimating field scale

  15. Analysis of anomalous high concentration of lead and selenium and their origin in the main minable coal seam in the Junger coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Li Sheng-sheng; Ren De-yi [State Administration of Work Safety, Beijing (China)

    2006-07-01

    The concentration, occurrence, and geological origin of lead and selenium in the main minable coal seam from the Junger coalfield were studied using inductively coupled plasma mass spectrometry (CICP-MS), instrumental neutron activation analysis (CINAA), scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and optical microscope. The results show that the average concentrations of Pb and Se are as high as 35.7 {mu}g/g and 8.2 {mu}g/g, respectively, which are much higher than those of coals from North China, Guizhou, China, and USA. In addition, their enrichment factors are up to 2.4 and 68.1, respectively. Lead and selenium are significantly enriched in the seam. Lead and selenium mainly exist in galena, clausthalite, and selenio-galena which occur as cell-filling of coal-forming plants and are of chemical-sedimentary origin. 22 refs., 3 figs., 1 tab.

  16. Investigation of subsidence event over multiple seam mining area

    International Nuclear Information System (INIS)

    Kohli, K.K.

    1999-01-01

    An investigation was performed to determine the sequence of events which caused the 1987 surface subsidence and related damage to several homes in Walker County, Alabama, USA. Surface affects compared to mine maps indicated the subsidence to be mine related. However, two coal seams had been worked under this area. The upper seam, the American seam, ranged from 250 to 280 feet beneath the surface in the area in question. It was mined-out before 1955 by room-and-pillar method leaving in place narrow-long pillars to support the overburden strata, and abandoned in 1955. The lower seam, the Mary Lee seam, ranged from 650 to 700 feet beneath the surface. The Mary Lee seam had been abandoned in 1966 and subsequently became flooded. The dewatering of the Mary Lee seam workings in 1985 caused the submerged pillars to be exposed to the atmosphere. Due to multiple seam mining and the fact that workings had been inundated then dewatered, a subsurface investigation ensued to determine the sequence and ultimate cause of surface subsidence. Core sample tests with fracture analysis in conjunction with down-the-hole TV camera inspections provided necessary information to determine that the subsidence started in the lower seam and progressed through the upper coal seam to the surface. Evidence from the investigation program established that dewatering of the lower seam workings caused the marginally stable support pillars and the roof to collapse. This failure triggered additional subsidence in the upper seam which broadened the area of influence at the surface

  17. A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-09-01

    Full Text Available Hydraulic fracturing is used widely to stimulate coalbed methane production in coal mines. However, some factors associated with conventional hydraulic fracturing, such as the simple morphology of the fractures it generates and inhomogeneous stress relief, limit its scope of application in coal mines. These problems mean that gas extraction efficiency is low. Conventional fracturing may leave hidden pockets of gas, which will be safety hazards for subsequent coal mining operations. Based on a new drilling technique applicable to drilling boreholes in coal seams, this paper proposes a tree-type fracturing technique for stimulating reservoir volumes. Tree-type fracturing simulation experiments using a large-scale triaxial testing apparatus were conducted in the laboratory. In contrast to the single hole drilled for conventional hydraulic fracturing, the tree-type sub-boreholes induce radial and tangential fractures that form complex fracture networks. These fracture networks can eliminate the “blank area” that may host dangerous gas pockets. Gas seepage in tree-type fractures was analyzed, and gas seepage tests after tree-type fracturing showed that permeability was greatly enhanced. The equipment developed for tree-type fracturing was tested in the Fengchun underground coal mine in China. After implementing tree-type fracturing, the gas extraction rate was around 2.3 times greater than that for traditional fracturing, and the extraction rate remained high for a long time during a 30-day test. This shortened the gas drainage time and improved gas extraction efficiency.

  18. A Gas–Solid–Liquid Coupling Model of Coal Seams and the Optimization of Gas Drainage Boreholes

    Directory of Open Access Journals (Sweden)

    Yuexia Chen

    2018-03-01

    Full Text Available For a gas–solid–liquid coupling model of coal seams, previous permeability models basically supposed uniaxial strains as the boundary condition for coal reservoirs without considering the deformation caused by changes in humidity. The permeability model varies under different boundary conditions. According to the true triaxial stress state of coal reservoirs, a permeability model considering the effective stress, sorption and desorption, and wet strain was established. Based on the permeability model, the continuity equation of gas and water and the stress field equation were coupled. Then, the model was incorporated in the COMSOL suite to simulate gas drainage from boreholes in floor roadways passing through seams in a coal mine. By comparing with the measured gas flow on site, the model was verified as being reliable. Moreover, the spacing and layout shape of boreholes in floor roadways were simulated. To achieve the aim of eliminating regional outburst within 180 days and decreasing the number of boreholes so as to reduce the cost, the spacing and shape of boreholes were optimized. When the superimposed effect of the boreholes was not considered, the optimal spacing of boreholes was 3 r; if the superimposed effect was taken into account, the spacing could be set to within 3 r ≤ L ≤ R, where r and R represent the effective gas drainage radius and the influence radius of gas drainage, respectively. The borehole spacing could be appropriately increased when the boreholes were arranged in rhomboidal form. To achieve the same range of outburst elimination, the rhomboidal layout can decrease the number of boreholes to reduce cost, thus realizing the objective of this optimization process.

  19. 缓倾斜严重突出煤层快速揭煤优化研究%Research on Optimization of Fast Exposing Gently-inclined Serious Outburst Coal Seam by a Crosscut

    Institute of Scientific and Technical Information of China (English)

    王建; 张荻; 李正刚

    2015-01-01

    为了提高缓倾斜严重突出煤层的揭煤效率,采用缩短揭煤巷道距离、水力压裂增透结合底板穿层钻孔预抽的方法,优化揭煤步骤. 现场应用表明,该方法可以减少2次区域验证次数,减少施工9~24个钻孔,揭煤时间平均缩短5. 0~15. 4 d,费用减少50%,实现了安全快速石门揭煤.%In order to improve the efficiency of exposing the gently-inclined serious outburst coal seam by a crosscut, the steps of exposing the outburst coal seam by a crosscut were optimized by adopting the measures of shortening the distance of the roadway exposing the outburst coal seam, gas permeability enhancement by hydraulic fracturing and gas pre-drainage by floor crossing holes. The site application showed that this method can reduce two regional verifications, reduce the drilling construction of 9~24 holes, the average time for exposing the outburst coal seam was shortened by 5. 0~15. 4 d and the costs were reduced by 50%, as a result, the fast exposing outburst coal seam by a crosscut was realized.

  20. Methods for working thick seams and research on increasing their effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    In Poland nearly 40 per cent of all coal is extracted from seams more than 3 m. thick. In absolute figures this represents about 70 million tons of coal per year. Working seams with thicknesses up to 3.5 m. does not present, at present, major difficulties. Working thicker seams calls for a steady improvement in order to increase the degree of utilizaion of the deposit and to enlarge the concentration of output. The seams are worked under protected surface structures which compels the mines to use hydraulic stowing with all its advantages and disadvantages. Rock burst hazard, the control of which is the basic problem hindering the mining, is a further problem. 3 refs.

  1. Source and Enrichment of Toxic Elements in Coal Seams around Mafic Intrusions: Constraints from Pyrites in the Yuandian Coal Mine in Anhui, Eastern China

    Directory of Open Access Journals (Sweden)

    Yanfei An

    2018-04-01

    Full Text Available Pyrite, a mineral that can cause potential environmental issues in coal mining, is commonly found in coal seams around intrusions. In this paper, pyrites from the Yuandian Coal Mine (Huaibei Coalfield, Anhui, Eastern China were studied using SEM, Raman and LA-ICP-MS. The pyrite morphologic and geochemical data suggest that (1 four pyrite generations are present (framboidal sedimentary pyrites (Py I in the original coal, coarse-grained magmatic pyrites (Py II in the intruding diabase, fine-grained metamorphic pyrites (Py III in the intrusive contact aureole, and spheroid/vein hydrothermal pyrites (Py IV in the cokeite; and (2 concentrations of cobalt, nickel, arsenic, selenium, lead and copper in the metamorphic pyrites are much higher than the other pyrite generations. We propose that mafic magmatism is the main contributor of the toxic elements to the intrusion-related cokeite at Yuandian.

  2. Technique for reinforcing development working in lower strata of thick coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Andranovich, V A; Gromov, Yu V; Kurglikov, V P

    1981-01-15

    This device is to be used by mining industry, specifically for reinforcing development work in bottom strata of thick coal seams having a layer depression. Reinforcing consists of drilling a hole, or making cutting slits and lowering support props for the stratum below through them, as well as lowering the roof timber on the ground. To cut back expenditures on installation and removal of equipment, drilling or making cutting slits is done to a depth equal to the total height of the substrata, and the support props are laid for all of the substrata. Only the roof timber is lowered on the ground during work on the layers.

  3. Robotic complex for the development of thick steeply-inclined coal seams and ore deposits

    Science.gov (United States)

    Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu

    2017-09-01

    Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.

  4. Improved coal winning in Zollverein 7/8 seam by toe-in plough 9. 30 v supplied by GEW Luenen

    Energy Technology Data Exchange (ETDEWEB)

    Schwolow, G; Dornack, M; Plich, H

    1982-04-01

    The project aimed at mining Zollverein 7/8 seam more efficiently than with drag-hook ploughs. Zollverein 7/8 seam is characterized by mechanically tough coal changing, seam thickness, a somewhat 'corrugated' shape, and a soft floor. Comparative investigations on one toe-in plough face and one drag-hook plough face in two neighbouring panels of said seam were made for individual plough travels as well as over several months of operation. These investigations were backed up by measuring. The measuring conditions were identical in both panels. The face equipments were identical except for the plough systems. The energy pick-up relative to the web is by 43% lower with the toe-in plough compared to the drag-hook plough. As to wear, for the toe-in plough in comparison to the drag-hook plough twice the longevity of the latter was recorded. For the noise level on the plough guides only marginal difference in favor to the toe-in plough could be recorded. Analyses of dust and particle-size distribution showed no obvious advantages for either of both plough systems.

  5. Study of Coal Burst Source Locations in the Velenje Colliery

    Directory of Open Access Journals (Sweden)

    Goran Vižintin

    2016-06-01

    Full Text Available The Velenje coal mine (VCM is situated on the largest Slovenian coal deposit and in one of the thickest layers of coal known in the world. The thickness of the coal layer causes problems for the efficiency of extraction, since the majority of mining operations is within the coal layer. The selected longwall coal mining method with specific geometry, increasing depth of excavations, changes in stress state and naturally given geomechanical properties of rocks induce seismic events. Induced seismic events can be caused by caving processes, blasting or bursts of coal or the surrounding rock. For 2.5D visualization, data of excavations, ash content and calorific value of coal samples, hanging wall and footwall occurrence, subsidence of the surface and coal burst source locations were collected. Data and interpolation methods available in software package Surfer®12 were statistically analyzed and a Kriging (KRG interpolation method was chosen. As a result 2.5D visualizations of coal bursts source locations with geomechanical properties of coal samples taken at different depth in the coal seam in the VCM were made with data-visualization packages Surfer®12 and Voxler®3.

  6. Control Mechanism of Rock Burst in the Floor of Roadway Driven along Next Goaf in Thick Coal Seam with Large Obliquity Angle in Deep Well

    Directory of Open Access Journals (Sweden)

    Yunhai Cheng

    2015-01-01

    Full Text Available This paper deals with the theoretical aspects combined with stress analysis over the floor strata of coal seam and the calculation model for the stress on the coal floor. Basically, this research presents the relevant results obtained for the rock burst prevention in the floor of roadway driven along next goaf in the exploitation of thick coal seam with large obliquity in deep well and rock burst tendency. The control mechanism of rock burst in the roadway driven along next goaf is revealed in the present work. That is, the danger of rock burst can be removed by changing the stress environment for the energy accumulation of the floor and by reducing the impact on the roadway floor from the strong dynamic pressure. This result can be profitable being used at the design stage of appropriate position of roadway undergoing rock burst tendency in similar conditions. Based on the analysis regarding the control mechanism, this paper presents a novel approach to the prevention of rock burst in roadway floor under the above conditions. That is, the return airway is placed within the goaf of the upper working face that can prevent the rock burst effectively. And in this way, mining without coal pillar in the thick coal seam with large obliquity and large burial depth (over a thousand meters is realized. Practice also proves that the rock burst in the floor of roadway driven along next goaf is controlled and solved.

  7. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    Science.gov (United States)

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry.

  8. Coal seam gas-supply and impact on U.S. markets and Canadian producers

    International Nuclear Information System (INIS)

    Kelafant, J.

    1992-01-01

    The basic ways in which coalbed methane differs from natural gas are described. Coalbed methane is stored at a higher capacity in the coal seam, has a different production curve, and exploration costs are lower. Comparing a conventional gas well having 2 billion ft 3 reserves with coalbed methane wells in the San Juan and Warrior basins, gas from the conventional well costs $1.90 per 1,000 ft 3 and methane from the San Juan and Warrior wells costs $1.50 and $2.40 per 1,000 ft 3 respectively. A 90 cent per 1,000 ft 3 tax credit on coalbed methane reduces the two latter costs significantly and is without doubt the driving force behind the coalbed methane industry in some areas. Examples from the Warrior and San Juan basins are described to illustrate the technology driven economics of coalbed methane. Substantial improvements in gas production can be achieved by such means as multiple seam completion technologies, improved well stimulation, optimum well spacing, and the use of cavitation completion. Technically recoverable coalbed methane resources in the USA are estimated at 145 trillion ft 3 , concentrated in the western coal basins. At a wellhead price of $2 per 1,000 ft 3 , the economically recoverable potential is ca 13 trillion ft 3 . Examining future production potential, by developing new technologies or bringing more basins on stream, production could be increased to ca 3 billion ft 3 /d in the late 1990s. It is suggested that the increased volumes of coalbed methane have had minimal impact on gas prices. 9 figs., 12 tabs

  9. Simulating the Fate and Transport of Coal Seam Gas Chemicals in Variably-Saturated Soils Using HYDRUS

    Directory of Open Access Journals (Sweden)

    Dirk Mallants

    2017-05-01

    Full Text Available The HYDRUS-1D and HYDRUS (2D/3D computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this paper is to provide a brief overview of the HYDRUS models and their add-on modules, and to demonstrate possible applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the soil. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the HP1 module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in a soil leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration in soil is complexation of

  10. Effects of increased rock strata stresses on coal gettability

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Skoczynski, W [Politechnika Slaska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1988-01-01

    Analyzes effects of rock strata pressure on a coal seam, its cracking and on energy consumption of coal cutting by shearer loaders and coal plows. Effects of mining depth on stresses in a coal seam rib side were analyzed using formulae developed by Budryk, Chudek and Borecki. Formulae used for selecting optimum yield strength of powered supports at working faces are reviewed. Four types of spontaneous separation of coal seam blocks caused by rock strata stresses are evaluated: layers parallel to the face with constant thickness, coal blocks with thickness decreasing in the direction of the floor or roof (blocks with a planar triangle cross-cut), blocks situated in the seam layer adjacent to the floor or roof. Causes of each type of coal seam separation are analyzed. 9 refs.

  11. Biological action of coal dust formed during excavation of seams after physicochemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V; Gadzhiev, G P

    1982-03-01

    Destruction of the self-cleansing function of lungs by dust is important in the development of pneumoconiosis. It is expedient to study the influence of chemical substances, injected into coal seams to prevent methane bursts and reduce dust formation, on the physiologic mechanisms for the protection of the lungs from dust (macrophageal reaction of lungs, function of mucociliary transport). An investigation using 15, 24 and 50% solutions of binder KM/SUB/2 modified by polyvinyl alcohol, and 3% hydrochloric acid solution was conducted on 200 white rats. Reaction of rats treated with solutions of binder in different concentrations proved that accumulation of dust in lungs and lymph nodes was directly related to the strength of the solution. Three percent hydrochloric acid solution diminished dust accumulation in paratracheal lymph nodes and content of lipids and collagen in the lungs. Inhalation of dust treated with a 50% solution of binder KM/SUB/2 increases the deposit of dust in the lungs and increases fiber production. Therefore, solutions of more than 24% binder should not be used to treat coal. Solutions of 15% and 24% do not significantly affect the process of dust accumulation in the lungs. A 3% solution of hydrochloric acid reduces the dust-forming capacity of the coal mass. (13 refs.) (In Russian)

  12. Improving extraction technology of level seams. Sovershenstvovanie tekhnologii razrabotki pologikh plastov

    Energy Technology Data Exchange (ETDEWEB)

    Shetser, M G; Spitsyn, Yu G

    1985-01-01

    This report deals with conditions and prospects for intensifying extraction of level and inclined seams and improving extraction technology. Reviews mechanization of excavation of stables with automatic cutter-loaders (KA80 in conjunction with KD80); coal extraction using two cutter-loaders in seams 0.9 - 1.9 m thick and up to 20 degrees inclination (pillar mining); reciprocating method of coal cutting; one-sided method of coal extraction (KMK97 cutter loaders). Discusses strengthening of junctions of faces with gate roads (KSU and KSU3M props); improved types of props (hydraulic props SUG-30, SUG-V and GVD); roof control methods (induced caving, advance torpedoing or using KM87UMP and KMT power supports). Deals in detail with introduction of new extraction technology and strengthening of unstable rock by injecting polyurethene compounds, extraction of seams with wide-web cutter-loaders (Kirovets, IK101) and plowing. (3 refs.)

  13. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  14. Engineering research on coal and gas outburst control for outburst coal seam floor roadway in deep mine%深井突出煤层底板巷防治煤与瓦斯突出工程研究

    Institute of Scientific and Technical Information of China (English)

    吕有厂; 王玉杰

    2017-01-01

    文章针对平煤股份首山一矿突出煤层结构复杂、渗透性低,致使预抽煤层瓦斯效果差、效率低的问题,以平煤股份首山一矿突出煤层底板岩巷瓦斯治理工程典型应用模式为研究对象,现场观测分析上覆突出煤层采掘过程中低板岩巷围岩应力变化规律,观测分析卸压瓦斯抽采效果,优化煤岩巷层位关系、为深部突出煤层巷道支护和抽采瓦斯提供指导,对提高深井突出煤层瓦斯治理效果具有重要的借鉴意义.%Aiming at the complex structure and low permeability of outburst coal seam in Shouyishan Coal Mine,resulting in poor effect in the gas pre-drainage,based on the typical application mode of gas control engineering in floor rock roadway of the outburst coal seam,surrounding rock stress variation law of floor rock roadway was observed and analyzed in the field during mining and tunneling in the overlying outburst coal seam.The pressure-relieving gas drainage effect was analyzed,and the position arrangement of coal and rock roadway was optimized.

  15. A Novel Acoustic Liquid Level Determination Method for Coal Seam Gas Wells Based on Autocorrelation Analysis

    Directory of Open Access Journals (Sweden)

    Ximing Zhang

    2017-11-01

    Full Text Available In coal seam gas (CSG wells, water is periodically removed from the wellbore in order to keep the bottom-hole flowing pressure at low levels, facilitating the desorption of methane gas from the coal bed. In order to calculate gas flow rate and further optimize well performance, it is necessary to accurately monitor the liquid level in real-time. This paper presents a novel method based on autocorrelation function (ACF analysis for determining the liquid level in CSG wells under intense noise conditions. The method involves the calculation of the acoustic travel time in the annulus and processing the autocorrelation signal in order to extract the weak echo under high background noise. In contrast to previous works, the non-linear dependence of the acoustic velocity on temperature and pressure is taken into account. To locate the liquid level of a coal seam gas well the travel time is computed iteratively with the non-linear velocity model. Afterwards, the proposed method is validated using experimental laboratory investigations that have been developed for liquid level detection under two scenarios, representing the combination of low pressure, weak signal, and intense noise generated by gas flowing and leakage. By adopting an evaluation indicator called Crest Factor, the results have shown the superiority of the ACF-based method compared to Fourier filtering (FFT. In the two scenarios, the maximal measurement error from the proposed method was 0.34% and 0.50%, respectively. The latent periodic characteristic of the reflected signal can be extracted by the ACF-based method even when the noise is larger than 1.42 Pa, which is impossible for FFT-based de-noising. A case study focused on a specific CSG well is presented to illustrate the feasibility of the proposed approach, and also to demonstrate that signal processing with autocorrelation analysis can improve the sensitivity of the detection system.

  16. Numerical Investigation of Rockburst Effect of Shock Wave on Underground Roadway

    Directory of Open Access Journals (Sweden)

    Cai-Ping Lu

    2015-01-01

    Full Text Available Using UDEC discrete element numerical simulation software and a cosine wave as vibration source, the whole process of rockburst failure and the propagation and attenuation characteristics of shock wave in coal-rock medium were investigated in detail based on the geological and mining conditions of 1111(1 working face at Zhuji coal mine. Simultaneously, by changing the thickness and strength of immediate roof overlying the mining coal seam, the whole process of rockburst failure of roadway and the attenuation properties of shock wave were understood clearly. The presented conclusions can provide some important references to prevent and control rockburst hazards triggered by shock wave interferences in deep coal mines.

  17. Pillar size optimization design of isolated island panel gob-side entry driving in deep inclined coal seam—case study of Pingmei No. 6 coal seam

    Science.gov (United States)

    Zhang, Shuai; Wang, Xufeng; Fan, Gangwei; Zhang, Dongsheng; Jianbin, Cui

    2018-06-01

    There is a perception that deep roadways are difficult to maintain. To reverse this and to improve the recovery rate of coal resources, gob-side entry driving is widely used in coal mines, especially deep-mining coal mines, in China. Determination of the reasonable pillar size through in situ observation and experimentation plays a vital role for roadway maintenance. Based on the geological conditions of Pingmei No.6 coal seam, a theoretical analysis, numerical simulation, and industrial experiments are carried out to calculate the reasonable width of chain pillars, analyze the lateral support stress distribution law near the gob side, investigate the relationship between the coal pillar stress distribution, roadway surrounding rock stress distribution, roadway surrounding rock deformation and the coal pillar width. The results indicate that 5 m wide coal pillars can ensure that the chain pillars are at a lower stress level and the deformation of roadway surrounding rock is in a more reasonable range. Industrial experiments show that when the chain pillar width is 5 m, the deformation of roadway surrounding rock can meet the requirements of working face safe production. The numerical results agreed well with field measurement and observations, and the industrial experiments results further validated the results of the numerical simulation.

  18. Coal seam gas water: potential hazards and exposure pathways in Queensland.

    Science.gov (United States)

    Navi, Maryam; Skelly, Chris; Taulis, Mauricio; Nasiri, Shahram

    2015-01-01

    The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland's CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are (1) water used for municipal purposes; (2) recreational water activities in rivers; (3) occupational exposures; (4) water extracted from contaminated aquifers; and (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.

  19. Horizontal Acoustic Barriers for Protection from Seismic Waves

    Directory of Open Access Journals (Sweden)

    Sergey V. Kuznetsov

    2011-01-01

    Full Text Available The basic idea of a seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers can be suggested. Herein, we consider a kind of a seismic barrier that represents a relatively thin surface layer that prevents surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning nonpropagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of nonexistence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

  20. FY 2000 survey of the geological structure overseas, etc. Japan-China joint coal exploration - Yu Xian project; 2000 nendo kaigai chishitsu kozo nado chosa - futai shiryoshu. Nippon Chugoku sekitan kyodo tansa Yu Xian project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This data book summarized the proceedings and the technical report of the management committee on the Japan-China geological structure survey based on the consultation concluded between NEDO and China's bureau of coal field geology and a report meeting on the Yu Xian project. In the exploration, conducted were the boring survey of 10 boreholes, seismic survey of 2D (71 traverse lines, 180.105km) and 3D (1.5km{sup 2}), VSP (6 holes (345 shots)) and the low velocity band survey (2,072 shots). The geological structure of the area presented the syncline structure with a gentle line associated with foldings and a number of faults and was classified into the medium class or the class of a little complication in the Chinese standard. The number of the faults confirmed in this exploration totaled 57. Coal reserves by coal seam were 157.22 million tons at No. 5 seam and 102.57 million tons at No. 1 seam. The total amount of the two seams was 79.1% of the total coal amount in all area. The coal quality of Nos. 1 and 5 was brown coal - flame coal in the Chinese classification, and subbituminous coal B - subbituminous coal C in the ASTM classification. The coal, however, cannot be used for process raw coal. There is a technical potentiality of the fixed bed pressurized gasification. (NEDO)

  1. Liquefaction of Warukin Formation Coal, Barito Basin, South Kalimantan on Low Pressure and Low Temperature

    Directory of Open Access Journals (Sweden)

    Edy Nursanto

    2013-06-01

    Full Text Available Research focusing on the quality of coal in Warukin Formation has been conducted in coal outcrops located on Tabalong area, particularly in 3 coal seams, namely Wara 120 which consists of low rank coal (lignite. Meanwhile, coals in seam Tutupan 210 and Paringin 712 are medium rank coal (sub-bituminous. Coal liquefaction is conducted in an autoclave on low pressure and temperature. Pressure during the process is 14 psi and temperature is 120oC. Catalyst used are alumina, hydrogen donor NaOH and water solvent. Liquefaction is conducted in three times variables of 30 minutes, 60 minutes and 90 minutes. This process shows following yield : Wara seam 120: 25.37% - 51.27%; Tutupan seam 210: 3.02%-15.45% and seam Paringin 712:1.99%-11.95%. The average result of yield shows that coals in seam Wara has higher yield conversion than coals in seam Tutupan and Paringin.

  2. Epicenter Location of Regional Seismic Events Using Love Wave and Rayleigh Wave Ambient Seismic Noise Green's Functions

    Science.gov (United States)

    Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.

    2011-12-01

    We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.

  3. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    Science.gov (United States)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  4. Influence of lithological characters of coal bearing formation on stability of roof of coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Meng Zhao-ping; Peng Su-ping; Li Guo-qing; Huang Wei; Lu Jun; Lei Zhi-yong [CUMT, Beijing (China). School of Resources and Safety Engineering

    2003-07-01

    Lithology is one of the important factors influencing the stability of roof of coal seams. In order to investigate this, the phenomenon of underground pressure and distribution of pressure were studied by using the local observation and simulation test with similar materials. The observation results show that the distance of initial weighting and periodic weighting of the mudstone roof is shorter than that of sandstone roofs. The sandstone roof with a high strength has a longer distance of initial weighting and periodic weighting, the abutment stress on the working face is big and the height of caving and fracture zone is high. The peak point of abutment stress in the sandstone roof is near to the working face and the pressure bump is inclined to occur. The result is contrary to that in case of the mudstone roof with a low strength. While in the transition zone of nipped sandstone, roof rock-mass is broken and is poor in stability, therefore, it is difficult to hold the roof.

  5. Detection of Coal Fires: A Case Study Conducted on Indian Coal Seams Using Neural Network and Particle Swarm Optimization

    Science.gov (United States)

    Singh, B. B.

    2016-12-01

    India produces majority of its electricity from coal but a huge quantity of coal burns every day due to coal fires and also poses a threat to the environment as severe pollutants. In the present study we had demonstrated the usage of Neural Network based approach with an integrated Particle Swarm Optimization (PSO) inversion technique. The Self Potential (SP) data set is used for the early detection of coal fires. The study was conducted over the East Basuria colliery, Jharia Coal Field, Jharkhand, India. The causative source was modelled as an inclined sheet like anomaly and the synthetic data was generated. Neural Network scheme consists of an input layer, hidden layers and an output layer. The input layer corresponds to the SP data and the output layer is the estimated depth of the coal fire. A synthetic dataset was modelled with some of the known parameters such as depth, conductivity, inclination angle, half width etc. associated with causative body and gives a very low misfit error of 0.0032%. Therefore, the method was found accurate in predicting the depth of the source body. The technique was applied to the real data set and the model was trained until a very good correlation of determination `R2' value of 0.98 is obtained. The depth of the source body was found to be 12.34m with a misfit error percentage of 0.242%. The inversion results were compared with the lithologs obtained from a nearby well which corresponds to the L3 coal seam. The depth of the coal fire had exactly matched with the half width of the anomaly which suggests that the fire is widely spread. The inclination angle of the anomaly was 135.510 which resembles the development of the geometrically complex fracture planes. These fractures may be developed due to anisotropic weakness of the ground which acts as passage for the air. As a result coal fires spreads along these fracture planes. The results obtained from the Neural Network was compared with PSO inversion results and were found in

  6. Solid Coal Stability with Regards to Seam Thickness or Bench mined

    Directory of Open Access Journals (Sweden)

    Bukovanský Stanislav

    1998-03-01

    Full Text Available In the paper the problem of working unit stability, showing a limit state of a rock tension with the Mohr envelope known from a theory of failure, is described. It is obvious that a load of building units in mountain massives can be expressed easily either by simple or multiaxial compressions, and then, on the basis of individual states characteristics, individual conditions of stability can be observed. So we may understand that such building units can be broken even in case of a certain discharge, i.e. lowering of one of main tensions of both of them as well. Combined methods of discharge and surchage can be used too. Another reactive power of an enormous value is caused by pre-fault then. In the OKR district it means even 10% of the seam thickness with common conditions (e.g. saddle seams. An area of a contact between a seam, original rocks and seam thickness should be taken into consideration as serious conditions of rock bumps origin. If this contact area is wavy of the seam thickness is small (possibly both conditions are valid, there will be no risk of any rock bump.

  7. Non-mine technology of hydrocarbon resources production at complex development of gas and coal deposits

    International Nuclear Information System (INIS)

    Saginov, A.S.; Adilov, K.N.; Akhmetbekov, Sh.U.

    1997-01-01

    Non-mine technology of coal gas seams exploitation is new geological technological method of complex exploitation of coal gas deposits. The method allows sequentially to extract hydrocarbon resources in technological aggregative-mobile condensed states. According to natural methane content in seams the technology includes: methane extraction from sorption volume where it is bounded up with coal; gas output intensification of coal is due to structural changes of substance at the cost of physico-chemical treatment of seam; increase of seam permeability by the methods of active physical and physico-chemical actions on coal seam (hydro-uncovering, pneumatic hydro action etc.). Pilot testing shows efficiency of well mastering with help of depth pumps. In this case works of action of pumping out of operating liquid and gas extraction from coal seam are integrated

  8. Mechanization of operations in underground workings in coal mines and research project trends. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Reich, K; Skoczynski, W; Sikora, W

    1985-01-01

    Structure of black coal reserves of Poland, imported and Polish made equipment for underground mining, prospects for mechanization of selected operations in underground mines and research programs of the KOMAG Center for Mechanization of Mining are evaluated. Prospects for longwall mining with caving or stowing in thick coal seams (slice mining), thin (0.8 to 1.2 m), level or inclined coal seams and steep seams are analyzed. The following equipment for mechanization of underground mining is evaluated: integrated face systems, shearer loaders, chain conveyors, belt conveyors, coal plows, equipment for mine drivage, hoists, drive systems for mining equipment. The following research programs of the KOMAG Center are reviewed: modernization of face systems for coal seams with uncomplicated mining conditions, development of equipment for thin seam mining, development of types of mining equipment for coal seams from 1.5 to 3.0 m thick with dip angles to 25 degrees, modernization of equipment for thick seam mining, increasing efficiency of mine drivage (new types of heading machines, materials handling equipment for mine drivage), mechanization of auxiliary operations in underground coal mines, improving quality of mining equipment, development of equipment for coal preparation, increasing occupational safety in underground mining.

  9. Electrical and gamma-ray logging in Gondwana and Tertiary coal fields of India

    International Nuclear Information System (INIS)

    Kayal, J.R.

    1979-01-01

    Electrical and gamma-ray logging have been very useful for identification and accurate determination of depth and thickness of coal seams in Gondwana and Tertiary coal fields of India. The characteristic resistance/resistivity peaks of coal seams in a particular area have been correlated, thus providing a picture of the subsurface structure. Physico-chemical properties of layers or sections of coal seams are responsive to electrical logs. Gamma-ray logs are found to be very useful for correlation and have sometimes been the only logs used in cased and dry boreholes for detection of coal seams. Under favourable conditions a single-point resistance log reveals a detailed picture of the formations and picks up thin coal seams as well as thin shale bands within the coal seam. But in some cases it fails to differentiate between coal and sandstone beds in spite of high contrast in true resistivities. Multi-electrode long-normal and lateral logs are found to be more useful in differentiating such formations because of higher penetration in this system. Long-normal and lateral curves can also be used to determine true resisvity of the formation. But long normal logs cannot pick up thin coal bands and/or thin shale partings within the coal seam because of the 'adjacent bed effect'. Gamma-ray logging can be done in both cased and uncased bore-holes or even in a dry borehole but its resolution for shaly coal or thin coal is not sufficient. Combined study has been found to yield the best results. (Auth.)

  10. Numerical simulation of head top coal's stability control of fully mechanized longwall mining with sublevel caving face in large dip seam

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wan, Z.; Jiang, F.; Jia, P. [Beijing Science and Technology University, Beijing (China)

    2008-07-01

    Stability control of the head face's top-coal is one of the key techniques of realising high production and high efficiency in coal mining in fully mechanized top-coal caving face. The characteristics of the stress in the overlying strata of the fully mechanized top-coal caving face and the top coal were analysed using FLAC{sup 3D}. The results show that the tip-to-face top-coal generates a large deformation while it is in the stress-relaxed area. The top-coal in the front of the wall appears to be the failure area for the effect of the abutment pressure that spreads over the coal seam. The surrounding rock of the upper face end is the key part strengthened the control of the rib spalling. The first and frequent appearing phenomenon of losing stability of the powered supports is that the back base of the hydraulic power supports in the top of the face slips. Increasing the quality of support and so on can maintain the stability of surrounding rock. 4 refs., 7 figs., 1 tab.

  11. Depositional setting, petrology and chemistry of Permian coals from the Parana Basin: 2. South Santa Catarina Coalfield, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kalkreuth, W.; Mexias, A.; Balbinot, M.; Levandowski, J. [Instituto de Geociencias, UFRGS, Porto Alegre (Brazil); Holz, M. [Inst. de Geociencias, UFBA, Salvador, Bahia (Brazil); Willett, J.; Finkelman, R. [U.S. Geological Survey, Reston, VA (United States); Burger, H. [Freie Universitaet Berlin, Geoinformatik, (Germany)

    2010-12-01

    In Brazil economically important coal deposits occur in the southern part of the Parana Basin, where coal seams occur in the Permian Rio Bonito Formation, with major coal development in the states of Rio Grande de Sul and Santa Catarina. The current paper presents results on sequence stratigraphic interpretation of the coal-bearing strata, and petrological and geochemical coal seam characterization from the South Santa Catarina Coalfield, Parana Basin. In terms of sequence stratigraphic interpretation the precursor mires of the Santa Catarina coal seams formed in an estuarine-barrier shoreface depositional environment, with major peat accumulation in a high stand systems tract (Pre-Bonito and Bonito seams), a lowstand systems tract (Ponta Alta seam, seam A, seam B) and a transgressive systems tract (Irapua, Barro Branco and Treviso seams). Seam thicknesses range from 1.70 to 2.39 m, but high proportions of impure coal (coaly shale and shaley coal), carbonaceous shale and partings reduce the net coal thickness significantly. Coal lithoypes are variable, with banded coal predominant in the Barro Branco seam, and banded dull and dull coal predominantly in Bonito and Irapua seams, respectively. Results from petrographic analyses indicate a vitrinite reflectance range from 0.76 to 1.63 %Rrandom (HVB A to LVB coal). Maceral group distribution varies significantly, with the Barro Branco seam having the highest vitrinite content (mean 67.5 vol%), whereas the Irapua seam has the highest inertinite content (33.8 vol%). Liptinite mean values range from 7.8 vol% (Barro Branco seam) to 22.5 vol% (Irapua seam). Results from proximate analyses indicate for the three seams high ash yields (50.2 - 64.2 wt.%). Considering the International Classification of in-Seam Coals, all samples are in fact classified as carbonaceous rocks (> 50 wt.% ash). Sulfur contents range from 3.4 to 7.7 wt.%, of which the major part occurs as pyritic sulfur. Results of X-ray diffraction indicate the

  12. Characterization of coals from the Ravenscrag Formation, southern Saskatchewan, Canada

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, W.J. (University of Regina, Regina, SK (Canada). Faculty of Science)

    1989-10-30

    Samples of economically important lignite reserves in the Ravenscrag Formation (Paleocene) of southern Saskatchewan are characterized by lithotype, maceral, microlithotype, and chemical analysis. The samples are from two cores and five reverse circulation drill boreholes from the Hart seam, Willow Bunch coalfield. Samples from four reverse circulation boreholes from the Souris seam, Estevan coalfield are characterized by maceral and chemical analysis. Coals from the Hart and Souris seams differ in rank, because of different thermal histories. A microlithotype classification developed for low rank coals is presented for Hart seam coals. 74 refs., 35 figs., 12 tabs.

  13. Key Technologies and Applications of Gas Drainage in Underground Coal Mine

    Science.gov (United States)

    Zhou, Bo; Xue, Sheng; Cheng, Jiansheng; Li, Wenquan; Xiao, Jiaping

    2018-02-01

    It is the basis for the long-drilling directional drilling, precise control of the drilling trajectory and ensuring the effective extension of the drilling trajectory in the target layer. The technology can be used to complete the multi-branch hole construction and increase the effective extraction distance of the coal seam. The gas drainage and the bottom grouting reinforcement in the advanced area are realized, and the geological structure of the coal seam can be proved accurately. It is the main technical scheme for the efficient drainage of gas at home and abroad, and it is applied to the field of geological structure exploration and water exploration and other areas. At present, the data transmission method is relatively mature in the technology and application, including the mud pulse and the electromagnetic wave. Compared with the mud pulse transmission mode, the electromagnetic wave transmission mode has obvious potential in the data transmission rate and drilling fluid, and it is suitable for the coal mine. In this paper, the key technologies of the electromagnetic wave transmission mode are analyzed, including the attenuation characteristics of the electromagnetic transmission channel, the digital modulation scheme, the channel coding method and the weak signal processing technology. A coal mine under the electromagnetic wave drilling prototype is developed, and the ground transmission experiments and down hole transmission test are carried out. The main work includes the following aspects. First, the equivalent transmission line method is used to establish the electromagnetic transmission channel model of coal mine drilling while drilling, and the attenuation of the electromagnetic signal is measured when the electromagnetic channel measured. Second, the coal mine EM-MWD digital modulation method is developed. Third, the optimal linear block code which suitable for EM-MWD communication channel in coal mine is proposed. Fourth, the noise characteristics

  14. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  15. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  16. Air-coupled seismic waves at long range from Apollo launchings.

    Science.gov (United States)

    Donn, W. L.; Dalins, I.; Mccarty, V.; Ewing, M.; Kaschak , G.

    1971-01-01

    Microphones and seismographs were co-located in arrays on Skidaway Island, Georgia, for the launchings of Apollo 13 and 14, 374 km to the south. Simultaneous acoustic and seismic waves were recorded for both events at times appropriate to the arrival of the acoustic waves from the source. The acoustic signal is relatively broadband compared to the nearly monochromatic seismic signal; the seismic signal is much more continuous than the more pulse-like acoustic signal; ground loading from the pressure variations of the acoustic waves is shown to be too small to account for the seismic waves; and the measured phase velocities of both acoustic and seismic waves across the local instrument arrays differ by less than 6 per cent and possibly 3 per cent if experimental error is included. It is concluded that the seismic waves are generated by resonant coupling to the acoustic waves along some 10 km of path on Skidaway Island.

  17. Causes of coal degradation at working faces

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1985-01-01

    Coal comminution by shearer loaders at working faces and factors influencing it are analyzed. Three groups of factors are evaluated: coal mechanical properties, design and specifications of shearer loaders and mining schemes. On the basis of analyses, recommendations for increasing proportion of coarse coal and reducing coal comminution in underground coal mines in Poland are made. Increasing output of coarse coal in coal seams with a high proportion of dull coal is most economic. Increasing power of drive systems for shearer loaders to 500 kW or more decisively influences grain size distribution of coal and increases proportion of coarse coal, especially in seams of dull coal. Gradually increasing cutting depth of a shearer loader negatively influences haulage speed and coarse coal output. Replacing gradual cutting depth increase by attack at the full cutting depth increases proportion of coarse coal. When medium or thick coal seams are mined a coal bench from 0.3 to 0.5 m thick should be left in the roof or between 2 benches cut by 2 cutting drums. The coal bench left in the face disintegrates under the influence of gravity and the proportion of coarse coal increases. Optimizing yield strength of powered supports at a working face is a further method for improving grain size distribution of coal and increasing proportion of coarse coal. 2 references.

  18. Sequential simulation approach to modeling of multi-seam coal deposits with an application to the assessment of a Louisiana lignite

    Science.gov (United States)

    Olea, Ricardo A.; Luppens, James A.

    2012-01-01

    There are multiple ways to characterize uncertainty in the assessment of coal resources, but not all of them are equally satisfactory. Increasingly, the tendency is toward borrowing from the statistical tools developed in the last 50 years for the quantitative assessment of other mineral commodities. Here, we briefly review the most recent of such methods and formulate a procedure for the systematic assessment of multi-seam coal deposits taking into account several geological factors, such as fluctuations in thickness, erosion, oxidation, and bed boundaries. A lignite deposit explored in three stages is used for validating models based on comparing a first set of drill holes against data from infill and development drilling. Results were fully consistent with reality, providing a variety of maps, histograms, and scatterplots characterizing the deposit and associated uncertainty in the assessments. The geostatistical approach was particularly informative in providing a probability distribution modeling deposit wide uncertainty about total resources and a cumulative distribution of coal tonnage as a function of local uncertainty.

  19. Seismic wave generator

    International Nuclear Information System (INIS)

    Devaure, Bernard.

    1982-01-01

    This invention concerns a device for simulating earth tremors. This device includes a seismic wave generator formed of a cylinder, one end of which is closed by one of the walls of a cell containing a soil, the other end being closed by a wall on which are fixed pyrotechnic devices generating shock waves inside the cylinder. These waves are transmitted from the cylinder to the cell through openings made in the cell wall. This device also includes a mechanical device acting as low-pass filter, located inside the cylinder and close to the cell wall [fr

  20. Nonlinear coupling analysis of coal seam floor during mining based on FLAC3D

    Institute of Scientific and Technical Information of China (English)

    YAO Duo-xi; XU Ji-ying; LU Hai-feng

    2011-01-01

    Based on the hydro-geological conditions of 1028 mining face in Suntuan Coal Mine, mining seepage strain mechanism of seam floor was simulated by a nonlinear coupling method, which applied fluid-solid coupling analysis module of FLAC3D. The results indicate that the permeability coefficient of adjoining rock changes a lot due to mining. The maximum value reaches 1 379.9 times to the original value, where it is at immediate roof of the mined-out area. According to the analysis on the seepage field, mining does not destroy water resistance of the floor aquiclude. The mining fissure does not conduct lime-stone aquifer, and it is less likely to form damage. The plastic zone does not exactly correspond to the seepage area, and the scope of the altered seepage area is much larger than the plastic zone.

  1. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    Science.gov (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  2. Geochemical Characteristics of Trace Elements in the No. 6 Coal Seam from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Lin Xiao

    2016-03-01

    Full Text Available Fourteen samples of No. 6 coal seam were obtained from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China. The samples were analyzed by optical microscopic observation, X-ray diffraction (XRD, scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDS, inductively coupled plasma mass spectrometry (ICP-MS and X-ray fluorescence spectrometry (XRF methods. The minerals mainly consist of kaolinite, pyrite, quartz, and calcite. The results of XRF and ICP-MS analyses indicate that the No. 6 coals from Chuancaogedan Mine are higher in Al2O3, P2O5, Zn, Sr, Li, Ga, Zr, Gd, Hf, Pb, Th, and U contents, but have a lower SiO2/Al2O3 ratio, compared to common Chinese coals. The contents of Zn, Sr, Li, Ga, Zr, Gd, Hf, Pb, Th, and U are higher than those of world hard coals. The results of cluster analyses show that the most probable carrier of strontium in the coal is gorceixite; Lithium mainly occurs in clay minerals; gallium mainly occurs in inorganic association, including the clay minerals and diaspore; cadmium mainly occurs in sphalerite; and lead in the No. 6 coal may be associated with pyrite. Potentially valuable elements (e.g., Al, Li, and Ga might be recovered as byproducts from coal ash. Other harmful elements (e.g., P, Pb, and U may cause environmental impact during coal processing.

  3. Selected problems of coal mining mechanization in the coal industry of Poland

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, J; Sikora, W [Politechnika Slaska, Gliwice (Poland)

    1987-01-01

    Discusses conditions for underground coal mining in Poland, types of equipment for coal cutting, mine haulage and strata control and development trends of mining technologies. In 1985, black coal output was 191.6 Mt; 85.3% came from longwall faces mined by sets of mining equipment (coal cutters, chain conveyors and powered supports). The average coal output per longwall face was 881 t/d, output per face mined by sets for mining equipment was 1,134 t/d. In 1985, 653 shearer loaders and 77 coal plows were used in Polish coal mines. Number of shearer loaders is increasing. Shearer loaders with chainless haulage system were safest and most economic. The shearer loaders were equipped with the POLTRAK chainless haulage system developed in Poland. Research programs concentrate on development of new mining equipment for thin seam mining, steep seam mining, longwall mining with hydraulic stowing, efficient strata control by powered or shield supports under conditions of increased stresses or rock burst hazards. 4 refs.

  4. Origin of banded structure and coal lithotype cycles in Kargali coal ...

    Indian Academy of Sciences (India)

    field of Jharkhand, the in situ plant growth is reported (Niyogi 1966; Banerjee 2005). ... organic compounds contribute to coal seam forma- tion (Stach et al. 1982). .... Permian Gondwana coals under fluorescence microscopy;. Gondwana Res.

  5. Data base for the analysis of compositional characteristics of coal seams and macerals. Final report - Part 10. Variability in the inorganic content of United States' coals: a multivariate statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Glick, D.C.; Davis, A.

    1984-07-01

    The multivariate statistical techniques of correlation coefficients, factor analysis, and cluster analysis, implemented by computer programs, can be used to process a large data set and produce a summary of relationships between variables and between samples. These techniques were used to find relationships for data on the inorganic constituents of US coals. Three hundred thirty-five whole-seam channel samples from six US coal provinces were analyzed for inorganic variables. After consideration of the attributes of data expressed on ash basis and whole-coal basis, it was decided to perform complete statistical analyses on both data sets. Thirty variables expressed on whole-coal basis and twenty-six variables expressed on ash basis were used. For each inorganic variable, a frequency distribution histogram and a set of summary statistics was produced. These were subdivided to reveal the manner in which concentrations of inorganic constituents vary between coal provinces and between coal regions. Data collected on 124 samples from three stratigraphic groups (Pottsville, Monongahela, Allegheny) in the Appalachian region were studied using analysis of variance to determine degree of variability between stratigraphic levels. Most variables showed differences in mean values between the three groups. 193 references, 71 figures, 54 tables.

  6. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  7. Seismic wave interaction with underground cavities

    Science.gov (United States)

    Schneider, Felix M.; Esterhazy, Sofi; Perugia, Ilaria; Bokelmann, Götz

    2016-04-01

    Realization of the future Comprehensive Nuclear Test Ban Treaty (CTBT) will require ensuring its compliance, making the CTBT a prime example of forensic seismology. Following indications of a nuclear explosion obtained on the basis of the (IMS) monitoring network further evidence needs to be sought at the location of the suspicious event. For such an On-Site Inspection (OSI) at a possible nuclear test site the treaty lists several techniques that can be carried out by the inspection team, including aftershock monitoring and the conduction of active seismic surveys. While those techniques are already well established, a third group of methods labeled as "resonance seismometry" is less well defined and needs further elaboration. A prime structural target that is expected to be present as a remnant of an underground nuclear explosion is a cavity at the location and depth the bomb was fired. Originally "resonance seismometry" referred to resonant seismic emission of the cavity within the medium that could be stimulated by an incident seismic wave of the right frequency and observed as peaks in the spectrum of seismic stations in the vicinity of the cavity. However, it is not yet clear which are the conditions for which resonant emissions of the cavity could be observed. In order to define distance-, frequency- and amplitude ranges at which resonant emissions could be observed we study the interaction of seismic waves with underground cavities. As a generic model for possible resonances we use a spherical acoustic cavity in an elastic full-space. To solve the forward problem for the full elastic wave field around acoustic spherical inclusions, we implemented an analytical solution (Korneev, 1993). This yields the possibility of generating scattering cross-sections, amplitude spectrums and synthetic seismograms for plane incident waves. Here, we focus on the questions whether or not we can expect resonant responses in the wave field scattered from the cavity. We show

  8. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  10. Geological Factors and Reservoir Properties Affecting the Gas Content of Coal Seams in the Gujiao Area, Northwest Qinshui Basin, China

    Directory of Open Access Journals (Sweden)

    Zhuo Zou

    2018-04-01

    Full Text Available Coalbed methane (CBM well drilling and logging data together with geological data were adopted to provide insights into controlling mechanism of gas content in major coal seams and establish gas accumulation models in the Gujiao area, Northwest Qinshui Basin, China. Gas content of targeted coals is various in the Gujiao area with their burial depth ranging from 295 to 859 m. Highly variable gas content of coals should be derived from the differences among tectonism, magmatism, hydrodynamism, and sedimentation. Gas content preserved in the Gujiao area is divided into two parts by the geological structure. Gas tends to accumulate in the groundwater stagnant zone with a total dissolved solids (TDS value of 1300–1700 ppm due to water pressure in the Gujiao area. Reservoir properties including moisture content, minerals, and pore structure also significantly result in gas content variability. Subsequently, the gray correlation statistic method was adopted to determine the most important factors controlling gas content. Coal metamorphism and geological structure had marked control on gas content for the targeted coals. Finally, the favorable CBM exploitation areas were comprehensively evaluated in the Gujiao area. The results showed that the most favorable CBM exploitation areas were in the mid-south part of the Gujiao area (Block I.

  11. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  12. Effect of coal stress on grain size of the gotten

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Tront, A

    1988-09-01

    Presents investigation results on the effect of seam stress and strain state on winning as measured by the grain size of the gotten. The investigations were carried out at the Institute of Mining Mechanization of the Silesian Politechnical where the relations between parameters of seams and cutters and their effect on coal grain size and energy consumption have been studied for several years. The effect was examined on coal samples taken from 4 mines in the Upper Silesian coal basin using a model of the system: seam - cutter. Cubic samples (400x400x400 mm) were tested on the CMG KOMAG test stand equipped with the POS-1 cutting apparatus. Two types of coal were distinguished: that particularly sensitive to increased pressure on seam and that only negligibly susceptible. Corresponding graphs of coal grain size versus vertical pressure are shown. A function has been developed that characterizes this sensitivity depending on a material parameter that can be determined by workability tests. The relationship between coal strength and grain size yield greater than 10 mm in the gotten depending on dynamic crushability of coal is shown in graphs. 6 refs.

  13. Analysis on the Initial Cracking Parameters of Cross-Measure Hydraulic Fracture in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-07-01

    Full Text Available Initial cracking pressure and locations are important parameters in conducting cross-measure hydraulic fracturing to enhance coal seam permeability in underground coalmines, which are significantly influenced by in-situ stress and occurrence of coal seam. In this study, stress state around cross-measure fracturing boreholes was analyzed using in-situ stress coordinate transformation, then a mathematical model was developed to evaluate initial cracking parameters of borehole assuming the maximum tensile stress criterion. Subsequently, the influences of in-situ stress and occurrence of coal seams on initial cracking pressure and locations in underground coalmines were analyzed using the proposed model. Finally, the proposed model was verified with field test data. The results suggest that the initial cracking pressure increases with the depth cover and coal seam dip angle. However, it decreases with the increase in azimuth of major principle stress. The results also indicate that the initial cracking locations concentrated in the second and fourth quadrant in polar coordinate, and shifted direction to the strike of coal seam as coal seam dip angle and azimuth of maximum principle stress increase. Field investigation revealed consistent rule with the developed model that the initial cracking pressure increases with the coal seam dip angle. Therefore, the proposed mathematical model provides theoretical insight to analyze the initial cracking parameters during cross-measure hydraulic fracturing for underground coalmines.

  14. Demonstration of improved seismic source inversion method of tele-seismic body wave

    Science.gov (United States)

    Yagi, Y.; Okuwaki, R.

    2017-12-01

    Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.

  15. Experiments on seismic metamaterials: molding surface waves.

    Science.gov (United States)

    Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S

    2014-04-04

    Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.

  16. Weak localization of seismic waves

    International Nuclear Information System (INIS)

    Larose, E.; Margerin, L.; Tiggelen, B.A. van; Campillo, M.

    2004-01-01

    We report the observation of weak localization of seismic waves in a natural environment. It emerges as a doubling of the seismic energy around the source within a spot of the width of a wavelength, which is several tens of meters in our case. The characteristic time for its onset is the scattering mean-free time that quantifies the internal heterogeneity

  17. Degassification and methane drainage in thick and vertical coal seams worked by horizontal sublevel caving method; Drenaje y Desgasificacion de Grisu en Capas de Carbon Potentes y Verticales, Explotadas por subniveles Horizontales con sutiraje

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The present trend of the working in spanish coal underground mines is directed towards the utilization, if the deposit characteristics permit it, of mining method by horizontal sublevels with caving. The application of this method involves an important coal volume in specific situations inside the workings cycle (shots, roof cavings, workings beginning, etc). Therefore, those considerable quantities of coal put into circulation, joined to high firedamp concentration desorbable of coal seam, produce in a instantaneous way large volumes of firedamp in the mine atmosphere with the consequent associated risk for the mine people, the stoppage of the works and its evacuation. These aforementioned risks could be avoided, or at least decreased to a great extent, through a methane capture before its circulation in openings caused by the mining works or by draining from accumulation rooms. During the last years, basically in EU countries, some researches have been accomplished about previous Degassification and methane capture in longwall faces of horizontal seams. In these researches have been studied the methane capture both from surface and from underground. In sublevel caving workings, substantially different from longwall faces workings, the techniques and capture systems utilized in the first one are not applicable to the second. The field works and measurements of this project have been mainly carried out in two mining companies located at the north of Spain, the Mina la Camocha S. A. and the S. A. Hullera Vasco Leonesa. Many methane capture tests by means of boreholes in coal seam have been carried out to determine the influence that capture boreholes exert in degassification of coal panel. Otherwise, many firedamp drainage tests in accumulation rooms have been also carried out, and a small-scale system that makes possible the capture in safe conditions have been defined and tested. (Author)

  18. Petrography and rank of the Bhangtar coals, southeastern Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Pareek, H S [BH23, Meerut (India)

    1990-07-01

    In Bhutan, a potential coal deposit is exposed at Bhangtar in the 'landslide zone'. Nineteen coal seams are encountered in this area, and occur in the Lower Gondwana Supergroup preserved in between the Main Boundary Fault and the Thrust. The coal is low in moisture, {lt}1.76%, but the coal cores show moisture values of 3.16%. The ash content is up to 48.87% and increases substantially in the younger seams. The volatile content (on a pure coal basis) ranges from 23.38% to 41.02%. The sulphur content is less than 0.61%. The coals are non-coking. The amount of trace elements in the coal is quite low. The average petrographic composition of the Bhangtar coal is vitrinite - 31%, exinite - 2%, inertinite - 31%, and mineral and shaly matter - 36%, the vitrinite proportion decreases from the older to the younger seams, which are shaly. an age can be assigned to the Bhangtar coal. Based on oil reflectance, the rank of the coal is metalignitous to hypobituminous. The average microlithotype composition of the coal is vitrite - 30%, clarite - 1%, vitrinertite V - 14%, vitrinertite I - 11%, durite - 3%, fusite - 14%, and carbominerite - 27%. Vitrite decreases in proportion towards the younger seams, 'intermediates' show a concomitant increase, while durite and fusite remain constant. Carbonaceous shale contains fragmentary inertinite and vitrinite macerals and is interlayered with micro-bands of shaly coal which is characterised by abundant fragments of fusinite and vitrinite. The coal is very fragile and thus amenable to economic beneficiation. The coal is used as fuel in electric power plants. The Bhangtar coal is characteristically distinct from the Gondwana coals of India in petrography and rank, but correlates petrographically with the Kameng coals of Arunachal Pradesh, India. 18 refs., 4 figs., 8 tabs., 3 plates.

  19. Experience with dust suppression in mining a thick, dirty seam

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, D; Kohlhauer, H

    1975-11-20

    Dust suppression measures used when mining a thick, dirty seam are described. Dust sprays inside and outside the shearer drum helped to reduce coarse dust, but the resulting increase in moisture content of the coal limits the extent to which this method can be used. The shields were also fitted with sprays. Because of the dirt in the seam, continuous, remotely controlled deep infusion was used. This reduced the dust concentration from more than 10 mg/m/sup 3/ to between 3.9 and 6.6 mg/m/sup 3/.

  20. Assessing dynamics of ash content formation in coal at a working face in mines

    Energy Technology Data Exchange (ETDEWEB)

    Maidukov, G L; Lobkin, V M

    1983-05-01

    Factors which influence ash content in coal mined at a working face are analyzed: ash content in coal, stability of rock layers surrounding a coal seam, mechanical and physical properties of the direct roof. A mathematical model of ash content formation at a working face is described. On the basis of the model a computer program has been constructed. The program is used for calculating the mean value of ash content in coal and the standardized deviation. The program considers all causes of ash fluctuation in coal such as mining conditions, coal seam thickness, fluctuations in coal seam thickness, mechanical and physical properties of rocks surrounding a coal seam, particularly in the direct roof, mining systems, narrow or wide web shearer loaders, powered supports, hydraulic props, timber friction props with timber roof bars or with steel roof bars. A classification of rocks considering roof stability used by the program is described. A scheme of the program is given. Examples of using the program for forecasting ash content in coal and ash content fluctuations in Donbass mines are evaluated. (In Russian)

  1. Study on Gas Drainage by Pressure Relief for Floor Through Beds Holes in Far Distance Lower Protective Coal Seam%远距离下保护层底板穿层钻孔卸压瓦斯抽采研究

    Institute of Scientific and Technical Information of China (English)

    刘军; 李生舟; 姚明柱

    2017-01-01

    This paper takes the remote lower protective layer 11# coal seam mining to protect main 3# coal seam as the research object in Songshuping Coal Mine.It is concluded that it is reasonable to arrange 3314 floor gas drainage roadway at the bottom 15 m of the 3# coal seam through arranging through beds grid format upholes in floor roadway to extract the protective layer and carry out pressure relief gas.The actual extraction data show that during the mining of the long-distance protective layer,the influence of the mining can effectively relieve the pressure and improve the permeability of the protective layer.The pre-pumping rate of the drainage area is about 65.6%.According to the effect analysis of pressure relief gas extraction,11# coal seam after the protection of the working layer in front of 10 m to the protective layer of the face of 60 m within the corresponding overlying 3# coal seam is the best pressure relief gas extraction area.%以桑树坪煤矿远距离下保护层11#煤层开采保护主采3#煤层为研究对象,利用底板巷布置上向穿层网格式钻孔抽采被保护层卸压瓦斯,研究得出将3314底板瓦斯抽放巷布置在3#煤层底部法距15 m处较为合理.实际抽采数据表明,在远距离下保护层开采期间,采动影响能够有效卸压,提高被保护层的透气性,底抽巷预抽区域瓦斯预抽率约为65.6%.从卸压瓦斯抽采效果分析,11#煤层回采后保护层工作面前方10m至保护层工作面后方60 m范围内对应的上覆3#煤层区域为最佳卸压瓦斯抽采区域.

  2. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  3. Anastomosing river deposits: palaeoenvironmental control on coal quality and distribution, Northern Karoo Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cairncross, B

    1980-01-01

    Borehole data from an area close to the northern margin of the Karoo Basin 110 m thick coal reveal a bearing succession of the Vryheid Formation overlying Dwyka tillite. The lowermost sediments reflect processes of deglaciation with a complex array of glaciolacustrine, glaciofluvial and alluvial-outwash fan deposits. Above this paraglacial milieu, tundra-type peat bogs developed in inactive areas and account for the two thick basal coal seams (No. 1 and 2 seams). During accumulation of peat which was later to form the extensive No. 2 coal seam, active clastic sedimentation was confined to laterally restricted river channels which incised into the underlying peat. Lateral migration was inhibited by vegetation stabilized river banks and channel deposits are characterized by vertically accreted upward-fining cycles. Channel fill consists of coarse-grinder bedload sediment deposited in anastomosing streams. Flood episodes are marked by widespread, but thin (< 1 m), shale zones that intercalate with the channel sandstones. Both sandstone and shale units are completely enveloped by No. 2 coal seams. This clastic parting influences No. 2 coal seam distribution and ash content. 23 references

  4. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  5. Introduction to South African coal mining and exploration

    CSIR Research Space (South Africa)

    Jeffrey, L

    2015-01-01

    Full Text Available , such as is mined at the No. 2 Mine at Kriel Colliery9. Klip River The Bottom Seam in the Klip River Coalfield (equivalent to the Gus Seam) is high in sulphur & phosphorus, with sulphur usually ranging from 1.3% to 1.8%1, 10. The Top Seam (corresponding... to the Alfred Seam) has a smaller bright coal proportion than the Bottom Seam1, but like the Bottom Seam, the rank of the Top Seam ranges from bituminous to anthracitic with generally high sulphur & phosphorus content. In general, the Klip River Coalfield...

  6. Reflection seismic investigations of western Canadian coalfields. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, D.C.; Bertram, M.B.

    1983-03-01

    High resolution reflection seismic studies using a seisgun surface source were undertaken at four sites in Alberta. The objective of the project was to test the feasibility of the seismic method for the exploration and evaluation of coal deposits in a range of environments in western Canada. At Camrose, coherent reflections from a coal zone 70-110 m below the surface were recorde along a 5 km profile. Variations in reflection amplitude and character were interpreted in terms of two main seams. Channel washouts, faults with throws of 5 m or greater, and effects of differential compaction were resolved. Studies at a foothills site showed that good data can be obtained in structurally disturbed areas with mild deformation. At this site, faults with vertical throws of up to 40 m were delineated. In the mountain region, studies indicated that the seismic method is not appropriate in areas with strong deformation. Deep weathering, variable topography and rapid lateral changes in reflector dip were the main reasons for poor data quality. The seisgun is a threshold seismic source which performs well in areas with a shallow water table and a zone of interest within 350 m of the surface. Its effectiveness decreases dramatically if the overburden is both thick and dry. Careful selection of field geometry and recording parameters is critical. In data processing, important aspects are the careful muting of first breaks and evaluation of short and long wavelength weathering statics corrections. A computer program listing for static correction analysis is included. The seismic method is very appropriate for evaluation of Plains and Foothills coal deposits in Alberta. It can provide continuous subsurface coverage between drillholes and therefore reduce the density of drillholes required to delineate a prospective area. 29 refs., 33 figs., 2 tabs.

  7. Fast and safe gas detection from underground coal fire by drone fly over

    International Nuclear Information System (INIS)

    Dunnington, Lucila; Nakagawa, Masami

    2017-01-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. - Graphical abstract: Concluding Figure for Gas Ratios: Plotted points and ranges of adjusted literature data. Stars represent bituminous and subbituminous coal types; Ovals represent lignite. - Highlights: • Recognize underground coal fire as a potential source of energy. • Developed a creative, safe, reliable and fast gas detection method. • Developed a concept of gas ratio measurement method that can provide more accurate description of underground burning coal resource.

  8. Forecast and Prevention of Coal and Gas Outbursts in the Case of Application of a New Mining Method - Drilling of a Coal Pillar

    Directory of Open Access Journals (Sweden)

    Vlastimil Hudeček

    2010-10-01

    Full Text Available Coal and gas outbursts are one of risk factors accompanying the mining of coal in low seams in the Ostrava-Karviná Coalfield.At the use of the method of longwall mining, all coal reserves have not been mined out owing to tectonic faults. For mining outthe residual reserves, the application of a new mining method - drilling of a coal pillar was proposed.The method of mining of a coal seam utilizing long large diameter boreholes is verified in the Paskov Mine (company OKD, JSC –Czech Republic under conditions of rock mass with hazard of rock and gas outbursts in localities of residual pillars left in seams afterfinishing the mining operations performed with using the classical method of longwall working along the strike. [5]Forecast and preventive measures applied to the verification of the new method were based on previous experience withthe mining of seams with hazard of coal and gas outbursts. They accepted fully valid legislation, i.e. Ordinance of Ostrava RegionalMining Authority No. 3895/2002 and supplementary materials (Instructions and Guidelines. The proposed measures respectedthe character of the method being verified. [4]For all areas being mined, projects containing also chapters specifying the problems of ensuring the safety of mining worksand operation under conditions of hazard of coal and gas outbursts were prepared.In the contributions, basic proposals for the principles of coal and gas outburst forecast and prevention when applying the newmining method – drilling of a coal pillar are presented

  9. FY 1999 Report on overseas geological structure surveys. Joint Japan-China Yu Xian exploitation project; 1999 nendo kaigai chishitsu kozo nado chosa hokokusho. Nippon Chugoku sekitan kyodo tansa Yu Xian project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project is based on the (agreement of the joint exploitation project for Yu Xian block in Yu Xian coal mine, Province of Hepei by Japan's NEDO and China's Coal Geological Bureau), signed on October 4, 1996. The joint project mainly comprises seismic exploitation and test drilling, Japan being mainly responsible for the former and China for the latter. The final report will be drawn jointly for the geological survey results necessary for designing coal mines. The Yu Xian block contains the Jurassic coal seams, which are covered by the Quaternary bed and not exposed to the surface. The Quaternary bed base is 50 to 400 m deep from the surface, and coal seams are 300 to 700 m deep also from the surface. A total of 11 coal seams are located in the Xiahuayuan strata as the coal-bearing strata. The first and fifth seams are most promising ones. In particular, the fifth seam is thick (0.2 to 6.91 m thick) and distributed throughout the block. It is estimated that 8 coal seams have a total coal quantity of approximately 346 million tons. (NEDO)

  10. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    Science.gov (United States)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    Subsurface coal fires destroy millions of tons of coal each year, have an immense impact to the ecological surrounding and threaten further coal reservoirs. Due to enormous dimensions a coal seam fire can develop, high operational expenses are needed. As part of the Sino-German coal fire research initiative "Innovative technologies for exploration, extinction and monitoring of coal fires in Northern China" the research team of University of Wuppertal (BUW) focuses on fire extinction strategies and tactics as well as aspects of environmental and health safety. Besides the choice and the correct application of different extinction techniques further factors are essential for the successful extinction. Appropriate tactics, well trained and protected personnel and the choice of the best fitting extinguishing agents are necessary for the successful extinction of a coal seam fire. The chosen strategy for an extinction campaign is generally determined by urgency and importance. It may depend on national objectives and concepts of coal conservation, on environmental protection (e.g. commitment to green house gases (GHG) reductions), national funding and resources for fire fighting (e.g. personnel, infrastructure, vehicles, water pipelines); and computer-aided models and simulations of coal fire development from self ignition to extinction. In order to devise an optimal fire fighting strategy, "aims of protection" have to be defined in a first step. These may be: - directly affected coal seams; - neighboring seams and coalfields; - GHG emissions into the atmosphere; - Returns on investments (costs of fire fighting compared to value of saved coal). In a further step, it is imperative to decide whether the budget shall define the results, or the results define the budget; i.e. whether there are fixed objectives for the mission that will dictate the overall budget, or whether the limited resources available shall set the scope within which the best possible results shall be

  11. Seismic Wave Propagation in Layered Viscoelastic Media

    Science.gov (United States)

    Borcherdt, R. D.

    2008-12-01

    Advances in the general theory of wave propagation in layered viscoelastic media reveal new insights regarding seismic waves in the Earth. For example, the theory predicts: 1) P and S waves are predominantly inhomogeneous in a layered anelastic Earth with seismic travel times, particle-motion orbits, energy speeds, Q, and amplitude characteristics that vary with angle of incidence and hence, travel path through the layers, 2) two types of shear waves exist, one with linear and the other with elliptical particle motions each with different absorption coefficients, and 3) surface waves with amplitude and particle motion characteristics not predicted by elasticity, such as Rayleigh-Type waves with tilted elliptical particle motion orbits and Love-Type waves with superimposed sinusoidal amplitude dependencies that decay exponentially with depth. The general theory provides closed-form analytic solutions for body waves, reflection-refraction problems, response of multiple layers, and surface wave problems valid for any material with a viscoelastic response, including the infinite number of models, derivable from various configurations of springs and dashpots, such as elastic, Voight, Maxwell, and Standard Linear. The theory provides solutions independent of the amount of intrinsic absorption and explicit analytic expressions for physical characteristics of body waves in low-loss media such as the deep Earth. The results explain laboratory and seismic observations, such as travel-time and wide-angle reflection amplitude anomalies, not explained by elasticity or one dimensional Q models. They have important implications for some forward modeling and inverse problems. Theoretical advances and corresponding numerical results as recently compiled (Borcherdt, 2008, Viscoelastic Waves in Layered Media, Cambridge University Press) will be reviewed.

  12. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  13. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  14. Analysis and mapping of post-fire hydrologic hazards for the 2002 Hayman, Coal Seam, and Missionary Ridge wildfires, Colorado

    Science.gov (United States)

    Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.

    2005-01-01

    Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff

  15. Depositional controls on coal distribution and quality in the Eocene Brunner Coal Measures, Buller Coalfield, South Island, New Zealand

    Science.gov (United States)

    Flores, R.M.; Sykes, R.

    1996-01-01

    The Buller Coalfield on the West Coast of the South Island, New Zealand, contains the Eocene Brunner Coal Measures. The coal measures unconformably overlie Paleozoic-Cretaceous basement rocks and are conformably overlain by, and laterally interfinger with, the Eocene marine Kaiata Formation. This study examines the lithofacies frameworks of the coal measures in order to interpret their depositional environments. The lower part of the coal measures is dominated by conglomeratic lithofacies that rest on a basal erosional surface and thicken in paleovalleys incised into an undulating peneplain surface. These lithofacies are overlain by sandstone, mudstone and organic-rich lithofacies of the upper part of the coal measures. The main coal seam of the organic-rich lithofacies is thick (10-20 m), extensive, locally split, and locally absent. This seam and associated coal seams in the Buller Coalfield are of low- to high-volatile bituminous rank (vitrinite reflectance between 0.65% and 1.75%). The main seam contains a variable percentage of ash and sulphur. These values are related to the thickening and areal distribution of the seam, which in turn, were controlled by the nature of clastic deposition and peat-forming mire systems, marine transgression and local tidal incursion. The conglomeratic lithofacies represent deposits of trunk and tributary braided streams that rapidly aggraded incised paleovalleys during sea-level stillstands. The main seam represents a deposit of raised mires that initially developed as topogenous mires on abandoned margins of inactive braidbelts. Peat accumulated in mires as a response to a rise in the water table, probably initially due to gradual sea-level rise and climate, and the resulting raised topography served as protection from floods. The upper part of the coal measures consists of sandstone lithofacies of flu vial origin and bioturbated sandstone, mudstone and organic-rich lithofacies, which represent deposits of paralic (deltaic

  16. Coal-bed methane water effects on dill and essential oils

    Science.gov (United States)

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...

  17. Research into methods of dust prevention in mechanised winning in thin coal seams. Investigacion de metodos de prevencion del polvo, en el arranque mecanizado de capas estrechas de carbon

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fidalgo, M.; Alvarez Santullano, L.; Eguidazu Pujades, J.L.; Gonzalez del Valle, S.; Cordera Fernandez, J.V.; De Arriba de la Iglesia, J. (Instituto Nacional de Silicosis (Spain))

    1989-09-01

    Concerns the research work carried out jointly by HUNOSA and the National Institute of Silicosis regarding dust prevention on mechanised faces in thin coal seams using shearers with a drum diameter of less than 600 mm. This work was supported by the Directorate General for mines and Ocicarbon. 10 figs., 1 tab.

  18. Rock burst prevention at steep seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, G D

    1988-09-01

    At steep shield longwalls one method of preventing rock bursts is to avoid sharp angles during working. Stress in coal and rock body that appears when steep seams are worked where rock bursts occur at corners of set-up entries is discussed. The dynamic interaction between gas and rock pressure is assessed. Maintains that in order to avoid rock bursts at these places it is necessary to turn the protruding coal wall by 20-30 degrees towards the coal body to divert the action of shift forces. At the same time the face should also be inclined (by 10-15 degrees) to move the zones of increased stress away from the corner into the coal and rock body. Stress at workings with round cross-sections is 3-4 times lower than at square cross-sections. Recommendations are given that concern shearer loader operation (semi-spherical shape of the face), borehole drilling and water injection. Initial distance of 10-15 m between boreholes is suggested. 3 refs.

  19. Exploitation of the in-seam miner and operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W I.S.; Morris, A H

    1977-12-01

    The In-seam Miner started as an investigatory project at MRDE in 1969. Since that time it has passed through the classic development stages of design of prototype, surface trials, underground trials, modification, production of more machines, assessment of experience and then wider exploitation. At the present time well over 100 machines have been supplied to the National Coal Board. The original machine was hydraulically driven and all but five of the machines supplied to date are of this type. The variety of applications that the machine has found in the mining industry has caused derivative development to embrace machines of length varying from 12-ft centers to 44-ft centers, to work in seams ranging from 40 in. up to 68 in. The range of applications has included face drivages, stablehole operations, in-seam retreat roadways and dirt-absorbing headings. Five electrically driven machines are now coming onto the market and experience with them, though limited, is very encouraging. The paper concentrates on two major aspects of the overall development process: first, the management of exploitation; and second, some operational experience of the In-seam Miner in South Midlands area.

  20. Forecasting of Energy Expenditure of Induced Seismicity with Use of Artificial Neural Network

    Science.gov (United States)

    Cichy, Tomasz; Banka, Piotr

    2017-12-01

    Coal mining in many Polish mines in the Upper Silesian Coal Basin is accompanied by high levels of induced seismicity. In mining plants, the methods of shock monitoring are improved, allowing for more accurate localization of the occurring phenomena and determining their seismic energy. Equally important is the development of ways of forecasting seismic hazards that may occur while implementing mine design projects. These methods, depending on the length of time for which the forecasts are made, can be divided into: longterm, medium-term, short-term and so-called alarm. Long-term forecasts are particularly useful for the design of seam exploitations. The paper presents a method of predicting changes in energy expenditure of shock using a properly trained artificial neural network. This method allows to make long-term forecasts at the stage of the mine’s exploitation design, thus enabling the mining work plans to be reviewed to minimize the potential for tremors. The information given at the input of the neural network is indicative of the specific energy changes of the elastic deformation occurring in the selected, thick, resistant rock layers (tremor-prone layers). Energy changes, taking place in one or more tremor-prone layers are considered. These indicators describe only the specific energy changes of the elastic deformation accumulating in the rock as a consequence of the mining operation, but does not determine the amount of energy released during the destruction of a given volume of rock. In this process, the potential energy of elastic strain transforms into other, non-measurable energy types, including the seismic energy of recorded tremors. In this way, potential energy changes affect the observed induced seismicity. The parameters used are characterized by increases (declines) of specific energy with separation to occur before the hypothetical destruction of the rock and after it. Additional input information is an index characterizing the rate of

  1. Application of fractal theory to top-coal caving

    International Nuclear Information System (INIS)

    Xie, H.; Zhou, H.W.

    2008-01-01

    The experiences of underground coal mining in China show that coal in a thick hard coal seam with a hard roof, the so-called 'double hard coal seam', is difficult to be excavated by top-coal caving technique. In order to solve the problem, a top-coal weakening technique is proposed in this paper. In the present study, fractal geometry provides a new description of the fracture mechanism for blasting. By means of theoretical analysis of the relationship between the fractal dimension of blasting fragments and the dynamite specific energy, a mechanical model for describing the size distribution of top-coal and the dissipation of blasting energy is proposed. The theoretical results are in agreement with laboratory and in situ test results. Moreover, it is shown that the fractal dimension of coal fragments can be used as an index for optimizing the blasting parameters for a top-coal weakening technique

  2. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  3. Width design for gobs and isolated coal pillars based on overall burst-instability prevention in coal mines

    Directory of Open Access Journals (Sweden)

    Junfei Zhang

    2016-08-01

    Full Text Available An investigation was conducted on the overall burst-instability of isolated coal pillars by means of the possibility index diagnosis method (PIDM. First, the abutment pressure calculation model of the gob in side direction was established to derive the abutment pressure distribution curve of the isolated coal pillar. Second, the overall burst-instability ratio of the isolated coal pillars was defined. Finally, the PIDM was utilized to judge the possibility of overall burst-instability and recoverability of isolated coal pillars. The results show that an overall burst-instability may occur due to a large gob width or a small pillar width. If the width of the isolated coal pillar is not large enough, the shallow coal seam will be damaged at first, and then the high abutment pressure will be transferred to the deep coal seam, which may cause an overall burst-instability accident. This approach can be adopted to design widths of gobs and isolated coal pillars and to evaluate whether an existing isolated coal pillar is recoverable in skip-mining mines.

  4. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  5. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  6. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    Science.gov (United States)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at

  7. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China

    Science.gov (United States)

    Sun, R.; Liu, Gaisheng; Zheng, Lingyun; Chou, C.-L.

    2010-01-01

    The abundances of nine major elements and thirty-eight trace elements in 520 samples of low sulfur coals from the Zhuji Mine, Huainan Coalfield, Anhui, China, were determined. Samples were mainly collected from 10 minable coal seams of 29 boreholes during exploration. The B content in coals shows that the influence of brackish water decreased toward the top of coal seams; marine transgression and regression occurred frequently in the Lower Shihezi Formation. A wide range of elemental abundances is found. Weighted means of Na, K, Fe, P, Be, B, Co, Ni, Cr, Se, Sb, Ba, and Bi abundances in Zhuji coals are higher, and the remainder elements are either lower or equal to the average values of elements in coals of northern China. Compared to the Chinese coals, the Zhuji coals are higher in Na, K, Be, B, Cr, Co, Se, Sn, Sb, and Bi, but lower in Ti, P, Li, V and Zn. The Zhuji coals are lower only in S, P, V and Zn than average U.S. and world coals. Potassium, Mg, Ca, Mn, Sr, As, Se, Sb and light rare earth elements (LREE) had a tendency to be enriched in thicker coal seams, whereas Fe, Ti, P, V, Co, Ni, Y, Mo, Pb and heavy rare earth elements (HREE) were inclined to concentrate in thinner coal seams. The enrichment of some elements in the Shanxi or Upper Shihezi Formations is related to their depositional environments. The elements are classified into three groups based on their stratigraphic distributions from coal seams 3 to 11-2, and the characteristics of each group are discussed. Lateral distributions of selected elements are also investigated. The correlation coefficients of elemental abundances with ash content show that the elements may be classified into four groups related to modes of occurrence of these elements. ?? 2009 Elsevier B.V. All rights reserved.

  8. Zulia rich coal seams to fuel Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    1983-06-16

    In March, 1982, Carbozulia awarded a contract to Fluor Corp. to provide basic engineering services, including mine planning and geology, for the two-phase project. The open pit mine and ancillary facilities, valued at more than $200 million, will provide steam and metallurgical coal for domestic use. The site, Mina Paso Diablo, is located about 60 miles northwest of Maracaibo. Upon phase one completion sometime in 1987, the mill will start production, gradually increasing to 4 million metric-tons-per-year. This will increase to 6.4 million metric tons when phase two is completed. In addition to the mine, the Venezuelan government plans to build an industrial complex along Lake Maracaibo. Corpozulia will build a steel-rolling mill and add a 350,000 metric tons-per-year coking oven, which will consume about 7% of the mine's metallurgical-coal production. Another government-owned firm, Electric Energy of Venezuela, plans to build a thermo-electric plant nearby. Two 250-megawatt units are planned initially, with potential to add another six units. At full capacity, the plant will burn more than 90% of the coal produced from the mine. Mina Paso Diablo contains one of Latin America's largest proven coal reserves - about 350 million metric tons - with guesstimates running as high as 4 billion metric tons for the Zulia coal basin. The coal is of superior quality, running about 12,000 to 13,000 Btu's per lb. with a low ash and sulphur content.

  9. Traveling Wave Resonance and Simplified Analysis Method for Long-Span Symmetrical Cable-Stayed Bridges under Seismic Traveling Wave Excitation

    Directory of Open Access Journals (Sweden)

    Zhong-ye Tian

    2014-01-01

    Full Text Available The seismic responses of a long-span cable-stayed bridge under uniform excitation and traveling wave excitation in the longitudinal direction are, respectively, computed. The numerical results show that the bridge’s peak seismic responses vary significantly as the apparent wave velocity decreases. Therefore, the traveling wave effect must be considered in the seismic design of long-span bridges. The bridge’s peak seismic responses do not vary monotonously with the apparent wave velocity due to the traveling wave resonance. A new traveling wave excitation method that can simplify the multisupport excitation process into a two-support excitation process is developed.

  10. The coal cleat system: A new approach to its study

    Directory of Open Access Journals (Sweden)

    C.F. Rodrigues

    2014-06-01

    Full Text Available After a general analysis regarding the concept of coal “cleat system”, its genetic origin and practical applications to coalbed methane (CBM commercial production and to CO2 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1 how to define the spatial orientation of the different classes of cleats presented in a coal seam and (2 how to determine the frequency of their connectivites. The new available and presented techniques to answer these questions have a strong computer based tool (geographic information system, GIS, able to build a complete georeferentiated database, which will allow to three-dimensionally locate the laboratory samples in the coalfield. It will also allow to better understand the coal cleat system and consequently to recognize the best pathways to gas flow through the coal seam. Such knowledge is considered crucial for understanding what is likely to be the most efficient opening of cleat network, then allowing the injection with the right spatial orientation, of pressurized fluids in order to directly drain the maximum amount of gas flow to a CBM exploitation well. The method is also applicable to the CO2 geological sequestration technologies and operations corresponding to the injection of CO2 sequestered from industrial plants in coal seams of abandoned coal mines or deep coal seams.

  11. A Hammer-Impact, Aluminum, Shear-Wave Seismic Source

    Science.gov (United States)

    Haines, Seth

    2007-01-01

    Near-surface seismic surveys often employ hammer impacts to create seismic energy. Shear-wave surveys using horizontally polarized waves require horizontal hammer impacts against a rigid object (the source) that is coupled to the ground surface. I have designed, built, and tested a source made out of aluminum and equipped with spikes to improve coupling. The source is effective in a variety of settings, and it is relatively simple and inexpensive to build.

  12. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    Science.gov (United States)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  13. Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gang [Key Laboratory of Marginal Sea Geology, Chinese Academy of Sciences (China)]|[Coal Geology Bureau of Inner Mongolia, Hohhot, 010051 (China); Zhuang, Xinguo [Institute of Sedimentary Basin and Mineral, Faculty of Earth Resources, China University of Geosciences, Hubei, 430074 (China)]|[State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Hubei, 430074 (China); Querol, Xavier; Izquierdo, Maria; Alastuey, Andres; Moreno, Teresa; Font, Oriol [Institute of Earth Science ' Jaume Almera' , CSIC, C/ LLuis Sole Sabaris s/n, 08028 Barcelona (Spain)

    2009-03-01

    The geological and geochemical controls of the Ge distribution in the Cretaceous Wulantuga high-Germanium coal deposit in the Shengli coal field, Inner Mongolia are investigated. This paper focuses mainly on the spatial distribution of the Ge contents in coal. The high-Ge coals mainly occur in three splits of the 6 coal in the southwestern part of the Shengli coal field. Mean germanium contents in the coal range from 32 to 820 {mu}g/g, with a mean value of 137 {mu}g/g, on a bulk coal basis (mean of 939 coal samples from 75 boreholes in the 6 coal seam) in an area of 2.2 km{sup 2}. The highest Ge content occurs SW of 6 coal seam, close to the margins of the coal basin, decreasing with a fan-shaped trend towards NW, the direction of the coal basin. There is an negative correlation between the mean Ge content and the thickness of the coal seam. Different distribution patterns of Ge content were found in vertical profiles. High Ge concentrations may occur in the middle parts of coal seams, at the bottom and/or the top of thick coal seams and inconspicuous variation. A major organic affinity was determined for Ge, with a special enriched in the banded bright and semibright coal. The high-Ge coals and the coalified wood in the sandstone overlaying the 6-1 coal highly enriched in Ge, As, Sb, W, Cs, Tl, Be, and Hg. The Late Jurassic silicified volcanic rocks in the NW of the Ge coal deposit relatively high enriched in Ge, Ga, Sb, As, Cs, Be, Ge and Hg. The correlation coefficients among the elements enriched showed marked variations at close sites in this deposit, suggesting a possible diagenetic origin of the geochemical anomaly. The main Ge anomaly was attributed to early Cretaceous hydrothermal fluids circulating through the fault systems and porous volcanic rocs, probably from the subjacent granitoid rocks. The fault systems, the porous coarse clastic rocks overlying coal seam and the lithotype of coal played an important role in the transport and trapping of Ge. A

  14. 复杂瓦斯地质条件下煤层透气性评价及抽采对策研究%Study on coal seam gas permeability evaluation and drainage countermeasures in complex gas geological conditions

    Institute of Scientific and Technical Information of China (English)

    易汉华

    2017-01-01

    针对煤层瓦斯地质条件复杂的米箩煤矿在生产过程中瓦斯抽采难、预抽时间长、矿区范围内可采煤层透气性不确定的问题,采用煤层透气性系数现场测定的方法,对米箩煤矿1号、3号、9号、10号、16号、26号、27号、29号、31号和40号煤层施工测压钻孔进行了煤层透气性系数相关参数的测定,并依据钻孔径向流量法计算公式,对米箩煤矿各煤层透气性系数进行了评价,得出了米箩煤矿矿区范围内1号、3号、9号、10号、16号、26号、27号、29号、31号和40号煤层均为低透气性煤层.通过优化瓦斯抽采钻孔直径和钻孔间距的方式,改善了煤层透气性,并在1108底板瓦斯抽放巷两侧每隔15 m分别增设一个高位钻场,在钻场内向3号煤层布置19个斜向穿层抽采钻孔,有效缩短了110310回采工作面瓦斯预抽时间.%The geological conditions of Miluo Coal Mine is complex,in the production process,gas is difficult to drain,the time of gas drainage is long,and permeability of minable seam was uncertain,aimed at these problems,the permeability coefficient measuring on site was applied,thus,pressure drilling were constructed in No.1,3,9,10,16,26,27,29,31 and No.40 coal seam,whose purpose was to evaluate the permeability coefficient of coal seams.It was proposed that No.1,3,9,10,16,26,27,29,31 and No.40 are of low permeability coal seam.Through the optimization of diameter and spacing of holes for gas drainage,the permeability of coal seam was improved,high-level drilling field was added on two side of 1108 floor drainage roadway,and the spacing of drilling field was 15 m.19 oblique layer-through boreholes were laid out into No.3 coal seam in the drilling field,and this has effectively reduced the pre-pumping time of the gas on 110310 working face.

  15. Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis

    International Nuclear Information System (INIS)

    Boaga, J; Vignoli, G; Cassiani, G

    2011-01-01

    Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the

  16. Polarized seismic and solitary waves run-up at the sea bed

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, L. C.C.; Zainal, A. A.; Faisal, S. Y. [Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2012-09-26

    The polarization effects in hydrodynamics are studied. Hydrodynamic equation for the nonlinear wave is used along with the polarized solitary waves and seismic waves act as initial waves. The model is then solved by Fourier spectral and Runge-Kutta 4 methods, and the surface plot is drawn. The output demonstrates the inundation behaviors. Consequently, the polarized seismic waves along with the polarized solitary waves tend to generate dissimilar inundation which is more disastrous.

  17. The impact of the structural features of the rock mass on seismicity in Polish coal mines

    Science.gov (United States)

    Patyńska, Renata

    2017-11-01

    The article presents seismic activity induced in the coal mines of the Upper Silesian Coal Basin (GZW) in relation to the locations of the occurrence of rockbursts. The comparison of these measurements with the structural features of the rock mass of coal mines indicates the possibility of estimating the so-called Unitary Energy Expenditure (UEE) in a specific time. The obtained values of UEE were compared with the distribution of seismic activity in GZW mines. The level of seismic activity in the analysed period changed and depended on the intensity of mining works and diverse mining and geological conditions. Five regions, where tremors occurred (Bytom Trough, Main Saddle, Main Trough, Kazimierz Trough, and Jejkowice and Chwałowice Trough) which belong to various structural units of the Upper Silesia were analyzed. It was found out that rock bursts were recorded only in three regions: Main Saddle, Bytom Trough, and Jejkowice and Chwałowice Trough.

  18. SHRIMP zircon U–Pb ages from coal beds across the Permian–Triassic boundary, eastern Yunnan, southwestern China

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2018-04-01

    Full Text Available The first SHRIMP zircon U–Pb ages from coal beds close to the end-Permian mass extinction are reported from the C1 coal seam in the Yantang Mine in Laibin Town, Xuanwei County, eastern Yunnan Province. Zircons were extracted from kaolinite claystone layers, defined as tonsteins (volcanic ash deposits, in the sub-seam B1 and B3 of the coal seam C1. The U–Pb ages are 252.0 ± 2.3 Ma and 250.3 ± 2.1 Ma for the sub-seam B1 and B3, respectively. Within analytical uncertainties, these U–Pb ages include the time period of the onset of the mass extinction at 251.941 ± 0.037 Ma, which was obtained from the marine Meishan section in Zhejiang Province, ∼1600 km away from the Yantang Mine. These new ages represent not only the first and closest ages to the PTB mass extinction in terrestrial coal beds, but also ages from the nearest site to the Emeishan volcanoes investigated so far. Therefore these new data provide the most accurate stratigraphic horizon of terrestrial facies of the end-Permian extinction in South China. The Emeishan volcanoes were likely the source of volcanic ash in the coal seams at the Xuanwei County and broader areas in South China. Furthermore, the minerals and geochemistry characteristics of the C1 coal seam also implied the influences of contemporaneous volcanic activities. Keywords: PTB mass extinction, C1 coal seam, SHRIMP U–Pb isotope age, Xuanwei County, Yunnan Province

  19. E3D, 3-D Elastic Seismic Wave Propagation Code

    International Nuclear Information System (INIS)

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  20. Forecast fire damp emission in thin, steep coal bed; Prevision de Desprendimiento de Grisu en Capas Estrechas e Inclindas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    A model to forecast fire damp emission in thin, steep coal bed, mining in advance and backfill works, has been developed and validated. The model estimates the amount of methane released towards the works, including fire damp proceeding from the actually mined seam, as well as methane coming from adjacent seams layers, depending on easy-to find parameters. Methane coming from the mined seam is determined as a function of the methane concentration in the seam and methane from adjacent seams is assessed by the degassification degree. This parameter depends also on the distance to the mined seam. The influence volume of a thin, steep mined coal bed has been determined, in order to study which seams and layers release methane towards the works. The works to develop the methane emission model were done in a coal face on Maria seam, in San Antonio mine, belonging to HUNOSA. The validation works were carried out in 24 left south seam, in the belonging to Minas de Figaredo, S. A. (Author)

  1. Seismic rotation waves: basic elements of theory and recording

    Directory of Open Access Journals (Sweden)

    P. Palangio

    2003-06-01

    Full Text Available Returning to the old problem of observed rotation effects, we present the recording system and basic elements of the theory related to the rotation fi eld and its association with seismic waves. There can be many different causes leading to observed/recorded rotation effects; we can group them as follows: generation of micro-displacement motion due to asymmetry of source processes and/or due to interaction between seismic body/surface waves and medium structure; interaction between incident seismic waves and objects situated on the ground surface. New recording techniques and advanced theory of deformation in media with defects and internal (e.g., granular structure make it possible to focus our attention on the fi rst group, related to microdisplacement motion recording, which includes both rotation and twist motions. Surface rotations and twists caused directly by the action of emerging seismic waves on some objects situated on the ground surface are considered here only in the historical aspects of the problem. We present some examples of experimental results related to recording of rotation and twist components at the Ojcow Observatory, Poland, and L'Aquila Observatory, Italy, and we discuss some prospects for further research.

  2. Modeling of carbon sequestration in coal-beds: A variable saturated simulation

    International Nuclear Information System (INIS)

    Liu Guoxiang; Smirnov, Andrei V.

    2008-01-01

    Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics

  3. Preliminary report on LLNL mine seismicity deployment at the Twentymile Coal Mine

    International Nuclear Information System (INIS)

    Walter, W.R.; Hunter, S.L.; Glenn, L.A.

    1996-01-01

    This report summarizes the preliminary results of a just completed experiment at the Twentymile Coal Mine, operated by the Cyprus Amax Coal Company near Oak Creek, CO. The purpose of the experiment was to obtain local and regional seismic data from roof caves associated with long-wall mining activities and to use this data to help determine the effectiveness with which these events can be discriminated from underground nuclear explosions under a future Comprehensive Test Ban Treaty

  4. Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: new insights into CH4 origins

    OpenAIRE

    Owen, D. Des. R.; Shouakar-Stash, O.; Morgenstern, U.; Aravena, R.

    2016-01-01

    Using a comprehensive data set (dissolved CH4, ?13C-CH4, ?2H-CH4, ?13C-DIC, ?37Cl, ?2H-H2O, ?18O-H2O, Na, K, Ca, Mg, HCO3, Cl, Br, SO4, NO3 and DO), in combination with a novel application of isometric log ratios, this study describes hydrochemical and thermodynamic controls on dissolved CH4 from a coal seam gas reservoir and an alluvial aquifer in the Condamine catchment, eastern Surat/north-western Clarence-Moreton basins, Australia. ?13C-CH4 data in the gas reservoir (?58? to ?49?) and sha...

  5. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  6. Application of the surface reflection seismic method to shallow coal exploration in the plains of Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Lyatsky, H.V.; Lawton, D.C. (University of Victoria, Victoria, BC (Canada). Dept. of Physics and Astronomy)

    1988-12-01

    A study was done to make a quantitative interpretation of reflection seismic data from the Highvale-Whitewood shallow coal deposit in central Alberta. Results showed that the data is useful in demonstrating coal thickness and stratigraphy as well as structural formation. Reflection character is affected by nature of the strata surrounding the coal deposit. 22 refs., 1 tab., 23 figs.

  7. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  8. Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface

    Science.gov (United States)

    Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping

    2018-05-01

    In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.

  9. Seismic Wave Propagation in Icy Ocean Worlds

    Science.gov (United States)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  10. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Tara J.; Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, Alberta (Canada); Budwill, Karen [Carbon and Energy Management, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, Alberta (Canada)

    2010-05-01

    Coalbed methane is an unconventional fuel source associated with certain coal seams. Biogenic methane can comprise a significant portion of the gas found in coal seams, yet the role of microbes in methanogenesis in situ is uncertain. The purpose of this study was to detect and identify major bacterial and archaeal species associated with coal sampled from sub-bituminous methane-producing coal beds in western Canada, and to examine the potential for methane biogenesis from coal. Enrichment cultures of coal samples were established to determine how nutrient amendment influenced the microbial community and methane production in the laboratory. 16S rRNA gene clone libraries were constructed using DNA extracted and amplified from uncultured coal samples and from methanogenic coal enrichment cultures. Libraries were screened using restriction fragment length polymorphism, and representative clones were sequenced. Most (> 50%) of the bacterial sequences amplified from uncultured coal samples were affiliated with Proteobacteria that exhibit nitrate reduction, nitrogen fixation and/or hydrogen utilization activities, including Pseudomonas, Thauera and Acidovorax spp., whereas enrichment cultures were dominated by Bacteroidetes, Clostridia and/or Lactobacillales. Archaeal 16S rRNA genes could not be amplified from uncultured coal, suggesting that methanogens are present in coal below the detection levels of our methods. However, enrichment cultures established with coal inocula produced significant volumes of methane and the archaeal clone libraries were dominated by sequences closely affiliated with Methanosarcina spp. Enrichment cultures incubated with coal plus organic nutrients produced more methane than either nutrient or coal supplements alone, implying that competent methanogenic consortia exist in coal beds but that nutrient limitations restrict their activity in situ. This report adds to the scant literature on coal bed microbiology and suggests how microbes may be

  11. Coupled seismic and electromagnetic wave propagation

    NARCIS (Netherlands)

    Schakel, M.D.

    2011-01-01

    Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed,

  12. Specific Energy of Hard Coal Under Load

    Directory of Open Access Journals (Sweden)

    Bogusz Anna

    2015-03-01

    Full Text Available The article presents results of experimental tests of energy parameters of hard coals under loading, collected from research sites located within five main geologic structures of Upper Silesian Coal Basin (GZW - Main Trough, Main Anticline, Bytom Trough, Rybnik Trough and Chwałowice Trough. Coals from12 mines were analysed, starting with seams of group 200, through groups 400, 500, 600 and, finally, seams of group 700. Coal of each of the groups of seams underwent uniaxial compression stress of the energy parameters, in a servo-controlled testing machine MTS-810NEW, for the full range of strain of the tested coal samples. Based on the tests the dependence of different types of specific energy of longitudinal strain of coals on the value of uniaxial compression strength was determined. The dependence of the value of dissipated energy and kinetic energy of coals on the uniaxial compression strength was described with a linear function, both for coals which due to their age belong to various bed sand for various lithotypes of coal. An increase in the value of dissipated energy and in kinetic energy was observed, which was correlated with an increase in uniaxial compression strength of coal. The share of dissipated energy is dominant in the total energy of strain. Share of recoverable energy in the total energy of strain is small, independent of the compression strength of coals and is at most a few per cent high. In coals of low strength and dominant share of dissipated energy, share of recoverable energy is the biggest among the tested coals. It was shown that following an increase in compression strength the share of recoverable energy decreases, while the share of dissipated energy in the total energy increases. Further studies of specific energy of longitudinal strain of rocks in the full-range strain will be the next step inperfecting methodology of research into natural rock burst susceptibility of Carboniferous rock mass and changes in the

  13. Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators

    Science.gov (United States)

    Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.

    2015-12-01

    Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  14. Seismic waves and earthquakes in a global monolithic model

    Science.gov (United States)

    Roubíček, Tomáš

    2018-03-01

    The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

  15. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang

    2014-05-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  16. Lowrank seismic-wave extrapolation on a staggered grid

    KAUST Repository

    Fang, Gang; Fomel, Sergey; Du, Qizhen; Hu, Jingwei

    2014-01-01

    © 2014 Society of Exploration Geophysicists. We evaluated a new spectral method and a new finite-difference (FD) method for seismic-wave extrapolation in time. Using staggered temporal and spatial grids, we derived a wave-extrapolation operator using a lowrank decomposition for a first-order system of wave equations and designed the corresponding FD scheme. The proposed methods extend previously proposed lowrank and lowrank FD wave extrapolation methods from the cases of constant density to those of variable density. Dispersion analysis demonstrated that the proposed methods have high accuracy for a wide wavenumber range and significantly reduce the numerical dispersion. The method of manufactured solutions coupled with mesh refinement was used to verify each method and to compare numerical errors. Tests on 2D synthetic examples demonstrated that the proposed method is highly accurate and stable. The proposed methods can be used for seismic modeling or reverse-time migration.

  17. Analysis of seismic waves and strong ground motion

    International Nuclear Information System (INIS)

    Simpson, I.C.; Sutton, R.

    1976-10-01

    A number of Western USA earthquake acceleration-time histories concerning events of magnitude less than 6 are considered and their Fourier spectra calculated. An analysis of some of the simpler types of seismic wave is given in order to consider the generation of a spatially dependent acceleration-time history suitable for input into a soil-structure program of analysis. Such an acceleration-time history is required by a comprehensive analysis of soil-structure interaction since the conventionally assumed model of vertically propagating seismic waves, which give rise to three spatially independent ground motions, can lead to over-conservative estimates of the building response in the high frequency range. The possible application is discussed of a given component of a recorded acceleration-time history to the base of structure under the assumption of surface Rayleigh waves or obliquely incident P and SV bulk waves. (author)

  18. Prediction, prevention and fight automatic control in mining an outburst prone coal seam; Control Automatico de las Medidas de Prediccion, Prevencion y Lucha, para la Explotacion Mecanizada de una Capa Susceptible de desprendimientos Instantaneos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Outburst are instantaneous catastrophic failure of the coal mine structure, characterised by emissions of large quantities of finely divided coal dust and gas from a coal face. In Spain, outbursts have represented a serious problem in the zone of Aller (Asturias), particularly in San Antonio mine. The main objective of the research work was to determine whether outburst precursory micro seismic activity could be discerned by monitoring the coal mining district of San Antonio. Micro seismic activity on the underground seismometer contains distinct style of events: natural events, stress events and outburst events. The correlation between the rate of extraction and the number of micro seismic activity has been analysed. A real time software was developed which would discriminate mining activity from background seismic noise. the algorithm used for event detection in based on comparing the short term average (STA) with the long term average (LTA) of the signal energy. (Author)

  19. Short-Period Surface Wave Based Seismic Event Relocation

    Science.gov (United States)

    White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.

    2017-12-01

    Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.

  20. Seismic prediction ahead of tunnel construction using Rayleigh-waves

    OpenAIRE

    Jetschny, Stefan; De Nil, Denise; Bohlen, Thomas

    2008-01-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. We developed a new forward looking seismic imaging technique e.g. to determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of tunnel surface-waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the fr...

  1. Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements

    Science.gov (United States)

    Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.

    2001-12-01

    As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.

  2. 瓦斯抽放煤层增透深孔聚能爆破钻孔参数%Drilling parameters of deep-hole cumulative blasting to improve coal seam permeability in gas drainage

    Institute of Scientific and Technical Information of China (English)

    郭德勇; 吕鹏飞; 单智勇; 谢安

    2013-01-01

    以焦作煤业集团九里山矿煤层深孔聚能爆破试验为基础,利用数值模拟分析了爆破煤体应力变化规律,发现聚能爆破效应导致应力峰值增大,扩大了煤体裂隙区范围.同时对聚能爆破钻孔参数进行优化,确定了合理的炮孔直径、爆破孔间距、爆破孔与邻近抽放孔及煤层顶底板间距.现场试验结果表明:优化的钻孔参数不仅使聚能爆破增透效果显著而且保证了爆破过程的安全.%Based on coal seam deep-hole cumulative blasting experiments in Jiulishan Coal Mine of Jiaozuo Coal Group, the law of stress change in a blasting coal body was analyzed by numerical simulation. It is found that cumulative blasting effect leads to the increase of peak stress and enlarges the crack zone range of the coal body. Drilling parameters for cumulative blasting, such as blast hole diameter, blast hole spacing, distance between the blast hole and the adjacent gas drainage hole, and distance from the blast hole to the coal seam roof and floor, were determined by optimization. Field experimental results show that after using these optimized drilling parameters the cumulative blasting not only gets remarkable permeability increasing effect but also ensures blasting safety.

  3. Mercury distribution in coals influenced by magmatic intrusions, and surface waters from the Huaibei Coal Mining District, Anhui, China

    International Nuclear Information System (INIS)

    Yan, Zhicao; Liu, Guijian; Sun, Ruoyu; Wu, Dun; Wu, Bin; Zhou, Chuncai

    2013-01-01

    Highlights: • Hg concentrations in coal and surface water samples were determined. • Hg is enriched in the Huaibei coals. • Magmatic activities imparted influences on Hg content and distribution. • Hg contents in surface waters are relative low at the present status. - Abstract: The Hg concentrations in 108 samples, comprising 81 coal samples, 1 igneous rock, 2 parting rock samples and 24 water samples from the Huaibei Coal Mining District, China, were determined by cold-vapor atomic fluorescence spectrometry. The abundance and distribution of Hg in different coal mines and coal seams were studied. The weighted average Hg concentration for all coal samples in the Huaibei Coalfield is 0.42 mg/kg, which is about twice that of average Chinese coals. From southwestern to northeastern coalfield, Hg concentration shows a decreasing trend, which is presumably related to magmatic activity and fault structures. The relatively high Hg levels are observed in coal seams Nos. 6, 7 and 10 in the southwestern coal mines. Correlation analysis indicates that Hg in the southwestern and southernmost coals with high Hg concentrations is associated with pyrite. The Hg concentrations in surface waters in the Huaibei Coal Mining District range from 10 to 60 ng/L, and display a decreasing trend with distance from a coal waste pile but are lower than the regulated levels for Hg in drinking water

  4. A modified symplectic PRK scheme for seismic wave modeling

    Science.gov (United States)

    Liu, Shaolin; Yang, Dinghui; Ma, Jian

    2017-02-01

    A new scheme for the temporal discretization of the seismic wave equation is constructed based on symplectic geometric theory and a modified strategy. The ordinary differential equation in terms of time, which is obtained after spatial discretization via the spectral-element method, is transformed into a Hamiltonian system. A symplectic partitioned Runge-Kutta (PRK) scheme is used to solve the Hamiltonian system. A term related to the multiplication of the spatial discretization operator with the seismic wave velocity vector is added into the symplectic PRK scheme to create a modified symplectic PRK scheme. The symplectic coefficients of the new scheme are determined via Taylor series expansion. The positive coefficients of the scheme indicate that its long-term computational capability is more powerful than that of conventional symplectic schemes. An exhaustive theoretical analysis reveals that the new scheme is highly stable and has low numerical dispersion. The results of three numerical experiments demonstrate the high efficiency of this method for seismic wave modeling.

  5. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    Science.gov (United States)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  6. Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia

    Science.gov (United States)

    Littel, G.; Thomas, A.; Baltay, A.

    2017-12-01

    In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated

  7. Coal Mine Accidents in Bangladesh: Its Causes and Remedial Measures

    Directory of Open Access Journals (Sweden)

    MD. MINHAJ UDDIN MONIR

    2012-12-01

    Full Text Available Barapukuria coal mine (BCM is located at Dinajpur district, NW Bangladesh. Total area is about 6.68 km2 and coal was encountered at a depth ranging between 118 and 509 m. Six major coal seams (seam I to seam VI were identified at BCM, of which, thickest one is the seam-VI (~36 m. The estimated coal reserves is about 390 million tons and of this, nearly 64 million tons of coal is extractable. The annual production of coal is about 1 million ton. In this study several parameters were used to explore minimization of accidents and improvement of coal production in BCM. Considering the geological, hydrological and other technical parameters, longwall mining method is applied for extraction of coal. Longwall retreating mining method is also applied for extraction of coal from single face with the operational area protected by self-advancing hydraulic powered roof support (HPRS system. These supports are moved forward causing the roof behind them to form an extensive abandoned area named goaf, which may lead to collapse with air blast. Coal in BCM is extracted from seam VI, using a multislice Longwall top coal caving method. Average ventilated air composition is ~20.94% oxygen, ~79.00% nitrogen, ~0.04% carbon monoxide, and minor water steam with huge dust. Production of coal was completed from 12 Longwall faces of 1st slice from seam VI. During production period several accidents and troubles within BCM have occurred. Poisonous gases such as carbon monoxide were detected during/after development of 1110 Longwall face, which increases up to 6000 ppm, therefore, sealed-off the face with mining equipments. During the development of belt gate roadway of 1101 Longwall face, maximum temperature and humidity increases up to 37 oC and 100%, respectively. Miners of BCM experienced some difficulties to work in that adverse environment. Air return roadway temperature was always 40 to 41oC in 1101 Longwall face during production period, faces temperature 46o

  8. Process for opening up carboniferous seams for underground gasification by drilling production holes downwards

    Energy Technology Data Exchange (ETDEWEB)

    Lokschin, J L; Volk, A F; Starinskii, A A

    1977-12-01

    This process will reduce drilling costs and times by 20 to 25% and will improve gasification under the influence of a thin liquid medium connecting adjacent holes. After determining the approximate depth and thickness of the seam to be opened up, e.g. by geological means, production holes of 100 to 400 mm (diameter) are made down to a depth of 400 m or more, by well-known boring bars and chisels. After passing the top of the seam (the roof of the seam), which can be recognised by discoloration of the drilling liquid, one goes 1/2 to 1 metre deeper and one determines the depth of the roof the seam exactly by the reduced natural radioactivity at the boundary layer, by introducing a gamma sensor on to the boring bar. The production holes are taken down in a second borehold to a free space 0.6 to 2 metres above the floor of the seam (bottom of the seam), according to the thickness of the seam. After replacing the boring bar by a feedpipe one continues to drill using a boring bar of smaller cutting diameter inside this tube. This hole reaches from the foot of the pipe of the feedpipe to the floor of the seam. It is preferably flushed with gas but may be flushed with liquid. A thin liquid introduced into this hole penetrates the surrounding mass of the seam horizontally (unhindered by any armouring) and represents the required connection to neighbouring bores for gasification. The process is suitable for mining coal, combustible shale oil, bituminous rock, heavy natural oil where this process is based on gasification, melting or dissolving of those deposits.

  9. A Coal Burst Mitigation Strategy for Tailgate during Deep Mining of Inclined Longwall Top Coal Caving Panels at Huafeng Coal Mine

    Directory of Open Access Journals (Sweden)

    Guorui Feng

    2018-01-01

    Full Text Available A coal burst mitigation strategy for tailgate in mining of deep inclined longwall panels with top coal caving at Huafeng Coal Mine is presented in this paper. Field data showed that coal bursts, rib sloughing or slabbing, large convergence, and so forth frequently occurred within the tailgate entries during development and panel retreating employing standard longwall top coal caving (LTCC layout which resulted in fatal injuries and tremendous profit loss. The contributing factors leading to coal bursts were analyzed. Laboratory tests, in situ measurement, and field observation demonstrate that the intrinsic bursting proneness of the coal seam and immediate roof stratum, deep cover, overlying ultrathick (500–800 m conglomerate strata, faults, and, most importantly, improper panel layout led to coal bursts. By employing a new strategy, that is, longwall mining with split-level gateroads (LMSG, gateroads on either end of a LMSG panel are located at different levels within a coal seam, adjacent LMSG panels overlap end to end, and the tailgate of the adjacent new LMSG panel can be located below the headgate entry of the previous LMSG panel or may be offset horizontally with respect to it. Numerical modeling was carried out to investigate the stress distribution and yield zone development within surrounding rock mass which was validated by field investigation. The results indicate that standard LTCC system gave rise to high ground pressure around tailgate entries next to the gob, while LMSG tailgate entry below the gob edge was in a destressed environment. Therefore, coal bursts are significantly mitigated. Field practice of LMSG at Huafeng Coal Mine demonstrates how the new strategy effectively dealt with coal burst problems in mining of deep inclined longwall panels with a reduced incidence of ground control problems. The new strategy can potentially be applied in similar settings.

  10. Characterization and evaluation of washability of Alaskan coals: Fifty selected seams from various coal fields: Final technical report, September 30, 1976-February 28, 1986. [50 coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.D.

    1986-09-01

    This final report is the result of a study initiated in 1976 to obtain washability data for Alaskan coals, to supplement the efforts of the US Department of Energy in their ongoing studies on washability of US coals. Washability characteristics were determined for fifty coal samples from the Northern Alaska, Chicago Creek, Unalakleet, Nenana, Matanuska, Beluga, Yentna and Herendeen Bay coal fields. The raw coal was crushed to 1-1/2 inches, 3/8 inch, 14 mesh and 65 mesh top sizes, and float-sink separations were made at 1.30, 1.40 and 1.60 specific gravities. A limited number of samples were also crushed to 200 and 325 mesh sizes prior to float-sink testing. Samples crushed to 65 mesh top size were also separated at 1.60 specific gravity and the float and sink products were characterized for proximate and ultimate analyses, ash composition and ash fusibility. 72 refs., 79 figs., 57 tabs.

  11. Exploring the determinants of health and wellbeing in communities living in proximity to coal seam gas developments in regional Queensland.

    Science.gov (United States)

    Mactaggart, Fiona; McDermott, Liane; Tynan, Anna; Gericke, Christian A

    2017-08-03

    There is some concern that coal seam gas mining may affect health and wellbeing through changes in social determinants such as living and working conditions, local economy and the environment. The onward impact of these conditions on health and wellbeing is often not monitored to the same degree as direct environmental health impacts in the mining context, but merits attention. This study reports on the findings from a recurrent theme that emerged from analysis of the qualitative component of a comprehensive Health Needs Assessment (HNA) conducted in regional Queensland: that health and wellbeing of communities was reportedly affected by nearby coal seam gas (CSG) development beyond direct environmental impacts. Qualitative analysis was initially completed using the Framework Method to explore key themes from 11 focus group discussions, 19 in-depth interviews, and 45 key informant interviews with health and wellbeing service providers and community members. A key theme emerged from the analysis that forms the basis of this paper. This study is part of a larger comprehensive HNA involving qualitative and quantitative data collection to explore the health and wellbeing needs of three communities living in proximity to CSG development in regional Queensland, Australia. Communities faced social, economic and environmental impacts from the rapid growth of CSG development, which were perceived to have direct and indirect effects on individual lifestyle factors such as alcohol and drug abuse, family relationships, social capital and mental health; and community-level factors including social connectedness, civic engagement and trust. Outer regional communities discussed the effects of mining activity on the fabric of their town and community, whereas the inner regional community that had a longer history of industrial activity discussed the impacts on families and individual health and wellbeing. The findings from this study may inform future health service planning in

  12. Interplay of salt dynamics, sea-level change and climate on the depositional evolution of a Paleogene economic coal bearing salt rim syncline, Schoeningen, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Osman, A.; Pollok, L.; Brandes, C.; Winsemann, J. [Leibniz Univ. Hannover (Germany). Inst. fuer Geologie

    2013-08-01

    The Paleogene basin fill (maximum 300 m thick) of the Schoeningen rim syncline in northern Germany is well known for its economic lignitic coal deposits. The fill provides an example of the interaction of basin subsidence, sea-level, and climate changes on depositional environment and gives insight into the development of the coal seams within a sequence stratigraphic context. The rim syncline records thirteen Lower to Middle Eocene coal seams with intervening clastic layers that were deposited during a long-lived transgression of the Central German Estuary, which lasted until the Late Oligocene (Standke, 2008). The previous analysis of the rim syncline fill has primarily focused on coal deposits, their lateral extent and paleo-botanical habitat. In this work, 357 lithologic logs were calibrated to outcrop profiles and integrated with previous studies to provide a facies analysis and sequence stratigraphy interpretation of the syncline fill. This improves understanding of the depositional environments of the lesser-studied clastics that intervene the coals (Osman et al., in review). Four 3{sup rd} order sequences are recorded in the Lower to Middle Eocene basin fill. Sequences 1 and 2 document the interplay of sands and coals within a transgressive estuarine phase. The sands show a regime change from tide- to more wave-dominated estuarine conditions before a turnaround to a regressive deltaic phase. This succession typifies an incised valley fill. However, the accommodation space generated for the initial estuary development is thought to have originated via continual salt withdrawal (Brandes et al. 2012) instead of by incision during relative sea-level fall. The observed tide to wave estuary regime change is linked to increased subsidence rates at 57 Ma that generated a higher tidal prism. As the subsidence rates slowed and the syncline broadened, the tidal prism decreased, leading to the development of more wave-dominated facies. The intervening coal seams

  13. The genesis and isotopic composition of carbonates associated with some Permian Australian coals

    International Nuclear Information System (INIS)

    Gould, K.W.; Smith, J.W.

    1979-01-01

    Siderite and calcite are the two forms of carbonate commonly associated with Permian Australian coals. The former occurs as disseminated spherulites and is a product of the early post-depositional environment. Isotopic measurements show that the CO 2 fixed as siderite did not result from the direct oxidation of photosynthetically derived materials, but rather from the anaerobic fermentation of these. The higher concentrations of calcite are generally found towards the roofs of coal seams and are characterized by isotopic enrichments to delta 13 C values of +25% PDB. Isotopic exchange between CO 2 and CH 4 within the coal seam is postulated as the mechanism which leads to the formation of isotopically heavy CO 2 . At sites along the seam margins where the CO 2 escapes, interaction with circulating metal ions or preexisting calcite results in the deposition of ''heavy'' calcite. With increasing alteration of coal by thermal metamorphism, the 13 C content of calcites and finally siderites decreases so that it more nearly approaches that of the associated coal. (Auth.)

  14. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas

    Science.gov (United States)

    Xu, Gang; Hao, Meng; Jin, Hongwei

    2018-02-01

    Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.

  15. Mining a coal seam with caving in a protective pillar of a mine shaft. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Szymura, G; Dilling, R; Kowalski, A

    1984-01-01

    Mining the 620 seam is evaluated (from 1.5 to 1.7 m thick at a depth of 468 m in the protective pillar of the upcast mine shaft used for ventilation, manriding and transport of materials in the Pstrowski mine in Upper Silesia). The shaft is 496 m deep, has a diameter of 3.5 m and its liners are made of bricks. Ground subsidence caused by underground mining influenced: the head frame above the shaft, residential buildings, a church, railway tracks and a river bed. A system of shortwall mining with caving was used. Deformation of shaft liners was reduced by advanced cutting of a coal block 30x30 m around the shaft. A system of timber cribbings and yielding elements was used. Design of support systems used around the shaft is shown in 3 schemes. Shaft deformation was within permissible limits. The maximum ground subsidence (0.95 m) occurred in the river area. Ground subsidence in the area of the church ranged from 0.75 to 0.81 m and in the head frame area 0.84 m. Accuracy of ground subsidence and shaft deformation forecasting was high. 4 references.

  16. Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments

    Institute of Scientific and Technical Information of China (English)

    Yihui Pang; Guofa Wang; Ziwei Ding

    2014-01-01

    In order to study the mechanism of confined water inrush from coal seam floor, the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiments, theoretical analysis and mechanical model calculation. The crack extension rule and the ultimate destruction form of the rock specimens were obtained. The mechanism of water inrush was explained reasonably from mechanical point of view. The practical criterion of water inrush was put forward. The results show that the rock permeability ‘‘mutation’’ phe-nomenon reflects the differences of stress state and cracks extension rate when the rock internal crack begins to extend in large-scale. The rock ultimate destruction form is related to the rock lithology and the angle between crack and principal stress. The necessary condition of floor water inrush is that the mining pressure leads to the extension and transfixion of the crack. The sufficient condition of floor water inrush is that the confined water’s expansionary stress in normal direction and shear stress in tangential direction must be larger than the internal stress in the crack. With the two conditions satisfied at the same time, the floor water inrush accident will occur.

  17. Prior infusion of water into the seam and its effects in the behavior of methane

    Energy Technology Data Exchange (ETDEWEB)

    Degueldre, G

    1975-01-01

    Infusion of the seam is carried out in advance of the face to control dust but it has been found that it also reduces the rate of desorption of methane. Since the methane is retained in the coal, less is present in the mine air. Guidelines for the infusion process are given, and experience in using it is described. The effect on the water content of the coal and on the dust is described.

  18. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    Science.gov (United States)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  19. Report on the FY 1989 potential survey of overseas coal development. Coal fields in Indonesia; 1989 nendo kaigaitan kaihatsu kanosei chosa hokokusho. Indonesia kyowakoku kaku tanden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    This survey is aimed at acquiring the basic data required for judging a possibility of development/import of steam coal in Indonesia (west of Java, north of Sumatra and west of Sumatra). Areas for survey are Meulaboh coal field in north Sumatra, Ombilin III area in West Sumatra, and Bayah coal field in West Java. The survey includes the field survey to grasp the situation of coal seam existence, coal quality, coal amount, etc. and activities for collecting the related data and information from the organizations concerned. The Meulaboh coal field has a technical possibility of open pit mining of medium scale. However, the heating value is extremely low, around 4,300 kcal/kg. Judging from this coal quality, there is no possibility of exporting it. It can be said that Ombilin coal is the world's top class steam coal. Accordingly, the demand can be expected both in export use and domestic use. As to Bayah coal, Bemmelen (1949) concluded that the coal was extremely excellent in quality, but had great disadvantages such as thin coal seam, discontinuity, and complicated geological structure. To date, the conclusion has been unchanged. (NEDO)

  20. Detection and delineation of coal mine fire in Jharia coal field (JCF ...

    Indian Academy of Sciences (India)

    71

    Africa, Indonesia, Poland (Zhang et al. 2005; Kuenzer et al. .... is about 8 Km in west direction from Dhanbad Rrailway station. The location of the ...... International conference on Spontaneous coal seam fires: Mitigating a global. 543 disaster at ...

  1. Stress analysis of longwall top coal caving

    Energy Technology Data Exchange (ETDEWEB)

    Alehossein, H.; Poulsen, B.A. [CSIRO Exploration & Mining, Brisbane, Qld. (Australia)

    2010-01-15

    Longwall top coal caving (LTCC) is a relatively new method of mining thick coal seams that is currently achieving high productivity and efficiency. The technique is similar to traditional longwall mining in that a cutting head slices coal from the lower section of the coal seam onto a conveyor belt installed in front of the hydraulic support near the cutting face. In modern LTCC an additional rear conveyor belt is located behind the support, to which the flow of the caved coal from the upper part of the seam can be controlled by a moveable flipper attached to the canopy of the support. The mining method relies on the fracturing of the top coal by the front abutment pressure to achieve satisfactory caving into the rear conveyor. This paper develops a yield and caveability criterion based on in situ conditions in the top coal in advance of the mining face (yield) and behind the supports (caveability). Yielding and caving effects are combined into one single number called caving number (CN), which is the multiplication result of caving factor (CF) and yield factor (YF). Analytical derivations are based on in situ stress conditions, Mohr-Coulomb and/or Hoek-Brown rock failure criteria and an on-associated elastoplastic strain softening material behaviour. The yield and caveability criteria are in agreement with results from both numerical studies and mine data. The caving number is normalised to mining conditions of a reference Chinese mine (LMX mine) and is used to assess LTCC performance at fourteen other Chinese working longwalls that have had varying success with the LTCC technology. As a predictive model, results of this analytical/numerical study are useful to assess the potential success of caving in new LTCC operations and in different mining conditions.

  2. Theoretical basis for transfer of laboratory test results of grain size distribution of coal to real object

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Chodura, J [Politechnika Sladska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1989-01-01

    Evaluates a method for forecasting size distribution of black coal mined by shearer loaders in one coal seam. Laboratory tests for determining coal comminution during cutting and haulage along the face are analyzed. Methods for forecasting grain size distribution of coal under operational conditions using formulae developed on the basis of laboratory tests are discussed. Recommendations for design of a test stand and test conditions are discussed. A laboratory stand should accurately model operational conditions of coal cutting, especially dimensions of the individual elements of the shearer loader, geometry of the cutting drum and cutting tools, and strength characteristics of the coal seam. 9 refs.

  3. Seismic wave propagation in granular media

    Science.gov (United States)

    Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion

    2016-10-01

    Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in

  4. Characterisation of South African coals using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Hart, R.J.

    1985-01-01

    This report includes the establishment of the major minor and trace element compositions of South African coals with the aim of characterising the different coal seams within a basin, defining regions of similar compositions and obtaining an overall view of the geochemistry of coals in this country. The results of 40 coal samples analysed by neutron activation analysis

  5. Investigation of trace elements in coal

    International Nuclear Information System (INIS)

    Gluskoter, H.J.; Cahil, R.A.; Miller, W.G.; Ruch, R.R.; Shimp, N.F.

    1976-01-01

    A variety of coal samples is currently being extensively analyzed for constituents, including many trace elements, at the Illinois State Geological Survey. The samples include whole coals, washed coals, and bench samples. Among the many determinations made on each sample are analyses for approximately 60 elements, almost twice the number of elements previously determined. The increase is in part the result of the addition of instrumental neutron activation analysis (INAA) equipment to the laboratory. Twenty-five samples of Herrin (No. 6) Coal that had been analyzed previously were subjected to INAA analysis and were found to include Ba, Ce, Cs, Dy, Eu, Au, Hf, I, In, La, Lu, Rb, Sm, Sc, Ag, Sr, Ta, Tb, Th, W, U, and Yb, none of which were reported by previous techniques. These elements generally are present in very small amounts and, with the exception of barium, exhibit no wide range in concentration. The rare earth elements are among those having the narrowest ranges. Wide variations in element content have been observed in bench sets of coals (samples of vertical segments of the coal seam). Many elements, notably germanium, are concentrated at the top and/or bottom of the seam, the high concentrations of Ge being found there in all four bench sets analyzed to date

  6. Influence of apparent wave velocity on seismic performance of a super-long-span triple-tower suspension bridge

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2015-06-01

    Full Text Available As one of the main characteristics of seismic waves, apparent wave velocity has great influence on seismic responses of long-span suspension bridges. Understanding these influences is important for seismic design. In this article, the critical issues concerning the traveling wave effect analysis are first reviewed. Taizhou Bridge, the longest triple-tower suspension bridge in the world, is then taken as an example for this investigation. A three-dimensional finite element model of the bridge is established in ABAQUS, and the LANCZOS eigenvalue solver is employed to calculate the structural dynamic characteristics. Traveling wave effect on seismic responses of these long-span triple-tower suspension bridges is investigated. Envelopes of seismic shear force and moment in the longitudinal direction along the three towers, relative displacements between the towers and the girder, and reaction forces at the bottoms of the three towers under different apparent wave velocities are calculated and presented in detail. The results show that the effect of apparent wave velocity on the seismic responses of triple-tower suspension bridge fluctuates when the velocity is lower than 2000 m/s, and the effects turn stable when the velocity becomes larger. In addition, the effects of traveling wave are closely related to spectral characteristics and propagation direction of the seismic wave, and seismic responses of components closer to the source are relatively larger. Therefore, reliable estimation of the seismic input and apparent wave velocity according to the characteristics of the bridge site are significant for accurate prediction of seismic responses. This study provides critical reference for seismic analysis and design of long-span triple-tower suspension bridges.

  7. Array processing for seismic surface waves

    Energy Technology Data Exchange (ETDEWEB)

    Marano, S.

    2013-07-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries.

  8. Array processing for seismic surface waves

    International Nuclear Information System (INIS)

    Marano, S.

    2013-01-01

    This dissertation submitted to the Swiss Federal Institute of Technology ETH in Zurich takes a look at the analysis of surface wave properties which allows geophysicists to gain insight into the structure of the subsoil, thus avoiding more expensive invasive techniques such as borehole drilling. This thesis aims at improving signal processing techniques for the analysis of surface waves in various directions. One main contribution of this work is the development of a method for the analysis of seismic surface waves. The method also deals with the simultaneous presence of multiple waves. Several computational approaches to minimize costs are presented and compared. Finally, numerical experiments that verify the effectiveness of the proposed cost function and resulting array geometry designs are presented. These lead to greatly improved estimation performance in comparison to arbitrary array geometries

  9. In situ analysis of coal from single electrode resistance, self-potential and gamma-ray logs

    International Nuclear Information System (INIS)

    Kayal, J.R.

    1981-01-01

    Single electrode resistance, self-potential and gamma-ray logging have been carried out in North Karanpura, West Bokaro and Jharia coalfields of Gondwana basin in Eastern India. Correlation of these geophysical logs is found to be very useful in locating the coal beds, determining their accurate depths and thickness and approximate quality. Coal seams have been detected as very high resistive formations compared to sandstone/shale which are interbedded in the coal basin. High or low self-potential values are obtained against the coal beds depending on the borehole fluid conditions. Burnt coals (Jhama) are characterised as highly conductive beds. Gamma ray logs have been effectively used alongwith electrical logs for correlation and identification of coal seams. Further analysis of gamma-ray log data determines a linear relationship with ash content of coal. (author)

  10. Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity

    International Nuclear Information System (INIS)

    Duvert, Clément; Raiber, Matthias; Owen, Daniel D.R.; Cendón, Dioni I.; Batiot-Guilhe, Christelle; Cox, Malcolm E.

    2015-01-01

    Highlights: • Major ions and isotopes used to study inter-aquifer mixing in a shallow CSG setting. • Considerable heterogeneity in the water composition of the coal-bearing aquifer. • Rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks. • Potential mixing between the coal-bearing aquifer and downstream alluvial aquifer. • Need to consider the seasonal influences on inter-aquifer mixing in CSG settings. - Abstract: In areas of potential coal seam gas (CSG) development, understanding interactions between coal-bearing strata and adjacent aquifers and streams is of highest importance, particularly where CSG formations occur at shallow depth. This study tests a combination of hydrochemical and isotopic tracers to investigate the transient nature of hydrochemical processes, inter-aquifer mixing and recharge in a catchment where the coal-bearing aquifer is in direct contact with the alluvial aquifer and surface drainage network. A strong connection was observed between the main stream and underlying alluvium, marked by a similar evolution from fresh Ca–Mg–HCO 3 waters in the headwaters towards brackish Ca–Na–Cl composition near the outlet of the catchment, driven by evaporation and transpiration. In the coal-bearing aquifer, by contrast, considerable site-to-site variations were observed, although waters generally had a Na–HCO 3 –Cl facies and high residual alkalinity values. Increased salinity was controlled by several coexisting processes, including transpiration by plants, mineral weathering and possibly degradation of coal organic matter. Longer residence times and relatively enriched carbon isotopic signatures of the downstream alluvial waters were suggestive of potential interactions with the shallow coal-bearing aquifer. The examination of temporal variations in deuterium excess enabled detection of rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks, particularly at the catchment

  11. Sequence stratigraphic analysis and the origins of Tertiary brown coal lithotypes, Latrobe Valley, Gippsland Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Holdgate, G R; Kershaw, A P; Sluiter, I R.K. [Monash University, Clayton, Vic. (Australia). Dept. of Earth Sciences

    1995-11-01

    Sequence analysis methods have been applied to the onshore Gippsland Basin and to the Latrobe Valley Group coal measures. In the east of the Latrobe Valley evidence for marine transgressions into the coal measures are recorded in most of the interseam sediment splits by the presence of contained foraminifer and dinoflagellates. To the west these splits pinch out into continuous coal. However, they can be followed westwards as enhanced organic sulphur levels along sharply defined boundaries between light coal lithotypes below and dark coal lithotypes above. The dark lithotype immediately overlying each of these boundaries contains the highest sulphur value and warmer climate pollen assemblages. Colorimeter and lithotype logging supports an upwards lightening cyclicity to coal colour at 12-20 m intervals through the approx. 100 m thick seams, with cycle boundaries defined at sharp planar to undulating surfaces. The lightening upward lithotype cycles together with their unique boundary conditions are interpreted as parasequences and parasequence boundaries respectively. Each major coal seam can comprise up to five parasequences and is interpreted to represent deposition during an outbuilding high stand systems tract at one of several maximum periods of Tertiary coastal onlap. Stratigraphic correlation of the sequence boundaries identified in the coal measures to the internationally dated marine Seaspray Group, provides a basis for chronostratigraphic correlation of the coal successions to the coastal onlap charts of Haq et al (1989). It appears that each major seam is confined to high standards of third order eustatic cycles. It follows that the lithotype cycles that comprise each seam are related to fourth order eustatic cycles. 49 refs., 11 figs., 1 tab.

  12. The influence of the mining operation on the mine seismicity of Vorkuta coal deposit

    Science.gov (United States)

    Zmushko, T.; Turuntaev, S. B.; Kulikov, V. I.

    2012-04-01

    The mine seismicity of Vorkuta coal deposit was analyzed. Seismic network consisting of 24 seismic sensors (accelerometers) cover the area of "Komsomolskaya" and "North" mines of Vorkuta deposit. Also there is seismic station of IDG RAS with three-component seismometer near this mines for better defining energy of the seismic events. The catalogs of seismic events contain 9000 and 7000 events with maximum magnitude M=2.3 for "Komsomolskaya" and "North" mines respectively and include the period from 01.09.2008 to 01.09.2011. The b-value of the magnitude-frequency relation was -1.0 and -1.15 respectively for the mines, meanwhile b-value for the nature seismicity was -0,9. It was found, that the number of seismic events per hour during mine combine operation is higher in 2.5 times than the number of seismic events during the break in the operation. Also, the total energy of the events per hour during the operation is higher in 3-5 times than during the break. The study showed, that the number and the energy of the seismic events relate with the hours of mine combine operation. The spatial distribution of the seismic events showed, that 80% of all events and 85% of strong events (M>1.6) were located in and near the longwall under development during the mine combine operations as well asduring the breaks. The isoclines of seismic event numbers proved that the direction of motion of the boundary of seismic events extension coincides with the direction of development, the maximum number of events for any period lies within the wall under operation. The rockburst with M=2.3 occurring at the North mine at July 16, 2011 was considered. The dependences of the energy and of the number of events with different magnitudes on the time showed that the number of events with M=1 and especially M=0.5 before the rockburst decreased, which corresponds to the prognostic seismic quietness, described in the research works. The spatial distribution of the events for the 6 month before the

  13. A Case Study of Damage Energy Analysis and an Early Warning by Microseismic Monitoring for Large Area Roof Caving in Shallow Depth Seams

    Directory of Open Access Journals (Sweden)

    Like Wei

    2015-01-01

    Full Text Available Shallow depth coal seams are widely spread in Shendong mining area, which is located in the Northwestern region of China. When working face is advanced out of concentrated coal pillar in upper room and pillar goaf, strong strata behaviors often cause support crushing accidents, and potentially induce large area residual pillars instability and even wind blast disaster. In order to predict the precise time when the accident happens, guaranteeing life-safety of miner, microseismic monitoring system was for the first time applied in shallow coal seam. Based on damage mechanics correlation theory, the damage energy model is established to describe relationship between damage level and cumulative energy of microseismic events. According to microseismic monitoring data of two support crushing accidents, the damage energy model is verified and an effective early warning method of these accidents is proposed. The field application showed that the early warning method had avoided miners suffering from all support crushing accidents in Shigetai coal mine.

  14. Shear wave velocity versus quality factor: results from seismic noise recordings

    Science.gov (United States)

    Boxberger, Tobias; Pilz, Marco; Parolai, Stefano

    2017-08-01

    The assessment of the shear wave velocity (vs) and shear wave quality factor (Qs) for the shallow structure below a site is necessary to characterize its site response. In the past, methods based on the analysis of seismic noise have been shown to be very efficient for providing a sufficiently accurate estimation of the vs versus depth at reasonable costs for engineering seismology purposes. In addition, a slight modification of the same method has proved to be able to provide realistic Qs versus depth estimates. In this study, data sets of seismic noise recorded by microarrays of seismic stations in different geological environments of Europe and Central Asia are used to calculate both vs and Qs versus depth profiles. Analogous to the generally adopted approach in seismic hazard assessment for mapping the average shear wave velocity in the uppermost 30 m (vs30) as a proxy of the site response, this approach was also applied to the quality factor within the uppermost 30 m (Qs30). A slightly inverse correlation between both parameters is found based on a methodological consistent determination for different sites. Consequently, a combined assessment of vs and Qs by seismic noise analysis has the potential to provide a more comprehensive description of the geological structure below a site.

  15. Test and evaluate the tri-gas low-Btu coal-gasification process. Final report, October 21, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M.G.

    1980-12-01

    This report describes the continuation of work done to develop the BCR TRI-GAS multiple fluidized-bed gasification process. The objective is the gasification of all ranks of coals with the only product being a clean, low-Btu fuel gas. Design and construction of a 100 lb/h process and equipment development unit (PEDU) was completed on the previous contract. The process consists of three fluid-bed reactors in series, each having a specific function: Stage 1 - pretreatment; Stage 2- - gasification; Stage 3 - maximization of carbon utilization. Under the present contract, 59 PEDU tests have been conducted. A number of these were single-stage tests, mostly in Stage 1; however, integrated PEDU tests were conducted with a western coal (Rosebud) and two eastern coals (Illinois No. 6 and Pittsburgh seam). Both Rosebud and Pittsburgh seam coals were gasified with the PEDU operating in the design mode. Operation with Illinois No. 6 seam coal was also very promising; however, time limitations precluded further testing with this coal. One of the crucial tasks was to operate the Stage 1 reactor to pretreat and devolatilize caking coals. By adding a small amount of air to the fluidizing gas, the caking properties of the coal can be eliminated. However, it was also desirable to release a high percentage of the volatile matter from the coal in this vessel. To accomplish this, the reactor had to be operated above the agglomerating temperature of caking coals. By maintaining a low ratio of fresh to treated coal, this objective was achieved. Both Illinois No. 6 and Pittsburgh seam coals were treated at temperatures of 800 to 900 F without agglomerating in the vessel.

  16. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    Science.gov (United States)

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Study on the change law of soil in subsidence area of horizontal coal seam

    Science.gov (United States)

    Li, Pengfeng; Wang, Shugang; Liu, Wei

    2017-11-01

    In order to provide theoretical basis for land reclamation in subsidence area, the mining subsidence area is divided into three areas: zone I (stretching zone), zone II (compression zone) and zone III (neutral zone). On this basis, the change characteristics of the soil in the three areas of the horizontal coal seam mining subsidence area are studied. The results show that: due to stretching, soil of zone I cracks was developed, the soil continuity damage, poor integrity, serious leakage of soil Water Leakage fertilizer, the area shows the soil water holding capacity decreased, the decline of soil fertility, soil coarsening and barren trend. The soil mass in zone II is compressed and the soil structure is relatively complete, but the soil bulk density increases correspondingly, while the soil porosity decreases gradually and the permeability decreases. The main soil layer in the zone III is vertical deformation, and the soil integrity is better. But the influence of mined out area leads to the movement of water and nutrients to the lower part of the soil. This paper suggests that in the land reclamation process should adopt corresponding reclamation method based on the variation law of the three soil area of reclamation area of mining subsidence, for improving soil physicochemical properties, so as to achieve the purpose of effective reclamation.

  18. Field test investigation of high sensitivity fiber optic seismic geophone

    Science.gov (United States)

    Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu

    2017-10-01

    Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.

  19. Effect of microwave irradiation on petrophysical characterization of coals

    International Nuclear Information System (INIS)

    Hong, Yi-du; Lin, Bai-quan; Zhu, Chuan-jie; Li, He

    2016-01-01

    Highlights: • Microwave energy increase porosity, pore size and numbers of coals. • Growth rates of porosity decreased at first then increased with microwave energy. • NMR can be reliable to measure coal samples. • Microwave energy may have the potential for degassing of coal seams. - Abstract: The experimental work described in this paper aims to study the effect of microwave irradiation on petrophysical characterization of coals. Twenty coal samples were irradiated at 2.45 GHz with variable power (2, 4, 6 kW). The temperature, mass and specific heat capacity of coal samples were measured and calculated. The effect of microwave irradiation on the porosity of coal samples was evaluated by the gravimetric method and nuclear magnetic resonance (NMR) measurements. The porosity obviously increases after microwave heating. Interestingly, growth rate of the porosity decreases at first then increases with microwave energy. The turning point is approximately 100 kJ. The influence of microwave irradiation on pore size, throat size and pore numbers of coal samples were also evaluated by NMR measurements. It suggest that the pore size, throat size and pore numbers are obviously increase with microwave energy. In a word, it appears likely that microwave energy may have the potential for the degassing coal seams.

  20. FY 1999 report on the survey of the overseas geological structure, etc. Japan-Indonesia joint Tanjung Enim coal exploration project; 1999 nendo kaigai chishitsu kozo nado chosa hokokusho. Nippon Indonesia sekitan kyodo tansa Tanjung Enim project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper summed up the FY 1999 results of the survey conducted based on the agreement on the Tanjung Enim IV coal exploration project which was concluded between NEDO and Indonesia's Ministry of Mining Energy. The survey was made for an area of approximately 40km{sup 2} which is a north block of the south Arahan region, Tanjung Enim, South Sumatra, Indonesia. To grasp the succession of strata/rock facies/geological structure and the state of existence of the coal seams to be drilled, surveys were conducted on ground surface and boreholes. A total of 10 holes was test-drilled, and all the boreholes were physically logged. As a result of the survey, each of A1, A2, B, C and E coal seams was confirmed as main seams. A1, A2 and B seams are low in ash and sulfur contents with heating values of approximately 4,800 kcal/kg, C seam is high in sulfur content, and E seam is high in heating value, 6,000 kcal/kg. As coal seams for open pit mining, existence of A, B and C seams is expected which lay in the shallow part from ground surface to sea level of 0m and in the range of depth of approximately 100m. The proved coal reserves of these coals were estimated at 189 million tons. (NEDO)

  1. MIGRATION OF SEISMIC AND VOLCANIC ACTIVITY AS DISPLAY OF WAVE GEODYNAMIC PROCESS

    Directory of Open Access Journals (Sweden)

    Alexander V. Vikulin

    2012-01-01

    Full Text Available Publications about the earthquake foci migration have been reviewed. An important result of such studies is establishment of wave nature of seismic activity migration that is manifested by two types of rotational waves; such waves are responsible for interaction between earthquakes foci and propagate with different velocities. Waves determining long-range interaction of earthquake foci are classified as Type 1; their limiting velocities range from 1 to 10 cm/s. Waves determining short-range interaction of foreshocks and aftershocks of individual earthquakes are classified as Type 2; their velocities range from 1 to 10 km/s. According to the classification described in [Bykov, 2005], these two types of migration waves correspond to slow and fast tectonic waves. The most complete data on earthquakes (for a period over 4.1 million of years and volcanic eruptions (for 12 thousand years of the planet are consolidated in a unified systematic format and analyzed by methods developed by the authors. For the Pacific margin, Alpine-Himalayan belt and the Mid-Atlantic Ridge, which are the three most active zones of the Earth, new patterns of spatial and temporal distribution of seismic and volcanic activity are revealed; they correspond to Type 1 of rotational waves. The wave nature of the migration of seismic and volcanic activity is confirmed. A new approach to solving problems of geodynamics is proposed with application of the data on migration of seismic and volcanic activity, which are consolidated in this study, in combination with data on velocities of movement of tectonic plate boundaries. This approach is based on the concept of integration of seismic, volcanic and tectonic processes that develop in the block geomedium and interact with each other through rotating waves with a symmetric stress tensor. The data obtained in this study give grounds to suggest that a geodynamic value, that is mechanically analogous to an impulse

  2. Java Persistence Dengan JBoss Seam

    OpenAIRE

    Utomo, Wiranto Herry; Istiyanto, Jazi Eko

    2009-01-01

    Seam is based on Java EE, so it satisfies its framework duties in two fundamental ways: 1) Seam  simplifies Java EE: Seam provides a number of  shortcuts and  simplifications  to  the standard  Java EE  framework, making  it  even  easier  to  effectively  use  Java EE web  and business components, 2) Seam extends Java EE: Seam integrates a number of new concepts and tools into the Java EE framework. These extensions b...

  3. Methods for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  4. Finite-Frequency Seismic Tomography of Body Waves and Surface Waves from Ambient Seismic Noise: Crustal and Mantle Structure Beneath Eastern Eurasia

    National Research Council Canada - National Science Library

    Ren, Yong; Zhang, Wei; Yang, Ting; Shen, Yang; Yang, Xiaoping

    2008-01-01

    To improve seismic calibration for nuclear explosion monitoring, we use 3D sensitivity kernels of finite-frequency body and surface waves to develop models of the crustal and mantle structures beneath eastern Eurasia...

  5. SeismoDome: Sonic and visual representation of earthquakes and seismic waves in the planetarium

    Science.gov (United States)

    Holtzman, B. K.; Candler, J.; Repetto, D.; Pratt, M. J.; Paté, A.; Turk, M.; Gualtieri, L.; Peter, D. B.; Trakinski, V.; Ebel, D. S. S.; Gossmann, J.; Lem, N.

    2017-12-01

    Since 2014, we have produced four "Seismodome" public programs in the Hayden Planetarium at the American Museum of Natural History in New York City. To teach the general public about the dynamics of the Earth, we use a range of seismic data (seismicity catalogs, surface and body wave fields, ambient noise, free oscillations) to generate movies and sounds conveying aspects of the physics of earthquakes and seismic waves. The narrative aims to stretch people's sense of time and scale, starting with 2 billion years of convection, then zooming in seismicity over days to twenty years at different length scales, to hours of global seismic wave propagation, all compressed to minute long movies. To optimize the experience in the planetarium, the 180-degree fisheye screen corresponds directly to the surface of the Earth, such that the audience is inside the planet. The program consists of three main elements (1) Using sonified and animated seismicity catalogs, comparison of several years of earthquakes on different plate boundaries conveys the dramatic differences in their dynamics and the nature of great and "normal" earthquakes. (2) Animations of USArray data (based on "Ground Motion Visualizations" methods from IRIS but in 3D, with added sound) convey the basic observations of seismic wave fields, with which we raise questions about what they tell us about earthquake physics and the Earth's interior structure. (3) Movies of spectral element simulations of global seismic wave fields synchronized with sonified natural data push these questions further, especially when viewed from the interior of the planet. Other elements include (4) sounds of the global ambient noise field coupled to movies of mean ocean wave height (related to the noise source) and (5) three months of free oscillations / normal modes ringing after the Tohoku earthquake. We use and develop a wide range of sonification and animation methods, written mostly in python. Flat-screen versions of these movies

  6. Dating of authigenic clays related to igneous intrusions in Hunter Valley Coals

    International Nuclear Information System (INIS)

    Zwingmann, H.

    2000-01-01

    The Sydney Basin is composed mainly of Permian and Triassic marine and non-marine clastic sedimentary strata together with economically significant coal deposits and volumetrically minor igneous rocks. Many of these igneous rocks are also economically significant not only for their use in the construction industry but also for their deleterious effects on coal mining, particularly in underground mines utilising longwall extraction systems. Igneous activity in the Sydney Basin ranges from Early Permian to Tertiary in age and although episodic in nature, activity was unlikely to have ceased for periods of more than approximately 10 million years (Carr and Facer 1980; Embleton et al. 1982). Dating of the time of emplacement of igneous rocks using the K-Ar isotopic system is a relatively straightforward procedure if suitable analytical facilities and samples of appropriate, fresh, primary minerals are available. In the case of intrusions in coal seams, however, the occurrence of fresh, primary minerals is very rare due to widespread alteration produced by interaction between the igneous rock and fluids in the coal seam. This interaction produces a variety of secondary minerals with most primary minerals and glass being altered to clays (mainly kaolinite) and carbonates. Consequently, relatively few isotopic dates for intrusions into coal seams have been determined. A detailed study of several hundred samples of igneous rocks from the Sydney Basin found only six samples of intrusions into coal seams that were suitable for conventional K-Ar dating (Carr and Facer 1980). Techniques for K-Ar dating of authigenic illite, developed in response to the need by the petroleum industry to understand the timing of diagenesis in petroleum source-rocks and reservoirs, are now well established (Clauer and Chaudhuri 1995). As part of a larger project on the impact of igneous intrusions on coal mining and the alienation of coal reserves, a preliminary investigation of the timing of

  7. Mineralogic and element association of coals from the Gevra mine, Korba coal field, Madhya Pradesh, India

    International Nuclear Information System (INIS)

    Hart, B.R.; Powell, M.A.; Fyfe, W.S.; Sahu, K.C.; Tripathy, S.

    1991-01-01

    As a part of a project to study the content and distribution of trace elements in coals and coal by-products from coal mining areas of India, the mineral and elemental composition of the whole coal and concentration of the selective elements in the whole coal mined from the Gevra mine of the Korba coal field in Madhya Pradesh are studied. The vertical trend of the selected elements are defined and possible relationships of these elements to the minerals present in or associated with the above coal are examined. The Gevra Coals have ash contact ( 3 times world average) and low sulphur content (1/4 of world average). Most elements are found to be positively correlated with ash indicating an inorganic association. Elements which show organic affinity include S, Cl, I and In. Fe, Cu, Zn and Pb occur in sulfide phases, the dominant Fe phase identified is siderite which also contain Mn and Mg. Th and U along with varying proportions of rare earths, Ce, Dy, La and Y have been identified with discrete phosphate minerals. Most trace elements have been found to be concentrated in the upper and lower portions of the coal seam exposed in Gevra mine and in partings. It is, therefore, suggested that selective mining and removal of high ash/inorganic material, particularly the upper and lower portion of the seam, will greatly reduce the mobilization of Al, As, Co, Fe, Hf, Sc, Si, Ti and to a lesser degree Cr, La, Mn, Th U and V during combustion of coal in power plants and consequently will reduce the influx of trace elements to the environment. (M.G.B.). 23 refs., 5 figs

  8. Exploring the determinants of health and wellbeing in communities living in proximity to coal seam gas developments in regional Queensland

    Directory of Open Access Journals (Sweden)

    Fiona Mactaggart

    2017-08-01

    Full Text Available Abstract Background There is some concern that coal seam gas mining may affect health and wellbeing through changes in social determinants such as living and working conditions, local economy and the environment. The onward impact of these conditions on health and wellbeing is often not monitored to the same degree as direct environmental health impacts in the mining context, but merits attention. This study reports on the findings from a recurrent theme that emerged from analysis of the qualitative component of a comprehensive Health Needs Assessment (HNA conducted in regional Queensland: that health and wellbeing of communities was reportedly affected by nearby coal seam gas (CSG development beyond direct environmental impacts. Methods Qualitative analysis was initially completed using the Framework Method to explore key themes from 11 focus group discussions, 19 in-depth interviews, and 45 key informant interviews with health and wellbeing service providers and community members. A key theme emerged from the analysis that forms the basis of this paper. This study is part of a larger comprehensive HNA involving qualitative and quantitative data collection to explore the health and wellbeing needs of three communities living in proximity to CSG development in regional Queensland, Australia. Results Communities faced social, economic and environmental impacts from the rapid growth of CSG development, which were perceived to have direct and indirect effects on individual lifestyle factors such as alcohol and drug abuse, family relationships, social capital and mental health; and community-level factors including social connectedness, civic engagement and trust. Conclusions Outer regional communities discussed the effects of mining activity on the fabric of their town and community, whereas the inner regional community that had a longer history of industrial activity discussed the impacts on families and individual health and wellbeing. The

  9. Portable rapid gas content measurement - an opportunity for a step change in the coal industry?

    International Nuclear Information System (INIS)

    Beamish, Basil; Kizil, Mehmet; Gu, Ming

    2013-01-01

    The last major advance in gas content measurement for coal seams was the introduction of the quick crush technique in the early 1990s. This is a laboratory test method that has proven very reliable over the years. Recent laboratory testing using a portable quick crushing device, known as the portable gas content analyser, has produced consistent gas content results for a set of core samples obtained from a single borehole that intersected four coal seams. The retained gas content values obtained for the seams show the same increasing gas content pattern and gas composition change with depth as the standard quick crush technique. Use of the portable gas content analyser provides the opportunity to produce rapid, reliable gas content measurement of coal that could be developed for assessing gas compliance cores and outburst-prone conditions at a mine site.

  10. In Situ Test Study of Characteristics of Coal Mining Dynamic Load

    Directory of Open Access Journals (Sweden)

    Jiang He

    2015-01-01

    Full Text Available Combination of coal mining dynamic load and high static stress can easily induce such dynamic disasters as rock burst, coal and gas outburst, roof fall, and water inrush. In order to obtain the characteristic parameters of mining dynamic load and dynamic mechanism of coal and rock, the stress wave theory is applied to derive the relation of mining dynamic load strain rate and stress wave parameters. The in situ test was applied to study the stress wave propagation law of coal mine dynamic load by using the SOS microseismic monitoring system. An evaluation method for mining dynamic load strain rate was proposed, and the statistical evaluation was carried out for the range of strain rate. The research results show that the loading strain rate of mining dynamic load is in direct proportion to the seismic frequency of coal-rock mass and particle peak vibration velocity and is in inverse proportion to wave velocity. The high-frequency component damps faster than the low-frequency component in the shockwave propagating process; and the peak particle vibration velocity has a power functional relationship with the transmitting distance. The loading strain rate of mining dynamic load is generally less than class 10−1/s.

  11. Models for seismic wave propagation in periodically layered porous media

    NARCIS (Netherlands)

    Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.

    2014-01-01

    Several models are discussed for seismic wave propagation in periodically layered poroelastic media where layers represent mesoscopic-scale heterogeneities that are larger than the pore and grain sizes but smaller than the wavelength. The layers behave according to Biot’s theory. Wave propagation

  12. Cuttability of coal

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1978-01-01

    The process of cutting dull M, dull bright MB, bright dull BM, and bright B coal under various compressive stress conditions was studied in laboratory tests. The efficiency of ploughs depends much more on the natural mining conditions than does that of shearer-loaders. For seams of medium workability, it is difficult to forecast whether ploughs will be successful. Cuttability tests are a good way of determining whether ploughs can be used. The effort necessary to cut coal in a stressed condition depends not only on such properties as the workability defined by the Protodyakonov index or compressive strength, but also, and mainly, on the petrographic structure and elastic properties of the coal. In bright coals with high elastic strain, and with BM and MB coals, a much greater increment of effort is necessary with increase in compressive stresses. The cuttability of dull coals from difficult mines was not very different.

  13. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  14. Assessment of seismic wave effects on soil-structure interaction

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-01-01

    One of the most common hypotheses made for soil-structure interaction analyses is that the earthquake input motion is identical at all points beneath the structure. Several papers have recently shown that this assumption may be overly conservative and that the effect of wave passage is extremely important. These studies typically employ a relatively simple model, namely, the basemat is represented by a rectangular rigid foundation resting on top of the soil and connected to the soil by a continuously distributed set of soil springs. The seismic input is applied at the base of the soil springs and is assumed to be traveling at a constant wave velocity across the site. It ispossible to improve on the soil/structure model by use of finite element methods; however, little is known about how to model the input seismic energy and typically a simple travelling wave is used. In this paper, the author examines the available data to determine: (i) the appropriate wave velocity to use, and (ii) if the currently availble analytic models are adequate. (Auth.)

  15. Use of natural gamma radiation in the coal mining industry

    International Nuclear Information System (INIS)

    Wykes, J.S.; Adsley, I.; Cooper, L.R.

    1982-01-01

    The technique of delineating coal seams by the use of natural gamma borehole logging sondes has been known for many years. The principle of the technique is that the gamma fluxes in shales are higher than in coals as the abundance of naturally occurring radionuclides is some twenty times greater in the former. This paper discusses other applications where the differeing natural gamma properties of coals and shales can be used. These are: (a) To distinguish between stone (shale) and run-of-mine coal on conveyor belts. A common situation underground is one in which stone from development headings and normal run-of-mine coal have to be batched along the same conveyor system. A natural gamma device capable of distinguishing between such batches of material, and thus allowing suitable mechanical separation, will be described. (b) To provide an accurate measurement of roof coal thickness by measuring the natural gamma flux penetrating the roof coal. To illustrate this examples will be given where this technique is used to provide automatic controlled steering of Long Wall Shearers and to provide manually assisted steering of In-seam Heading Machines

  16. Reconstruction of 3D Micro Pore Structure of Coal and Simulation of Its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Guang-zhe Deng

    2017-01-01

    Full Text Available This article takes the low permeability coal seam in the coalfield of South Judger Basin in Xinjiang, as a research object. The pore structure characteristics of coal rock mass in low permeability coal seam were analyzed quantitatively using scanning electron microscopy (SEM through the methods of statistics and digital image analysis. Based on the pore structure parameters and the distribution function of the coal rock mass, a three-dimensional porous cylinder model with different porosity was reconstructed by FLAC3D. The numerical simulation study of reconstructed pore model shows that (1 the porosity and the compressive strength have obvious nonlinear relation and satisfy the negative exponential relation; (2 the porosity significantly affects the stress distribution; with the increase of micro porosity, the stress distribution becomes nonuniform; (3 the compressive failures of different models are mainly shear failures, and the shape of fracture section is related to porosity; (4 the variation of seepage coefficient of the pore reconstruction model is consistent with the development of micro cracks. The micro mechanism of the deformation and failure of coal and the interaction of multiphase flow with porosity are revealed, which provides a theoretical reference for the clean development of the low permeability coal seam.

  17. The imprint of crustal density heterogeneities on regional seismic wave propagation

    NARCIS (Netherlands)

    Plonka, A.I.; Blom, N.A.; Fichtner, A.

    2016-01-01

    Density heterogeneities are the source of mass transport in the Earth. However, the 3-D density structure remains poorly constrained because travel times of seismic waves are only weakly sensitive to density. Inspired by recent developments in seismic waveform tomography, we investigate whether the

  18. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  19. Regional trend of coal metamorphism in the major Gondwana basins of India

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A K; Alam, M M; Bunerjee, B

    1983-04-01

    The coal-bearing Gondwana sedimentaries are of great economic importance as they possess over 98% of coal resources of India. Within the Gondwana supergroup coal-bearing formations are confined in the Lower Gondwana sequence (Damuda group). The development of coal seams in the different basins were genetically related to the evolutionary pattern of each basin. The imprint of such diverse tectono-geomorphic conditions prevailing over the vast Peninsular Shield, and their regional impact in individual basins are well preserved in the different lithofacies of this thick-pile of sedimentary sequence. In fact constituting coal facies served as a sensitive recorder of the past episode enacted for long geological time span in each basin of the Gondwana grabens. In the present paper an attempt is made to incorporate the salient features of the operative processes in the major Gondwana basins with special reference to coal metamorphism. This has been done considering mass of analytical and sub-surface data available from the physico-chemical survey of coal seams of major coalfields, and extensive drilling operations carried out over the vast virgin tracts of important coalfields.

  20. The application of a coupled artificial neural network and fault tree analysis model to predict coal and gas outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Ruilin, Zhang [School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454003, PR (China); Lowndes, Ian S. [Process and Environmental Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2010-11-01

    This paper proposes the use of a coupled fault tree analysis (FTA) and artificial neural network (ANN) model to improve the prediction of the potential risk of coal and gas outburst events during the underground mining of thick and deep Chinese coal seams. The model developed has been used to investigate the gas emission characteristics and the geological conditions that exist within the Huaibei coal mining region, Anhui province, China. The coal seams in this region exhibit a high incidence of coal and gas outbursts. An analysis of the results obtained from an initial application of an FTA model, identified eight dominant model parameters related to the gas content or geological conditions of the coal seams, which characterize the potential risk of in situ coal and gas outbursts. The eight dominant model parameters identified by the FTA method were subsequently used as input variables to an ANN model. The results produced by the ANN model were used to develop a qualitative risk index to characterize the potential risk level of occurrence of coal and gas outburst events. Four different potential risk alarm levels were defined: SAFE, POTENTIAL, HIGH and STRONG. Solutions to the prediction model were obtained using a combination of quantitative and qualitative data including the gas content or gas pressure and the geological and geotechnical conditions of coal seams. The application of this combined solution method identified more explicit and accurate model relationships between the in situ geological conditions and the potential risk of coal and gas outbursts. An analysis of the model solutions concluded that the coupled FTA and ANN model may offer a reliable alternative method to forecast the potential risk of coal and gas outbursts. (author)

  1. Statistical distributions of earthquakes and related non-linear features in seismic waves

    International Nuclear Information System (INIS)

    Apostol, B.-F.

    2006-01-01

    A few basic facts in the science of the earthquakes are briefly reviewed. An accumulation, or growth, model is put forward for the focal mechanisms and the critical focal zone of the earthquakes, which relates the earthquake average recurrence time to the released seismic energy. The temporal statistical distribution for average recurrence time is introduced for earthquakes, and, on this basis, the Omori-type distribution in energy is derived, as well as the distribution in magnitude, by making use of the semi-empirical Gutenberg-Richter law relating seismic energy to earthquake magnitude. On geometric grounds, the accumulation model suggests the value r = 1/3 for the Omori parameter in the power-law of energy distribution, which leads to β = 1,17 for the coefficient in the Gutenberg-Richter recurrence law, in fair agreement with the statistical analysis of the empirical data. Making use of this value, the empirical Bath's law is discussed for the average magnitude of the aftershocks (which is 1.2 less than the magnitude of the main seismic shock), by assuming that the aftershocks are relaxation events of the seismic zone. The time distribution of the earthquakes with a fixed average recurrence time is also derived, the earthquake occurrence prediction is discussed by means of the average recurrence time and the seismicity rate, and application of this discussion to the seismic region Vrancea, Romania, is outlined. Finally, a special effect of non-linear behaviour of the seismic waves is discussed, by describing an exact solution derived recently for the elastic waves equation with cubic anharmonicities, its relevance, and its connection to the approximate quasi-plane waves picture. The properties of the seismic activity accompanying a main seismic shock, both like foreshocks and aftershocks, are relegated to forthcoming publications. (author)

  2. System of the creation of a model for the coal deposit, and the subsequent

    Directory of Open Access Journals (Sweden)

    Staněk František

    1996-09-01

    Full Text Available In the paper, methodics of creating a model for different type of the coal deposit is described, including the processing of reserves text and graphic outputs. It is also useful in cases of the deposit with a great number of seams of various thicknesses that is heavily tectonically disturbed and divided into tectonic blocks. The development of seams is variable in both the thickness and quality. Splitting of the seams occurs, separate benches are formed and, on the contrary, connected into one seam.

  3. Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves

    Science.gov (United States)

    Levshin, Anatoli L.; Barmin, Mikhail P.; Moschetti, Morgan P.; Mendoza, Carlos; Ritzwoller, Michael H.

    2012-01-01

    The purpose of this study is to develop and test a modification to a previous method of regional seismic event location based on Empirical Green’s Functions (EGFs) produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long ambient noise time-series recorded at the two stations. The EGFs principally contain Rayleigh- and Love-wave energy on the vertical and transverse components, respectively, and we utilize these signals between about 5 and 12 s period. The previous method, based exclusively on Rayleigh waves, may yield biased epicentral locations for certain event types with hypocentral depths between 2 and 5 km. Here we present theoretical arguments that show how Love waves can be introduced to reduce or potentially eliminate the bias. We also present applications of Rayleigh- and Love-wave EGFs to locate 10 reference events in the western United States. The separate Rayleigh and Love epicentral locations and the joint locations using a combination of the two waves agree to within 1 km distance, on average, but confidence ellipses are smallest when both types of waves are used.

  4. Body-wave seismic interferometry applied to earthquake- and storm-induced wavefield

    NARCIS (Netherlands)

    Ruigrok, E.N.

    2012-01-01

    Seismology is the study of the vibration of the Earth. Seismologists pay much attention to the main source of Earth vibration: earthquakes. But also other seismic sources, like mining blasts, ocean storms and windmills, are studied. All these sources induce seismic waves, which can eventually be

  5. Enrichment of radon and carbon dioxide in the open atmosphere of an Australian coal seam gas field.

    Science.gov (United States)

    Tait, Douglas R; Santos, Isaac R; Maher, Damien T; Cyronak, Tyler J; Davis, Rachael J

    2013-04-02

    Atmospheric radon ((222)Rn) and carbon dioxide (CO2) concentrations were used to gain insight into fugitive emissions in an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). (222)Rn and CO2 concentrations were observed for 24 h within and outside the gas field. Both (222)Rn and CO2 concentrations followed a diurnal cycle with night time concentrations higher than day time concentrations. Average CO2 concentrations over the 24-h period ranged from ~390 ppm at the control site to ~467 ppm near the center of the gas field. A ~3 fold increase in maximum (222)Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average (222)Rn concentrations and the number of gas wells within a 3 km radius of the sampling sites (n = 5 stations; p gas field related to both point (well heads, pipelines, etc.) and diffuse soil sources. Radon may be useful in monitoring enhanced soil gas fluxes to the atmosphere due to changes in the geological structure associated with wells and hydraulic fracturing in CSG fields.

  6. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    KAUST Repository

    Tarhini, Ahmad; Guo, Bowen; Dutta, Gaurav; Schuster, Gerard T.

    2017-01-01

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.

  7. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    KAUST Repository

    Tarhini, Ahmad

    2017-11-06

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.

  8. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    Science.gov (United States)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  9. Energy generation potential from coals of the Charqueadas Coalfield, RS, Brazil

    Science.gov (United States)

    Correa da Silva, Z. C.; Heemann, R.; Castro, L.; Ketzer, J. M.

    2009-04-01

    Three coal seams, I2B (Inferior 2), I1F (Inferior 1) and MB, from the Charqueadas Coalfield located in the central-east region of the State of Rio Grande do Sul, Southern Brazil were studied on the basis of geological, petrographic, chemical and geochemical techniques and correlated to the SR1, SR2 and SR3 coal seams from the Santa Rita Coalfield. The Charqueadas Coalfield reserves reach 2,993x106 metric tons of coal distributed in six coal seams. The study of sedimentary and organic facies is made on the subsurface data from five boreholes drilled in the area. There show a well marked lateral facies change from sub aquatic to sub aerial environment, conditioned by both the water level variations and the irregular palaeotopography of the basement. The coals change from limnic to forest-terrestrial moor types characterized by variations of composition in terms of macerals, microlithotypes and mineral matter. The coals are rich in mineral matter (28 to 40%); the vitrinite content reaches 50 %, inertinite 44 % and liptinite varies from 10 to 30 %, in mineral matter free basis. Among the microlithotypes carbominerite and vitrite are predominant. Rank studies carried out by different methods (vitrinite reflectance, max and red-green quotient among others) gave conflicting results, which are explained by the strong bituminization of the vitrinite. However, agreement between fluorescence measurements and organic geochemical parameters (e.g. CPI values) confirm that the coals are of a High Volatile Bituminous B/C (ASTM) or Gasflammkohle (DIN) rank. Based on these characteristics, the Charqueadas coal seams show great potential for use in Underground Coal Gasification (UCG) and Enhanced Coalbed Methane (ECBM) projects. Nowadays the state of Rio Grande do Sul is rapidly growing and needs to increase the energy efficiency to attend the industrial demands, filling the gap between supply and energy generation. As with conventional IGCC, UCG gas can be used to generate

  10. Seismic wave extrapolation using lowrank symbol approximation

    KAUST Repository

    Fomel, Sergey

    2012-04-30

    We consider the problem of constructing a wave extrapolation operator in a variable and possibly anisotropic medium. Our construction involves Fourier transforms in space combined with the help of a lowrank approximation of the space-wavenumber wave-propagator matrix. A lowrank approximation implies selecting a small set of representative spatial locations and a small set of representative wavenumbers. We present a mathematical derivation of this method, a description of the lowrank approximation algorithm and numerical examples that confirm the validity of the proposed approach. Wave extrapolation using lowrank approximation can be applied to seismic imaging by reverse-time migration in 3D heterogeneous isotropic or anisotropic media. © 2012 European Association of Geoscientists & Engineers.

  11. High Resolution Vertical Seismic Profile from the Chicxulub IODP/ICDP Expedition 364 Borehole: Wave Speeds and Seismic Reflectivity.

    Science.gov (United States)

    Nixon, C.; Kofman, R.; Schmitt, D. R.; Lofi, J.; Gulick, S. P. S.; Christeson, G. L.; Saustrup, S., Sr.; Morgan, J. V.

    2017-12-01

    We acquired a closely-spaced vertical seismic profile (VSP) in the Chicxulub K-Pg Impact Crater drilling program borehole to calibrate the existing surface seismic profiles and provide complementary measurements of in situ seismic wave speeds. Downhole seismic records were obtained at spacings ranging from 1.25 m to 5 m along the borehole from 47.5 m to 1325 mwsf (meters wireline below sea floor) (Fig 1a) using a Sercel SlimwaveTM geophone chain (University of Alberta). The seismic source was a 30/30ci Sercel Mini GI airgun (University of Texas), fired a minimum of 5 times per station. Seismic data processing used a combination of a commercial processing package (Schlumberger's VISTA) and MatlabTM codes. The VSP displays detailed reflectivity (Fig. 1a) with the strongest reflection seen at 600 mwsf (280 ms one-way time), geologically corresponding to the sharp contact between the post-impact sediments and the target peak ring rock, thus confirming the pre-drilling interpretations of the seismic profiles. A two-way time trace extracted from the separated up-going wavefield matches the major reflection both in travel time and character. In the granitic rocks that form the peak ring of the Chicxulub impact crater, we observe P-wave velocities of 4000-4500 m/s which are significantly less than the expected values of granitoids ( 6000 m/s) (Fig. 1b). The VSP measured wave speeds are confirmed against downhole sonic logging and in laboratory velocimetry measurements; these data provide additional evidence that the crustal material displaced by the impact experienced a significant amount of damage. Samples and data provided by IODP. Samples can be requested at http://web.iodp.tamu.edu/sdrm after 19 October 2017. Expedition 364 was jointly funded by ECORD, ICDP, and IODP with contributions and logistical support from the Yucatan State Government and UNAM. The downhole seismic chain and wireline system is funded by grants to DRS from the Canada Foundation for Innovation and

  12. 2D and 3D numerical modeling of seismic waves from explosion sources

    International Nuclear Information System (INIS)

    McLaughlin, K.L.; Stevens, J.L.; Barker, T.G.; Shkoller, B.; Day, S.M.

    1993-01-01

    Over the last decade, nonlinear and linear 2D axisymmetric finite difference codes have been used in conjunction with far-field seismic Green's functions to simulate seismic waves from a variety of sources. In this paper we briefly review some of the results and conclusions that have resulted from numerical simulations and explosion modeling in support of treaty verification research at S-CUBED in the last decade. We then describe in more detail the results from two recent projects. Our goal is to provide a flavor for the kinds of problems that can be examined with numerical methods for modeling excitation of seismic waves from explosions. Two classes of problems have been addressed; nonlinear and linear near-source interactions. In both classes of problems displacements and tractions are saved on a closed surface in the linear region and the representation theorem is used to propagate the seismic waves to the far-field

  13. The underground coal gasification First step of community collaboration; Gasification Subterranea del Carbon. Primer Intento en el Ambito de una Colaboracion Comunitaria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objective of the project was to demonstrate the technical feasibility of underground coal gasification in coal seams at 600 metre depth, in order to asses its potential as a means of energy exploitation in Europe. The trial was based on the use of deviated boreholes and a retractable injection system techniques, which have both been developed by the oil and gas industries. One borehole, the injection well, was drilled in the coal seam. The other, the vertical production well, was run to intercept it in the lower part of the coal seam as closely as possible, in order to construct a continuous channel for gasification. The well were completed with casing and concentric tubing to provide the necessary paths for production, injection, purging gas and cooling water flows. A coiled tubing located in the injection well was used to execute the retraction (or CRIP) manoeuvre, which is a process in which the injector head for the gasification agents, i. e. oxygen and water, and the ignitor, are directed to a specific section of the coal seam. The gasification products passes to a surface production line for flow measurement and sampling of gas and condensate products. Production gases were either flared or incinerated, while the liquids were collected for appropriate disposal. The first trial achieved its principal objectives of in seam drilling, channel communication, the CRIP manoeuvres and the gasification of significant quantity of coal. The post-gasification study also identified the shape and extent of the cavity. The study has demonstrated the technical feasibility of underground coal gasification at the intermediate depths of European coal and proposals are made for further development and semi-commercial exploitation of this promising extraction technology. (Author) 11 refs.

  14. Factors influencing seismic wave attenuation in the lithosphere in continental rift zones

    Directory of Open Access Journals (Sweden)

    А. А. Dobrynina

    2017-01-01

    Full Text Available Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia, the North Tanzanian divergence zone (Africa and the Basin and Range Province (North America. Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC, frequency parameter (n, attenuation coefficient (δ, and total attenuation (QT. In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi, and scattering attenuation (Qsc. Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ and the frequency (n with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi and scattering attenuation (Qsc show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the

  15. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    Energy Technology Data Exchange (ETDEWEB)

    Peter Swanson; Collin Stewart; Wendell Koontz [NIOSH, Spokane, WA (USA). Spokane Research Laboratory

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  16. Mine Water Treatment in Hongai Coal Mines

    OpenAIRE

    Dang Phuong Thao; Dang Vu Chi

    2018-01-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine ...

  17. Log evaluation of sub-bituminous coals in Magallanes, Chile

    International Nuclear Information System (INIS)

    Weltz, L.S.

    1976-01-01

    In coal exploration a drilling program is normally used for coal inquest through core analysis, with a high cost and operating time. However, in many cases, there is poor cores recovery due to operating procedures and/or formation conditions which leads to the determination of parameters non-representative of the coal seam. The cost and operating time can be minimized through the use of logs which also represent a continuous and in situ sampling. In the case of sub-bituminous coals, the analysis through logs is more complex due to the high content of clay, which masks the presence of water. This paper describes the analysis of sub-bituminous coals in Magallanes-Chile. The main coal seam components are: coal, clay, secondary quartz and water. An interpretation system using the density log, gamma ray, sonic and microlog, based on rho/sub B/-GR and rho/sub B/--Δ/sub T/ cross plots, permits to know the weight percentages of the following elements: total carbon, ash, moisture, which form the main local coal parameters. Empirical relationships permit us to obtain also the heating value and an estimate strength index to elastic-dynamic forces. The results obtained agree within 3 percent with the Laboratory cores analysis. The method is processed through a sequence of simple computer programs for IBM-360

  18. Selected elements of rock burst state assessment in case studies from the Silesian hard coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Kabiesz; Janusz Makowka [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Exploitation of coal seams in the Upper Silesian Coal Basin is conducted in complex and difficult conditions. These difficulties are connected with the occurrence of many natural mining hazards and limitations resulting from the existing in this area surface infrastructure. One of the most important problems of Polish mining is the rock burst hazard and reliable evaluation of its condition. During long-years' mining practice in Poland a comprehensive system of evaluation and control of this hazard was developed. In the paper the main aspects of rock burst hazard state evaluation will be presented, comprising: 1) rock mass inclination for rock bursts, i.e., rock strength properties investigation, comprehensive parametric evaluation of rock mass inclination for rock bursts, prognosis of seismic events induced by mining operations, methods of computer-aided modelling of stress and rock mass deformation parameters distribution, strategic rock mass classification under rock burst degrees; 2) immediate seismic and rock burst hazard state evaluation, i.e., low diameter test drilling method, seismologic and seismoacoustic method, comprehensive method of rock burst hazard state evaluation, non-standard methods of evaluation; 3) legal aspects of rock burst hazard state evaluation. Selected elements of the hazard state evaluation system are illustrated with specific practical examples of their application. 11 refs., 14 figs.

  19. Mineralogical and geochemical characterization of the Jurassic coal from Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Baioumy, H.M. [Central Metallurgical Research and Development Institute, Cairo (Egypt)

    2009-06-15

    The Jurassic coal deposit in the Maghara area, Sinai, Egypt contains at least 11 coal seams of lenticular shape. The thickness of the main coal seams ranges from 130 cm to 2 m and are underlain and overlain by thin black shale beds. Mineralogical analysis indicated that this coal is characterized by low mineral matter with traces of quartz in some samples. However, coal ash is made up of quartz with traces of calcite, anhydrite, and hematite. Analysis of coal rank parameters indicated that the Maghara coal can be classified as medium volatile bituminous coal. The high sulfur contents and the relatively high proportion of pyritic sulfur suggest a possible marine transgression after the deposition of precursor peat. This interpretation is supported by the relatively high B contents. The relatively high Ge in the Maghara coal could be attributed to an infiltration of Ge enriched water from the surrounding siliceous sediments probably during diagenesis. The high Au contents were contributed to an Au-rich provenance of the ash contents of this coal. Rare earth elements geochemistry indicated low concentrations of these elements with slight enrichment of light rare earth elements (LREEs), slight negative Eu anomaly, and relatively flat heavy rare earth elements (HREEs) patterns. The low contents of trace and rare earth elements, particularly those with environmental relevance, compared to the usual concentration ranges in worldwide coal gives an advantage for this coal.

  20. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    Science.gov (United States)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  1. Seismic surface wave tomography of waste sites. 1997 annual progress report

    International Nuclear Information System (INIS)

    Long, T.L.

    1997-01-01

    'The objective of the Seismic Surface Wave Tomography of Waste Sites is to develop a robust technique for field acquisition and analysis of surface wave data for the interpretation of shallow structures, such as those associated with the burial of wastes. The analysis technique is to be developed and tested on an existing set of seismic data covering the K-901 burial site at the East Tennessee Technology Park. Also, a portable prototype for a field acquisition system will be designed and developed to obtain additional data for analysis and testing of the technique. The K-901 data have been examined and a preliminary Single Valued Decomposition inversion has been obtained. The preliminary data indicates a need for additional seismic data to ground-truth the inversion. The originally proposed gravity data acquisition has been dropped because sufficient gravity data are now available for a preliminary analysis and because the seismic data are considered more critical to the interpretation. The proposed prototype for the portable acquisition and analysis system was developed during the first year and will be used in part of the acquisition of additional seismic data.'

  2. A remote coal deposit revisited

    DEFF Research Database (Denmark)

    Bojesen-Kofoed, Jørgen A.; Kalkreuth, Wolfgang; Petersen, Henrik I.

    2012-01-01

    discovery. The outcrops found in 2009 amount to approximately 8 m of sediment including a coal seam of 2 m thickness. More outcrops and additional coal deposits most certainly are to be found, pending further fieldwork. The deposits are Middle Jurassic, Callovian, in age and were deposited in a floodplain...... environment related to meandering river channels. Spores and pollen in the lower fluvial deposits reflect abundant vegetation of ferns along the river banks. In contrast, a sparse spore and pollen flora in the coals show a mixed vegetation of ferns and gymnosperms. Based on proximate and petrographic analyses...

  3. Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal

    Directory of Open Access Journals (Sweden)

    Wojtacha-Rychter Karolina

    2017-01-01

    Full Text Available One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.

  4. Testing the shearer-loader EDW 170/200 ln for thin seams in connection with chainless haulage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tegenthoff, J.; Klimek, K.H.

    1982-01-01

    Coal extraction by cutting was investigated. A low clearance machine design was tested. To decrease average seam thickness, a system able to operate in a seam aperture of approximately 1.7 m was needed. Maximum possible clearance above the machine was sought, while maintaining sufficient clearance underneath the machine for haulage. A machine height of 855 mm with underbody clearance of 475 mm was achieved. The drive performance and traction force of the winch require improvement. For better utilization of machine potential, a rotational angle should be adapted to the positioning of the drum cutters. (ESA)

  5. Forward and adjoint spectral-element simulations of seismic wave propagation using hardware accelerators

    Science.gov (United States)

    Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri

    2015-04-01

    Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  6. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel; Rietmann, Max; Galvez, Percy; Ampuero, Jean Paul

    2017-01-01

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step

  7. Trace and major metal abundances in the shale and coal of various ...

    African Journals Online (AJOL)

    The distribution of a number of trace and major elements in the shale and coal of differing seams in Okaba, Kogi State, Nigeria, was studied using energy dispersive x-ray fluorescence spectrometer. The study was necessary to compare the quality of Okaba coal to world standards of coal quality. Major elements of Al, K, Ca ...

  8. Rock mechanics investigations of structural stability in the Bulli seam at West Cliff Colliery

    Energy Technology Data Exchange (ETDEWEB)

    Jaggar, F

    1978-03-01

    Rock mechanics investigations were conducted at West Cliff colliery to obtain rock properties and stress measurements and study the stability of mining structures. The roof and floor were drilled in order to obtain core for rock testing and lump samples of coal were collected in order to measure the coal properties. Absolute stress measurements were obtained using CSIR cells. The strata were sufficiently uniform and competent to overcore the emplaced cells. Testing revealed that the rocks were better than average for coal measure sedimentary strata and the stresses indicated the existence of a moderately high horizontal stress field. The coal is of average strength only with some marked variation relating to the very banded nature of the seam. Finite element analyses showed that the rectangular roadways driven using roof bolts and timber supports were stable and adequately stable by an indicative factor of safety of about l.5.

  9. Mine Water Treatment in Hongai Coal Mines

    Science.gov (United States)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  10. Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin, Sumatra

    Directory of Open Access Journals (Sweden)

    U. Polom

    2008-01-01

    Full Text Available As part of the project "Management of Georisk" (MANGEONAD of the Federal Institute for Geosciences and Natural Resources (BGR, Hanover, high resolution shallow shear-wave reflection seismics was applied in the Indonesian province Nanggroe Aceh Darussalam, North Sumatra in cooperation with the Government of Indonesia, local counterparts, and the Leibniz Institute for Applied Geosciences, Hanover. The investigations were expected to support classification of earthquake site effects for the reconstruction of buildings and infrastructure as well as for groundwater exploration. The study focussed on the city of Banda Aceh and the surroundings of Aceh Besar. The shear-wave seismic surveys were done parallel to standard geoengineering investigations like cone penetrometer tests to support subsequent site specific statistical calibration. They were also partly supplemented by shallow p-wave seismics for the identification of (a elastic subsurface parameters and (b zones with abundance of groundwater. Evaluation of seismic site effects based on shallow reflection seismics has in fact been found to be a highly useful method in Aceh province. In particular, use of a vibratory seismic source was essential for successful application of shear-wave seismics in the city of Banda Aceh and in areas with compacted ground like on farm tracks in the surroundings, presenting mostly agricultural land use areas. We thus were able to explore the mechanical stiffness of the subsurface down to 100 m depth, occasionally even deeper, with remarkably high resolution. The results were transferred into geotechnical site classification in terms of the International Building Code (IBC, 2003. The seismic images give also insights into the history of the basin sedimentation processes of the Krueng Aceh River delta, which is relevant for the exploration of new areas for construction of safe foundations of buildings and for identification of fresh water aquifers in the tsunami

  11. Study on Seam Deformation and Permeability Improved Effect of Pressure Released Mining in Protective Seam%保护层卸压开采煤层变形与增透效应研究

    Institute of Scientific and Technical Information of China (English)

    涂敏; 袁亮; 缪协兴; 刘泽功; 徐乃忠; 付宝杰

    2013-01-01

    为了研究高瓦斯赋存煤层卸压增透效应,以达到提高低渗透性松软煤层瓦斯抽采率,降低工作面瓦斯突出危险性,采用RFPA2D-Gasflow软件分析下保护层卸压开采后上覆煤岩采动裂隙发育、应力分布特征及由此产生的卸压煤层增透效应.结果表明:卸压开采煤层的透气性系数增大200倍左右,增透效果显著.利用该研究结果在顾桥矿沿空留巷内布置斜向上长短穿层钻孔,代替传统的底板巷内布置向上穿层钻孔抽采本层采空区内和上覆卸压煤层内瓦斯,可使沿空留巷中回风流和上隅角瓦斯体积分数均控制在0.5%以下,平均瓦斯抽采率达50% ~ 70%,保证了工作面的安全回采.%In order to study the pressure released and permeability improved effect of the high gas content seam and to reach the targets to improve the gas drainage rate of the low permeability soft seam and to reduce the gas outburst danger of the coal mining face,the RFPA -Gasflow software was applied to analyze the mining crack development and the stress distribution features of the overburden coal and rock and thus created pressure released and permeability effect after the pressure released mining in the underneath protective seam.The results showed that the permeability coefficient of the pressure released mining seam could be increased about 200 times and the permeability improved effect was obvious.The study results were applied to the layout of the inclined upward long and short boreholes in the gateway retained along goaf in Guqiao Mine to replace the layout of the inclined upward borehole in the conventional floor gateway for the gas drainage in the mining goaf and the overburden pressure released seam.Thus the gas volume fractions of the air returning flow in the gateway retained and the gas in the upper corner both could be controlled below 0. 5%, the average gas drainage rate could be 50% ~ 70% and the safety mining of the coal mining face

  12. Gondwana basins and their coal resources in Bangladesh

    International Nuclear Information System (INIS)

    Nehaluddin, M.; Sultan-ul-Islam, M.

    1994-01-01

    Fault bounded five Gondwana basins have been discovered in the north western Bangladesh. Among these basins show considerable amount of coal deposits. The Gondwana rocks are highly formed during the Permo-carboniferous diastrophism and later on acquired dynamic characters. In almost all basins, the Permian rocks overlie the Precambrian basement and underlie either the Tertiary or the Cretaceous sediments, structural, stratigraphic, and depositional history of these basins is more or less similar. The sedimentary sequences are composed of light to dark gray, fine to very coarse grained, sub angular to sub rounded felspathic sandstone, dark grey carbonaceous shale and sandstone, variegated conglomerate and thick coal seams (single seam max. 42.38m). The rocks are often alternated and bear the characteristics of cyclic sedimentation. The depositional environments varied from restricted drainage to open fluvial dominated low to moderate sinuous drainage system. The coal bearing basins were flanked by vegetated and swampy over bank. Age of these coals is suggested to be the late permian. Proved and probable reserves of coal in Jamalganj-Paharpur basin are 670 and 1,460 million metric tons, in Barapukuria basin 303 and 3899 million metric tons; in Barapukuria basin 303 and 389 million metric tons; and in Khalaspir basin 143 and 685 million metric tons respectively. The coal is high volatile, low sulphur, bituminous type. It can be used for different forms of thermal conversion. (author)

  13. 东滩煤矿煤层底板岩层阻水能力试验研究%Experiment of reduction infiltration ability of rock formation under the coal seam floor at Dongtan Coal Mine

    Institute of Scientific and Technical Information of China (English)

    张维建; 张新武; 张冬

    2015-01-01

    底板岩层压水试验能够获得可靠的底板岩层阻水能力实测数据, 为深部煤层开采底板岩层阻水能力提供量化依据,对东滩煤矿深部煤层底板岩层进行压水测试,获得了大量的实测数据并依此计算出岩层的渗透系数. 试验结果表明测试底板岩层段在原始状态下的渗透性很低,阻水能力较强.研究结果可为矿区深部工作面的安全开采提供重要的参考依据.%The reliable reduction infiltration characteristics of rock mass could be obtained by the water injection experiment under the coal seem floor. The data of water injection experimnt were obtained and permeability coefficient of floor formation were deduced through water in-jection experiment at Dongtan Coal Mine. Result shows that the test rock formations are all low-permeability, which mean they have high re-duction infiltration ability. The results make a important reference for safety-mining of deep coal seam working face.

  14. Definition imaging of anomalous geologic structure with radio waves

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1990-01-01

    Diamond core drilling from the surface and access drifts are routinely used in acquiring subsurface geologic data. Examination of core from a constellation of drillholes enables the characterization of the prevailing geology in the deposit. Similar geologic members in adjacent drillholes suggest that layered rock continuity exists between drillholes. Mineralogical and physical examination of core along with computer generated stratigraphic cross sections graphically represents the correlation and classification of the rock in the deposit. CW radio waves propagating on ray paths between drillholes have been used to validate the stratigraphic cross section and image anomalous geologic structure between drillholes. This paper compares the crosshole radio wave tomography images of faults in a nuclear waste repository site and a coal seam with the in-mine mapping results

  15. Analysis of seismic waves crossing the Santa Clara Valley using the three-component MUSIQUE array algorithm

    Science.gov (United States)

    Hobiger, Manuel; Cornou, Cécile; Bard, Pierre-Yves; Le Bihan, Nicolas; Imperatori, Walter

    2016-10-01

    We introduce the MUSIQUE algorithm and apply it to seismic wavefield recordings in California. The algorithm is designed to analyse seismic signals recorded by arrays of three-component seismic sensors. It is based on the MUSIC and the quaternion-MUSIC algorithms. In a first step, the MUSIC algorithm is applied in order to estimate the backazimuth and velocity of incident seismic waves and to discriminate between Love and possible Rayleigh waves. In a second step, the polarization parameters of possible Rayleigh waves are analysed using quaternion-MUSIC, distinguishing retrograde and prograde Rayleigh waves and determining their ellipticity. In this study, we apply the MUSIQUE algorithm to seismic wavefield recordings of the San Jose Dense Seismic Array. This array has been installed in 1999 in the Evergreen Basin, a sedimentary basin in the Eastern Santa Clara Valley. The analysis includes 22 regional earthquakes with epicentres between 40 and 600 km distant from the array and covering different backazimuths with respect to the array. The azimuthal distribution and the energy partition of the different surface wave types are analysed. Love waves dominate the wavefield for the vast majority of the events. For close events in the north, the wavefield is dominated by the first harmonic mode of Love waves, for farther events, the fundamental mode dominates. The energy distribution is different for earthquakes occurring northwest and southeast of the array. In both cases, the waves crossing the array are mostly arriving from the respective hemicycle. However, scattered Love waves arriving from the south can be seen for all earthquakes. Combining the information of all events, it is possible to retrieve the Love wave dispersion curves of the fundamental and the first harmonic mode. The particle motion of the fundamental mode of Rayleigh waves is retrograde and for the first harmonic mode, it is prograde. For both modes, we can also retrieve dispersion and ellipticity

  16. NEDO coal resources exploitation subcommittee. 18th project report meeting; NEDO sekitan shigen kaihatsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    In a report on a 'survey for coal transportation system optimization in southern Sumatra' which is to contribute to the improvement of coal exploitation efficiency in the Musi river area in southern Sumatra, the coal transportation system from the coal mine to the harbor is reviewed, scenarios on funding and cost effectiveness and environmental impact are comprehensively examined, and suggestions are submitted for higher efficiency and cost effectiveness. In a report on a 'current utilization status and effectiveness of a non-destructive electromagnetic vibrator shock source,' an electromagnetic vibrator shock source out of several new coal exploration technologies which are combinations of test boring and seismic prospecting is taken up, and is compared, in terms of technical feature and cost effectiveness, with the seismic reflection survey technique that uses an explosive shock source, and then a conclusion is reported that an electromagnetic vibration shock source method is superior. Using the new electromagnetic method, a seismic wave frequency is so chosen as to be suitable for a given depth. Since it is non-destructive and emits less noise, it is expected that it will serve in various fields other than coal mining. (NEDO)

  17. Performance of mesh seam welds in tailor welded blanks; Terado blank yo mash seam yosetsubu no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Uchihara, M; Takahashi, M; Kurita, M; Hirose, Y; Fukui, K [Sumitomo Metal Industries, Ltd., Osaka (Japan)

    1997-10-01

    Formability, fatigue properties and corrosion behavior of mash seam welded steel sheets were investigated and the results were compared with laser weld. The stretch formability of mash seam weld and laser weld were same level. Mash seam weld however, showed slightly smaller formability in hole expansion test. The fatigue strength of mash seam welds was lower than that of laser welds in case of differential thickness joints. Corrosion was apt to initiate at weld in both mash seam and laser weld with E-coat. The corrosion resistance of welds was improved by using zinc coated steel. 3 refs., 14 figs., 2 tabs.

  18. Methane production from coal seams and CO2 uptake capability of the Mecsek mountain range, Hungary; Die Methangewinnung aus Kohlefloezen und das CO{sub 2}-Aufnahmevermoegen des Mecsek-Gebirges in Ungarn

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Z.N. [Univ. Miskolc (Hungary); Lakatos, I. [Forschungsinstitut der angewandten Chemie (Hungary); Foeldessy, J.; Toth, J.; Fodor, B.; Csecsei, T. [Ungarischer Geologischer Dienst, Rotaqua KFT (Hungary)

    2006-06-15

    Methane from the Mecsek mountain range coal seams is of vast economic importance. Modified geological models focusing on zones of enhanced permeability may be useful in the development of practicable winning technologies. High gas volumes are assumed in stowed material, which may be recovered by a simple technology. There is a power station in the vicinity which produces waste gases that may be used for injection, so the Mecsek region offers promising conditions for CO2 CBM production. The same power plant is also a potential consumer of the recovered methane. (orig.)

  19. Longwall top coal caving (LTCC) mining technologies with roof softening by hydraulic fracturing method

    Science.gov (United States)

    Klishin, V.; Nikitenko, S.; Opruk, G.

    2018-05-01

    The paper discusses advanced top coal caving technologies for thick coal seams and addresses some issues of incomplete coal extraction, which can result in the environmental damage, landscape change, air and water pollution and endogenous fires. The authors put forward a fundamentally new, having no equivalent and ecology-friendly method to difficult-to-cave roof coal – directional hydraulic fracturing and nonexplosive disintegration.

  20. Local amplification of seismic waves from the Denali earthquake and damaging seiches in Lake Union, Seattle, Washington

    Science.gov (United States)

    Barberopoulou, A.; Qamar, A.; Pratt, T.L.; Creager, K.C.; Steele, W.P.

    2004-01-01

    The Mw7.9 Denali, Alaska earthquake of 3 November, 2002, caused minor damage to at least 20 houseboats in Seattle, Washington by initiating water waves in Lake Union. These water waves were likely initiated during the large amplitude seismic surface waves from this earthquake. Maps of spectral amplification recorded during the Denali earthquake on the Pacific Northwest Seismic Network (PNSN) strong-motion instruments show substantially increased shear and surface wave amplitudes coincident with the Seattle sedimentary basin. Because Lake Union is situated on the Seattle basin, the size of the water waves may have been increased by local amplification of the seismic waves by the basin. Complete hazard assessments require understanding the causes of these water waves during future earthquakes. Copyright 2004 by the American Geophysical Union.

  1. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part. 2. Applicability for seismic waves with various frequency characteristics

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2010-01-01

    In this study, the applicability of a previously developed optimal seismic design methodology, which can consider the structural integrity of not only piping systems but also elasto-plastic supporting devices, is studied for seismic waves with various frequency characteristics. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location and the capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Numerical simulations are performed using a simple piping system model. As a result, it is shown that the proposed optimal seismic design methodology is applicable to the seismic design of piping systems subjected to seismic waves with various frequency characteristics. The mechanism of optimization is also clarified. (author)

  2. Seismic wave propagation in non-homogeneous elastic media by boundary elements

    CERN Document Server

    Manolis, George D; Rangelov, Tsviatko V; Wuttke, Frank

    2017-01-01

    This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both ...

  3. Combined effects of traveling seismic waves and soil nonlinearity on nuclear power plant response

    International Nuclear Information System (INIS)

    Lee, T.H.; Charman, C.M.

    1981-01-01

    The effects of ground motion nonuniformity on the seismic input have been actively studied in recent years by considering the passage of traveling seismic waves. These studies gave rise to a new class of soil-structure interaction problems in which the seismic input is modified as a result of the spatial variations of ground motion. The phenomena were usually studied by using the elastic half-space simulation or discrete spring-models for modeling the soil medium. Finite element methods were also used recently on a limited scope. Results obtained from these investigations are often manifested by an attenuation of translational excitation along with an addition of rotational ground motion input. The decrease in structural response resulting from the input loss in the translational component was often insignificant since the response reduction tends to be offset by the effects from rotational input. The traveling wave effects have, so far, been investigated within the framework of linear theory with soil nonlinearity ignored. Conversely, the incorporation of soil nonlinearity in soil-structure interaction analyses has been done without including wave effect. Seismic analyses considering the hysteretic behavior of soil have been performed using highly idealized models for steady-state solution. More elaborate nonlinear seismic models deal with only the strain-dependent soil modulus rather than the transient unloading-reloading type of hysteretic characteristics of soil under a time-function input of earthquake trace. Apparently, the traveling wave effect and soil nonlinearity have been separately treated in the past. The purpose of this paper is to demonstrate that these two major effects can be combined in one model such that the influence of wave passage is reflected through the hysteretic behavior of soil particles, and thereby achieving significant reduction in seismic loads. (orig./RW)

  4. Social licence, corporate social responsibility and coal seam gas: framing the new political dynamics of contestation

    International Nuclear Information System (INIS)

    Curran, Giorel

    2017-01-01

    This paper explores the contestation dynamics between the unconventional gas mining sector and its challengers through the prism of the social licence to operate. Social licence is a dominant narrative in the mining sector today and as a signifier of the sector's CSR credentials, the term is an influential one. Its capacity to confer project legitimacy, and hence avoid the risks of community opposition, helps explain why most companies seek to gain one. Today both gas proponents and opponents talk the language of social licence: the former to defend their projects, the latter to challenge them. Yet, beyond rhetoric, the precise meaning of social licence remains elusive. This paper uses a case study of community opposition to primarily coal seam gas projects in an eastern Australian region to explore how the absence of a precise meaning for social licence has created a strategic opportunity space for the industry's opponents to invest social licence with a potent democracy frame. This democracy framing has proved particularly effective as a contestation tool and helps explain the outcomes in this case. - Highlights: • Unconventional gas exploration and mining is becoming increasingly contested. • A key way of managing this contestation is through the social licence to operate. • Both proponents and opponents of gas mining use social licence strategically. • Social licence has become increasingly politicised. • A democratic frame assists the effectiveness of contestation.

  5. An isotopic study of the role of carbon dioxide in outbursts in coal mines

    International Nuclear Information System (INIS)

    Smith, J.W.; Gould, K.W.

    1980-01-01

    The occurrence of instantaneous outbursting in the Bulli coal seam at the West Cliff Colliery, Appin, NSW can be correlated directly with an increase in concentration (0.5 to 75%) and a related decrease in the 13 C content (delta 13 C + 16 to -0.8% PDB) of the CO 2 in the seam gas. Two sources of CO 2 are required. The greater incidence of outbursting in CO 2 -rich zones is explained by the conversion to bicarbonate of cleat and fracture filling calcite deep within the coal and the transport of this bicarbonate in water to mine openings. The weakening of the resistance of the coal to shear by this removal of carbonate is an additional factor to be considered in assessing outbursting situations. (author)

  6. Wave passage effects on the seismic response of a maglev vehicle moving on multi-span guideway

    Directory of Open Access Journals (Sweden)

    J. D. Yau

    Full Text Available As a seismic wave travels along the separate supports of an extended structure, the structure is subjected to multiple-support excitation due to seismic wave propagation. Considering the seismic wave passage effect, this paper describes seismic analysis of a maglev vehicle moving on a multiply supported gudieway. The guideway system is modeled as a series of simple beams and the vehicle as a four degrees-of-freedom (DOFs rigid bar equipped with multiple onboard PI+LQR hybrid controllers. The controller is used to regulate control voltage for tuning both magnetic forces of uplift levitation and lateral guidance in the maglev system. Numerical studies show that as a maglev vehicle is equipped with more supported magnets then they can provide more control gains for tuning the guidance forces of the moving vehicle, and mitigate seismic-induced lateral vibration of a maglev vehicle running a guideway.

  7. Induced Electromagnetic Field by Seismic Waves in Stratified Media in Earth's Magnetic Field

    Science.gov (United States)

    Yamazaki, K.

    2017-12-01

    Seismic waves accompany electromagnetic (EM) variations because Earth's crust involves a variety of EM properties such as finite electrical conductivity and ion contents. If we can catch the EM variations just after the earthquake rupture, we will know the occurrence of earthquake before the arrival of seismic waves at observation point. However, quantitative aspects of EM variations arising from seismic waves have not sufficiently understood. Together with observational works, theoretical works have been made to simulate EM variations arising from seismic waves. The generation mechanisms of EM variations include electrokinetic effect (Pride, 1994), motional induction (Gao et al., 2014), piezo-electric effect (Ogawa and Utada, 2000), piezo-magnetic effect (Yamazaki, 2016), etc. It is widely accepted that the electrokinetic effect is the dominant mechanism. Theoretical calculation of EM variations assuming the electrokinetic effect roughly explains the observed EM variations accompanying with earthquake ground motions (e.g. Gao et al. 2016). However, there are a significant disagreement between observed and predicted EM variations. In the present study, I focus on the motional induction mechanism that possibly explain some parts of EM variations accompanying with seismic waves. A theoretical work on EM variations arising from the motional induction has been presented by Gao et al. (2014), but their work assumed uniform full-space medium. In contrast, the present work assumes stratified media which correctly incorporate the effect of the ground surface. I apply a calculating method developed in seismology (e.g. Kennett, 2013) and in EM studies (Haartsen and Pride, 1997), and derive a set of expressions describing the spatial-temporal variations of the EM field after the onset of rupture. The derived formula is used to calculate EM variations for actual earthquakes to compare the theoretical prediction to observed EM variations.

  8. Groundwater exploration in a Quaternary sediment body by shear-wave reflection seismics

    Science.gov (United States)

    Pirrung, M.; Polom, U.; Krawczyk, C. M.

    2008-12-01

    The detailed investigation of a shallow aquifer structure is the prerequisite for choosing a proper well location for groundwater exploration drilling for human drinking water supply and subsequent managing of the aquifer system. In the case of shallow aquifers of some 10 m in depth, this task is still a challenge for high-resolution geophysical methods, especially in populated areas. In areas of paved surfaces, shallow shear-wave reflection seismics is advantageous compared to conventional P-wave seismic methods. The sediment body of the Alfbach valley within the Vulkaneifel region in Germany, partly covered by the village Gillenfeld, was estimated to have a maximum thickness of nearly 60 m. It lies on top of a complicated basement structure, constituted by an incorporated lava flow near the basement. For the positioning of new well locations, a combination of a SH-wave land streamer receiver system and a small, wheelbarrow-mounted SH-wave source was used for the seismic investigations. This equipment can be easily applied also in residential areas without notable trouble for the inhabitants. The results of the 2.5D profiling show a clear image of the sediment body down to the bedrock with high resolution. Along a 1 km seismic profile, the sediment thickness varies between 20 to more than 60 m in the centre of the valley. The reflection behaviour from the bedrock surface corroborates the hypothesis of a basement structure with distinct topography, including strong dipping events from the flanks of the valley and strong diffractions from subsurface discontinuities. The reflection seismic imaging leads to an estimation of the former shape of the valley and a reconstruction of the flow conditions at the beginning of the sedimentation process.

  9. Methods and apparatus for use in detecting seismic waves in a borehole

    Science.gov (United States)

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  10. Measurement Of Compressional-Wave Seismic Velocities In 29 Wells At The Hanford Site

    International Nuclear Information System (INIS)

    Peterson, S.W.

    2010-01-01

    Check shot seismic velocity surveys were collected in 100 B/C, 200 East, 200-PO-1 Operational Unit (OU), and the Gable Gap areas in order to provide time-depth correlation information to aid the interpretation of existing seismic reflection data acquired at the Hanford Site (Figure 1). This report details results from 5 wells surveyed in fiscal year (FY) 2008, 7 wells in FY 2009, and 17 wells in FY 2010 and provides summary compressional-wave seismic velocity information to help guide future seismic survey design as well as improve current interpretations of the seismic data (SSC 1979/1980; SGW-39675; SGW-43746). Augmenting the check shot database are four surveys acquired in 2007 in support of the Bechtel National, Inc. Waste Treatment Plant construction design (PNNL-16559, PNNL-16652), and check shot surveys in three wells to support seismic testing in the 200 West Area (Waddell et al., 1999). Additional sonic logging was conducted during the late 1970s and early 1980s as part of the Basalt Waste Isolation Program (BWIP) (SSC 1979/1980) and check shot/sonic surveys as part of the safety report for the Skagit/Hanford Nuclear project (RDH/10-AMCP-0164). Check shot surveys are used to obtain an in situ measure of compressional-wave seismic velocity for sediment and rock in the vicinity of the well point, and provide the seismic-wave travel time to geologic horizons of interest. The check shot method deploys a downhole seismic receiver (geophone) to record the arrival of seismic waves generated by a source at the ground surface. The travel time of the first arriving seismic-wave is determined and used to create a time-depth function to correlate encountered geologic intervals with the seismic data. This critical tie with the underlying geology improves the interpretation of seismic reflection profile information. Fieldwork for this investigation was conducted by in house staff during the weeks of September 22, 2008 for 5 wells in the 200 East Area (Figure 2); June 1

  11. Detailed geological characterisation from seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Peter Hatherly; Binzhong Zhou; Troy Peters; Milovan Urosevic [CRC Mining (Australia)

    2009-02-15

    The use of seismic reflection surveying continues to grow within Australia's underground coal mining regions of the Sydney and Bowen Basins. For this project, the potential for acoustic impedance inversion to complement the information available from conventional seismic surveys was investigated. Acoustic impedance is defined by the product of seismic P-wave velocity and rock density. The methods of seismic inversion have been developed mainly for the investigation of petroleum reservoirs. Commercial software packages are available and for this project we utilised the Hampson and Russell software available at Curtin University of Technology. For the true amplitude processing of the seismic data, the Promax software operated at Velseis Processing was used. Inversions were undertaken for three 3D seismic surveys and two 2D surveys. The sites were at Grasstree and North Goonyella Mines in the Bowen Basin and at West Cliff and Dendrobium Collieries in the Sydney Basin. An empirical relationship was derived between acoustic impedance and the newly developed Geophysical Strata Rating (GSR). This allows impedance values to be converted into GSR values that have more meaning in geotechnical assessment. To obtain satisfactory inversions, we used the model based approach.

  12. Mine Water Treatment in Hongai Coal Mines

    Directory of Open Access Journals (Sweden)

    Dang Phuong Thao

    2018-01-01

    Full Text Available Acid mine drainage (AMD is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  13. Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation

    Energy Technology Data Exchange (ETDEWEB)

    Pribadi, Sugeng, E-mail: sugengpribadimsc@gmail.com [Badan Meteorologi Klimatologi Geofisika, Jl Angkasa I No. 2 Jakarta (Indonesia); Afnimar,; Puspito, Nanang T.; Ibrahim, Gunawan [Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M{sub o}), moment magnitude (M{sub W}), rupture duration (T{sub o}) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994 Banyuwangi earthquake with M{sub W}=7.8 and the 17 July 2006 Pangandaran earthquake with M{sub W}=7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M{sub W}=7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake.

  14. Characterization of tsunamigenic earthquake in Java region based on seismic wave calculation

    International Nuclear Information System (INIS)

    Pribadi, Sugeng; Afnimar,; Puspito, Nanang T.; Ibrahim, Gunawan

    2014-01-01

    This study is to characterize the source mechanism of tsunamigenic earthquake based on seismic wave calculation. The source parameter used are the ratio (Θ) between the radiated seismic energy (E) and seismic moment (M o ), moment magnitude (M W ), rupture duration (T o ) and focal mechanism. These determine the types of tsunamigenic earthquake and tsunami earthquake. We calculate the formula using the teleseismic wave signal processing with the initial phase of P wave with bandpass filter 0.001 Hz to 5 Hz. The amount of station is 84 broadband seismometer with far distance of 30° to 90°. The 2 June 1994 Banyuwangi earthquake with M W =7.8 and the 17 July 2006 Pangandaran earthquake with M W =7.7 include the criteria as a tsunami earthquake which distributed about ratio Θ=−6.1, long rupture duration To>100 s and high tsunami H>7 m. The 2 September 2009 Tasikmalaya earthquake with M W =7.2, Θ=−5.1 and To=27 s which characterized as a small tsunamigenic earthquake

  15. The effect of the gas factor on selecting the thickness of a layer during two-layer getting of thick seams. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Varekha, Zh P; Kurkin, A S; Vechera, V N

    1979-01-01

    For technico-economic verification of the selection of the efficient removed thickness of upper and lower layers under conditions of high gas abundance of seams, the KNIUI has developed an economic model of converted costs within a getting field, allowing for natural and technical factors. The calculation considers specific costs for stoping work when getting the upper and lower layers, digging and maintenance of development workings, coal transport, assembly-disassembly work, ventilation, labor costs, degassing, etc. The calculation dependences and nomogram obtained enable comparatively easy definition of efficient thicknesses of removed layers when designing stoping work at thick, gently sloping seams, as well as calculation converted costs using as the initial data the total thickness of the seam, its natural gas content, and the expected degree of preliminary degassing.

  16. Organic petrology and geochemistry of the Carboniferous coal seams from the Central Asturian Coal Basin (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Piedad-Sanchez, Noe; Martinez, Luis; Izart, Alain; Elie, Marcel [UMR G2R/7566, Geologie et Gestion des Ressources Minerales et Energetiques, Faculte des Sciences, Universite Henri Poincare, Nancy 1, BP-239, Boulevard des Aiguillettes, Vandoeuvre-les-Nancy Cedex 54506 (France); Suarez-Ruiz, Isabel [Instituto Nacional del Carbon (CSIC), C/ Francisco Pintado Fe, 26, Ap. Co., 73, Oviedo 33011 (Spain); Keravis, Didier [Institut des Sciences de la Terre (ISTO), CNRS-Universite d' Orleans, Batiment Geosciences, BP 6759, Orleans 45067 (France)

    2004-03-23

    This paper presents for the first time a petrological and geochemical study of coals from the Central Asturian Coal Basin (North Spain) of Carboniferous (Pennsylvanian), mainly of Moscovian, age. A paleoenvironmental approach was used, taking into account both petrographic and organic geochemical studies. Vitrinite reflectance (R{sub r}) ranges from 0.5% to 2.5%, which indicates a high volatile bituminous to semianthracite and anthracite coal rank. The coal samples selected for paleoenvironmental reconstruction are located inside the oil-gas-prone phase, corresponding to the interval between the onset of oil generation and first gas generation and efficient expulsion of oil. This phase is represented by coals that have retained their hydrocarbon potential and also preserved biomarker information. Paleodepositional reconstruction based on maceral and petrographic indices points to a swamp environment with vitrinite-rich coal facies and variable mineral matter content. The gelification index (GI) and groundwater influence index (GWI) indicate strong gelification and wet conditions. The biomarkers exhibit a high pristane/phytane ratio, suggesting an increase in this ratio from diagenetic processes, and a high diterpanes ratio. This, in turn, would seem to indicate a high swamp water table and a humid climate. The maximum point of coal accumulation occurred during the regressive part of the Late Moscovian sequence and in the most humid climate described for this period of time in the well-known coal basins of Europe and North America.

  17. Organic petrography:An approach for identification of maceral groups in Gheshlagh coal area, Eastern Alborz

    Directory of Open Access Journals (Sweden)

    Tahereh Rabani

    2016-07-01

    Full Text Available Introduction Maceral is a term to introduce organic components visible under a microscope (Stopes, 1935. The physical and chemical characteristics of macerals such as elemental composition, moisture content, hardness, density and petrographic characteristics differ. The differences in the physical and chemical characteristics of macerals are reflected in their industrial behavior.(Parkash, 1985. Petrographic analysis provides information on the various physical components of coals (Suwarna and Hemanto, 2007 and determination of quality of coal, coalification rate, composition and characteristics of coke and paleoenvironmental deposition (Taylor et al., 1998. Sampling and methodology Coal samples were collected from freshly mined coal from 11 coal seams of 4 active coal mines (Cheshlagh, Zemestan Yourt, Narges Chal and Cheshmehsaran for organic petrography in the Gheshlagh coal deposits. All samples were collected and stored in plastic bags to prevent contamination and weathering. Samples were prepared for microscopic analysis by reflected light following ASTM Standard procedure D2797-04. For microscopic study, coal samples were crushed to1-mm size fraction (18 mesh size, mounted in epoxy resin and polished. Three polished samples were prepared for each coal seam. The petrographic composition was obtained by maceral analyses under standard conditions (ISO 7404/3, 2009, for maceral analysis. Maceral point counting (based on 400 points analyses were performed using an Olympus BX51 reflected light microscope. The terminology used to identify and describe the organic matter particles is the one proposed by the International Committee for Coal and Organic Petrology (ICCP, 1998; ICCP, 2001; Scott and Glasspool, 2007; Taylor et al., 1998; Stach et al., 1982; Hower et al., 2009; Hower and Wagner, 2012. Organic petrography of theGheshlagh coal seams The vitrinite maceral group is dominant in all coal seams (66.2 to 87.2 vol.% and includes collodetrinite

  18. Improved surface?wave retrieval from ambient seismic noise by multi?dimensional deconvolution

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Ruigrok, E.N.; Van der Neut, J.R.; Draganov, D.S.

    2011-01-01

    The methodology of surface?wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface?wave Green's function. A point?spread function, derived from the

  19. A new experimental method to determine the CO2 sorption capacity of coal

    NARCIS (Netherlands)

    Hol, S.; Peach, C.J.; Spiers, C.J.

    2010-01-01

    Enhanced Coalbed Methane production (ECBM) involves the injection of CO2 to desorb CH4 from coal seams, and offers significant potential for deploying Carbon Capture and Storage (CCS). An essential starting parameter, determined in the laboratory, is the absolute CO2 storage potential of the coal

  20. Determining the degree of break up of coal strata and clay interlayers by looseners at the Chukurovo pit

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, A B; Stoyanov, D S; Yordanov, Y M

    1983-01-01

    One of the rational technologies for selective mining of thin coal strata with complex geological structure is that one in which different types of mechanical looseners are used. Identification of the degree of break up of the rock is accomplished most rapidly and precisely using seismoacoustical methods. The evaluation is conducted relative to the speed of propagation of elastic waves in the mass. SVM seismic receivers were used at the Chukurovo pit to determine the speed of propagation of an elastic wave in coals and clays. Shafts 10 meters long were drilled in three experimental fields using the SVB-2 machine. The speed of propagation of an elastic wave in the coals and in sandy clays was determined for different shaft depths every meter. After comparing the obtained results with standard tables from different companies, the possibility of breaking up the coal and clay interlayers in the experimental sectors by looseners with motors different in type and capacity was determined.

  1. Bioregional Assessments: Determining the Impacts of Coal Resource Development on Water Resources in Australia through Groundwater, Surface Water and Ecological Modelling

    Science.gov (United States)

    Peeters, L. J.; Post, D. A.; Crosbie, R.; Holland, K.

    2017-12-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed `coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. The Australian Federal Government commissioned a multi-disciplinary programme of bioregional assessments to improve understanding of the potential impacts of coal seam gas and large coal mining activities on water resources and water-dependent assets across six bioregions Australia. A bioregional assessment is a transparent scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. The first step in the analysis is to establish the most likely scenario for coal development in each region and establish a causal pathway linking coal development to impacts to the social, economic and ecological functioning of water resources. This forms the basis for a sequence of probabilistic geological, hydrogeological, hydrological and ecological models to quantify the probability of potential impacts. This suite of models is developed independent of the proponents and regulators of coal resource developments and so can provide unbiased information to all stakeholders. To demonstrate transparency of the modelling, all inputs, outputs and executables will be available from http://www.bioregionalassessments.gov.au. The analysis delineated a zone of potential hydrological change for each region, outside of which impacts

  2. Coal waste management practices in the USA:an overview

    Institute of Scientific and Technical Information of China (English)

    Yoginder P. Chugh; Paul T. Behum

    2014-01-01

    This paper provides an overview of coal waste management practices with two case studies and an estimate of management cost in 2010 US dollars. Processing of as-mined coal typically results in considerable amount of coarse and fine coal processing wastes because of in-seam and out-of-seam dilution mining. Processing plant clean coal recovery values run typically 50%–80%. Trace metals and sulfur may be present in waste materials that may result in leachate water with corrosive charac-teristics. Water discharges may require special measures such as liner and collection systems, and treatment to neutralize acid drainage and/or water quality for trace elements. The potential for variations in coal waste production and quality depends upon mining or processing, plus the long-term methods of waste placement. The changes in waste generation rates and engineering properties of the coal waste during the life of the facility must be considered. Safe, economical and environmentally acceptable management of coal waste involves consideration of geology, soil and rock mechanics, hydrology, hydraulics, geochemistry, soil science, agronomy and environmental sciences. These support all aspects of the regulatory environment including the design and construction of earth and rock embankments and dams, as well as a wide variety of waste disposal structures. Development of impoundments is critical and require considerations of typical water-impounding dams and additional requirements of coal waste disposal impoundments. The primary purpose of a coal waste disposal facility is to dispose of unusable waste materials from mining. However, at some sites coal waste impoundments serve to provide water storage capacity for processing and flood attenuation.

  3. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  4. Investigation of sinkhole areas in Germany using 2D shear wave reflection seismics and zero-offset VSP

    Science.gov (United States)

    Tschache, Saskia; Wadas, Sonja; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes pose a serious geohazard for humans and infrastructure in populated areas. The Junior Research Group Subrosion within the Leibniz Institute for Applied Geophysics and the joint project SIMULTAN work on the multi-scale investigation of subrosion processes in the subsurface, which cause natural sinkholes. In two case studies in sinkhole areas of Thuringia in Germany, we applied 2D shear wave reflection seismics using SH-waves with the aim to detect suitable parameters for the characterisation of critical zones. This method has the potential to image near-surface collapse and faulting structures in improved resolution compared to P-wave surveys resulting from the shorter wavelength of shear waves. Additionally, the shear wave velocity field derived by NMO velocity analysis is a basis to calculate further physical parameters, as e.g. the dynamic shear modulus. In both investigation areas, vertical seismic profiles (VSP) were acquired by generating P- and SH-waves (6 component VSP) directly next to a borehole equipped with a 3C downhole sensor. They provide shear and compressional wave velocity profiles, which are used to improve the 2D shear wave velocity field from surface seismics, to perform a depth calibration of the seismic image and to calculate the Vp/Vs ratio. The signals in the VSP data are analysed with respect to changes in polarisation and attenuation with depth and/or azimuth. The VSP data reveal low shear wave velocities of 200-300 m/s in rock layers known to be heavily affected by subrosion and confirm the low velocities calculated from the surface seismic data. A discrepancy of the shear wave velocities is observed in other intervals probably due to unsymmetrical travel paths in the surface seismics. In some VSP data dominant conversion of the direct SH-wave to P-wave is observed that is assumed to be caused by an increased presence of cavities. A potential fault distorting the vertical travel paths was detected by abnormal P-wave first

  5. Detection of sinkholes or anomalies using full seismic wave fields.

    Science.gov (United States)

    2013-04-01

    This research presents an application of two-dimensional (2-D) time-domain waveform tomography for detection of embedded sinkholes and anomalies. The measured seismic surface wave fields were inverted using a full waveform inversion (FWI) technique, ...

  6. Control over surrounding rocks deformation of soft floor and whole-coal gateways with trapezoidal supports

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, X.; Li, D.; Shao, Q.; Sun, Y. [Henan Polytechnic University, Jaozuo (China). Dept. of Resource and Material Engineering

    2005-06-01

    The coal seams of Guengcun Coal mine of Yima Coal Group Co. Ltd. are prone to spontaneous combustion. Fully mechanized longwall mining with sublevel caving is used as the mining method. Based on the characteristics of the gateways of the 1301 coal face and of the roof coal seams, the natural equilibrium arch theory was used to design the parameters of 11 mine-type metal supports. Then, in-situ supporting experiments were carried out. The results indicate that under the action of virgin rock stress, the width of broken rocks zone of surrounding rocks is 1.7-2.0 m in the return heading and 1.1-1.3 m in the outgoing headway and their surrounding rocks belong to the IV-type soft rock and the III-type common surrounding rock respectively. Therefore, under the movable abutment pressure, the gateway deformation is serious. At the same time, the accumulated water on gateway floor must be drained in time. These measures were taken in the 1302 and 1304 coal faces in Gengcun colliery, and satisfactory results have been obtained. 8 refs., 3 figs.

  7. Assessment of seismic wave effects on soil-structure interaction

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-03-01

    It is normally assumed in the seismic analysis of structures that the free-field motion which is used as input is the same for all points on a given level beneath the foundation mat. This represents a simplification, as not all particles of soil describe the same motion simultaneously. As the foundation mat of the structure is rigid in the horizontal direction, it will tend to average the ground motion. Abandoning the assumption of the uniformity of the input motion may lead to a reduction of the translational motion which a foundation mat will experience, as the displacement components will cancel each other to a certain extent. This is of considerable interest for the design of nuclear power plants which are very stiff, large structures. To investigate these effects, the extremely complex phenomenon of the passage of a seismic wave has to be simplified considerably. It is the purpose of this paper to determine if wave passage effects can be determined from the simplified analyses currently used

  8. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    Energy Technology Data Exchange (ETDEWEB)

    Erlangga, Mokhammad Puput [Geophysical Engineering, Institut Teknologi Bandung, Ganesha Street no.10 Basic Science B Buliding fl.2-3 Bandung, 40132, West Java Indonesia puput.erlangga@gmail.com (Indonesia)

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  9. Combustion behaviour of Sydney and Bowen Basin coals determined by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Benfell, K.E.; Beamish, B.B.; Rodgers, K.A.; Crosdale, P.J. [University of Auckland, Auckland (New Zealand). Department of Geology

    1996-08-01

    Assesses the suitability of thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis techniques to characterise the combustion behaviour of Sydney and Bowen basin coals. Results indicate that the thermogravimetric technique is suitable for characterising the effects of rank, maceral, sub-maceral and seam variations on the combustion behaviour of these coals. 6 refs., 6 figs., 2 tabs.

  10. Equations describing contamination of run of mine coal with dirt in the Upper Silesian Coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Winiewski, J J

    1977-12-01

    Statistical analysis proved that contamination with dirt of run of mine coal from seams in the series 200 to 600 of the Upper Silesian Coalfield depends on the average ash content of a given raw coal. A regression equation is deduced for coarse and fine sizes of each coal. These equations can be used to predict the degree of contamination of run of mine coal to an accuracy sufficient for coal preparation purposes.

  11. Underground gasification of coal. [Newman Spinney

    Energy Technology Data Exchange (ETDEWEB)

    1950-06-16

    This article gives an account of the experimental work on underground gasification at Newman Spinney near Sheffield, England. An attempt was made to develop the percolation technique in flat coal seams but to demonstrate first that gas can be made underground. A borehole system was created on an opencast site where an exposed seam face would allow horizontal drilling to be carried out. Details of trails are given, and drilling techniques, electromagnetic device developed by the Great Britain Post Office Research Branch and radioactive location developed by the Anglo-Iranian Oil Company. An account is given of the inauguration of a series of experiments on May 22, 1950.

  12. Probabilistic assessment of the impact of coal seam gas development on groundwater: Surat Basin, Australia

    Science.gov (United States)

    Cui, Tao; Moore, Catherine; Raiber, Matthias

    2018-05-01

    Modelling cumulative impacts of basin-scale coal seam gas (CSG) extraction is challenging due to the long time frames and spatial extent over which impacts occur combined with the need to consider local-scale processes. The computational burden of such models limits the ability to undertake calibration and sensitivity and uncertainty analyses. A framework is presented that integrates recently developed methods and tools to address the computational burdens of an assessment of drawdown impacts associated with rapid CSG development in the Surat Basin, Australia. The null space Monte Carlo method combined with singular value decomposition (SVD)-assisted regularisation was used to analyse the uncertainty of simulated drawdown impacts. The study also describes how the computational burden of assessing local-scale impacts was mitigated by adopting a novel combination of a nested modelling framework which incorporated a model emulator of drawdown in dual-phase flow conditions, and a methodology for representing local faulting. This combination provides a mechanism to support more reliable estimates of regional CSG-related drawdown predictions. The study indicates that uncertainties associated with boundary conditions are reduced significantly when expressing differences between scenarios. The results are analysed and distilled to enable the easy identification of areas where the simulated maximum drawdown impacts could exceed trigger points associated with legislative `make good' requirements; trigger points require that either an adjustment in the development scheme or other measures are implemented to remediate the impact. This report contributes to the currently small body of work that describes modelling and uncertainty analyses of CSG extraction impacts on groundwater.

  13. Comparison of shear-wave velocity measurements by crosshole, downhole and seismic cone penetration test methods

    Energy Technology Data Exchange (ETDEWEB)

    Suthaker, N.; Tweedie, R. [Thurber Engineering Ltd., Edmonton, AB (Canada)

    2009-07-01

    Shear wave velocity measurements are an integral part of geotechnical studies for major structures and are an important tool in their design for site specific conditions such as site-specific earthquake response. This paper reported on a study in which shear wave velocities were measured at a proposed petrochemical plant site near Edmonton, Alberta. The proposed site is underlain by lacustrine clay, glacial till and upper Cretaceous clay shale and sandstone bedrock. The most commonly used methods for determining shear wave velocity include crosshole seismic tests, downhole seismic tests, and seismic cone penetration tests (SCPT). This paper presented the results of all 3 methods used in this study and provided a comparison of the various test methods and their limitations. The crosshole test results demonstrated a common trend of increasing shear wave velocity with depth to about 15 m, below which the velocities remained relatively constant. An anomaly was noted at one site, where the shear wave velocity was reduced at a zone corresponding to clay till containing stiff high plastic clay layers. The field study demonstrated that reasonable agreement in shear wave velocity measurements can be made using crosshole, downhole and seismic tests in the same soil conditions. The National Building Code states that the shear wave velocity is the fundamental method for determining site classification, thus emphasizing the importance of obtaining shear wave velocity measurements for site classification. It was concluded that an SCPT program can be incorporated into the field program without much increase in cost and can be supplemented by downhole or crosshole techniques. 5 refs., 2 tabs., 10 figs.

  14. A Shear-Wave Seismic System to Look Ahead of a Tunnel Boring Machine

    NARCIS (Netherlands)

    Bharadwaj, Pawan; Drijkoningen, G.G.; Mulder, W.A.; Tscharner, Thomas; Jenneskens, Rob

    2016-01-01

    The Earth’s properties, composition and structure ahead of a tunnel boring machine (TBM) should be mapped for hazard assessment during excavation. We study the use of seismic-exploration techniques for this purpose. We focus on a seismic system for soft soils, where shear waves are better and easier

  15. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    Science.gov (United States)

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2

  16. Fiscal 1999 research cooperation project report. Research cooperation on coal liquefaction technology; 1999 nendo sekitan ekika gijutsu ni kansuru kenkyu kyoryoku jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research cooperation project result on coal liquefaction technology. Cooperative FS was made on coal liquefaction technology of Indonesian coal as petroleum substituting energy. To obtain the basic data necessary for the FS, study was made on the applicability of Indonesian natural minerals as catalytic materials. Promising low-cost abundant Soroako Limonite ore showed a high catalytic activity for liquefaction reaction of Banko coal, and an excellent grindability. Improved BCL process including hydrogenation process was promising for production of high-quality coal liquid superior in storage stability with less nitrogen and sulfur contents. Survey was made on the general conditions of Tanjung Enim area including South Banko coal field concerned, and the geological features and coal seam of South Banko coal field which is composed of 3 seams including coal deposits of 6.35 hundred million tons. To study the marketability of coal liquid, survey was made on the current situation of oil, oil product standards, and blendability of coal liquid. Hydrogen for the liquefaction process can be obtained by coal gasification. (NEDO)

  17. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-06-20

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.

  18. Determination of combustible volatile matter in coal mine roadway dusts by backscatter of x-rays from a radioisotope source

    International Nuclear Information System (INIS)

    Ailwood, C.R.; Bunch, K.; Fookes, R.A.; Gravitis, V.L.; Watt, J.S.

    1977-01-01

    The combustible volatile matter in coal mine roadway dusts (CVM) has been determined using x-ray backscatter techniques. The correlation between x-ray and chemical techniques is reasonably good for the 92 samples from collieries on the Bulli seam, and the maximum error expected at the maximum level of 11.5 weight per cent CVM permitted in the N.S.W. Coal Mines Regulation Act, 1912, as amended, is about +- 2.5 weight per cent. This x-ray technique can be used only when the combustible volatile content of the coal matter (CVM) varies within a limited range, and a separate calibration is required for each coal seam. Portable equipment based on a radioisotope x-ray source and digital ratemeter makes possible simple and rapid analysis, and with adaptation to use in coal mines should lead to much more comprehensive testing of roadways and hence improved overall prevention of coal dust explosions. (author)

  19. 78 FR 48461 - Notice of Competitive Coal Lease Sale, WYW172684, Wyoming

    Science.gov (United States)

    2013-08-08

    ... Basin. The tract will be leased to the qualified bidder of the highest cash amount provided that the high bid meets or exceeds the BLM's estimate of the fair market value (FMV) of the tract. The minimum... seams or splits containing less than 5 feet of coal. The total mineable stripping ratio of the coal in...

  20. Research on comprehensive gas permeability improvement technology by hydraulic fracturing and slotting in coal seam with complex geological conditions and low permeability%复杂地质低渗煤层水力压裂-割缝综合瓦斯增透技术研究

    Institute of Scientific and Technical Information of China (English)

    贾同千; 饶孜; 何庆兵; 宋润权; 白鑫

    2017-01-01

    Aiming at the problem of gas drainage in the coal seam with complex geological conditions and low permeability in Baijiao Coal Mine,the hydraulic fracturing technology was applied to carry out the regional gas permeability improvement,and its application effect was analyzed according to the situation of field gas drainage.Aiming at the blind area of regional gas permeability improvement by hydraulic fracturing,the technical measure of localized gas permeability improvement by hydraulic slotting was put forward,then the comprehensive gas permeability improvement technology by hydraulic fracturing and slotting in coal seam with complex geological conditions and low permeability was formed,and the field verification was conducted.The results showed that the average pure flow rate of gas drainage for three fracturing boreholes in the hydraulic fracturing zone increased by 15.8 times than that of regular single borehole gas drainage in 238 floor laneway,and the gas drainage concentration increased by 4%.The pure flow rate of gas drainage in the fractured area increased by 2.1 times than that of the comparison zone,but there existed the blind area by the regional measures of hydraulic fracturing due to the restriction of geological conditions such as fault and coal seam hardness.The gas concentration of drainage borehole in the hydraulic slotting permeability improvement zone increased by 4.9 times on the average,and the pure flow rate of gas increased by 3.3 times on the average.It has strong adaptability to different geological conditions,but the influence range of slotting is small,and the drainage time is short.The comprehensive gas permeability improvement technology by hydraulic fracturing and slotting in coal seam with complex geological conditions and low permeability integrates the advantages of hydraulic fracturing and slotting,and it has strong adaptability to coal seam with complex geological conditions,which improves the gas control level greatly.The field

  1. Cost of mining Eastern coal

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper, Chapter 7.2.3 of the 'surface mining' reference book, gives an example of how the cost of mining a ton of coal is calculated. Conditions set down are for a coal tract of 50.6 ha in West Virginia, USA to be mined by the contour surface method, the seam being 101.6cm thick. Elements of the costing are: permitting and bonding costs, engineering and construction costs, equipment and other operating expenses (such as hauling and wheeling), royalties, direct taxes and fees, costs of revegetation, and employment costs (payroll and medical expenses). 5 tabs

  2. Coal graders in Czechoslovakian mines

    Energy Technology Data Exchange (ETDEWEB)

    Vasek, J.; Klimek, M.

    1980-01-01

    Problems related to sections of the area of application of graders depending on different mining and geological mining-engineering factors are examined. The principal factors are selected from a general group of influencing factors: dip angle of a formation, separability (shear ability) of coal, characteristics of country rocks, adhesion of coal to rock, tectonic fracturing of a seam, and thickness of a formation. Based on practical and theoretical studies all of the principal factors have been categorized. This allows one to obtain an objective picture of the possibility of using graders under specific conditions by comparing different factors.

  3. Selective coal mining of intercalated lignite deposits

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, R [Kolubara-Projekt, Lazarevac (Yugoslavia)

    1991-01-01

    Describes selective coal mining in the Tamnava-Istocno Polje coal surface coal mine (Yugoslavia), designed for an annual coal production of 11.4 Mt. Until 1991, this mine exploited one thick lignite seam, without spoil intercalations, using a bucket wheel excavator-conveyor-spreader system both for coal mining and removal of overburden. In the future, several spoil intercalations of up to 1.0 m and thicker will appear with a total volume of 22 million m{sup 3}. These intercalations have to be selectively excavated in order to guarantee the calorific value of coal for the Nikola Tesla power plant. Computer calculations were carried out to determine the decrease in excavator coal production due to selective mining of spoil strata. Calculations found that the annual surface mine capacity will be lower by at most 9%, depending on thickness of spoil intercalations. The useful operation time of excavators will be reduced by 98 hours per year. The planned annual coal production will nevertheless be fulfilled. 3 refs.

  4. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    Science.gov (United States)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  5. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea

    Science.gov (United States)

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-01-01

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180

  6. Lacustrine basin evolution and coal accumulation of the Middle Jurassic in the Saishiteng coalfield, northern Qaidam Basin, China

    Directory of Open Access Journals (Sweden)

    Meng Li

    2016-07-01

    Full Text Available Based on an extensive borehole survey of the Middle Jurassic coal-bearing sequences in the Saishiteng coalfield, northern Qaidam Basin (NQB, a total of 20 rock types and 5 sedimentary facies were identified, including braided river, meandering river, braided delta, meandering river delta, and lacustrine facies. The distribution of rock types and sedimentary facies contributed to the reconstruction of three periods' sedimentary facies maps of the Middle Jurassic in the Saishiteng coalfield, namely, the Dameigou age, the early Shimengou age and the late Shimengou age. That also provided the basis for the development of a three-stage depositional model of the Middle Jurassic in the NQB, indicating the lacustrine basin of the NQB in the Dameigou age and early Shimengou age were corresponding to an overfill basin, and that in the late Shimengou age was related to a balanced-fill basin. The analysis of the stability and structure of coal seams based on sedimentary facies maps showed that the preferred coal-forming facies in the Saishiteng coalfield were inter-delta bay and interdistributary bay of lower delta plain in the Dameigou age. In particular, the swamps that developed on the subaqueous palaeohigh favored the development of thick coal seams. Thus, minable coal seams may also be found along the Pingtai palaeohigh in the western part of the Saishiteng coalfield.

  7. Successful coal winning with two shearers using chainless haulage

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, W

    1977-10-06

    Coal winning in one production district at Rheinpreussen Colliery is described. Extracted seam thickness is 2.95 m, of which 1.15 m is dirt. Eickhoff double-ended ranging shearer loaders with Eicotrack chainless haulage have proved successful, even though this coal is difficult to cut because of the dirt bands. The introduction of twin-belt conveyor drives allowed the distances between centers in the long-haul belt systems to be increased, thereby improving safety.

  8. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents

    Science.gov (United States)

    Hacker, Bradley R.; Abers, Geoffrey A.; Peacock, Simon M.

    2003-01-01

    We present a new compilation of physical properties of minerals relevant to subduction zones and new phase diagrams for mid-ocean ridge basalt, lherzolite, depleted lherzolite, harzburgite, and serpentinite. We use these data to calculate H2O content, density and seismic wave speeds of subduction zone rocks. These calculations provide a new basis for evaluating the subduction factory, including (1) the presence of hydrous phases and the distribution of H2O within a subduction zone; (2) the densification of the subducting slab and resultant effects on measured gravity and slab shape; and (3) the variations in seismic wave speeds resulting from thermal and metamorphic processes at depth. In considering specific examples, we find that for ocean basins worldwide the lower oceanic crust is partially hydrated (measurements. Subducted hydrous crust in cold slabs can persist to several gigapascals at seismic velocities that are several percent slower than the surrounding mantle. Seismic velocities and VP/VS ratios indicate that mantle wedges locally reach 60-80% hydration.

  9. A local adaptive method for the numerical approximation in seismic wave modelling

    Directory of Open Access Journals (Sweden)

    Galuzzi Bruno G.

    2017-12-01

    Full Text Available We propose a new numerical approach for the solution of the 2D acoustic wave equation to model the predicted data in the field of active-source seismic inverse problems. This method consists in using an explicit finite difference technique with an adaptive order of approximation of the spatial derivatives that takes into account the local velocity at the grid nodes. Testing our method to simulate the recorded seismograms in a marine seismic acquisition, we found that the low computational time and the low approximation error of the proposed approach make it suitable in the context of seismic inversion problems.

  10. An overview of the geological controls in underground coal gasification

    Science.gov (United States)

    Mohanty, Debadutta

    2017-07-01

    Coal’s reign will extend well into this millennium as the global demand for coal is expected to increase on average by 2-1% per year through 2019. Enhanced utilization of the domestic coal resource through clean coal technologies is necessary to meet the energy needs while achieving reduced emissions. Underground coal gasification (UCG) is one of such potential technologies. Geology of the area plays decisive role throughout the life of a UCG project and imperative for every phase of the project cycle starting from planning, site selection, design to cessation of operations and restoration of the site. Impermeable over/underlying strata with low porosity and less deformation are most suitable for UCG processes as they act as seal between the coal seam and the surrounding aquifers while limiting the degree of subsidence. Inrush of excess water into the gasification chamber reduces the efficacy of the process and may even quench the reactions in progress. Presence of fresh water aquifer in the vicinity of target coal seam should be abandoned in order to avoid groundwater contamination. UCG is not a proven technology that is still evolving and there are risks that need to be monitored and managed. Effective shutdown programme should intend at minimising the post-burn contaminant generation by flushing out potential organic and inorganic contaminants from the underground strata and treating contaminants, and to restore ground water quality to near baseline conditions.

  11. Aluminized film, seam sealing tests and observations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-16

    The purpose of this work was to investigate various seam sealing techniques, reinforcing methods, fitting installations, seam tolerances and geometric configurations pertinent to an aluminized plastic laminate. The program seeks a successful fabricating method for producing low-diffusion, cylindrical, spar liners to contain pressurized GH{sub 2} and GO{sub 2}. The test plan included: (1) seaming techniques on metallized Mylar film; (2) ``double patches`` for end fittings; (3) stainless steel bulkhead fitting assembly with seals; (4) minimum run tolerance on linear shear seam; (5) peel seam vs. inverted seal seam fabrication.

  12. Seismic waves in 3-D: from mantle asymmetries to reliable seismic hazard assessment

    Science.gov (United States)

    Panza, Giuliano F.; Romanelli, Fabio

    2014-10-01

    A global cross-section of the Earth parallel to the tectonic equator (TE) path, the great circle representing the equator of net lithosphere rotation, shows a difference in shear wave velocities between the western and eastern flanks of the three major oceanic rift basins. The low-velocity layer in the upper asthenosphere, at a depth range of 120 to 200 km, is assumed to represent the decoupling between the lithosphere and the underlying mantle. Along the TE-perturbed (TE-pert) path, a ubiquitous LVZ, about 1,000-km-wide and 100-km-thick, occurs in the asthenosphere. The existence of the TE-pert is a necessary prerequisite for the existence of a continuous global flow within the Earth. Ground-shaking scenarios were constructed using a scenario-based method for seismic hazard analysis (NDSHA), using realistic and duly validated synthetic time series, and generating a data bank of several thousands of seismograms that account for source, propagation, and site effects. Accordingly, with basic self-organized criticality concepts, NDSHA permits the integration of available information provided by the most updated seismological, geological, geophysical, and geotechnical databases for the site of interest, as well as advanced physical modeling techniques, to provide a reliable and robust background for the development of a design basis for cultural heritage and civil infrastructures. Estimates of seismic hazard obtained using the NDSHA and standard probabilistic approaches are compared for the Italian territory, and a case-study is discussed. In order to enable a reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered, resulting in a new, very efficient, analytical procedure for computing the broadband seismic wave-field in a 3-D anelastic Earth model.

  13. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    Science.gov (United States)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  14. Influence of coal mining on the deformation-failure and permeability of seam floor%煤炭开采对煤层底板变形破坏及渗透性的影响

    Institute of Scientific and Technical Information of China (English)

    孟召平; 王保玉; 徐良伟; 吴志远; 白刚; 路波涛

    2012-01-01

    Except the geological factors, the deformation and failure of seam floor are also controlled by mining factors. The influence of coal mining on stress-strain and permeability of seam floor in working face and its failure regularities were studied through theoretical analysis and the experiment. The research result shows that the permeability of the rock with different lithology is a function of strain in the process of complete stress-strain. In the micro-fracture closure and elastic deformation stage, the primary pores and cracks of rocks are easily compacted, it is obviously that rock permeability decreases with the increase of stress, when the stress intensity increases to the limit, the rock sample is destroyed and cracks through the sample are formed,, the rock permeability rapidly increases to the maximum. There are some differences between rocks with different lithology. With advancement of working face, the seam floor rocks are divided into four areas horizontally, they are initial stress area, advanced stress compression area, direct damaged area of mining stress and stress recovery area of floor rock mass. Permeability of seam floor rock shows regular variation with the deformation and failure of seam floor rock during coal mining.%煤层底板变形破坏除受地质因素控制外,还受开采因素影响.通过试验和理论分析,系统研究了煤炭开采对回采工作面底板应力、应变和破坏及渗透性的影响.研究结果表明,不同岩性岩石的渗透性在全应力-应变过程中为应变的函数,在微裂隙闭合和弹性变形阶段,岩石的原生孔隙和裂隙容易被压密,岩石的渗透率随应力的增加由大变小明显,当应力增大至极限强度时岩石试件破坏形成贯穿

  15. Environmental impact assessment for steeply dipping coal beds: North Knobs site

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-08

    The US Department of Energy is funding an underground coal gasification (UCG) project in steeply dipping coal beds (SDB), at North Knobs, about 8 miles west of Rawlins, Carbon County, Wyoming. The project is being conducted to determine the technical, economic and environmental viability of such a technology. The development of SDB is an interesting target for UCG since such beds contain coals not normally mineable economically by ordinary techniques. Although the underground gasification of SDB has not been attempted in the US, Soviet experience and theoretical work indicate that the gasification of SDB in place offers all the advantages of underground gasification of horizontal coal seams plus some unique characteristics. The steep angle of dip helps to channel the produced gases up dip to offtake holes and permits the ash and rubble to fall away from the reaction zone helping to mitigate the blocking of the reaction zone in swelling coals. The intersection of SDB with the surface makes the seam accessible for drilling and other preparation. The tests at the North Knobs site will consist of three tests, lasting 20, 80 and 80 days, respectively. A total of 9590 tons of coal is expected to be gasified, with surface facilities utilizing 15 acres of the total section of land. The environmental effects of the experiment are expected to be very small. The key environmental impact is potential groundwater contamination by reaction products from coal gasification. There is good evidence that the surrounding coal effectively blocks the migration of these contaminants.

  16. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  17. Observations of short period seismic scattered waves by small seismic arrays

    Directory of Open Access Journals (Sweden)

    M. Simini

    1997-06-01

    Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.

  18. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    Science.gov (United States)

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  19. Seismic monitoring of ground caving processes associated with longwall mining of coal

    International Nuclear Information System (INIS)

    Hatherly, P.; Luo, X.; Dixon, R.; McKavanagh, B.

    1997-01-01

    At the Gordonstone Coal Mine in Central Queensland, Australia, a microseismic monitoring study was undertaken to investigate the extent of ground failure caused by longwall mining. Twenty seven triaxial geophones were deployed in three vertical boreholes and over a six week period more than 1200 events were recorded. The seismicity correlated with periods of longwall production and occurred mainly within the 250 m wide mining panel. There was an arcuate zone of activity which extended from behind the face, at the sides of the panel and up to 70 m ahead of the face in the middle. There was lesser activity to a depth of about 30 m into the floor. The focal mechanisms show that reverse faulting was dominant. The presence of activity and reverse faulting ahead of the face was an unexpected result. However, piezometer readings at the time of the study and subsequent numerical modelling have supported this finding. This was the first detailed microseismic monitoring study of caving in an Australian underground coal mine. 9 refs., 6 figs

  20. Cooling Effect Analysis of Suppressing Coal Spontaneous Ignition with Heat Pipe

    Science.gov (United States)

    Zhang, Yaping; Zhang, Shuanwei; Wang, Jianguo; Hao, Gaihong

    2018-05-01

    Suppression of spontaneous ignition of coal stockpiles was an important issue for safe utilization of coal. The large thermal energy from coal spontaneous ignition can be viewed as the latent energy source to further utilize for saving energy purpose. Heat pipe was the more promising way to diffuse effectively concentrated energy of the coal stockpile, so that retarding coal spontaneous combustion was therefore highly desirable. The cooling mechanism of the coal with heat pipe was pursued. Based on the research result, the thermal energy can be transported from the coal seam to the surface continuously with the use of heat pipe. Once installed the heat pipes will work automatically as long as the coal oxidation reaction was happened. The experiment was indicated that it can significantly spread the high temperature of the coal pile.

  1. Microstructures and microtextures of natural cokes: A case study of heat-affected coking coals from the Jharia coalfield, India

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K. [Central Fuel Research Institute, CSIR, Dhanbad-828108 (India); Singh, Mahendra P. [Department of Geology, Banaras Hindu University, Varanasi-221005 (India); Sharma, Mamta; Srivastava, Sunil K.

    2007-07-02

    In Jharia coalfield, nearly 1250 Mt of coking coal has been devolatilized due to igneous intrusives and {proportional_to} 1900 Mt due to mine fires. This paper is an effort to investigate the effect of carbonization in two intrusive affected coal seams of Ena (seam XIII) and Alkusa (seam XIV) collieries of this coalfield. Through petrographic studies by microscopy, characterization of normal and heat-affected coals was carried out. The microstructures and microtextures produced due to extraneous heat have been related to nature and extent of heat, location of heating source, and quality and quantity of natural coke produced. Based on the results of this study and earlier studies, an effort has been made to study the classification scheme for microtextures of natural cokes generated through in-situ carbonization of the coal seams. It has been observed that in case of such heat effects under overburden pressure, the anisotropy is much more pronounced as compared to laboratory-carbonized cokes. In the mildly carbonized coals (pre-plastic phase, < 300 C) the vitrinite attained higher reflectance than normal vitrinite, liptinite started disappearing, and inertinite remained unaffected. In the moderately affected coals (plastic phase, 300-500 C), mesophase spheres and fused natural cokes were generated from the reactives (vitrinite and liptinite maceral groups), the liptinites disappeared, and structurally, the inertinites remained almost unchanged with slight increase in the reflectance value. In the severely heat-affected coals (post plastic phase, > 500 C) the identified microtextures were mesophase spheres, different shapes and sizes of natural cokes, graphitic sphaeroliths, pyrolytic carbons, inerts with morpho-structural changes and slightly higher reflectance values, and altered and unaltered mineral matters. A gradual change in the heat-affected coals with increasing temperature was observed with respect to location of intrusive body. It has been concluded that

  2. Development and linearization of generalized material balance equation for coal bed methane reservoirs

    International Nuclear Information System (INIS)

    Penuela, G; Ordonez R, A; Bejarano, A

    1998-01-01

    A generalized material balance equation was presented at the Escuela de Petroleos de la Universidad Industrial de Santander for coal seam gas reservoirs based on Walsh's method, who worked in an analogous approach for oil and gas conventional reservoirs (Walsh, 1995). Our equation was based on twelve similar assumptions itemized by Walsh for his generalized expression for conventional reservoirs it was started from the same volume balance consideration and was finally reorganized like Walsh (1994) did. Because it is not expressed in terms of traditional (P/Z) plots, as proposed by King (1990), it allows to perform a lot of quantitative and qualitative analyses. It was also demonstrated that the existent equations are only particular cases of the generalized expression evaluated under certain restrictions. This equation is applicable to coal seam gas reservoirs in saturated, equilibrium and under saturated conditions, and to any type of coal beds without restriction on especial values of the constant diffusion

  3. SH-wave reflection seismic and VSP as tools for the investigation of sinkhole areas in Germany

    Science.gov (United States)

    Wadas, Sonja; Tschache, Saskia; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes can lead to damage of buildings and infrastructure and they can cause life-threatening situations, if they occur in urban areas. The process behind this phenomenon is called subrosion. Subrosion is the underground leaching of soluble rocks, e.g. anhydrite and gypsum, due to the contact with ground- and meteoric water. Depending on the leached material, and especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. For a better understanding of the subrosion processes a detailed characterization of the resulting structures is necessary. In Germany sinkholes are a problem in many areas. In northern Germany salt and in central and southern Germany sulfate and carbonate deposits are affected by subrosion. The study areas described here are located in Thuringia in central Germany and the underground is characterized by soluble Permian deposits. The occurrence of 20 to 50 sinkholes is reported per year. Two regions, Bad Frankenhausen and Schmalkalden, are investigated, showing a leaning church tower and a sinkhole of 30 m diameter and 20 m depth, respectively. In Bad Frankenhausen four P-wave and 16 SH-wave reflection seismic profiles were carried out, supplemented by three zero-offset VSPs. In Schmalkalden five SH-wave reflection seismic profiles and one zero-offset VSP were acquired. The 2-D seismic sections, in particular the SH-wave profiles, showed known and unknown near-surface faults in the vicinity of sinkholes and depressions. For imaging the near-surface ( 2,5, probably indicating unstable areas due to subrosion. We conclude, that SH-wave reflection seismic offer an important tool for the imaging and characterization of near-surface subrosion structures and the identification of unstable zones, especially in combination with P-wave reflection seismic and zero-offset VSP with P- and S-waves. Presumably there is a connection between the presence of large

  4. Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity

    Directory of Open Access Journals (Sweden)

    S. Koshevaya

    2005-01-01

    Full Text Available Modeling of the spectrum of the seismo-electromagnetic and acoustic waves, caused by seismic and volcanic activity, has been done. This spectrum includes the Electromagnetic Emission (EME, due to fracturing piezoelectrics in rocks and the Acoustic Emission (AE, caused by the excitation and the nonlinear passage of acoustic waves through the Earth's crust, the atmosphere, and the ionosphere. The investigated mechanism of the EME uses the model of fracturing and the crack motion. For its analysis, we consider a piezoelectric crystal under mechanical stresses, which cause the uniform crack motion, and, consequently, in the vicinity of the moving crack also cause non-stationary polarization currents. A possible spectrum of EME has been estimated. The underground fractures produce Very Low (VLF and Extremely Low Frequency (ELF acoustic waves, while the acoustic waves at higher frequencies present high losses and, on the Earth's surface, they are quite small and are not registered. The VLF acoustic wave is subject to nonlinearity under passage through the lithosphere that leads to the generation of higher harmonics and also frequency down-conversion, namely, increasing the ELF acoustic component on the Earth's surface. In turn, a nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to emerging the ultra low frequency (ULF acousto-gravity waves in the ionosphere and possible local excitation of plasma waves.

  5. Comparative organic petrology of interlayered sandstones, siltstones, mudstones and coals in the Upper Carboniferous Ruhr basin, northwest Germany, and their thermal history and methane generation

    Energy Technology Data Exchange (ETDEWEB)

    Scheidt, G.; Littke, R. (Harress Geotechnik GmbH, Floersheim (Germany, F.R.))

    1989-01-01

    In the coal-mining Ruhr-area, Upper Carboniferous rocks consist of interlayered sandstones, siltstones, mudstones and coals. They were deposited in a tropical, paralic environment where alternating fluvial sedimentation, occasional marine ingressions, and swamp growth resulted in an irregular cyclic succession. The total sedimentary package contains on an average 6 Vol.% of organic manner. About 70 Vol. % of the organic matter occurs in coal seams, the rest as dispersed organic matter in clastic rocks. The organic matter is autochthonous in the coals and allochthonous in associated sandstones and siltstones. It consists of about 70% vitrinite, 20% inertinite, and 10% liptinite. The overall maceral group composition is the same for coals and dispersed organic matter. This surprising similarity is caused by a nearly exclusive input of land-plant derived organic matter to swamps and fluvial systems and a similar degree of preservation. Highest average liptinite contents were found in unrooted mudstones, highest average inertinite contents in coarse-grained siltstones and highest average vitrinite percentages in sandstones. Maturities of the sediments studied are well within the hydrocarbon generation window, e.g. vitrinite reflectivities range from 0.6% to 1.6%. Reflectivities measured on dispersed particles in clastic rocks are similar to those measured in coal seams. Calculations of the amount of methane generated indicate that coal seams contributed more to the total hydrocarbon generation than dispersed organic matter. 51 refs., 13 figs.

  6. Geology and coal potential of Somaliland

    Energy Technology Data Exchange (ETDEWEB)

    M.Y. Ali [Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-07-01

    Geological field mapping along with available geological and drilling data suggest that Somaliland (Northwestern Somalia) has favourable stratigraphy and structure for coal deposits. Lignitic to sub-bituminous coal deposits with ages from Jurassic to Oligocene-Miocene occur in various locations across the country including Hed-Hed valley south of Onkhor, Guveneh hills north of Las Dureh and Daban Basin southeast of Berbera. However, the coal occurrence at Hed-Hed has both the greatest thickness and highest quality. These deposits have the potential to provide an important alternative fuel resource which could alleviate the growing shortage of traditional fuels and assist in reducing the country's dependence on imported energy. However, further investigation, including drilling and laboratory analyses, still needs to be carried out, particularly on the Upper Cretaceous coal seams to evaluate the quality and resource potential of the deposits.

  7. Development of science and technology in underground coal mining in Czechoslovakia during the 7th 5 year plan

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M.

    1982-01-01

    Reviews main tasks of underground coal mining in Czechoslovakia from 1981 to 1985 in the following basins: Ostrava-Karvina, Kladno, Prievidza, Most and Sokolov. The planned increase of brown and black coal output in each of the basins is discussed. Selected problems associated with mining are evaluated: significant increase of mining depth, rock burst hazards, methane hazards and water influx in the Ostrava-Karvina basin. Investment program in the current 5 year plan as well as until the year 2000 is analyzed: sinking of 38.8 km of mine shafts and 4.4 km of blind shafts. Equipment for shaft sinking produced in the USA (by Robins the 241 SB-184) and in the USSR (the Uralmash Sk-1U system) is compared. Design and technical specifications of the two systems are given. Equipment for mine drivage is also reviewed. The following machines are described: the TVM-55H by Demag (FRG), the TBS V-600E/Sch by Wirth (FRG), the TBM ser. 18a781 by Robins (USA) and the MARK-18T by JARVA (USA). Selected types of powered supports which will be widely used in coal mines in the current 5 year plan are evaluated. Research programs in underground coal mining are reviewed (safety, mining thin coal seams, slice mining of thick coal seams in the Namurian B series, mining extremely thick seams with stowing of the top slice and mining with caving the 4.5 m thick bottom slice). (4 refs.) (In Czech)

  8. Compressional seismic waves recorded during underground nuclear explosion tests in HOGGAR

    International Nuclear Information System (INIS)

    Ferrieux, Henri

    1970-01-01

    The seismic measurement device was the following: - a movable apparatus in the shot area, - at larger distances, two stations at permanent places. The radial compression wave is examined from the beginning of the pseudo-elastical behaviour of the medium to a distance of fifty kilometers. The amplitude laws evolution is conformed to the theory predictions. The shots energy and the observation distance influence on the amplitude spectra of the compression waves, is studied. (author)

  9. Compressional seismic waves recorded during underground nuclear explosion tests in HOGGAR

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieux, Henri [Commissariat a l' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)

    1970-05-15

    The seismic measurement device was the following: - a movable apparatus in the shot area, - at larger distances, two stations at permanent places. The radial compression wave is examined from the beginning of the pseudo-elastical behaviour of the medium to a distance of fifty kilometers. The amplitude laws evolution is conformed to the theory predictions. The shots energy and the observation distance influence on the amplitude spectra of the compression waves, is studied. (author)

  10. The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion.

    Energy Technology Data Exchange (ETDEWEB)

    Poppeliers, Christian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    This report describes a new single-station analysis method to estimate the dispersion and uncer- tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the dispersion of a surface wave using only a single seismic station, the seismogram is decomposed into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping and normalizing the filtered seismograms and identifying the maximum power as a function of frequency, the group velocity can be estimated if the source-receiver distance is known. However, using the filter bank method, there is no robust way to estimate uncertainty. In this report, I in- troduce a new method of estimating the group velocity that includes an estimate of uncertainty. The method is similar to the conventional filter bank method, but uses a class of functions, called Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By taking multiple wavelet transforms, I form a population of dispersion estimates from which stan- dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms recorded by the University of Nevada Seismic Network.

  11. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post

  12. Effect of Seams on Drape of Fabrics | Sukumar | African Research ...

    African Journals Online (AJOL)

    In this study drape of ten fabrics are analyzed with three types of seams and three stitch densities. Sample without seam is a control sample and drape of seamed samples are compared with control sample to analyse the drape behavior of seamed fabrics. This paper presents a fundamental drape analysis of seamed fabrics ...

  13. Estimation of active rockburst prevention effectiveness during longwall mining under disadvantageous geological and mining conditions

    Directory of Open Access Journals (Sweden)

    Łukasz Wojtecki

    2016-01-01

    Full Text Available Underground longwall mining of coal seams in the Upper Silesian Coal Basin is currently being carried out under increasingly difficult geological and mining conditions. Mining depth, dislocations and mining remnants are the main factors responsible for the most significant rockburst hazard, which can be minimized via the use of active and passive rockburst prevention. Active rockburst prevention in longwalls is usually based on blasting, in order to either destress local stress concentrations in the rock mass or to fracture the thick layers of strong roof rocks to prevent or minimize the impact of high energy tremors on excavations. The accurate estimation of active rockburst prevention effectiveness is particularly important when mining under disadvantageous geological and mining conditions, which are associated with high levels of this hazard. The efficiency of blasting applied for this purpose is typically evaluated from the seismic effect, which is calculated based on seismic monitoring data and the weight of the charged explosive. This method, as used previously in the Czech Republic, was adopted in the present study to analyze conditions occurring in a Polish hard coal mine in the Upper Silesian Coal Basin. Parameters of long hole destress blastings in roof rocks (torpedo blastings from the face of the assigned longwall in coal seam no. 507 were correct a success according to the seismic effect method and corresponded to observations made in situ. The analytical method presented enables the rapid estimation of destress blasting effectiveness and could also be useful when determining appropriate active rockburst prevention.

  14. Relationships between seismic wave-Speed, density, and electrical conductivity beneath Australia from seismology, mineralogy, and laboratory-based conductivity profiles

    DEFF Research Database (Denmark)

    Khan, A.; Koch, S.; Shankland, T. J.

    2015-01-01

    We present maps of the three-dimensional density (ρ), electrical conductivity (σ), and shear-wave speed (VS) structure of the mantle beneath Australia and surrounding ocean in the depth range of 100–800 km. These maps derived from stochastic inversion of seismic surface-wave dispersion data...... shear-wave speeds, low densities, and high conductivities. This trend appears to continue to depths well below 300 km. The slow-fast shear-wave speed distribution found here is also observed in independent seismic tomographic models of the Australian region, whereas the coupled slow-fast shear......-wave speed, low-high density, and high-low electrical conductivity distribution has not been observed previously. Toward the bottom of the upper mantle at 400 km depth marking the olivine ⃗ wadsleyite transformation (the “410–km” seismic discontinuity), the correlation between VS, ρ, and σ weakens...

  15. Global propagation of cyclone-induced seismic wave from the Atlantic detected by the high-sensitivity accelerometers of Hi-net, Japan

    Science.gov (United States)

    Matsuzawa, T.; Obara, K.; Maeda, T.

    2008-12-01

    A nationwide seismic network in Japan detected long period microtremors from the northern Atlantic region. It is reported that a cyclone generate ocean swells which excite microtremors. If the microtremors have sufficient intensity, the seismic waves propagate far from the source. Such propagation was sometimes observed at the high-sensitivity accelerometers of Hi-net, NIED. In this study, a migration of the source location with a cyclone is estimated by an array analysis technique, combining broadband seismic data of another array. In the middle of March 2007, anomalous seismic waves were continuously arrived from the north direction in Japan. Such waves were automatically detected by the array analysis of Hi-net data. The automated analysis also shows that the seismic wave is originated far from Japan because the propagation is well approximated to plane waves rather than cylindrical waves. The waves are especially predominant at the period of around 20 s. In addition, from a semblance analysis, apparent velocity is estimated to 3.4--3.6 km/s and 3.8--4.0 km/s in radial and transverse components, respectively. This suggests that the observed waves are composed both of Rayleigh and Love waves. To discuss the more accurate direction and the temporal change, we apply a multiple signal classification (MUSIC) method to the data of high-sensitivity accelerometers. The arrival direction rotated to several degrees clockwise from the azimuth of -15 degrees. In addition, we analyze broadband seismic data of the Graefenberg-array (GRF array) in Germany, and also obtain an evident rotation of the arrival direction from - 40 to -5 degrees. The result of array analysis suggests that the source of seismic wave moves to the north direction at the North Sea and the Norwegian Sea. The location of the source is estimated as the intersections of the expected ray paths from two arrays. To calculate a ray path, we assumed the Rayleigh wave velocity at the period of 35 s. The shooting

  16. Shear-wave polarization analysis of the seismic swarm following the July 9th 1998 Faial (Azores) earthquake

    Science.gov (United States)

    Dias, N. A.; Matias, L.; Tellez, J.; Senos, L.; Gaspar, J. L.

    2003-04-01

    The Azores Islands, located at a tectonic triple Junction, geodynamically are a highly active place. The seismicity in this region occurs mainly in the form of two types of seismic swarms with tectonic and/or volcanic origins, lasting from hours to years. In some cases the swarm follows a main stronger shock, while in others the more energetic event occurs sometime after the beginning of the swarm. In order to understand the complex phenomena of this region, a multidisciplinary approach is needed, involving geophysical, geological and geochemical studies such as the one being carried under the MASHA project (POCTI/CTA/39158/2001), On July 9th 1998 an Mw=6.2 earthquake stroked the island of Faial, in the central group of the Azores archipelago, followed by a seismic swarm still active today. We will present some preliminary results of the shear-wave polarization analysis of a selected dataset of events of this swarm. These correspond to the 112 best- constrained events, record during the first 2 weeks by the seismic network deployed on the 3 islands surrounding the area of the main shock. The objective was to analyse the behaviour of the S wave polarization and the eventual relationship with the presence of seismic anisotropy under the seismic stations, and to correlate this with the regional structure and origin of the Azores plateau. Two main tectonic features are observable on the islands, one primarily orientated SE-NW and the other crossing it roughly with the WNW-ESE direction. The polarization direction observed in the majority of the seismic stations is not stable, varying from SE-NW to WSW-ENE, and showing also the presence in same cases of shear-wave splitting, indicating the presence of anisotropy. Part of the polarization seems to be coherent with the direction of the local tectonic features, but its instability suggest a more complex seismic anisotropy than that proposed by the model EDA of Crampin. Furthermore, the dataset revealed some limitations to

  17. Investigation of the feasibility of underground coal gasification in North Dakota, United States

    International Nuclear Information System (INIS)

    Pei, Peng; Nasah, Junior; Solc, Jaroslav; Korom, Scott F.; Laudal, Daniel; Barse, Kirtipal

    2016-01-01

    Highlights: • A four-year feasibility study of underground coal gasification is presented. • A test site was selected for feasibility investigation. • Gasification test, a hydrogeological study and geomechanical study were performed. • Results suggest favorable conditions for UCG development at the selected site. - Abstract: Underground coal gasification (UCG) is a promising technology that has the potential to recover currently-unmineable coal resources. The technical feasibility and economic success of a UCG project is highly site specific. Any risks associated with UCG, such as subsidence, groundwater contamination, and syngas quality, should be sufficiently evaluated through a feasibility study. This paper presents a four-year UCG feasibility study utilizing lignite seams in North Dakota, United States. Four wells were drilled through the lignite seams at a selected site, and lignite and strata cores were recovered. A geological model of the formation was built, coal and rock properties were analyzed, and field hydrogeological tests and laboratory gasification tests were performed. This work provided valuable insights in rock mechanics, hydrogeology, and coal properties. The study results show that the selected site is suitable for development of a UCG plant because there are minimal induced subsidence risks, there is hydrological isolation from major aquifers and the coal produces desirable syngas quality for liquid fuel production. Methodologies developed in this study will benefit the design, optimization and management of the UCG process.

  18. Seismic waves at the epicenter's antipode

    International Nuclear Information System (INIS)

    Rial, J.A.; Cormier, V.F.

    1980-01-01

    The antipodal region (178 0 0 ) of a seismic wave source is investigated in detail and shown to provide a new set of remarkable data to use in the exploration of the earth's interior. Body and surface waves converge individually at antipodal distances after having sampled laterally the totality of the planet. The waves are focused and strongly amplified up to 1 order of magnitude with respect to the normal phase recorded 2 0 or more away. The delicate interference patterns thus formed yield information on departures from lateral homogeneity and sphericity of the core and mantle, the structure of the inner core, global dissipation characteristics of the upper mantle, and provide strong constraints on earth models. Seismograms have been synthesized that closely reproduce the phases P/sub diff/, PKIKP, PKIIKP, PKP(BC), PKP, and PP observed at World-Wide Standard Seismographic Network long-period instruments located within 5 0 from the antipode of the New Zealand Inangahua earthquake of May 23, 1968. Preliminary results indicate that the lower mantle and upper core are laterally homogeneous as seen by 15-s waves, but the core-mantle boundary region is probably laterally inhomogeneous. The inner core--outer core boundary appears to be a sharp transition with a P wave velocity jump of the order of 0.8 km/s. The resolution of the long-period data is poor, but the potential richness of the method when better data sets are available strongly motivated the investigation. Suggested future lines of research using antipodal observations include monitoring of inner core phases, study of focal processes of large earthquakes, and the exploration of planetary interiors

  19. Underground coal gasification: An overview of groundwater contamination hazards and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Camp, David W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-13

    Underground coal gasification is the in situ conversion of coal into an energy-rich product gas. It takes place deep underground, using chemical reactions to consume the coal and grow a cavity. Gas wells, drilled into the coal seam, inject reactant air, oxygen, and/or steam to sustain the reactions. Production wells then extract the product gas. Careful analysis and understanding of likely failure modes will help prevent and minimize impacts. This document provides a general description of the relevant processes, potential failure modes, and practical mitigation strategies. It can guide critical review of project design and operations.

  20. Non-periodic homogenization of 3-D elastic media for the seismic wave equation

    Science.gov (United States)

    Cupillard, Paul; Capdeville, Yann

    2018-05-01

    Because seismic waves have a limited frequency spectrum, the velocity structure of the Earth that can be extracted from seismic records has a limited resolution. As a consequence, one obtains smooth images from waveform inversion, although the Earth holds discontinuities and small scales of various natures. Within the last decade, the non-periodic homogenization method shed light on how seismic waves interact with small geological heterogeneities and `see' upscaled properties. This theory enables us to compute long-wave equivalent density and elastic coefficients of any media, with no constraint on the size, the shape and the contrast of the heterogeneities. In particular, the homogenization leads to the apparent, structure-induced anisotropy. In this paper, we implement this method in 3-D and show 3-D tests for the very first time. The non-periodic homogenization relies on an asymptotic expansion of the displacement and the stress involved in the elastic wave equation. Limiting ourselves to the order 0, we show that the practical computation of an upscaled elastic tensor basically requires (i) to solve an elastostatic problem and (ii) to low-pass filter the strain and the stress associated with the obtained solution. The elastostatic problem consists in finding the displacements due to local unit strains acting in all directions within the medium to upscale. This is solved using a parallel, highly optimized finite-element code. As for the filtering, we rely on the finite-element quadrature to perform the convolution in the space domain. We end up with an efficient numerical tool that we apply on various 3-D models to test the accuracy and the benefit of the homogenization. In the case of a finely layered model, our method agrees with results derived from Backus. In a more challenging model composed by a million of small cubes, waveforms computed in the homogenized medium fit reference waveforms very well. Both direct phases and complex diffracted waves are

  1. FINOSEIS: A new approach to offshore-building foundation soil analysis using high resolution reflection seismic and Scholte-wave dispersion analysis

    Science.gov (United States)

    Wilken, Dennis; Wölz, Susanne; Müller, Christof; Rabbel, Wolfgang

    2009-05-01

    As part of the FINOSEIS project we present the development of new seismic acquisition and inversion concepts for offshore-building foundation soil analysis. FINOSEIS is a subproject of the FINO3 project, which is aimed at the construction of an offshore research platform based in 28 m water depth, hosting eight research projects dealing with offshore wind energy topics. Our investigations focus on the determination of seismic parameters and structural information of the building plot of FINO3. We infer the shear-wave velocity structure by exploiting the dispersive properties of Scholte-waves and use high resolution 2.5D reflection seismic acquisition to determine seismic stratigraphy in three dimensions. Our work is motivated regarding possible hazards to offshore foundations such as wind parks and the FINO3 platform itself, e.g. permanent mechanical load by wind- and wave-forces possibly leading to an impairment of the soil. We conducted a pre-investigation of the site of the future platform in order to help finding a suitable foundation soil by improving common site investigation methods. In May 2006 we did a survey covering an area of 2 km square employing high resolution 2.5D reflection seismic. Along three 2 km airgun profiles Scholte-waves were recorded with Ocean-Bottom-Seismometers. Spectral analysis of these led to pseudo-2D shear-wave velocity models along the profiles. The reflection seismic area is characterized by glacial stratigraphy and diffractions documented within the penetration range of 30 m. With respect to the topography of the identified horizons as well as to the distribution of diffracting objects, a suitable foundation area for the platform was suggested. The results of the Scholte-wave experiment provide valuable information for further inversion models as well as for the dimensioning of further measurements. We also implemented an inversion strategy using the particle swarm optimization method. The inverted layers of shear-wave velocity

  2. WAVE EQUATION DATUMING TO CORRECT TOPOGRAPHY EFFECT ON FOOTHILL SEISMIC DATA

    Directory of Open Access Journals (Sweden)

    Montes Vides Luis Alfredo

    2005-08-01

    Full Text Available The current seismic processing applies Static Corrections to overcome the effects associated to rough topography, based in the assumption that velocity in near surface is lower than in the substratum, which force going up rays travel near to vertical. However, when the velocity contrast between these layers is not large enough, the trajectory of the up going rays deviate from vertical raveling the reflectors erroneously. A better alternative to correct this is to continue the wave field to a datum, because it does not assume vertical ray trajectory and solves the acoustic wave equation to extrapolate sources and receivers. The Kirchhoff approach was tested in synthetic shots continuing their wave field to a datum and finally it was applied instead of Static Corrections in real data acquired in foothill zones. First shot and receiver gathers were downward continued to the base of weathering layer and later upward continued to a final flat datum. Comparing the obtained results we observed that continuation approach provides a noticeable enhancement of reflectors in seismic records, displaying a better continuity of the reflectors and an increment in frequency content.

  3. Improvements in seismic event locations in a deep western U.S. coal mine using tomographic velocity models and an evolutionary search algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Adam Lurka; Peter Swanson [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Methods of improving seismic event locations were investigated as part of a research study aimed at reducing ground control safety hazards. Seismic event waveforms collected with a 23-station three-dimensional sensor array during longwall coal mining provide the data set used in the analyses. A spatially variable seismic velocity model is constructed using seismic event sources in a passive tomographic method. The resulting three-dimensional velocity model is used to relocate seismic event positions. An evolutionary optimization algorithm is implemented and used in both the velocity model development and in seeking improved event location solutions. Results obtained using the different velocity models are compared. The combination of the tomographic velocity model development and evolutionary search algorithm provides improvement to the event locations. 13 refs., 5 figs., 4 tabs.

  4. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal seams...

  5. The nexus of the coal industry and the state in Australia: Historical dimensions and contemporary challenges

    International Nuclear Information System (INIS)

    Baer, Hans A.

    2016-01-01

    This article presents a historical account of the close relationship between the coal mining industry and the federal and various state governments, thus over time building a state/coal industry nexus in Australia. It examines (1) an early colonial stage extending from the late 18th century to around the time of Federation in 1902 when the nexus emerged; (2) an intermediate stage from the early 20th century to the late 1970s when the nexus became solidified; and (3) a late stage from the early 1980s to the present day when the corporate sector came to dominate the nexus. Both Coalition and Australian Labor Party governments have consistently supported the exploitation of Australia's coal and natural gas, including recently coal seam gas, and supported the expansion of coal ports. An opposition movement has called for leaving coal and coal seam gas in the ground and shifting Australia’s energy production to renewable sources, particularly solar and wind energy. The article highlights how the nexus between coal mining and the state inhibits action on climate change. It argues this can be transcended by energy policy directed at socializing coal mining, wedded to a program of transitioning it to renewable energy production. - Highlights: • A close nexus exists between the coal industry and the state in Australia. • An anti-coal movement has developed in recent years in Australia. • Breaking the coal industry/state nexus requires socialization of energy production. • This would enable a shift from reliance on coal to renewable energy sources.

  6. Rapid quality control for coal seams by gamma ray transmission technique

    CERN Document Server

    Raja-Sekhar, N; Nageswara-Rao, A S

    1999-01-01

    The quality of coal expressed as useful heat value (UHV) depends on various parameters such as fixed carbon, volatiles, ash and moisture. These factors have been assessed and the detailed dependence of UHV on these parameters has been studied for samples of coal from a local mine. The samples were subjected to collimated low energy gamma beams and correlation was obtained between the attenuation coefficient and UHV. The method is reliable, fast and non-destructive and can be used in the field for estimating UHV.

  7. The coal cleat system: A new approach to its study

    OpenAIRE

    C.F. Rodrigues; C. Laiginhas; M. Fernandes; M.J. Lemos de Sousa; M.A.P. Dinis

    2014-01-01

    After a general analysis regarding the concept of coal “cleat system”, its genetic origin and practical applications to coalbed methane (CBM) commercial production and to CO2 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1) how to define the spatial orientation of the different classes of cleats presented in a coal seam and (2) how to determ...

  8. Chemometric Study of Trace Elements in Hard Coals of the Upper Silesian Coal Basin, Poland

    Science.gov (United States)

    Rompalski, Przemysław; Cybulski, Krzysztof; Chećko, Jarosław

    2014-01-01

    The objective of the study was the analysis of trace elements contents in coals of the Upper Silesian Coal Basin (USCB), which may pose a potential threat to the environment when emitted from coal processing systems. Productive carbon overburden in central and southern zones of the USCB is composed mostly of insulating tertiary formations of a thickness from a few m to 1,100 m, and is represented by Miocene and Pliocene formations. In the data study the geological conditions of the coal seams of particular zones of the USCB were taken into account and the hierarchical clustering analysis was applied, which enabled the exploration of the dissimilarities between coal samples of various zones of the USCB in terms of basic physical and chemical parameters and trace elements contents. Coals of the northern and eastern zones of the USCB are characterized by high average Hg and low average Ba, Cr, and Ni contents, whereas coals of southern and western zones are unique due to high average concentrations of Ba, Co, Cu, Ni, and V. Coals of the central part of the USCB are characterized by the highest average concentration of Mn and the lowest average concentrations of As, Cd, Pb, V, and Zn. PMID:24967424

  9. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  10. Solid-Gas Coupling Model for Coal-Rock Mass Deformation and Pressure Relief Gas Flow in Protection Layer Mining

    OpenAIRE

    Zhu, Zhuohui; Feng, Tao; Yuan, Zhigang; Xie, Donghai; Chen, Wei

    2018-01-01

    The solid-gas coupling model for mining coal-rock mass deformation and pressure relief gas flow in protection layer mining is the key to determine deformation of coal-rock mass and migration law of pressure relief gas of protection layer mining in outburst coal seams. Based on the physical coupling process between coal-rock mass deformation and pressure-relief gas migration, the coupling variable of mining coal-rock mass, a part of governing equations of gas seepage field and deformation fiel...

  11. Detecting P and S-wave of Mt. Rinjani seismic based on a locally stationary autoregressive (LSAR) model

    Science.gov (United States)

    Nurhaida, Subanar, Abdurakhman, Abadi, Agus Maman

    2017-08-01

    Seismic data is usually modelled using autoregressive processes. The aim of this paper is to find the arrival times of the seismic waves of Mt. Rinjani in Indonesia. Kitagawa algorithm's is used to detect the seismic P and S-wave. Householder transformation used in the algorithm made it effectively finding the number of change points and parameters of the autoregressive models. The results show that the use of Box-Cox transformation on the variable selection level makes the algorithm works well in detecting the change points. Furthermore, when the basic span of the subinterval is set 200 seconds and the maximum AR order is 20, there are 8 change points which occur at 1601, 2001, 7401, 7601,7801, 8001, 8201 and 9601. Finally, The P and S-wave arrival times are detected at time 1671 and 2045 respectively using a precise detection algorithm.

  12. Analysis of gas migration patterns in fractured coal rocks under actual mining conditions

    Directory of Open Access Journals (Sweden)

    Gao Mingzhong

    2017-01-01

    Full Text Available Fracture fields in coal rocks are the main channels for gas seepage, migration, and extraction. The development, evolution, and spatial distribution of fractures in coal rocks directly affect the permeability of the coal rock as well as gas migration and flow. In this work, the Ji-15-14120 mining face at the No. 8 Coal Mine of Pingdingshan Tian’an Coal Mining Co. Ltd., Pingdingshan, China, was selected as the test site to develop a full-parameter fracture observation instrument and a dynamic fracture observation technique. The acquired video information of fractures in the walls of the boreholes was vectorized and converted to planarly expanded images on a computer-aided design platform. Based on the relative spatial distances between the openings of the boreholes, simultaneous planar images of isolated fractures in the walls of the boreholes along the mining direction were obtained from the boreholes located at various distances from the mining face. Using this information, a 3-D fracture network under mining conditions was established. The gas migration pattern was calculated using a COMSOL computation platform. The results showed that between 10 hours and 1 day the fracture network controlled the gas-flow, rather than the coal seam itself. After one day, the migration of gas was completely controlled by the fractures. The presence of fractures in the overlying rock enables the gas in coal seam to migrate more easily to the surrounding rocks or extraction tunnels situated relatively far away from the coal rock. These conclusions provide an important theoretical basis for gas extraction.

  13. Investigation of the efect of the coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.; Deignan, P. [Texas A& M Univ., College Station, TX (United States)

    1995-11-01

    Experiments were conducted to investigate the effect of particle size on coal-water slurry (CWS) surface tension properties. Two different coal powder samples of different size ranges were obtained through sieving of coal from the Upper Elkhorn Seam. The surfactant (anionic DDBS-soft, dodecylbenzene sulfonic acid) concentration varied from 0 to 1.0% in weight while the coal loading remained at 40% in weight for all the cases. A du Nouy ring tensiometer and a maximum bubble pressure tensiometer measured the static and dynamic surface tensions, respectively, The results show that both static and dynamic surface tensions tend to increase with decreasing coal particle sizes suspended in CWS fuels. Examination of the peak pressure, minimum pressure, surfactant diffusion time, and dead time were also made to correlate these microscopic pressure behavior with the macroscopic dynamic surface tension and to examine the accuracy of the experiment.

  14. Experimental use of road header (AM-50) as face cutting machine for extraction of coal in longwall panel

    Energy Technology Data Exchange (ETDEWEB)

    Passi, K.K.; Kumar, C.R.; Prasad, P. [DGMS, Dhanbad (India)

    2001-07-01

    The scope of this paper has been limited to the use of available machines and techniques for attaining higher and more efficient production in underground coal mines. Under certain conditions of strata and higher degree of gassiness, the longwall method with hydraulic sand stowing is the only appropriate method of work for extraction of thick seam. In Moonidih Jitpur Colliery of M/S IISCO, No. 14 seam, Degree III gassy seam, 9.07 m thick, is extracted in multilift system with hydraulic sand stowing. In general, the bottom lift is extracted by Single Ended Ranging Arm Shearer and the middle and top lift are extracted by conventional method. However, in one of the panels spare road header machine was used as face cutting machine in bottom lift, on an experimental basis. This paper presents a successful case study of extraction of bottom lift coal by the longwall method with hydraulic sand stowing using road header (AM 50) as the face cutting machines. 9 figs.

  15. Development of basic engineering to investigate dust prevention methods in the mechanised winning of thin coal seams. Proyecto de desarrollo de la ingenieria basica para la investigacion de metodos de prevencion del pulvo en el arranque mecanizado de capas estrechas de carbon

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fidalgo, M; Alvarez Santullano, L; Eguidazu Pujades, J L; Gonzalez del Valle, S; Cordera Fernandez, J V; Arriba de la Iglesia, J.

    1990-02-01

    The article concerns research work carried out jointly by HUNOSA and the National Institute of Silicosis on dust prevention on mechanised faces where thin seams are cut by shearers with a drum diameter of less than 600 mm. Under these conditions, it is not possible to use the conventional dust suppression systems employed for high-output shearers with larger drum diameters where the large quantities of sprayed water are easily absorbed by the coal. 11 figs., 1 tab.

  16. Design guidelines for multi-seam mining at Elliot Lake

    International Nuclear Information System (INIS)

    Hedley, D.G.F.

    1978-04-01

    With the current expansion in uranium mining, multi-seam mining could again be practised at Elliot Lake as it was in the 1960s. Information on the dimensions of stopes, pillars, and parting zone was gathered from plans and sections of the relevant closed mines. Discussions were held with personnel familiar with these mines to establish instances of pillar, roof, and parting zone failures. Design guidelines are formulated for stope and pillar dimensions in multi-seam mining for a range of orebody configurations using past practice in a back-analysis approach. Constraints imposed by dip and seam thickness on the choice of equipment and mining layout are evaluated. An attempt is made to bring together the engineering aspects, including rock mechanics, of multi-seam mine design with uranium recovery and other economic factors for three alternative mine layouts: single-seam mining, double-seam mining, and seams-and-parting mining. A series of examples are worked through, showing how the design guidelines can be applied for typical orebody configurations

  17. Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics

    Science.gov (United States)

    Petronio, Lorenzo; Boaga, Jacopo; Cassiani, Giorgio

    2016-05-01

    The mechanisms of the disastrous Vajont rockslide (North-Eastern Italy, October 9, 1963) have been studied in great detail over the past five decades. Nevertheless, the reconstruction of the rockslide dynamics still presents several uncertainties, including those related to the accurate estimation of the actual landslide mass. This work presents the results of a geophysical characterization of the Vajont landslide body in terms of material properties and buried geometry. Both aspects add new information to the existing dataset and will help a better understanding of the rockslide failure mechanisms and dynamics. In addition, some general considerations concerning the intricacies of landslide characterization can be drawn, with due attention to potential pitfalls. The employed techniques are: (i) high resolution P-wave reflection, (ii) high resolution SH-wave reflection, (iii) controlled source surface wave analysis. We adopted as a seismic source a vibrator both for P waves and SH waves, using vertical and horizontal geophones respectively. For the surface wave seismic survey we used a heavy drop-weight source and low frequency receivers. Despite the high noise level caused by the fractured conditions of the large rock body, a common situation in landslide studies, we managed to achieve a satisfying imaging quality of the landslide structure thanks to the large number of active channels, the short receiver interval and the test of appropriate seismic sources. The joint use of different seismic techniques help focus the investigation on the rock mass mechanical properties. Results are in good agreement with the available borehole data, the geological sections and the mechanical properties of the rockmass estimated by other studies. In general the proposed approach is likely to be applicable successfully to similar situations where scattering and other noise sources are a typical bottleneck to geophysical data acquisition on landslide bodies.

  18. Controlled-source seismic interferometry with one way wave fields

    Science.gov (United States)

    van der Neut, J.; Wapenaar, K.; Thorbecke, J. W.

    2008-12-01

    In Seismic Interferometry we generally cross-correlate registrations at two receiver locations and sum over an array of sources to retrieve a Green's function as if one of the receiver locations hosts a (virtual) source and the other receiver location hosts an actual receiver. One application of this concept is to redatum an area of surface sources to a downhole receiver location, without requiring information about the medium between the sources and receivers, thus providing an effective tool for imaging below complex overburden, which is also known as the Virtual Source method. We demonstrate how elastic wavefield decomposition can be effectively combined with controlled-source Seismic Interferometry to generate virtual sources in a downhole receiver array that radiate only down- or upgoing P- or S-waves with receivers sensing only down- or upgoing P- or S- waves. For this purpose we derive exact Green's matrix representations from a reciprocity theorem for decomposed wavefields. Required is the deployment of multi-component sources at the surface and multi- component receivers in a horizontal borehole. The theory is supported with a synthetic elastic model, where redatumed traces are compared with those of a directly modeled reflection response, generated by placing active sources at the virtual source locations and applying elastic wavefield decomposition on both source and receiver side.

  19. Detection of sinkholes or anomalies using full seismic wave fields : phase II.

    Science.gov (United States)

    2016-08-01

    A new 2-D Full Waveform Inversion (FWI) software code was developed to characterize layering and anomalies beneath the ground surface using seismic testing. The software is capable of assessing the shear and compression wave velocities (Vs and Vp) fo...

  20. Seam Pucker

    CSIR Research Space (South Africa)

    Galuszynski, S

    1986-05-01

    Full Text Available pucker. The bestexam~leofsucha stitch is the lockstitch lFie.4). Astitch withabilitv to stretch and react to thread contraction without prk&kg ~ i g ~ c a n t changes in stitch length, is unlikely to produce seam pucker. The double locked chain...

  1. Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J. [Purdue University

    2013-04-27

    Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a sub-porosity within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The sub-porosity may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in

  2. Survey of technological advancement of coal exploitation in Asia and Pacific for fiscal 1997. Formulation of production plans for model coal mines in China; 1997 nendo Asia Taiheiyo sekitan kaihatsu kodoka chosa. Chugoku ni okeru model tanko no seisan keikaku no sakutei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In view of the prospective demand for coal in China and of the current state of transportation, a development plan is formulated for Tangkou Mining Area (of model mines) for the purpose of realizing efficient exploitation of coal. The infrastructures for coal transportation are complete in this area, and delivery of coal is easy from this area to the coal demanding regions. Although coal seams are quite deep in the ground, the important ones contain rich reserves. Exploitation is carried out under a vertical shaft scheme, in which pits extend horizontally at the level of 950m below the sea surface. As for production, an annual yield of 3-million ton is predicted thanks to two compositely mechanized coal faces. Coal is won by the monolayer side hole method in the case of seams not thicker than 4.0m, and by the caved stope method in the case not thinner than 4.0m. Employed for the mines are 1077 people. Operation days are 300, efficiency 15t/man/shift. The annual sale in total is expected to be worth 759-million 534.6-thousand yuan. To be required for the construction will be 1.2-billion yuan for mines and 0.2-billion yuan for coal dressing facilities, or 1.4-billion yuan in all, and the figures indicate that the plan is economically promising. 43 figs., 119 tabs.

  3. Automatic picking of direct P, S seismic phases and fault zone head waves

    Science.gov (United States)

    Ross, Z. E.; Ben-Zion, Y.

    2014-10-01

    We develop a set of algorithms for automatic detection and picking of direct P and S waves, as well as fault zone head waves (FZHW), generated by earthquakes on faults that separate different lithologies and recorded by local seismic networks. The S-wave picks are performed using polarization analysis and related filters to remove P-wave energy from the seismograms, and utilize STA/LTA and kurtosis detectors in tandem to lock on the phase arrival. The early portions of P waveforms are processed with STA/LTA, kurtosis and skewness detectors for possible first-arriving FZHW. Identification and picking of direct P and FZHW is performed by a multistage algorithm that accounts for basic characteristics (motion polarities, time difference, sharpness and amplitudes) of the two phases. The algorithm is shown to perform well on synthetic seismograms produced by a model with a velocity contrast across the fault, and observed data generated by earthquakes along the Parkfield section of the San Andreas fault and the Hayward fault. The developed techniques can be used for systematic processing of large seismic waveform data sets recorded near major faults.

  4. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic

  5. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    International Nuclear Information System (INIS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-01-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  6. Report on the FY 1998 geological structure survey. North Hay Gulch area, State of Colorado, the U.S.; 1998 nendo kaigaitan kaihatsu kanosei chosa hojo jigyo chishitsu kozo chosa hokokusho. Beikoku Colorado shu North Hay Gulch chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    Test boring at 21 places and core sampling were conducted during September-November 1998 along the ridge to the west of Hay Gulch and in the direction crossing the northwest of the drainage canal and National King Coal Mine (NKC coal mine). It was found that A layer which NKC coal mine is now drilling is the upper part of A coal seam where the seam bifurcates. The boundary to the west of the thick A coal seam is not clear, and there is a possibility that more reserve from the thick coal seam and single seam exists toward Cherry Creek. In the existing coal drilling area, the lower A seam existing under the upper A seam becomes thin rapidly, and the seam thickness becomes less than 1 foot. The average thickness of thick coal seams is 9.9 feet, and the area is 780 acres along the ridge. The upper A coal seam except the above is 5.5 feet in average seam thickness and 910 acres in area. The reserve is 23 million tons. As to the quality of thick coal seam, the average heating value is 7,089 kcal/kg, sulfur content 0.68%, and ash content 7.50%. As coal drilling conditions, the same level as or higher than those of NKC coal mine is expected. (NEDO)

  7. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole.

    OpenAIRE

    Hillers , Gregor; Campillo , Michel; Lin , Y.-Y.; Ma , K.F.; Roux , Philippe

    2012-01-01

    International audience; The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that ...

  8. Health impacts of coal: facts and fallacies

    Energy Technology Data Exchange (ETDEWEB)

    Finkelman, R.B. [University of Texas, Dallas, TX (United States)

    2007-02-15

    Coal has contributed enormously to the advance of civilization by providing an abundant, inexpensive, and convenient source of energy. Concurrent with its contributions, coal has extracted a high cost in terms of environmental damage and human health impacts. Unfortunately, the links between coal use and human health are distorted by a great deal of ignorance and misinformation. This paper discusses the facts and fallacies of the direct health impacts caused by coal. These include health problems caused by arsenic, fluorine, mercury and selenium released in coal use in the residential sector. The trace element iodine however may help prevent iodine deficiency disorder. Lignite in the ground in some Balkan areas has been associated with a urinary tract cancer known as Balkan endemic nephropathy (BEN). Uncontrolled burning coal seams and coal waste piles contribute to global warming and to respiratory problems. The 10-fold enrichment of trace elements in fly ash and the fine particles released from power plants could present a health threat but where good pollution control technology and disposal practices are applied the health threat is probably minimal. Radioactivity levels in coal are thought to be too low to cause concern. 27 refs., 2 figs.

  9. A Full-Wave Seismic Tomography for the Crustal Structure in the Metropolitan Beijing Region

    Science.gov (United States)

    Sun, A.; Zhao, L.; Chen, Q.

    2008-12-01

    The greater Beijing metropolitan region is located in an old cratonic block in northeast China with complex geology and several large historic earthquakes, such as the Sanhe-Pinggu earthquake (~M8.0) in 1679, the Xingtai earthquake (M7.2) in 1966, and the Tangshan earthquake (M7.8) in 1976. To enhance our understanding of the crustal structure and the seismotectonics under this region, we conduct a full-wave three-dimensional (3D) tomographic study of this region using the waveforms recorded by the newly established Beijing metropolitan digital seismic network. Since the Beijing network was put into operation in October 2001, there have been 89 local earthquakes of magnitude 3.0 and above. From these, we selected 23 events of magnitude 3.2 and above and obtained their waveform records at 50 stations within our area of interest. The types of instruments at these stations include broadband, short-period and very broadband. First-motion focal mechanisms were determined for these events. We used a regional 3D model obtained by seismic reflection surveys as the reference model and calculated the synthetic seismograms by the finite-difference method. In this first attempt at finite- frequency tomography for the Beijing region, we focus on the variation of the P-wave speed using the first- arriving P waves. We measure the frequency-dependent traveltime anomalies of the P waves by the cross- correlation between observed and synthetic P waveforms within several discrete frequency bands between 20-sec and 5-sec periods. The sensitivity or Frechet kernels of these measurements for the perturbations in P-wave speed were computed by the same finite-difference method. We will present the preliminary result in our full-wave seismic tomography for the Beijing region.

  10. Flow loop studies with AMAX coal-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Wildman, D.J.; Ekmann, J.M.

    1984-03-01

    The coal-water mixtures (CWM) with a stabilizer and the CWM without stabilizers were successfully transported through a flow loop facility under a variety of conditions. The handling characteristics of both CWM were reasonable. The mix tank mixer was not needed during nontesting hours to prevent settling of either material. After several days of transporting the nonstabilized material in the loop facility, the viscosity-reducing agent became ineffective. It was necessary to increase the concentration of the viscosity-reducing agent. The material with stabilizer could not be transported through the loop facility at mass flow rates greater than 209 lb/min until overnight shearing of the CWM in the tank. The CWM without a stabilizer appeared to be slightly shear-thickening, whereas the stabilized CWM initially exhibited shear-thinning behavior. The pressure losses measured for the nonstabilized material were similar to the pressure losses measured for CWM prepared at PETC with three or four percent higher concentration of Pittsburgh seam coal. Tests performed with the stabilized CWM experienced pressure losses similar to CWM prepared at PETC with Pittsburgh seam coal of five to seven percent higher concentration. Tests 1A, 2A, 1B, and 2B were not included in the comparison of in-house-prepared CWM due to differences in pretest handling procedures. 1 figure, 2 tables.

  11. Application of a three-dimensional network model to coal dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, I.

    1986-01-01

    A bond-flow correlated network model has been successfully used to calculate equilibrium desaturation curves, single phase permeabilities and two phase flow properties (dewatering curves) for coal filter cakes. A new method of pore volume assignment is presented in which the pore volume occupied by the large pores (which give a capillary pressure less than 0.5 psia) is assigned to the nodes and the rest is distributed to the bonds according to the pore size distribution. The micrographic pore size distribution, used as an input, is determined experimentally. Equilibrium desaturation curves for -32 mesh, -200 mesh and -100 + 200 mesh coal cakes (Pittsburgh Seam Coal), formed with distilled water, have been calculated. The results for six -32 mesh coal cakes formed with surfactants show that the effect of surfactants can be accounted for by modifying one of the model parameters - the entry diameter constant. A correlation is presented to estimate the modified entry diameter constant using experimentally determined surface tension and contact angle values. The size distribution of particles in dispersed state has been correlated with that in the cake which in turn has been correlated with the pore size distribution. An equilibrium desaturation curve has been successfully calculated for -32 mesh Pittsburgh Seam coal using the pore size distribution estimated from the dispersed particle size distribution. Calculated single phase permeabilities, using a bond-flow correlated network and a simple cubic lattice, agree with the experimental values better than a bond-correlated network using a face-centered cubic lattice.

  12. 77 FR 40630 - Notice of Competitive Coal Lease Sale, Colorado

    Science.gov (United States)

    2012-07-10

    ..., COC-74219] Notice of Competitive Coal Lease Sale, Colorado AGENCY: Bureau of Land Management, Interior... in the Wadge Seam described below in Routt County, Colorado, will be offered for competitive lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920, as amended. DATES: The...

  13. Effects of clay-seam behavior on WIPP repository design

    International Nuclear Information System (INIS)

    Stone, C.M.; Krieg, R.D.; Branstetter, L.J.

    1981-07-01

    The geology at the southeastern New Mexico WIPP site consists of bedded layers of rock salt, anhydrite, polyhalite, mixtures of those materials, and thin clay seams. In spite of their very small (0.005 m to 0.05 m) thickness, clay seams are important to structural characterization of the WIPP stratigraphy since slip might possibly take place across them. Results of a study to determine the effects of clay seam frictional slip on the closure of a well-defined drift configuration are described. A Mohr-Coulomb dry friction model was used to model the active clay seams. The main thrust of the study was to determine the effects of friction coefficient variability on drift closure. Results show that the drift closure varies by a factor of 3.0 over the range of friction coefficients studied. The maximum slip observed along any clay seam was 0.12 m. For values of μ > .7, virtually no slip occurs along any clay seam

  14. Polymers for combatting sudden outbursts in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiev, G P; Sukhanov, V V

    1988-02-01

    Describes investigations in coal mines in the Donetsk basin (hazardous because of the high methane presence, the risk of outbursts of coal and gas, underground fires and the high dust levels) with the aim of studying the toxic emissions of formaldehyde and methanol produced when a urea formaldehyde resin binder is applied to the coal seam. The measurements taken led to the following recommendations: the amount of free formaldehyde in the binder should be limited to 0.5%; the use of concentrated (50%) solutions should be limited to 10 l per ton of coal in areas where there are geologic faults; underground workings need ventilation of at least 200 m/sup 3//min; the binder should be introduced to the borehole separately from the water and hardener; individual protection measures and wet dusting should be used during coal extraction; a period of not less than 4 months should elapse between application of the resin and commencement of coal extraction; there should be at least 80 m between the point where the binder is applied and the coal face.

  15. Effect of Vertically Propagating Shear Waves on Seismic Behavior of Circular Tunnels

    Directory of Open Access Journals (Sweden)

    Tohid Akhlaghi

    2014-01-01

    Full Text Available Seismic design loads for tunnels are characterized in terms of the deformations imposed on the structure by surrounding ground. The free-field ground deformations due to a seismic event are estimated, and the tunnel is designed to accommodate these deformations. Vertically propagating shear waves are the predominant form of earthquake loading that causes the ovaling deformations of circular tunnels to develop, resulting in a distortion of the cross sectional shape of the tunnel lining. In this paper, seismic behavior of circular tunnels has been investigated due to propagation of shear waves in the vertical direction using quasi-static analytical approaches as well as numerical methods. Analytical approaches are based on the closed-form solutions which compute the forces in the lining due to equivalent static ovaling deformations, while the numerical method carries out dynamic, nonlinear soil-structure interaction analysis. Based on comparisons made, the accuracy and reliability of the analytical solutions are evaluated and discussed. The results show that the axial forces determined using the analytical approaches are in acceptable agreement with numerical analysis results, while the computed bending moments are less comparable and show significant discrepancies. The differences between the analytical approaches are also investigated and addressed.

  16. A characterization and determination of the coal reserves and resources of southwest Virginia

    Science.gov (United States)

    Westman, Erik Christian

    Coal mining has been the primary industry of Southwest Virginia for more than 100 years. Coal production increased steadily until it reached a peak in 1990. Since then it has begun a decline, accompanied by decreasing coal revenues to the region. In order to more effectively plan the future economy of the area a study was conducted to characterize and estimate remaining coal resources. Seam thickness was found to be the parameter which most influenced resource levels. An economic model was developed to determine which portion of the reserves could economically be extracted. It was found that 3.95 billion tons, or 14% of the remaining resource, are economic under current mining conditions. Many of these reserves, however, occur in seams at depths which require costly development prior to initiation of mining. The database used for the study was found to be accurate, but imprecise. Based on the quantitative measurements of accuracy and precision, a reserve quantity of 1.6 billion tons should be used for planning purposes. The precision of the database can be improved with additional data. A program encouraging the mining industry to submit their data to the state, while ensuring confidentiality, would allow more precise estimates to be made, ultimately benefiting all members of the Southwest Virginia community.

  17. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  18. Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems

    Science.gov (United States)

    Johnson, Wesley L.; Fesmire, J. E.

    2009-01-01

    Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.

  19. Current status of thin seam longwall mining in the US

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.S. [West Virginia Univ., Morgantown, WV (United States); Orndorff, A.

    1996-12-31

    Thin seams in this paper refers to those seams the economic mining height of which is below 50-55 in. that are traditionally considered to be the proprietary of plowing and present a whole net set of problems for longwall mining. In thin seams it is difficult to design and manufacture an efficient high capacity cutting machine for maintenance and production operations. Thin seam mining by longwall plowing began in the late fifties in southern West Virginia, and continues to the present time. In the seventies when longwall mining began to take off a large percentage of U.S. longwalls were operating in the thin seams. Tables 1 and 2 show the historical trends of cutting machines used for seams less than 55 in and 50 in, respectively. In addition to the plow system, the single-ended fixed drum and single-ended ranging drum shearers were introduced in the mid and late seventies and operated continuously until 2-4 years ago. The double-ended ranging drum shearers have also been employed for thin seam longwall mining during this period including several in-web (or off-pan) shearers between late seventies and early eighties. In this paper three thin-seam longwalls in three states employing the latest thin-seam longwall technology will be reviewed. However only two of them are still in operation while the third one ceased operation recently.

  20. 单一低透突出煤层底抽巷煤气共采技术及实践%Application and Practice of Coal-gas Co-extraction Technology by Floor Drainage Roadway in Single Low-permeability Outburst Seam

    Institute of Scientific and Technical Information of China (English)

    冀超辉

    2015-01-01

    To counter to the serious gas troubles and low mining efficiency present in a single low-permeability outburst coal seam, based on the analysis of the distribution of stress and permeability in the working face, a coal-gas co-extraction technology by floor drainage roadway in a single low-permeability outburst seam was proposed, that is: gas extraction by hydraulic flushing in hole in the original pressure area before mining, gas extraction in the stress reduced area during mining and the gas extraction from gob after mining. The application in Ligou Mine showed that three gas extraction methods can be coordinated and complemented each other, the outburst hazard in the working face was not only eliminated, but also the gas extraction volume increased, as a result, the safe and efficient mining of the single low-permeability outburst seam was realized.%针对单一低透突出煤层存在瓦斯灾害严重、开采效率低等问题,在分析回采工作面应力分布和渗透率分布的基础上,提出了单一低透突出煤层底抽巷煤气共采模式,即采前未卸压区水力冲孔抽采、采中影响区的应力降低区瓦斯抽采和采后的采空区瓦斯抽采模式。李沟煤矿的工程应用结果表明:3种抽采方法互相协调、互为补充,不但消除了工作面突出危险性,而且大大地增加了瓦斯抽采量,实现了单一低透突出煤层煤与瓦斯的安全高效开采。

  1. Steeply Inclined Coal Floor Impermeability Probing in Mining under Safe Water Pressure of Aqui fer%带压开采条件下急倾斜煤层底板隔水性能探查研究

    Institute of Scientific and Technical Information of China (English)

    杜占良

    2016-01-01

    急倾斜煤层带压开采较水平及缓倾斜煤层存在的突水潜在威胁较大。为了有效防范底板突水情况的发生,昌华煤矿在带压开采急倾斜5号煤层时,于井下布置了三个钻孔,采用了钻孔“三量”观测、压水试验和岩石力学测试等方法,对煤层底板隔水层进行了探查。探查成果表明:5号煤层底板至奥灰顶界隔水层隔水性能较好,厚度适中,且奥灰顶面下约50 m亦可作为相对隔水层,对防护开采5号煤层突水危险较为有利。%Comparing with horizontal and gently inclined coal seams, the water bursting potential threat is larger during steeply inclined coal seam mining under safe water pressure of aquifer. To effectively prevent floor water bursting, during the steeply inclined coal seam No.5 mining under safe water pressure in the Changhua coalmine has laid out 3 boreholes underground, using“3 items”observation, packer permeability test and rock mechanical test carried out coal floor aquifuge exploring. The result has shown that the impermeabili⁃ty of aquifuge between coal seam No.5 floor to top of Ordovician limestone is rather good with moderate thickness. Besides, 50m below Ordovician limestone top can be a relative aquifuge propitious to prevent water bursting hazard during the mining of coal seam No. 5.

  2. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  3. A robust absorbing layer method for anisotropic seismic wave modeling

    International Nuclear Information System (INIS)

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-01-01

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped

  4. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    Science.gov (United States)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of

  5. Study on the propagation law of shock wave resulting from coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; ZHOU Ai-tao; ZHANG Pin; LI Chuan; GUO Yan-wei

    2011-01-01

    According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis.

  6. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  7. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential

    Science.gov (United States)

    Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.

    2013-01-01

    Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.

  8. Exploratory research on solvent refined coal liquefaction. Annual technical progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1979. In a series of experiments with varying feed gas composition, low levels (5 to 10 mole %) of carbon monoxide had little effect on the SRC II processing of Pittsburgh Seam coal (Powhatan No. 5 Mine) while higher levels (20 to 40 mole %) resulted in a general degradation of operability and reduced oil yields. Addition of finely divided (approx. 1 ..mu..m) pyrite to the reactive Powhatan coal had little effect on oil yields although the molecular weight of the distillation residue was apparently decreased. When finely divided pyrite and magnetite were added to the less reactive coals from the Loveridge and Blacksville No. 1 Mines (also Pittsburgh Seam), however, substantial increases in oil yields and product quality were obtained. In a comparison of upflow and downflow dissolver configurations with Powhatan coal in the SRC II mode, there was no difference in yields or product quality. A study characterizing specific reactors revealed a significantly higher conversion in the SRC I mode with a reactor approximating plug flow conditions compared to a completely backmixed reactor. In the SRC II mode there was only a slightly higher oil yield with the plug flow reactor.

  9. Modeling of Contaminant Migration through Porous Media after Underground Coal Gasification in Shallow Coal Seam

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Čapek, P.; Stanczyk, K.; Šolcová, Olga

    2015-01-01

    Roč. 140, DEC (2015), s. 188-197 ISSN 0378-3820 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gasification * transport phenomena modeling * transport parameters Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.847, year: 2015

  10. The determination of methane resources from liquidated coal mines

    Science.gov (United States)

    Trenczek, Stanisław

    2017-11-01

    The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.

  11. Dissolved radon and uranium in groundwater in a potential coal seam gas development region (Richmond River Catchment, Australia).

    Science.gov (United States)

    Atkins, Marnie L; Santos, Isaac R; Perkins, Anita; Maher, Damien T

    2016-04-01

    The extraction of unconventional gas resources such as shale and coal seam gas (CSG) is rapidly expanding globally and often prevents the opportunity for comprehensive baseline groundwater investigations prior to drilling. Unconventional gas extraction often targets geological layers with high naturally occurring radioactive materials (NORM) and extraction practices may possibly mobilise radionuclides into regional and local drinking water resources. Here, we establish baseline groundwater radon and uranium levels in shallow aquifers overlying a potential CSG target formation in the Richmond River Catchment, Australia. A total of 91 groundwater samples from six different geological units showed highly variable radon activities (0.14-20.33 Bq/L) and uranium levels (0.001-2.77 μg/L) which were well below the Australian Drinking Water Guideline values (radon; 100 Bq/L and uranium; 17 μg/L). Therefore, from a radon and uranium perspective, the regional groundwater does not pose health risks to consumers. Uranium could not explain the distribution of radon in groundwater. Relatively high radon activities (7.88 ± 0.83 Bq/L) in the fractured Lismore Basalt aquifer coincided with very low uranium concentrations (0.04 ± 0.02 μg/L). In the Quaternary Sediments aquifers, a positive correlation between U and HCO3(-) (r(2) = 0.49, p uranium was present as uranyl-carbonate complexes. Since NORM are often enriched in target geological formations containing unconventional gas, establishing radon and uranium concentrations in overlying aquifers comprises an important component of baseline groundwater investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Operational and geotechnical constraints to coal mining in Alaska's interior

    Energy Technology Data Exchange (ETDEWEB)

    Corser, P; Usibelli, M

    1989-01-01

    Surface mining of coal from the Poker Flats mining area to the north of Healy, Alaska began in 1978. Current operations involve a 25 m/sup 3/ walking dragline which strips two coal seams, using an extended bench on the second pass; a fleet of trucks and shovels are used for coal removal and some limited overburden stripping. Geotechnical constraints to mining within the steeply dipping coal deposits are discussed. The area had a number of landslides. During 1984, mining operations close to a landslide caused movement to resume. A mine plan was developed which allowed the coal to be safely removed without inducing additional movement. This involves a dipline mining scheme through the slide area. Future mine plans will acknowledge the hazards of mining through potentially unstable zones. Aerial photographs, field mapping and geological exploration were used. 1 ref., 6 figs.

  13. Numerical Assessment of the Influences of Gas Pressure on Coal Burst Liability

    Directory of Open Access Journals (Sweden)

    Haochen Zhao

    2018-01-01

    Full Text Available When coal mines exploit deep seams with high-gas content, risks are encountered due to the additional high likelihood of rock bursting potential problems. The bursts of coal pillars usually lead to severe fatalities, injuries, and destruction of property, including impeding access to active mine workings underground. The danger exists given that conditions in the already highly brittle coal material can be exacerbated by high stress and high gas pressure conditions. It is thus critical to develop methods that improve current understanding about bursting liability, and techniques to forecast or prevent coal bursting in underground coal mines. This study uses field data from a deep coal mine, and numerical modeling to investigate the effects of gas pressure and mechanical compressive stresses on coal bursting liability in high gas content coal seams. The bursting energy index is adopted to determine the coal bursting liability under high gas pressure conditions. The adopted methodology uses a two-staged approach comprising investigating the influence of gas pressure on the bursting liability of coal pillar, and the influence of the gas pressure on the resulting pillar failure mode. Based on numerical simulations of coal pillars, correlations are observed between the magnitudes of gas pressures and the bursting energy index. Irrespective of pillar size, failure time is shortest when the gas pressure achieves a threshold value between 50 kPa to 70 kPa. At 50 kPa, the value of the BEI increases by 50% going from the 4 m pillar to the 6 m pillar. The value of the BEI increases by 43% going from the 6 m high pillar to the 8 m high pillar at 50 kPa. When pillars fail there is a degree of stress relief leading to a reduction in bursting liability. The results suggest that before 50 kPa, pillar failure is largely due to mechanical loading. After 50 kPa, pillar failure is largely due to excessive gas pressures.

  14. Making the most of CZ seismics: Improving shallow critical zone characterization using surface-wave analysis

    Science.gov (United States)

    Pasquet, S.; Wang, W.; Holbrook, W. S.; Bodet, L.; Carr, B.; Flinchum, B. A.

    2017-12-01

    Estimating porosity and saturation in the shallow subsurface over large lateral scales is vitally important for understanding the development and evolution of the Critical Zone (CZ). Because elastic properties (P- and S-wave velocities) are particularly sensitive to porosity and saturation, seismic methods (in combination with petrophysical models) are effective tools for mapping CZ architecture and processes. While many studies employ P-wave refraction methods, fewer use the surface waves that are typically also recorded in those same surveys. Here we show the value of exploiting surface waves to extract supplementary shear-wave velocity (Vs) information in the CZ. We use a new, user-friendly, open-source MATLAB-based package (SWIP) to invert surface-wave data and estimate lateral variations of Vs in the CZ. Results from synthetics show that this approach enables the resolution of physical property variations in the upper 10-15 m below the surface with lateral scales of about 5 m - a vast improvement compared to P-wave tomography alone. A field example at a Yellowstone hydrothermal system also demonstrates the benefits of including Vs in the petrophysical models to estimate not only porosity but also saturation, thus highlighting subsurface gas pathways. In light of these results, we strongly suggest that surface-wave analysis should become a standard approach in CZ seismic surveys.

  15. Tasks in development of the USSR coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Bratchenko, B F

    1981-08-01

    Minister of the Soviet coal industry evaluates social and economic development plan of the Soviet coal industry from 1981 to 1985. Planned coal production should increase to 770-800 Mt, exceeding coal production in 1980 by 53 to 83 Mt. Proportion of coal mined by surface methods will further increase. Investment program concentrates on: construction of the Kansk-Achinsk fuel and energy basin, construction of the South Yakut coal basin and further development of surface mines in the Ehkibastuz basin. Proportion of coal mined in the Kuzbass will increase to 45% of the total coal output. Construction of the Kansk-Achinsk basin has the highest priority among the investment projects. Investment projects (construction of new coal mines and modernization of existing mines) in major coal basins in 1981 are analyzed. Mining machines and equipment for underground and surface black and brown coal mining are evaluated. Plans for developing new mining systems are described (e.g. narrow web coal cutter with chainless haulage system for thin and medium coal seams with drive system with power ranging from 110 to 315 kW). The following types of machines are discussed: coal cutters, shearer loaders, heading machines, belt conveyors, loaders. Selected social problems associated with manpower shortages for underground mining and for coal mines operating under extreme climatic conditions are also discussed.

  16. Shear-wave velocity of marine sediments offshore Taiwan using ambient seismic noise

    Science.gov (United States)

    Lin, Yu-Tse; Lin, Jing-Yi; Kuo-Chen, Hao; Yeh, Yi-Chin; Cheng, Win-Bin

    2017-04-01

    Seismic ambient noise technology has many advantages over the traditional two-station method. The most important one is that noise is happening all the time and it can be widely and evenly distributed. Thus, the Green's Function of any station pair can be obtained through the data cross-correlation process. Many related studies have been performed to estimate the velocity structures based on the inland area. Only a few studies were reported for the marine area due to the relatively shorter recording time of ocean bottom seismometers (OBS) deployment and the high cost of the marine experiment. However, the understanding about the shear-wave velocity (Vs) of the marine sediments is very crucial for the hazard assessment related to submarine landslides, particularly with the growing of submarine resources exploration. In this study, we applied the ambient noise technique to four OBS seismic networks located offshore Taiwan in the aim of getting more information about the noise sources and having the preliminary estimation for the Vs of the marine sediments. Two of the seismic networks were deployed in the NE part of Taiwan, near the Ryukyu subduction system, whereas the others were in the SW area, on the continental margin rich in gas hydrate. Generally, ambient seismic noise could be associated with wind, ocean waves, rock fracturing and anthropogenic activity. In the southwestern Taiwan, the cross-correlation function obtained from two seismic networks indicate similar direction, suggestion that the source from the south part of the network could be the origin of the noise. However, the two networks in the northeastern Taiwan show various source direction, which could be caused by the abrupt change of bathymetry or the volcanic degassing effect frequently observed by the marine geophysical method in the area. The Vs determined from the dispersion curve shows a relatively higher value for the networks in the Okinawa Trough (OT) off NE Taiwan than that in the

  17. A Poromechanical Model for Coal Seams Injected with Carbon Dioxide: From an Isotherm of Adsorption to a Swelling of the Reservoir Un modéle poromécanique pour l’injection de dioxyde de carbone dans des veines de charbon : d’une isotherme d’adsorption à un gonflement du réservoir

    Directory of Open Access Journals (Sweden)

    Nikoosokhan S.

    2012-11-01

    Full Text Available Injecting carbon dioxide into deep unminable coal seams can enhance the amount of methane recovered from the seam. This process is known as CO2-Enhanced Coal Bed Methane production (CO2-ECBM. The seam is a porous medium whose porous system is made of cleats (small natural fractures and of coal pores (whose radius can be as small as a few angström. During the injection process, the molecules of CO2 get adsorbed in the coal pores. Such an adsorption makes the coal swell, which, in the confined conditions that prevail underground, induces a closure of the cleat system of the coal bed reservoir and a loss of injectivity. In this work, we develop a poromechanical model which, starting from the knowledge of an adsorption isotherm and combined with reservoir simulations, enables to estimate the variations of injectivity of the coal bed reservoir over time during the process of injection. The model for the coal bed reservoir is based on poromechanical equations that explicitly take into account the effect of adsorption on the mechanical behavior of a microporous medium. We consider the coal bed reservoir as a dual porosity (cleats and coal porosity medium, for which we derive a set of linear constitutive equations. The model requires as an input the adsorption isotherm on coal of the fluid considered. Reversely, the model provides a way to upscale an adsorption isotherm into a meaningful swelling of the coal bed reservoir at the macroscopic scale. The parameters of the model are calibrated on data on coal samples available in the literature. Reservoir simulations of an injection of carbon dioxide in a coal seam are performed with an in-house finite volume and element code. The variations of injection rate over time during the process of injection are obtained from the simulations. The effect of the compressibility of the coal matrix on those variations is discussed. L’injection de dioxyde de carbone dans des veines de charbon profondes peut augmenter

  18. Seismic wave propagation in heterogeneous multiphasic media: numerical modelling, sensibility and inversion of poro-elastic parameters

    International Nuclear Information System (INIS)

    Dupuy, B.

    2011-11-01

    Seismic wave propagation in multiphasic porous media have various environmental (natural risks, geotechnics, groundwater pollutions...) and resources (aquifers, oil and gas, CO 2 storage...) issues. When seismic waves are crossing a given material, they are distorted and thus contain information on fluid and solid phases. This work focuses on the characteristics of seismic waves propagating in multiphasic media, from the physical complex description to the parameter characterisation by inversion, including 2D numerical modelling of the wave propagation. The first part consists in the description of the physics of multiphasic media (each phase and their interactions), using several up-scaling methods, in order to obtain an equivalent mesoscale medium defined by seven parameters. Thus, in simple porosity saturated media and in complex media (double porosity, patchy saturation, visco-poro-elasticity), I can compute seismic wave propagation without any approximation. Indeed, I use a frequency-space domain for the numerical method, which allows to consider all the frequency dependent terms. The spatial discretization employs a discontinuous finite elements method (discontinuous Galerkin), which allows to take into account complex interfaces.The computation of the seismic attributes (velocities and attenuations) of complex porous media shows strong variations in respect with the frequency. Waveforms, computed without approximation, are strongly different if we take into account the full description of the medium or an homogenisation by averages. The last part of this work deals with the poro-elastic parameters characterisation by inversion. For this, I develop a two-steps method: the first one consists in a classical inversion (tomography, full waveform inversion) of seismograms data to obtain macro-scale parameters (seismic attributes). The second step allows to recover, from the macro-scale parameters, the poro-elastic micro-scale properties. This down-scaling step

  19. Numerical modelling of surface subsidence arising from longwall mining of steeply inclined coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, M.A.; Reddish, D.J. [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    1998-12-31

    The paper presents results from and the methodology of a numerical modelling investigation into the surface ground movements above longwall mining of inclined and steep seams with varying panel configurations. A modelling approach was developed using a finite difference numercial model Fast Lagrangian Analysis of Continua (FLAC). On the basis of this methodology, representative surface subsidence profiles were simulated and the results of simulations were validated against the UK data using the Subsidence Engineer`s Handbook (SEH) and influence function methods. Furthermore, the proposed methodology was applied to two UK case histories for validation purposes. 15 refs., 7 figs., 3 tabs.

  20. Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V.; Kaazik, P.B.; Kostyuchenko, V.N.; Kuznetsov, O.P.; Nedoshivin, N.I.; Rubinshtein, K.D.; Sultanov, D.D. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres

    1995-04-01

    The report is carried out by the Institute for Dynamics of the Geospheres, Russian Academy of Sciences under contract NB280344 with Lawrence Livermore National Laboratory, University of California. The work includes investigation of seismic waves generation and propagation from Soviet peaceful underground nuclear explosions in salt based on the data from temporary and permanent seismic stations. The explosions were conducted at the sites Azgir and Vega within the territory of the Caspian depression of the Russian platform. The data used were obtained in the following conditions of conduction: epicentral distance range from 0 to 60 degrees, yields from 1 to 65 kt and depths of burial from 160 to 1500 m.

  1. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M; Fink, J K [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  2. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    Science.gov (United States)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  3. A Study on distinguishing seismic waves caused by natural earthquakes and underground nuclear explosion within North Korean Context

    Science.gov (United States)

    Premlet, B.; Sabu, S.; Kamarudheen, R.; Subair, S.

    2017-12-01

    Since the first nuclear test on 15 July 1945 , there have been over 2,051 other weapon tests around the world . The waveforms of a natural earthquake which generates strong S waves and an underground explosion which is dominated by P waves were distinguished from the analysis of data corresponding to a 2005 M5.0 Earthquake and a 2016 North Korean nuclear test , both at similar distances from seismometer . Further differences between the seismograms were evaluated and successfully distinguished between the origins of the elastic waves through the data using Moment Tensor Solution using stations BJT , HIA and INCN . North Korea has developed a nuclear fuel cycle capability and has both plutonium and enriched uranium programs at Pyongyang . Seismic recordings of vertical ground motion at Global Seismographic Network station IC.MDJ of the 4 seismic events at Punggye-ri , North Korea , which occurred on the 9th of October 2006 , 25th of May 2009, 12th of February 2013 and on the 6th of January and 9th of September , 2016 were examined and the P waves of these seismic waves , which show very similar wave form , were inspected and compared to the seismic data of the latest underground nuclear test on the 3rd of September 2017 at 03:30 UTC at the same site which is many times more powerful than the previous tests . The country , which is the only nation to have tested nuclear weapons in this millennium , has successfully prevented the release of radioactive isotopes and hampered data collection but further studies were done using acoustic data which was analysed from sonograms of the 4 North Korean tests at station MDJ. The latest explosion data from 3rd September was also compared to 42 presumed underground explosions which occurred in China , India , the U.S.S.R , Iran , Turkey and recorded at Arkansas Seismic Network.

  4. Development of world coal reserves, their registration and their utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, H

    1979-10-01

    This paper examines statistics on world coal production and world coal reserves with figures from 1860 to 1974 provided in tables and graphs. Eighty percent of the total world coal reserves (92% of world brown coal reserves) lie in the USA and USSR. The recent increase in total coal reserve estimates is due to exploration in western USA and in the USSR east of the Urals. Depth and thickness of the world's coal seams are shown in graphs and variations in coal quality are discussed. Problems associated with the anticipated substantial increase in coal production up to the year 2000 are considered. Encouraging higher coal production is the successful development of highly mechanized underground mining techniques and highly productive heavy surface mining equipment which allows excavation at increased depths. Surface mining is expected to make up 50% of total world mining operations in the near future. More complete deposit exploitation also contributes to higher coal production. Low international ship freight rates would facilitate future world coal trade. Obstacles are seen as: high, long term investments due to the fact that coal reserves lie far from populated and industrialized areas; opening new mines; transportation costs and infrastructure development.

  5. Understanding the seismic wave propagation inside and around an underground cavity from a 3D numerical survey

    Science.gov (United States)

    Esterhazy, Sofi; Schneider, Felix; Perugia, Ilaria; Bokelmann, Götz

    2017-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as "resonance seismometry" - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and so far, there are only very few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in numerical modeling of wave propagation problems. Our numerical study includes the full elastic wave field in three dimensions. We consider the effects from an incoming plane wave as well as point source located in the surrounding of the cavity at the surface. While the former can be considered as passive source like a tele-seismic earthquake, the latter represents a man-made explosion or a viborseis as used for/in active seismic techniques. Further we want to demonstrate the specific characteristics of the scattered wave field from a P-waves and S-wave separately. For our simulations in 3D we use the discontinuous Galerkin Spectral Element Code SPEED developed by MOX (The Laboratory for Modeling and Scientific Computing, Department of Mathematics) and DICA (Department of Civil and Environmental Engineering) at the Politecnico di Milano. The computations are carried out on the Vienna Scientific Cluster (VSC). The accurate numerical modeling can facilitate the development of proper analysis techniques to detect the remnants of an

  6. Duration of Tsunami Generation Longer than Duration of Seismic Wave Generation in the 2011 Mw 9.0 Tohoku-Oki Earthquake

    Science.gov (United States)

    Fujihara, S.; Korenaga, M.; Kawaji, K.; Akiyama, S.

    2013-12-01

    We try to compare and evaluate the nature of tsunami generation and seismic wave generation in occurrence of the 2011 Tohoku-Oki earthquake (hereafter, called as TOH11), in terms of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms. Since 1970's, the nature of "tsunami earthquakes" has been discussed in many researches (e.g. Kanamori, 1972; Kanamori and Kikuchi, 1993; Kikuchi and Kanamori, 1995; Ide et al., 1993; Satake, 1994) mostly based on analysis of seismic waveform data , in terms of the "slow" nature of tsunami earthquakes (e.g., the 1992 Nicaragura earthquake). Although TOH11 is not necessarily understood as a tsunami earthquake, TOH11 is one of historical earthquakes that simultaneously generated large seismic waves and tsunami. Also, TOH11 is one of earthquakes which was observed both by seismic observation network and tsunami observation network around the Japanese islands. Therefore, for the purpose of analyzing the nature of tsunami generation, we try to utilize tsunami waveform data as much as possible. In our previous studies of TOH11 (Fujihara et al., 2012a; Fujihara et al., 2012b), we inverted tsunami waveforms at GPS wave gauges of NOWPHAS to image the spatio-temporal slip distribution. The "temporal" nature of our tsunami source model is generally consistent with the other tsunami source models (e.g., Satake et al, 2013). For seismic waveform inversion based on 1-D structure, here we inverted broadband seismograms at GSN stations based on the teleseismic body-wave inversion scheme (Kikuchi and Kanamori, 2003). Also, for seismic waveform inversion considering the inhomogeneous internal structure, we inverted strong motion seismograms at K-NET and KiK-net stations, based on 3-D Green's functions (Fujihara et al., 2013a; Fujihara et al., 2013b). The gross "temporal" nature of our seismic source models are generally consistent with the other seismic source models (e.g., Yoshida et al

  7. Relationship between the rock mass deformation and places of occurrence of seismological events

    Energy Technology Data Exchange (ETDEWEB)

    Janusz Makowka; Jozef Kabiesz; Lin-ming Ddou [Central Mining Institute, Katowice (Poland)

    2009-09-15

    Static effort of rock mass very rarely causes of rock burst in Polish coal mines. Rock bursts with source in the seismic tremor within the roof rock layers are prevailing. A seismic tremor is an effect of rupture or sliding in roof layers above the exploited panel in coal seam, sometime in a distance from actual exploitation. Sliding, as a rule occurs in fault zone and tremors in it are expected, but monolithic layer rupture is very hard to predict. In a past few years a practice of analyzing state of deformation in high energy seismic tremors zones has been employed. It let gathering experience thanks to witch determination of dangerous shape of reformatted roof is possible. In the paper some typical forms of roof rocks deformations leading to seismic tremor occurrence will be presented. In general these are various types of multidirectional rock layers bending. Real examples of seismic events and rock bursts in the Czech Republic will be shown. 5 refs., 6 figs.

  8. Seismic surface-wave tomography of waste sites. 1998 annual progress report

    International Nuclear Information System (INIS)

    Long, T.L.

    1998-01-01

    'The objective of the Seismic Surface Wave Tomography of Waste Sites is to develop a robust technique for field acquisition and analysis of surface wave data for the interpretation of shallow structures, such as those associated with the burial of wastes. The analysis technique is to be developed and tested on an existing set of seismic data covering the K-901 burial site at the East Tennessee Technology Park. Also, a portable prototype for a field acquisition system will be designed and developed to obtain additional data for analysis and testing of the technique. The portable analysis system will display an image representing the shear-wave velocity structure. The image would be developed in the field from successive data samples. As of May 1998, the author established compatibility with computer programs at Georgia Tech and computed a preliminary singular value decomposition solution for the K-901 data. The analysis included modeling of surface wave dispersion and analysis of velocity structure. The analysis demonstrated that the authors needed additional field data to verify the conclusions and provide independent confirmation of velocity structure. The K-901 site data were obtained with 8 Hz geophones. The frequencies below 8 Hz are strongly attenuated in such recording instruments and are difficult to analyze. In particular, group velocities can have multiple answers for a given frequency. Consequently, without a record of the low-frequency energy, the authors found it difficult to identify the portion of the dispersion curve responsible for the seismogram. In particular, it was difficult to determine if the reverse dispersion observed in the frequencies above 8 Hz was caused by a low velocity layer or caused by observing only the frequencies above the group velocity minimum. In either model, synthetic seismograms can be made to match the observed data for the higher frequencies. The contract for the proposed work was completed in December. The field work was

  9. High-resolution seismic wave propagation using local time stepping

    KAUST Repository

    Peter, Daniel

    2017-03-13

    High-resolution seismic wave simulations often require local refinements in numerical meshes to accurately capture e.g. steep topography or complex fault geometry. Together with explicit time schemes, this dramatically reduces the global time step size for ground-motion simulations due to numerical stability conditions. To alleviate this problem, local time stepping (LTS) algorithms allow an explicit time stepping scheme to adapt the time step to the element size, allowing nearoptimal time steps everywhere in the mesh. This can potentially lead to significantly faster simulation runtimes.

  10. A new optimal seam method for seamless image stitching

    Science.gov (United States)

    Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng

    2017-07-01

    A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.

  11. Geostatistical modeling of the gas emission zone and its in-place gas content for Pittsburgh-seam mines using sequential Gaussian simulation

    Science.gov (United States)

    Karacan, C.O.; Olea, R.A.; Goodman, G.

    2012-01-01

    Determination of the size of the gas emission zone, the locations of gas sources within, and especially the amount of gas retained in those zones is one of the most important steps for designing a successful methane control strategy and an efficient ventilation system in longwall coal mining. The formation of the gas emission zone and the potential amount of gas-in-place (GIP) that might be available for migration into a mine are factors of local geology and rock properties that usually show spatial variability in continuity and may also show geometric anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and for assessing their associated uncertainty in gas emission zones of longwall mines for methane control.This study used core data obtained from 276 vertical exploration boreholes drilled from the surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian basin. After identifying important coal and non-coal layers for the gas emission zone, univariate statistical and semivariogram analyses were conducted for data from different formations to define the distribution and continuity of various attributes. Sequential simulations performed stochastic assessment of these attributes, such as gas content, strata thickness, and strata displacement. These analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was used to isolate the volume over the actual panels from the entire modeled district and to calculate gas amounts that were directly related to the emissions in longwall mines.Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured zone, as well as displacements in major rock units, showed spatial correlations that could be modeled and estimated using geostatistical methods. This study showed that GIP volumes may

  12. Effect of mineral matter on coal self-heating rate

    Energy Technology Data Exchange (ETDEWEB)

    B. Basil Beamish; Ahmet Arisoy [University of Queensland, Brisbane, Qld. (Australia). School of Engineering

    2008-01-15

    Adiabatic self-heating tests have been conducted on subbituminous coal cores from the same seam profile, which cover a mineral matter content range of 11.2-71.1%. In all cases the heat release rate does not conform to an Arrhenius kinetic model, but can best be described by a third order polynomial. Assessment of the theoretical heat sink effect of the mineral matter in each of the tests reveals that the coal is less reactive than predicted using a simple energy conservation equation. There is an additional effect of the mineral matter in these cases that cannot be explained by heat sink alone. The disseminated mineral matter in the coal is therefore inhibiting the oxidation reaction due to physicochemical effects. 14 refs., 5 figs., 5 tabs.

  13. Induced seismicity in Carbon and Emery counties, Utah

    Science.gov (United States)

    Brown, Megan R. M.

    Utah is one of the top producers of oil and natural gas in the United States. Over the past 18 years, more than 4.2 billion gallons of wastewater from the petroleum industry have been injected into the Navajo Sandstone, Kayenta Formation, and Wingate Sandstone in two areas in Carbon and Emery County, Utah, where seismicity has increased during the same period. In this study, I investigated whether or not wastewater injection is related to the increased seismicity. Previous studies have attributed all of the seismicity in central Utah to coal mining activity. I found that water injection might be a more important cause. In the coal mining area, seismicity rate increased significantly 1-5 years following the commencement of wastewater injection. The increased seismicity consists almost entirely of earthquakes with magnitudes of less than 3, and is localized in areas seismically active prior to the injection. I have established the spatiotemporal correlations between the coal mining activities, the wastewater injection, and the increased seismicity. I used simple groundwater models to estimate the change in pore pressure and evaluate the observed time gap between the start of injection and the onset of the increased seismicity in the areas surrounding the injection wells. To ascertain that the increased seismicity is not fluctuation of background seismicity, I analyzed the magnitude-frequency relation of these earthquakes and found a clear increase in the b-value following the wastewater injection. I conclude that the marked increase of seismicity rate in central Utah is induced by both mining activity and wastewater injection, which raised pore pressure along pre-existing faults.

  14. Structural analysis of the Tabaco anticline, Cerrejón open-cast coal mine, Colombia, South America

    Science.gov (United States)

    Cardozo, Néstor; Montes, Camilo; Marín, Dora; Gutierrez, Iván; Palencia, Alejandro

    2016-06-01

    The Tabaco anticline is a 15 km long, south plunging, east-vergent anticline in northern Colombia, close to the transpressional collisional margin between the Caribbean and South American plates. In the Cerrejón open-cast coal mine, systematic mapping of coal seams in the middle to upper Paleocene Cerrejón Formation has yielded an exceptional dataset consisting of 10 horizontal slices (sea level to 90 m elevation, regularly spaced at 10 m intervals) through the anticline. Coal seams and fault traces in these slices are used to construct a 3D model of the anticline. This 3D model shows tighter folds within lower coal seams, NW-vergent thrusts and related folds on the gentler western limb, and strike-slip faults on the steeper eastern limb. Fault slip-tendency analysis is used to infer that these two faulting styles resulted from two different stress fields: an earlier one consistent with thrusting and uplift of the Perijá range, and a later one consistent with strike-slip faulting (Oca, Ranchería and Samán faults). Our preferred interpretation is that the anticline developed its eastern vergence during the early stages (late Paleocene-early Eocene) of tilting of the Santa Marta massif. Later NW-vergent thrusting on the western limb (early to middle Eocene) was related to western propagation of the Perijá thrust system. These results contribute to the understanding of the structural evolution of the area. They are also a good example of the complex interplay between detachment folding, thrusting, and strike-slip faulting during the growth of a km-size fold in a transpressive setting.

  15. Concentration of gallium in the Permo-Carboniferous coals of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cunliang; Qin, Shenjun; Yang, Yinchao; Li, Yanheng; Lin, Mingyue [Hebei University of Engineering, Handan (China)

    2009-10-15

    Gallium is widely used in electronic industry and its current price is about 500 US dollars per kilogram. It has been found that its contents are very high in Permo-Carboniferous coal of China. In order to look for valuable associated gallium deposits in coal, gallium contents of 177 coal samples were determined by using inductively coupled plasma-mass spectrometry (ICP-MS) and the data of 873 coal samples from Chinese Permo-Carboniferous coalfields were collected. The results show that the average gallium concentration of Chinese Permo-Carboniferous coals is 15.49{mu}g{center_dot}g{sup -1}. There are two concentration types of gallium in Chinese Permo-Carboniferous coals: one type is that gallium has enriched to an ore deposit, and another type is that gallium is locally enriched in coal seams, but has not formed a valuable associated gallium ore deposit. The gallium concentration in Chinese Permo-Carboniferous coal may have several different sources: concentration in sedimentation stage, magmatic hydrothermal inputs and low-temperature hydrothermal fluids.

  16. Rayleigh wave tomography in North-China from ambient seismic noise

    OpenAIRE

    Fang, Lihua

    2010-01-01

    2008/2009 The theory and methodology of ambient noise tomography has been studied and applied to North-China successfully. Continuous vertical-component seismograms, spanning the period from January 1, 2007 to February 28, 2008 recorded by 190 broadband stations and 10 very broadband stations, have been used. The cross correlation technique has been applied to ambient noise data recorded by North-China Seismic Array for each station pairs of the array. Rayleigh wave group ve...

  17. Processing grounded-wire TEM signal in time-frequency-pseudo-seismic domain: A new paradigm

    Science.gov (United States)

    Khan, M. Y.; Xue, G. Q.; Chen, W.; Huasen, Z.

    2017-12-01

    Grounded-wire TEM has received great attention in mineral, hydrocarbon and hydrogeological investigations for the last several years. Conventionally, TEM soundings have been presented as apparent resistivity curves as function of time. With development of sophisticated computational algorithms, it became possible to extract more realistic geoelectric information by applying inversion programs to 1-D & 3-D problems. Here, we analyze grounded-wire TEM data by carrying out analysis in time, frequency and pseudo-seismic domain supported by borehole information. At first, H, K, A & Q type geoelectric models are processed using a proven inversion program (1-D Occam inversion). Second, time-to-frequency transformation is conducted from TEM ρa(t) curves to magneto telluric MT ρa(f) curves for the same models based on all-time apparent resistivity curves. Third, 1-D Bostick's algorithm was applied to the transformed resistivity. Finally, EM diffusion field is transformed into propagating wave field obeying the standard wave equation using wavelet transformation technique and constructed pseudo-seismic section. The transformed seismic-like wave indicates that some reflection and refraction phenomena appear when the EM wave field interacts with geoelectric interface at different depth intervals due to contrast in resistivity. The resolution of the transformed TEM data is significantly improved in comparison to apparent resistivity plots. A case study illustrates the successful hydrogeophysical application of proposed approach in recovering water-filled mined-out area in a coal field located in Ye county, Henan province, China. The results support the introduction of pseudo-seismic imaging technology in short-offset version of TEM which can also be an useful aid if integrated with seismic reflection technique to explore possibilities for high resolution EM imaging in future.

  18. Seismic excitation by space shuttles

    Science.gov (United States)

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  19. Report on the FY 1993 basic survey for industrialization related to the survey of overseas geological structure (Muara Lakitan area, Indonesia). Tables and drawings; 1993 nendo kaigai chishitsu kozo nado chosa ni kakawaru kigyoka kiso chosa hokokusho (Indonesia Muara Lankin chiku). Hyo oyobi zumen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    These are tables and drawings for the FY 1993 basic survey for the coal mine development/industrialization in the Muara Lakitan area of Indonesia. The geological structure in the survey area is under six sets of the anticline/syncline structure which have an NW-SE axis of fold, and exposes the Muaraenim seam repeatedly. The theoretical coal reserve in the depth down to 200m of each of the seams, Nos. 1, 2, 5, 12 and 13, which are great in coal seam change and exist relatively stably, is 143 million tons. The depth for adoption of the shovel/truck system open pit mining seems to be 50m or shallower, and the production is to be approximately 70 million tons. The coal is classified into a subbituminous coal-brown coal rank of the JIS classification. As tables, included were a table of the calculation of coal amount by seam and a table of the analytical result of coal by seam. As drawings, included were borehole logs of coal seam by boring, diagrams of thickness by seam such as the seam thickness/diagrams of thickness by seam such as the coal thickness, diagrams of range of calculating the coal amount, etc. Besides, in relation to coal properties, the report included value diagrams by seam of the inherent moisture, the ash, the volatile matter, the fixed carbon, the heating value, and the total sulfur content. (NEDO)

  20. Time-domain full waveform inversion using the gradient preconditioning based on seismic wave energy: Application to the South China Sea

    KAUST Repository

    Mengxuan, Zhong

    2017-06-01

    The gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI) are widely used now, but consume a lot of memory and do not fit the FWI of large models or actual seismic data well. To avoid the huge storage consumption, the gradient preconditioning approach based on seismic wave energy has been proposed it simulates the “approximated wave field” with the acoustic wave equation and uses the energy of the simulated wavefield to precondition the gradient. The method does not require computing and storing the Hessian matrix or its inverse and can effectively eliminate the effect caused by geometric diffusion and uneven illumination on gradient. The result of experiments in this article with field data from South China Sea confirms that the time-domain FWI using the gradient preconditioning based on seismic wave energy (GPWE) can achieve higher inversion accuracy for the deep high-velocity model and its underlying strata.