WorldWideScience

Sample records for coal-based jet fuel

  1. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  2. Subtask 3.11 - Production of CBTL-Based Jet Fuels from Biomass-Based Feedstocks and Montana Coal

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ramesh

    2014-06-01

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was prepared by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can be used

  3. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  5. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  6. Direct Coal -to-Liquids (CTL) for Jet Fuel Using Biomass-Derived Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Satya P. [Battelle Memorial Inst., Columbus, OH (United States); Garbark, Daniel B. [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Peterson, Rick [Battelle Memorial Inst., Columbus, OH (United States)

    2017-09-30

    Battelle has demonstrated a novel and potentially breakthrough technology for a direct coal-to-liquids (CTL) process for producing jet fuel using biomass-derived coal solvents (bio-solvents). The Battelle process offers a significant reduction in capital and operating costs and a substantial reduction in greenhouse gas (GHG) emissions, without requiring carbon capture and storage (CCS). The results of the project are the advancement of three steps of the hybrid coal/biomass-to-jet fuel process to the technology readiness level (TRL) of 5. The project objectives were achieved over two phases. In Phase 1, all three major process steps were explored and refined at bench-scale, including: (1) biomass conversion to high hydrogen-donor bio-solvent; (2) coal dissolution in biomass-derived bio-solvent, without requiring molecular H2, to produce a synthetic crude (syncrude); and (3) two-stage catalytic hydrotreating/hydrogenation of syncrude to jet fuel and other distillates. In Phase 2, all three subsystems of the CTL process were scaled up to a pre-pilot scale, and an economic analysis was carried out. A total of over 40 bio-solvents were identified and prepared. The most unique attribute of Battelle’s bio-solvents is their ability to provide much-needed hydrogen to liquefy coal and thus increase its hydrogen content so much that the resulting syncrude is liquid at room temperature. Based on the laboratory-scale testing with bituminous coals from Ohio and West Virginia, a total of 12 novel bio-solvent met the goal of greater than 80% coal solubility, with 8 bio-solvents being as good as or better than a well-known but expensive hydrogen-donor solvent, tetralin. The Battelle CTL process was then scaled up to 1 ton/day (1TPD) at a pre-pilot facility operated in Morgantown, WV. These tests were conducted, in part, to produce enough material for syncrude-upgrading testing. To convert the Battelle-CTL syncrude into a form suitable as a blending stock for jet

  7. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  8. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for

  9. Advanced thermally stable jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  11. Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

    1995-02-01

    There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation in a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.

  12. Compatibility of elastomers in alternate jet fuels

    Science.gov (United States)

    Kalfayan, S. H.; Fedors, R. F.; Reilly, W. W.

    1979-01-01

    The compatibility of elastomeric compositions of known resistance to aircraft fuels was tested for potential use in Jet A type fuels obtainable from alternate sources, such as coal. Since such fuels were not available at the time, synthetic alternate fuels were prepared by adding tetralin to a petroleum based Jet A type fuel to simulate coal derived fuels which are expected to contain higher amounts of aromatic and hydroaromatic hydrocarbons. The elastomeric compounds tested were based on butadiene-acrylonitrile rubber, a castable Thiokol polysulfide rubber, and a castable fluorosilicone rubber. Batches of various cross-link densities of these rubbers were made and their chemical stress relaxation behavior in fuel, air, and nitrogen, their swelling properties, and response to mechanical testing were determined.

  13. Characterization and supply of coal based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  14. Characterization and supply of coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  15. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  16. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jayesh [Lummus Technology Inc., Bloomfield, NJ (United States); Hess, Fernando [Lummus Technology Inc., Bloomfield, NJ (United States); Horzen, Wessel van [Lummus Technology Inc., Bloomfield, NJ (United States); Williams, Daniel [Lummus Technology Inc., Bloomfield, NJ (United States); Peevor, Andy [JM Davy, London (United Kingdom); Dyer, Andy [JM Davy, London (United Kingdom); Frankel, Louis [Canonsburgh, PA (United States)

    2016-06-01

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability of implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and

  17. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  18. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  19. Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process - Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Thamina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-03

    This Final Technical Report describes the work and accomplishments of the project entitled, “Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process”. The main objective of the project was to raise the Technology Readiness Level (TRL) of the GHGR-CBTL fuel-production technology from TRL 4 to TRL 5 by producing a drop-in synthetic Jet Propellant 8 (JP-8) with a greenhouse-gas footprint less than or equal to petroleum-based JP-8 by utilizing mixtures of coal and biomass as the feedstock. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. While the system was not fabricated and tested, major efforts were expended to design the 1-TPD and a full-scale plant. The system was designed, a Block-Flow Diagram (BFD), a Process-Flow Diagram (PFD), and Piping-and-Instrumentation Diagrams (P&IDs) were produced, a Bill of Materials (BOM) and associated spec sheets were produced, commercially available components were selected and procured, custom components were designed and fabricated, catalysts were developed and screened for performance, and permitting activities were conducted. Optimization tests for JP-8 production using C2 olefin as the feed were performed over a range of temperatures, pressures and WHSVs. Liquid yields of between 63 to 65% with 65% JP-8 fraction (41-42% JP-8 yield) at 50 psig were achieved. Life-Cycle Analysis (LCA) was performed by Argonne National Laboratory (ANL), and a GHGR-CBTL module was added to the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. Based upon the experimental results, the plant design was reconfigured for zero natural-gas imports and minimal electricity imports. The LCA analysis of the reconfigured process utilizing the GREET model showed that if the char from the process was utilized to produce combined heat and power (CHP) then a feed containing 23 wt% biomass and

  20. Advanced thermally stable jet fuels. Technical progress report, October 1993--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

    1994-01-01

    The Penn State program in advancd thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding them formation of vcarbonaceous solids; and, (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal.

  1. Multi-scale sustainability assessments for biomass-based and coal-based fuels in China.

    Science.gov (United States)

    Man, Yi; Xiao, Honghua; Cai, Wei; Yang, Siyu

    2017-12-01

    Transportation liquid fuels production is heavily depend on oil. In recent years, developing biomass based and coal based fuels are regarded as promising alternatives for non-petroleum based fuels in China. With the rapid growth of constructing and planning b biomass based and coal based fuels production projects, sustainability assessments are needed to simultaneously consider the resource, the economic, and the environmental factors. This paper performs multi-scale analyses on the biomass based and coal based fuels in China. The production cost, life cycle cost, and ecological life cycle cost (ELCC) of these synfuels are investigated to compare their pros to cons and reveal the sustainability. The results show that BTL fuels has high production cost. It lacks of economic attractiveness. However, insignificant resource cost and environmental cost lead to a substantially lower ELCC, which may indicate better ecological sustainability. CTL fuels, on the contrary, is lower in production cost and reliable for economic benefit. But its coal consumption and pollutant emissions are both serious, leading to overwhelming resource cost and environmental cost. A shifting from petroleum to CTL fuels could double the ELCC, posing great threat to the sustainability of the entire fuels industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  3. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  4. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  5. Characterization and supply of coal-based fuels. Quarterly report, February 1, 1989--April 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  6. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  7. Traditional technologies of fuels production for air-jet engines

    Directory of Open Access Journals (Sweden)

    Бойченко С. В.

    2013-07-01

    Full Text Available Available energy resources for various fuels, mainly for gas-turbine engines are presented in the given article. Traditional technologies for jet fuels production from nonrenewable raw materials, such as crude oil, coal, natural gas, oil-shales and others are analyzed in details. Cause and effect relationship between production and use of such fuels and their impact on natural environment is defined. The timeliness and necessity for development of alternative technologies of aviation biofuels production are determined in the given article.

  8. [Characterization and supply of coal based fuels]. Quarterly technical report, February 1, 1988--April 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-31

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is described.

  9. Production of bio-jet fuel from microalgae

    Science.gov (United States)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  10. Life-cycle analysis of bio-based aviation fuels.

    Science.gov (United States)

    Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q

    2013-12-01

    Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. An economic study for the co-generation of liquid fuel and hydrogen from coal and municipal solid waste

    International Nuclear Information System (INIS)

    Warren, A.; El-Halwagi, M.

    1996-01-01

    The objective of this paper is to assess the technical and economic feasibility of a new process for co-liquefying coal and plastic wastes. This assessment is based on incorporating recent experimental data on plastic/coal liquefaction within a conceptual process framework. A preliminary design was developed for two process configurations. The primary difference between the configurations is the source of hydrogen (coal versus cellulosic waste). The assessment was based on co-liquefying 720 tons per day of plastic waste with an equivalent amount of coal on a weight basis. The plant products include hydrocarbon gases, naphtha, jet fuel and diesel fuel. Material and energy balances along with plant-wide simulation were conducted for the process. Furthermore, the data on plastic-waste availability, disposal and economics have been compiled. The results from the economic analysis identify profitability criteria for gross profit and thus return on investment based on variable conversion, yield and tipping fee for plastic waste processed. 11 refs., 6 figs

  12. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products.

    Science.gov (United States)

    Pierobon, Francesca; Eastin, Ivan L; Ganguly, Indroneil

    2018-01-01

    Bio-jet fuels are emerging as a valuable alternative to petroleum-based fuels for their potential for reducing greenhouse gas emissions and fossil fuel dependence. In this study, residual woody biomass from slash piles in the U.S. Pacific Northwest is used as a feedstock to produce iso-paraffinic kerosene, through the production of sugar and subsequent patented proprietary fermentation and upgrading. To enhance the economic viability and reduce the environmental impacts of iso-paraffinic kerosene, two co-products, activated carbon and lignosulfonate, are simultaneously produced within the same bio-refinery. A cradle-to-grave life cycle assessment (LCA) is performed for the residual woody biomass-based bio-jet fuel and compared against the cradle-to-grave LCA of petroleum-based jet fuel. This paper also discusses the differences in the environmental impacts of the residual biomass-based bio-jet fuel using two different approaches, mass allocation and system expansion, to partition the impacts between the bio-fuel and the co-products, which are produced in the bio-refinery. The environmental assessment of biomass-based bio-jet fuel reveals an improvement along most critical environmental criteria, as compared to its petroleum-based counterpart. However, the results present significant differences in the environmental impact of biomass-based bio-jet fuel, based on the partitioning method adopted. The mass allocation approach shows a greater improvement along most of the environmental criteria, as compared to the system expansion approach. However, independent of the partitioning approach, the results of this study reveal that more than the EISA mandated 60% reduction in the global warming potential could be achieved by substituting petroleum-based jet fuel with residual woody biomass-based jet fuel. Converting residual woody biomass from slash piles into bio-jet fuel presents the additional benefit of avoiding the impacts of slash pile burning in the forest, which

  13. SECA Coal-Based Systems - FuelCell Energy, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ayagh, Hossein [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating

  14. Environmental Life Cycle Assessment of Coal-Biomass to Liquid Jet Fuel Compared to Petroleum-Derived JP-8 Jet Fuel

    Science.gov (United States)

    2010-03-01

    is a Metal Deactivator Additive (MDA) to prevent fuel oxidation with trace metals such as copper or zinc that may be in the jet fuel (MIL- HDBK-510-1...react in the FT synthesis process). The gasifier is of the slagging type and a direct contact water quench spray system is used to cool the syngas...exiting the gasifier. The quench also removes particulate matter and contaminants not removed in the slag . However, because the ash from biomass is

  15. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  16. Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes

    Science.gov (United States)

    Yankovsky, S. A.; Tolokolnikov, A. A.; Gubin, V. E.; Slyusarskiy, K. V.; Zenkov, A. V.

    2017-09-01

    Results of experimental studies of composite fuel thermal decomposition processes based on T grade coal (Alardinskoe deposit) and timber industry wastes (fine wood) are presented. C, H, N, S weight percentage of each component of composite fuel was determined experimentally. It has been established that with an increase in wood concentration up to 50% in composite fuel, its energy characteristics decrease by less than 3.6%, while the yield of fly ash is 39.7%. An effective composite fuel composition has been defined as 50%/50%. Results of performed experimental studies suggest that it is possible to use composite fuels based on coal and wood at thermal power plants.

  17. Formation of grooves during the breakdown of a coal block by a water jet

    Energy Technology Data Exchange (ETDEWEB)

    Shavlovskii, S.S.

    1979-02-01

    A description is given of a method of coal excavation which provides for the initial formation of a grooved slit along the width of the opening equal in height to the diameter of the sinkhole. The formation of a groove in the coal block and the excavation of coal by water jets using the grooved crater method are illustrated in diagrams. Data are given on changes in the performance of the hydraulic jet in coal excavation in relation to the distance between the nozzle and the face and at given pressures in front of the nozzle. Functional relationships were mathematically constructed for the performance of the water jet in dimensionless coordinates. Data are also given on the comparative performance of a water jet when coal is excavated by the grooved funnel method and by hydraulic fracturing. The analytical computations indicate that the hydraulic fracturing of a coal block by water jets is economical with respect to the consumption of electric power and the unit rate of coal extraction, in addition to being a safe method. 4 references, 4 figures, 2 tables.

  18. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  19. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  20. Mathematical Model of the Jet Engine Fuel System

    Directory of Open Access Journals (Sweden)

    Klimko Marek

    2015-01-01

    Full Text Available The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator will be described, with respect to advanced predetermined simplifications.

  1. Mathematical Model of the Jet Engine Fuel System

    Science.gov (United States)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  2. Fuel Cells in the Coal Energy Industry

    Directory of Open Access Journals (Sweden)

    Kolat Peter

    1998-09-01

    Full Text Available In march 1998 at the conference „Coal Utilization & Fuel Systems“ in Clearwater, USA representatives of U.S. Department of Energy presented the vision 21 focused on the electricity generation from coal for 21st century. The goal is a powerplant with the ability to produce the electricity from coal with the efficiency approaching 60% (higher heating value and emission levels of one-tenth of today´s technologies, The CO2 capture and permanent sequestration at the cost of $15/ton of CO2, and a cost of electricity of 3 cents per kilowatt-hour. The goal is believed to be achievable by the first quarter of the next century. The vision 21 is presented with several possible concepts. One of them is based on coal gasification with following hydrogen separation. The obtained hydrogen is used as a fuel for the cogeneration unit with fuel cells. The remaining gas can be liquefied and utilised as a fuel in the automotive industry or further chemically processed. The concept has several important features. Firstly, a very clean low cost electricity production. Secondly, it is comprised of fuel processing section and power processing section. The two sections need not to be co-located. In the world of the deregulated electricity generation this offers a major advantage. The technologies of fuel processing section – coal gasification and hydrogen separation have been successfully developed in the last two decades. A specificity of the fuel processing section of this concept is to obtain hydrogen rich gas with very low concentrations of substances, as CO, which cause a poisoning of electrodes of fuel cells leading to the decreasing fuel cells efficiency. Fuel cells, specially highly efficient coal-gas SOFC and MCFC, are expected to be commercially available by 2020. The natural-gas MCFC and SOFC plants should enter the commercial marketplace by the year 2002.

  3. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  4. Coal-water fuels - a clean coal solution for Eastern Europe

    International Nuclear Information System (INIS)

    Ljubicic, B.; Willson, W.; Bukurov, Z.; Cvijanovic, P.; Stajner, K.; Popovic, R.

    1993-01-01

    Eastern Europe currently faces great economic and environmental problems. Among these problems is energy provision. Coal reserves are large but cause pollution while oil and gas need to be used for export. Formal 'clean coal technologies' are simply too expensive to be implemented on a large scale in the current economic crisis. The promised western investment and technological help has simply not taken place, western Europe must help eastern Europe with coal technology. The cheapest such technology is coal-water fuel slurry. It can substitute for oil, but research has not been carried out because of low oil prices. Coal-water fuel is one of the best methods of exploiting low rank coal. Many eastern European low rank coals have a low sulfur content, and thus make a good basis for a clean fuel. Italy and Russia are involved in such a venture, the slurry being transported in a pipeline. This technology would enable Russia to exploit Arctic coal reserves, thus freeing oil and gas for export. In Serbia the exploitation of sub-Danube lignite deposits with dredging mining produced a slurry. This led to the use and development of hot water drying, which enabled the removal of many of the salts which cause problems in pulverized fuel combustion. The system is economic, the fuel safer to transport then oil, either by rail or in pipelines. Many eastern European oil facilities could switch. 24 refs

  5. Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

    Science.gov (United States)

    Schripp, Tobias; Anderson, Bruce; Crosbie, Ewan C; Moore, Richard H; Herrmann, Friederike; Oßwald, Patrick; Wahl, Claus; Kapernaum, Manfred; Köhler, Markus; Le Clercq, Patrick; Rauch, Bastian; Eichler, Philipp; Mikoviny, Tomas; Wisthaler, Armin

    2018-04-17

    The application of fuels from renewable sources ("alternative fuels") in aviation is important for the reduction of anthropogenic carbon dioxide emissions, but may also attribute to reduced release of particles from jet engines. The present experiment describes ground-based measurements in the framework of the ECLIF (Emission and Climate Impact of Alternative Fuels) campaign using an Airbus A320 (V2527-A5 engines) burning six fuels of chemically different composition. Two reference Jet A-1 with slightly different chemical parameters were applied and further used in combination with a Fischer-Tropsch synthetic paraffinic kerosene (FT-SPK) to prepare three semi synthetic jet fuels (SSJF) of different aromatic content. In addition, one commercially available fully synthetic jet fuel (FSJF) featured the lowest aromatic content of the fuel selection. Neither the release of nitrogen oxide or carbon monoxide was significantly affected by the different fuel composition. The measured particle emission indices showed a reduction up to 50% (number) and 70% (mass) for two alternative jet fuels (FSJF, SSJF2) at low power settings in comparison to the reference fuels. The reduction is less pronounced at higher operating conditions but the release of particle number and particle mass is still significantly lower for the alternative fuels than for both reference fuels. The observed correlation between emitted particle mass and fuel aromatics is not strict. Here, the H/C ratio is a better indicator for soot emission.

  6. Advanced thermally stable jet fuels. Technical progress report, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schobert, H.H.; Eser, S.; Song, C. [and others

    1993-10-01

    The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Some of our accomplishments and findings are: The product distribution and reaction mechanisms for pyrolysis of alkylcyclohexanes at 450{degree}C have been investigated in detail. In this report we present results of pyrolysis of cyclohexane and a variety of alkylcyclohexanes in nitrogen atmospheres, along with pseudo-first order rate constants, and possible reaction mechanisms for the origin of major pyrolysis products are presented. Addition of PX-21 activated carbon effectively stops the formation of carbonaceous solids on reactor walls during thermal stressing of JPTS. A review of physical and chemical interactions in supercritical fluids has been completed. Work has begun on thermal stability studies of a second generation of fuel additives, 1,2,3,4-tetrahydro-l-naphthol, 9,10-phenanthrenediol, phthalan, and 1,2-benzenedimethanol, and with careful selection of the feedstock, it is possible to achieve 85--95% conversion of coal to liquids, with 40--50% of the dichloromethane-soluble products being naphthalenes. (Further hydrogenation of the naphthalenes should produce the desired highly stable decalins.)

  7. The calculation of the chemical exergies of coal-based fuels by using the higher heating values

    International Nuclear Information System (INIS)

    Bilgen, Selcuk; Kaygusuz, Kamil

    2008-01-01

    This paper demonstrates the application of exergy to gain a better understanding of coal properties, especially chemical exergy and specific chemical exergy. In this study, a BASIC computer program was used to calculation of the chemical exergies of the coal-based fuels. Calculations showed that the chemical composition of the coal influences strongly the values of the chemical exergy. The exergy value of a coal is closely related to the H:C and O:C ratios. High proportions of hydrogen and/or oxygen, compared to carbon, generally reduce the exergy value of the coal. High contents of the moisture and/or the ash cause to low values of the chemical exergy. The aim of this paper is to calculate the chemical exergy of coals by using equations given in the literature and to detect and to evaluate quantitatively the effect of irreversible phenomena increased the thermodynamic imperfection of the processes. In this paper, the calculated exergy values of the fuels will be useful for energy experts studied in the coal mining area and coal-fired powerplants

  8. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    Science.gov (United States)

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  9. Denitrogenation and desulphurization during hydropyrolysis of coal in H{sub 2}/Ar plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bao, W.; Zhang, J.; Shen, S.; Cao, Q.; Lu, Y. [Taiyuan University of Technology, Taiyuan (China)

    2007-03-15

    The denitrogenation and desulphurization during hydropyrolysis of six Chinese coals were systematically investigated in H{sub 2}/Ar plasma jet. The results from experiments show that HCN is the main product of coal-N at high temperature. Only a low amount of NH{sub 3} is formed. Yield of HCN depends on coal types and coal feeding rate, but NH{sub 3} does not change obviously. Yields of HCN and NH{sub 3} decrease with the increase of oxygen contents in coal during hydropyrolysis in H{sub 2}/Ar plasma jet. The change of feeding rate affects the formation of H{sub 2}S from the conversion of coal-S. The mole ratios of n(N)/n(C) and n(S)/n(C) in all char samples are less than that of coal. The results suggest that hydropyrolysis in H{sub 2}/Ar plasma jet is an efficient method for denitrogenation and desulphurization. In the present experimental conditions, the denitrogenation and desulphurization percentages reach up to 50% and 55% for Yanzhou coal, respectively. Yima coal can reach up to 40% and 60%. 11 refs., 3 figs., 3 tabs.

  10. Clean fuel-magnesia bonded coal briquetting

    Energy Technology Data Exchange (ETDEWEB)

    Tosun, Yildirim I. [S. Demirel University Eng., Arch. Faculty Mining Eng. Department, Isparta (Turkey)

    2007-10-15

    Benefaction from coal fines as solid fuel in Turkey is very much important for economical development. Beneficiation from washed coal fines in the industry using solid fuel at lump size and in the municipal areas as an household solid fuel may be only provided by hot briquetting of the coal fines. The most practical common way of that benefication from coal fines in our country have been hot binding by sulfite liquor-sulfite liquor-melas and lime mixtures. Harmful the flue content of sulfite liquor-melas may only be eliminated by lime, a type of solid additive. However, cold bonded briquettes produced from coal fines are environmentally free. Just ash contents of these briquettes increase at a certain degree and heat content of them decrease at a certain extent. By using magnesia binder showed in this study, Tuncbilek lignite fines have been briquetted by cold and hot briquetting techniques. The qualities of briquettes produced by cold binders were compared with to those produced by other hot binding methods As a result, magnesia binder showed the similar characteristics with those of the briquettes produced by only cold bonded gypsum. Use of magnesite mixture and gypsum just as only cold binder was not suitable for the requirements from the coal briquettes to be used as solid fuels, particularly from household fuels, but just only as cold additive should be used. (author)

  11. Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae

    International Nuclear Information System (INIS)

    Fortier, Marie-Odile P.; Roberts, Griffin W.; Stagg-Williams, Susan M.; Sturm, Belinda S.M.

    2014-01-01

    Highlights: • A life cycle assessment of bio-jet fuel from wastewater algae was performed. • We used experimental data from algae cultivation through hydrothermal liquefaction. • We performed Monte Carlo and sensitivity analyses with ranges of parameter values. • Transport of moderately dewatered algae increased life cycle climate change impacts. • Collocation and heat integration reduce life cycle greenhouse gas emissions by 76%. - Abstract: Bio-jet fuel is increasingly being produced from feedstocks such as algae and tested in flight. As the industry adopts bio-jet fuels from various feedstocks and conversion processes, life cycle assessment (LCA) is necessary to determine whether these renewable fuels result in lower life cycle greenhouse gas (LC-GHG) emissions than conventional jet fuel. An LCA was performed for a functional unit of 1 GJ of bio-jet fuel produced through thermochemical conversion (hydrothermal liquefaction (HTL)) of microalgae cultivated in wastewater effluent. Two pathways were analyzed to compare the impacts of siting HTL at a wastewater treatment plant (WWTP) to those of siting HTL at a refinery. Base cases for each pathway were developed in part using primary data from algae production in wastewater effluent and HTL experiments of this algae at the University of Kansas. The LC-GHG emissions of these cases were compared to those of conventional jet fuel, and a sensitivity analysis and Monte Carlo analyses were performed. When algal conversion using HTL was modeled at a refinery versus at the WWTP site, the transportation steps of biomass and waste nutrients were major contributors to the LC-GHG emissions of algal bio-jet fuel. The LC-GHG emissions were lower for the algal bio-jet fuel pathway that performs HTL at a WWTP (35.2 kg CO 2eq /GJ for the base case) than for the pathway for HTL at a refinery (86.5 kg CO 2eq /GJ for the base case). The LCA results were particularly sensitive to the extent of heat integration, the source of

  12. Utilisation of coal for energy production in fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2016-01-01

    Full Text Available In this paper a brief characterization of fuel cell technology and its possible application in sustainable energy development was described. Special attention was paid to direct carbon fuel cell technology. The direct carbon fuel cell is an electrochemical device which directly converts the chemical energy of carbonaceous based fuel into electricity without ‘flame burning’. The electrical efficiency of a DCFC is indeed very high (in practice exceeding 80%, and the product of conversion consists of almost pure CO2, eliminating the most expensive step of sequestration: the separation of carbon from flue gases. In this paper the process of electrochemical oxidation of carbon particles on the surface of oxide electrolytes at 8% mol Y2O3 in ZrO2 (8YSZ as well as cermet anode Ni-8YSZ was analysed. The graphite, carbon black powders were considered as reference solid fuels for coal samples. It was found that the main factors contributing to the electrochemical reactivity of carbon particles is not only the high carbon content in samples but also structural disorder. It was found that structurally disordered carbon-based materials are the most promising solid fuels for direct carbon solid oxide fuel cells. Special impact was placed on the consideration of coal as possible solid fuels for DC-SOFC. Statistical and economic analyses show that in the coming decades, in developing countries such as China, India, and some EU countries, coal-fuelled power plants will maintain their strong position in the power sector due to their reliability and low costs as well as the large reserves of coal and lignite in the world. Coal is mined in politically stable areas, which guarantees its easy and safe purchase and transport. The impact of the physiochemical properties of raw and purified coal on the performance of the DC-SOFC was studied. An analysis of the stability of electrical parameters was performed for a DC-SOFC operating under a load over an extended

  13. Current status of U.S. coal utilization and non-fuel uses of fossil fuels

    International Nuclear Information System (INIS)

    Song, C.S.; Schobert, H.; Scaroni, A.W.

    1997-01-01

    An understanding of the current situation is important for projecting the future direction of coal utilization. The world's annual consumption of coal in 1995 was 5104.01 million short tons (MST, 1 short ton = 0.907 metric ton). Coal plays a very important role in the US energy supply; US coal production in 1995 totaled 1033 MST, including 611.1 MST of bituminous coal, 328.4 MST of subbituminous coal, 86.1 MST of lignite, and 4.1 MST of anthracite. US coal consumption totaled 940.6 MST, with 88.1% in electric utilities, 3.5% in coke plants, 7.8% for other industrial uses, and only 0.6% in the residential and commercial sectors. The amount of fossil resources used for non-fuel purposes accounted for 8.4% of the total annual consumption in 1995. Non-fuel uses of fossil fuels particularly coal may become more important in the future. The demonstrated coal reserves in the world are large enough for consumption for over 220 years at the 1995 level, while proven oil reserves are only about 40 times the world's 1995 consumption level. Coal has several positive attributes when considered as a feedstock for aromatic chemicals, specialty chemicals, and carbon-based materials. Existing nonfuel uses of coals include (1) high temperature carbonization of bituminous and subbituminous coals to make metallurgical coke; (2) gasification of coal to make synthesis gases and other chemicals; (3) use of coal in manufacturing other materials such as activated carbons, carbon molecular sieves (CMS) and production of phosphorus (phosphoric acid); (4) the use of coal tars from carbonization and gasification for making aromatic and phenolic chemicals; (5) the use of coal tar pitch for making carbon fibers and activated carbon fibers; and (6) other non-fuel products derived from coal including combustion by-products. Coal may become more important both as an energy source and as the source of chemical feedstocks in the 21st century

  14. Immunotoxicity evaluation of jet a jet fuel in female rats after 28-day dermal exposure.

    Science.gov (United States)

    Mann, Cynthia M; Peachee, Vanessa L; Trimmer, Gary W; Lee, Ji-Eun; Twerdok, Lorraine E; White, Kimber L

    2008-01-01

    The potential for jet fuel to modulate immune functions has been reported in mice following dermal, inhalation, and oral routes of exposure; however, a functional evaluation of the immune system in rats following jet fuel exposure has not been conducted. In this study potential effects of commercial jet fuel (Jet A) on the rat immune system were assessed using a battery of functional assays developed to screen potential immunotoxic compounds. Jet A was applied to the unoccluded skin of 6- to 7-wk-old female Crl:CD (SD)IGS BR rats at doses of 165, 330, or 495 mg/kg/d for 28 d. Mineral oil was used as a vehicle to mitigate irritation resulting from repeated exposure to jet fuel. Cyclophosphamide and anti-asialo GM1 were used as positive controls for immunotoxic effects. In contrast to reported immunotoxic effects of jet fuel in mice, dermal exposure of rats to Jet A did not result in alterations in spleen or thymus weights, splenic lymphocyte subpopulations, immunoglobulin (Ig) M antibody-forming cell response to the T-dependent antigen, sheep red blood cells (sRBC), spleen cell proliferative response to anti-CD3 antibody, or natural killer (NK) cell activity. In each of the immunotoxicological assays conducted, the positive control produced the expected results, demonstrating the assay was capable of detecting an effect if one had occurred. Based on the immunological parameters evaluated under the experimental conditions of the study, Jet A did not adversely affect immune responses of female rats. It remains to be determined whether the observed difference between this study and some other studies reflects a difference in the immunological response of rats and mice or is the result of other factors.

  15. Alternative jet fuel scenario analysis report

    Science.gov (United States)

    2012-11-30

    This analysis presents a bottom up projection of the potential production of alternative aviation (jet) fuels in North America (United States, Canada, and Mexico) and the European Union in the next decade. The analysis is based on available pla...

  16. CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8

    Science.gov (United States)

    Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8AbstractThe genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...

  17. Comparison of gaseous exhaust indices of the F109 turbofan using three different blends of petroleum-based Jet-A and camelina-based Jet-A

    Science.gov (United States)

    Kozak, Brian John

    This research project focused on the collection and comparison of gaseous exhaust emissions of the F109 turbofan engine using petroleum-based Jet-A and two different blends of camelina-based Jet-A. Simulated landing and takeoff cycles were used to collect gaseous exhaust emissions. Unburned hydrocarbon (HC), nitrogen oxide (NOx), and carbon moNOxide (CO) exhaust indices (EIm) were calculated using ICAO Annex 16 Volume II formulae. Statistical analyses were performed on the Elm data. There was no significant difference in HC EIm and CO EI m among the three fuels at takeoff thrust. There were significant differences among the fuels for NOx EIm. 50% Jet-A 50% camelina produced the highest NOx EIm, then 75% Jet-A 25% camelina and finally Jet-A. At climb thrust, both blends of camelina fuel produced higher NOx EIm but no difference in CO EIm and HC EIm as Jet-A. At approach thrust, both blends of camelina fuel produced higher NOx EIm, lower CO EIm, and no difference in HC EIm as Jet-A. At idle thrust, there was no significant difference among the fuels for NOx EIm. There were significant differences among the fuels for HC EIm. Jet-A and 50% Jet-A 50% both produced higher HC EIm as 75% Jet-A 25% camelina. There were significant differences among the fuels for CO EI m. Jet-A produced the highest CO EIm, then 75% Jet-A 25% camelina and finally 50% Jet-A 50% camelina.

  18. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    Science.gov (United States)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  19. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  20. Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification

    Science.gov (United States)

    1979-01-01

    Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

  1. Britain's resources of coal and spent uranium fuel

    International Nuclear Information System (INIS)

    Oldby, R.

    1982-01-01

    Estimates of the United Kingdom's reserves of coal and of spent fuel from nuclear reactors, provided during the 1970's by the National Coal Board and the Atomic Energy Authority, are examined. These estimates, which tend to increase steadily, are based on statistics on fuel reserves which do not constitute cold hard facts but are judgements about the probable outcome of a series of events in space and time. It is felt that this analysis of energy resource claims does not suggest intentional rivalry by the Atomic Energy Authority and the National Coal Board though the fact that they both represent responses at the political level in the campaign for government support seems evident. A reluctance to adopt the modern distinction between resources and reserves in such analyses is also noted. (U.K.)

  2. Coal and nuclear electricity fuels

    International Nuclear Information System (INIS)

    Rahnama, F.

    1982-06-01

    Comparative economic analysis is used to contrast the economic advantages of nuclear and coal-fired electric generating stations for Canadian regions. A simplified cash flow method is used with present value techniques to yield a single levelized total unit energy cost over the lifetime of a generating station. Sensitivity analysis illustrates the effects of significant changes in some of the cost data. The analysis indicates that in Quebec, Ontario, Manitoba and British Columbia nuclear energy is less costly than coal for electric power generation. In the base case scenario the nuclear advantage is 24 percent in Quebec, 29 percent in Ontario, 34 percent in Manitoba, and 16 percent in British Columbia. Total unit energy cost is sensitive to variations in both capital and fuel costs for both nuclear and coal-fuelled power stations, but are not very sensitive to operating and maintenance costs

  3. Jet Fuel-Associated Occupational Contact Dermatitis.

    Science.gov (United States)

    Contestable, James J

    2017-03-01

    Occupational contact dermatitis is a ubiquitous problem. Sailors onboard U.S. Navy vessels are at high risk given the multitude of potential workplace exposures. Solvents, petrochemicals, and fuels are abundant and can cause irritant or allergic contact dermatitis. Symptoms of contact dermatitis can cause inability to work and, if chronic, may require a change in rating or job. Prevention of this issue requires patient education about the risks and correct personnel protective equipment. Even with preventative strategies in place, exposures and cases of contact dermatitis will occur. Treatment consists of topical steroids and immunomodulators, as well as barrier creams and emollients. The goal of treatment is to fully restore the skin's natural barrier and prevent further exposure. A classic case of jet fuel-associated contact dermatitis is reviewed. A literature review utilizing PubMed, Google Scholar, and Google Search was conducted to elucidate our understanding of this issue, current occupational health guidelines, preventative approaches, and treatments. This case report provides guidance and recommendations for providers who encounter contact dermatitis related to petrochemicals, such as jet fuel. The literature review revealed limited knowledge surrounding in vivo human skin effects of jet fuel, specifically JP-5. Even larger gaps were found in our understanding of, and guidelines for, protective modalities against jet fuel exposure and dermatitis. A case is presented to facilitate recognition of jet fuel contact dermatitis and guidance for treatment and prevention. Given our current limited knowledge and guidelines concerning protective equipment and skin protectants, multiple proposals for future studies are suggested. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  4. Forecasting Air Traffic and corresponding Jet-Fuel Demand until 2025

    International Nuclear Information System (INIS)

    Cheze, Benoit; Gastineau, Pascal; Chevallier, Julien

    2010-01-01

    This paper provides i) air traffic and ii) Jet-Fuel demand projections at the worldwide level and for eight geographical zones until 2025. The general methodology may be summarized in two steps. First, air traffic forecasts are estimated using econometric methods. The modeling is performed for eight geographical zones, by using dynamic panel-data econometrics. Once estimated from historical data, the model is then used to generate air traffic forecasts. Second, the conversion of air traffic projections into quantities of Jet-Fuel is accomplished using the 'Traffic Efficiency' method developed previously by UK DTI to support the IPCC (IPCC (1999)). One of our major contribution consists in proposing an alternative methodology to obtain Energy Efficiency coefficients and energy efficiency improvements estimates based on modeling at the macro-level. These estimates are obtained by directly comparing the evolution of both Jet-Fuel consumption and air traffic time series from 1983 to 2006. According to our 'Business As Usual' scenario, air traffic should increase by about 100% between 2008 and 2025 at the world level, corresponding to a yearly average growth rate of about 4.7%. World Jet-Fuel demand is expected to increase by about 38% during the same period, corresponding to a yearly average growth rate of about 1, 9% per year. Air traffic energy efficiency improvements yield effectively to reduce the effect of air traffic rise on the Jet-Fuel demand increase, but do not annihilate it. Thus, Jet- Fuel demand is unlikely to diminish unless there is a radical technological shift, or air travel demand is restricted. (authors)

  5. Enhanced fuel efficiency on tractor-trailers using synthetic jet-based active flow control

    Science.gov (United States)

    Amitay, Michael; Menicovich, David; Gallardo, Daniele

    2016-04-01

    The application of piezo-electrically-driven synthetic-jet-based active flow control to reduce drag on tractor-trailers was explored experimentally in wind tunnel testing as well as full-scale road tests. Aerodynamic drag accounts for more than 50% of the usable energy at highway speeds, a problem that applies primarily to trailer trucks. Therefore, a reduction in aerodynamic drag results in large saving of fuel and reduction in CO2 emissions. The active flow control technique that is being used relies on a modular system comprised of distributed, small, highly efficient actuators. These actuators, called synthetic jets, are jets that are synthesized at the edge of an orifice by a periodic motion of a piezoelectric diaphragm(s) mounted on one (or more) walls of a sealed cavity. The synthetic jet is zero net mass flux (ZNMF), but it allows momentum transfer to flow. It is typically driven near diaphragm and/or cavity resonance, and therefore, small electric input [O(10W)] is required. Another advantage of this actuator is that no plumbing is required. The system doesn't require changes to the body of the truck, can be easily reconfigured to various types of vehicles, and consumes small amounts of electrical power from the existing electrical system of the truck. Preliminary wind tunnel results showed up to 18% reduction in fuel consumption, whereas road tests also showed very promising results.

  6. [Progress and prospect of bio-jet fuels industry in domestic and overseas].

    Science.gov (United States)

    Qiao, Kai; Fu, Jie; Zhou, Feng; Ma, Huixia

    2016-10-25

    We reviewed the progress of the bio-jet fuels industry in recent years and systematically analyzed the technical routes that have been approved or in the pipeline for approval by ASTM D7566. In addition, we highlighted a novel pathway to produce drop-in fuel by near-critical hydrolysis of waste cooking oils or algal oils followed by catalytic decarboxylation. Also, we introduced the source of oils and fats feedstock and the domestic bio-jet fuel industry status during the 12th Five-Year-Plan period. Based on our own research, we discussed the prospect of the bio-jet fuel industry and future research needs.

  7. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    International Nuclear Information System (INIS)

    Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.

    2011-01-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  8. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide

    2017-01-01

    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon......-carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... bituminous coal (73 mW/cm2)....

  9. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    Prinzing, D.E.; Tillman, D.A.; Harding, N.S.

    1993-01-01

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO 2 and NO x emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO 2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  10. A simple numerical model to estimate the effect of coal selection on pulverized fuel burnout

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.K.; Hurt, R.H.; Niksa, S.; Muzio, L.; Mehta, A.; Stallings, J. [Brown University, Providence, RI (USA). Division Engineering

    2003-06-01

    The amount of unburned carbon in ash is an important performance characteristic in commercial boilers fired with pulverized coal. Unburned carbon levels are known to be sensitive to fuel selection, and there is great interest in methods of estimating the burnout propensity of coals based on proximate and ultimate analysis - the only fuel properties readily available to utility practitioners. A simple numerical model is described that is specifically designed to estimate the effects of coal selection on burnout in a way that is useful for commercial coal screening. The model is based on a highly idealized description of the combustion chamber but employs detailed descriptions of the fundamental fuel transformations. The model is validated against data from laboratory and pilot-scale combustors burning a range of international coals, and then against data obtained from full-scale units during periods of coal switching. The validated model form is then used in a series of sensitivity studies to explore the role of various individual fuel properties that influence burnout.

  11. Past, present and emerging toxicity issues for jet fuel.

    Science.gov (United States)

    Mattie, David R; Sterner, Teresa R

    2011-07-15

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Past, present and emerging toxicity issues for jet fuel

    International Nuclear Information System (INIS)

    Mattie, David R.; Sterner, Teresa R.

    2011-01-01

    The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.

  13. Study of ammonia removal from coal-gasified fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Takeharu; Sato, Mikio [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan)

    1998-07-01

    In integrated coal gasification combined-cycle power-generation (IGCC) systems, ammonia in gasified fuel is passed through a hot/dry type gas clean-up facility into a gas turbine. The ammonia is converted to nitrogen oxides in the gas turbine combustion process. Therefore, ammonia removal from coal-gasified fuel effectively reduces NO{sub x} emissions in IGCC systems. The authors clarified the optimum NO/NH{sub 3} ratio, the optimum concentration of added O{sub 2}, and the influence of CO, H{sub 2}, and CH{sub 4} in the coal-gasified fuel on NH{sub 3} decomposition and NO reduction through experiments using a tubular flow reactor and numerical analysis based on reaction kinetics. The main results were as follows: (1) The optimum NO/NH{sub 3} ratio for maximizing NH{sub 3} decomposition and NO reduction was about 1. (2) The NH{sub 3} decomposition ratio depended only on H{sub 2}, and decreased rapidly with increasing H{sub 2} concentration. (3) The NO reduction ratio decreased with an increasing H{sub 2} concentration. (4) The remaining CH{sub 4}, which was not decomposed by pyrolysis, increased with an increasing CH{sub 4} concentration and caused the reaction temperature to rise, as opposed to cases of CO and H{sub 2}. (5) The method was effective in decreasing total fixed nitrogen (TFN) by up to 40% and minimizing the total concentration of remaining NH{sub 3} and NO in air-blown, coal-gasified fuel.

  14. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  15. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide

    2015-01-01

    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon......-carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... bituminous coal (73 mW/cm2). © 2015 ECS - The Electrochemical Society...

  16. Carbon-based Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  17. Fuel briquettes from brown coals of Yakutia

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Nikolaeva; V.G. Latyshev; O.N. Burenina [Russian Academy of Sciences, Yakutsk (Russian Federation). Institute of Oil and Gas Problems

    2009-04-15

    Experimental data on the development of technology for the manufacture of briquetted fuel from brown coals with the use of various petroleum binders are presented. The influence of the moisture content, the coal particle-size composition, the binder type and concentration, the compacting pressure, and heat treatment regimes on the mechanical properties of the materials was studied. The optimal compositions and optimal values of the engineering parameters for the production of graded briquetted fuel from brown coals of the Kangalassy deposit in the Republic of Sakha (Yakutia) were established.

  18. Nigerian bituminous coal as a fuel-coal. | OGUGBUAJA | Global ...

    African Journals Online (AJOL)

    Nigerian bituminous coal as a fuel-coal. V O OGUGBUAJA, C L NDIOKWERE, G A DIMARI. http://dx.doi.org/10.4314/gjpas.v6i2.16113 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL ...

  19. Life-Cycle Analysis of Greenhouse Gas Emissions and Water Consumption – Effects of Coal and Biomass Conversion to Liquid Fuels as Analyzed with the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianfeng [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-06-01

    The vast reserves of coal in the U.S. provide a significant incentive for the development of processes for coal conversion to liquid fuels (CTL). Also, CTL using domestic coal can help move the U.S. toward greater energy independence and security. However, current conversion technologies are less economically competitive and generate greater greenhouse gas (GHG) emissions than production of petroleum fuels. Altex Technologies Corporation (Altex, hereinafter) and Pennsylvania State University have developed a hybrid technology to produce jet fuel from a feedstock blend of coal and biomass. Collaborating with Altex, Argonne National Laboratory has expanded and used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model to assess the life-cycle GHG emissions and water consumption of this hybrid technology. Biomass feedstocks include corn stover, switchgrass, and wheat straw. The option of biomass densification (bales to pellets) is also evaluated in this study. The results show that the densification process generates additional GHG emissions as a result of additional biomass process energy demand. This process coproduces a large amount of char, and this study investigates two scenarios to treat char: landfill disposal (Char-LF) and combustion for combined heat and power (CHP). Since the CHP scenarios export excess heat and electricity as coproducts, two coproduct handling methods are used for well-to-wake (WTWa) analysis: displacement (Char-CHP-Disp) and energy allocation (Char-CHP-EnAllo). When the feedstock contains 15 wt% densified wheat straw and 85 wt% lignite coal, WTWa GHG emissions of the coal-and-biomass-to-liquid pathways are 116, 97, and 137 gCO2e per megajoule (MJ) under the Char-LF, Char-CHP-Disp, and Char-CHP-EnAllo scenarios, respectively, as compared to conventional jet fuel production at 84 gCO2e/MJ. WTWa water consumption values are 0.072, -0.046, and 0.044 gal/MJ for Char-LF, Char-CHP-Disp, and Char

  20. Subtask 3.9 - Direct Coal Liquefaction Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Aulich, Ted; Sharma, Ramesh

    2012-07-01

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed in May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.

  1. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  2. Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation

    Science.gov (United States)

    Manogharan, Guha; Kioko, Meshack; Linkous, Clovis

    2015-03-01

    With an ever-growing concern to find a more efficient and less polluting means of producing electricity, fuel cells have constantly been of great interest. Fuel cells electrochemically convert chemical energy directly into electricity and heat without resorting to combustion/mechanical cycling. This article studies the solid oxide fuel cell (SOFC), which is a high-temperature (100°C to 1000°C) ceramic cell made from all solid-state components and can operate under a wide range of fuel sources such as hydrogen, methanol, gasoline, diesel, and gasified coal. Traditionally, SOFCs are fabricated using processes such as tape casting, calendaring, extrusion, and warm pressing for substrate support, followed by screen printing, slurry coating, spray techniques, vapor deposition, and sputter techniques, which have limited control in substrate microstructure. In this article, the feasibility of engineering the porosity and configuration of an SOFC via an additive manufacturing (AM) method known as binder jet printing was explored. The anode, cathode and oxygen ion-conducting electrolyte layers were fabricated through AM sequentially as a complete fuel cell unit. The cell performance was measured in two modes: (I) as an electrolytic oxygen pump and (II) as a galvanic electricity generator using hydrogen gas as the fuel. An analysis on influence of porosity was performed through SEM studies and permeability testing. An additional study on fuel cell material composition was conducted to verify the effects of binder jetting through SEM-EDS. Electrical discharge of the AM fabricated SOFC and nonlinearity of permeability tests show that, with additional work, the porosity of the cell can be modified for optimal performance at operating flow and temperature conditions.

  3. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  4. System evaluation of improved thermal stability jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Binns, K.E.; Dieterle, G.L.; Williams, T. [Univ. of Dayton Research Institute, OH (United States)

    1995-05-01

    A single-pass, single-tube heat exchanger device called the Phoenix rig and a single-pass, dual-heat exchanger system called the Extended Duration Thermal Stability Test system are specific devices/systems developed for evaluating jet fuel thermal stability. They have been used extensively in the evaluation of various jet fuels and thermal stability additives. The test results have indicated that additives can substantially improve the thermal stability of conventional jet fuels. Relationships of oxygen consumption, residence time, bulk, and wetted wall temperatures on coking deposits that form in the heated tubes have also been investigated.

  5. Thermodynamic comparison and efficiency enhancement mechanism of coal to alternative fuel systems

    International Nuclear Information System (INIS)

    Ji, Xiaozhou; Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Energy and exergy analysis are presented to three coal-to-alternative-fuels systems. • Internal reasons for performance differences for different systems are disclosed. • The temperature and heat release of synthesis reactions are key to plant efficiency. • The distillation unit and purge gas recovery are important to efficiency enhancement. - Abstract: Coal to alternative fuels is an important path to enforce energy security and to provide clean energy. In this paper, we use exergy analysis and energy utilization diagram (EUD) methods to disclose the internal reasons for performance differences in typical coal to alternative fuel processes. ASPEN plus software is used to simulate the coal-based energy systems, and the simulation results are verified with engineering data. Results show that coal to substitute natural gas (SNG) process has a higher exergy efficiency of 56.56%, while the exergy efficiency of traditional coal to methanol process is 48.65%. It is indicated that three key factors impact the performance enhancement of coal to alternative fuel process: (1) whether the fuel is distillated, (2) the synthesis temperature and the amount of heat release from reactions, and (3) whether the chemical purge gases from synthesis and distillation units are recovered. Distillation unit is not recommended and synthesis at high temperature and with large heat release is preferable for coal to alternative fuel systems. Gasification is identified as the main source of exergy destruction, and thereby how to decrease its destruction is the key direction of plant efficiency improvement in the future. Also, decreasing the power consumption in air separation unit by seeking for advanced technologies, i.e. membrane, or using another kind of oxidant is another direction to improve plant performance.

  6. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  7. Autoxidation of jet fuels: Implications for modeling and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Heneghan, S.P. [Univ. of Dayton Research Institute, OH (United States); Chin, L.P. [Systems Research Laboratories, Inc., Dayton, OH (United States)

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to model the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.

  8. Assessment of industrial energy options based on coal and nuclear systems

    International Nuclear Information System (INIS)

    Anderson, T.D.; Bowers, H.I.; Bryan, R.H.; Delene, J.G.; Hise, E.C.; Jones, J.E. Jr.; Klepper, O.H.; Reed, S.A.; Spiewak, I.

    1975-07-01

    Industry consumes about 40 percent of the total primary energy used in the United States. Natural gas and oil, the major industrial fuels, are becoming scarce and expensive; therefore, there is a critical national need to develop alternative sources of industrial energy based on the more plentiful domestic fuels--coal and nuclear. This report gives the results of a comparative assessment of nuclear- and coal-based industrial energy systems which includes technical, environmental, economic, and resource aspects of industrial energy supply. The nuclear options examined were large commercial nuclear power plants (light-water reactors or high-temperature gas-cooled reactors) and a small [approximately 300-MW(t)] special-purpose pressurized-water reactor for industrial applications. Coal-based systems selected for study were those that appear capable of meeting environmental standards, especially with respect to sulfur dioxide; these are (1) conventional firing using either low- or high-sulfur coal with stack-gas scrubbing equipment, (2) fluidized-bed combustion using high-sulfur coal, (3) low- and intermediate-Btu gas, (4) high-Btu pipeline-quality gas, (5) solvent-refined coal, (6) liquid boiler fuels, and (7) methanol from coal. Results of the study indicated that both nuclear and coal fuel can alleviate the industrial energy deficit resulting from the decline in availability of natural gas and oil. However, because of its broader range of application and relative ease of implementation, coal is expected to be the more important substitute industrial fuel over the next 15 years. In the longer term, nuclear fuels could assume a major role for supplying industrial steam. (U.S.)

  9. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  10. Feasibility of Technologies to Produce Coal-Based Fuels with Equal or Lower Greenhouse Gas Emissions than Petroleum Fuels

    Science.gov (United States)

    2014-12-22

    in operating pipeline compressors), and a negligible amount from coal; just under five percent was produced from biomass—mostly in the form of corn ...as is commonly reported for soy- and corn -based biofuels), and/or if biofuel production results in land use change causing deforestation (as has...produced via F-T synthesis are already approved for incorporation into commercial and military fuels, but other pathways (e.g., pyrolysis ) would

  11. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  12. Visualization of supersonic diesel fuel jets using a shadowgraph technique

    Science.gov (United States)

    Pianthong, Kulachate; Behnia, Masud; Milton, Brian E.

    2001-04-01

    High-speed liquid jets have been widely used to cut or penetrate material. It has been recently conjectured that the characteristics of high-speed fuel jets may also be of benefit to engines requiring direct fuel injection into the combustion chamber. Important factors are combustion efficiency and emission control enhancement for better atomization. Fundamental studies of very high velocity liquid jets are therefore very important. The characteristics and behavior of supersonic liquid jets have been studied with the aid of a shadowgraph technique. The high-speed liquid jet (in the supersonic range) is generated by the use of a vertical, single stage powder gun. The performance of the launcher and its relation to the jet exit velocity, with a range of nozzle shapes, has been examined. This paper presents the visual evidence of supersonic diesel fuel jets (velocity around 2000 m/s) investigated by the shadowgraph method. An Argon jet has been used as a light source. With a rise time of 0.07 microseconds, light duration of 0.2 microseconds and the use of high speed Polaroid film, the shadowgraph method can effectively capture the hypersonic diesel fuel jet and its strong leading edge shock waves. This provides a clearer picture of each stage of the generation of hypersonic diesel fuel jets and makes the study of supersonic diesel fuel jet characteristics and the potential for auto-ignition possible. Also, in the experiment, a pressure relief section has been used to minimize the compressed air or blast wave ahead of the projectile. However, the benefit of using a pressure relief section in the design is not clearly known. To investigate this effect, additional experiments have been performed with the use of the shadowgraph method, showing the projectile leaving and traveling inside the nozzle at a velocity around 1100 m/s.

  13. Hydrogen Fuel as Ecological Contribution to Operation of the Existing Coal-Fired Thermal Power Plants

    International Nuclear Information System (INIS)

    Cosic, D.

    2009-01-01

    The analysis is carried out of the application of a new hydrogen based alternative fuel as ecological contribution of the coal thermal power plants operation. Given the fact that coal thermal power plants are seen as the largest producers, not only of CO 2 , but of all others harmful gases, the idea is initiated to use the new alternative fuel as an additive to the coal which would result in much better performance of the coal power plants from an ecological point of view. It is possible to use such a fuel in relation of 10-30% of former coal use. The positive influence of such an application is much bigger than relative used quantity. This lecture has a goal to incite potential investors to create conditions for industrial testing of the new fuel. It will be very interesting to animate investors for large-scale production of the new fuel, too.(author).

  14. Jet Fuel Kerosene is not Immunosuppressive in Mice or Rats Following Inhalation for 28 Days

    OpenAIRE

    White, Kimber L.; DeLorme, Michael P.; Beatty, Patrick W.; Smith, Matthew J.; Peachee, Vanessa L.

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (...

  15. Potential health and environmental impacts attributable to the nuclear and coal fuel cycles: Final report

    International Nuclear Information System (INIS)

    Gotchy, R.L.

    1987-06-01

    Estimates of mortality and morbidity are presented based on present-day knowledge of health effects resulting from current component designs and operations of the nuclear and coal fuel cycles, and anticipated emission rates and occupational exposure for the various fuel cycle facilities expected to go into operation during the next decade. The author concluded that, although there are large uncertainties in the estimates of potential health effects, the coal fuel cycle alternative has a greater health impact on man than the uranium fuel fycle. However, the increased risk of health effects for either fuel cycle represents a very small incremental risk to the average individual in the public for the balance of this century. The potential for large impacts exists in both fuel cycles, but the potential impacts associated with a runaway Greenhouse Effect from combustion of fossil fuels, such as coal, cannot yet be reasonably quantified. Some of the potential environmental impacts of the coal fuel cycle cannot currently be realistically estimated, but those that can appear greater than those from the nuclear fuel cycle. 103 refs., 1 fig., 18 tabs

  16. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  17. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

    2008-09-30

    The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

  18. Skin toxicity of jet fuels: ultrastructural studies and the effects of substance P

    International Nuclear Information System (INIS)

    Monteiro-Riviere, Nancy A.; Inman, Alfred O.; Riviere, Jim E.

    2004-01-01

    Topical exposure to jet fuel is a significant occupational hazard. Recent studies have focused on dermal absorption of fuel and its components, or alternatively, on the biochemical or immunotoxicological sequelae to exposure. Surprisingly, morphological and ultrastructural analyses have not been systematically conducted. Similarly, few studies have compared responses in skin to that of the primary target organ, the lung. The focus of the present investigation was 2-fold: first, to characterize the ultrastructural changes seen after topical exposure to moderate doses (335 or 67 μl/cm 2 ) of jet fuels [Jet A, Jet Propellant (JP)-8, JP-8+100] for up to 4 days in pigs, and secondly, to determine if co-administration of substance P (SP) with JP-8 jet fuel in human epidermal keratinocyte cell cultures modulates toxicity as it does to pulmonary toxicity in laboratory animal studies. The primary change seen after exposure to all fuels was low-level inflammation accompanied by formation of lipid droplets in various skin layers, mitochondrial and nucleolar changes, cleft formation in the intercellular lipid lamellar bilayers, as well as disorganization in the stratum granulosum-stratum corneum interface. An increased number of Langerhans cells were also noted in jet fuel-treated skin. These changes suggest that the primary effect of jet fuel exposure is damage to the stratum corneum barrier. SP administration decreased the release of interleukin (IL)-8 normally seen in keratinocytes after JP-8 exposure, a response similar to that reported for SP's effect on JP-8 pulmonary toxicity. These studies provide a base upon which biochemical and immunological data collected in other model systems can be compared

  19. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    International Nuclear Information System (INIS)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-01

    result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO(sub x) emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A and M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters

  20. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    result as the levels of N are higher in the biomass fuel than in coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process to reduce NO{sub x} emissions. Since crushing costs of biomass fuels may be prohibitive, stoker firing may be cost effective; in order simulate such a firing, future work will investigate the performance of a gasifier when fired with larger sized coal and biomass. It will be a fixed bed gasifier, and will evaluate blends, coal, and biomass. Computer simulations were performed using the PCGC-2 code supplied by BYU and modified by A&M with three mixture fractions for handling animal based biomass fuels in order to include an improved moisture model for handling wet fuels and phosphorus oxidation. Finally the results of the economic analysis show that considerable savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings will be reduced, due to increased transportation costs. A spreadsheet program was created to analyze the fuel savings for a variety of different moisture levels, ash levels, and power plant operating parameters.

  1. New Approach to Study the Ignition Processes of Organic Coal-Water Fuels in an Oxidizer Flow

    Directory of Open Access Journals (Sweden)

    Valiullin T.R.

    2016-01-01

    Full Text Available To converge the conditions of organic water-coal fuel composition combustion in the typical power equipment we developed a new approach and installed an experimental setup, eliminating the traditional fixing the fuel droplets on the thermocouples or rods. Specialized cone-shaped chamber was used to implement the process of lingering of organic water-coal fuel droplets. Necessary and sufficient conditions for the lingering of organic water-coal fuel droplets were established. We determined the parameters of the system (droplet size of 0.4-0.6 mm, temperatures 823-903 K and the velocity of the oxidizer flow 1.5-6 m/s at which the droplets were consistently ignited in the process of lingering. Minimum temperatures and ignition delay times of organic water-coal fuel droplets based on brown coal, used motor, turbine, transformer oils, kerosene, gasoline and water were defined.

  2. Economics of coal-based electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hemming, D F; Johnston, R; Teper, M

    1979-01-01

    The report deals with base-load electricity generation from coal and compares the economics of four alternative technologies: conventional pulverised-fuel (PF) boiler with steam cycle; atmospheric fluidised-bed (AFB) boiler with steam cycle; pressurised fluidised-bed (PFB) boiler with combined cycle; and integrated air-blown coal gasification with combined cycle systems are compared for both a high sulphur (3.5%) coal with environmental regulations requiring 85% sulphur removal, and for a low sulphur coal without sulphur removal. The results indicate that there is no single clear 'winner' among the advanced technologies. The optimum system depends on coal price, required rate-of-return, sulphur content of the coal, taxation regime etc. (34 refs.) (Available from IEA Coal Research, Economic Assessment Service)

  3. Development of correlations for combustion modelling with supercritical surrogate jet fuels

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Dondapati

    2017-12-01

    Full Text Available Supercritical fluid technology finds its application in almost all engineering aspects in one or other way. Technology of clean jet fuel combustion is also seeing supercritical fluids as one of their contender in order to mitigate the challenges related to global warming and health issues occurred due to unwanted emissions which are found to be the by-products in conventional jet engine combustion. As jet fuel is a blend of hundred of hydrocarbons, thus estimation of chemical kinetics and emission characteristics while simulation become much complex. Advancement in supercritical jet fuel combustion technology demands reliable property statistics of jet fuel as a function temperature and pressure. Therefore, in the present work one jet fuel surrogate (n-dodecane which has been recognized as the constituent of real jet fuel is studied and thermophysical properties of each is evaluated in the supercritical regime. Correlation has been developed for two transport properties namely density and viscosity at the critical pressure and over a wide range of temperatures (TC + 100 K. Further, to endorse the reliability of the developed correlation, two arithmetical parameters have been evaluated which illustrates an outstanding agreement between the data obtained from online NIST Web-Book and the developed correlation.

  4. Bugs and coal: processing fuels with biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1987-06-01

    Bioprocessing of coal is developing along several fronts, each of potential significance to utilities. Researchers have found a fungus, polyporous versicolor, which can liquefy certain kinds of coal and scientists have genetically engineered bacteria that remove sulfur and ash-forming metal impurities from coal. Research programs are being undertaken to find organisms that will convert lignite into gaseous methane to produce gaseous fuel more economically than the current coal gasification methods. Researchers looking for ways to remove sulfur from coal before it is burned are evaluating the use of a bacterium called thiobacillus ferroxidans to enhance the physical removal of pyrite. 2 refs.

  5. Review of coal-water fuel pulverization technology and atomization quality registration methods

    Directory of Open Access Journals (Sweden)

    Zenkov Andrey

    2017-01-01

    Full Text Available Possibilities of coal-water fuel application in industrial power engineering are considered and described. Two main problems and disadvantages of this fuel type are suggested. The paper presents information about liquid fuel atomization technologies and provides data on nozzle type for coal-water fuel pulverization. This article also mentions some of the existing technologies for coal-water slurry spraying quality determination.

  6. Production of Fischer–Tropsch fuels and electricity from bituminous coal based on steam hydrogasification

    International Nuclear Information System (INIS)

    Lu, Xiaoming; Norbeck, Joseph M.; Park, Chan S.

    2012-01-01

    A new thermochemical process for (Fischer–Tropsch) FT fuels and electricity coproduction based on steam hydrogasification is addressed and evaluated in this study. The core parts include (Steam Hydrogasification Reactor) SHR, (Steam Methane Reformer) SMR and (Fisher–Tropsch Reactor) FTR. A key feature of SHR is the enhanced conversion of carbon into methane at high steam environment with hydrogen and no need for catalyst or the use of oxygen. Facilities utilizing bituminous coal for coproduction of FT fuels and electricity with carbon dioxide sequestration are designed in detail. Cases with design capacity of either 400 or 4000 TPD (Tonne Per Day) (dry basis) are investigated with process modeling and cost estimation. A cash flow analysis is performed to determine the fuels (Production Cost) PC. The analysis shows that the 400 TPD case due to a FT fuels PC of 5.99 $/gallon diesel equivalent results in a plant design that is totally uneconomic. The 4000 TPD plant design is expected to produce 7143 bbl/day FT liquids with PC of 2.02 $/gallon and 2.27 $/gallon diesel equivalent at overall carbon capture ratio of 65% and 90%, respectively. Prospective commercial economics benefits with increasing plant size and improvements from large-scale demonstration efforts on steam hydrogasification. -- Highlights: ► We develop a new thermochemical method for synthetic fuels production. ► Detailed plant design and process modeling for the Coal-to-Liquid facilities are performed. ► Economic analysis has been carried out in determining the fuel production cost and IRR. ► The fuels produced in this study can compete with petroleum when crude oil price is 100 $/bbl. ► Further economic benefit comes with plant scale-up and process commercial demonstration efforts.

  7. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    Science.gov (United States)

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  8. Combustion and emissions characterization of pelletized coal fuels. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1993-05-01

    The aim of this project is to demonstrate that sorbent-containing coal pellets made from low grade coal or coal wastes are viable clean burning fuels, and to compare their performance with that of standard run-of-mine coal. Fuels to be investigated are: (a) carbonated pellets containing calcium hydroxide sorbent, (b) coal fines-limestone pellets with cornstarch as binder, (c) pellets made from preparation plant recovered coal containing limestone sorbent and gasification tar as binder, and (d) a standard run-of-mine Illinois seam coal. The fuels will be tested in a laboratory scale 411 diameter circulating fluidized bed combustor. Progress this quarter has centered on the development of a hydraulic press based pellet mill capable of the high compaction pressures necessary to produce the gasification tar containing pellets outlined in (c) above. Limited quantities of the pellets have been made, and the process is being fine tuned before proceeding into the production mode. Tests show that the moisture content of the coal is an important parameter that needs to be fixed within narrow limits for a given coal and binder combination to produce acceptable pellets. Combustion tests with these pellet fuels and the standard coal are scheduled for the next quarter.

  9. Symbiotic Nuclear—Coal Systems for Production of Liquid Fuels

    Science.gov (United States)

    Taczanowski, S.

    (LWRs). The direct coal hydrogenation (Bergius method) has been proposed as the optimum process for liquid fuels production, as distinct by the best hydrogen economy, thus reducing the consumption of need nuclear energy. The present concept allows for simultaneous achievement of a number of aims: production of motor fuels without CO2 emissions (thus without carbon tax) based upon domestic energy carriers — coals, supply of the electricity produced in the nuclear power plant to the national grid to cover the peak demand. Such concept broadens the palette of liquid fuels supply, thus heightens energy safety of the country or e.g. whole of the EU. In an emergency case (for instance — disturbances of gas deliveries) the supply of produced H2 directly to the gas grid is also not excluded too. The performed preliminary cost evaluation indicates that the coal—nuclear symbiont can be well economic. Finally, the most radical option of coal-nuclear alliance is mentioned — the production of liquid fuels in the Fischer—Tropsch process from CO2 as a raw material sequestered from a coal power plant. The latter would use the oxy-combustion technique profiting on the O2 obtained earlier together with H2 what would facilitate the sequestration of CO2 at the plant. Unfortunately, this variant requires for reduction of CO2 to C much more hydrogen, achievable effectively in High Temperature Reactors commercially still unavailable. But on the basis of coal alone great resources — natural, technological and human of the coal sector can be best utilized too. Summarizing: the coal-nuclear synergy is the optimum far-sighted concept of safe development of the EU energy and fuels sector.

  10. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.

    Science.gov (United States)

    Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W

    2012-01-01

    The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.

  11. Jet Fuel Thermal Stability Investigations Using Ellipsometry

    Science.gov (United States)

    Nash, Leigh; Vasu, Subith S.; Klettlinger, Jennifer Lindsey

    2017-01-01

    Jet fuels are typically used for endothermic cooling in practical engines where their thermal stability is very important. In this work the thermal stability of Sasol IPK (a synthetic jet fuel) with varying levels of naphthalene has been studied on stainless steel substrates using spectroscopic ellipsometry in the temperature range 385-400 K. Ellipsometry is an optical technique that measures the changes in a light beam’s polarization and intensity after it reflects off of a thin film to determine the film’s thickness and optical properties. All of the tubes used were rated as thermally unstable by the color standard portion of the Jet Fuel Thermal Oxidation Test, and this was confirmed by the deposit thicknesses observed using ellipsometry. A new amorphous model on a stainless steel substrate was used to model the data and obtain the results. It was observed that, as would be expected, increasing the temperature of the tube increased the overall deposit amount for a constant concentration of naphthalene. The repeatability of these measurements was assessed using multiple trials of the same fuel at 385 K. Lastly, the effect of increasing the naphthalene concentration in the fuel at a constant temperature was found to increase the deposit thickness.In conclusion, ellipsometry was used to investigate the thermal stability of jet fuels on stainless steel substrate. The effects of increasing temperature and addition of naphthalene on stainless steel tubes with Sasol IPK fuel were investigated. It was found, as expected, that increasing temperature lead to an increase in deposit thickness. It wasAmerican Institute of Aeronautics and Astronautics6also found that increasing amounts of naphthalene increased the maximum deposit thickness. The repeatability of these measurements was investigated using multiple tests at the same conditions. The present work provides as a better quantitative tool compared to the widely used JFTOT technique. Future work will expand on the

  12. Solid fuels. Coal. Economy and resources

    International Nuclear Information System (INIS)

    Bautin, F.; Martin-Amouroux, J.M.

    2007-01-01

    The share of coal in the world energy mix (25%) and its possible increase during the next decades is due to its specific use in steelmaking industry and to its excellent competitiveness in fossil-fuel power plants with respect to other energy sources. Its inferior energy efficiency is compensated by lower and more stable prices on international markets. This situation is explained by a strong competition and abundant reserves. However, coal is a strong emitter of greenhouse gases and would be temporarily penalized by the implementation of emission tax or trading systems before the development of carbon sequestration systems. This article presents: the main world markets (consumption per sector of activity, power generation market, coke market, start-up of a synthetic fuels market), the main international coal producers and traders (overview and typology, international trades, transport), the reserves and resources, and the worldwide perspectives (2050 scenarios, climatic risks, CO 2 prices and technological changes). (J.S.)

  13. Carbon-based Fuel Cell. Final report

    International Nuclear Information System (INIS)

    Steven S. C. Chuang

    2005-01-01

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO 2 , and (3) the production of a nearly pure CO 2 exhaust stream for the direct CO 2 sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts

  14. Evaluation and Testing of the Suitability of a Coal-Based Jet Fuel

    Science.gov (United States)

    2008-06-01

    with a total wattage of 7980 watts. Each oven section has two K type thermocouples per zone with Inconel sheathed spring loaded bayonet type mounts...also exceeded the thermal stability goals (525°F bulk and 625 °F WWT) for the JP-8+225 fuel program. Tests were conducted on a JP-8 fuel to compare

  15. Development of oxygen scavenger additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beaver, B.D.; Demunshi, R.; Sharief, V.; Tian, D.; Teng, Y. [Duquesne Univ., Pittsburgh, PA (United States)

    1995-05-01

    Our current research program is in response to the US Air Force`s FY93 New Initiative entitled {open_quotes}Advanced Fuel Composition and Use.{close_quotes} The critical goal of this initiative is to develop aircraft fuels which can operate at supercritical conditions. This is a vital objective since future aircraft designs will transfer much higher heat loads into the fuel as compared with current heat loads. In this paper it is argued that the thermal stability of most jet fuels would be dramatically improved by the efficient in flight-removal of a fuel`s dissolved oxygen. It is proposed herein to stabilize the bulk fuel by the addition of an additive which will be judiciously designed and programmed to react with oxygen and produce an innocuous product. It is envisioned that a thermally activated reaction will occur, between the oxygen scavenging additive and dissolved oxygen, in a controlled and directed manner. Consequently formation of insoluble thermal degradation products will be limited. It is believed that successful completion of this project will result in the development of a new type of jet fuel additive which will enable current conventional jet fuels to obtain sufficient thermal stability to function in significantly higher temperature regimes. In addition, it is postulated that the successful development of thermally activated oxygen scavengers will also provide the sub-critical thermal stability necessary for future development of endothermic fuels.

  16. Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry

    Science.gov (United States)

    Kannaiyan, Kumaran; Sadr, Reza

    2013-11-01

    Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.

  17. Forecasting world and regional aviation jet fuel demands to the mid-term (2025)

    International Nuclear Information System (INIS)

    Cheze, Benoit; Gastineau, Pascal; Chevallier, Julien

    2011-01-01

    This article provides jet fuel demand projections at the worldwide level and for eight geographical zones until 2025. Air traffic forecasts are performed using dynamic panel-data econometrics. Then, the conversion of air traffic projections into quantities of jet fuel is accomplished by using a complementary approach to the 'Traffic Efficiency' method developed previously by the UK Department of Trade and Industry to support the Intergovernmental Panel on Climate Change (). According to our main scenario, air traffic should increase by about 100% between 2008 and 2025 at the world level, corresponding to a yearly average growth rate of 4.7%. World jet fuel demand is expected to increase by about 38% during the same period, corresponding to a yearly average growth rate of 1.9% per year. According to these results, energy efficiency improvements allow reducing the effect of air traffic rise on the increase in jet fuel demand, but do not annihilate it. Jet fuel demand is thus unlikely to diminish unless there is a radical technological shift, or air travel demand is restricted. - Highlights: → Jet fuel demand is forecasted at the worldwide and regional level until 2025. → Regional heterogeneity must be considered when forecasting jet fuel demand. → World air traffic should increase by about 100% between 2008 and 2025. → World jet fuel demand is expected to increase by about 38% during the same period. → Technological progress will not be enough to decrease the world jet fuel demand.

  18. Commercial jet fuel quality control

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, K.H.

    1995-05-01

    The paper discusses the purpose of jet fuel quality control between the refinery and the aircraft. It describes fixed equipment, including various types of filters, and the usefulness and limitations of this equipment. Test equipment is reviewed as are various surveillance procedures. These include the Air Transport Association specification ATA 103, the FAA Advisory Circular 150/5230-4, the International Air Transport Association Guidance Material for Fuel Quality Control and Fuelling Service and the Guidelines for Quality Control at Jointly Operated Fuel Systems. Some past and current quality control problems are briefly mentioned.

  19. Near-term feasibility of alternative jet fuels

    Science.gov (United States)

    2009-01-01

    This technical report documents the results of a joint study by the Massachusetts Institute of Technology (MIT) and the RAND Corporation on alternative fuels for commercial aviation. The study compared potential alternative jet fuels on the basis of ...

  20. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  1. Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions

    Directory of Open Access Journals (Sweden)

    Xiliang Zhang

    2013-09-01

    Full Text Available A life-cycle analysis (LCA of greenhouse gas (GHG emissions and energy use was performed to study bio-jet fuel (BJF production from micro-algae grown in open ponds under Chinese conditions using the Tsinghua University LCA Model (TLCAM. Attention was paid to energy recovery through biogas production and cogeneration of heat and power (CHP from the residual biomass after oil extraction, including fugitive methane (CH4 emissions during the production of biogas and nitrous oxide (N2O emissions during the use of digestate (solid residue from anaerobic digestion as agricultural fertilizer. Analyses were performed based on examination of process parameters, mass balance conditions, material requirement, energy consumptions and the realities of energy supply and transport in China (i.e., electricity generation and heat supply primarily based on coal, multiple transport modes. Our LCA result of the BJF pathway showed that, compared with the traditional petrochemical pathway, this new pathway will increase the overall fossil energy use and carbon emission by 39% and 70%, respectively, while decrease petroleum consumption by about 84%, based on the same units of energy service. Moreover, the energy conservation and emission reduction benefit of this new pathway may be accomplished by two sets of approaches: wider adoption of low-carbon process fuels and optimization of algae cultivation and harvest, and oil extraction processes.

  2. Problems of coal-based power generation

    International Nuclear Information System (INIS)

    Noskievic, P.

    1996-01-01

    Current problems of and future trends in coal-based power generation are discussed. The present situation is as follows: coal, oil and gas contribute to world fossil fuel resources 75%, 14%, and 11%, respectively, and if the current trend will continue, will be depleted in 240, 50, and 60 years, respectively; the maximum resource estimates (including resources that have not yet been discovered) are 50% higher for oil and 100% higher for gas, for coal such estimates have not been made. While the world prices of coal are expected to remain virtually constant, the prices of gas will probably increase to be twice as high in 2010. Thus, the role of coal may be higher in the next century than it is now, provided that due attention is paid to improving the efficiency of coal-fired power plants and reducing their adverse environmental effects. A comparison of economic data for coal-fired and gas-fired power plants is as follows: Investment cost (USD/kW): 1400, 800; fixed running cost (USD/kW.y): 33.67, 9.0; variable running cost (USD/kWh): 0.30, 0.15; power use (kJ/kWh): 10.29, 7.91; annual availability (%): 70, 50; fuel price (USD/GJ): 1.00, 4.30; power price (USD/kWh): 4.28, 5.52. The investment cost for coal-fired plants covers new construction including flue gas purification. The integrated gasification combined cycle (IGCC) seems to be the future of coal-based power generation. The future problems to be addressed include ways to reduce air pollution, improving the efficiency of the gas-steam cycle, and improving the combustion process particularly with a view to reducing substantially its environmental impact. (P.A.). 4 figs., 4 tabs., 9 refs

  3. Bilateral Vestibular Dysfunction Associated With Chronic Exposure to Military Jet Propellant Type-Eight Jet Fuel

    Directory of Open Access Journals (Sweden)

    Terry D. Fife

    2018-05-01

    Full Text Available We describe three patients diagnosed with bilateral vestibular dysfunction associated with the jet propellant type-eight (JP-8 fuel exposure. Chronic exposure to aromatic and aliphatic hydrocarbons, which are the main constituents of JP-8 military aircraft jet fuel, occurred over 3–5 years’ duration while working on or near the flight line. Exposure to toxic hydrocarbons was substantiated by the presence of JP-8 metabolite n-hexane in the blood of one of the cases. The presenting symptoms were dizziness, headache, fatigue, and imbalance. Rotational chair testing confirmed bilateral vestibular dysfunction in all the three patients. Vestibular function improved over time once the exposure was removed. Bilateral vestibular dysfunction has been associated with hydrocarbon exposure in humans, but only recently has emphasis been placed specifically on the detrimental effects of JP-8 jet fuel and its numerous hydrocarbon constituents. Data are limited on the mechanism of JP-8-induced vestibular dysfunction or ototoxicity. Early recognition of JP-8 toxicity risk, cessation of exposure, and customized vestibular therapy offer the best chance for improved balance. Bilateral vestibular impairment is under-recognized in those chronically exposed to all forms of jet fuel.

  4. Quantum-chemical study of antioxidant additives for jet fuels

    Energy Technology Data Exchange (ETDEWEB)

    Poletaeva, O.Yu. [Ufa State Petroleum Technological Univ., Ufa (Russian Federation); Karimova, R.I. [Bashkir State Agrarian Univ., Ufa (Russian Federation); Movsumzade, E.M. [Institute of Education of Indigenous Small-Numbered Peoples of the North RAE, Moscow (Russian Federation)

    2012-07-01

    To obtain the necessary quality of jet fuels it can be used technological methods (hydrocracking, deep hydration, hydrogenation) that increases the cost of the finished product. The second way is to use less purified raw materials with the introduction of effective additives. Fuels obtained by direct distillation, in ambient air are oxidized with great difficulty and oxidation products accumulate in them is very slow. Fuels derived by hydrogenation processes, have high susceptibility to oxidation, as a result in 1-2 years of storage considerably reduced their quality. Antioxidant additives play an important role in improving the quality of jet fuel. (orig.)

  5. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  6. Acute Dermal Irritation Study of Ten Jet Fuels in New Zealand White Rabbits: Comparison of Synthetic and Bio-Based Jet Fuels with Petroleum JP-8

    Science.gov (United States)

    2014-02-18

    C.A. 2008. Comparative Evaluation of Semi-Synthetic Jet Fuels. Dayton OH: Universal Technology Corporation. http://crcao.org/publications/aviation...Acrobat, PDF) Master Schedule Maintains the master schedule for the company. Metasys DDC Electronic Environmental Control System Controls and

  7. Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants

    NARCIS (Netherlands)

    Romano, M.C.; Campanari, S.; Spallina, V.; Lozza, G.

    2011-01-01

    This work discusses the thermodynamic analysis of integrated gasification fuel cell plants, where a simple cycle gas turbine works in a hybrid cycle with a pressurized intermediate temperature–solid oxide fuel cell (SOFC), integrated with a coal gasification and syngas cleanup island and a bottoming

  8. Overview of fuel conversion

    International Nuclear Information System (INIS)

    Green, A.E.S.

    1991-01-01

    The conversion of solid fuels to cleaner-burning and more user-friendly solid liquid or gaseous fuels spans many technologies. In this paper, the authors consider coal, residual oil, oil shale, tar sends tires, municipal oil waste and biomass as feedstocks and examine the processes which can be used in the production of synthetic fuels for the transportation sector. The products of mechanical processing to potentially usable fuels include coal slurries, micronized coal, solvent refined coal, vegetable oil and powdered biomall. The thermochemical and biochemical processes considered include high temperature carbide production, liquefaction, gasification, pyrolysis, hydrolysis-fermentation and anaerobic digestion. The products include syngas, synthetic natural gas, methanol, ethanol and other hydrocarbon oxygenates synthetic gasoline and diesel and jet engine oils. The authors discuss technical and economic aspects of synthetic fuel production giving particular attention and literature references to technologies not discussed in the five chapters which follow. Finally the authors discuss economic energy, and environmental aspects of synthetic fuels and their relationship to the price of imported oil

  9. Low temperature combustion of organic coal-water fuel droplets containing petrochemicals while soaring in a combustion chamber model

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available The paper examines the integral characteristics (minimum temperature, ignition delay times of stable combustion initiation of organic coal-water fuel droplets (initial radius is 0.3-1.5 mm in the oxidizer flow (the temperature and velocity varied in ranges 500-900 K, 0.5-3 m/s. The main components of organic coal-water fuel were: brown coal particles, filter-cakes obtained in coal processing, waste engine, and turbine oils. The different modes of soaring and ignition of organic coal-water fuel have been established. The conditions have been set under which it is possible to implement the sustainable soaring and ignition of organic coal-water fuel droplets. We have compared the ignition characteristics with those defined in the traditional approach (based on placing the droplets on a low-inertia thermocouple junction into the combustion chamber. The paper shows the scale of the influence of heat sink over the thermocouple junction on ignition inertia. An original technique for releasing organic coal-water fuel droplets to the combustion chamber was proposed and tested. The limitations of this technique and the prospects of experimental results for the optimization of energy equipment operation were also formulated.

  10. Health effects attributable to coal and nuclear fuel cycle alternatives

    International Nuclear Information System (INIS)

    Gotchy, R.L.

    1977-09-01

    Estimates of mortality and morbidity are presented based on present-day knowledge of health effects resulting from current component designs and operations of the fuel cycles, and anticipated emission rates and occupational exposure for the various fuel cycle facilities expected to go into operation in approximately the 1975-1985 period. It was concluded that, although there are large uncertainties in the estimates of potential health effects, the coal fuel cycle alternative has a greater health impact on man than the uranium fuel cycle. However, the increased risk of health effects for either fuel cycle represents a very small incremental risk to the average individual in the public

  11. MICRONUCLEUS STUDIES IN THE PERIPHERAL BLOOD AND BONE MARROW OF MICE TREATED WITH JET FUELS, JP-8 AND JET-A

    Science.gov (United States)

    The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. In an animal model, the genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated. Mice were treated dermally with either a single or multip...

  12. Pro-static Agents in Jet Fuels

    Science.gov (United States)

    1976-08-16

    recent survey of jet fuels at 10 airports and 3 military bases in the United States [6]. Consequently , the results of the present study can be directly...as quickly as it is generated. Consequently , compounds that increase conductivity above 50 pS/m are not pro-static agents in the sense implied here...Additive Con, 1000 pPm CORROSION INHIBITORS UNiCOrn J COPIOCO T- 60 LU$RIZOL 541 TOLAD 245 OCI 4A] PRO ig ., NALCO 5400 TOLAD 244 , MALCO 5402 GULF 170 "Y2

  13. Review of Jet Fuel Life Cycle Assessment Methods and Sustainability Metrics

    Science.gov (United States)

    2015-12-01

    The primary aim of this study is to help aviation jet fuel purchasers (primarily commercial airlines and the U.S. military) to understand the sustainability implications of their jet fuel purchases and provide guidelines for procuring sustainable fue...

  14. Immunotoxicology of JP-8 Jet Fuel

    National Research Council Canada - National Science Library

    Harris, David

    2000-01-01

    ... of infectious disease and cancer. Chronic exposure to jet fuel has been shown to adversely affect human liver function, to cause emotional dysfunction, to cause abnormal electroencephalograms, to cause shortened attention spans...

  15. Fuel supply investment cost: coal and nuclear. Commercial electric power cost studies (6)

    International Nuclear Information System (INIS)

    1979-04-01

    This study presents an accounting model for calculating the capital investment requirements for coal and nuclear fuel supply facilities. The study addresses mining, processing, fabrication, and transportation of coal and nuclear fuels. A generic example is provided, for coal from different sources, and for nuclear fuel. The relationship of capital investment requirements to delivered prices is included in each example

  16. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    Energy Technology Data Exchange (ETDEWEB)

    Kartha, S; Larson, E D; Williams, R H [Center for Energy and Environment Studies School of Engineering and Applied Science, Princeton University, Princeton, NJ (United States); Katofsky, R E [Arthur D. Little Co., Cambridge, MA (United States); Chen, J [Thermo Fibertek, Inc., Auburn, MA (United States); Marrison, C I [Oliver, Wyman and Co., New York, NY (United States)

    1995-12-01

    Recent analyses of alternative global energy supply strategies, such as the forthcoming report of the Intergovernmental Panel on Climate Change (IPCC), to be published in 1996, have drawn attention to the possibility that biomass modernized with advanced technologies could play an important role in meeting global energy needs in the next century. This paper discusses two promising classes of advanced technologies that offer the potential for providing modem energy carriers (electricity and fluid fuels) from biomass at competitive costs within one or two decades. These technologies offer significantly more efficient use of land than currently commercial technologies for producing electricity and fluid fuels from biomass, as well as substantially improved energy balances. Electricity is Rely to be the first large market for modernized biomass, but the potential market for fluid fuel production is likely to be much larger. As coal is likely to present a more serious competitive challenge to biomass in the long run, we present an economic comparison with coal-based electricity and fluid fuels. A meaningful economic comparison between coal and biomass is possible because these feedstocks are sufficiently alike in their physical characteristics that similar conversion technologies may well be used for producing electricity and fluid fuels from them. When similar conversion technologies are used for both feedstocks, the relative costs of electricity or fluid fuels will be determined by the distinguishing technical characteristics of the feedstocks (sulphur content, moisture content and reactivity) and by the relative feedstock prices. Electric power generation from biomass and coal are compared here using an advanced integrated gasifier/gas turbine cycle that offers the potential for achieving high efficiency, low unit capital cost and low local pollutant emissions: the steam-injected gas turbine coupled to an air-blown gasifier. For both feedstocks, generation costs are

  17. Electricity and fluid fuels from biomass and coal using advanced technologies: a cost comparison for developing country applications

    International Nuclear Information System (INIS)

    Kartha, S.; Larson, E.D.; Williams, R.H.; Katofsky, R.E.; Chen, J.; Marrison, C.I.

    1995-01-01

    Recent analyses of alternative global energy supply strategies, such as the forthcoming report of the Intergovernmental Panel on Climate Change (IPCC), to be published in 1996, have drawn attention to the possibility that biomass modernized with advanced technologies could play an important role in meeting global energy needs in the next century. This paper discusses two promising classes of advanced technologies that offer the potential for providing modem energy carriers (electricity and fluid fuels) from biomass at competitive costs within one or two decades. These technologies offer significantly more efficient use of land than currently commercial technologies for producing electricity and fluid fuels from biomass, as well as substantially improved energy balances. Electricity is Rely to be the first large market for modernized biomass, but the potential market for fluid fuel production is likely to be much larger. As coal is likely to present a more serious competitive challenge to biomass in the long run, we present an economic comparison with coal-based electricity and fluid fuels. A meaningful economic comparison between coal and biomass is possible because these feedstocks are sufficiently alike in their physical characteristics that similar conversion technologies may well be used for producing electricity and fluid fuels from them. When similar conversion technologies are used for both feedstocks, the relative costs of electricity or fluid fuels will be determined by the distinguishing technical characteristics of the feedstocks (sulphur content, moisture content and reactivity) and by the relative feedstock prices. Electric power generation from biomass and coal are compared here using an advanced integrated gasifier/gas turbine cycle that offers the potential for achieving high efficiency, low unit capital cost and low local pollutant emissions: the steam-injected gas turbine coupled to an air-blown gasifier. For both feedstocks, generation costs are

  18. A dermatotoxicokinetic model of human exposures to jet fuel.

    Science.gov (United States)

    Kim, David; Andersen, Melvin E; Nylander-French, Leena A

    2006-09-01

    Workers, both in the military and the commercial airline industry, are exposed to jet fuel by inhalation and dermal contact. We present a dermatotoxicokinetic (DTK) model that quantifies the absorption, distribution, and elimination of aromatic and aliphatic components of jet fuel following dermal exposures in humans. Kinetic data were obtained from 10 healthy volunteers following a single dose of JP-8 to the forearm over a surface area of 20 cm2. Blood samples were taken before exposure (t = 0 h), after exposure (t = 0.5 h), and every 0.5 h for up to 3.5 h postexposure. The DTK model that best fit the data included five compartments: (1) surface, (2) stratum corneum (SC), (3) viable epidermis, (4) blood, and (5) storage. The DTK model was used to predict blood concentrations of the components of JP-8 based on dermal-exposure measurements made in occupational-exposure settings in order to better understand the toxicokinetic behavior of these compounds. Monte Carlo simulations of dermal exposure and cumulative internal dose demonstrated no overlap among the low-, medium-, and high-exposure groups. The DTK model provides a quantitative understanding of the relationship between the mass of JP-8 components in the SC and the concentrations of each component in the systemic circulation. The model may be used for the development of a toxicokinetic modeling strategy for multiroute exposure to jet fuel.

  19. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments

    Science.gov (United States)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  20. Transverse liquid fuel jet breakup, burning, and ignition

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.

    1990-01-01

    An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

  1. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  2. Jet fuel kerosene is not immunosuppressive in mice or rats following inhalation for 28 days.

    Science.gov (United States)

    White, Kimber L; DeLorme, Michael P; Beatty, Patrick W; Smith, Matthew J; Peachee, Vanessa L

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (GLP) regulations, to evaluate the effects of jet fuel kerosene on the immune system, in conjunction with an accurate, quantitative characterization of the aerosol and vapor exposure concentrations. Two female rodent species (B6C3F1 mice and Crl:CD rats) were exposed by nose-only inhalation to jet fuel kerosene at targeted concentrations of 0, 500, 1000, or 2000 mg/m(3) for 6 h daily for 28 d. Humoral, cell-mediated, and innate immune functions were subsequently evaluated. No marked effects were observed in either species on body weights, spleen or thymus weights, the T-dependent antibody-forming cell response (plaque assay), or the delayed-type hypersensitivity (DTH) response. With a few exceptions, spleen cell numbers and phenotypes were also unaffected. Natural killer (NK) cell activity in mice was unaffected, while the NK assessment in rats was not usable due to an unusually low response in all groups. These studies demonstrate that inhalation of jet fuel kerosene for 28 d at levels up to 2000 mg/m(3) did not adversely affect the functional immune responses of female mice and rats.

  3. Alternate Fuels for Use in Commercial Aircraft

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  4. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  5. Planning of fuel coal imports using a mixed integer programming method

    Energy Technology Data Exchange (ETDEWEB)

    Shih, L.H. [National Cheng Kung University, Tainan (Taiwan). Dept. of Mineral and Petroleum Engineering

    1997-12-31

    In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model.

  6. Planning of fuel coal imports using a mixed integer programming method

    International Nuclear Information System (INIS)

    Shih, L.H.

    1997-01-01

    In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model

  7. Energy analysis of the coal fuel cycle: Community health and resource change in an Appalachian coal county

    International Nuclear Information System (INIS)

    Watson, A.P.

    1982-01-01

    In spite of steadily expanding coal development in this decade in the USA, there has been little systematic assessment of occupational and public health implications of increased production in specific regions of the USA. Preliminary analysis of a prototype Appalachian area is presented. Anderson County, Tennessee, the prototype area chosen for evaluation, lies in the Upper East Tennessee Coalfield. This county is uniquely suited for study since every process of the coal fuel cycle (extraction, transport, combustion, power production and waste disposal) takes place within the county boundary. By extensive exploitation of both surface and underground methods of extraction, this county has maintained a leading position in Tennessee's coal production for several years. Concepts of energy analysis and systematized data presentation were used to convert information gathered from diverse sources into comparable energy units (kcal). Concepts and methodology implemented in the analysis can be applied most appropriately to existing conditions in other counties of the Appalachian Coal Basin. Findings are presented for calendar year 1978. For the year of study, the major energy loss to the county was depletion of the coal resource base by use of inefficient mining techniques (a loss of 10.5x10 12 kcal fuel equivalents). Another loss is to community health, which is depleted by lost productivity of, and compensation payments to, victims of mining accidents and occupational disease such as 'black lung' (15x10 9 kcal). Another countywide depletion process is roadbed and bridge deterioration caused by large volumes of heavy coal-haul vehicular traffic (10x10 9 kcal). These losses are being borne mainly by residents of the Appalachian host region, with little systematic compensation by consumers of the coal resource. It is expected that these losses will increase in magnitude as national coal use increases. (author)

  8. Importance of low-temperature distillation of coal for German fuel economics

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, F

    1942-01-01

    Improved processes are available to give low-temperature distillation products economic importance. Low-temperature distillation is limited to the utilization of high-volatile nut coals and briquets. The coke formed can be used as a smokeless fuel, and the tar directly as a fuel oil. Phenols can be extracted, in order to work up the residue into fuel oil and motor fuel. Large deposits of coal in Upper Silesia and in the Saar District are suitable for low-temperature distillation.

  9. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  10. The marriage of gas turbines and coal

    International Nuclear Information System (INIS)

    Bajura, R.A.; Webb, H.A.

    1991-01-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine? Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost

  11. Burning characteristics and gaseous/solid emissions of blends of pulverized coal with waste tire-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Levendis, Y.A.; Atal, A.; Courtemanche, B.; Carlson, J.B. [Northeastern University, Boston, MA (United States). Dept. of Mechanical, Industrial and Manufacturing Engineering

    1998-10-01

    The combustion behaviour and the emissions from blends of a pulverized bituminous coal and ground waste automobile tires were investigated. Combustion took place under steady flow conditions, in an electrically-heated drop-tube furnace in air at a gas temperature of 1150{degree}C and a particle heating rate of approximate to 10{sup 5}{degree}C/s. Combustion observations were conducted with simultaneous pyrometry and cinematography. Interparticle flame interactions were visually observed in the near-stoichiometric and fuel-rich regions. Volatile flame interactions were apparent at a lower phi for tire crumb particles than for coal particles and became progressively more intense with increasing phi until at sufficiently high phi`s large group flames formed for tire particles. As particle flame interactions increased, average maximum temperatures in the flame decreased. Coal particles resisted the formation of group flames, even at high phi`s. Such observations correlated with the trends observed for the PAH emissions of the two fuels, those of tire crumb being much higher than those of coal Some stratification in the combustion of blends of particles of the two fuels was observed. This kept the PAH emissions lower levels than expected. NO{sub x} emissions from tires were much lower than those of coal, while those of the blends were close to the weighted average emissions. SO{sub 2} emissions from the blends were close to the weighted average emissions of the two fuels. Blending coal with tire reduced the CO{sub 2} emissions of coal but increased the CO emissions. Particulate emissions (soot and ash), measured in the range of 0.4 to 8{mu}m, increased with phi. Generally, tire produced more mass of submicron particulates than coal. Particulate emissions of blends of the two fuels were close to those expected based on weighted average of the two fuels.

  12. Fuel-coolant interactions in a jet contact mode

    International Nuclear Information System (INIS)

    Konishi, K.; Isozaki, M.; Imahori, S.; Kondo, S.; Furutani, A.; Brear, D.J.

    1994-01-01

    Molten fuel-coolant interactions in a jet contact mode was studied with respect to the safety of liquid-metal-cooled fast reactors (LMFRs). From a series of molten Wood's metal (melting point: 79 deg. C, density: -8400 kg/m 3 ) jet-water interaction experiments, several distinct modes of interaction behaviors were observed for various combinations of initial temperature conditions of the two fluids. A semi-empirical model for a minimum film boiling temperature criterion was developed and used to reasonably explain the different interaction modes. It was concluded that energetic jet-water interactions are only possible under relatively narrow initial thermal conditions. Preliminary extrapolation of the present results in an oxide fuel-sodium system suggests that mild interactions with short breakup length and coolable debris formation should be most likely in LMFRs. (author)

  13. Ecological aspects of water coal fuel transportation and application

    Directory of Open Access Journals (Sweden)

    Anna SHVORNIKOVA

    2010-01-01

    Full Text Available This paper deals with the aspects of influence of transportation process and burning of water coal fuel on an ecological condition of environment. Also mathematical dependences between coal ash level and power consumption for transportation are presented.

  14. New coal-based energy systems

    International Nuclear Information System (INIS)

    Barnert, H.

    1986-01-01

    Conversion of coal into liquid fuels or into coal gas is considered and the use of high temperature nuclear reactors whose waste heat can be used for remote (district) heating mentioned. The use of high temperature reactors as energy source for coal gasification is also examined and, finally, the extraction of heat from combined coal, steel and high temperature nuclear reactors is suggested. (G.M.E.)

  15. Fuel oil from low-temperature carbonization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Thau, A

    1941-01-01

    A review has been given of German developments during the last 20 years. Four methods for the low-temperature carbonization of coal have been developed to the industrial stage; two involving the use of externally heated, intermittent, metallic chamber ovens; and two employing the principle of internal heating by means of a current of gas. Tar from externally heated retorts can be used directly as fuel oil, but that from internally heated retorts requires further treatment. In order to extend the range of coals available for low-temperature carbonization, and to economize metals, an externally heated type of retort constructed of ceramic material has been developed to the industrial stage by T. An excellent coke and a tar that can be used directly as fuel oil are obtained. The properties of the tar obtained from Upper Silesian coal are briefly summarized.

  16. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    International Nuclear Information System (INIS)

    1997-01-01

    Bechtel, together with Amax Research and Development Center (Amax R ampersand D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications, (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at

  17. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    Science.gov (United States)

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Environmental benefits and drawbacks of composite fuels based on industrial wastes and different ranks of coal.

    Science.gov (United States)

    Nyashina, G S; Vershinina, K Yu; Dmitrienko, M A; Strizhak, P A

    2018-04-05

    A promising solution to many problems that thermal power industry is facing today would be switching from conventional coal dust combustion to coal-water slurries containing petrochemicals (CWSP). Here, we perform an experimental study of the most hazardous anthropogenic emissions (sulfur and nitrogen oxides) from the combustion of high-potential CWSP. We identify the main benefits and potential drawbacks of using CWSP in thermal power industry. A set of components and additives to CWSP are explored that significantly affect the environmental and energy performance of fuels. The anthropogenic emissions from the combustion of CWSP made of widespread coal and oil processing wastes are no higher than those from coal dust combustion. Using specialized additives to CWSP, we can change the concentrations of NO x and SO x several times. The most appealing additives to CWSP are sawdust, straw, charcoal, limestone, and glycerol. They provide better environmental, economic, and energy performance and improve the rheological properties of CWSP. Waste oils and oil sludge added to CWSP may impair the environmental performance but boost the cost and energy efficiency. Using coal-water slurries containing petrochemicals as a fuel at thermal power plants is an environmentally friendly as well as cost- and energy-efficient way to recover industrial wastes. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Oxy-Fuel Combustion of Coal

    DEFF Research Database (Denmark)

    Brix, Jacob

    This Ph.D. thesis describes an experimental and modeling investigation of the thermal conversion of coal and an experimental investigation of the emission of NO from char combustion in O2/N2 and O2/CO2 atmospheres. The motivation for the work has been the prospective use of the technology “Oxy......-Fuel Combustion” as a mean of CO2 abatement in large scale energy conversion. Entrained Flow Reactor (EFR) experiments have been conducted in O2/N2 and O2/CO2 mixtures in the temperature interval 1173 K – 1673 K using inlet O2 concentrations between 5 – 28 vol. %. Bituminous coal has been used as fuel in all....... % it was found that char conversion rate was lowered in O2/CO2 compared to O2/N2. This is caused by the lower diffusion coefficient of O2 in CO2 (~ 22 %) that limits the reaction rate in zone III compared to combustion in O2/N2. Using char sampled in the EFR experiments ThermoGravimetric Analyzer (TGA...

  20. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    Science.gov (United States)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  1. Rheology of Colombian coal-water slurry fuels: Effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, J E; Rojas, C P; Acero, G [Universidad Industrial de Santander, Bucaramanga (Colombia)

    1996-12-31

    Coal-water slurry fuels (CWSF`s) have been prepared and characterized in a research project in Colombia, sponsored by Colciencias and Ecocarbon, in order to evaluate the effects of the different composition variables on the behavior during preparation and pipe line transportation. The authors have previously presented details describing the characteristics of the slurry fuels prepared with five types of Colombian thermal coals and the influence of their chemical composition on the optimum particle-size distribution (PSD) required to prepare highly loaded and workable CWSF`s. The formulation and design of flow systems of suspensions with high solids content, such as the CWSF`s, require a detailed rheological knowledge of the suspension in terms of the governing parameters related to PSD, coal content, surface chemistry of the particles and dispersants used to stabilize the slurries. Important studies on these aspects have been reviewed and carried out experimentally by other authors specially devoted to the correlations between apparent viscosity, solids content and average coal particle-size. One of the targets to obtain an optimum control on the viscosity and flow properties of the CWSF`s must be based in correlating the Theological constants for the prevailing model of viscosity law to the characteristic parameters of the particle-size distribution and to the coal content in the slurry. In spite of the effect of PSD on the rheology of highly-loaded coal slurries have been long recognized as significant, the specific influence of the various PSD`s on the parameters of the Theological model continues to receive attention to further understanding in order to improve the slurry formulations for a specified purpose on preparation and hydraulic handling. This paper reports the results of an experimental technique of examining the various PSD`s on coal slurry fuel rheology, taking special attention for the effect on the parameters of the rheological model.

  2. The Czech base of hard coal, problems, possibilities for utilization

    International Nuclear Information System (INIS)

    Cermak, T.; Roubicek, V.

    1993-01-01

    The Czech coal and power engineering base is in a deep restructuring period now. The basic problems represents the changeover from the system of the centrally planned state economy to the market model of the energy resources mining, production and consumption. The Czech economy will have to face to up to now unknown competitive forces on the coal market in Europe where American, Canadian, Australian and South African coals compete. The paper discusses historical aspects of the development of the coal mining industry in the Czechoslavakia, the present coal preparation techniques for coking coals, the coking industry, and the utilization of brown coal. How to utilize the domestic coal base and coal generally is closely connected with the global restructuralization of the Czech economy. The most difficult step of this process is undoubtedly the adaptation of the Czech fuel and energy base to the market economy conditions

  3. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.

    Science.gov (United States)

    Lobo, Prem; Hagen, Donald E; Whitefield, Philip D

    2011-12-15

    Rising fuel costs, an increasing desire to enhance security of energy supply, and potential environmental benefits have driven research into alternative renewable fuels for commercial aviation applications. This paper reports the results of the first measurements of particulate matter (PM) emissions from a CFM56-7B commercial jet engine burning conventional and alternative biomass- and, Fischer-Tropsch (F-T)-based fuels. PM emissions reductions are observed with all fuels and blends when compared to the emissions from a reference conventional fuel, Jet A1, and are attributed to fuel properties associated with the fuels and blends studied. Although the alternative fuel candidates studied in this campaign offer the potential for large PM emissions reductions, with the exception of the 50% blend of F-T fuel, they do not meet current standards for aviation fuel and thus cannot be considered as certified replacement fuels. Over the ICAO Landing Takeoff Cycle, which is intended to simulate aircraft engine operations that affect local air quality, the overall PM number-based emissions for the 50% blend of F-T fuel were reduced by 34 ± 7%, and the mass-based emissions were reduced by 39 ± 7%.

  4. The Influence Of Mass Fraction Of Dressed Coal On Ignition Conditions Of Composite Liquid Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Shlegel Nikita E.

    2015-01-01

    Full Text Available The laws of condition modification of inert heat and ignition in an oxidant flow of composite liquid fuel droplet were studied by the developed experimental setup. Investigations were for composite liquid fuel composition based on the waste of bituminous and nonbaking coal processing, appropriate carbon dust, water, used motor oil. The characteristics of boundary layer inertia heat of composite liquid fuel droplet, thermal decomposition of coal organic part, the yield of volatiles and evaporation of liquid combustion component, ignition of the gas mixture and coke residue were defined.

  5. Study of the equilibrium of air-blown gasification of biomass to coal evolution fuels

    International Nuclear Information System (INIS)

    Biagini, Enrico

    2016-01-01

    Highlights: • Equilibrium model validated for coals, torrefied/green biomasses, in different gasifiers. • Maps of syngas composition, LHV and CGE for ER = 0–0.6, T = 500–2000 K, EBP = 0.004–0.158. • Effect of unconverted carbon, fuel moisture and overoxidation quantified. • Parameters for the maximum efficiency determined as functions of EBP. • EBP proven to be a good parameter for the quantitative comparison of different fuels. - Abstract: A non-stoichiometric equilibrium model based on the minimization of the Gibbs free energy was used to study the isothermal and adiabatic air-blown gasification of solid fuels on a carbonization curve from fossil (hard/brown coals, peat) to renewable (green biomasses and cellulose) fuels, including torrefied biofuels. The maps of syngas composition, heating value and process efficiency were provided as functions of equivalent ratio (oxygen-to-fuel ratio) in the range 0–0.6, temperature in 500–2000 K, and a fuel parameter, which allowed different cases to be quantitatively compared. The effect of fuel moisture, unconverted carbon and conditions to limit the tar formation was also studied. Cold gas efficiency >0.75 can be achieved for coals at high temperature, using entrained beds (which give low unconverted carbon), and improved by moisture/added steam. The bigger efficiency of green biomasses is only potential, as the practical limits (high temperature required to limit tar formation, moisture content and unconverted carbon in small gasifiers) strongly reduce the gasification performance. Torrefied biomasses (and plastics having an intermediate fuel parameter between coals and green biomasses) can attain high efficiency also in real conditions. The results shown in this work can be useful to evaluate the most promising feedstock (depending on its composition and possible pre-treatment/upgrading), define the operating conditions for maximizing the syngas heating value or the global efficiency, assess the

  6. Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.

    Science.gov (United States)

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2015-01-01

    More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.

  7. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  8. Task 27 -- Alaskan low-rank coal-water fuel demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

  9. Numerical Simulation and Industrial Experimental Research on the Coherent Jet with "CH4 + N2" Mixed Fuel Gas

    Science.gov (United States)

    Hu, Shaoyan; Zhu, Rong; Dong, Kai; Liu, Runzao

    2018-06-01

    Coherent jet technology is widely used in the electric arc furnace (EAF) steelmaking process to deliver more energy and momentum into the molten steel bath. Meanwhile, the characteristics of a coherent jet using pure CH4 as the fuel gas have been well investigated in previous studies. To reduce the consumption of CH4, coherent jet technology using "CH4 + N2" mixed fuel gas instead of pure CH4 was proposed and studied in detail by numerical simulation in the present work. The Eddy Dissipation Concept model, which has detailed chemical kinetic mechanisms, was adopted to model the fuel gas combustion reactions. Experimental measurements were carried out to validate the accuracy of the computational model. The present study shows that the jet characteristics of the main oxygen improve along with the increase of the CH4 ratio in fuel gas and with the increase of the flow rate of fuel gas. When the CH4 ratio in the fuel gas is 25 pct, the fuel gas flow rate only has a limited influence on the jet characteristics, unlike the rest of the fuel gas compositions, because a high N2 proportion deteriorates the combustion performance and leads to severe incomplete combustion. Moreover, a false potential core phenomenon was observed and explained in the present study. Based on the average values, the jet length of a coherent jet with 75 pct CH4 can achieve 89.8 pct of that with 100 pct CH4. Finally, an industrial experiment was carried out on a commercial 100t EAF using coherent jet with 75 pct CH4, showing that the average CH4 consumption was reduced from 3.84 to 3.05 Nm3 t-1 under the premise of no obvious changes in the other production indexes.

  10. Status of Westinghouse coal-fueled combustion turbine programs

    International Nuclear Information System (INIS)

    Scalzo, A.J.; Amos, D.J.; Bannister, R.L.; Garland, R.V.

    1992-01-01

    Developing clean, efficient, cost effective coal utilization technologies for future power generation is an essential part of our National Energy Strategy. Westinghouse is actively developing power plants utilizing advanced gasification, atmospheric fluidized beds (AFB), pressurized fluidized beds (PFB), and direct firing technology through programs sponsored by the U.S. Dept. of Energy (DOE). The DOE Office of Fossil Energy is sponsoring the Direct Coal-Fired Turbine program. This paper presents the status of current and potential Westinghouse Power Generation Business Unit advanced coal-fueled power generation programs as well as commercial plans

  11. Age-related differences in pulmonary inflammatory responses to JP-8 jet fuel aerosol inhalation.

    Science.gov (United States)

    Wang, S; Young, R S; Witten, M L

    2001-02-01

    Our previous studies have demonstrated that JP-8 jet fuel aerosol inhalation induced lung injury and dysfunction. To further examine JP-8 jet fuel-induced inflammatory mechanisms, a total of 40 male C57BL/6 mice (young, 3.5 months; adult, 12 months; half in each age group) were randomly assigned to the exposure or control groups. Mice were nose-only exposed to room air or atmospheres of 1000 mg/m3 JP-8 jet fuel for 1 h/day for 7 days. Lung injury was assessed by pulmonary mechanics, respiratory permeability, lavaged cell profile, and chemical mediators in bronchoalveolar lavage fluid (BALF). The young and adult mice exposed to JP-8 jet fuel had similar values with regards to increased lung dynamic compliance, lung permeability, BALF cell count, and decreased PGE2. However, there were several different responses between the young-versus-adult mice with respect to BALF cell differential, TNF-alpha, and 8-iso-PGF2,, levels after exposure to JP-8 jet fuel. These data suggest that JP-8 jet fuel may have different inflammatory mechanisms leading to lung injury and dysfunction in the younger-versus-adult mice.

  12. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL

    Science.gov (United States)

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...

  13. Coal-based oxy-fuel system evaluation and combustor development

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Biebuyck, C.; Anderson, R.; Pronske, K. [Clean Energy Systems Inc., Rancho Cordova, CA (United States)

    2007-07-01

    The core of the Clean Energy Systems, Inc. (CES) process is an oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include syngas from coal, refinery residues, or biomass; natural gas; landfill gas; glycoal solutions and oil/water emulsions. The combustion is performed at near-stoichiometric conditions in the presence of recycled water to produce a steam/CO{sub 2} mixture at high temperature and pressure. These combustion products power conventional or advanced steam turbines and may use modified gas turbines operating at high-temperatures for expansion at intermediate pressures. The gas exiting the turbines enter a condenser/separator where it is cooled, separating into its components, water and CO{sub 2}. The recovered CO{sub 2} is conditioned and purified as appropriate and sold or sequestered. Most of the water is recycled to the gas generator but excess high-purity water is produced and available for export. The development, evaluation and demonstration of the CES combustor are described. 8 refs., 4 figs., 1 tab.

  14. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels

    Science.gov (United States)

    Borrok, D.M.; Gieré, R.; Ren, M.; Landa, E.R.

    2010-01-01

    Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and δ(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The δ(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The δ(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest δ(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process.

  15. Fuel retention in JET ITER-Like Wall from post-mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heinola, K., E-mail: kalle.heinola@ccfe.ac.uk [Association EURATOM-TEKES, University of Helsinki, PO Box 64, 00560 Helsinki (Finland); EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Widdowson, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Likonen, J. [Association EURATOM-TEKES, VTT, PO Box 1000, 02044 VTT, Espoo (Finland); Alves, E. [Instituto Superior Tecnico, Instituto de Plasmas e Fusao Nuclear, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Baron-Wiechec, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Barradas, N. [Instituto Superior Tecnico, Instituto de Plasmas e Fusao Nuclear, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Brezinsek, S. [Forschungszentrum Julich GmbH, EURATOM Association, D-52425 Julich (Germany); Catarino, N. [Instituto Superior Tecnico, Instituto de Plasmas e Fusao Nuclear, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Coad, P. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Koivuranta, S. [Association EURATOM-TEKES, VTT, PO Box 1000, 02044 VTT, Espoo (Finland); Matthews, G.F. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Mayer, M. [Max-Planck Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Petersson, P. [Royal Institute of Technology, Association EURATOM-VR, SE-10044 Stockholm (Sweden)

    2015-08-15

    Selected Ion Beam Analysis techniques applicable for detecting deuterium and heavier impurities have been used in the post-mortem analyses of tiles removed after the first JET ITER-Like Wall (JET-ILW) campaign. Over half of the retained fuel was measured in the divertor region. The highest figures for fuel retention were obtained from regions with the thickest deposited layers, i.e. in the inner divertor on top of tile 1 and on the High Field Gap Closure tile, which resides deep in the plasma scrape-off layer. Least retention was found in the main chamber high erosion regions, i.e. in the mid-plane of Inner Wall Guard Limiter. The fuel retention values found typically varied with deposition layer thicknesses. The reported retention values support the observed decrease in fuel retention obtained with gas balance experiments of JET-ILW.

  16. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    International Nuclear Information System (INIS)

    Li, Xue; Mupondwa, Edmund

    2014-01-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO 2 equivalent and 3.06 to 31.01 kg CO 2 /MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE use

  17. Investigation of charge dissipation in jet fuel in a dielectric fuel tank

    Science.gov (United States)

    Kitanin, E. L.; Kravtsov, P. A.; Trofimov, V. A.; Kitanina, E. E.; Bondarenko, D. A.

    2017-09-01

    The electrostatic charge dissipation process in jet fuel in a polypropylene tank was investigated experimentally. Groundable metallic terminals were installed in the tank walls to accelerate the dissipation process. Several sensors and an electrometer with a current measuring range from 10-11 to 10-3 A were specifically designed to study the dissipation rates. It was demonstrated that thanks to the sensors and the electrometer one can obtain reliable measurements of the dissipation rate and look at how it is influenced by the number and locations of the terminals. Conductivity of jet fuel and effective conductivity of the tank walls were investigated in addition. The experimental data agree well with the numerical simulation results obtained using COMSOL software package.

  18. Dynamic behavior of tobacco waste in the coal-fired fluidized-bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Chang, Jian; Chen, Honggang; Yang, Yongping [North China Electric Power Univ., Beijing (China). National Eng Lab for Biomass Power Generation Equipment; Yu, Bangting [China Univ. of Petroleum, Beijing (China). State Key Lab. of Heavy Oil Processing

    2013-07-01

    Circulating fluidized bed (CFB) technology is an advanced method for utilizing coal and other solid fuels in an environmentally acceptable manner. During the processing procedure in the nicotiana tabacum plants, lots of tobacco stem wastes are produced, which are normally being dumped to the landfill field. If this kind of waste can be used as a part of the fuel to be added into the coal in a CFB combustor, it will reduce the use of coal and then cut the net carbon emissions. To understand the complicated fluid dynamics of nicotiana tabacum wastes in the coal-fired CFB boiler, the mixing and segregation behavior of tobacco stalk are preliminary measured in a cylindrical fluidized bed. Obvious segregation behavior is found due to distinct differences in density and shape between tobacco stem and coal, which results in poor fluidization quality and bad combustion efficiency. To overcome this disadvantage, a jet with high gas velocity is introduced through the air distributor and a detailed experimental study is conducted in a fluidized bed made up of stem-sand mixture with different solid components at various jet velocities, which greatly improve the mixing performance of stem in the fluidized bed. The above findings are helpful for the technological upgrading of small- or middle-sized CFB boiler with adding tobacco stem into coal.

  19. Externality costs of the coal-fuel cycle: The case of Kusile Power Station

    Directory of Open Access Journals (Sweden)

    Nonophile P. Nkambule

    2017-09-01

    Full Text Available Coal-based electricity is an integral part of daily life in South Africa and globally. However, the use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. We developed a model based on a system dynamics approach for understanding the measurable and quantifiable coal-fuel cycle burdens and externality costs, over the lifespan of a supercritical coal-fired power station that is fitted with a flue-gas desulfurisation device (i.e. Kusile Power Station. The total coal-fuel cycle externality cost on both the environment and humans over Kusile's lifespan was estimated at ZAR1 449.9 billion to ZAR3 279 billion or 91c/kWh to 205c/kWh sent out (baseline: ZAR2 172.7 billion or 136c/kWh. Accounting for the life-cycle burdens and damages of coal-derived electricity conservatively, doubles to quadruples the price of electricity, making renewable energy sources such as wind and solar attractive alternatives. Significance: The use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. The estimation of social costs is particularly important to the electric sector because of non-differentiation of electricity prices produced from a variety of sources with potentially very dissimilar environmental and human health costs. Because all electricity generation technologies are associated with undesirable side effects in their fuelcycle and lifespan, comprehensive comparative analyses of life-cycle costs of all power generation technologies is indispensable to guide the development of future energy policies in South Africa.

  20. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  1. Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways

    International Nuclear Information System (INIS)

    Jaramillo, Paulina; Samaras, Constantine; Wakeley, Heather; Meisterling, Kyle

    2009-01-01

    Using coal to produce transportation fuels could improve the energy security of the United States by replacing some of the demand for imported petroleum. Because of concerns regarding climate change and the high greenhouse gas (GHG) emissions associated with conventional coal use, policies to encourage pathways that utilize coal for transportation should seek to reduce GHGs compared to petroleum fuels. This paper compares the GHG emissions of coal-to-liquid (CTL) fuels to the emissions of plug-in hybrid electric vehicles (PHEV) powered with coal-based electricity, and to the emissions of a fuel cell vehicle (FCV) that uses coal-based hydrogen. A life cycle approach is used to account for fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing emissions. This analysis allows policymakers to better identify benefits or disadvantages of an energy future that includes coal as a transportation fuel. We find that PHEVs could reduce vehicle life cycle GHG emissions by up to about one-half when coal with carbon capture and sequestration is used to generate the electricity used by the vehicles. On the other hand, CTL fuels and coal-based hydrogen would likely lead to significantly increased emissions compared to PHEVs and conventional vehicles using petroleum-based fuels.

  2. Jet fuels of higher volatility: An airline view

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, M.H.

    1982-05-01

    Use of jet fuels of higher volatility is reviewed by some airlines periodically on a routine basis. Most often, however, airlines become concerned when aviation kerosine supply problems are encountered or anticipated. The purpose of this paper is to discuss the known principles of fuel selection and how they influence airline consideration.

  3. Upgraded Coal Interest Group -- A vision for coal-based power in 1999 and beyond

    International Nuclear Information System (INIS)

    Hughes, E.; Battista, J.; Stopek, D.; Akers, D.

    1999-01-01

    The US is at a critical junction. Global competition is now a reality for a large number of US businesses and, ultimately, almost all US businesses will compete to one degree or another in the global marketplace. Under these circumstances, maintaining and improving the standard of living of US citizens requires a plentiful supply of low-cost electric energy to reduce the cost of providing goods and services both in the US an abroad. At the same time, segments of the public demand increased environmental restrictions on the utility industry. If the electric utility industry is to successfully respond to the goals of reducing electricity costs, maintaining reliability, and reducing emissions, fuels technology research is critical. For coal-fired units, fuel cost typically represents from 60--70% of operating costs. Reducing fuel cost, reduces operating costs. This can provide revenue that could be used to finance emissions control systems or advanced type of boilers resulting from post-combustion research. At the same time, improving coal quality reduces emissions from existing boilers without the need for substantial capital investment by the utility. If quality improvements can be accomplished with little or no increase in fuel costs, an immediate improvement in emissions can be achieved without an increase in electricity costs. All of this is directly dependent on continued and expanded levels of research on coal with the cooperation and partnership between government and industry. The paper describes enhanced fuel technologies (use of waste coal, coal water slurries, biomass/composite fuels, improved dewatering technologies, precombustion control of HAPs, dry cleaning technologies, and international coal characterization) and enhanced emission control technologies

  4. Liquid fuels from Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. W.

    1979-06-15

    In Canadian energy planning, the central issue of security of supply must be addressed by developing flexible energy systems that make the best possible use of available resources. For liquid fuel production, oil sands and heavy oil currently appear more attractive than coal or biomass as alternatives to conventional crude oil, but the magnitude of their economic advantage is uncertain. The existence of large resources of oil sands, heavy oils, natural gas and low-sulfur coals in Western Canada creates a unique opportunity for Canadians to optimize the yield from these resources and develop new technology. Many variations on the three basic liquefaction routes - hydroliquefaction, pyrolysis and synthesis - are under investigation around the world, and the technology is advancing rapidly. Each process has merit under certain circumstances. Surface-mineable subbituminous and lignite coals of Alberta and Saskatchewan appear to offer the best combination of favorable properties, deposit size and mining cost, but other deposits in Alberta, Nova Scotia and British Columbia should not be ruled out. The research effort in Canada is small by world standards, but it is unlikely that technology could be imported that is ideally suited to Canadian conditions. Importing technology is undesirable: innovation or process modification to suit Canadian coals and markets is preferred; coprocessing of coal liquids with bitumen or heavy oils would be a uniquely Canadian, exportable technology. The cost of synthetic crude from coal in Canada is uncertain, estimates ranging from $113 to $220/m/sup 3/ ($18 to $35/bbl). Existing economic evaluations vary widely depending on assumptions, and can be misleading. Product quality is an important consideration.

  5. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  6. Loop system for creating jet fuel vapor standards used in the calibration of infrared spectrophotometers and gas chromatographs.

    Science.gov (United States)

    Reboulet, James; Cunningham, Robert; Gunasekar, Palur G; Chapman, Gail D; Stevens, Sean C

    2009-02-01

    A whole body inhalation study of mixed jet fuel vapor and its aerosol necessitated the development of a method for preparing vapor only standards from the neat fuel. Jet fuel is a complex mixture of components which partitions between aerosol and vapor when aspirated based on relative volatility of the individual compounds. A method was desired which could separate the vapor portion from the aerosol component to prepare standards for the calibration of infrared spectrophotometers and a head space gas chromatography system. A re-circulating loop system was developed which provided vapor only standards whose composition matched those seen in an exposure system. Comparisons of nominal concentrations in the exposure system to those determined by infrared spectrophotometry were in 92-95% agreement. Comparison of jet fuel vapor concentrations determined by infrared spectrophotometry compared to head space gas chromatography yielded a 93% overall agreement in trial runs. These levels of agreement show the loop system to be a viable method for creating jet fuel vapor standards for calibrating instruments.

  7. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  8. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  9. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  10. Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel

    Science.gov (United States)

    Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.

    2016-10-01

    Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.

  11. Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production

    International Nuclear Information System (INIS)

    Ng, Yi Cheng; Lipiński, Wojciech

    2012-01-01

    Thermodynamic analyses are performed for solar thermal steam and dry gasification of coal. The selected types of coal are anthracite, bituminous, lignite and peat. Two model conversion paths are considered for each combination of the gasifying agent and the coal type: production of the synthesis gas with its subsequent use in a combined cycle power plant to generate power, and production of the synthesis gas with its subsequent use to produce gasoline via the Fischer–Tropsch synthesis. Replacement of a coal-fired 35% efficient Rankine cycle power plant and a combustion-based integrated gasification combined cycle power plant by a solar-based integrated gasification combined cycle power plant leads to the reduction in specific carbon dioxide emissions by at least 47% and 27%, respectively. Replacement of a conventional gasoline production process via coal gasification and a subsequent Fischer–Tropsch synthesis with gasoline production via solar thermal coal gasification with a subsequent Fischer–Tropsch synthesis leads to the reduction in specific carbon dioxide emissions by at least 39%. -- Highlights: ► Thermodynamic analyses for steam and dry gasification of coal are presented. ► Hybrid solar-fossil paths to power and fuels are compared to those using only combustion. ► Hybrid power production can reduce specific CO 2 emissions by more than 27%. ► Hybrid fuel production can reduce specific CO 2 emissions by more than 39%.

  12. Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor

    KAUST Repository

    Karsenty, Florent

    2012-08-16

    Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,5-dimethylhexane, and n-octane, are candidate surrogate components for conventional diesel fuels derived from petroleum, synthetic Fischer-Tropsch diesel and jet fuels derived from coal, natural gas, and/or biomass, and renewable diesel and jet fuels derived from the thermochemical treatment of bioderived fats and oils. This study presents new experimental results along with a low- and high-temperature chemical kinetic model for the oxidation of 3-methylheptane. The proposed model is validated against these new experimental data from a jet-stirred reactor operated at 10 atm, over the temperature range of 530-1220 K, and for equivalence ratios of 0.5, 1, and 2. Significant effort is placed on the understanding of the effects of methyl substitution on important combustion properties, such as fuel reactivity and species formation. It was found that 3-methylheptane reacts more slowly than 2-methylheptane at both low and high temperatures in the jet-stirred reactor. © 2012 American Chemical Society.

  13. Thermal analysis and kinetics of coal during oxy-fuel combustion

    Science.gov (United States)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  14. Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

  15. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  16. The prospects for hard coal as a fuel for the Polish power sector

    International Nuclear Information System (INIS)

    Kaminski, Jacek; KudeLko, Mariusz

    2010-01-01

    This paper presents the prospects for the development of the Polish hard coal sector from the perspective of the power sector. The most important issues determining the mid- and long-term future for domestic coal production are: (1) the development of the economy, hence the demand for electricity, (2) regulations (mostly environmental) affecting the power sector, (3) the competitiveness of coal-based technologies, and (4) the costs of domestic coal production. Since the range of issues and relations being considered is very broad, a specific method needs to be employed for the quantitative analysis. The tool applied in this study is the partial equilibrium model POWER-POL, in which both the coal and the power sectors are incorporated. The model focuses on energy-economy-environmental issues without capturing detailed macroeconomic links. The model was run under six scenario assumptions. The results show that the domestic coal sector should maintain its position as a key supplier of primary energy for the Polish power sector. However, the environmental regulations to which the domestic power sector has to conform will decrease the share of coal in the fuel-mix. Since the investment processes in this sector are usually long-term, the effects of changes will be noticeable from 2015 onwards. - Research highlights: →Application of the partial equilibrium model POWER-POL for a quantitative analysis. →Coal will maintain its dominant position in the Polish heat and electricity production fuel-mix at least up to 2020. →Attractiveness of domestic hard coal supplies will depend on the environmental regulations (mostly on the EU level) and development in the world coal market. →The first nuclear power plant will be put into operation in 2020.

  17. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    Science.gov (United States)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  18. Experimental verification of the thermodynamic properties for a jet-A fuel

    Science.gov (United States)

    Graciasalcedo, Carmen M.; Brabbs, Theodore A.; Mcbride, Bonnie J.

    1988-01-01

    Thermodynamic properties for a Jet-A fuel were determined by Shell Development Company in 1970 under a contract for NASA Lewis Research Center. The polynomial fit necessary to include Jet-A fuel (liquid and gaseous phases) in the library of thermodynamic properties of the NASA Lewis Chemical Equilibrium Program is calculated. To verify the thermodynamic data, the temperatures of mixtures of liquid Jet-A injected into a hot nitrogen stream were experimentally measured and compared to those calculated by the program. Iso-octane, a fuel for which the thermodynamic properties are well known, was used as a standard to calibrate the apparatus. The measured temperatures for the iso-octane/nitrogen mixtures reproduced the calculated temperatures except for a small loss due to the non-adiabatic behavior of the apparatus. The measurements for Jet-A were corrected for this heat loss and showed excellent agreement with the calculated temperatures. These experiments show that this process can be adequately described by the thermodynamic properties fitted for the Chemical Equilibrium Program.

  19. Coal fueled diesel system for stationary power applications-technology development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  20. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    Science.gov (United States)

    2015-06-01

    of JP-8 and a Fischer- Tropsch synthetic jet fuel following subacute inhalation exposure in rats. Toxicol Sci 116(1): 239-248. Gallinat, J...AFRL-RH-WP-TR-2015-0084 IN VITRO STUDIES AND PRELIMINARY MATHEMATICAL MODEL FOR JET FUEL AND NOISE INDUCED AUDITORY IMPAIRMENT...April 2014 – September 2014 4. TITLE AND SUBTITLE In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory

  1. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Mupondwa, Edmund, E-mail: Edmund.Mupondwa@agr.gc.ca

    2014-05-01

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO{sub 2} equivalent and 3.06 to 31.01 kg CO{sub 2}/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from − 0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive. - Highlights: • LCA of camelina-derived biodiesel and jet fuel was based on the Canadian Prairies. • Overall, camelina-derived biodiesel had lower GHG emissions than is biojet fuel. • Camelina jet fuel had lower non-renewable energy (NRE) use than its biodiesel. • Camelina biofuels reduced GHG emissions and NRE

  2. Pulsed, supersonic fuel jets-A review of their characteristics and potential for fuel injection

    International Nuclear Information System (INIS)

    Milton, B.E.; Pianthong, K.

    2005-01-01

    High pressure fuel injection has provided considerable benefits for diesel engines, substantially reducing smoke levels while increasing efficiency. Current maximum pressures provide jets that are at less than the sonic velocity of the compressed air in the cylinders at injection. It has been postulated that a further increase into the supersonic range may benefit the combustion process due to increased aerodynamic atomization and the presence of jet bow shock waves that provide higher temperatures around the fuel. Pulsed, supersonic injection may also be beneficial for scramjet engines. The current program is examining pulsed, supersonic jets from a fundamental viewpoint both experimentally and numerically. Shock wave structures have been viewed for jets ranging from 600 to 2400 m/s, velocity attenuation and penetration distance measured, different nozzle designs examined and autoignition experiments carried out. Inside the nozzle, numerical simulation using the Autodyne code has been used to support an analytic approach while in the spray, the FLUENT code has been used. While benefits have not yet been defined, it appears that some earlier claims regarding autoignition at atmospheric conditions were optimistic but that increased evaporation and mixing are probable. The higher jet velocities are likely to mean that wall interactions are increased and hence matching such injectors to engine size and airflow patterns will be important

  3. Ototoxic potential of JP-8 and a Fischer-Tropsch synthetic jet fuel following subacute inhalation exposure in rats.

    Science.gov (United States)

    Fechter, Laurence D; Gearhart, Caroline A; Fulton, Sherry

    2010-07-01

    This study was undertaken to identify the ototoxic potential of two jet fuels presented alone and in combination with noise. Rats were exposed via a subacute inhalation paradigm to JP-8 jet fuel, a kerosene-based fuel refined from petroleum, and a synthetic fuel produced by the Fischer-Tropsch (FT) process. Although JP-8 contains small ( approximately 5%) concentrations of aromatic hydrocarbons some of which known to be ototoxic, the synthetic fuel does not. The objectives of this study were to identify a lowest observed adverse effect level and a no observed adverse effect level for each jet fuel and to provide some preliminary, but admittedly, indirect evidence concerning the possible role of the aromatic hydrocarbon component of petroleum-based jet fuel on hearing. Rats (n = 5-19) received inhalation exposure to JP-8 or to FT fuel for 4 h/day on five consecutive days at doses of 500, 1000, and 2000 mg/m(3). Additional groups were exposed to various fuel concentrations followed by 1 h of an octave band of noise, noise alone, or no exposure to fuel or noise. Significant dose-related impairment in the distortion product otoacoustic emissions (DPOAE) was seen in subjects exposed to combined JP-8 plus noise exposure when JP-8 levels of at least 1000 mg/m(3) were presented. No noticeable impairment was observed at JP-8 levels of 500 mg/m(3) + noise. In contrast to the effects of JP-8 on noise-induced hearing loss, FT exposure had no effect by itself or in combination with noise exposure even at the highest exposure level tested. Despite an observed loss in DPOAE amplitude seen only when JP-8 and noise were combined, there was no loss in auditory threshold or increase in hair cell loss in any exposure group.

  4. Cleanup of a jet fuel spill

    Science.gov (United States)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  5. Method for processing coal-enrichment waste with solid and volatile fuel inclusions

    Science.gov (United States)

    Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.

    2017-10-01

    The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.

  6. MEETING IN VANCOUVER, B.C.: MICRONUCLEUS STUDIES IN THE PERIPHERAL BLOOD AND BONE MARROW OF MICE TREATED WITH JET FUELS, JP-8 AND JET-A

    Science.gov (United States)

    The potential adverse effects of dermal and inhalation exposure of jet fuels are important for health hazard evaluation in humans. In an animal model, the genotoxic potential of jet fuels, JP-8 and Jet-A, was investigated. Mice were treated dermally with either a single or multip...

  7. Comparison of Global Sizing Velocimetry and Phase Doppler Anemometry measurements of alternative jet fuel sprays

    Science.gov (United States)

    Sadr, Reza; Kannaiyan, Kumaran

    2013-11-01

    Atomization plays a crucial precursor role in liquid fuel combustion that directly affects the evaporation, mixing, and emission levels. Laser diagnostic techniques are often used to study the spray characteristics of liquid fuels. The objective of this work is to compare the spray measurements of Gas-to Liquid (GTL) jet fuels obtained using Global Sizing Velocimetry (GSV) and Phase Doppler Anemometry (PDA) techniques at global and local levels, respectively. The chemical and physical properties of GTL fuels are different from conventional jet fuels, owing to the difference in their production methodology. In this work, the experimental facility, the measurement techniques, and spray characteristics of two different GTL fuels are discussed and compared with those of Jet A-1 fuel. Results clearly demonstrate that although the global measurement gives an overall picture of the spray, fine details are obtained only through local measurements and complement in gaining more inferences into the spray characteristics. The results also show a close similarity in spray characteristics between GTL and Jet A-1 fuels. Funded by Qatar Science and Technology Park.

  8. Utilizing Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel for industrial steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Archie B. Maglaya [De La Salle University, Manila (Philippines). Department of Mechanical Engineering

    2005-01-01

    The fast depletion of fuel oil and the continuous increase in the demand for power is a global issue. In the Philippines, the demand for diesel oil is expected to increase significantly in a 20-year period as projected by the Department of Energy. In line with the Philippine Government's thrust to lessen the dependence on imported energy, the agenda for the search for alternative fuel is highly prioritized. Thus, this paper presents the results of the study on performance analysis and efficiency test of a diesel oil fired industrial steam generator using Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel. A computer program was developed in HyperText Markup Language (HTML{copyright}) and JavaScript{copyright} to aid the computation of the adiabatic flame temperature from the governing system of equations based on the heat interaction between CDOM fuel, combustion air and products of combustion to determine the most desirable alternative fuel. Actual experimentation for the determination of CDOM fuel properties was also conducted to verify the alternative fuel selected through theoretical calculations. Results showed that the CDOM fuel with a particle size passing 75 {mu}m (-200 mesh) sieve having a proportion of 5% pulverized coal-95% diesel oil and 10% pulverized coal-90% diesel oil could be handled throughout the test with no degradation of the industrial steam generator. The steam generator efficiency using diesel oil is close to the steam generator efficiency using both CDOM fuels. 20 refs., 5 figs., 4 tabs.

  9. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE; FINAL

    International Nuclear Information System (INIS)

    Hamid Farzan

    2001-01-01

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  10. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    Science.gov (United States)

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.

  11. Numerical Investigation on Sensitivity of Liquid Jet Breakup to Physical Fuel Properties with Experimental Comparison

    Science.gov (United States)

    Kim, Dokyun; Bravo, Luis; Matusik, Katarzyna; Duke, Daniel; Kastengren, Alan; Swantek, Andy; Powell, Christopher; Ham, Frank

    2016-11-01

    One of the major concerns in modern direct injection engines is the sensitivity of engine performance to fuel characteristics. Recent works have shown that even slight differences in fuel properties can cause significant changes in efficiency and emission of an engine. Since the combustion process is very sensitive to the fuel/air mixture formation resulting from disintegration of liquid jet, the precise assessment of fuel sensitivity on liquid jet atomization process is required first to study the impact of different fuels on the combustion. In the present study, the breaking process of a liquid jet from a diesel injector injecting into a quiescent gas chamber is investigated numerically and experimentally for different liquid fuels (n-dodecane, iso-octane, CAT A2 and C3). The unsplit geometric Volume-of-Fluid method is employed to capture the phase interface in Large-eddy simulations and results are compared against the radiography measurement from Argonne National Lab including jet penetration, liquid mass distribution and volume fraction. The breakup characteristics will be shown for different fuels as well as droplet PDF statistics to demonstrate the influences of the physical properties on the primary atomization of liquid jet. Supported by HPCMP FRONTIER award, US DOD, Office of the Army.

  12. Dermal Exposure to Jet Fuel JP-8 Significantly Contributes to the Production of Urinary Naphthols in Fuel-Cell Maintenance Workers

    OpenAIRE

    Chao, Yi-Chun E.; Kupper, Lawrence L.; Serdar, Berrin; Egeghy, Peter P.; Rappaport, Stephen M.; Nylander-French, Leena A.

    2005-01-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sam...

  13. Comparison of atomization characteristics of drop-in and conventional jet fuels

    Science.gov (United States)

    Kannaiyan, Kumaran; Sadr, Reza; Micro Scale Thermo-Fluids Lab Team

    2016-11-01

    Surge in energy demand and stringent emission norms have been driving the interest on alternative drop-in fuels in aviation industry. The gas-to-liquid (GTL), synthetic paraffinic kerosene fuel derived from natural gas, has drawn significant attention as drop-in fuel due to its cleaner combustion characteristics when compared to other alternative fuels derived from various feedstocks. The fuel specifications such as chemical and physical properties of drop-in fuels are different from those of the conventional jet fuels, which can affect their atomization characteristics and in turn the combustion performance. The near nozzle liquid sheet dynamics of the drop-in fuel, GTL, is studied at different nozzle operating conditions and compared with that of the conventional Jet A-1 fuel. The statistical analysis of the near nozzle sheet dynamics shows that the drop-in fuel atomization characteristics are comparable to those of the conventional fuel. Furthermore, the microscopic spray characteristics measured using phase Doppler anemometry at downstream locations are slightly different between the fuels. Authors acknowledge the support by National Priorities Research Program (NPRP) of Qatar National Research Fund through the Grant NPRP-7-1449-2-523.

  14. Seca Coal-Based Systems Program

    International Nuclear Information System (INIS)

    Alinger, Matthew

    2008-01-01

    This report summarizes the progress made during the August 1, 2006 - May 31, 2008 award period under Cooperative Agreement DE-FC26-05NT42614 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled 'SECA Coal Based Systems'. The initial overall objective of this program was to design, develop, and demonstrate multi-MW integrated gasification fuel cell (IGFC) power plants with >50% overall efficiency from coal (HHV) to AC power. The focus of the program was to develop low-cost, high performance, modular solid oxide fuel cell (SOFC) technology to support coal gas IGFC power systems. After a detailed GE internal review of the SOFC technology, the program was de-scoped at GE's request. The primary objective of this program was then focused on developing a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). There were two initial major objectives in this program. These were: (1) Develop and optimize a design of a >100 MWe integrated gasification fuel cell (IGFC) power plant; (2) Resolve identified barrier issues concerning the long-term economic performance of SOFC. The program focused on designing and cost estimating the IGFC system and resolving technical and economic barrier issues relating to SOFC. In doing so, manufacturing options for SOFC cells were evaluated, options for constructing stacks based upon various cell configurations identified, and key performance characteristics were identified. Key factors affecting SOFC performance degradation for cells in contact with metallic interconnects were be studied and a fundamental understanding of associated mechanisms was developed using a fixed materials set. Experiments and modeling were carried out to identify key processes/steps affecting cell performance degradation under SOFC operating conditions. Interfacial microstructural and elemental changes were characterized, and their relationships to observed degradation

  15. Pelletised fuel production from coal tailings and spent mushroom compost - Part II. Economic feasibility based on cost analysis

    International Nuclear Information System (INIS)

    Ryu, Changkook; Khor, Adela; Sharifi, Vida N.; Swithenbank, Jim

    2008-01-01

    Due to the growing market for sustainable energy, in order to increase the quality of the fuels, pellets are being produced from various materials such as wood and other biomass energy crops, and municipal waste. This paper presents the results from an economic feasibility study for pellet production using blends of two residue materials: coal tailings from coal cleaning and spent mushroom compost (SMC) from mushroom production. Key variables such as the mixture composition, raw material haulage and plant scale were considered and the production costs were compared to coal and biomass energy prices. For both wet materials, the moisture content was the critical parameter that influenced the fuel energy costs. The haulage distance of the raw materials was another factor that can pose a high risk. The results showed that the pellet production from the above two materials can be viable when a less energy-intensive drying process is utilised. Potential market outlets and ways to lower the costs are also discussed in this paper. (author)

  16. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  17. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  18. In situ bioremediation of JP-5 jet fuel

    International Nuclear Information System (INIS)

    Eisman, M.P.; Dorwin, E.; Barnes, D.; Nelson, B.

    1991-01-01

    Fuel leaks and spills of the jet fuel JP-5 at various Naval installations are required by law to be remediated. Use of microorganisms for fuel spill remediation is the focus of this paper, which examines biodegradation of JP-5 by means of CO 2 evolution in batch cultures. In particular, the aerobic biodegradation of fresh and weathered JP-5, along with a representative fuel mix of three pure compounds, is examined. Since microorganisms exist in aqueous environments, the solubility in water of fuels and fuel components is also examined. Other chemical properties of the complex mixture of hydrocarbons in JP-5 may affect bioavailability. This paper will also attempt to relate biodegradation to these properties, particularly water solubility and type of hydrocarbon

  19. Development of fuel cell systems for aircraft applications based on synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pasel, J.; Samsun, R.C.; Doell, C.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    At present, in the aviation sector considerable scientific project work deals with the development of fuel cell systems based on synthetic fuels to be integrated in future aircraft. The benefits of fuel cell systems in aircraft are various. They offer the possibility to simplify the aircraft layout. Important systems, i.e. the gas turbine powered auxiliary power unit (APU) for electricity supply, the fuel tank inserting system and the water tank, can be substituted by one single system, the fuel cell system. Additionally, the energy demand for ice protection can be covered assisted by fuel cell systems. These measures reduce the consumption of jet fuel, increase aircraft efficiency and allow the operation at low emissions. Additionally, the costs for aircraft related investments, for aircraft maintenance and operation can be reduced. On the background of regular discussions about environmental concerns (global warming) of kerosene Jet A-1 and its availability, which might be restricted in a few years, the aircraft industry is keen to employ synthetic, sulfur-free fuels such as Fischer-Tropsch fuels. These comprise Bio-To-Liquid and Gas-To-Liquid fuels. Within this field of research the Institute of Energy Research (IEF-3) in Juelich develops complete and compact fuel cell systems based on the autothermal reforming of these kinds of fuels in cooperation with industry. This paper reports about this work. (orig.)

  20. An improved method for determining the purity of jet fuels in a POZ-TU instrument

    Energy Technology Data Exchange (ETDEWEB)

    Zrelov, V N; Fedotkin, B I; Krasnaya, L V; Nikitin, L V; Postinkova, N G

    1983-01-01

    The possibility is studied of real time testing for the content of mechanical impurities (Cm.t.) in jet fuels (RT) in a POZ-TU instrument. Based on the obtained data, a four point scale of gray standards is developed for determining the mechanical impurity content, which is four rounded, gray stamps of different intensity, which corresponds to a mechanical impurity content of 0.5; 1.0; 2.0 and 3.0 milligrams per liter. A white indicator filtering element is built into the POZ-TU for determining the mechanical impurity content, and 50 cubic centimeters of the jet fuel are pumped through it over the course of several seconds. The mechanical impurities are placed on the indicator element, forming an imprint, the intensity of the color of which corresponds to the content of mechanical impurities in the jet fuel. The indicator element is extracted from the instrument and the prints are compared with the scale of gray standards, from which the content of the mechanical impurities is determined.

  1. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    Science.gov (United States)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  2. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald [Stanford Univ., CA (United States). Mechanical Engineering Dept.

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  3. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  4. Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  5. Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  6. Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  7. Effect of hydroprocessing severity on characteristics of jet fuel from OSCO 2 and Paraho distillates

    Science.gov (United States)

    Prok, G. M.; Flores, F. J.; Seng, G. T.

    1981-01-01

    Jet A boiling range fuels and broad-property research fuels were produced by hydroprocessing shale oil distillates, and their properties were measured to characterize the fuels. The distillates were the fraction of whole shale oil boiling below 343 C from TOSCO 2 and Paraho syncrudes. The TOSCO 2 was hydroprocessed at medium severity, and the Paraho was hydroprocessed at high, medium, and low severities. Fuels meeting Jet A requirements except for the freezing point were produced from the medium severity TOSCO 2 and the high severity Paraho. Target properties of a broad property research fuel were met by the medium severity TOSCO 2 and the high severity Paraho except for the freezing point and a high hydrogen content. Medium and low severity Paraho jet fuels did not meet thermal stability and freezing point requirements.

  8. Producing synthetic solid fuel from Kansk-Achinsk coal

    Energy Technology Data Exchange (ETDEWEB)

    Zverev, D.P.; Krichko, A.A.; Smirnova, T.S.; Markina, T.I.

    1981-01-01

    Studies were conducted by the Soviet Institute of Fossil Fuels in order to develop a technology and equipment configuration for thermal processing of coals using gas heat carriers in swirl chambers. Characteristics of the starting Irsha-Borodinskii coal and those of the products of thermal processing at 290-600 C are given. Testing the method showed that the products of high-speed thermal processing (thermocoal, semicoke, drier products) can be used as raw materials in hydrogenation, combustion, gasification, thermal benefication, briquetting and a series of other processes in metallurgy. (10 refs.) (In Russian)

  9. Evaluation of Suppression of Hydroprocessed Renewable Jet (HRJ) Fuel Fires with Aqueous Film Forming Foam (AFFF)

    Science.gov (United States)

    2011-07-01

    Collecting particles from an open pan fire would preclude the consideration of isokinetic sampling usually required in Method 5, but this would...hydroprocessed renewable jet fuel in2 square inches JP-8 jet propellant 8, i.e. jet fuel kW kilowatts m2 square meters Mil-Spec Military Specification min

  10. Preliminary assessment of the environmental and health impacts of nuclear and coal fuel cycles

    International Nuclear Information System (INIS)

    Yang Yin; Chen Zhuzhou; Pan Ziqiang

    1992-01-01

    The paper reports on the environmental impacts and health effects of coal and nuclear fuel cycles in China. Data of interest for China are presented in a comparative manner; epidemiological investigations in Shanxi province indicate that the incidences of chronic pulmonary diseases and infant cogenital malformation were apparently increased over the fall-out areas of coal-fired power stations and coal mines. The authors outline the framework of a research project on environmental assessment of nuclear energy and other energy systems. The main features of the project are: environmental and health impacts of coal and nuclear fuel cycles, environmental impact assessment of coal transportation, cost accounting of nuclear and other energy sources, health risk assessment. (author). 24 refs, 4 tabs

  11. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg

    2011-01-01

    , heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulverized coal combustion in O2/CO2 and air, covering the effects of fuel, mixing conditions, temperature......In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows......, stoichiometry, and inlet NO level. In general, the model provides a satisfactory description of NO formation in air and oxy-fuel combustion of coal, but under some conditions, it underestimates the impact on NO of replacing N2 with CO2. According to the model, differences in the NO yield between the oxy...

  12. Development of coal gas production technology acceptable for fuel cells; Nenryo denchiyo sekitan gas seizo gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T [Center for Coal Utilization, Japan, Tokyo (Japan); Kimura, N; Omata, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    In utilizing coal for high-efficiency direct power generation using fuel cells, it is necessary that coal be fed into the fuel cells after having been made into ash-free gaseous fuel. Research and development works are being carried out with an objective to develop a coal gasification furnace most suitable for fuel cells and establish a system to refine coal up to the one that can be fed into fuel cells. Fiscal 1995 has conducted investigations on coal gasification technologies, air separation technologies, and gas refining technologies as the important element technologies, and a trial design on integrated coal gasification fuel cell (IGFC) systems. This paper reports from among the above items the result of the trial design on an IGFC system using molten carbonate fuel cells. The paper describes system comparison on paths of produced gases and anode waste gas, comparison on refining processes using a wet system and a dry system, and parameter studies on oxygen concentration in gasifying agents. It was made clear that the suitable furnace is an oxygen blown coal gasification furnace, and the power generation efficiency at the system terminal can be higher than 53%. 11 figs., 6 tabs.

  13. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  14. Production of fines during co-combustion of coal with biomass fuels by fragmentation and attrition

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; D. Boavida; H. Lopes (and others) [DEECA-INETI, Lisbon (Portugal)

    2005-07-01

    Results are reported from a project funded by the RFCS Programme of the European Union. The aim is to investigate, experimentally and by modeling, the production of fine char and ash particles during co-combustion of coal with wastes and biofuels in circulating fluidized bed. Work was undertaken at installations of different scales. Polish and Colombian coals were base fuels. The additional fuels were two sewage sludges. Bed temperature, feeding system, sand particle size, devolatilisation behaviour and char burn-out were studied to verify their influence on the fine particle production. Modeling was also carried out to understand the mechanisms of fragmentation and attrition. Samples from bed and cyclone were collected to determine particle size distributions. 11 refs.

  15. Maximizing efficiency in the transition to a coal-based economy

    International Nuclear Information System (INIS)

    Brathwaite, J.; Horst, S.; Iacobucci, J.

    2010-01-01

    Energy is the lynchpin of modern society. Since the early 1970s, growing dependence on foreign energy sources, oil in particular, has constrained US independence in foreign policy, and at times, inhibited economic stability and growth. Addressing oil dependence is politically and economically complex. Proposed solutions are multifaceted with various objectives such as energy efficiency and resource substitution. One solution is the partial transition from an oil- to coal-based economy. A number of facts support this solution including vast coal reserves in the US and the relative price stability of coal. However, several roadblocks exist. These include uncertain recoverable reserves and the immaturity of 'clean' coal technologies. This paper provides a first order analysis of the most efficient use of coal assuming the transition from oil to coal is desirable. Scenario analysis indicates two possible transition pathways: (1) bring the transportation sector onto the electric grid and (2) use coal-to-liquid fuels to directly power vehicles. The feasibility of each pathway is examined based on economic and environmental factors, among which are energy availability, affordability and efficiency, and environmental sustainability. Results indicate that partial transition of the transportation sector onto the electric grid offers the more viable solution for coal-based reduction of the US oil dependence.

  16. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  17. Subacute effects of inhaled Jet Fuel-A (Jet A) on airway and immune function in female rats.

    Science.gov (United States)

    Sweeney, Lisa M; Prues, Susan L; Reboulet, James E

    2013-04-01

    Two studies were conducted to assess the potential airway and immune effects following subacute (14 d) exposure of female rats to 500, 1000 or 2000 mg/m³ of Jet-A for 4 h/d. The first study used Sprague-Dawley rats; the second study included both Fischer 344 (F344) and Sprague-Dawley rats. In the first study, exposure to 2000 mg/m³ jet fuel may have caused significant upper airway inflammation on day 7 post-exposure, as indicated by elevated protein and lactate dehydrogenase in nasal lavage fluid, but any inflammation resolved by day 14 post-exposure. No significant impact on immune cell populations in the spleens was observed. The histological examination showed no evidence of infectious or toxic effect. In the second study, body weights of the F344 rats in the 2000 mg/m³ group were depressed, as compared to the controls, at the end of the exposure. Some lung lavage fluid markers were increased at 24 h after the final exposure, however, no test article-induced histological changes were observed in the lungs, nasal cavities, or any other tissue of any of the jet fuel exposed animals. Overall, these studies demonstrated limited evidence of effects of 14 d of exposure to Jet A on the airways, immune system, or any other organ or system of female Sprague-Dawley and F344 rats, with no remarkable differences between strains. The lack of identified significant airway or immune effects was in contrast to previous examinations of jet fuel for pulmonary toxicity in mice and rats and for immunotoxicity in mice.

  18. Shea meal and cotton stalk as potential fuels for co-combustion with coal.

    Science.gov (United States)

    Munir, S; Nimmo, W; Gibbs, B M

    2010-10-01

    The efficient management of waste biomass is an important environmental problem in agricultural countries. Often land-fill is the main disposal route with ramifications including CH(4) release having 21 times greater global warming potential per molecule than CO(2). Biomasses are considered to be CO(2)-neutral fuels when combusted. Moreover, they are renewable and covered by the renewable obligation scheme and eligible for certificates in the UK. The overall objective of the investigation is to assess the performance of selected biomass and coal co-firing under two different modes of operation, air-staging and fuel-staging with the benefit of reduced-NO(x) and SO(2) emissions in power plant. The biomasses chosen for the study, shea meal (SM) and cotton stalk (CS) have very different cellulose/lignin compositions and different reported thermal behaviour. A series of experiments have been carried out in a 20 kW, down fired combustor using coal, shea meal-coal and cotton stalk-coal blends under un-staged, air-staged and fuel-staged co-combustion configurations. For air-staging, an optimum value of primary zone stoichiometry SR(1)=0.9 was found. Keeping it fixed, the shea meal and cotton stalk content in the coal-biomass blends was set to 5%, 10% and 15% on thermal basis. NO reductions of 51% and 60% were achieved using SM and CS, respectively, with an optimum thermal biomass blending ratio (BBR) of 10%. The results obtained were compared with un-staged and air-staged results for coal without the addition of biomass. Similarly for fuel-staging, keeping the length of the reburn and burnout zone fixed, SM and CS were evaluated as reductive fuel using different reburn fuel fractions (R(ff)) of 5%, 10%, 15% and 20%. NO reductions of 83% and 84% were obtained with an optimum R(ff) of 15% with an optimum reburn zone stoichiometry of SR(2)=0.8 for both SM and CS, respectively. SO(2) reduction and char burnout efficiency were also evaluated. It was found that addition of

  19. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  20. The Jet multipellet launcher and fueling of Jet plasmas by multipellet injection

    International Nuclear Information System (INIS)

    Kupschus, P.; Cheetham, A.; Denne, B.; Gadeberg, M.; Gowers, C.; Gondhalekar, A.; Tubbing, B.; Schmidt, G.L.; Colestock, P.; Hammett, G.; Zarnstorff, M.

    1989-01-01

    A multipellet long-pulse plasma fueling system, in operation on JET, is described. Plasma fueling experiments are performed with the 2.7 and 4.0 mm guns operating in the multipellet mode. The penetration of the pellets, which agrees with neutral and plasma shielding models, is shown. Details of particle deposition in ohmic plasmas and the plasma density evolution from far-infrared data, in response to pellet injection, are illustrated. A variety of plasma density profile shapes is produced with peak to average values ranging up to 2.5 and peak plasma density up to 1.2 X 10 20 /m 3

  1. Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions

    International Nuclear Information System (INIS)

    Al-Muhtaseb, Ala’a H.; Jamil, Farrukh; Al-Haj, Lamya; Al-Hinai, Mohab A.; Baawain, Mahad; Myint, Myo Tay Zar; Rooney, David

    2016-01-01

    Highlights: • Active catalysts Pt/C and Pd/C were developed from waste date pits. • Catalysts showed good activity in hydrodeoxygenation of date pit oil to alkane fuels. • The liquid product fractions lay within the range of the jet fuel and green diesel. • Green diesel fraction obtained by Pd/C was 72.03% and jet fuel was 30.39%. • Date pits can be a promising platform for the production of catalysts and biofuels. - Abstract: Date pits are considered one of the major agricultural wastes in Oman. The present work involves the synthesis of active catalysts from waste date pits carbon produced by carbonization and impregnation with Pt and Pd metals. Synthesized catalysts Pt/C and Pd/C were characterized by XRD, SEM, TEM, EDX, BET and XPS. The activity of the catalysts’ performance was evaluated by the hydrodeoxygenation of date pits oil for the production of second-generation biofuels, which includes jet fuel and green diesel fractions. Results indicate that the synthesized catalysts were highly active for the hydrodeoxygenation of date pits oil. Based on the elemental analysis, the degree of deoxygenation (DOD) of product oil was 97.5% and 89.4% for the Pd/C and Pt/C catalysts respectively. The high DOD was also confirmed by product analyses that mainly consist of paraffinic hydrocarbons. Results also showed that between the two catalysts, Pd/C showed a higher activity towards hydrodeoxygenation, a conclusion that was based on the high DOD of the product oil due to hydrocarbons formation. Based on the type of components in the product oil, the maximum fraction of hydrocarbons formed lay within the range of 72.03% and 72.78% green diesel, and 30.39% and 28.25% jet fuel using Pd/C and Pt/C catalysts respectively. It can be concluded that waste date pits can be a promising platform for the production of catalysts and biofuels.

  2. Pilot study of Bio-jet A-1 fuel production for Stockholm-Arlanda Airport; Foerstudie foer biobaserat flygbraensle foer Stockholm-Arlanda Flygplats

    Energy Technology Data Exchange (ETDEWEB)

    Ekbom, Tomas; Hjerpe, Carl; Hagstroem, Martin; Hermann, Fredrik

    2009-11-15

    The air traffic industry faces big changes in the near future, one being how to reduce their share of the CO{sub 2}-emissions. Therefore LFV set the framework to investigate the pre-conditions for a biorefinery plant in conjunction with Arlanda Airport. The biorefinery is based on advanced gasification technology and Fischer-Tropsch synthesis to a bio-jet fuel product. Locations at Brista and Igelsta were studied for two different process plant configurations, with each 50 kton bio-jet fuel annual capacity, or 290 and 610 MW{sub th} biomass input, respectively. The biomass-to-fuels efficiency was 46 % and total net efficiency was 79 %. The capital investment was calculated as 5.1 and 7.4 billion SEK, and production costs of 8300 SEK (812 EUR/1183 USD) and 5000 SEK (490 EUR/714 USD) per cubic meter bio-jet, respectively, whereas the Jet A-1 fuel today costs some 6000 SEK, at crude oil price of USD 67 per barrel

  3. Female Reproductive Effects of Exposure to Jet Fuel at U.S. Air Force Bases

    Science.gov (United States)

    2001-05-01

    System of Tank Entry Workers" (See Appendix VI). James Kesner ( National Institute of Occupational Safety and Health) has received NIOSH support to evaluate...time employment at the Centers for Disease Control’s National Institutes for Occupational Safety and Health. Another doctoral quantitative... Neurasthenic symptoms in workers occupationally exposed to jet fuel. Acta Psychiat Scand 60:39-49 (1979). (29) Langman JM. Xylene: its toxicity

  4. Comparative life cycle analysis of cement made with coal vs hazardous waste as fuel

    International Nuclear Information System (INIS)

    Kelly, K.E.; Beeh, J.

    1994-01-01

    The purpose of this life cycle analysis (LCA) is to compare the life cycle of cement made with coal, the standard fuel used in a cement kiln, versus cement made with hazardous waste-derived fuels. The intent of the study is to determine whether the use of hazardous waste as a fuel in the production of cement could result in an increase in detrimental effects to either health or environment. Those evaluated for potential adverse effect include cement kiln workers, waste transporters, and consumers using the final product for private use. The LCA stages included all the processes involved with cement, including raw materials acquisition, transportation, manufacturing, packaging, distribution, use, recycling, and disposal. The overall conclusions of the LCA are that use of waste fuels instead of coal to make cement: (1) does not increase, and may reduce, the concentration of contaminants in the cement product due to the reduction or elimination of the use of coal; (2) reduces or eliminates use of non-renewable fossil fuels, such as coal, as well as the environmental damage and impacts associated with coal mining; (3) provides a more environmentally beneficial means of destroying many types of wastes than alternative treatment methods, including incineration, thus decreasing the need for waste treatment facilities and capacity; (4) decreases overall emissions during transportation but may increase the overall consequences of accidents or spills; (5) results in cement product which may be packaged, transported, distributed and used in the same manner as cement product made with coal; (6) lowers the cost of cement production; and (7) overall appears to result in less health and environmental impacts

  5. Moderate temperature gas purification system: application to high calorific coal derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    M. Kobayashi; H. Shirai; M. Nunokawa [Central Research Institute of Electric Power Industry (CRIEPI), Kanagawa (Japan)

    2005-07-01

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high temperature gas purification system is always subjected to the carbon deposition and slippage of contaminant of high vapor pressure. It was suggested that moderate temperature operation of the gas purification system is applied to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. To establish the moderate temperature gas purification system, the chemical-removal processes where the reaction rate is predominant to the performance of contaminant removal should be evaluated. Performance of the removal processes for halides and sulfur compounds were experimentally evaluated. The halide removal process with sodium based sorbent had potential good performance at around 300{sup o}C. The sulfur removal process was also applicable to the temperature range, although the improvement of the sulfidation reaction rate is considered to be essential. 11 refs., 8 figs., 1 tab.

  6. Immunotoxicity of jet fuel. Final report, 1 October 1994-31 October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D.T.

    1995-10-31

    During our preliminary year of experimentation we have made an initial examination Off the immunotoxicological effects of JP-8 jet fuel exposure. Inbred C57BL6 mice were exposed to varying concentrations (either 500, 1000 or 2500 mg/m3) of aerosolized JP-8 jet fuel for a period of 7 days with an exposure period of 1 hour per day. Animal exposure was performed via nose-only presentation while the animals were held in individual subject loading tubes. The tubes were nose cone fitted to receiving adapters that originated from a common anodized aluminum exposure chamber. Nose only exposure was utilized to minimize ingestion of jet fuel during self grooming. Animals were rotated on a daily basis through the 12 adapter positions on the exposure chamber. This rotation was done to minimize proximity to the jet fuel source as a variable in exposure concentration or composition. Exposure concentration was determined by a seven stage --cascade impactor, and were measured after each exposure (1,2). 24 hours after the last exposure the animals were sacrificed and examined for changes in immune system composition and function. The major immune system organ systems (i.e., spleen, thymus, lymph nodes, blood and bone marrow) were recovered and examined for changes in organ weight total cell numbers, immune cell components (by differential histochemical staining).

  7. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokun [Univ. of Nevada, Reno, NV (United States); Li, Teng [Washington State Univ., Pullman, WA (United States); Tang, Kan [Washington State Univ., Pullman, WA (United States); Zhou, Xinpei [Univ. of Nevada, Reno, NV (United States); Lu, Mi [Univ. of Nevada, Reno, NV (United States); Ounkham, Whalmany L. [Univ. of Nevada, Reno, NV (United States); Spain, Stephen M. [Univ. of Nevada, Reno, NV (United States); Frost, Brian J. [Univ. of Nevada, Reno, NV (United States); Lin, Hongfei [Washington State Univ., Pullman, WA (United States)

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reaction mechanism is discussed.

  8. Fundamental Investigation of Jet Fuel Spray and Ignition Process in an Optically Accessible Piston Engine

    Science.gov (United States)

    2015-01-16

    pressures up to 5 MPa using a single-hole common-rail diesel injector with high-speed imaging. The authors found that for the initial period during the...total nozzle flow area or decreasing the injection pressure increases the ramp-up period. This type of injector operates by using the fuel injection...design of Almy engines. Tests were perf01med using #2 diesel fuel, jet fuel (JP8), and a hydroprocessed renewable jet fuel (HRJ). Ambient the1modynamic

  9. Complete biocycle for solar energy conversion, storage, fuel and power generation, and coal conservation for future use

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1993-01-01

    A complete carbon biocycle has been described, starting from coal in in situ condition in coal seams underground. Various steps involved are: (i) Biogasification of coal to methane, using a consortia of bacteria, has been reported. A group of bacteria degrades complex structure of coal to simpler structure. This simpler structure of coal, is then converted to methane by methanogens; (ii) Biophotolysis of methane and associated biodegradation, results in products, such as hydrogen and oxygen for use in fuel cells for power generation; (iii) Bioconversion of products so obtained is carried out to produce methanol or methane that could be used as fuel or recycled; (iv) In complete biocycle some methane is converted to biomass. In order to replace this methane, coal is converted to methane using group of bacteria, only to the extent methane has been converted to biomass; (v) The biomass so produced could be dumped underground from where coal has been gasified. Alternatively it could be burnt as fuel or else used as substitute of protein in animal food. Detailed concept of proposed technology for: (a) an alternative to conventional coal mining, (b) generation of power using products of bioconversion in fuel cell, and (c) conversation of solar energy for generation of alternative source of fuel and power, has been discussed. Possibility of developing a biofuel cell for conversion of solar energy through bioelectrochemical route has been suggested. (author). 48 refs., 3 figs

  10. Seca Coal-Based Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Alinger

    2008-05-31

    This report summarizes the progress made during the August 1, 2006 - May 31, 2008 award period under Cooperative Agreement DE-FC26-05NT42614 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled 'SECA Coal Based Systems'. The initial overall objective of this program was to design, develop, and demonstrate multi-MW integrated gasification fuel cell (IGFC) power plants with >50% overall efficiency from coal (HHV) to AC power. The focus of the program was to develop low-cost, high performance, modular solid oxide fuel cell (SOFC) technology to support coal gas IGFC power systems. After a detailed GE internal review of the SOFC technology, the program was de-scoped at GE's request. The primary objective of this program was then focused on developing a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). There were two initial major objectives in this program. These were: (1) Develop and optimize a design of a >100 MWe integrated gasification fuel cell (IGFC) power plant; (2) Resolve identified barrier issues concerning the long-term economic performance of SOFC. The program focused on designing and cost estimating the IGFC system and resolving technical and economic barrier issues relating to SOFC. In doing so, manufacturing options for SOFC cells were evaluated, options for constructing stacks based upon various cell configurations identified, and key performance characteristics were identified. Key factors affecting SOFC performance degradation for cells in contact with metallic interconnects were be studied and a fundamental understanding of associated mechanisms was developed using a fixed materials set. Experiments and modeling were carried out to identify key processes/steps affecting cell performance degradation under SOFC operating conditions. Interfacial microstructural and elemental changes were characterized, and their relationships to observed

  11. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    Science.gov (United States)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  12. Assessment of the external costs of the coal fuel cycle and the wind energy cycle in Spain

    International Nuclear Information System (INIS)

    Linares, P.; Montes, J.; Saez, R.M.

    1995-09-01

    This study is part of the ExternE Project, a joint effort of the European Commission and the US Dept. of Energy to assess the externalities of different fuel cycles, and quantify them in monetary terms, as kWh price adders. For Spain, this assessment has been carried out for a coal plant hypothetically sited in Valdecaballeros, in Southwestern Spain, and for an existing farm in Cabo Villano, in the Northwestern corner. In this first stage, only environmental externalities have been assessed. The first section contains a description of the methodology used in the European project, based mostly on a damage function approach, and its adaptation to Spanish conditions. In the last section, this methodology has been applied to the fuel cycles mentioned. The impacts assessed have been, for the coal fuel cycle, health effects, agricultural and forest production losses, and global warming. For wind energy, the main impacts considered have been noise, loss of visual amenity, accidents and global warning. The results obtained can only be considered as underestimates, as there are still impacts that have not been assessed or quantified, specially for the coal fuel cycle. Thus, further research is needed for a complete assessment

  13. Studies of jet fuel additives using the quartz crystal microbalance and pressure monitoring at 140 C

    Energy Technology Data Exchange (ETDEWEB)

    Zabarnick, S.; Grinstead, R.R. [Univ. of Dayton Research Institute, OH (United States)

    1995-05-01

    The quartz crystal microbalance (QCM) and pressure monitoring are used for the evaluation of jet fuel additives for the improvement of jet fuel thermal stability. The mechanisms of additive behavior are determined by measuring the time dependent deposition with the QCM and oxidation by pressure measurements. Studies at various additive concentrations permits the determination of optimum additive concentrations. Additive packages made of mixtures of antioxidants, detergent/dispersants, and metal deactivators are shown to yield good improvements in thermal stability over a wide range of jet fuel types.

  14. Modeling of fuel vapor jet eruption induced by local droplet heating

    KAUST Repository

    Sim, Jaeheon

    2014-01-10

    The evaporation of a droplet by non-uniform heating is numerically investigated in order to understand the mechanism of the fuel-vapor jet eruption observed in the flame spread of a droplet array under microgravity condition. The phenomenon was believed to be mainly responsible for the enhanced flame spread rate through a droplet cloud at microgravity conditions. A modified Eulerian-Lagrangian method with a local phase change model is utilized to describe the interfacial dynamics between liquid droplet and surrounding air. It is found that the localized heating creates a temperature gradient along the droplet surface, induces the corresponding surface tension gradient, and thus develops an inner flow circulation commonly referred to as the Marangoni convection. Furthermore, the effect also produces a strong shear flow around the droplet surface, thereby pushing the fuel vapor toward the wake region of the droplet to form a vapor jet eruption. A parametric study clearly demonstrated that at realistic droplet combustion conditions the Marangoni effect is indeed responsible for the observed phenomena, in contrast to the results based on constant surface tension approximation

  15. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  16. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  17. Production of jet fuel using heavy crude oil; Producao de combustiveis de aviacao a partir de petroleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Om, Neyda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Cavado, Alberto; Reyes, Yordanka [Centro de Pesquisas do Petroleo, Cidade de Havana (Cuba); Dominguez, Zulema [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    The production of heavy crude oils increased in the last years in the world. Crude oils with high density, viscosity, acidity and sulfur, nitrogen, metals and asphaltenes contents, by the others hand, low stability and low product quality. The challenger of many refiners is find solutions to refine the heavy crude oils, and produce fuels with certify quality, such as Jet Fuel. The principal aviation technique on the world work with gas turbines engines feted for jet fuel (JET A1). The quality specifications of this fuel are establish by International Norms: ASTM-1655, DEF STAN 91-91-3 (DERD 2494) and joint Fuelling System Check List. The world technologies to obtain jet fuel from mixtures of heavy crude oil with middle crude oils are: Atmospheric distillation, with a posterior hydrogenation and finally the additivation. Studies carried out have demonstrates that the Cubans heavy crude oils is characterized for having API less than 10, raised viscosity, high sulfur content (>6%) and asphaltenes content (more than 15%). These properties provide to its derivatives of low quality. This paper define the characteristic of Cuban heavy crude oil, the technology and operational conditions to produce jet fuel (Jet A1) and the quality of fuel produced. (author)

  18. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  19. The effect of CO{sub 2} dissolved in a diesel fuel on the jet flame characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Jin; Huang Zhen; Qiao Xinqi; Hou Yuchun [Shanghai Jiao Tong University, Shanghai (China). Research Institute of Internal Combustion Engine

    2008-03-15

    This paper is concerned with an experimental study of the jet diffusion flame characteristics of fuel containing CO{sub 2}. Using diesel fuel containing dissolved CO{sub 2} gas, experiments were performed under atmospheric conditions with a diesel hole-type nozzle of 0.19 mm orifice diameter at constant injection pressure. In this study, four different CO{sub 2} mass fraction in diesel fuel such as 3.13%, 7.18%, 12.33% and 17.82% were used to study the effect of CO{sub 2} concentration on the jet flame characteristics. Jet flame characteristics were measured by direct photography, meanwhile the image colorimetry is used to assess the qualitative features of jet flame temperature. Experimental results show that the CO{sub 2} gas dilution effect and the atomization effect have a great influence on the flame structure and average temperature. When the injection pressure of diesel fuel increased from 4 MPa to 6 MPa, the low temperature flame length increased from 18.4 cm to 21.7 cm and the full temperature flame length decreased from 147.6 cm to 134.7 cm. With the increase of CO{sub 2} gas dissolved in the diesel fuel, the jet flame full length decreased for the jet atomization being improved greatly meanwhile the low temperature flame length increased for the CO{sub 2} gas dilution effect; with the increase of CO{sub 2} gas dissolved in the diesel fuel, the average temperature of flame increases firstly and then falls. Experimental results validate that higher injection pressure will improve jet atomization and then increased the flame average temperature. 27 refs., 13 figs.

  20. Effects of consumer subsidy on household fuel switching from coal to cleaner fuels: A case study for anthracites in Korea

    International Nuclear Information System (INIS)

    Park, Hojeong; Kwon, Hyucksoo

    2011-01-01

    The Korean coal industry is in a transition under low carbon policy through the steady reduction of coal production. Since consumer subsidy for the consumption of anthracites briquette in low-income households caused a distortion in domestic coal market, the so-called coupon program will be the first target in energy reform policy in order to induce fuel switching from anthracites to alternative clean energy. This paper tries to identify various factors that influence households' fuel switching decision. Disutility from briquette consumption is also considered as an important factor. Using the 2007 census data on briquette-consuming households, it is found that the coupon program provides an adverse effect to switching fuels to clean energy while the disutility of briquettes is positively associated with the probability of fuel switching. However, the empirical finding suggests that the policy alone attempting to remove coupon program may fail to switch fuels unless the cost of boiler changes is substantially reduced through the provision of accessible networks to alternative energy sources. It indicates that reform policy for consumer subsidy must be understood in line with more comprehensive regional energy plans to resolve energy poverty issue. - Research highlights: → Various factors are identified for low income households' fuel switching from coal to clean energy. → Coupon program and accessibility to alternative energy sources are considered; Result shows that accessible network to alternative clean energy sources is essential for low income group. → More comprehensive regional energy plans are required to resolve energy poverty issue.

  1. Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells.

    Science.gov (United States)

    Yue, Xiangling; Arenillas, Ana; Irvine, John T S

    2016-08-15

    Hybrid direct carbon/coal fuel cells (HDCFCs) utilise an anode based upon a molten carbonate salt with an oxide conducting solid electrolyte for direct carbon/coal conversion. They can be fuelled by a wide range of carbon sources, and offer higher potential chemical to electrical energy conversion efficiency and have the potential to decrease CO2 emissions compared to coal-fired power plants. In this study, the application of (La, Sr)(Cr, Mn)O3 (LSCM) and (Gd, Ce)O2 (GDC) oxide anodes was explored in a HDCFC system running with two different carbon fuels, an organic xerogel and a raw bituminous coal. The electrochemical performance of the HDCFC based on a 1-2 mm thick 8 mol% yttria stabilised zirconia (YSZ) electrolyte and the GDC-LSCM anode fabricated by wet impregnation procedures was characterized and discussed. The infiltrated oxide anode showed a significantly higher performance than the conventional Ni-YSZ anode, without suffering from impurity formation under HDCFC operation conditions. Total polarisation resistance (Rp) reached 0.8-0.9 Ω cm(2) from DCFC with an oxide anode on xerogel and bituminous coal at 750 °C, with open circuit voltage (OCV) values in the range 1.1-1.2 V on both carbon forms. These indicated the potential application of LSCM-GDC oxide anode in HDCFCs. The chemical compatibility of LSCM/GDC with carbon/carbonate investigation revealed the emergence of an A2BO4 type oxide in place of an ABO3 perovskite structure in the LSCM in a reducing environment, due to Li attack as a result of intimate contact between the LSCM and Li2CO3, with GDC being stable under identical conditions. Such reaction between LSCM and Li2CO3 was not observed on a LSCM-YSZ pellet treated with Li-K carbonate in 5% H2/Ar at 700 °C, nor on a GDC-LSCM anode after HDCFC operation. The HDCFC durability tests of GDC-LSCM oxide on a xerogel and on raw bituminous coal were performed under potentiostatic operation at 0.7 V at 750 °C. The degradation mechanisms were

  2. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  3. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    Science.gov (United States)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  4. Rapid fuel switching from coal to natural gas through effective carbon pricing

    Science.gov (United States)

    Wilson, I. A. Grant; Staffell, Iain

    2018-05-01

    Great Britain's overall carbon emissions fell by 6% in 2016, due to cleaner electricity production. This was not due to a surge in low-carbon nuclear or renewable sources; instead it was the much-overlooked impact of fuel switching from coal to natural gas generation. This Perspective considers the enabling conditions in Great Britain and the potential for rapid fuel switching in other coal-reliant countries. We find that spare generation and fuel supply-chain capacity must already exist for fuel switching to deliver rapid carbon savings, and to avoid further high-carbon infrastructure lock-in. More important is the political will to alter the marketplace and incentivize this switch, for example, through a stable and strong carbon price. With the right incentives, fuel switching in the power sector could rapidly achieve on the order of 1 GtCO2 saving per year worldwide (3% of global emissions), buying precious time to slow the growth in cumulative carbon emissions.

  5. A global equilibrium analysis of co-firing coal and solid recovered fuel

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming

    Global equilibrium calculations have been performed to study the behavior of ash forming species in cocombustion of a bituminous coal and a solid recovered fuel (SRF). It revealed that co-combustion of coal and 25% SRF (weight basis) could significantly reduce the formation of NaCl (g) and KCl (g...

  6. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  7. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O 2 concentrations were used, spanning 10–21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH ∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH ∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH ∗ with the increase of ambient temperature and O 2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O 2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O 2 concentration conditions by

  8. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  9. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    Science.gov (United States)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  10. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  11. Automated cost modeling for coal combustion systems

    International Nuclear Information System (INIS)

    Rowe, R.M.; Anast, K.R.

    1991-01-01

    This paper reports on cost information developed at AMAX R and D Center for coal-water slurry production implemented in an automated spreadsheet (Lotus 123) for personal computer use. The spreadsheet format allows the user toe valuate impacts of various process options, coal feedstock characteristics, fuel characteristics, plant location sites, and plant sizes on fuel cost. Model flexibility reduces time and labor required to determine fuel costs and provides a basis to compare fuels manufactured by different processes. The model input includes coal characteristics, plant flowsheet definition, plant size, and market location. Based on these inputs, selected unit operations are chosen for coal processing

  12. Ways of conserving fuel-energy resources in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Voloshchenko, N.I.; Nabokov, E.P.

    1981-01-01

    A discussion is made of the work undertaken by enterprises and organizations of the coal industry to conserve fuel-energy resources in the tenth Five-Year Plan. An examination is made of the basic organizational-technical measures that have been implemented in this sector for conserving thermal and electrical energy. A presentation is made of the results obtained from the introduction of advanced technological processes and equipment aimed at increasing productivity and reducing operational losses of coal.

  13. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  14. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    Energi, Haesselbyverket, has now invested in equipment for burning pellets instead of coal. In Linkoeping wastes of rubber are mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1997 was 370 SEK/ton or 10 per cent higher than in 1996. For the world, the average import price fell to 46 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1998 as a result of the crisis in Asia. All Swedish plants meet their emission limits of dust, SO 2 and NO x given by county administrations or concession boards. The co-generation plants have all some sort of SO 2 -removal system. Mostly used is the wet-dry method. The biggest co-generation plant, Vaesteraas, has newly invested in a ca talytic NO x -cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO x -burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO x -duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 800 tons in 1997, a minor increase compared to 1996. The coal demand in the OECD-countries has increased about 1.7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong demand for electrical power in the Asian countries and the developing countries. However, greater efforts to minimize the

  15. CFD analysis of rewetting of a single sector AHWR fuel cluster with changing jet directions

    Energy Technology Data Exchange (ETDEWEB)

    Debbarma, Ajoy, E-mail: ajoy@debbarma.me; Pandey, Krishna Murari, E-mail: kmpandey2001@yahoo.com

    2016-11-15

    Highlights: • CFD analysis of three modes of jet impingement in AHWR fuel cluster is analyzed. • Single sector (9 rod bundle) of AHWR has been analyzed with ANSYS 14.0-CFX. • It is observed that the wetting delay gets reduced significantly by proposed jet models. - Abstract: The transient numerical analysis of the rewetting of Advanced Heavy Water Reactor (AHWR) fuel assembly with jet impingement has been conducted. The present study is concerned with three different types of jet impingement directions, Model: M is the existing design of AHWR and other two Model: X and X2 was introduced in the study and compared with an existing model of AHWR. The present investigation aims to study thermo-rewetting behavior with respect to the coolant jet impingement directions. The computational results are validated with available experimental data. It is observed that the wetting delay has been reduced significantly with the proposed jet models and the jet direction has been an effective parameter in increasing the rewetting performance.

  16. Topical absorption and toxicity studies of jet fuel hydrocarbons in skin

    Science.gov (United States)

    Muhammad, Faqir

    Kerosene-based fuels have been used for many decades. Over 2 million military and civilian personnel each year are occupationally exposed to various jet fuel mixtures. Dermatitis is one of the major health concerns associated with these exposures. In the past, separate absorption and toxicity studies have been conducted to find the etiology of such skin disorders. There was a need for integrated absorption and toxicity studies to define the causative constituents of jet fuel responsible for skin irritation. The focus of this thesis was to study the percutaneous absorption and to identify the hydrocarbons (HC) causing irritation in jet fuels so that preventive measures could be taken in the future. The initial study was conducted to understand the possible mechanism for additive interactions on hydrocarbon absorption/disposition in silastic, porcine skin and isolated perfused porcine skin flap (IPPSF) models. The influence of JP-8 (100) additives (MDA, BHT, 8Q405) on the dermal kinetics of 14C-naphthalene and 14C/3H-dodecane as markers of HC absorption was evaluated. This study indicated that individual and combination of additives influenced marker disposition in different membranes. MDA was a significant suppressor while BHT was a significant enhancer of naphthalene absorption in IPPSF. The 8Q405 significantly reduced naphthalene content in dosed silastic and skin indicating a direct interaction between additive and marker HC. Similarly, the individual MDA and BHT significantly retained naphthalene in the stratum corneum of porcine skin, but the combination of both of these additives statistically decreased the marker retention in the stratum corneum suggesting a potential biological interaction. This study concluded that all components of a chemical mixture should be assessed since the effects of single components administered alone or as pairs may be confounded when all are present in the complete mixture. However, this study indicated that the marker HC

  17. New developments in JET neutron, alpha particle and fuel mixture diagnostics with potential relevance to ITER

    International Nuclear Information System (INIS)

    Murari, A.; Bertalot, L.; Angelone, M.; Pillon, M.; Ericsson, G.; Conroy, S.; Kaellne, J.; Kiptily, V.; Popovichev, S.; Adams, J.M.; Stork, D.; Afanasyiev, V.; Mironov, M.; Bonheure, G.

    2005-01-01

    Some recent JET campaigns, with the introduction of trace amount (n T /n D 4 He, provided unique opportunities to test new diagnostic approaches and technologies for the detection of neutrons, alpha particles and fuel mixture. With regard to neutron detection, the recent activity covered all the most essential aspects: calibration and cross validation of the diagnostics, measurement of the spatial distribution of the neutrons, particle transport and finally neutron spectrometry. The first tests of some new neutron detection technologies were also undertaken successfully during the TTE campaign. To improve JET diagnostic capability in the field of alpha particles, a strong development program was devoted to the measurement of their slowing down and imaging with gamma ray spectroscopy. A new approach for the fusion community to measure the fast ion losses, based on the activation technique, was also successfully attempted for the first time on JET. A careful assessment of the NPA potential to determine the fuel mixture and the particle transport coefficients is under way. (author)

  18. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  19. Performance effects of coal-derived contaminants on the carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A. [Energy Research Corp., Danbury, CT (United States); Wilemski, G. [Physical Sciences, Inc., Andover, MA (United States)

    1993-05-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980`s when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH{sub 3}, H{sub 2}S [COS], HCl, AsH{sub 3}[As{sub 2}(v)], Zn(v), Pb(v), Cd(v), H{sub 2} Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  20. Performance effects of coal-derived contaminants on the carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A. (Energy Research Corp., Danbury, CT (United States)); Wilemski, G. (Physical Sciences, Inc., Andover, MA (United States))

    1993-01-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980's when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH[sub 3], H[sub 2]S [COS], HCl, AsH[sub 3][As[sub 2](v)], Zn(v), Pb(v), Cd(v), H[sub 2] Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  1. Study on the quench behavior of molten fuel material jet into coolant

    International Nuclear Information System (INIS)

    Abe, Yutaka; Kizu, Tetsuya; Arai, Takahiro; Nariai, Hideki; Chitose, Keiko; Koyama, Kazuya

    2004-01-01

    In a core disruptive accident (CDA) of a Fast Breeder Reactor, the post accident heat removal (PAHR) is crucial for the accident mitigation. The molten core material should be solidified in the sodium coolant in the reactor vessel. In the present experiment, molten material jet is injected into water to experimentally obtain fragments and the visualized information of the fragmentation. The distributed particle behavior of the molten material jet is observed with high-speed video camera. The distributions of the fragmented droplet diameter from the molten material jet are evaluated by correcting the solidified particles. The experimental results of the mean fragmented droplet diameter are compared with the existing theories. Consequently, the fragmented droplet diameter is close to the value estimated based on the Kelvin-Helmholtz instability. Once the particle diameter of the fragmented molten material could be known from a hydrodynamic model, it becomes possible to estimate the mass ratio of the molten particle to the total injected mass by combining an appropriate heat transfer model. The heat transfer model used in the present study is composed of the fragmentation model based on the Kelvin-Helmholtz instability. The mass ratio of the molten fragment to total mass of the melted mixed oxide fuel in sodium coolant estimated in the present study is very small. The result means that most of the molten mixed oxide fuel material injected into the sodium coolant can be cooled down under the solidified temperature, that is so called quenched, if the amount of the coolant is sufficient. (author)

  2. Committing to coal and gas: Long-term contracts, regulation, and fuel switching in power generation

    Science.gov (United States)

    Rice, Michael

    Fuel switching in the electricity sector has important economic and environmental consequences. In the United States, the increased supply of gas during the last decade has led to substantial switching in the short term. Fuel switching is constrained, however, by the existing infrastructure. The power generation infrastructure, in turn, represents commitments to specific sources of energy over the long term. This dissertation explores fuel contracts as the link between short-term price response and long-term plant investments. Contracting choices enable power plant investments that are relationship-specific, often regulated, and face uncertainty. Many power plants are subject to both hold-up in investment and cost-of-service regulation. I find that capital bias is robust when considering either irreversibility or hold-up due to the uncertain arrival of an outside option. For sunk capital, the rental rate is inappropriate for determining capital bias. Instead, capital bias depends on the regulated rate of return, discount rate, and depreciation schedule. If policies such as emissions regulations increase fuel-switching flexibility, this can lead to capital bias. Cost-of-service regulation can shorten the duration of a long-term contract. From the firm's perspective, the existing literature provides limited guidance when bargaining and writing contracts for fuel procurement. I develop a stochastic programming framework to optimize long-term contracting decisions under both endogenous and exogenous sources of hold-up risk. These typically include policy changes, price shocks, availability of fuel, and volatility in derived demand. For price risks, the optimal contract duration is the moment when the expected benefits of the contract are just outweighed by the expected opportunity costs of remaining in the contract. I prove that imposing early renegotiation costs decreases contract duration. Finally, I provide an empirical approach to show how coal contracts can limit

  3. Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels

    International Nuclear Information System (INIS)

    Wachter, E.A.; Gammage, R.B.; Haas, J.W. III; Wilson, D.L.; DePriest, J.C.; Wade, J.; Ahmad, N.; Sibtain, F.; Zahid Raza, M.

    1992-10-01

    A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m 3 internal volume, air exchange rate 14 h -1 was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO 2 , and NO x . Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion

  4. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor

    International Nuclear Information System (INIS)

    Riaza, J.; Alvarez, L.; Gil, M.V.; Pevida, C.; Pis, J.J.; Rubiera, F.

    2011-01-01

    The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O 2 -79%CO 2 , 30%O 2 -70% O 2 and 35%O 2 -65%CO 2 ) were compared with those attained in air. The replacement of CO 2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O 2 -79%CO 2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O 2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected. -- Highlights: → The ignition temperature and the burnout of two thermal coals under oxy-fuel combustion conditions were determined. → The effect of the wet recirculation of flue gas on combustion behaviour was evaluated. → Addition of steam caused a worsening of the ignition temperature and coal burnout.

  5. Developing fossil fuel based technologies

    International Nuclear Information System (INIS)

    Manzoori, A.R.; Lindner, E.R.

    1991-01-01

    Some of the undesirable effects of burning fossil fuels in the conventional power generating systems have resulted in increasing demand for alternative technologies for power generation. This paper describes a number of new technologies and their potential to reduce the level of atmospheric emissions associated with coal based power generation, such as atmospheric and pressurized fluid bed combustion systems and fuel cells. The status of their development is given and their efficiency is compared with that of conventional pc fired power plants. 1 tab., 7 figs

  6. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    Science.gov (United States)

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  7. Mathematical model of an indirect action fuel flow controller for aircraft jet engines

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with a fuel mass flow rate controller with indirect action for aircraft jet engines. The author has identified fuel controller's main parts and its operation mode, then, based on these observations, one has determined motion equations of each main part, which have built system's non-linear mathematical model. In order to realize a better study this model was linearised (using the finite differences method) and then adimensionalized. Based on this new form of the mathematical model, after applying Laplace transformation, the embedded system (controller+engine) was described by the block diagram with transfer functions. Some Simulink-Matlab simulations were performed, concerning system's time behavior for step input, which lead to some useful conclusions and extension possibilities.

  8. Uranium content of coal ashes from Southern Brazil coal fueled power stations, by the fission track registration technique

    International Nuclear Information System (INIS)

    Morales, R.K.

    1981-01-01

    The feasibility of the application of the fission track registration technique for the determination of uranium in coal ashes was shown. The wet method was employed using as detector the Makrofol KG=10 μm, manufactured by Bayer. The coal ashes were originated from coal-fueled power stations localized in Southern Brazil. The results obtained ranged from 10 to 27 mg U/kg. Since the total error variation was from 18,4% to 23,8%, the method used was considered excellent. The determination of the uranium content in coal ashes is of considerable interest in environmental control in power stations, in their vicinity and wherever these ashes are used or stored. The technique used is the work proved to be very appropriate for the purpose aimed at. (Author) [pt

  9. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    Science.gov (United States)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  10. Characteristics of strongly-forced turbulent jets and non-premixed jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarasimhan, K.; Ezekoye, O.A. [University of Texas at Austin, Department of Mechanical Engineering, Austin, TX (United States); Clemens, N.T. [University of Texas at Austin, Department of Aerospace Engineering and Engineering Mechanics, Austin, TX (United States)

    2006-10-15

    Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450-23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have

  11. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; C. Pevida; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2008-09-15

    Oxy-fuel combustion is a GHG abatement technology in which coal is burned using a mixture of oxygen and recycled flue gas, to obtain a rich stream of CO{sub 2} ready for sequestration. An entrained flow reactor was used in this work to study the ignition and burnout of coals and blends with biomass under oxy-fuel conditions. Mixtures of CO{sub 2}/O{sub 2} of different concentrations were used and compared with air as reference. A worsening of the ignition temperature was detected in CO{sub 2}/O{sub 2} mixtures when the oxygen concentration was the same as that of the air. However, at an oxygen concentration of 30% or higher, an improvement in ignition was observed. The blending of biomass clearly improves the ignition properties of coal in air. The burnout of coals and blends with a mixture of 79%CO{sub 2}-21%O{sub 2} is lower than in air, but an improvement is achieved when the oxygen concentration is 30 or 35%. The results of this work indicate that coal burnout can be improved by blending biomass in CO{sub 2}/O{sub 2} mixtures. 26 refs., 7 figs., 1 tab.

  12. Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal

    International Nuclear Information System (INIS)

    Rady, Adam C.; Giddey, Sarbjit; Kulkarni, Aniruddha; Badwal, Sukhvinder P.S.; Bhattacharya, Sankar

    2014-01-01

    Graphical abstract: - Highlights: • Degradation mechanism studied for demineralised coal in a direct carbon fuel cell. • Diffusion limited processes dominate the electrode polarisation losses in pure N 2 . • Major fuel cell performance loss occurred due to loss of carbon/anode contacts. • The anode retained its phase structure with minor other phases formed in operation. - Abstract: The performance of a demineralised and devolatilised coal from the Morwell mine in the Latrobe Valley, Victoria, has been investigated in a direct carbon fuel cell (DCFC) operated at 850 °C. The focus of the investigation has been on understanding degradation issues as a function of time involving a sequence of electrochemical impedance spectroscopy and voltage-current characteristic. Diffusion limited processes dominate the electrode polarisation losses in pure N 2 atmosphere, however, these decrease substantially in the presence of CO 2 as the anode chamber purge gas, due to in situ generation of fuel species by the reaction of CO 2 with carbon. Post-mortem analysis of anode by SEM and XRD revealed only a minor degradation due to its reduction, particle agglomeration as well as the formation of small quantity of new phases. However, major fuel cell performance degradation (increase of ohmic resistive and electrode polarisation losses) occurred due to loss of carbon/anode contacts and a reduction in the electron-conducting pathways as the fuel was consumed. The investigations revealed that the demineralised coal char can be used as a viable fuel for DCFC, however, further developments on anode materials and fuel feed mechanism would be required to achieve long-term sustained performance

  13. Intrinsic bioremediation of jet fuel contamination at George Air Force Base

    International Nuclear Information System (INIS)

    Wilson, J.T.; Sewell, G.W.; Doyle, G.; Miller, R.N.

    1995-01-01

    The rate of intrinsic bioremediation of BTEX compounds in groundwater from a spill of JP-4 jet fuel was estimated by comparing attenuation of the concentrations of the compounds along a flow path. Concentrations of the trimethylbenzenes (TMB) were used to correct for attenuation due to dilution. Analysis of core samples identified the depth interval in the aquifer that was occupied by the groundwater plume. A downhole flowmeter test identified the local hydraulic conductivity of the depth interval occupied by the plume. Time of travel between wells along the flowpath was calculated from the hydraulic gradient and hydraulic conductivity, assuming an effective porosity of 0.3. First-order rate constants were calculated from attenuation (corrected for dilution or dispersion) and the estimated residence time of groundwater between the wells

  14. CCS. Coal's biggest challenge

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ligang [CanmentENERGY, Ottawa, ON (Canada)

    2013-07-01

    Coal, next to oil, is the second most important energy source due to wide distribution and large quantity. Coal is a very economical fuel about $0.50/GJ-$2.50/GJ (NG usually is $6/GJ-$12/GJ. Currently it is $4.03/GJ for July, 2011 delivery). It is the largest fuel source for power generation: 40% world electricity is generated by coal; its shares are about 80% in China and 50% in the U.S. An extensive coal based energy infrastructure has been built up over the years and is in good service.

  15. Occupational exposures during routine activities in coal-fueled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mona J. Bird; David L. MacIntosh; Phillip L. Williams [University of Georgia, Athens, GA (United States). Dept. of Environmental Health Science

    2004-06-15

    Limited information is available on occupational exposures during routine, nonoutage work activities in coal-fueled power plants. This study evaluated occupational exposures to the principal contaminants in the facilities, including respirable dust (coal dust), arsenic, noise, asbestos, and heat stress. The data were collected over a 3-month period, during the summer of 2001, in 5 representative power plants of a large southeastern power-generating company. From 4 of the 5 facilities, 392 air samples and 302 noise samples were collected with approximately 50 respirable coal dust, 32 arsenic, 15 asbestos, and 70 noise samples from each of the 4 plants. One of the previously surveyed facilities was also evaluated for heat stress, and 1 additional coal-fueled power plant was surveyed for a total of 20 personal heat stress samples. Of the nearly 400 air samples collected, only 1 exceeded the allowable occupational exposure value. For the noise samples, 55 were equal to or greater than the Occupational Safety and Health Administration (OSHA) 8-hour hearing conservation program level of 85 dBA, and 12 were equal to or greater than the OSHA 8-hour permissible exposure level of 90 dBA. The data concluded that some work sites were above the heat stress ceiling values recommended by the National Institute for Occupational Safety and Health (NIOSH). Four of the 20 employees personally monitored exceeded the recommended limits for heart rate or body core temperature.

  16. Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic Based Super Absorbent Polymers

    Directory of Open Access Journals (Sweden)

    Sheila Devasahayam

    2015-09-01

    Full Text Available With the rising cost of energy and fuel oils, clean coal technologies will continue to play an important role during the transition to a clean energy future. Victorian brown coals have high oxygen and moisture contents and hence low calorific value. This paper presents an alternative non evaporative drying technology for high moisture brown coals based on osmotic dewatering. This involves contacting and mixing brown coal with anionic super absorbent polymers (SAP which are highly crossed linked synthetic co-polymers based on a cross-linked copolymer of acryl amide and potassium acrylate. The paper focuses on evaluating the water absorption potential of SAP in contact with 61% moisture Loy Yang brown coal, under varying SAP dosages for different contact times and conditions. The amount of water present in Loy Yang coal was reduced by approximately 57% during four hours of SAP contact. The extent of SAP brown coal drying is directly proportional to the SAP/coal weight ratio. It is observed that moisture content of fine brown coal can readily be reduced from about 59% to 38% in four hours at a 20% SAP/coal ratio.

  17. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1993--March 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Sharifi, R.; Shepard, J.F.; Scaroni, A.W.; Hogg, R.; Chander, S.; Cho, H.; Ityokumbul, M.T.; Klima, M.S. [and others

    1994-11-30

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. To achieve the objectives of the program, a team of researchers was assembled. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFS) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phases I and II are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

  18. Analytic tests and their relation to jet fuel thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Heneghan, S.P.; Kauffman, R.E. [Univ. of Dayton Research Institute, OH (United States)

    1995-05-01

    The evaluation of jet fuel thermal stability (TS) by simple analytic procedures has long been a goal of fuels chemists. The reason is obvious: if the analytic chemist can determine which types of material cause his test to respond, the refiners will know which materials to remove to improve stability. Complicating this quest is the lack of an acceptable quantitative TS test with which to compare any analytic procedures. To circumvent this problem, we recently compiled the results of TS tests for 12 fuels using six separate test procedures. The results covering a range of flow and temperature conditions show that TS is not as dependent on test conditions as previously thought. Also, comparing the results from these tests with several analytic procedures shows that either a measure of the number of phenols or the total sulfur present in jet fuels is strongly indicative of the TS. The phenols have been measured using a cyclic voltammetry technique and the polar material by gas chromatography (atomic emission detection) following a solid phase extraction on silica gel. The polar material has been identified as mainly phenols (by mass spectrometry identification). Measures of the total acid number or peroxide concentration have little correlation with TS.

  19. Estimating externalities of coal fuel cycles. Report No. 3 on the external costs and benefits of fuel cycles: a study by the US Department of Energy and the Commission of the European Communities

    International Nuclear Information System (INIS)

    1994-09-01

    The report, one of a series of eight reports, is primarily about a methodology for estimating coal fuel cycle externalities. The study considered the stages of a typical coal fuel cycle and identified the more important ones: coal mining coal transportation, and electric power generation. Chapter headings are: introduction; alternative contexts for the study; prior studies of damages and benefits; methods development; organization, interpretation and use of results; reference technology and sites; priority impact-pathways for the coal fuel cycle; estimating the externalities of coal mining; estimating coal transportation externalities; estimating-the externalities of electric power generation; tabulation of numerical results; and fundings, conclusions, and recommendations. The study demonstrated the application of the damage function approach to estimating the externalities of coal fuel cycles. A number of analytical methods were applied within that framework to several impact-pathways. 580 refs., 40 figs., 130 tabs., 3 apps

  20. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  1. Fossil fuels. Commercializing clean coal technologies

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Kirk, Roy J.; Clark, Marcus R. Jr.; Greene, Richard M.; Buncher, Carole S.; Kleigleng, Robert G.; Imbrogno, Frank W.

    1989-03-01

    Coal, an abundant domestic energy source, provides 25 percent of the nation's energy needs, but its use contributes to various types of pollution, including acid rain. The Department of Energy (DOE) has a Clean Coal Technology (CCT) program whose goal is to expand the use of coal in an environmentally safe manner by contributing to the cost of projects demonstrating the commercial applications of emerging clean coal technologies. Concerned about the implementation of the CCT program, the Chairman, Subcommittee on Energy and Power, House Committee on Energy and Commerce, requested GAO to report on (1) DOE's process of negotiating cooperative agreements with project sponsors, (2) changes DOE has made to the program, (3) the status of funded projects, and (4) the interrelationship between acid rain control proposals and the potential commercialization of clean coal technologies. Under the CCT program, DOE funds up to 50 percent of the cost of financing projects that demonstrate commercial applications of emerging clean coal technologies. DOE has conducted two solicitations for demonstration project proposals and is planning a third solicitation by May 1989. The Congress has appropriated $400 million for the first solicitation, or round one of the program, $575 million for round two, and $575 million for round three, for a total of $1.55 billion. For the round-one solicitation, DOE received 51 proposals from project sponsors. As of December 31, 1988, DOE had funded nine projects and was in the process of negotiating cooperative financial assistance agreements with sponsors of four projects. In September 1988, DOE selected 16 round-two projects from 55 proposals submitted and began the process of negotiating cooperative agreements with the project sponsors. The Congress has debated the need to reduce acid rain-causing emissions associated with fossil fuel combustion. The 100th Congress considered but did not enact about 20 acid rain control bills. On February 9, 1989

  2. Coal pyrolysis and char burnout under conventional and oxy-fuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Makhadmeh, L.; Maier, J.; Scheffknecht, G. [Stuttgart Univ. (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

    2009-07-01

    Coal utilization processes such as combustion or gasification generally involve several steps i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases, and heterogeneous reactions of the solid (char) with the reactant gases. Most of the reported work about coal pyrolysis and char burnout were performed at low temperatures under environmental conditions related to the air firing process with single particle tests. In this work, coal combustion under oxy-fuel conditions is investigated by studying coal pyrolysis and char combustion separately in practical scales, with the emphasis on improving the understanding of the effect of a CO{sub 2}-rich gas environment on coal pyrolysis and char burnout. Two coals, Klein Kopje a medium volatile bituminous coal and a low-rank coal, Lausitz coal were used. Coal pyrolysis in CO{sub 2} and N{sub 2} environments were performed for both coals at different temperatures in an entrained flow reactor. Overall mass release, pyrolysis gas concentrations, and char characterization were performed. For char characterization ultimate analysis, particle size, and BET surface area were measured. Chars for both coals were collected at 1150 C in both CO{sub 2} and N{sub 2} environments. Char combustion was performed in a once-through 20 kW test facility in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} atmospheres. Besides coal quality, oxygen partial pressure was chosen as a variable to study the effect of the gas environment on char burnout. In general, it is found that the CO{sub 2} environment and coal rank have a significant effect on coal pyrolysis and char burnout. (orig.)

  3. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    International Nuclear Information System (INIS)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-01-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO 2 , H 2 O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame. - Highlights: • A Monte Carlo–based nongray radiation solver is developed to study effects of radiation. • Radiation alters the lift-off height, and the distribution of temperature andspecies for the target flame. • Radiation alters the heat transfer mechanism of medium

  4. Household fuels, low birth weight, and neonatal death in India: the separate impacts of biomass, kerosene, and coal.

    Science.gov (United States)

    Epstein, M B; Bates, M N; Arora, N K; Balakrishnan, K; Jack, D W; Smith, K R

    2013-08-01

    We examined the impact of maternal use of different household cooking fuels in India on low birth weight (LBWfuels for cooking - biomass, coal, and kerosene - using low-pollution fuels (gas and biogas) as the comparison "control" group. Taking socioeconomic and child-specific factors into account, we employed logistic regression to examine the impact of fuel use on fetal and infant health. The results indicate that household use of high-pollution fuels is significantly associated with increased odds of LBW and neonatal death. Compared to households using cleaner fuels (in which the mean birth weight is 2901g), the primary use of coal, kerosene, and biomass fuels is associated with significant decreases in mean birth weight (of -110g for coal, -107g for kerosene, and -78g for biomass). Kerosene and biomass fuel use are also associated with increased risk of LBW (pfuels. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Low-temperature carbonization of bituminous coal for the production of solid, liquid, and gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    1942-01-01

    Properties and uses of low-temperature coke for producing ferrosilicon, CaC/sub 2/ generator gas and water gas, as a fuel for boilers and household use and as a diluent for coking coal, and the properties and uses of low-temperature tar, gasoline, gas, and liquefied gas are described. By using a circulating gas, it is possible to obtain in low-temperature carbonization of bituminous coal a fuel oil for the navy. Aging-test data of such an oil are given. Several plants in Upper Silesia, using the Lurgi circulation process are producing a fuel oil that meets specification.

  6. Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS_2/γ-Al_2O_3 catalysts

    International Nuclear Information System (INIS)

    Itthibenchapong, Vorranutch; Srifa, Atthapon; Kaewmeesri, Rungnapa; Kidkhunthod, Pinit; Faungnawakij, Kajornsak

    2017-01-01

    Highlights: • The Ni-MoS_2/γ-Al_2O_3 catalysts synthesized using thiourea solution processing. • The Ni-MoS_2 showed semi-amorphous crystallinity with crystallite size of 5–10 nm. • The Ni K-edge XANES and EXAFS indicated the Ni substitution in MoS_2 structure. • A high yield of jet fuel-like hydrocarbon (>90%) from the palm kernel oil feedstock. • The HDO pathway was highly selective, while the DCO_2 and DCO pathways were minor. - Abstract: In the current study, palm kernel oil was used as a renewable feedstock for production of jet fuel-like hydrocarbons via the deoxygenation over the Ni-MoS_2/γ-Al_2O_3 catalyst. The dominant C12 fatty acid content in palm kernel oil makes it promising for jet fuel application. Synthesized by a liquid processing method with thiourea organosulfur agent, the catalyst revealed MoS_2 structure with low stacking, while Ni substitution in the MoS_2 structure and interaction with the Al_2O_3 support were determined based on the Ni K-edge XANES and EXAFS results. A high hydrodeoxygenation (HDO) activity, which as the major pathway in the deoxygenation, was observed upon application of a H_2 pressure of 30–50 bar over Ni-MoS_2/γ-Al_2O_3. The optimum product yield of approximately 92% was obtained mainly from the HDO pathway (∼60%) with 58% selectivity to C10–C12 jet fuel hydrocarbons. The flow property of the jet fuel-like hydrocarbons was more desirable than those obtained from palm olein oil-derived fuel.

  7. Partial oxidation of jet fuels over Rh/Al_2O_3. Design and reaction kinetics of sulfur-containing surrogates

    International Nuclear Information System (INIS)

    Baer, Julian Nicolaas

    2016-01-01

    The conversion of logistic fuels via catalytic partial oxidation (CPOX) on Rh/Al_2O_3 at short contact times is an efficient method for generating hydrogen-rich synthesis gas. Depending on the inlet conditions, fuel, and catalyst, high syngas yields, low by-product formation, and rates of high fuel conversion can be achieved. CPOX is relevant for mobile hydrogen generation, e.g., on board of airplanes in order to increase the fuel efficiency via fuel cell-based auxiliary power units. Jet fuels contain hundreds of different hydrocarbons and a significant amount of sulfur. The hydrocarbon composition and sulfur content of a jet fuel vary depending on distributor, origin, and refinement of the crude oil. Little is known about the influence of the various compounds on the synthesis-gas yield and the impact of sulfur on the product yield. In this work, the influence of three main chemical compounds of a jet fuel (aromatics, alkanes, and sulfur compounds) on syngas selectivity, the catalyst deactivation process, and reaction sequence is unraveled. As representative components of alkanes and aromatics, n-dodecane and 1,2,4-trimethylbenzene were chosen for ex-situ and in-situ investigations on the CPOX over Rh/Al_2O_3, respectively. Additionally, for a fixed paraffin-to-aromatics ratio, benzothiophene or dibenzothiophene were added as a sulfur component in three different concentrations. The knowledge gained about the catalytic partial oxidation of jet fuels and their surrogates is used to identify requirements for jet fuels in mobile applications based on CPOX and to optimize the overall system efficiency. The results show an influence of the surrogate composition on syngas selectivity. The tendency for syngas formation increases with higher paraffin contents. A growing tendency for by-product formation can be observed with increasing aromatics contents in the fuel. The impact of sulfur on the reaction system shows an immediate change in the product distribution. An

  8. The future of coal as an energy source

    International Nuclear Information System (INIS)

    Rose, Ian

    1998-01-01

    The position of coal as the preferred fossil fuel for power generation is being challenged by gas. The total cost of production in $/kW/annum of coal generation compared with combined cycle gas turbine plant is illustrated for a range of annual capacity factors and fuel costs in the Australian context. lt is shown that plant capacity factors over 80%are required for coal-fired plants to be price competitive with gas. Unlike other fossil fuel energy types, the high capital cost of coal-fired plant means that new coal-fired plant will generally need to be base-loaded throughout their operating life to be competitive. However, experience shows that having installed the plant, it will operate as base-loaded, intermediate or peaking duty depending on market circumstances. Existing plants In New South Wales, Victoria and Queensland are generally operating at annual capacity factors that are below optimum levels. It is concluded that the coal-fired energy industry can be strongly challenged for the foreseeable future

  9. Deep desulfurization of jet fuel for applications in mobile fuel cell systems; Tiefentschwefelung von Flugturbinenkraftstoffen fuer die Anwendung in mobilen Brennstoffzellensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong

    2012-07-01

    Fuel cell powered APUs are promising for the on-board electricity supply in heavy vehicles, aircraft and ships because of their high efficiency and low emission of pollutants. The catalytical reforming with subsequent gas processing units is applied to operate the fuel cell system with onboard available fuels. Within the reformer the liquid fuel is converted into a hydrogen-rich synthesis gas in the presence of metal catalysts. However, an on-board desulfurization of fuels is required to avoid the deactivation of catalysts in the fuel processing unit as well as in the fuel cell. The present work aims at developing a technically feasible deep desulfurization process for fuel cell powered APUs with theoretical and experimental study as well as procedural analysis. The focus of the work is on the desulfurization of jet fuels in liquid phase, since the reformer currently developed in IEK-3 is designed for aviation applications of fuel cell APUs and it can only be operated by liquid jet fuels. In addition, the desulfurization of marine gas oil was investigated to fulfill the sulfur requirement of the fuels for the application of fuel cell A PUs for inland navigation. In the petroleum industry, low-sulfur fuels are often obtained by hydrodesulfurization and the S-Zorb Process. However, these conventional methods are highly inconvenient for reducing sulfur compounds to the desired level in a mobile fuel cell system, since improvements of the desulfurization efficiency are limited by increasingly severe operating conditions and escalating costs. Moreover, the hydrodesulfurization and the S-Zorb Process are not suitable for mobile applications, since hydrogen recycling is required, which is not possible with H{sub 2} syngas. To this end, a large number of processes discussed in the literature were assessed with regard to their application in fuel cell APUs. Three potentially suitable processes were selected: pervaporation, adsorption, and hydrodesulfurization with pre

  10. Fabrication of CNT Dispersion Fluid by Wet-Jet Milling Method for Coating on Bipolar Plate of Fuel Cell

    Directory of Open Access Journals (Sweden)

    Anas Almowarai

    2015-01-01

    Full Text Available Water based carbon nanotube (CNT dispersion was produced by wet-jet milling method. Commercial CNT was originally agglomerated at the particle size of less than 1 mm. The wet-jet milling process exfoliated CNTs from the agglomerates and dispersed them into water. Sedimentation of the CNTs in the dispersion fluid was not observed for more than a month. The produced CNT dispersion was characterized by the SEM and the viscometer. CNT/PTFE composite film was formed with the CNT dispersion in this study. The electrical conductivity of the composite film increased to 10 times when the CNT dispersion, which was produced by the wet-jet milling method, was used as a constituent of the film. Moreover, the composite film was applied to bipolar plate of fuel cell and increased the output power of the fuel cell to 1.3 times.

  11. Alternative fossil-based transportation fuels

    Science.gov (United States)

    2008-01-01

    "Alternative fuels derived from oil sands and from coal liquefaction can cost-effectively diversify fuel supplies, but neither type significantly reduces U.S. carbon-dioxide emissions enough to arrest long-term climate change".

  12. Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil

    KAUST Repository

    Natelson, Robert H.; Wang, Weicheng; Roberts, William L.; Zering, Kelly D.

    2015-01-01

    The commercial production of jet fuel from camelina oil via hydrolysis, decarboxylation, and reforming was simulated. The refinery was modeled as being close to the farms for reduced camelina transport cost. A refinery with annual nameplate capacity of 76,000 cubic meters hydrocarbons was modeled. Assuming average camelina production conditions and oil extraction modeling from the literature, the cost of oil was 0.31$kg-1. To accommodate one harvest per year, a refinery with 1 year oil storage capacity was designed, with the total refinery costing 283 million dollars in 2014 USD. Assuming co-products are sold at predicted values, the jet fuel break-even selling price was 0.80$kg-1. The model presents baseline technoeconomic data that can be used for more comprehensive financial and risk modeling of camelina jet fuel production. Decarboxylation was compared to the commercially proven hydrotreating process. The model illustrated the importance of refinery location relative to farms and hydrogen production site.

  13. Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil

    KAUST Repository

    Natelson, Robert H.

    2015-04-01

    The commercial production of jet fuel from camelina oil via hydrolysis, decarboxylation, and reforming was simulated. The refinery was modeled as being close to the farms for reduced camelina transport cost. A refinery with annual nameplate capacity of 76,000 cubic meters hydrocarbons was modeled. Assuming average camelina production conditions and oil extraction modeling from the literature, the cost of oil was 0.31$kg-1. To accommodate one harvest per year, a refinery with 1 year oil storage capacity was designed, with the total refinery costing 283 million dollars in 2014 USD. Assuming co-products are sold at predicted values, the jet fuel break-even selling price was 0.80$kg-1. The model presents baseline technoeconomic data that can be used for more comprehensive financial and risk modeling of camelina jet fuel production. Decarboxylation was compared to the commercially proven hydrotreating process. The model illustrated the importance of refinery location relative to farms and hydrogen production site.

  14. Ignition of a floating droplet of organic coal-water fuel

    Science.gov (United States)

    Nakoryakov, V. E.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-06-01

    The results of experimental investigations are presented for the ignition of droplets (particles) of organic coal-water fuels (OCWFs) floating in a flow of an oxidizer using a special combustion chamber from high-temperature quartz glass. The temperature and the velocity of motion of the oxidizer vary in the ranges of 500-900 K and 0.5-3 m/s. The initial sizes (radii) of fuel droplets amounted to 0.3-1.5 mm. As the basic OCWF components, particles (of 80-100 µm in size) of brown coal "B2," water, mazut, and waste castor and compressor oils are used. With use of the system of high-velocity video registration, the conditions providing for floating of OCWF particles without initiation of burning and with the subsequent steady ignition are established. Four modes of OCWF-droplet ignition with different trajectories of their motion in the combustion chamber are singled out. The times of the OCWF-ignition delay in dependence on the size of fuel particles and oxidizer temperatures are determined. The deviations of the OCWF-ignition-delay times obtained under conditions of suspension of a droplet on the thermocouple junction and while floating in the oxidizer flow are established.

  15. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    Science.gov (United States)

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  17. Place of petroleum in the U. K. fuel market. [In relation to electricity, gas, and coal

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G B

    1977-06-01

    An attempt is made to study the interaction process that occurs between petroleum products and the remainder of the fuel market. Petroleum competes with electricity, gas, and coal as a source of fuel, and an assessment is made of the demand elasticities of its place in the fuel market. In the U.K. fuel market the question is to what extent petroleum is a substitute or complement to the others. Petroleum consumption constituted 25 percent in 1960 of the total fuel consumption and has grown constantly since. The extent to which it changes depends upon its close substitutes. Which out of gas, coal, and electricity is, in fact, the closest substitute for petroleum; is it sensitive to price or to other things. In order to attempt to answer these questions, two models are presented. The first presents a straightforward linear equation for the demand for petroleum due to a change in total fuel consumption. This is then used in Model 2, which is basically the Slutsky equation, to obtain the mean substitution effect between petroleum and coal, gas and electricity. This, then, measures the net substitution or complementarity between petroleum and the commodities mentioned. 11 references.

  18. The JET [Joint European Torus] multipellet launcher and fueling of JET plasmas by multipellet injection

    International Nuclear Information System (INIS)

    Milora, S.L.; Schmidt, G.L.; Jernigan, T.C.

    1988-01-01

    A new multipellet long-pulse plasma fueling system is in operation on JET. In the initial experimental phase, a variety of plasma density profile shapes have been produced with peak to average values ranging up to 2.5 and peak plasma density up to 1.2 /times/ 10 20 m/sup /minus/3/. 7 refs., 4 figs

  19. Lead Isotopic Compositions of Selected Coals, Pb/Zn Ores and Fuels in China and the Application for Source Tracing.

    Science.gov (United States)

    Bi, Xiang-Yang; Li, Zhong-Gen; Wang, Shu-Xiao; Zhang, Lei; Xu, Rui; Liu, Jin-Ling; Yang, Hong-Mei; Guo, Ming-Zhi

    2017-11-21

    Lead (Pb) pollution emission from China is becoming a potential worldwide threat. Pb isotopic composition analysis is a useful tool to accurately trace the Pb sources of aerosols in atmosphere. In this study, a comprehensive data set of Pb isotopes for coals, Pb/Zn ores, and fuels from China was presented. The ratios of 206 Pb/ 207 Pb and 208 Pb/ 206 Pb in the coals were in the range of 1.114-1.383 and 1.791-2.317, similar to those from Europe, Oceania, and South Asia, but different from those from America (p fuels from in coals. Urban aerosols demonstrated similar Pb isotopic compositions to coals, Pb/Zn ores, and fuels in China. After removing the leaded gasoline, the Pb in aerosols is more radiogenic, supporting the heavy contribution of coal combustion to the atmospheric Pb pollution.

  20. Future developments and technological and economic assessment of methods for producing synthetic liquid fuel from coal

    Energy Technology Data Exchange (ETDEWEB)

    Shlikhter, E B; Khor' kov, A V; Zhorov, Yu M

    1980-11-01

    Promising methods for obtaining synthetic liquid fuel from coal are surveyed and described: thermal dissolution of coal by means of a hydrogen donor solution: hydrogenation; gasification with subsequent synthesis and pyrolysis. A technological and economic assessment of the above processes is given. Emphasis is placed on methods employing catalytic conversion of methanol into hydrocarbon fuels. On the basis of thermodynamic calculations of the process for obtaining high-calorific liquid fuel from methanol the possibility of obtaining diesel fractions as well as gasoline is demonstrated. (12 refs.) (In Russian)

  1. Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-03-01

    Full Text Available at the technical and economic viability of oxy-fuel technology for CO(sub2) capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a...

  2. Examination of Urinary Beta-Naphthol as a Biomarker Indicative of Jet Fuel Exposures

    Science.gov (United States)

    2015-04-01

    government or personal vehicle and what type of fuel . Flight line time Exposure to spills ( fuel ) Exposure to skin ( fuel ) Inhalation exposure (type...AFRL-RH-WP-TR-2015-0085 EXAMINATION OF URINARY β-NAPHTHOL AS A BIOMARKER INDICATIVE OF JET FUEL EXPOSURES Jeanette S. Frey Henry M... Fuel Exposures 5a. CONTRACT NUMBER 5b. GRANT NUMBER NA 5c. PROGRA7757M ELEMENT NUMBER 6. AUTHOR(S) Jeanette Frey1; Trevor J. Bihl2;Asao

  3. Thermometric Titration for Rapid Determination of Trace Water in Jet Fuel

    Directory of Open Access Journals (Sweden)

    Jian-Qiang Hu

    2017-01-01

    Full Text Available Water content in jet fuels is detected by thermometric titration (TMT, and the optimal detected system is 2,2-dimethoxypropane as titrant, cyclohexane and isopropanol as titration solvents, and methanesulfonic acid as catalyst in this method. The amounts of oil, concentration and delivery rate of titrant, volumes, and the reliability and accuracy of thermometric titration were emphasized. The results show that the accuracy, validity, and reliability of TMT are excellent by different indicated spiked water contents. The obtained results between TMT and Karl Fischer titration have been proven to be in accord. But, the duration of titration merely spends 3–5 min in the whole process, greatly shortening the detected time. Therefore, rapid and accurate determination of trace water in a jet fuel can be realized by TMT.

  4. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  5. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  6. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    Energy Technology Data Exchange (ETDEWEB)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  7. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    Science.gov (United States)

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  8. Increase of Ecological Safety, Reliability and Efficiency of Coal-Fired Boilers

    Directory of Open Access Journals (Sweden)

    Volkov E.P.

    2017-04-01

    Full Text Available The changes of environmental legislation of the Russian Federation will lead to a drastic increase of the ecological payments for environmental pollution in excess of technological standards. Significant excess in relative emissions of nitrogen oxides take place in burning solid fuel with liquid slag-tap removal. The purpose of this article was to develop technical solutions for low-cost reconstruction of the boilers to ensure efficient combustion of the fuel and technological standards of emissions of nitrogen oxides. As shown the use of straight-flow burners with compulsory optimization of the aerodynamics of the furnace and the organization of staged combustion of fuel will provide low nitrogen oxide emissions and efficient fuel combustion. Research on physical models has demonstrated the feasibility of increasing the angle of the pulverized coal burners down to 65-70o, and also achieved a more uniform distribution and increase the speed of the jets coming from upper and lower tertiary air vertical compartments of nozzles through the installation of the vertical extra sheets, which guide the flow in a space between jets. The results obtained allow the transfer of existing boilers with slag-tag removal to a solid with the installation of direct-flow burners and optimization of the aerodynamics of the furnace, which provides regulations for energy efficiency and ecological safety corresponding to the best, achieved technologies, and dramatically reduces environmental payments. The proposed technology in boiler BKZ-210-140F allowed reducing emissions of nitrogen oxides by more than 2 times when burning highly reactive Kuznetsk coal, as shown as an example.

  9. Experimental clean combustor program, alternate fuels addendum, phase 2

    Science.gov (United States)

    Gleason, C. C.; Bahr, D. W.

    1976-01-01

    The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.

  10. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  11. Coal liquefaction technologies for producing ultra clean fuel

    International Nuclear Information System (INIS)

    Tahir, M.S.; Haq, N.U.; Nasir, H.; Islam, N.

    2011-01-01

    The expanding demand for petroleum, accompanied by the diminishing petroleum reserves and the energy security, has intensified the significance in coal liquefaction technologies (CTL) globally and specially in Pakistan. Pakistan is rich in coal resources, but short of petroleum. The Geological Survey of Pakistan based on wide spread drilling over an area of 9000 sq. km, a total of 175 billion tons of coal resource potential has been assessed. This paper overviews a general introduction on the mechanisms and processes of CLT such as direct coal liquefaction (DCL) and indirect coal liquefaction (ICL) technologies. (author)

  12. Urinary biomarkers of occupational jet fuel exposure among Air Force personnel.

    Science.gov (United States)

    Smith, Kristen W; Proctor, Susan P; Ozonoff, A L; McClean, Michael D

    2012-01-01

    There is a potential for widespread occupational exposure to jet fuel among military and civilian personnel. Urinary metabolites of naphthalene have been suggested for use as short-term biomarkers of exposure to jet fuel (jet propulsion fuel 8 (JP8)). In this study, urinary biomarkers of JP8 were evaluated among US Air Force personnel. Personnel (n=24) were divided a priori into high, moderate, and low exposure groups. Pre- and post-shift urine samples were collected from each worker over three workdays and analyzed for metabolites of naphthalene (1- and 2-naphthol). Questionnaires and breathing-zone naphthalene samples were collected from each worker during the same workdays. Linear mixed-effects models were used to evaluate the exposure data. Post-shift levels of 1- and 2-naphthol varied significantly by a priori exposure group (levels in high group>moderate group>low group), and breathing-zone naphthalene was a significant predictor of post-shift levels of 1- and 2-naphthol, indicating that for every unit increase in breathing-zone naphthalene, there was an increase in naphthol levels. These results indicate that post-shift levels of urinary 1- and 2-naphthol reflect JP8 exposure during the work-shift and may be useful surrogates of JP8 exposure. Among the high exposed workers, significant job-related predictors of post-shift levels of 1- and 2-naphthol included entering the fuel tank, repairing leaks, direct skin contact with JP8, and not wearing gloves during the work-shift. The job-related predictors of 1- and 2-naphthol emphasize the importance of reducing inhalation and dermal exposure through the use of personal protective equipment while working in an environment with JP8.

  13. Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassioni, A.A.

    1980-08-01

    An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

  14. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    OpenAIRE

    Gazzino, Marco; Hong, Jongsup; Chaudhry, Gunaranjan; Brisson II, John G; Field, Randall; Ghoniem, Ahmed F

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases...

  15. Prospects for production of synthetic liquid fuel from low-grade coal

    Directory of Open Access Journals (Sweden)

    Shevyrev Sergei

    2015-01-01

    Full Text Available In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  16. Coal-to-liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.W.

    2006-03-15

    With crude oil prices rocketing, many of the oil poor, but coal rich countries are looking at coal-to-liquid as an alternative fuel stock. The article outlines the two main types of coal liquefaction technology: direct coal liquefaction and indirect coal liquefaction. The latter may form part of a co-production (or 'poly-generation') project, being developed in conjunction with IGCC generation projects, plus the production of other chemical feedstocks and hydrogen. The main part of the article, based on a 'survey by Energy Intelligence and Marketing Research' reviews coal-to-liquids projects in progress in the following countries: Australia, China, India, New Zealand, the Philippines, Qatar and the US. 2 photos.

  17. Shock wave calibration of under-expanded natural gas fuel jets

    Science.gov (United States)

    White, T. R.; Milton, B. E.

    2008-10-01

    Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.

  18. Possibilities of increasing coal charge density by adding fuel oil

    Directory of Open Access Journals (Sweden)

    M. Fröhlichová

    2010-01-01

    Full Text Available The requirement of all coke-making facilities is to achieve the highest possible production of high quality coke from a chamber. It can be achieved by filling the effective capacity of the chamber with the highest possible amount of coal. One of the possibilities of meeting this requirement is to increase the charge density in the coke chamber. In case of a coke battery operating on bulk coal there are many methods to increase the charge density including the use of wetting agents in the charge. This article presents the results of the laboratory experiments aiming at the increase of the charge density using fuel oil as a wetting agent. The experiments were carried out by means of the Pitin’s device using 3 coal charges with various granularity composition and moisture content of 7, 8, 9 and 10 %.

  19. Investigation of the efect of the coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.; Deignan, P. [Texas A& M Univ., College Station, TX (United States)

    1995-11-01

    Experiments were conducted to investigate the effect of particle size on coal-water slurry (CWS) surface tension properties. Two different coal powder samples of different size ranges were obtained through sieving of coal from the Upper Elkhorn Seam. The surfactant (anionic DDBS-soft, dodecylbenzene sulfonic acid) concentration varied from 0 to 1.0% in weight while the coal loading remained at 40% in weight for all the cases. A du Nouy ring tensiometer and a maximum bubble pressure tensiometer measured the static and dynamic surface tensions, respectively, The results show that both static and dynamic surface tensions tend to increase with decreasing coal particle sizes suspended in CWS fuels. Examination of the peak pressure, minimum pressure, surfactant diffusion time, and dead time were also made to correlate these microscopic pressure behavior with the macroscopic dynamic surface tension and to examine the accuracy of the experiment.

  20. Production of jet fuel range paraffins by low temperature polymerization of gaseous light olefins using ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Peiwen; Wu, Xiaoping; Zhu, Lijuan; Jin, Feng; Liu, Junxu; Xia, Tongyan; Wang, Tiejun; Li, Quanxin

    2016-01-01

    Graphical abstract: A novel catalytic transformation of light olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. - Highlights: • A novel transformation of light olefins to jet fuel range paraffins was demonstrated. • The synthetic fuels can be produced by atmospheric olefin polymerizations. • C 8 –C 15 iso-paraffins from light olefins was achieved with a selectivity of 80.6%. - Abstract: This work demonstrated a novel catalytic transformation of gaseous olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. The production of the desired C 8 –C 15 iso-paraffins with the selectivity of 80.6 C mol% was achieved by the room-temperature polymerizations of gaseous light olefins using the [BMIM] Al 2 Cl 7 ionic liquid. The influences of the reaction conditions on the olefinic polymerizations were investigated in detail. The properties of hydrocarbons in the synthetic fuels were determined by the GC–MS analyses combined with 1 H NMR, and 13 C NMR analyses. The formation of C 8 –C 15 hydrocarbons from gaseous light olefins was illustrated by the identified products and the functional groups. This transformation potentially provides a useful avenue for the production of the most important components of iso-paraffins required in jet fuels.

  1. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  2. Possibilities of production of smokeless fuel via carbonization of Czech coals

    Energy Technology Data Exchange (ETDEWEB)

    Buchtele, J.; Straka, P. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    It was consumed 48 -51 % of hard coal (total output 28 - 30 Mt/year) in a long period for the production of coke. It appears to be anomaly in comparison with other coke producers in Europe and in the world, it was predeterminated by {open_quotes}steel conception{close_quotes} of state`s economics. The production of coke reached 10-11 Mt/year in former Czechoslovakia in the period 1970-1990. A considerable quantity 1.2 - 1.7 Mt/year of produced coke was utilized for heating. In comparison, 7-5.4 Mt coke/year was it in Poland for the heating. Al coke production is realized on the basis of Czech hard coals mined in the southern part of Upper Silesian Coal District. The coke production is operated in multi-chamber system with full recovery of chemical products (gas, raw tar, raw benzene, amonium etc.). The future trend of smokeless fuel production in Czech Republic makes for to the non-recovery coke oven, it means to two-product processes (coke + reduction gas, coke + electricity and so on). Jewell--Thompson coke oven (hard coal) and Salem oven (ignites) represent nonrecovery nowadays. The possibility of it`s application in Czech Republic are discussed. Jumbo coking reactor system (European project No. 500 to the Eureka programme) produces primarily metallurgical coke. The strong Clean Air Act suspends the production of smokeless fuel in multi-chamber system also in Czech Republic for the future period 2010-2020.

  3. Investigation of strut-ramp injector in a Scramjet combustor: Effect of strut geometry, fuel and jet diameter on mixing characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Rahul Kumar; De, Ashoke De [Indian Institute of Technology Kanpur, Kanpur (India)

    2017-03-15

    The strut-based injector has been found to be one of the most promising injector designs for a supersonic combustor, offering enhanced mixing of fuel and air. The mixing and flow field characteristics of the straight (SS) and Tapered strut (TS), with fixed ramp angle and height at free stream Mach number 2 in conjunction with fuel injection at Mach 2.3 have been investigated numerically and reported. In the present investigation, hydrogen (H{sub 2}) and ethylene (C{sub 2}H{sub 4}) are injected in oncoming supersonic flow from the back of the strut, where jet to free stream momentum ratio is maintained at 0.79 and 0.69 for H2 and C{sub 2}H{sub 4}, respectively. The predicted wall static pressure and species mole fractions at various downstream locations are compared with the experimental data for TS case with 0.6 mm jet diameter and found to be in good agreement. Further, the effect of jet diameter and strut geometry on the near field mixing in strut ramp configuration is discussed for both the fuels. The numerical results are assessed based on various parameters for the performance evaluation of different strut ramp configurations. The SS configuration for both the injectant has been found to be an optimum candidate; also it is observed that for higher jet diameter larger combustor length is required to achieve satisfactory near field mixing.

  4. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  5. The increase of the efficiency for comprehensive utilization of the fuel and energetic resources (The use coal enterprises of Kazakhstan as example)

    International Nuclear Information System (INIS)

    Satova, R.K.

    1999-01-01

    In Kazakhstan during the period of transition to the market economy in the condition of reduction of coal production and increasing expenditures in coal branch, the problem of of the rational utilization of coal resources becomes the most vital issue. In the thesis theoretical and methodological aspects of socio-economic efficiency of utilization of the fuel and energetic resources are investigated. Different fields of usage of coal and coal wastes are studied, economic evaluation of mechanic and thermo-chemical methods of producing coal in process of bringing resources saving technologies; the national efficiency of using products in the quantity of technological raw and energetic fuel is brought out; the influence refining for the widening of the raw-base of industry, promoting the economic results of production and the lowering environmental pollution. It was estimated that the extracted coal of the region includes 1020 thousand tonne of aluminium oxide and 996 thousand tonne of sulphur; in the course of extracting and coal processing 3650 thousand tonne of firm wastes appeared; during the extracting of Ehkibastuz coal - 90970 thousand tonne, and the Karaganda coal - 40040 thousand tonne.The coal components and wastes mentioned above should be considered not only as source of environment pollution but also as potential resource for the production of industrial goods according to their qualitative characteristics and the availability of technical ideas of the processing. The implementation of the mentioned pre-sup-positions in the conditions of the forming market economy will allow to use the organic part of coal more competently, to involve the other useful components of coal in the sphere of production consumption, to utilize gaseous and firm wastes and to gain of the basis the expansion of resource base of same branches of industry and the reduction of environment pollution. It will be also accompanied by the needs in capital investments for the industrial

  6. Blackout: coal, climate and the last energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Heinberg, R. [Post Carbon Institute in California, CA (United States)

    2009-07-15

    Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

  7. Coal waste slurries as a fuel for integrated gasification combined cycle plants

    Directory of Open Access Journals (Sweden)

    Lutynski Marcin A.

    2016-01-01

    Full Text Available The article summarizes recent development in integrated gasification combined cycle technology and lists existing and planned IGCC plants. A brief outlook on the IGCC gasification technology is given with focus on entrained-flow gasifiers where the low-quality coal waste slurry fuel can be used. Desired properties of coal and ash for entrained-flow gasifiers are listed. The coal waste slurries, which were deposited at impoundments in Upper Silesian Coal Basin, were considered as a direct feed for such gasifiers. The average ash content, moisture content and lower heating value were analysed and presented as an average values. Entrained-flow commercial gasifiers can be considered as suitable for the coal slurry feed, however the ash content of coal slurries deposited in impoundments is too high for the direct use as the feed for the gasifiers. The moisture content of slurries calculated on as received basis meets the requirements of entrained-flow slurry feed gasifiers. The content of fines is relatively high which allow to use the slurries in entrained-flow gasifiers.

  8. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  9. FIELD-PRODUCED JP-8 STANDARD FOR CALIBRATION OF LOWER EXPLOSIVE LIMIT METERS USED BY JET FUEL TANK MAINTENANCE PERSONNEL

    Science.gov (United States)

    Thousands of military personnel and tens of thousands of civilian workers perform jet fuel tank entry procedures. Before entering the confined space of a jet fuel tank, OSHA regulations (29CFR1910.146) require the internal atmosphere be tested with a calibrated, direct-reading...

  10. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C

    2000-07-01

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO{sub 2} and NO{sub x}, given by county administrations or concession boards. The co-generation plants have all some sort of SO{sub 2}-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NO{sub x}-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO{sub x}- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO{sub x}-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong

  11. Trace elements in co-combustion of solid recovered fuel and coal

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Jappe Frandsen, Flemming

    2013-01-01

    Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.......%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash...... was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~2.5 μm, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost...

  12. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and

  13. Estimating Externalities of Coal Fuel Cycles, Report 3

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-09-01

    The agreement between the US DOE and the EC established the specific objectives of the study: (a) to develop a methodological framework that uses existing data and models to quantify the external costs and benefits of energy; (b) to demonstrate the application of the framework to estimate the externalities of the coal, biomass, oil, natural gas, hydro, nuclear, photovoltaic, and wind fuel cycles (by agreement with the EC, the US addressed the first six of these); and (c) to identify major gaps in the availability of information to quantify impacts, damages, benefits, and externalities of fuel cycles; and to suggest priorities for future research. The main consideration in defining these objectives was a desire to have more information about externalities, and a better method for estimating them.

  14. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, September 28, 1996--March 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Pisupati, S.V. [and others

    1997-07-22

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. Preliminary pilot-scale NO{sub x} reduction catalyst tests were conducted when firing natural gas in Penn State`s down-fired combustor. This is the first step in the scale-up of bench-scale results obtained in Phase II to the demonstration boiler scale when firing coal. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio. The evaluation of deeply-cleaned coal as boiler fuel included installing a ribbon mixer into Penn State`s micronized coal-water mixture circuit for reentraining filter cake. In addition, three cleaned coals were received from CQ Inc. and three cleaned coals were received from Cyprus-Amax.

  15. Fluidized bed combustion of refuse-derived fuel in presence of protective coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Eduardo [CIRCE, Universidad de Zaragoza, Maria de Luna, 3, Zaragoza (Spain); Aho, Martti [VTT Processes, P.O. Box 1603, 40101 Jyvaeskylae (Finland); Silvennoinen, Jaani; Nurminen, Riku-Ville [Kvaerner Power, P.O.Box 109, FIN-33101 Tampere (Finland)

    2005-12-15

    Combustion of refuse-derived fuel (RDF) alone or together with other biomass leads to superheater fouling and corrosion in efficient power plants (with high steam values) due to vaporization and condensation of alkali chlorides. In this study, means were found to raise the portion of RDF to 40% enb without risk to boilers. This was done by co-firing RDF with coal and optimizing coal quality. Free aluminum silicate in coal captured alkalies from vaporized alkali chlorides preventing Cl condensation to superheaters. Strong fouling and corrosion were simultaneously averted. Results from 100 kW and 4 MW CFB reactors are reported. (author)

  16. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  17. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1997--September 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L. [and others

    1998-01-06

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Phase I was completed on November 1, 1995. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included performing pilot-scale air toxics (i.e., trace elements and volatile organic compounds) testing and evaluating a ceramic filtering device on the demonstration boiler. Also, a sodium bicarbonate duct injection system was installed on the demonstration boiler. An economic analysis was conducted which investigated the benefits of decreased dependence on imported oil by using new coal combustion technologies. Work related to coal preparation and utilization was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, and surface-based separation processes. The evaluation of deeply-cleaned coal as boiler fuel included receiving three cleaned coals from Cyprus-Amax.

  18. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    Science.gov (United States)

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel.

  19. Jet Fuel Based High Pressure Solid Oxide Fuel Cell System

    Science.gov (United States)

    Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)

    2015-01-01

    A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.

  20. Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system

    International Nuclear Information System (INIS)

    Meybodi, Mehdi Aghaei; Behnia, Masud

    2013-01-01

    Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions. -- Highlights: •We study the application of Stirling engines in coal mine CHP systems. •We develop a thermo-economic approach based on the net present worth analysis. •We examine the impact of a carbon tax and ETS on the economics of the system. •The modeled system leads to a substantial reduction in greenhouse gas emissions. •Carbon tax provides a greater incentive to address the methane emissions

  1. Partial oxidation of jet fuels over Rh/Al{sub 2}O{sub 3}. Design and reaction kinetics of sulfur-containing surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Julian Nicolaas

    2016-07-01

    The conversion of logistic fuels via catalytic partial oxidation (CPOX) on Rh/Al{sub 2}O{sub 3} at short contact times is an efficient method for generating hydrogen-rich synthesis gas. Depending on the inlet conditions, fuel, and catalyst, high syngas yields, low by-product formation, and rates of high fuel conversion can be achieved. CPOX is relevant for mobile hydrogen generation, e.g., on board of airplanes in order to increase the fuel efficiency via fuel cell-based auxiliary power units. Jet fuels contain hundreds of different hydrocarbons and a significant amount of sulfur. The hydrocarbon composition and sulfur content of a jet fuel vary depending on distributor, origin, and refinement of the crude oil. Little is known about the influence of the various compounds on the synthesis-gas yield and the impact of sulfur on the product yield. In this work, the influence of three main chemical compounds of a jet fuel (aromatics, alkanes, and sulfur compounds) on syngas selectivity, the catalyst deactivation process, and reaction sequence is unraveled. As representative components of alkanes and aromatics, n-dodecane and 1,2,4-trimethylbenzene were chosen for ex-situ and in-situ investigations on the CPOX over Rh/Al{sub 2}O{sub 3}, respectively. Additionally, for a fixed paraffin-to-aromatics ratio, benzothiophene or dibenzothiophene were added as a sulfur component in three different concentrations. The knowledge gained about the catalytic partial oxidation of jet fuels and their surrogates is used to identify requirements for jet fuels in mobile applications based on CPOX and to optimize the overall system efficiency. The results show an influence of the surrogate composition on syngas selectivity. The tendency for syngas formation increases with higher paraffin contents. A growing tendency for by-product formation can be observed with increasing aromatics contents in the fuel. The impact of sulfur on the reaction system shows an immediate change in the product

  2. Post-test analysis of 20kW molten carbonate fuel cell stack operated on coal gas. Final report, August 1993--February 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A 20kW carbonate fuel cell stack was operated with coal gas for the first time in the world. The stack was tested for a total of 4,000 hours, of which 3,900 hours of testing was conducted at the Louisiana Gasification Technology Incorporated, Plaquemine, Louisiana outdoor site. The operation was on either natural gas or coal gas and switched several times without any effects, demonstrating duel fuel capabilities. This test was conducted with 9142 kJ/m{sup 3} (245 Btu/cft) coal gas provided by a slipstream from Destec`s entrained flow, slagging, slurry-fed gasifier equipped with a cold gas cleanup subsystem. The stack generated up to 21 kW with this coal gas. Following completion of this test, the stack was brought to Energy Research Corporation (ERC) and a detailed post-test analysis was conducted to identify any effects of coal gas on cell components. This investigation has shown that the direct fuel cell (DFC) can be operated with properly cleaned and humidified coal-as, providing stable performance. The basic C direct fuel cell component materials are stable and display normal stability in presence of the coal gas. No effects of the coal-borne contaminants are apparent. Further cell testing at ERC 1 17, confirmed these findings.

  3. CO2 reduction potential of future coal gasification based power generation technologies

    International Nuclear Information System (INIS)

    Jansen, D.; Oudhuis, A.B.J.; Van Veen, H.M.

    1992-03-01

    Assessment studies are carried out on coal gasification power plants integrated with gas turbines (IGCC) or molten carbonate fuel cells (MCFC) without and with CO 2 -removal. System elements include coal gasification, high-temperature gas-cleaning, molten carbonate fuel cells or gas turbines, CO shift, membrane separation, CO 2 recovery and a bottoming cycle. Various system configurations are evaluated on the basis of thermodynamic computations. The energy balances of the various system configurations clearly indicate that integrated coal gasification MCFC power plants (IGMCFC) with CO 2 removal have high efficiencies (42-47% LHV) compared to IGCC power plants with CO 2 -removal (33-38% LHV) and that the CO 2 -removal is simplified due to the specific properties of the molten carbonate fuel cells. IGMCFC is therefore an option with future prospective in the light of clean coal technologies for power generation with high energy efficiencies and low emissions. 2 figs., 3 tabs., 10 refs

  4. Measurement of the Diffusion Coefficient of Water in RP-3 and RP-5 Jet Fuels Using Digital Holography Interferometry

    Science.gov (United States)

    Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua

    2018-04-01

    The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised via experimental data to obtain a more accurate predication result.

  5. Moderate temperature gas purification system: Application to high calorific coal-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M.; Shirai, H.; Nunokawa, M. [Central Research Institute of Electric Power Industry, Kanagawa (Japan)

    2008-01-15

    Simultaneous removal of dust, alkaline and alkaline-earth metals, halides and sulfur compounds is required to enlarge application of coal-derived gas to the high-temperature fuel cells and the fuel synthesis through chemical processing. Because high calorific fuel gas, such as oxygen-blown coal gas, has high carbon monoxide content, high-temperature (above 450{sup o}C) gas purification system is always subjected to the carbon deposition. We suggest moderate temperature (around 300{sup o}C) operation of the gas purification system to avoid the harmful disproportionation reaction and efficient removal of the various contaminants. Because the reaction rate is predominant to the performance of contaminant removal in the moderate temperature gas purification system, we evaluated the chemical removal processes; performance of the removal processes for halides and sulfur compounds was experimentally evaluated. The halide removal process with sodium aluminate sorbent had potential performance at around 300{sup o}C. The sulfur removal process with zinc ferrite sorbent was also applicable to the temperature range, though the reaction kinetics of the sorbent is essential to be approved.

  6. Parametric Study of Synthetic-Jet-Based Flow Control on a Vertical Tail Model

    Science.gov (United States)

    Monastero, Marianne; Lindstrom, Annika; Beyar, Michael; Amitay, Michael

    2015-11-01

    Separation control over the rudder of the vertical tail of a commercial airplane using synthetic-jet-based flow control can lead to a reduction in tail size, with an associated decrease in drag and increase in fuel savings. A parametric, experimental study was undertaken using an array of finite span synthetic jets to investigate the sensitivity of the enhanced vertical tail side force to jet parameters, such as jet spanwise spacing and jet momentum coefficient. A generic wind tunnel model was designed and fabricated to fundamentally study the effects of the jet parameters at varying rudder deflection and model sideslip angles. Wind tunnel results obtained from pressure measurements and tuft flow visualization in the Rensselaer Polytechnic Subsonic Wind Tunnel show a decrease in separation severity and increase in model performance in comparison to the baseline, non-actuated case. The sensitivity to various parameters will be presented.

  7. Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact on jet engine performance

    International Nuclear Information System (INIS)

    Lokesh, Kadambari; Sethi, Vishal; Nikolaidis, Theoklis; Goodger, Eric; Nalianda, Devaiah

    2015-01-01

    Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This study examines the environmental competence of Bio-Synthetic Paraffinic Kerosene (Bio-SPKs) against conventional Jet-A, through development of a life cycle GHG model (ALCEmB – Assessment of Life Cycle Emissions of Biofuels) from “cradle-grave” perspective. This model precisely calculates the life cycle emissions of the advanced biofuels through a multi-disciplinary study entailing hydrocarbon chemistry, thermodynamic behaviour and fuel combustion from engine/aircraft performance, into the life cycle studies, unlike earlier studies. The aim of this study is predict the “cradle-grave” carbon intensity of Camelina SPK, Microalgae SPK and Jatropha SPK through careful estimation and inclusion of combustion based emissions, which contribute ≈70% of overall life cycle emissions (LCE). Numerical modelling and non-linear/dynamic simulation of a twin-shaft turbofan, with an appropriate airframe, was conducted to analyse the impact of alternative fuels on engine/aircraft performance. ALCEmB revealed that Camelina SPK, Microalgae SPK and Jatropha SPK delivered 70%, 58% and 64% LCE savings relative to the reference fuel, Jet-A1. The net energy ratio analysis indicates that current technology for the biofuel processing is energy efficient and technically feasible. An elaborate gas property analysis infers that the Bio-SPKs exhibit improved thermodynamic behaviour in an operational gas turbine engine. This thermodynamic effect has a positive impact on aircraft-level fuel consumption and emissions characteristics demonstrating fuel savings in the range of 3–3.8% and emission savings of 5.8–6.3% (CO 2 ) and 7.1–8.3% (LTO NOx), relative to that of Jet-A. - Highlights: • Bio-SPKs were determined to deliver “Cradle-Grave” GHG savings of 58–70%. • Bio-SPKs exhibited improved thermodynamic behaviour at integrated system level assessment

  8. Market-based carbon abatement policies: the case of coal subsidy phase-out

    International Nuclear Information System (INIS)

    Okogu, B.E.; Birol, F.

    1993-01-01

    The issue of coal subsidies in industrialized countries is explored and basic econometric techniques are used to quantify the impact on carbon emissions of phasing out such subsidies. Components with other measures for reducing global carbon emissions, such as a carbon or energy tax, deregulation of the coal market has at least equal merit in terms of cost, and it is certainly cheaper than engineering-based approaches, moreover, a policy of coal-subsidy phase-out will have a positive impact on the drive for a cleaner global environment and regional problems, such as acid rain. Coal mining is also an important source of the second major greenhouse gas, methane. Yet coal is the least taxed of all fossil fuels and enjoys significant subsidies in a number of industrialized countries. This raised serious doubts about the real intentions of the proposed new energy and environmental taxes in Europe and North America. (3 figures, 3 tables) (UK)

  9. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  10. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-02-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  11. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-01-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  12. Producing Liquid Fuels from Coal: Prospects and Policy Issues

    Science.gov (United States)

    2008-01-01

    fraction of the weight of a plant. Most of the material in plants is cellulose , hemicellulose, or lignin . None of these substances is amenable to the...conventional fuel involved in producing the biomass. This is especially the case for non-food-crop biomass, such as corn stover, switchgrass, prairie...conversion of cellulosic materials, starches, or sugars to alcohols. Coal-to-Liquids Technologies 39 Unfortunately, annual variations in weather

  13. ANN-GA based optimization of a high ash coal-fired supercritical power plant

    International Nuclear Information System (INIS)

    Suresh, M.V.J.J.; Reddy, K.S.; Kolar, Ajit Kumar

    2011-01-01

    Highlights: → Neuro-genetic power plant optimization is found to be an efficient methodology. → Advantage of neuro-genetic algorithm is the possibility of on-line optimization. → Exergy loss in combustor indicates the effect of coal composition on efficiency. -- Abstract: The efficiency of coal-fired power plant depends on various operating parameters such as main steam/reheat steam pressures and temperatures, turbine extraction pressures, and excess air ratio for a given fuel. However, simultaneous optimization of all these operating parameters to achieve the maximum plant efficiency is a challenging task. This study deals with the coupled ANN and GA based (neuro-genetic) optimization of a high ash coal-fired supercritical power plant in Indian climatic condition to determine the maximum possible plant efficiency. The power plant simulation data obtained from a flow-sheet program, 'Cycle-Tempo' is used to train the artificial neural network (ANN) to predict the energy input through fuel (coal). The optimum set of various operating parameters that result in the minimum energy input to the power plant is then determined by coupling the trained ANN model as a fitness function with the genetic algorithm (GA). A unit size of 800 MWe currently under development in India is considered to carry out the thermodynamic analysis based on energy and exergy. Apart from optimizing the design parameters, the developed model can also be used for on-line optimization when quick response is required. Furthermore, the effect of various coals on the thermodynamic performance of the optimized power plant is also determined.

  14. The importance of coal in energy

    International Nuclear Information System (INIS)

    Onal, Guven

    2006-01-01

    An 87% of the total energy requirement of the world is supplied by fossil fuels such as coal, fuel oil, and natural gas, while the rest comes from the other sources, like hydroelectric and nuclear power plants. Coal, as a fuel oil equivalent, has the greatest reserves (70%) among the fossil fuels and is very commonly found in the world. While the share of coal in the production of electricity was 39% in 2004 it is expected to rise to 48% in 2020. In the direction of sustainable development, the utilization of coal in energy production is constantly increasing and related researches are continuing. Today, the development and economics of hybrid electricity production; gas, fluid fuel, and hydrogen production from coal are being investigated and their industrial applications are slowly emerging. The surprisingly sharp increase in fuel oil and natural gas prices proves the defectiveness of the energy strategies of Turkey in effect since the 1990. Turkey should turn to coal without wasting more time, accept the utilization of clean coal in energy production, and determine her road-map. Increasing the efficiency of thermal power plants which utilize coal; hybrid technology; and gas, fluid fuel, and hydrogen production technologies from coal are investigated in this paper and suggestions are made.

  15. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity

    International Nuclear Information System (INIS)

    Grubert, Emily A; Beach, Fred C; Webber, Michael E

    2012-01-01

    Thermal electricity generation is a major consumer of freshwater for cooling, fuel extraction and air emissions controls, but the life cycle water impacts of different fossil fuel cycles are not well understood. Much of the existing literature relies on decades-old estimates for water intensity, particularly regarding water consumed for fuel extraction. This work uses contemporary data from specific resource basins and power plants in Texas to evaluate water intensity at three major stages of coal and natural gas fuel cycles: fuel extraction, power plant cooling and power plant emissions controls. In particular, the water intensity of fuel extraction is quantified for Texas lignite, conventional natural gas and 11 unconventional natural gas basins in Texas, including major second-order impacts associated with multi-stage hydraulic fracturing. Despite the rise of this water-intensive natural gas extraction method, natural gas extraction appears to consume less freshwater than coal per unit of energy extracted in Texas because of the high water intensity of Texas lignite extraction. This work uses new resource basin and power plant level water intensity data to estimate the potential effects of coal to natural gas fuel switching in Texas’ power sector, a shift under consideration due to potential environmental benefits and very low natural gas prices. Replacing Texas’ coal-fired power plants with natural gas combined cycle plants (NGCCs) would reduce annual freshwater consumption in the state by an estimated 53 billion gallons per year, or 60% of Texas coal power’s water footprint, largely due to the higher efficiency of NGCCs. (letter)

  16. The costs of production of alternative jet fuel: A harmonized stochastic assessment.

    Science.gov (United States)

    Bann, Seamus J; Malina, Robert; Staples, Mark D; Suresh, Pooja; Pearlson, Matthew; Tyner, Wallace E; Hileman, James I; Barrett, Steven

    2017-03-01

    This study quantifies and compares the costs of production for six alternative jet fuel pathways using consistent financial and technical assumptions. Uncertainty was propagated through the analysis using Monte Carlo simulations. The six processes assessed were HEFA, advanced fermentation, Fischer-Tropsch, aqueous phase processing, hydrothermal liquefaction, and fast pyrolysis. The results indicate that none of the six processes would be profitable in the absence of government incentives, with HEFA using yellow grease, HEFA using tallow, and FT revealing the lowest mean jet fuel prices at $0.91/liter ($0.66/liter-$1.24/liter), $1.06/liter ($0.79/liter-$1.42/liter), and $1.15/liter ($0.95/liter-$1.39/liter), respectively. This study also quantifies plant performance in the United States with a Renewable Fuel Standard policy analysis. Results indicate that some pathways could achieve positive NPV with relatively high likelihood under existing policy supports, with HEFA and FPH revealing the highest probability of positive NPV at 94.9% and 99.7%, respectively, in the best-case scenario. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  18. Coal-water slurry fuel internal combustion engine and method for operating same

    Science.gov (United States)

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  19. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production

    International Nuclear Information System (INIS)

    Bičáková, Olga; Straka, Pavel

    2016-01-01

    Highlights: • Co-pyrolysis of waste tires/coal mixtures yields mainly smokeless fuel (55–74 wt%). • Alternatively, the smokeless fuel can serve as carbonaceous sorbent. • The obtained tar contained maltenes (80–85 wt%) and asphaltenes (6–8 wt%). • Tar from co-pyrolysis can serve as heating oil or a source of maltenes for repairing of asphalt surfaces. • The hydrogen-rich gas was obtained (61–65 vol% H_2, 24–25 vol% CH_4, 1.4–2 vol% CO_2). - Abstract: The processing of waste tires with two different types of bituminous coal was studied through the slow co-pyrolysis of 1 kg of waste tire/coal mixtures with 15, 30 and 60 wt% waste tires on a laboratory scale. The waste tire/coal mixtures were pyrolysed using a quartz reactor in a stationary bed. The mixtures were heated at a rate 5 °C/min up to the final temperature of 900 °C with a soaking time of 30 min at the required temperature. The mass balance of the process and the properties of the coke and tar obtained were evaluated, further, the influence of the admixture in the charge on the amount and composition of the obtained coke and tar was determined. It was found that the smokeless fuel/carbonaceous sorbent and a high yield of tar for further use can be obtained through the slow co-pyrolysis. The obtained tars contained mostly maltenes (80–85 wt%). FTIR analysis showed that the maltenes from the co-pyrolysis of coal/waste tires exhibited significantly lower aromaticity as compared with that from coal alone. The gas obtained from pyrolysis or co-pyrolysis of waste tire/coal mixtures contained a high amount of hydrogen (above 60 vol%) and methane (above 20 vol%).

  20. Conceptual design of coal-fueled diesel system for stationary power applications

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-01

    A preliminary conceptual design of a coal-fueled diesel system was prepared as part of a previous systems study. Since then, our team has accumulated extensive results from testing coal-water slurry on the 13-inch bore JS engine (400 rpm) in 1987 and 1988. These results provided new insights into preferred design concepts for engine components. One objective, therefore, was to revise the preliminary design to incorporate these preferred design concepts. In addition there were certain areas where additional, more detailed analysis was required as a result of the previous conceptual design. Another objective, therefore was to perform additional detailed design efforts, such as: (1) market applications and engine sizes, (2) coal-water slurry cleaning and grinding processes, (3) emission controls and hot gas contaminant controls, (4) component durability, (5) cost and performance assessments. (VC)

  1. Exergy analysis of a coal/biomass co-hydrogasification based chemical looping power generation system

    International Nuclear Information System (INIS)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2015-01-01

    Power generation from co-utilization of coal and biomass is very attractive since this technology can not only save the coal resource but make sufficient utilization of biomass. In addition, with this concept, net carbon discharge per unit electric power generation can also be sharply reduced. In this work, a coal/biomass co-hydrogasification based chemical looping power generation system is presented and analyzed with the assistance of Aspen Plus. The effects of different operating conditions including the biomass mass fraction, R_b, the hydrogen recycle ratio, R_h_r, the hydrogasification pressure, P_h_g, the iron to fuel mole ratio, R_i_f, the reducer temperature, T_r_e, the oxidizer temperature, T_o_x, and the fuel utilization factor, U_f of the SOFC (solid oxide fuel cell) on the system operation results including the energy efficiency, η_e, the total energy efficiency, η_t_e, the exergy efficiency, η_e_x, the total exergy efficiency, η_t_e_x and the carbon capture rate, η_c_c, are analyzed. The energy and exergy balances of the whole system are also calculated and the corresponding Sankey diagram and Grassmann diagram are drawn. Under the benchmark condition, exergy efficiencies of different units in the system are calculated. η_t_e, η_t_e_x and η_c_c of the system are also found to be 43.6%, 41.2% and 99.1%, respectively. - Highlights: • A coal/biomass co-hydrogasification based chemical looping power generation system is setup. • Sankey and Grassmann diagrams are presented based on the energy and exergy balance calculations. • Sensitivity analysis is done to understand the system operation characteristics. • Total energy and exergy efficiencies of this system can be 43.6% and 41.2%, respectively. • About 99.1% of the carbon contained in coal and biomass can be captured in this system.

  2. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  3. Improvements relating to the low temperature carbonisation of coal, shale, and other suitable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hackford, J E

    1930-03-10

    In the low-temperature carbonization of coal, shale, and other suitable fuel is interposed between the fuel to be carbonized and the container, conveyor, grate, or other surface or surfaces with which the fuel normally contacts during the heat treatment. A medium decomposes during the said heat treatment, to produce a dry carbon at the surface or surfaces contacted without passing through an intermediate plastic or liquid phase during decomposition.

  4. Methodology for comparing the health effects of electricity generation from uranium and coal fuels

    International Nuclear Information System (INIS)

    Rhyne, W.R.; El-Bassioni, A.A.

    1981-01-01

    A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables

  5. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    Energy Technology Data Exchange (ETDEWEB)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.; James, R.B.; Rode, R.R.; Walters, A.B.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using air or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.

  6. Coal slurries: An environmental bonus?

    International Nuclear Information System (INIS)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-01-01

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference

  7. Inhalation exposure to jet fuel (JP8) among U.S. Air Force personnel.

    Science.gov (United States)

    Smith, Kristen W; Proctor, Susan P; Ozonoff, Al; McClean, Michael D

    2010-10-01

    As jet fuel is a common occupational exposure among military and civilian populations, this study was conducted to characterize jet fuel (JP8) exposure among active duty U.S. Air Force personnel. Personnel (n = 24) were divided a priori into high, moderate, and low exposure groups. Questionnaires and personal air samples (breathing zone) were collected from each worker over 3 consecutive days (72 worker-days) and analyzed for total hydrocarbons (THC), benzene, toluene, ethylbenzene, xylenes, and naphthalene. Air samples were collected from inside the fuel tank and analyzed for the same analytes. Linear mixed-effects models were used to evaluate the exposure data. Our results show that the correlation of THC (a measure of overall JP8 inhalation exposure) with all other analytes was moderate to strong in the a priori high and moderate exposure groups combined. Inhalation exposure to all analytes varied significantly by self-reported JP8 exposure (THC levels higher among workers reporting JP8 exposure), a priori exposure group (THC levels in high group > moderate group > low group), and more specific job task groupings (THC levels among workers in fuel systems hangar group > refueling maintenance group > fuel systems office group > fuel handling group > clinic group), with task groupings explaining the most between-worker variability. Among highly exposed workers, statistically significant job task-related predictors of inhalation exposure to THC indicated that increased time in the hangar, working close to the fuel tank (inside > less than 25 ft > greater than 25 ft), primary job (entrant > attendant/runner/fireguard > outside hangar), and performing various tasks near the fuel tank, such as searching for a leak, resulted in higher JP8 exposure. This study shows that while a priori exposure groups were useful in distinguishing JP8 exposure levels, job task-based categories should be considered in epidemiologic study designs to improve exposure classification. Finally

  8. Improved coal grinding and fuel flow control in thermal power plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr; Bendtsen, Jan Dimon

    2011-01-01

    A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated in the m......A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated...... as well as when parameter uncertainties and noise are present. The proposed controller lowers the grinding power consumption while in most cases exhibiting superior performance in comparison with the PID controller....

  9. Underground coal gasification (UCG: A new trend of supply-side economics of fossil fuels

    Directory of Open Access Journals (Sweden)

    Fei Mao

    2016-10-01

    Full Text Available China has a huge demand for energy. Under the present energy structure of rich coal, lean oil, less gas, limited and low-rising rate renewable energy, discussion focus is now on the high-efficient mining of coal as well as its clean-and-low-carbon use. In view of this, based on an analysis of the problems in the coal chemical industry and the present coal utilization ways such as Integrated Gasification Combined Cycle (IGCC, this paper proposes that underground coal gasification (UCG technology is a realistic choice. By virtue of its advantages in many aspects such as safety & environment, integrated use of superior resources, economic feasibility, etc. this technology can serve as the front-end support and guarantee for coal chemical industry and IGCC. Under the present situation, the following proposals were presented to promote the development of this technology. First, R&D of technical products should be strengthened, a comprehensive feasibility study assessment system should be established, and the relevant criteria in the industry should be formulated. Second, precise market positioning of UCG products should be made with much concern on the integrated economic indicators of each product's complete flow scheme, following the principle of “Technical Feasibility First, Economic Optimization Followed”. Third, a perfect operation and management pattern should be established with strict control over high-efficient, environmentally-friendly, safe, harmonious & compact objectives in the whole industry chain. In conclusion, to realize the large-scale UCG commercial production will strongly promote the optimization and innovation of fossil fuels supply-side economics in China.

  10. Study of fuel powder formation in reactive coaxial jets

    International Nuclear Information System (INIS)

    Ablitzer, C.

    1999-01-01

    One step of the conversion of gaseous UF 6 to solid UO 2 by dry route is the formation of particles of UO 2 F 2 in a triple coaxial jet UF 6 /N 2 /H 2 O. The characteristics of resulting powder have an influence on the properties of final particles of UO 2 , and then on the quality of pellets of nuclear fuel. So a good control of this step of the process is of interest. This study deals with an experimental investigation and modelling of the influence of various parameters on particles obtained by reaction in a turbulent coaxial jet. For example, the influence of absolute and relative velocities of gases on particle size distributions has been investigated. Two kinds of experimental studies have been undertaken. First, the development of mixing layers in the near field of the jet has been evaluated with temperature measurements. Then, particle size distributions have been measured with e turbidimetric sensor, for particles obtained by hydrolysis of gaseous metallic chlorides (SnCl 4 , TiCl 4 ) in double and triple coaxial jets. A model has been proposed for mixing of gases and growth of particles. It takes into account the development of mixing layers, meso-mixing, micro-mixing and growth of particles through agglomeration. The influence of operating parameters, especially velocities, on experimental results appear to be different for TiCl 4 /H 2 O jets and SnCl 4 /H 2 O jets. In fact, a comparison of theoretical and experimental results shows that particles obtained by hydrolysis of TiCl 4 seem to grow mainly through agglomeration whereas another growth phenomenon may be involved for particles obtained by hydrolysis of SnCl 4 . (authors)

  11. Raw mix designing for coal as a fuel in cement kiln as a major fuel and its impact on clinker parameters

    International Nuclear Information System (INIS)

    Noor-ul-Amin; Ali, K.

    2011-01-01

    In this paper the use of coal, found at Jabba Taar and Jabba Khushk Khyber Pakhtoon Khwa, in cement manufacturing as a major fuel and its impacts on the raw mix and clinker parameters has been discussed. The maximum amount of coal for pulverizing with raw mix was found to be 10% of the raw mix as calculated from the calorific value and the heat of clinkerization of coal. The coal residue left after burning was utilized in the cement raw material, for which a new raw mix was designed. The new raw mix was converted in to clinker. The resulting clinker was studied for all parameters as per British specification. It was found that the clinker obtained from the newly designed raw mix with coal ash, was in accordance to the British standard specifications. (author)

  12. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    Science.gov (United States)

    Wasielewski, Ryszard; Głód, Krzysztof; Telenga-Kopyczyńska, Jolanta

    2018-01-01

    The results of industrial research on co-combustion of solid recovered fuel (SRF) with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds) in refer to the legislative requirements (2 seconds) for the thermal conversion of waste.

  13. Energy and emission aspects of co-combustion solid recovered fuel with coal in a stoker boiler

    Directory of Open Access Journals (Sweden)

    Wasielewski Ryszard

    2018-01-01

    Full Text Available The results of industrial research on co-combustion of solid recovered fuel (SRF with hard coal in a stoker boiler type WR-25 has been presented. The share of SRF in the fuel mixture was 10%. During the co-combustion of SRF, no technological disturbances or significant reduction in energy efficiency of the boiler were noted. Obtained SO2, NOx and CO emissions were comparable with coal combustion but dust emissions increased. During combustion of the coal mixture with a 10% share of SRF in the test boiler WR-25, the emission standards established for the combustion of the dedicated fuel were met. However, comparison of obtained emission results with the emission standards established for co-incineration of waste, revealed the exceedance of permissible levels of HCl, dust, heavy metals, dioxins and furans. Additionally, the residence time of flue gases in over 850°C conditions for the test boiler WR-25 was too short (1.3 seconds in refer to the legislative requirements (2 seconds for the thermal conversion of waste.

  14. Promotive study on preparation of basis for foreign coal import. Study on coal renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Yoji [Japan Economic Research Institute, Tokyo

    1988-09-16

    This is an interim report on the coal renaissance study carried out in 1987 as a part of the Promotive Study on Preparation of Basis for Foreign Coal Import. The background and ideology of coal renaissance, future aspect of demand for coal, problems pertaining to the expansion of application, and a proposal for the expansion of coal usage are described in order. The role of coal expected as an alternate fuel for petroleum, development of new application fields for coal, conversion to coal, contribution of Japan to the stablization of international coal supply are outlined. Coal renaissance aims, based on technology, at stimulation of coal demand, change in the image of coal, and the utilization of the accumulated abundant knowhow. The aspect of coal demand in 2000, solution and current status of various restricting factors relating to the use of coal in general industry, and the remaining problems are discussed. 6 figures, 10 tables.

  15. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  16. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    Science.gov (United States)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  17. Simulation of the Fuel Reactor of a Coal-Fired Chemical Looping Combustor

    Science.gov (United States)

    Mahalatkar, Kartikeya; O'Brien, Thomas; Huckaby, E. David; Kuhlman, John

    2009-06-01

    Responsible carbon management (CM) will be required for the future utilization of coal for power generation. CO2 separation is the more costly component of CM, not sequestration. Most methods of capture require a costly process of gas separation to obtain a CO2-rich gas stream. However, recently a process termed Chemical Looping Combustion (CLC) has been proposed, in which an oxygen-carrier is used to provide the oxygen for combustion. This process quite naturally generates a separate exhaust gas stream containing mainly H2O and CO2 but requires two reaction vessels, an Air Reactor (AR) and a Fuel Reactor (FR). The carrier (M for metal, the usual carrier) is oxidized in the AR. This highly exothermic process provides heat for power generation. The oxidized carrier (MO) is separated from this hot, vitiated air stream and transported to the FR where it oxidizes the hydrocarbon fuel, yielding an exhaust gas stream of mainly H2O and CO2. This process is usually slightly endothermic so that the carrier must also transport the necessary heat of reaction. The reduced carrier (M) is then returned to the air reactor for regeneration, hence the term "looping." The net chemical reaction and energy release is identical to that of conventional combustion of the fuel. However, CO2 separation is easily achieved, the only operational penalty being the slight pressure losses required to circulate the carrier. CLC requires many unit operations involving gas-solid or granular flow. To utilize coal in the fuel reactor, in either a moving bed or bubbling fluidized bed, the granular flow is especially critical. The solid coal fuel must be heated by the recycled metal oxide, driving off moisture and volatile material. The remaining char must be gasified by H2O (or CO2), which is recycled from the product stream. The gaseous product of these reactions must then contact the MO before leaving the bed to obtain complete conversion to H2O and CO2. Further, the reduced M particles must be

  18. Mapping of Trace Elements in Coal and Ash Research Based on a Bibliometric Analysis Method Spanning 1971–2017

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2018-02-01

    Full Text Available Coal is the most important fossil energy used in China. The environmental impact of trace elements released in coal combustion has become one of the hottest issues in recent years. Based on a software named CiteSpace, and social network analysis (SNA, a bibliometric analysis of research into trace elements in coal and ash field during 1971–2017 is presented with the information of authors, countries, institutions, journals, hot issues and research trends in the present study. The study results indicate that: (1 Shifeng Dai, Robert B Finkelman, Guijian Liu and James C Hower have a large number of publications with great influence. (2 China (29.8% and USA (22.2% have high productivity in total publications. China and the USA correlate closely in the cooperative web system. (3 China University of Mining and Technology and Chinese Academy of Sciences take the leading position in the quantity of publications among all research institutions. (4 Energy and fuels, engineering and environmental science are three disciplines with the most studies in this field. (5 International Journal of Coal Geology, Fuel, Energy and Fuels and Fuel Processing Technology are the top four journals with the most publications in this field. (6 The enrichment origin and modes of occurrence of trace elements are the mainstream research related to trace elements in coal and ash. The environmental problems caused by coal combustion have promoted the development of trace elements in coal research, and human health is getting more and more popular in recent years. The study findings provide a better understanding of features of trace elements in coal and ash research, which could be taken as a reference for future studies in this field.

  19. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  20. Power technology complex for production of motor fuel from brown coals with power supply from NPPs

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Poplavskij, V.M.; Sidorov, G.I.; Bondarenko, A.V.; Chebeskov, A.N.; Chushkin, V.N.; Karabash, A.A.; Krichko, A.A.; Maloletnev, A.S.

    1998-01-01

    With the present-day challenge of efficient use of low-grade coals and current restructuring of coal industry in the Russian Federation, it is urgent to organise the motor fuel production by the synthesis from low grade coals and heavy petroleum residues. With this objective in view, the Institute of Physics and Power Engineering of RF Minatom and Combustible Resources Institute of RF Mintopenergo proposed a project of a standard nuclear power technology complex for synthetic liquid fuel (SLF) production using fast neutron reactors for power supply. The proposed project has two main objectives: (1) Engineering and economical optimization of the nuclear power supply for SLF production; and (2) Engineering and economical optimization of the SLF production by hydrogenisation of brown coals and heavy petroleum residues with a complex development of advanced coal chemistry. As a first approach, a scheme is proposed with the use of existing reactor cooling equipment, in particular, steam generators of BN-600, limiting the effect on safety of reactor facility operation at minimum in case of deviations and abnormalities in the operation of technological complex. The possibility to exclude additional requirements to the equipment for nuclear facility cooling was also taken into account. It was proposed to use an intermediate steam-water circuit between the secondary circuit sodium and the coolant to heat the technological equipment. The only change required for the BN-600 equipment will be the replacement of sections of intermediate steam superheaters at the section of main steam superheaters. The economic aspects of synthetic motor fuel production proposed by the joint project depend on the evaluation of integral balances: thermal power engineering, chemical technology, the development of advanced large scale coal chemistry of high profitability; utilisation of ash and precious microelements in waste-free technology; production of valuable isotopes; radical solution of

  1. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  2. Production of JET fuel containing molecules of high hydrogen content

    Directory of Open Access Journals (Sweden)

    Tomasek Sz.

    2017-12-01

    Full Text Available The harmful effects of aviation can only be reduced by using alternative fuels with excellent burning properties and a high hydrogen content in the constituent molecules. Due to increasing plastic consumption the amount of the plastic waste is also higher. Despite the fact that landfill plastic waste has been steadily reduced, the present scenario is not satisfactory. Therefore, the aim of this study is to produce JET fuel containing an alternative component made from straight-run kerosene and the waste polyethylene cracking fraction. We carried out our experiments on a commercial NiMo/Al2O3/P catalyst at the following process parameters: T=200-300°C, P=40 bar, LHSV=1.0-3.0 h-1, hydrogen/hydrocarbon ratio= 400 Nm3/m3. We investigated the effects of the feedstocks and the process parameters on the product yields, the hydrodesulfurization and hydrodearomatization efficiencies, and the main product properties. The liquid product yields varied between 99.7-99.8%. As a result of the hydrogenation the sulfur (1-1780 mg/kg and the aromatic contents (9.0-20.5% of the obtained products and the values of their smoke points (26.0-34.7 mm fulfilled the requirements of JET fuel standard. Additionally, the concentration of paraffins increased in the products and the burning properties were also improved. The freezing points of the products were higher than -47°C, therefore product blending is needed.

  3. Combined compressed air storage-low BTU coal gasification power plant

    Science.gov (United States)

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  4. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    (calcite and siderite directly contribute CO2 when they decompose during coal combustion. Variations in the maceral content can also influence CO2 emissions; high inertinite contents increase CO2 emissions. Sulphur in coal reduces EF(CO2. Fuel analysis is very important when estimating greenhouse gas emissions and emission factors. In this preliminary study, based on the results of the fuel analysis, CO2 emission factors for coals and peat from Livno, B&H have been calculated. EF(CO2 is defined as the amount of carbon dioxide emission per unit net calorific values of the fuel. Net calorific value (the lower heating value corresponds to the heat produced by combustion where total water in the combustion products exists as water vapour. The EF(CO2 obtained for sub-bituminous coal, lignite and peat were: 98.7, 109.5, and 147.9 t TJ−1, respectively, which correspond to the following net calorific values: 20.6, 11.5 and 3.6 MJ kg−1. The heating value is generally known to increase with the increase in carbon content (this parameter is connected with the degree of coalification, coal age. The other indispensable parameters are hydrogen, which has a positive effect on the net calorific value, and oxygen and water which impact the net calorific value negatively. The differences in net calorific values can be explained in part by the difference of total moisture content among the different fuel types. The CO2 emission factors calculated in this study were compared with those of IPCC. A significant difference was observed for peat (39.5 %, followed by lignite (8.2 % and sub-bituminous coal (4.3 %.

  5. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  6. Clean coal technology: coal's link to the future

    International Nuclear Information System (INIS)

    Siegel, J.S.

    1992-01-01

    Coal, the world's most abundant fossil fuel, is very important to the world's economy. It represents about 70% of the world's fossil energy reserves. It produces about 27% of the world's primary energy, 33% of the world's electricity, and it is responsible for about $21 billion in coal trade - in 1990, 424 million tons were traded on the international market. And, most importantly, because of its wide and even distribution throughout the world, and because of its availability, coal is not subject to the monopolistic practices of other energy options. How coal can meet future fuel demand in an economical, efficient and environmentally responsive fashion, with particular reference to the new technologies and their US applications is discussed. (author). 6 figs

  7. Techno-Economic Analysis of Camelina-Derived Hydroprocessed Renewable Jet Fuel and its Implications on the Aviation Industry

    Science.gov (United States)

    Shila, Jacob Joshua Howard

    Although the aviation industry contributes toward global economic growth via transportation of passengers and cargo, the increasing demand for air transportation causes concern due to the corresponding increase in aircraft engine exhaust emissions. Use of alternative fuels is one pathway that has been explored for reducing emissions in the aviation industry. Hydroprocessed renewable jet (HRJ) (also known as Hydroprocessed Esters and Fatty Acids - HEFA) fuels have been approved for blending with traditional jet fuel up to 50% by volume to be used as drop-in fuels. However, limited information exists on the economic viability of these fuels. While techno-economic studies have been conducted on the HRJ production process using soybean oil, different vegetable oils possess different hydrocarbon structures that affect the yield of HRJ fuels. This study involves the techno-economic analysis of producing Camelina-derived HRJ fuel using the option of hydro-deoxygenation (HDO). The hydrodeoxygenation option requires extra hydrogen and hence affects the overall cost of HRJ fuel production. Similar studies have been conducted on the production of Camelina-derived HRJ fuels using the same path of hydrodeoxygenation with minor contributions from both decarbonylation and decarboxylation reactions. This study, however, employs the UOP Honeywell procedure using the hydrodeoxygenation chemical reaction to estimate the breakeven price of Camelina-derived HRJ fuel. In addition, the study treats the cultivation of Camelina oilseeds, extraction of oilseeds, and the conversion of HRJ fuel as separate entities. The production of Camelina oilseed, Camelina oil, and finally Camelina-derived HRJ fuel is modeled in order to estimate the breakeven price of the fuel. In addition, the information obtained from the techno-economic analysis is used to assess the breakeven carbon price. All costs are analyzed based on 2016 US dollars. The breakeven price of Camelina oilseeds is found to be 228

  8. Calculating analysis of firing different composition artificial coal liquid fuels (ACLF) in the cyclone primary furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tsepenok, A. [Novosibirsk State Technological Univ. (Russian Federation); Joint Stock company ' ' ZiO-COTES' ' , Novosibirsk (Russian Federation); Ovchinnikov, Yu. [Novosibirsk State Technological Univ. (Russian Federation); Serant, F. [Joint Stock company ' ' ZiO-COTES' ' , Novosibirsk (Russian Federation)

    2013-07-01

    This chapter describes the preparation technologies, results of computer simulation of combustion processes in a cyclone primary furnace during firing of artificial coal liquid fuels prepared from different coal grades and results of live testing. As a result the values of unburned carbon, NO{sub x} emissions and other concentrations in the outlet section primary furnace were estimated.

  9. High temperature reactor: Driving force to convert CO2 to fuel - HTR2008-58132

    International Nuclear Information System (INIS)

    McCormick, J. L.

    2008-01-01

    The rapidly increasing cost of petroleum products and uncertainty of long-term supply have prompted the U.S. military to aggressively pursue production of alternative fuels (synfuels) such as coal-to-liquids (CTL). U.S. Air Force is particularly active in this effort while the entire military is involved in simultaneously developing fuel specifications for alternative fuels that enable a single fuel for the entire battle space; all ground vehicles, aircraft and fuel cells. By limiting its focus on coal, tar sands and oil shale resources, the military risks violating federal law which requires the use of synfuels that have life cycle greenhouse gas emissions less than or equal to emissions from conventional petroleum fuels. A climate-friendly option would use a high temperature nuclear reactor to split water. The hydrogen (H 2 ) would be used in the reverse water gas shift (RWGS) to react with carbon dioxide (CO 2 ) to produce carbon monoxide (CO) and water. The oxygen (O 2 ) would be fed into a supercritical (SC) coal furnace. The flue gas CO 2 emissions would be stripped of impurities before reacting with H 2 in a RWGS process. Resultant carbon monoxide (CO) is fed, with additional H2, (extra H 2 needed to adjust the stoichiometry: 2 moles H 2 to one mole CO) into a conventional Fischer-Tropsch synthesis (FTS) to produce a heavy wax which is cracked and isomerized and refined to Jet Propulsion 8 (JP-8) and Jet Propulsion 5 (JP-5) fuels. The entire process offers valuable carbon-offsets and multiple products that contribute to lower syn-fuel costs and to comply with the federal limitation imposed on syn-fuel purchases. While the entire process is not commercially available, component parts are being researched; their physical and chemical properties understood and some are state-of-the-art technologies. An international consortium should complete physical, chemical and economic flow sheets to determine the feasibility of this concept that, if pursued, has broad

  10. Annual bulletin of coal statistics for Europe. Vol. IX

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    Tables are presented giving the following information: Production, imports, exports, and deliveries of solid fuels with the subdivisions: hard coal, patent fuel, and cokeoven coke; gas coke; brown coal, brown coal briquets, and brown coal coke; and pech coal (hard brown coal produced in the area between the rivers Inn and Lech); Hard coal mines (structure of production, employment and productivity of labor); Brown coal mines (production, employment and productivity of labor); Imports of solid fuels, by country; Exports of solid fuels, by country; and Production of hydroelectric energy and natural gas, and deliveries of petroleum products for inland consumption.

  11. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  12. Clean coal technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    The oil- and gas-fired turbine combined-cycle penetration of industrial and utility applications has escalated rapidly due to the lower cost, higher efficiency and demonstrated reliability of gas turbine equipment in combination with fuel economics. Gas turbine technology growth has renewed the interest in the use of coal and other solid fuels in combined cycles for electrical and thermal energy production to provide environmentally acceptable plants without extra cost. Four different types of systems utilizing the gas turbine advantages with solid fuel have been studied: direct coal combustion, combustor processing, fuel processing and indirect cycles. One of these, fuel processing (exemplified by coal gasification), is emerging as the superior process for broad scale commercialization at this time. Advances in gas turbine design, proven in operation above 200 MW, are establishing new levels of combined-cycle net plant efficiencies up to 55% and providing the potential for a significant shift to gas turbine solid fuel power plant technology. These new efficiencies can mitigate the losses involved in gasifying coal and other solid fuels, and economically provide the superior environmental performance required today. Based on demonstration of high baseload reliability for large combined cycles (98%) and the success of several demonstrations of Integrated Gasification Combined Cycle (IGCC) plants in the utility size range, it is apparent that many commercial IGCC plants will be sites in the late 1990s. This paper discusses different gas turbine systems for solid fuels while profiling available IGCC systems. The paper traces the IGCC option as it moved from the demonstration phase to the commercial phase and should now with planned future improvements, penetrate the solid fuel power generation market at a rapid pace.

  13. Environmental Assessment for Lignite Fuel Enhancement Project, Coal Creek Station, Great River Energy, Underwood, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-01-16

    The US Department of Energy (DOE) has prepared this EA to assess the environmental impacts of the commercial application of lignite fuel enhancement. The proposed demonstration project would be implemented at Great River Energy's Coal Creek Station near Underwood, North Dakota. The proposed project would demonstrate a technology to increase the heating value of lignite and other high-moisture coals by reducing the moisture in the fuels. Waste heat that would normally be sent to the cooling towers would be used to drive off a percentage of the moisture contained within the lignite. Application of this technology would be expected to boost power-generating efficiencies, provide economic cost savings for lignite and sub-bituminous power plants, and reduce air emissions. The proposed project would be constructed on a previously disturbed site within the Coal Creek Station and no negative impacts would occur in any environmental resource area.

  14. Thermal stability and filterability of jet fuels containing PDR additives in small-scale tests and realistic rig simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bauldreay, J.M.; Clark, R.H.; Heins, R.J. [Shell Research, Ltd., Chester (United Kingdom)

    1995-05-01

    Specification, small-scale and realistic fuel simulation tests have addressed concerns about the impact of pipeline drag reducer (PDR) flow modifying additives on jet fuel handling and performance. A typical PDR additive tended to block filters which were similar to those used in the specification Jet Fuel Thermal Oxidation Tester (JFTOT) and other thermal stability test apparatus. Blockages reduced flow rates and PDR concentrations downstream of the filters. Consequently two PDR additives (A&B) were tested in JFTOT apparatus without the usual in-line pre-filters as part of a Ministry of Defense (MoD) co-ordinated Round Robin exercise. Some fuel/PDR additive combinations caused decreases in JFTOT breakpoints. Effects were additive- (type, concentration and degree of shear) and fuel-dependent; most failures were caused by filter blockages and not by a failing lacquer rating. In further work at Thornton, the thermal stability characteristics of similar fuel/additive combinations have been examined in non-specification tests. In Flask Oxidation Tests, PDR additives caused no significant increase in the liquid phase oxidation rates of the fuels. Additives were tested in the Single Tube Heat Transfer Rig (STHTR) which duplicates many of the conditions of a heat exchanger element in an engine`s fuel supply system. B produced an average two-fold decrease in thermal stability in a Merox fuel; A had no significant effect. In hydrotreated fuel, B reduced the thermal stability up to five-fold. A had little effect below 205{degrees}C, while at higher temperatures there may have been a marginal improvement in thermal stability. Again, certain jet fuel/PDR combinations were seen to reduce thermal stability.

  15. Human Health Assessment of Alcohol To Jet (ATJ) Synthetic Kerosenes

    Science.gov (United States)

    2016-07-30

    workplace . 15. SUBJECT TERMS Jet fuels, alternative fuels, synthetic kerosene, JP-8, biobased/bio-based, toxicity/toxicology, alcohol-to-jet, toxicity...ATJ fuels alone, or in a blend with petroleum-derived JP-8, is unlikely to increase human health risks in the military workplace . Therefore, the... pregnancy rate, gestation length, or number of pups per litter. The female-only exposure did result in decreased pup weights in the highest dose group

  16. Effects of JP-8 Jet Fuel on Homeostasis of Clone 9 Rat Liver Cells

    Science.gov (United States)

    Wilson, C. L.; Barhoumi, R.; Burghardt, R.; Miladi, A.; Jung, A.

    2000-01-01

    Chronic exposure to JP-8 and other kerosene-based petroleum distillates has been associated with hepatic, renal, neurologic, pulmonary, and immune toxicity. However, the effects of kerosene-type jet fuels on cellular homeostasis hitherto have not been reported. Fluorescence imaging using a Meridian Ultima laser scanning fluorescence microscope was used to evaluate the effect of JP-8 jet fuel on a communication competent rat liver cell line. Several endpoints of cellular function were measured including gap junctional intercellular communication (GJIC), mitochondrial and plasma membrane potential (MMP and PMP, respectively), intracellular glutathione (GSH) concentration, glutathione-S-transferase (GST) activity, and reactive oxygen species (ROS) generation. Cells were treated with JP-8 (0.01 to 2% in ethanol (EtOH)) for the following time points: 1 h, 24 h, 48 h, and analysis immediately after addition of jet fuel. GJIC analyzed directly after addition of 1% JP-8 was reduced 4.9-fold relative to EtOH-dosed control groups and further reduction (12.6-fold) was observed in cells treated for 1 h. Moreover, GJIC was not recoverable in cells treated with 1% JP-8 for 1 h and subsequently washed and incubated in fresh medium for 1 h. Significant changes in GSH content and GST activity were observed in cells analyzed directly after addition of 1% JP-8. GSH content increased in cells treated for 1 h with less than 2% JP-8 whereas treatment with 2% JP-8 for 1 h resulted in a 50% reduction in intracellular GSH relative to EtOH-dosed controls. Cells treated with 1% JP-8 for 48 h exhibited changes in GSH levels. However, higher JP-8 concentrations exhibited more pronounced changes in GSH and GST, which led to suppression of GSH synthesis. ROS increased in a dose-responsive fashion at JP-8 concentrations up to 1%, but decreased to 80% of control values at 2% and 3% JP-8. A 25% reduction in PMP was observed in cells treated for 1 h with 1% JP-8. In contrast, cells treated for 48 h

  17. U.S. DOE indirect coal liquefaction program: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R. [Dept. of Energy, Germantown, MD (United States); Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  18. Production of brown coal fuel dust as a high value and effective energy carrier for substituting heating oil, natural gas and black coal in the cement and metallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Kubasch, A.

    1985-01-01

    Poduction and industrial use of brown coal dust in the German Democratic Republic are reviewed. Dust production in 14 brown coal briquetting plants increased from 818.4 kt in 1980 to 2064 kt in 1984 and will exceed 4000 kt in 1990. Quality parameters of dusts according to the TGL 15380 industrial standard are listed. The railroad car loading and shipping technology is explained with the example of modern facilities of the Schwarze Pumpe briquetting plant: dust bunkers of 200 t storage capacity, pneumatic feeding and telescope discharge systems with nitrogen gas inertization, fire prevention, and railroad car cleaning equipment, rail track heating for improved winter loading conditions, etc. Since 1979 the Deuna, Karsdorf and Bernburg cement plants have been converted to brown coal dust combustion after installation of new fuel dust shipping, storage and combustion equipment. Substitution of heating oil and gas in metallurgical blast furnaces by brown coal dust is further described. Techogical advantages of the pneumatic KOSTE fuel feeding method are enumerated.

  19. Hydrodeoxygenation of coal using organometallic catalyst precursors

    Science.gov (United States)

    Kirby, Stephen R.

    2002-04-01

    The objective of this dissertation was to determine the desirability of organometallic compounds for the hydrodeoxygenation (HDO) of coal during liquefaction. The primary focus of this study was the removal of phenol-like compounds from coal liquids for the production of a thermally stable jet fuel. Investigation of the HDO ability of an organometallic compound containing both cobalt and molybdenum (CoMo-T2) was achieved using a combination of model compound and coal experiments. Model compounds were chosen representing four oxygen functional groups present in a range of coals. Electron density and bond order calculations were performed for anthrone, dinaphthyl ether, xanthene, di-t-butylmethylphenol, and some of their derivatives to ascertain a potential order of hydrogenolysis and hydrogenation reactivity for these compounds. The four model compounds were then reacted with CoMo-T2, as well as ammonium tetrathiomolybdate (ATTM). Products of reaction were grouped as compounds that had undergone deoxygenation, those that had aromatic rings reduced, those that were products of both reaction pathways, and those produced through other routes. ATTM had an affinity for both reaction types. Its reaction order for the four model compounds with respect to deoxygenated compounds was the same as that estimated from electron density calculations for hydrogenolysis reactivity. CoMo-T2 appeared to show a preference toward hydrogenation, although deoxygenated products were still achieved in similar, or greater, yields, for almost all the model compounds. The reactivity order achieved for the four compounds with CoMo-T2 was similar to that estimated from bond order calculations for hydrogenation reactivity. Three coals were selected representing a range of coal ranks and oxygen contents. DECS-26 (Wyodak), DECS-24 (Illinois #6), and DECS-23 (Pittsburgh #8) were analyzed by CPMAS 13C NMR and pyrolysis-GC-MS to determine the functional groups comprising the oxygen content of these

  20. Coproduction of transportation fuels in advanced IGCCs via coal and biomass mixtures

    International Nuclear Information System (INIS)

    Chen, Qin; Rao, Ashok; Samuelsen, Scott

    2015-01-01

    Highlights: • Coproduction of electricity and transportation fuels with carbon capture. • Switchgrass biomass is cofed with bituminous coal or lignite. • Cost of Fischer–Tropsch liquids is comparable to longer term price projections of crude oil. • Ethanol costs more than gasoline but greenhouse gas emissions will be lower. • Cost of hydrogen is lower than the DoE announced goal of $3/kg. - Abstract: Converting abundant fossil resources of coal to alternative transportation fuels is a promising option for countries heavily dependent on petroleum imports if plants are equipped with carbon capture for sequestration and cofed with biomass (30% by weight of the total feed on a dry basis), an essentially carbon neutral fuel, without penalizing the process economics excessively. A potential exists to improve both thermal efficiency and economics of such plants by taking advantage of the synergies of coproducing electricity using advanced technologies under development. Three types of transportation fuels are considered. Fischer–Tropsch (F–T) liquids consisting predominantly of waxes could be processed in existing refineries while displacing petroleum and the refined products introduced into the market place at the present time or in the near term without requiring changes to the existing infrastructure. Ethanol could potentially serve in the not so distant future (or phased in by blending with conventional liquid fuels). Hydrogen which could play a dominant role in the more distant future being especially suitable to the fuel cell hybrid vehicle (FCHV). Two types of coal along with biomass cofeed are evaluated; bituminous coal at $42.0/dry tonne, lignite at $12.0/dry tonne, and switchgrass at $99.0/dry tonne. The calculated cost for F–T liquids ranged from $77.8/bbl to $86.6/bbl (or $0.0177 to 0.0197/MJ LHV) depending on the feedstock, which is comparable to the projected longer term market price of crude oil at ∼$80/bbl when supply and demand reach a

  1. Effect of high surface area activated carbon on thermal degradation of jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  2. Recovery of value-added fossil resin from El-Maghara coal

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, S.S.; Mostafa, S.I. [Central Metallurgical R and D Inst., Cairo (Egypt)

    2003-06-01

    El-Maghara coal was confirmed to contain a substantial amount of fossil resin intimately associated with its macerals. Macroscopic identification as well as physical diagnosis of solvent refined resinite material proved its particular significance and sufficient value to justify a fossil resin industry in Egypt. This resin has thermosetting properties superior to most synthetics resins available from petrochemicals. It could compete in the market as a chemical commodity in high-speed printing and high-performance adhesive applications. It could have also special values as a feedstock for high-density jet fuel after proper hydrogenation. The froth flotation technique was applied to recover this valuable material from El-Maghara ground coal. The solvent extraction method using commercial solvents was used to refine the resinite fraction collected as flotation concentrate. The variables affecting the flotation technique were studied. Characterization of refined resin was applied. (orig.)

  3. Development of a measuring system for vapor-jet forms of small-sized fuel injectors; Kogata injector funmu keijo sokutei system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hibino, H; Komatsubara, H; Kawashima, O; Fujita, A [Aisan Industry Co. Ltd., Aichi (Japan)

    1997-10-01

    In the small-sized fuel injectors adapted to the United States` exhaust-gas regulation or the like, the vapor jet is extremely atomized and the jet form as one of the performances of the product has become more important than before. Accordingly, we have developed a measuring system in which the vapor jet of the small-sized fuel injector is irradiated with a flat laser light, the sectional form of the jet that is shining due to diffusion is sampled, and the distribution and the form of the sampled sections are determined by the image processing. 2 refs., 15 figs., 4 tabs.

  4. Comparative electrophysiological evaluation of hippocampal function following repeated inhalation exposures to JP-8, Jet A, JP-5, and the synthetic Fischer Tropsch fuel.

    Science.gov (United States)

    Rohan, Joyce G; McInturf, Shawn M; Miklasevich, Molly K; Gut, Chester P; Grimm, Michael D; Reboulet, James E; Howard, William R; Mumy, Karen L

    2018-01-01

    Exposure to fuels continues to be a concern in both military and general populations. The aim of this study was to examine effects of in vivo rat repeated exposures to different types of jet fuel utilizing microelectrode arrays for comparative electrophysiological (EP) measurements in hippocampal slices. Animals were exposed to increasing concentrations of four jet fuels, Jet Propellant (JP)-8, Jet A, JP-5, or synthetic Fischer Tropsch (FT) fuel via whole-body inhalation for 20 d (6 hr/d, 5 d/week for 28 d) and synaptic transmission as well as behavioral performance were assessed. Our behavioral studies indicated no significant changes in behavioral performance in animals exposed to JP-8, Jet A, or JP-5. A significant deviation in learning pattern during the Morris water maze task was observed in rats exposed to the highest concentration of FT (2000 mg/m 3 ). There were also significant differences in the EP profile of hippocampal neurons from animals exposed to JP-8, Jet A, JP-5, or FT compared to control air. However, these differences were not consistent across fuels or dose dependent. As expected, patterns of EP alterations in brain slices from JP-8 and Jet A exposures were more similar compared to those from JP-5 and FT. Further longitudinal investigations are needed to determine if these EP effects are transient or persistent. Such studies may dictate if and how one may use EP measurements to indicate potential susceptibility to neurological impairments, particularly those that result from inhalation exposure to chemicals or mixtures.

  5. Research on mechanism of and catalysts for extraction liquefaction of coal using coal-based solvents; Sekitankei yozai ni yoru sekitan no chushutsu ekika kiko to shokubai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    Papers of Professor Yoshio Kamiya of Tokyo University are compiled into this report. The list of the papers includes (1) Synthesis of heavy fuel oils from coal; (2) Research and development of coal liquefaction; (3) Dissolution reaction of coal by hydrogen-donating aromatic solvents (I); (4) Effect of hydrogen-donor solvent on the liquefaction of coal; (5) Recent studies on the chemical structure of solvent refined coal; (6) Dissolution reaction of coal by hydrogen-donating aromatic solvents (II); (7) Future of coal as energy material; (8), (9), (10) same as (6) in the subject discussed; (11) Recent studies on coal liquefaction catalysts; (12) Environmental problems and drain treatment to accompany processes of converting fossil resources into fuels; (13) Chemistry of coal oxidation; (14) Fractionation and analysis of solvent refined coal by gel permeation chromatography; (15) Current state of research and development of coal liquefaction; (16) Properties and components of coal oils from coal liquefaction processes under development; (17) Solvent effect of coal derived aromatic compounds on the liquefaction of Akabira coal; (18) Chemistry of coal liquefaction; (19) Research and development of coal liquefaction in the U.S.; (20) Thermal treatment of coal-related aromatic ethers in tetralin solution; (21) Recent technology of utilizing heavy carbon resources; (22) Chemical properties and reactivity of coal; (23) Current state and future of development of coal liquefaction processes; and (24) Development of overseas coal liquefaction projects. (NEDO)

  6. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  7. Influence of heavy crude oil refining about the mains characteristics of jet fuel; Influencia do refino de petroleos pesados sobre as principais caracteristicas do combustivel de aviacao

    Energy Technology Data Exchange (ETDEWEB)

    Om, Neyda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Cavado, Alberto; Reyes, Yordanka [Centro de Pesquisas do Petroleo, Cidade de Havana (Cuba); Salazar, Rodolfo [Centro de Eletromagnetismo Aplicado, Cidade de Havana (Cuba); Dominguez, Zulema [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    The aviation technology in the world, is to use gas turbines engines feted for fuel type Jet A1. The main exigency of quality for this products is concentrated in extreme security and secure answer during the functioning. The conductivity and thermal stability to oxidation are the principals characteristics to assure these quality exigencies. The use of additives is the methods most used for establish the quality for international specification. The incorporation of heavy crude oils in mixtures to produce fuels has caused a diminution of the quality of the derivatives produced. High viscosity, density and high sulfur content in the heavy crude oils affect some of properties of the jet fuel, influencing in its composition, increasing the mercaptanes and total sulfur content, getting a jet fuel unstable, with low conductivity and highly corrosive. So, for obtain the quality required internationally is necessary use additives. This paper study how the heavy crude oils affect the conductivity and the thermal stability of the jets fuels type Jet A1. Also analyze of the use of dissipater electrostatic and antioxidants additives, to improve these properties in the jet fuel. (author)

  8. Study of Cetane Properties of ATJ Blends Based on World Survey of Jet Fuels

    Science.gov (United States)

    2016-01-28

    FAME Fatty Acid Methyl Ester JP-8 Jet Propellant-8 max. Maximum OCONUS Outside the Contiguous United States PADD Petroleum Administration for...47.4 47.9 13 Jet A - FAME Sensitive 42.34 39.79 41.3 41 14 Jet A - PADD 1 49.39 48.48 48.5 45.7 15 Jet A - PADD 2 41.48 40.37 39.4 39.9 16 Jet A

  9. Coal comes clean

    International Nuclear Information System (INIS)

    Minchener, A.

    1991-01-01

    Coal's status as the dominant fuel for electricity generation is under threat because of concern over the environmental impacts of acid rain and the greenhouse effect. Sulphur dioxide and nitrogen oxides cause acid rain and carbon dioxide is the main greenhouse gas. All are produced when coal is burnt. Governments are therefore tightening the emission limits for fossil-fuel power plants. In the United Kingdom phased reductions of sulphur dioxide and nitrogen oxides emissions are planned. It will be the responsibility of the power generator to take the necessary steps to reduce the emissions. This will be done using a number of technologies which are explained and outlined briefly - flue gas desulfurization, separation of coal into high and low-sulphur coal, direct desulfurization of coal, circulating fluidised bed combustion, integrated-gasification combined cycle systems and topping cycles. All these technologies are aiming at cleaner, more efficient combustion of coal. (UK)

  10. Pellet fueling of JET plasmas during ohmic, ICRF and NBI heating

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Cheetham, A.; Bures, M.

    1986-01-01

    Pellet fueling experiments have been performed on JET using a single-shot pneumatic injector giving 4.6mm (4.5 x 10 21 D atoms) and 3.6mm (2.2 x 10 21 D atoms) diameter cylindrical deuterium pellets with velocity 0.8 ≤ V(km.s -1 ) ≤ 1.2. Z/sub eff/ 20 m -3 and T/sub e/(0) ≅ 1keV. Separately, high value of n/sub D/(0)tau/sub E/T/sub i/(0) = 1.3 x 10 20 m -3 .s.keV at T/sub i/90) = 6.5keV has been obtained with pellet fueling followed by NBI heating

  11. Combustion aerosols from co-firing of coal and solid recovered fuel in a 400 mw pf-fired power plant

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Wu, Hao; Jappe Frandsen, Flemming

    2010-01-01

    In this work, combustion aerosols (i.e. fine particles fired power plant was sampled with a low-pressure impactor, and analysed by transmission and scanning electron microscopy. The power plant was operated at both dedicated coal combustion conditions...... and under conditions with cofiring of up to 10% (thermal basis) of solid recovered fuel (SRF). The SRFs were characterized by high contents of Cl, Ca, Na and trace metals, while the coal had relatively higher S, Al, Fe and K content. The mass-based particle size distribution of the aerosols was found...... to be bi-modal, with an ultrafine (vaporization) mode centered around 0.1 μm, and a coarser (finefragmentation) mode above 2 μm. Co-firing of SRF tended to increase the formation of ultrafine particles as compared with dedicated coal combustion, while the coarse mode tended to decrease. The increased...

  12. The comparative analysis of heat transfer efficiency in the conditions of formation of ash deposits in the boiler furnaces, with taking into account the crystallization of slag during combustion of coal and water-coal fuel

    Science.gov (United States)

    Salomatov, V. V.; Kuznetsov, G. V.; Syrodoy, S. V.

    2017-11-01

    The results of the numerical simulation of heat transfer from the combustion products of coal and coal-water fuels (CWF) to the internal environment. The mathematical simulation has been carried out on the sample of the pipe surfaces of the combustion chamber of the boiler unit. The change in the characteristics of heat transfer (change of thermochemical characteristics) in the conditions of formation of the ash deposits have been taken into account. According to the results of the numerical simulation, the comparative analysis of the efficiency of heat transfer has been carried out from the furnace environment to the inside pipe coolant (water, air, or water vapor) from the combustion of coal and coal-water fuels. It has been established that, in the initial period of the boiler unit operation during coal fuel combustion the efficiency of heat transfer from the combustion products of the internal environment is higher than when using CWF. The efficiency of heat transfer in CWF combustion conditions is more at large times (τ≥1.5 hours) of the boiler unit. A significant decrease in heat flux from the combustion products to the inside pipe coolant in the case of coal combustion compared to CWF has been found. It has been proved that this is due primarily to the fact that massive and strong ash deposits are formed during coal combustion.

  13. Dermal exposure to jet fuel JP-8 significantly contributes to the production of urinary naphthols in fuel-cell maintenance workers.

    Science.gov (United States)

    Chao, Yi-Chun E; Kupper, Lawrence L; Serdar, Berrin; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2006-02-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure.

  14. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways.

    Science.gov (United States)

    Han, Jeongwoo; Tao, Ling; Wang, Michael

    2017-01-01

    To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H 2 options for STJ via catalytic conversion are investigated: external H 2 from natural gas (NG) steam methane reforming (SMR), in situ H 2 , and H 2 from biomass gasification. Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn- and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H 2 from NG SMR or 71% with H 2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO 2 e/MJ than those estimated with an energy allocation method. Corn- and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol

  15. A life cycle assessment of pennycress (Thlaspi arvense L.) -derived jet fuel and diesel

    International Nuclear Information System (INIS)

    Fan, Jiqing; Shonnard, David R.; Kalnes, Tom N.; Johnsen, Peter B.; Rao, Serin

    2013-01-01

    Field Pennycress (Thlaspi arvense L.) is a member of the mustard family and may be grown as a winter crop between traditional summer crops to produce renewable biomass for renewable diesel and jet fuel. This paper estimated total annual biofuel production potential of 15 million cubic metres from rotation between corn and soybeans on 16.2 million hectares in the Midwest without impact on food production. This study also investigated the life cycle greenhouse gas (GHG) emissions and energy balance of pennycress-derived Hydroprocessed Renewable Jet (HRJ) fuel and Renewable Diesel (RD). Both system expansion and allocation approaches were applied to distribute environmental impacts among products and co-products along the life cycle of each biofuel. The life cycle GHG emissions (excluding land use change) for RD and HRJ range from 13 to 41 g MJ −1 (CO 2 eq.) and −18 to 45 g MJ −1 (CO 2 eq.), respectively, depending on how the co-products are credited. The majority of the energy required for each biofuel product is derived from renewable biomass as opposed to non renewable fossil. The fossil energy consumptions are considerably lower than the petroleum fuels. Scenario analyses were also conducted to determine response to model assumptions, including nitrogen fertilizer application rate, nitrogen content in crop residues, and sources of H 2 . The results show that pennycress derived biofuels could qualify as advanced biofuels and as biomass-based diesel as defined by the Renewable Fuels Standard (RFS2). -- Highlights: ► Estimated total pennycress derived biofuel production potential of 15 GL y −1 ► Rotation between corn and soybeans without impact on food production. ► The GHG of RD and HRJ show over 50% of reductions compared to petroleum baseline. ► The majority of the energy required is from renewable biomass. ► The fossil energy consumptions are considerably lower than the petroleum fuels

  16. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.

    Science.gov (United States)

    Merchant-Borna, Kian; Rodrigues, Ema G; Smith, Kristen W; Proctor, Susan P; McClean, Michael D

    2012-07-01

    Jet propulsion fuel-8 (JP-8) is the primary jet fuel used by the US military, collectively consuming ~2.5 billion gallons annually. Previous reports suggest that JP-8 is potentially toxic to the immune, respiratory, and nervous systems. The objectives of this study were to evaluate inhalation exposure to JP-8 constituents among active duty United States Air Force (USAF) personnel while performing job-related tasks, identify significant predictors of inhalation exposure to JP-8, and evaluate the extent to which surrogate exposure classifications were predictive of measured JP-8 exposures. Seventy-three full-time USAF personnel from three different air force bases were monitored during four consecutive workdays where personal air samples were collected and analyzed for benzene, ethylbenzene, toluene, xylenes, total hydrocarbons (THC), and naphthalene. The participants were categorized a priori into high- and low-exposure groups, based on their exposure to JP-8 during their typical workday. Additional JP-8 exposure categories included job title groups and self-reported exposure to JP-8. Linear mixed-effects models were used to evaluate predictors of personal air concentrations. The concentrations of THC in air were significantly different between a priori exposure groups (2.6 mg m(-3) in high group versus 0.5 mg m(-3) in low, P fuel distribution/maintenance, though self-reported exposure to JP-8 was an even stronger predictor of measured exposure in models that explained 72% (THC) and 67% (naphthalene) of between-worker variability. In fact, both self-report JP-8 exposure and a priori exposure groups explained more between-worker variability than job categories. Personal exposure to JP-8 varied by job and was positively associated with the relative humidity. However, self-reported exposure to JP-8 was an even stronger predictor of measured exposure than job title categories, suggesting that self-reported JP-8 exposure is a valid surrogate metric of exposure when

  17. Chemical characteristics of Upper Cretaceous (Turonian) jet of the Gosau Group of Gams/Hieflau (Styria, Austria)

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel, A.; Gratzer, R.; Sachsenhofer, R.F. [Institut fuer Geowissenschaften, Prospektion und Angewandte Sedimentologie, Montanuniversitaet Leoben, Peter-Tunner-Str. 5, A-8700 Leoben (Austria)

    2001-03-01

    Jet and coaly sediments within the Upper Cretaceous (Gosau) Schoenleiten Formation were collected from two outcrops near Gams/Hieflau (Styria, Austria). For comparison, additional jet and coal samples from different Gosau localities were included in the study. The identification of jet as bituminous driftwood (collotelinite) has been provided by microscopical examination of organic matter [Kollmann, H.A. and Sachsenhofer, R.F., Mitt. Ref. Geol. und Palaeont. Landesmuseum Joanneum SH 2 (1998) 223]. Rock-Eval analyses revealed enhanced HI and lower T{sub max} values of jet compared with the coals and coaly shales. The results reflect the higher contents of bituminous organic matter compared to vitrain-rich coals of similar maturity. In comparison with the coals and coaly shales, high amounts of liberated hydrocarbons (mg HC/g C{sub org}) are in contrast to generally lower yields of soluble organic matter during extraction with dichloromethane, indicating that portions of the hydrocarbons are liberated from lipids loosely bound to kerogen during pyrolysis. Further differences in n-alkane distribution patterns, odd over even predominance, pristane/phytane, and pristane/n-C{sub 17} ratios exist between jet, coals and coaly shales. The microbial origin of short-chain n-alkanes presumably resulted from the degradation of the predominant odd-numbered long-chain n-alkanes within the jet. The occurrence of biological markers (sesqui and diterpenoids) within the sediments (coaly shales), coals and jet samples indicates the origin of terrestrial organic matter from conifers. Biomarker composition of jet samples indicates enhanced aromatisation of sesqui and diterpenoids. These results correspond to enhanced aromatisation of steranes, as reflected by generally higher relative contents of triaromatic steroids in the jet. Because of comparable maturation (0.5-0.6% R{sub r}) of the coals, coaly shales and the jet samples, confirmed by the isomerisation of {alpha}{beta} C{sub 31

  18. Ignition of an organic water-coal fuel droplet floating in a heated-air flow

    Science.gov (United States)

    Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.

    2017-01-01

    Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.

  19. A new South Africa: coal exports in transition

    Energy Technology Data Exchange (ETDEWEB)

    Botha, R.F. [Ministry of Mineral and Energy Affairs (South Africa)

    1995-11-01

    Discusses aspects of the coal industry in South Africa particularly in the light of the recent political changes i.e. the ending of apartheid and the election of the South African Government of National Unity. Areas covered include: increased foreign investment; the Government`s Reconstruction and Development Programme; improved health and safety; production of coal based liquid fuels; coal reserves; power generation; and exports and terminal facilities.

  20. Motor fuels made by direct liquefaction of coal, peat and biomass. Drivmedel genom direktfoervaetskning av kol, torv och biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Granath, L; Karlsson, G; Karlsson, G; Nilsson, T

    1981-01-01

    The Department of Chemical Technology at the Royal Institute of Technology has completed a system study concerning direct liquefaction of peat and biomass to produce transportation fuel. A comprehensive survey of coal liquefaction is included. Gasoline produced in Sweden from direct liquefaction of imported coal may compete with regular gasoline at the earliest around 1985. Biomass can become a competitive alternative to black coal at the beginning of the 21st century. Methanol can be produced from wood with a higher efficiency than the transportation fuels which are produced by direct liquefaction. The peat is not good source for liquefaction as wood chips. A continuously working liquefaction plant designed also for peat among other substances is under construction at the Royal Institute of Technology, Stockholm.

  1. Comparison of costs of electricity generation based on nuclear energy and pit coal

    International Nuclear Information System (INIS)

    1981-01-01

    Despite of a meanwhile considerable increase in costs of installation, especially of nuclear power stations, the differences in costs have increased in favour of nuclear electricity generation. The cost advantages are estimated 4 German Pfennig per kilowatt-hour in the base-load field for plants coming into operation at the end of this decade compared with the most profitable variant of pit coal utilization on which this investigation is based; compared to the use of German hard coal, assuming a relatively optimistic development of prices for domestic hard coal in the future, the cost advantage is estimated 8 German Pfennig per kilowatt-hour. The main reason is that in the past years the price for German hard coal as well as for imported coal considerably rose and for the future further increases have to be expected whereas the largest share of the costs of nuclear electricity generation doesn't increase, after the plant is completed. Considering the importance of the fuel costs within the total costs of electricity generation in coal power stations this must have its effects on the total result. These results also prove to be valid for a variation of important cost parameters. Only if the unlikely assumption that considerable variations of influences on costs - each unfavourable effecting nuclear electricity generation - would come together would prove to be true the economic efficiency of nuclear energy would be reduced or questioned. (UA) [de

  2. Investigations on autothermal reforming of kerosene Jet A-1 for supplying solid oxide fuel cells (SOFC); Untersuchungen zur autothermen Reformierung von Kerosin Jet A-1 zur Versorgung oxidkeramischer Festelektrolyt-Brennstoffzellen (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, B.

    2007-01-25

    The auxiliary power unit of commercial aircraft is a gas turbine producing electric power with an efficiency of 18 %. This APU can be replaced by a fuel cell system, consisting of an autothermal kerosene reformer and a solid oxide fuel cell (SOFC). The fuel is kerosene Jet A-1. The autothermal reforming of Jet A-1 is practically investigated under variation of steam-to-carbon-ratio, air ratio, space velocity, time in operation and reactor pressure on commercial catalysts. Using stationary system simulation the thermodynamic processes of the device is investigated. Finally, the autothermal reformer and the SOFC consisting of 14 cells are coupled. During this test series, I-V-characteristics are measured, fuel utilisation is calculated and the self-sufficient system operation is shown. (orig.)

  3. Effect of additives on the formation of insolubles in a jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.D. [Wright Lab., Wright-Patterson AFB, OH (United States); Jones, E.G.; Goss, L.P.; Balster, W.J. [Systems Research Laboratories, Inc., Dayton, OH (United States)

    1995-05-01

    Dynamic near-isothermal techniques have proven to be valuable in assessing the tendency of aviation fuels to form surface and bulk insolubles under thermal stress. These methods are applied in this study to the investigation of the neat Jet-A fuel POSF-2827 and changes introduced by a series of four candidate additives. In each case fuel is stressed while flowing through a heat exchanger under near-isothermal conditions at 185{degrees}C. The average surface deposition rate as a function of stress duration and the quantity of both surface and bulk insolubles have been determined after complete consumption of the dissolved oxygen. The additives, introduced individually, include a common antioxidant, a metal deactivator, a dispersant, and a combination detergent/dispersant. Of the four additives, only the dispersant-types are found to improve fuel thermal stability.

  4. Observer-Based Fuel Control Using Oxygen Measurement. A study based on a first-principles model of a pulverized coal fired Benson Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Palle; Bendtsen, Jan Dimon; Mortensen, Jan Henrik; Just Nielsen, Rene; Soendergaard Pedersen, Tom [Aalborg Univ. (Denmark). Dept. of Control Engineering

    2005-01-01

    This report describes an attempt to improve the existing control of coal mills used at the Danish power plant Nordjyllandsvaerket Unit 3. The coal mills pulverize raw coal to a fine-grained powder, which is injected into the furnace of the power plant. In the furnace the coal is combusted, producing heat, which is used for steam production. With better control of the coal mills, the power plant can be controlled more efficiently during load changes, thus improving the overall availability and efficiency of the plant. One of the main difficulties from a control point of view is that the coal mills are not equipped with sensors that detect how much coal is injected into the furnace. During the project, a fairly detailed, non-linear differential equation model of the furnace and the steam circuit was constructed and validated against data obtained at the plant. It was observed that this model was able to capture most of the important dynamics found in the data. Based on this model, it is possible to extract linearized models in various operating points. The report discusses this approach and illustrates how the model can be linearized and reduced to a lower-order linear model that is valid in the vicinity of an operating point by removing states that have little influence on the overall response. A viable adaptive control strategy would then be to design controllers for each of these simplified linear models, i.e., the control loop that sets references to the coal mills and feedwater, and use the load as a separate input to the control. The control gains should then be scheduled according to the load. However, the variations and uncertainties in the coal mill are not addressed directly in this approach. Another control approach was taken in this project, where a Kalman filter based on measurements of air flow blown into the furnace and the oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate

  5. Worldwide Life Cycle Analysis (LCA) of Greenhouse Gas (GHG) Emissions from Petroleum Jet Fuel

    Science.gov (United States)

    2017-11-09

    The main objective of this project was to calculate greenhouse gas emissions estimates for petroleum jet fuels for the recent past and for future scenarios in the coming decades. Results were reported globally and broken out by world regions, and the...

  6. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Roberts, William L.; Fang, Tiegang

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2

  7. Prospects For Coal And Clean Coal Technologies In Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    The coal sector in Kazakhstan is said to have enough reserves to last over 100 years, but the forecasted reserves are expected to last several hundreds of years. This makes investing in the fuel and energy sector of the country an attractive option for many international and private organisations. The proven on-shore reserves will ensure extraction for over 30 years for oil and 75 years for gas. The future development of the domestic oil sector depends mainly on developing the Kazakh sector of the Caspian Sea. The coal sector, while not a top priority for the Kazakh government, puts the country among the world's top ten coal-rich countries. Kazakhstan contains Central Asia's largest recoverable coal reserves. In future, the development of the raw materials base will be achieved through enriching and improving the quality of the coal and the deep processing of coal to obtain fluid fuel and synthetic substances. Developing shale is also topical. The high concentration of methane in coal layers makes it possible to extract it and utilise it on a large scale. However, today the country's energy sector, which was largely established in the Soviet times, has reached its potential. Kazakhstan has about 18 GW of installed electricity capacity, of which about 80% is coal fired, most of it built before 1990. Being alert to the impending problems, the government is planning to undertake large-scale modernisation of the existing facilities and construct new ones during 2015-30. The project to modernise the national electricity grid aims to upgrade the power substations to ensure energy efficiency and security of operation. The project will result in installation of modern high-voltage equipment, automation and relay protection facilities, a dispatch control system, monitoring and data processing and energy management systems, automated electricity metering system, as well as a digital corporate telecommunication network.

  8. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    KAUST Repository

    Chen, Bingjie

    2016-06-23

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  9. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels

    KAUST Repository

    Chen, Bingjie; Togbé , Casimir; Wang, Zhandong; Dagaut, Philippe; Sarathy, Mani

    2016-01-01

    Understanding species evolution upon gasoline fuel oxidation can aid in mitigating harmful emissions and improving combustion efficiency. Experimentally measured speciation profiles are also important targets for surrogate fuel kinetic models. This work presents the low- and high-temperature oxidation of two alkane-rich FACE gasolines (A and C, Fuels for Advanced Combustion Engines) in a jet-stirred reactor at 10. bar and equivalence ratios from 0.5 to 2 by probe sampling combined with gas chromatography and Fourier Transformed Infrared Spectrometry analysis. Detailed speciation profiles as a function of temperature are presented and compared to understand the combustion chemistry of these two real fuels. Simulations were conducted using three surrogates (i.e., FGA2, FGC2, and FRF 84), which have similar physical and chemical properties as the two gasolines. The experimental results reveal that the reactivity and major product distributions of these two alkane-rich FACE fuels are very similar, indicating that they have similar global reactivity despite their different compositions. The simulation results using all the surrogates capture the two-stage oxidation behavior of the two FACE gasolines, but the extent of low temperature reactivity is over-predicted. The simulations were analyzed, with a focus on the n-heptane and n-butane sub-mechanisms, to help direct the future model development and surrogate fuel formulation strategies.

  10. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  11. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  12. The production of high load coal-water mixtures on the base of Kansk-Achinsk Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, Y.; Bruer, G.; Kolesnikova, S. [Research and Design Institute for Problems of Development of Kansk-Achinsk Coal Basin (KATEKNilugol), Krasnoyarsk (Russian Federation)

    1995-12-01

    The results of the {open_quotes}KATEKNIIugol{close_quotes} work on the problems of high load coal-water mixtures are given in this article. General principles of the mixture production, short characteristics of Kansk-Achinsk coals, the experimental results of the coal mixture production on a test-industrial scale, the suspension preparation on the base of coal mixtures, technical-economical indexes of tested coal pipeline variants based on Kansk-Achinsk coals are described.

  13. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Richard [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Michael [Battelle Memorial Inst., Columbus, OH (United States); Argumedo, Darwin [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Winecki, Slawomir [Battelle Memorial Inst., Columbus, OH (United States); Johnson, Kathryn [Battelle Memorial Inst., Columbus, OH (United States); Lane, Ann [Battelle Memorial Inst., Columbus, OH (United States); Riordan, Daniel [Battelle Memorial Inst., Columbus, OH (United States)

    2017-08-31

    REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.

  14. Chlorine in solid fuels fired in pulverized fuel boilers sources, forms, reactions, and consequences: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    David A. Tillman; Dao Duong; Bruce Miller [Foster Wheeler North America Corp. (United States)

    2009-07-15

    Chlorine is a significant source of corrosion and deposition, both from coal and from biomass, and in PF boilers. This investigation was designed to highlight the potential for corrosion risks associated with once-through units and advanced cycles. The research took the form of a detailed literature investigation to evaluate chlorine in solid fuels: coals of various ranks and origins, biomass fuels of a variety of types, petroleum cokes, and blends of the above. The investigation focused upon an extensive literature review of documents dating back to 1991. The focus is strictly corrosion and deposition. To address the deposition and corrosion issues, this review evaluates the following considerations: concentrations of chlorine in available solid fuels including various coals and biomass fuels, forms of chlorine in those fuels, and reactions - including reactivities - of chlorine in such fuels. The assessment includes consideration of alkali metals and alkali earth elements as they react with, and to, the chlorine and other elements (e.g., sulfur) in the fuel and in the gaseous products of combustion. The assessment also includes other factors of combustion: for example, combustion conditions including excess O{sub 2} and combustion temperatures. It also considers analyses conducted at all levels: theoretical calculations, bench scale laboratory data and experiments, pilot plant experiments, and full scale plant experience. Case studies and plant surveys form a significant consideration in this review. The result of this investigation focuses upon the concentrations of chlorine acceptable in coals burned exclusively, in coals burned with biomass, and in biomass cofired with coal. Values are posited based upon type of fuel and combustion technology. Values are also posited based upon both first principles and field experience. 86 refs., 8 figs., 7 tabs.

  15. Breakup of jet and drops during premixing phase of fuel coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haraldsson, Haraldur Oskar

    2000-05-01

    During the course of a hypothetical severe accident in a light water reactor, molten liquid may be introduced into a volatile coolant, which, under certain conditions, results in explosive interactions. Such fuel-coolant interactions (FCI) are characterised by an initial pre-mixing phase during which the molten liquid, metallic or oxidic in nature, undergoes a breakup (fragmentation) process which significantly increase the area available for melt-coolant contact, and thus energy transfer. Although substantial progress in the understanding of phenomenology of the FCI events has been achieved in recent years, there remain uncertainties in describing the primary and secondary breakup processes. The focus of this work is on the melt jet and drop breakup during the premixing phase of FCI. The objectives are to gain insight into the premixing phase of the FCI phenomena, to determine what fraction of the melt fragments and determine the size distribution. The approach is to perform experiments with various simulant materials, at different scales, different conditions and with variation of controlling parameters affecting jet and drop breakup processes. The analysis approach is to investigate processes at different level of detail and complexity to understand the physics, to rationalise experimental results and to develop and validate models. In the first chapter a brief introduction and review of the status of the FCI phenomena is performed. A review of previous and current experimental projects is performed. The status of the experimental projects and major findings are outlined. The first part of the second chapter deals with experimental investigation of jet breakup. Two series of experiments were performed with low and high temperature jets. The low temperature experiments employed cerrobend-70 as jet liquid. A systematic investigation of thermal hydraulic conditions and melt physical properties on the jet fragmentation and particle debris characteristics was

  16. A SOFC-based integrated gasification fuel cell cycle with CO2 capture

    NARCIS (Netherlands)

    Spallina, V.; Romano, M.C.; Campanari, S.; Lozza, G.

    2011-01-01

    The application of solid oxide fuel cells (SOFC) in gasification-based power plants would represent a turning point in the power generation sector, allowing to considerably increase the electric efficiency of coal-fired power stations. Pollutant emissions would also be significantly reduced in

  17. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-03-31

    Proposed activities for quarter 7 (12/15/01-3/14/2002): (1) Incorporation of moisture model into PCGC2 code. Parametric study of moisture effects on flame structure and pollutants emissions in cofiring of coal and Liter Biomass (LB) (Task 4); (2) Use the ash tracer method to determine the combustion efficiency and comparison it to results from gas analysis (Task 2); (3) Effect of swirl on combustion performance (Task 2); (4) Completion of the proposed modifications to the gasifier setup (Task 3); (5) Calibration of the Gas Chromatograph (GC) used for measuring the product gas species (Task 3); and (6) To obtain temperature profiles for different fuels under different operating conditions in the fixed bed gasifier (Task 3).

  18. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  19. Coal: an economic source of energy

    International Nuclear Information System (INIS)

    Ali, I.; Ali, M.M.

    2001-01-01

    Coal, in spite its abundance availability in Pakistan, is a neglected source of energy. Its role as fuel is not more than five percent for the last four decades. Some of the coal, mined, in used as space heating in cold areas of Pakistan but more than 90% is being used in brick kilns. There are 185 billion tonnes of coal reserves in the country and hardly 3 million tonnes of coal is, annually, mined. Lakhra coal field is, presently, major source of coal and is considered the largest productive/operative coal field of Pakistan. It is cheaper coal compared to other coals available in Pakistan. As an average analysis of colas of the country, it shows that most of the coals are lignitic in nature with high ash and sulfur content. The energy potential is roughly the same but the cost/ton of coal is quite different. It may be due to methods of mining. There should be some criteria for fixing the cost of the coal. It should be based on energy potential of unit mass of coal. (author)

  20. Use of pyrolysis gases from biogenic fuels as reductionfuels in coal dust furnaces; Einsatz von Pyrolysegasen aus biogenen Brennstoffen als Reduktionsbrennstoff in Kohlestaubfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Ruediger, H; Greul, U; Spliethoff, H; Hein, K R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen (IVD)

    1997-12-31

    Co-combustion of refuse-derived fuels in the form of pyrolysis gases, with coal as primary fuel, has advantages in terms of fuel ash separation and nitric oxide emissions. Biomass or sewage sludge is degassed in a pyrolysis reactor, and the gas is used as secondary fuel in a coal dust furnace. The authors investigated the influence of reaction temperature, fuel moisture and reaction atmosphere in the pyrolysis stage on the product fractions gas, tar, and residual fuel, as well as the suitability of the resulting pyrolysis gas as secondary fuel in a coal dust furnace for the purpose of reducing nitric oxide emissions. (orig) [Deutsch] Ein am IVD betriebenes Konzept der Mitverbrennung von Brennstoffen in Form von Pyrolysegasen bietet Vorteile bezueglich der Trennung der Brennstoffaschen und Stickoxidemissionen bei der Feuerung des Primaerbrennstoffes Steinkohle. Biomasse oder Klaerschlamm wird hierbei in einem Pyrolysereaktor engast und gasfoermig als Sekundaerbrennstoff in einer Kohlenstaubfeuerung eingesetzt. Untersuchungsschwerpunkte in der Pyrolysestufe des Prozesses waren die Einfluesse von Reaktionstemperatur, Brennstofffeuchte und Reaktionsatmosphaere auf die Produktfraktionen Gas, Teer und Restbrennstoff sowie die Eignung des erzeugten Pyrolysegases als Sekundaerbrennstoff in einer Kohlenstaubfeuerung zur Senkung derKohlendioxidemissione. (orig)

  1. Use of pyrolysis gases from biogenic fuels as reductionfuels in coal dust furnaces; Einsatz von Pyrolysegasen aus biogenen Brennstoffen als Reduktionsbrennstoff in Kohlestaubfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Ruediger, H.; Greul, U.; Spliethoff, H.; Hein, K.R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen (IVD)

    1996-12-31

    Co-combustion of refuse-derived fuels in the form of pyrolysis gases, with coal as primary fuel, has advantages in terms of fuel ash separation and nitric oxide emissions. Biomass or sewage sludge is degassed in a pyrolysis reactor, and the gas is used as secondary fuel in a coal dust furnace. The authors investigated the influence of reaction temperature, fuel moisture and reaction atmosphere in the pyrolysis stage on the product fractions gas, tar, and residual fuel, as well as the suitability of the resulting pyrolysis gas as secondary fuel in a coal dust furnace for the purpose of reducing nitric oxide emissions. (orig) [Deutsch] Ein am IVD betriebenes Konzept der Mitverbrennung von Brennstoffen in Form von Pyrolysegasen bietet Vorteile bezueglich der Trennung der Brennstoffaschen und Stickoxidemissionen bei der Feuerung des Primaerbrennstoffes Steinkohle. Biomasse oder Klaerschlamm wird hierbei in einem Pyrolysereaktor engast und gasfoermig als Sekundaerbrennstoff in einer Kohlenstaubfeuerung eingesetzt. Untersuchungsschwerpunkte in der Pyrolysestufe des Prozesses waren die Einfluesse von Reaktionstemperatur, Brennstofffeuchte und Reaktionsatmosphaere auf die Produktfraktionen Gas, Teer und Restbrennstoff sowie die Eignung des erzeugten Pyrolysegases als Sekundaerbrennstoff in einer Kohlenstaubfeuerung zur Senkung derKohlendioxidemissione. (orig)

  2. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  3. Measuring Single-Domain Antibody Interactions with Epitopes in Jet Fuel Using Microscale Thermophoresis

    Science.gov (United States)

    2015-01-01

    hearing loss in rats. J. Toxicol. Environ. Health A. 75(5): 299–317. Itah, A. Y., A. A. Brooks, B. O. Ogar, and A. B. Okure. 2009. Biodegradation of...international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems. Bull. Environ. Contam. Toxicol. 83(3

  4. Catalytic Tandem Reaction for the Production of Jet and Diesel Fuel Range Alkanes

    DEFF Research Database (Denmark)

    Li, Hu; Gui, Zhenyou; Yang, Song

    2018-01-01

    Jet and diesel fuels are typically composed of C9-C14 and C12-C20 hydrocarbons, respectively, but the carbon-chain length of sugar-derived aldehydes and furanic compounds is no longer than C6. Here, a cascade catalytic process involving alkylation and hydrodeoxygenation (HDO) of 2-methylfuran (2-MF...

  5. The application of the coal grain analysis method to coal liberation studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Firth, B.; Adair, B. [CSIRO Earth Science & Resource Engineering Brisbane, Qld. (Australia)

    2011-07-01

    Emerging coal markets such as the use of coal for conversion to liquid fuels and its use in fuels cells and as coal water slurries in diesel engines require coal products with different coal quality specifications than those applicable to traditional coal markets of coke making and conventional power generation. As well as quantifying coals in terms of their chemical and physical properties, detailed knowledge of the mineral inclusions within the coal particles is required to identify coals that are suited to economically produce the low-ash value coals required for these markets. After mining and processing, some particles can consist of essentially pure components of a single maceral or mineral phase whilst others are composite particles that are comprised of varying amounts of macerals and minerals. The proportion of particles that are present as pure components or as composites will be a function of the characteristics of the coal and the particle size. In general, it is considered that size reduction will result in liberation and hence increased yield. The amount of liberation that occurs during crushing or grinding a coal is however coal specific. Particle characterization information provided by an optical microscopic-imaging method, Coal Grain Analysis, was used to identify coals that might benefit from additional crushing to improve recovery of clean coal by new density separation techniques and by flotation. As expected, the results of these studies suggest that the degree of liberation that is obtained is coal specific, and, hence, yield improvements are also coal specific. Hence a quantitative method of investigating this issue is required.

  6. Fossil fuel energy resources of Ethiopia: Coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wolela, Ahmed [Department of Petroleum Operations, Ministry of Mines and Energy, Kotebe Branch Office, P. O. Box-486, Addis Ababa (Ethiopia)

    2007-11-22

    The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE-SSW and NNW-SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone-coal-shale and mudstone-coal-shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian-Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3-0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy. (author)

  7. Coal technology in a sustainable society

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Coal is a major world energy resource. For many countries it is the primary fuel in electricity generation. As world energy demand increases so also will the demand for coal. Steel and aluminium-essential elements in the fabric of modern society -also rely heavily on coal. This article points out that the Australian coal industry is responding to the challenges facing coal by investigating a sustainable development strategy and examining the full life cycle outcomes of coal as fuel and reductant. The challenge is to deliver much more efficient ways of extracting energy from coal. The most effective strategies are seen to be: ash displacement credits, synergies with renewables and integration with other industries

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  9. Thermometric Titration for Rapid Determination of Trace Water in Jet Fuel

    OpenAIRE

    Hu, Jian-Qiang; Zhang, Jian-Jian; Yang, Shi-Zhao; Xin, Yong-Liang; Guo, Li; Yao, Ting

    2017-01-01

    Water content in jet fuels is detected by thermometric titration (TMT), and the optimal detected system is 2,2-dimethoxypropane as titrant, cyclohexane and isopropanol as titration solvents, and methanesulfonic acid as catalyst in this method. The amounts of oil, concentration and delivery rate of titrant, volumes, and the reliability and accuracy of thermometric titration were emphasized. The results show that the accuracy, validity, and reliability of TMT are excellent by different indicate...

  10. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation's urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  11. Some regional costs of a synthetic fuel industry: The case of illinois

    Science.gov (United States)

    Attanasi, E.D.; Green, E.K.

    1981-01-01

    The Federal Government's efforts to induce development of a coal-based synthetic fuel industry include direct subsidies, tax concessions, and assurances that it will purchase the industry's output, even if above the market price. In this note it is argued that these subsidies will enable this industry to secure a region's largest and lowest-cost coal deposits and that the costs imposed on other coal users will be substantial. Moreover, because the lowest-cost coal deposits will be committed to synthetic fuels production regardless of the industry's commercial viability, distortions in regional coal markets will develop. If economic efficiency requires that the price of the resource reflect its replacement value, then a State government is justified in imposing a tax on coal destined for subsidized synthetic fuel plants. Amounts of such a tax, based on the higher costs of coal that must be accepted by other users as the result of the subsidized synthetic fuel plants' preempting the largest and lowest-cost deposits, are estimated for the case of Illinois strippable coal. ?? 1981 Annals of Regional Science.

  12. Occupational exposures during routine activities in coal-fueled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bird, M.J.; MacIntosh, D.L.; Williams, P.L. [University of Georgia, Athens, GA (United States). Dept. of Environmental Health Science

    2004-06-15

    Limited information is available on occupational exposures during routine, nonoutage work activities in coal-fueled power plants. This study evaluated occupational exposures to the principal contaminants in the facilities, including respirable dust (coal dust), arsenic, noise, asbestos, and heat stress. The data were collected over a 3-month period, during the summer of 2001. Each of the 5 facilities was divided into 5 similar exposure groups based on previous exposure assessments and job tasks performed. Of the nearly 400 air samples collected, only 1 exceeded the allowable occupational exposure value. For the noise samples, 55 (about 18%) were equal to or greater than the Occupational Safety and Health Administration (OSHA) 8-hour hearing conservation program level of 85 dBA, and 12 (about 4%) were equal to or greater than the OSHA 8-hour permissible exposure level of 90 dBA. Heat stress monitoring at the facilities indicates that 26% of the 1-hour TWAs were exceeded for one or all of the recommended heat stress limits. The data also concluded that some work sites were above the heat stress ceiling values recommended by the National Institute for Occupational Safety and Health (NIOSH). Four of the 20 employees personally monitored exceeded the recommended limits for heart rate or body core temperature. This suggests there is a potential for heat strain if signs and symptoms are ignored. Recommendations are made to better control the heat stress exposure.

  13. Coal-fuelled systems for peaking power with 100% CO2 capture through integration of solid oxide fuel cells with compressed air energy storage

    Science.gov (United States)

    Nease, Jake; Adams, Thomas A.

    2014-04-01

    In this study, a coal-fuelled integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) system in a load-following power production scenario is discussed. Sixteen SOFC-based plants with optional carbon capture and sequestration (CCS) and syngas shifting steps are simulated and compared to a state-of-the-art supercritical pulverised coal (SCPC) plant. Simulations are performed using a combination of MATLAB and Aspen Plus v7.3. It was found that adding CAES to a SOFC-based plant can provide load-following capabilities with relatively small effects on efficiencies (1-2% HHV depending on the system configuration) and levelized costs of electricity (∼0.35 ¢ kW-1 h-1). The load-following capabilities, as measured by least-squares metrics, show that this system may utilize coal and achieve excellent load-tracking that is not adversely affected by the inclusion of CCS. Adding CCS to the SOFC/CAES system reduces measurable direct CO2 emission to zero. A seasonal partial plant shutdown schedule is found to reduce fuel consumption by 9.5% while allowing for cleaning and maintenance windows for the SOFC stacks without significantly affecting the performance of the system (∼1% HHV reduction in efficiency). The SOFC-based systems with CCS are found to become economically attractive relative to SCPC above carbon taxes of 22 ton-1.

  14. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2.

    Science.gov (United States)

    Zhang, Yan; Zheng, Yan; Yang, Mingjun; Song, Yongchen

    2016-01-01

    The effect of fuel origin on synergy in coal/biomass blends during co-gasification has been assessed using a congruent-mass thermogravimetry analysis (TGA) method. Results revealed that synergy occurs when ash residuals are formed, followed by an almost complete gasification of biomass. Potassium species in biomass ash play a catalytic role in promoting gasification reactivity of coal char, which is a direct consequence of synergy during co-gasification. The SEM-EDS spectra provided conclusive evidence that the transfer of potassium from biomass to the surface of coal char occurs during co-pyrolysis/gasification. Biomass ash rich in silica eliminated synergy in coal/biomass blends but not to the extent of inhibiting the reaction rate of the blended chars to make it slower than that of separated ones. The best result in terms of synergy was concluded to be the combination of low-ash coal and K-rich biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cofiring biomass and coal for fossil fuel reduction and other benefits–Status of North American facilities in 2010

    Science.gov (United States)

    David Nicholls; John. Zerbe

    2012-01-01

    Cofiring of biomass and coal at electrical generation facilities is gaining in importance as a means of reducing fossil fuel consumption, and more than 40 facilities in the United States have conducted test burns. Given the large size of many coal plants, cofiring at even low rates has the potential to utilize relatively large volumes of biomass. This could have...

  16. Renewable hydrocarbons for jet fuels from biomass and plastics via microwave-induced pyrolysis and hydrogenation processes

    Science.gov (United States)

    Zhang, Xuesong

    This dissertation aims to enhance the production of aromatic hydrocarbons in the catalytic microwave-induced pyrolysis, and maximize the production of renewable cycloalkanes for jet fuels in the hydrogenation process. In the process, ZSM-5 catalyst as the highly efficient catalyst was employed for catalyzing the pyrolytic volatiles from thermal decomposition of cellulose (a model compound of lignocellulosic biomass). A central composite experiment design (CCD) was used to optimize the product yields as a function of independent factors (e.g. catalytic temperature and catalyst to feed mass ratio). The low-density polyethylene (a mode compound of waste plastics) was then carried out in the catalytic microwave-induced pyrolysis in the presence of ZSM-5 catalyst. Thereafter, the catalytic microwave-induced co-pyrolysis of cellulose with low-density polyethylene (LDPE) was conducted over ZSM-5 catalyst. The results showed that the production of aromatic hydrocarbons was significantly enhanced and the coke formation was also considerably reduced comparing with the catalytic microwave pyrolysis of cellulose or LDPE alone. Moreover, practical lignocellulosic biomass (Douglas fir sawdust pellets) was converted into aromatics-enriched bio-oil by catalytic microwave pyrolysis. The bio-oil was subsequently hydrogenated by using the Raney Ni catalyst. A liquid-liquid extraction step was implemented to recover the liquid organics and remove the water content. Over 20% carbon yield of liquid product regarding lignocellulosic biomass was obtained. Up to 90% selectivity in the liquid product belongs to jet fuel range cycloalkanes. As the integrated processes was developed, catalytic microwave pyrolysis of cellulose with LDPE was conducted to improve aromatic production. After the liquid-liquid extraction by the optimal solvent (n-heptane), over 40% carbon yield of hydrogenated organics based on cellulose and LDPE were achieved in the hydrogenation process. As such, real

  17. Coal preparation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The acid rain control legislation has prompted the Department of Energy (DOE) to seek new technology using the Clean Coal Technology program solicitation. The main goal of the program is to reduce SO 2 emissions below 9 Mt/a (10 million stpy) and NO x emission below 5.4 Mt/a (6 million stpy) by the year 2000. This would be accomplished by using precombustion, combustion, post combustion and conversion technology. Utilities are considering installing new scrubbers, switching fuel or possibly deep clean. However, the time required to implement the control technology is short. Due to the legislation, about 110 plants will have to adopt one of the approaches. This paper reports that in characterization of coal, Ames Laboratory used a scanning electron microscope- based, automated image analysis (SEM-AIA) technique to identify coal and mineral matter association. Various forms of organic sulfur were identified using peroxyacetic acid oxidation of coal. This was followed by subsequent microscopic, GC-MS, and HRMS analysis by Southern Illinois University. In ultrafine grinding of coal, it was reported by the Mining and Mineral Institute of Alabama that silica sand or flint shot used less energy compared to steel ball mills

  18. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  19. Effects of coal-derived trace species on the performance of molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A.

    1991-10-01

    The overall objective of the present study was to determine in detail the interaction effects of 10 simultaneously present, coal-gas contaminants, both on each other and on components of the Carbonate Fuel Cell. The primary goal was to assess underlying chemistries and reaction mechanisms which may cause decay in fuel cell performance or endurance as a result of both physics-chemical and/or mechanical interactions with the cell components and internal fuel cell parts. It was found, both from theory and cell test evidence, that trace contaminant interactions may occur with: Fuel-cell Electrodes (e.g., in this study with the Ni-anode), Lithium/Potassium Carbonate Electrolyte, Nickel and SS-Hardware, and by Mechanical Obstruction of Gas Flow in the Anode Plenum.

  20. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  1. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    Science.gov (United States)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  2. Challenges And Opportunities For Coal Gasification In Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-01

    Coal gasification for chemicals, gaseous and liquid fuels production can fulfil an important strategic need in those developing countries where coal is the primary fuel source and oil and gas energy security is an issue. At the same time, the establishment of major projects in such countries can be problematical for a number of technical and economic reasons, although it is encouraging that some projects appear to be moving forward. There are two developing countries where coal conversion projects to produce chemicals, gaseous and liquid fuels have been taken forward strongly. The first is South Africa, which established the world's only commercial-scale coal-to-liquids and coal-to-chemicals facilities at Secunda and Sasolburg respectively. The other is China, where there is a major gasification-based coal conversion development and deployment programme that is set to become a significant, large-scale commercial element in the nation's energy development plans. This will provide further major opportunities for the deployment of large-scale coal gasification technologies, various syngas conversion units and catalysts for the subsequent production of the required products. The role of China is likely to be critical in the dissemination of such technologies to other developing countries as it can not only provide the technical expertise but also financially underpin such projects, including the associated infrastructure needs.

  3. Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance

    Directory of Open Access Journals (Sweden)

    Can Zhou

    2018-04-01

    Full Text Available To improve the jet performance of a bi-piezoelectric jet dispenser, mathematical and simulation models were established according to the operating principle. In order to improve the accuracy and reliability of the simulation calculation, a viscosity model of the fluid was fitted to a fifth-order function with shear rate based on rheological test data, and the needle displacement model was fitted to a nine-order function with time based on real-time displacement test data. The results show that jet performance is related to the diameter of the nozzle outlet and the cone angle of the nozzle, and the impacts of the flow channel structure were confirmed. The approach of numerical simulation is confirmed by the testing results of droplet volume. It will provide a reliable simulation platform for mechanical collision-based jet dispensing and a theoretical basis for micro jet valve design and improvement.

  4. Conversion of microalgae to jet fuel: process design and simulation.

    Science.gov (United States)

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment.

    Science.gov (United States)

    Crawford, Jordan T; Shan, Chin Wei; Budsberg, Erik; Morgan, Hannah; Bura, Renata; Gustafson, Rick

    2016-01-01

    Infrastructure compatible hydrocarbon biofuel proposed to qualify as renewable transportation fuel under the U.S. Energy Independence and Security Act of 2007 and Renewable Fuel Standard (RFS2) is evaluated. The process uses a hybrid poplar feedstock, which undergoes dilute acid pretreatment and enzymatic hydrolysis. Sugars are fermented to acetic acid, which undergoes conversion to ethyl acetate, ethanol, ethylene, and finally a saturated hydrocarbon end product. An unfermentable lignin stream may be burned for steam and electricity production, or gasified to produce hydrogen. During biofuel production, hydrogen gas is required and may be obtained by various methods including lignin gasification. Both technical and economic aspects of the biorefinery are analyzed, with different hydrogen sources considered including steam reforming of natural gas and gasification of lignin. Cash operating costs for jet fuel production are estimated to range from 0.67 to 0.86 USD L -1 depending on facility capacity. Minimum fuel selling prices with a 15 % discount rate are estimated to range from 1.14 to 1.79 USD L -1 . Capacities of 76, 190, and 380 million liters of jet fuel per year are investigated. Capital investments range from 356 to 1026 million USD. A unique biorefinery is explored to produce a hydrocarbon biofuel with a high yield from bone dry wood of 330 L t -1 . This yield is achieved chiefly due to the use of acetogenic bacteria that do not produce carbon dioxide as a co-product during fermentation. Capital investment is significant in the biorefinery in part because hydrogen is required to produce a fully de-oxygenated fuel. Minimum selling price to achieve reasonable returns on investment is sensitive to capital financing options because of high capital costs. Various strategies, such as producing alternative, intermediate products, are investigated with the intent to reduce risk in building the proposed facility. It appears that producing and selling these

  6. An emissions audit of a chain grate stoker burning coal

    International Nuclear Information System (INIS)

    Jackson, P.M.; King, P.G.

    1993-01-01

    This report describes the Emissions Audit carried out on a chain-grate stoker boiler burning coal. The boiler rated at 4.6MW(th) was installed at the Senior Foster Wheeler test facility in Wakefield where it had been modified so that it could burn both coal and dRDF. This report is based on test work undertaken as part of a programme to assess the environmental impact of the combustion of a variety of wastes as fuels. Emissions monitoring tests were carried out using coal as the fuel for comparison with the other wastes. Combustion of coal in boilers of this size are regulated by the Clean Air Acts whilst combustion of wastes is regulated by the more recent Environmental Protection Act. (author)

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  8. EXHALED HUMAN BREATH MEASUREMENT OF JET FUEL CONSTITUENTS: DISTINGUISHING BETWEEN INHALATION AND DERMAL EXPOSURE ROUTES

    Science.gov (United States)

    In response to anecdotal reports, perceived health issues, and widespread complaints, the U.S. military launched an investigation into the occupational and environmental human exposure to jet fuel. The work described in the presentation assesses the correlation between two breat...

  9. Coal: the metamorphosis of an industry

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Marie Martin-Amouroux

    2008-07-01

    Coal, a fuel that once dominated the global energy scene, is staging a come-back despite being environmentally dirty. The purpose of the paper is to analyse the return of King Coal to find out whether it is likely to be regain its dominance in the global energy in the future. In analysing the metamorphosis of the coal industry, the paper looks at the historical evolution of the industry and analyses the factors behind the change. The deficiencies of coal's competitors are also analysed. Using a scenario analysis, the future role of coal in the global energy mix is estimated as well. The paper finds that despite the domination of hydrocarbons in the global energy mix, coal has maintained a steady share and in some countries, it remained the main fuel. With the concerns of high-oil prices and peak oil, coal is regaining its domination in the power sector around the world. The industry has reformed and restructured itself to remain competitive. Consequently, it has the possibility of staging a come back as a dominant fuel.

  10. Computer model for refinery operations with emphasis on jet fuel production. Volume 3: Detailed systems and programming documentation

    Science.gov (United States)

    Dunbar, D. N.; Tunnah, B. G.

    1978-01-01

    The FORTRAN computing program predicts flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuels of varying end point and hydrogen content specifications. The program has a provision for shale oil and coal oil in addition to petroleum crudes. A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case.

  11. Impacts on human health from the coal and nuclear fuel cycles and other technologies associated with electric power generation and transmission

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-07-01

    The report evaluates major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use. Only existing technology is evaluated. For the nuclear cycle, effects of future use of fuel reprocessing and long-term radioactive waste disposal are briefly considered. The health effects of concern are those leading to definable human disease and injury. Health effects are scaled to numbers of persons and activities associated with a nominal 1000-megawatt electric plant fueled by either option. Comparison of the total health effects to the general public shows that the health risks from the coal cycle are about 50 times greater than for the nuclear cycle (coal, 0.7-3.7 major health effects per 1000 MWe per year; nuclear, 0.03-0.05 per 1000 MWe per year). For workers, these rates are higher. No evidence is found that electrical transmission contributes any health effects to the general public, except when broken power lines come in contact with people

  12. Impact of alternative fuels on emissions characteristics of a gas turbine engine - part 2: volatile and semivolatile particulate matter emissions.

    Science.gov (United States)

    Williams, Paul I; Allan, James D; Lobo, Prem; Coe, Hugh; Christie, Simon; Wilson, Christopher; Hagen, Donald; Whitefield, Philip; Raper, David; Rye, Lucas

    2012-10-02

    The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C(x)H(y) fragments, suggesting the presence of long chain alkanes. The second largest contribution came from C(x)H(y)O(z) fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane.

  13. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  14. Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells: A review

    International Nuclear Information System (INIS)

    Xu, Xinhai; Li, Peiwen; Shen, Yuesong

    2013-01-01

    Highlights: • Issues of reforming of heavy hydrocarbon fuels are reviewed. • The advantages of autothermal reforming over other types of reforming are discussed. • The causes and solutions of the major problems for reforming reactors are studied. • Designs and startup strategies for autothermal reforming reactors are proposed. - Abstract: This paper reviews the technological features and challenges of autothermal reforming (ATR) of heavy hydrocarbon fuels for producing hydrogen and syngas onboard to supply fuels to fuel cells for auxiliary power units. A brief introduction at the beginning enumerates the advantages of using heavy hydrocarbon fuels onboard to provide hydrogen or syngas for fuel cells such as solid oxide fuel cells (SOFCs). A detailed review of the reforming and processing technologies of diesel and jet fuels is then presented. The advantages of ATR over steam reforming (SR) and partial oxidation reforming (POX) are summarized, and the ATR reaction is analyzed from a thermodynamic point of view. The causes and possible solutions to the major problems existing in ATR reactors, including hot spots, formation of coke, and inhomogeneous mixing of fuel, steam, and air, are reviewed and studied. Designs of ATR reactors are discussed, and three different reactors, one with a fixed bed, one with monoliths, and one with microchannels are investigated. Novel ideas for design and startup strategies for ATR reactors are proposed at the end of the review

  15. Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base

    International Nuclear Information System (INIS)

    Croft, Gregory D.; Patzek, Tad W.

    2009-01-01

    By applying the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production can be modeled with a single Hubbert curve that extends to the practical end of commercial production of this highest-rank coal. The production of bituminous coal from existing mines is about 80% complete and can be carried out at the current rate for the next 20 years. The production of subbituminous coal from existing mines can be carried out at the current rate for 40-45 years. Significant new investment to extend the existing mines and build new ones would have to commence in 2009 to sustain the current rate of coal production, 1 billion tons per year, in 2029. In view of the existing data, we conclude that there is no spare coal production capacity of the size required for massive coal conversion to liquid transportation fuels. Our analysis is independent of other factors that will prevent large-scale coal liquefaction projects: the inefficiency of the process and either emissions of greenhouse gases or energy cost of sequestration

  16. Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Gopala N.; Jayaweera, Palitha; Perez, Jordi; Hornbostel, M.; Albritton, John R.; Gupta, Raghubir P.

    2007-10-31

    The U.S. Department of Energy’s SECA program envisions the development of high-efficiency, low-emission, CO2 sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NOx production), and modularity. The primary objective of the Phase I study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700° to 900°C. Laboratory-scale tests were performed with 1-inch diameter solid oxide fuel cells procured from InDec B.V., Netherlands. These cells produce 0.15, 0.27, and 0.35 W/cm2 at 700°, 750°, and 800°C, respectively, in a H2 anode feed and are expected to be stable within 10% of the original performance over a period of 2000 h. A simulated coal-derived gas containing 30.0% CO, 30.6% H2 11.8% CO2, 27.6% H2O was used at a rate of ~100 standard cm3/min to determine the effect of contaminants on the electrical performance of the cells. Alumina or zirconia components were used for the gas manifold to prevent loss of contaminants by reaction with the surfaces of the gas manifold Short-term accelerated tests were conducted with several contaminants including As, P, CH3Cl, HCl, Hg, Sb, and Zn vapors. In these tests, AsH3, PH3, Cd vapor and CH3Cl identified as the potential contaminants that can affect the electrical performance of SOFCs. The effect of some of these contaminants varied with the operating temperature. Cell failure due to contact break inside the anode chamber occurred when the cell was exposed to 10 ppm arsenic vapor at 800°C. The electrical performance of SOFC

  17. Influence of the shape of soaring particle based on coal-water slurry containing petrochemicals on ignition characteristics

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available This paper examines the laws of stable ignition of organic coal-water slurry containing petrochemicals (CWSP. The CWSP is based on the filter cake of coal and scavenge oil. The experiments are performed for individual CWSP particles soaring in a special set-up. The temperature and velocity of an oxidizer flow are varied between 500-1200 K, and 0.5-3 m/s. The dimensions (longitudinal and transverse of particles range are from 0.5 mm to 5 mm. The study indicates how the shape of a fuel particle (sphere, ellipsoid, and polyhedron influences its ignition characteristics (delay time, minimum temperature, modes, stages. Based on the experimental results, the paper explains why the surface configuration of particles influences the conditions of heat transfer with an oxidizer. The results obtained for soaring particles are compared with the results for fixed CWSP particles having different surface configurations (sphere, ellipsoid, and polyhedron. In general, the study may contribute to the expansion of the fuel resource base. The experimental data may be used for the development of the technologies of burning CWSP prepared by recycling traditional fuels. As a result of this study, several recommendations for the practical application of research results are made.

  18. Inerting Aircraft Fuel Systems Using Exhaust Gases

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.

  19. High-temperature reactors for underground liquid-fuels production with direct carbon sequestration

    International Nuclear Information System (INIS)

    Forsberg, C. W.

    2008-01-01

    The world faces two major challenges: (1) reducing dependence on oil from unstable parts of the world and (2) minimizing greenhouse gas emissions. Oil provides 39% of the energy needs of the United States, and oil refineries consume over 7% of the total energy. The world is running out of light crude oil and is increasingly using heavier fossil feedstocks such as heavy oils, tar sands, oil shale, and coal for the production of liquid fuels (gasoline, diesel, and jet fuel). With heavier feedstocks, more energy is needed to convert the feedstocks into liquid fuels. In the extreme case of coal liquefaction, the energy consumed in the liquefaction process is almost twice the energy value of the liquid fuel. This trend implies large increases in carbon dioxide releases per liter of liquid transport fuel that is produced. It is proposed that high-temperature nuclear heat be used to refine hydrocarbon feedstocks (heavy oil, tar sands, oil shale, and coal) 'in situ ', i.e., underground. Using these resources for liquid fuel production would potentially enable the United States to become an exporter of oil while sequestering carbon from the refining process underground as carbon. This option has become potentially viable because of three technical developments: precision drilling, underground isolation of geological formations with freeze walls, and the understanding that the slow heating of heavy hydrocarbons (versus fast heating) increases the yield of light oils while producing a high-carbon solid residue. Required peak reactor temperatures are near 700 deg. C-temperatures within the current capabilities of high-temperature reactors. (authors)

  20. Cocombustion of secondary fuels with Rhenish brown coal; Mitverbrennung von Sekundaerbrennstoffen mit rheinischer Braunkohle

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Alexander; Kull, Rene; Zepf, Eva; Fuller, Aaron; Maier, Joerg; Scheffknecht, Guenter [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen; Jong, Martin de [KEMA Nederland B.V. (Netherlands); Glorius, Thomas [REMONDIS Trade and Sales GmbH (Germany)

    2008-07-01

    The Institute of Combustion and Power Plant of Technology of the University of Stuttgart (Stuttgart, Federal Republic of Germany) performs scientific research within the range of solid firings. The cocombustion of secondary fuels in coal-fired power stations as well as the production of secondary fuels are examined in the project RECOFUEL. The production of secondary fuels is performed from harmless house wastes and commercial wastes as well as from biological residues from forestry and agriculture. Secondary fuels offer an alternative to fossil fuels for the power production in different branches of industry and reduce the emission of carbon dioxide from fossil sources. For the attempts in two power stations of RWE Power AG (Essen, Federal Republic of Germany) the quality-certified secondary fuel SBS1 registered of the company Remondis GmbH (Luenen, Federal Republic of Germany) was used. This secondary fuel was developed and subjected to an intensive analysis. Experiments in a pulverized fuel furnace and in a fluidised bed were performed at the power stations Weisweiler and Berrenrath in order to examine different aspects of the cocombustion.