WorldWideScience

Sample records for coal thermoplastic properties

  1. Coal swelling and thermoplasticity under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ndaji, F.E.; Butterfield, I.M.; Thomas, K.M. (Newcastle upon Tyne University, Newcastle upon Tyne (United Kingdom). Northern Carbon Research Labs., Dept. of Chemistry)

    1992-01-01

    The literature on the following topics is reviewed: swelling and agglomeration of coal; measurements of swelling index and dilatometric and plastometric properties at high pressures; and the effects of oxidation, tar addition and minerals on high-pressure thermoplastic properties. 34 refs., 6 figs.

  2. Mass spectrometric and chemometric studies of thermoplastic properties of coals. 1. Chemometry of conventional, solvent swelling and extraction data of coals

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, A.; Czajkowska, S.; Moszynski, J.; Schulten, H.-R. (Polish Academy of Sciences, Gliwice (Poland). Inst. of Coal Chemistry)

    Twenty-seven coals from Carboniferous seams in Poland were studied with the aim to find links between thermoplastic properties and chemical characteristics of the coals. Three sets of data were obtained for all the coals: (1) thermoplastic properties measured using the Gieseler plastometer; (2) yields of pyridine extractables and swelling measurements for pyridine residues; (3) ultimate, proximate, and petrographic analyses. The three data sets were evaluated using chemometric techniques with the purpose of looking for significant correlations between all the data. Temperature of softening is a linear regression of pyridine extractables and hydrogen content in coals as well as of swelling data. Temperatures of maximum fluidity and resolidification are correlated with each other and with oxygen, exinite, and moisture contents of the coals as well as with the swelling data. It has been concluded that temperature of softening is a colligative property and indicates a phase transition resulting in an increase of thermal induced mobility of coal material; the energy demand of the transition is dependent on contents of bulk components of coal system that were specified in this study. Temperatures of maximum fluidity and resolidification appear to have the same chemical background; i.e. the temperatures depend on the content of the same structural units or components. However, the means of chemical characterization of coal material used in this study were not capable of identifying them. Volatile matter and petrographic composition showed rather limited value as predictive means for some (T{sub F(max)} and T{sub R}) and no predictive value for the other thermoplastic properties. 20 refs., 1 fig., 5 tabs.

  3. Rheological properties of olefinic thermoplastic elastomer blends

    NARCIS (Netherlands)

    Sengers, W.G.F.

    2005-01-01

    Thermoplastic Elastomers (TPE) are a class of materials that have rubber-like properties and can be processed like thermoplastic polymers. In this thesis, the rheological properties of two TPE blends are correlated to their morphology. The thermoplastic vulcanisates (TPV) consist of micron-sized,

  4. Mechanical properties: wood lumber versus plastic lumber and thermoplastic composites

    Directory of Open Access Journals (Sweden)

    Bernardo Zandomenico Dias

    Full Text Available Abstract Plastic lumber and thermoplastic composites are sold as alternatives to wood products. However, many technical standards and scientific studies state that the two materials cannot be considered to have the same structural behaviour and strength. Moreover, there are many compositions of thermoplastic-based products and plenty of wood species. How different are their mechanical properties? This study compares the modulus of elasticity and the flexural, compressive, tensile and shear strengths of such materials, as well as the materials' specific mechanical properties. It analyses the properties of wood from the coniferae and dicotyledon species and those of commercialized and experimental thermoplastic-based product formulations. The data were collected from books, scientific papers and manufacturers' websites and technical data sheets, and subsequently compiled and presented in Ashby plots and bar graphs. The high values of the compressive strength and specific compressive and tensile strengths perpendicular to the grain (width direction shown by the experimental thermoplastic composites compared to wood reveal their great potential for use in compressed elements and in functions where components are compressed or tensioned perpendicularly to the grain. However, the low specific flexural modulus and high density of thermoplastic materials limit their usage in certain civil engineering and building applications.

  5. Modifications of coking coal and metallurgical coke properties induced by coal weathering

    Energy Technology Data Exchange (ETDEWEB)

    Casal, M.D.; Gonzalez, A.I.; Canga, C.S.; Barriocanal, C.; Pis, J.J.; Alvarez, R.; Diez, M.A. [Instituto Nacional del Carbon (INCAR), CSIC, Apartado 73, Oviedo 33080 (Spain)

    2003-11-15

    Chemical changes in the structure of organic matter of coking coals during storage modify their thermoplastic properties and behaviour during carbonization. As a result, the anisotropic carbon structure of the metallurgical cokes produced and their physical properties are altered. In this work, the weathering behaviour of 10 bituminous coals of different geographic origin, rank and thermoplastic properties, used as components in the preparation of industrial coking blends for coke manufacture, was studied by means of Gieseler plastometry and Fourier transform infrared (FTIR) spectroscopy. These coking coals were stored in piles at the Instituto Nacional del Carbon (INCAR) open stockyard for a period of time of up to 7 months. Special attention was paid to the relationship between the relative amount and type of aliphatic hydrogen (semi-quantitatively evaluated by FTIR), and thermoplastic properties. Depending on the nature of the coking coal, a different response to natural weathering can be expected. Thus, the results showed that there is a direct link between a decrease in methylene groups and a loss of fluidity in the weathered coals, resulting in a decrease in anisotropic carbon of the resultant cokes with weathering time. In addition, the rate of anisotropic carbon loss induced by weathering could be associated with the rank parameters of the initial coals.

  6. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  7. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Mădălina Elena Grigore

    2017-11-01

    Full Text Available This study aims to provide an updated survey of the main thermoplastic polymers in order to obtain recyclable materials for various industrial and indoor applications. The synthesis approach significantly impacts the properties of such materials and these properties in turn have a significant impact on their applications. Due to the ideal properties of the thermoplastic polymers such as corrosion resistance, low density or user-friendly design, the production of plastics has increased markedly over the last 60 years, becoming more used than aluminum or other metals. Also, recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today.

  8. Solid particle erosion and viscoelastic properties of thermoplastic polyurethanes

    Directory of Open Access Journals (Sweden)

    G. Arena

    2015-03-01

    Full Text Available The wear resistance of several thermoplastic polyurethanes (TPUs having different chemical nature and micronscale arrangement of the hard and soft segments has been investigated by means of erosion and abrasion tests. The goal was correlating the erosion performances of the materials to their macroscopic mechanical properties. Unlike conventional tests, such as hardness and tensile measurements, viscoelastic analysis proved to be a valuable tool to study the erosion resistance of TPUs. In particular, a strict correlation was found between the erosion rate and the high-frequency (~107 Hz loss modulus. The latter reflects the actual ability of TPU to dissipate the impact energy of the erodent particles.

  9. Mechanical properties of a new thermoplastic polymer orthodontic archwire

    Energy Technology Data Exchange (ETDEWEB)

    Varela, Juan Carlos; Velo, Marcos [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad Santiago de Compostela, Santiago de Compostela (Spain); Espinar, Eduardo; Llamas, Jose Maria [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad de Sevilla (Spain); Rúperez, Elisa; Manero, Jose Maria [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain); Javier Gil, F., E-mail: francesc.xavier.gil@upc.edu [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain)

    2014-09-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2 h depending on the initial stress relaxation for up to 120 h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. - Highlights: • A new thermoplastic polymer for orthodontic applications was obtained. • This polymer could be a good candidate for aesthetic orthodontic archwires. • The polymer has good mechanical properties as orthodontic wire coating. • The friction coefficients were lower than the metallic archwires improving the slipping with the brackets. • High formability allowed shape bending similar to that associated with stainless steel wires.

  10. Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties

    Directory of Open Access Journals (Sweden)

    Wai K. Ho

    2010-01-01

    Full Text Available Novel materials based on nanotechnology creating nontraditional ablators are rapidly changing the technology base for thermal protection systems. Formulations with the addition of nanoclays and carbon nanofibers in a neat thermoplastic polyurethane elastomer (TPU were melt-compounded using twin-screw extrusion. The TPU nanocomposites (TPUNs are proposed to replace Kevlar-filled ethylene-propylene-diene-monomer rubber, the current state-of-the-art solid rocket motor internal insulation. Scanning electron microscopy analysis was conducted to study the char characteristics of the TPUNs at elevated temperatures. Specimens were examined to analyze the morphological microstructure during the pyrolysis reaction and in fully charred states. Thermophysical properties of density, specific heat capacity, thermal diffusivity, and thermal conductivity of the different TPUN compositions were determined. To identify dual usage of these novel materials, cone calorimetry was employed to study the flammability properties of these TPUNs.

  11. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2016-01-01

    Full Text Available Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST. The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst nbutyllithium (n-BuLi and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it’s technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 o C, the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF and methyl tert-butyl ether (MTBE. The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

  12. Properties and performance of flax yarn/thermoplastic polyester composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Mehmood, Shahid

    2012-01-01

    Aiming at demonstrating the potential of unidirectional natural fiber-reinforced thermoplastic composites in structural applications, textile flax yarn/thermoplastic polyester composites with variable fiber volume fractions have been manufactured by a filament-winding process followed by a vacuum...

  13. Linear viscoelastic properties of olefinic thermoplastic elastomer blends: melt state properties

    NARCIS (Netherlands)

    Sengupta, P.; Sengers, W.G.F.; Noordermeer, Jacobus W.M.; Picken, S.J.; Gotsis, A.D.

    2004-01-01

    The linear viscoelastic properties of two types of olefinic thermoplastic elastomer blends were studied using dynamic rheology. The first type consists of a blend of PP, SEBS and oil and has a co-continuous morphology. The second type consists of vulcanised EPDM particles dispersed in a PP matrix.

  14. Mechanical properties of thermoplastic composites reinforced with Entada Mannii fibre

    Directory of Open Access Journals (Sweden)

    Oluwayomi BALOGUN

    2017-06-01

    Full Text Available The mechanical properties and fracture mechanisms of thermoplastic composites reinforced with Entada mannii fibres was investigated. Polypropylene reinforced with 1, 3, 5, and 7 wt% KOH treated and untreated Entada mannii fibres were processed using a compression moulding machine. The tensile properties, impact strength, and flexural properties of the composites were evaluated while the tensile fracture surface morphology was examined using scanning electron microscopy. The results show that reinforcing polypropylene with Entada mannii fibres resulted in improvement of the tensile strength and elastic modulus. This improvement is remarkable for 5 wt% KOH treated Entada mannii fibre reinforced composites by 28 % increase as compared with the unreinforced polypropylene. The composites reinforced with Entada mannii fibres also had impact strength values of 70 % higher than the unreinforced polypropylene. However, the polypropylene reinforced with 5 and 7wt% KOH treated fibres exhibited significantly higher flexural strength and Young’s modulus by 53% and 52% increase as compared with the unreinforced polypropylene. The fracture surface of the polypropylene composites reinforced with untreated Entada mannii fibres were characterized by fibre debonding, fibre pull-out and matrix yielding while less voids and fibre pull-outs are observed in the composites reinforced with KOH treated Entada mannii fibres. v

  15. Mechanical Properties of Nonwoven Reinforced Thermoplastic Polyurethane Composites.

    Science.gov (United States)

    Tausif, Muhammad; Pliakas, Achilles; O'Haire, Tom; Goswami, Parikshit; Russell, Stephen J

    2017-06-05

    Reinforcement of flexible fibre reinforced plastic (FRP) composites with standard textile fibres is a potential low cost solution to less critical loading applications. The mechanical behaviour of FRPs based on mechanically bonded nonwoven preforms composed of either low or high modulus fibres in a thermoplastic polyurethane (TPU) matrix were compared following compression moulding. Nonwoven preform fibre compositions were selected from lyocell, polyethylene terephthalate (PET), polyamide (PA) as well as para-aramid fibres (polyphenylene terephthalamide; PPTA). Reinforcement with standard fibres manifold improved the tensile modulus and strength of the reinforced composites and the relationship between fibre, fabric and composite's mechanical properties was studied. The linear density of fibres and the punch density, a key process variable used to consolidate the nonwoven preform, were varied to study the influence on resulting FRP mechanical properties. In summary, increasing the strength and degree of consolidation of nonwoven preforms did not translate to an increase in the strength of resulting fibre reinforced TPU-composites. The TPU composite strength was mainly dependent upon constituent fibre stress-strain behaviour and fibre segment orientation distribution.

  16. Characterization of Carbon Mat Thermoplastic Composites: Flow and Mechanical Properties

    OpenAIRE

    Caba, Aaron C.

    2005-01-01

    Carbon mat thermoplastics (CMT) consisting of 12.7 mm or 25.4 mm long, 7.2 micrometer diameter, chopped carbon fibers in a polypropylene (PP) or poly(ethylene terephthalate) (PET) thermoplastic matrix were manufactured using the wetlay technique. This produces a porous mat with the carbon fibers well dispersed and randomly oriented in a plane. CMT composites offer substantial cost and weight savings over typical steel construction in new automotive applications. In production vehicles, aut...

  17. Process property studies of melt blown thermoplastic polyurethane polymers

    Science.gov (United States)

    Lee, Youn Eung

    The primary goal of this research was to determine optimum processing conditions to produce commercially acceptable melt blown (MB) thermoplastic polyurethane (TPU) webs. The 6-inch MB line and the 20-inch wide Accurate Products MB pilot line at the Textiles and Nonwovens Development Center (TANDEC), The University of Tennessee, Knoxville, were utilized for this study. The MB TPU trials were performed in four different phases: Phase 1 focused on the envelope of the MB operating conditions for different TPU polymers; Phase 2 focused on the production of commercially acceptable MB TPU webs; Phase 3 focused on the optimization of the processing conditions of MB TPU webs, and the determination of the significant relationships between processing parameters and web properties utilizing statistical analyses; Based on the first three phases, a more extensive study of fiber and web formation in the MB TPU process was made and a multi liner regression model for the MB TPU process versus properties was also developed in Phase 4. In conclusion, the basic MB process was fundamentally valid for the MB TPU process; however, the MB process was more complicated for TPU than PP, because web structures and properties of MB TPUs are very sensitive to MB process conditions: Furthermore, different TPU grades responded very differently to MB processing and exhibited different web structure and properties. In Phase 3 and Phase 4, small fiber diameters of less than 5mum were produced from TPU237, TPU245 and TPU280 pellets, and the mechanical strengths of MB TPU webs including the tensile strength, tear strength, abrasion resistance and tensile elongation were notably good. In addition, the statistical model showed useful interaction regarding trends for processing parameters versus properties of MB TPU webs. Die and air temperature showed multicollinearity problems and fiber diameter was notably affected by air flow rate, throughput and die/air temperature. It was also shown that most of

  18. Liquid chromatographic analysis of coal surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.C.

    1991-01-01

    The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

  19. The physical properties of coal

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2015-01-01

    Full Text Available show little or no contrast with the coal samples. Waterberg Coalfield (Bruce Cairncross) 28 Figure 2�.2�a Physical property scatter plots for selected samples from Bank Colliery Resistivity vs IP (%) for selected interburden samples Resistivity (Ohm...Ies of coAl Michael van Schoor, Leonie Mare This chapter explains why geophysicists usually want to know as much as possible about the physical properties of the different lithological units in an area before embarking on a geophysical survey. We also...

  20. Self-healing structural properties of thermoplastics in HF field

    Directory of Open Access Journals (Sweden)

    N. G. Filippenko

    2014-01-01

    Full Text Available The article concerns one of the possible ways for safe operation of polymer products with initiating a process of their self-healing. This is especially true for products from polymer materials, used in hard-to-reach areas and units of machines and mechanisms. In this regard, the aim of this study was to develop techniques for a self-healing process of the mechanical properties of products from polymer materials.To achieve this goal, the author has solved problems to define a complex method of HF self-healing of polymer material: damage detection in products from polymer materials, determination of signal initiating the recovery process, determining the efficiency of material regeneration. The present study uses proposed and developed by the author methods for the determination of necessary and sufficient indicators of the strength characteristics of products under realmeteorological and climatic conditions of their operation.To determine the practical results of the developed algorithm for self-healing the polymer products in the HF field, a series of experimental studies has been conducted to regenerate the polyamide cage fatigue destruction of the rolling stock axle equipment of Russian Railways JSC.The obtained results of the strength characteristics of the material under investigation prove the self-healing process of polymer materials in HF field.According to research results, the conclusion is drawn that it is required to provide a technological HF self-healing process of products from polymer materials. The created algorithm of regeneration enables a new approach to study the effects of electromagnetic fields on polymer and polymer-based composite materials when solving the practical tasks to improve the quality of repairing parts from thermoplastics.

  1. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites.

    Science.gov (United States)

    Mengeloglu, Fatih; Karakus, Kadir

    2008-01-24

    Thermal behaviors of wheat straw flour (WF) filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  2. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Kadir Karakus

    2008-01-01

    Full Text Available Thermal behaviors of wheat straw flour (WF filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  3. Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties.

    Science.gov (United States)

    Jumaidin, R; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The aim of this work is to study the behavior of biodegradable sugar palm starch (SPS) based thermoplastic containing agar in the range of 10-40wt%. The thermoplastics were melt-mixed and then hot pressed at 140°C for 10min. SEM investigation showed good miscibility between SPS and agar. FT-IR analysis confirmed that SPS and agar were compatible and inter-molecular hydrogen bonds existed between them. Incorporation of agar increased the thermoplastic starch tensile properties (Young's modulus and tensile strength). The thermal stability and moisture uptake increased with increasing agar content. The present work shows that starch-based thermoplastics with 30wt% agar content have the highest tensile strength. Higher content of agar (40wt%) resulted to more rough cleavage fracture and slight decrease in the tensile strength. In conclusion, the addition of agar improved the thermal and tensile properties of thermoplastic SPS which widened the potential application of this eco-friendly material. The most promising applications for this eco-friendly material are short-life products such as packaging, container, tray, etc. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The Effects of Aluminium Hydroxide and Magnesium Hydroxide on the Mechanical Properties of Thermoplastic Polyurethane Materials

    Directory of Open Access Journals (Sweden)

    Erkin Akdoğan

    2015-12-01

    Full Text Available Thermoplastic polyurethane materials are widely used in automotive, clothing, electrical and electronics, medical, construction, machine industry due to excellent physical and chemical properties. Thermoplastic polyurethane materials combustion and resistance to high temperature characteristics are poor. Additives and fillers are added into the polyurethane matrix to improve those properties. Particularly adding these agents as a flame retardant are affect mechanical properties of polyurethane materials. Therefore, it is important to determinate the mechanical properties of these materials. In this study, 5% by weight of the thermoplastic polyurethane material, aluminium tri hydroxide (ATH, (Al2O3 3H2O and magnesium hydroxide (MgOH, (Mg(OH2 were added. Ammonium polyphosphate (APP as an intumescent flame retardant with inorganic flame retardants were added to increase the flame resistance of produced composite structure. Tensile test, tear test, hardness and Izod impact tests were made and compared of those produced composites. As a result of experiments the addition of ATH has lowered the tensile strength and tear strength contrast to this the addition of MgOH has improved those properties. Hardness and Izod impact test results were showed that both of the additives have no negative effect.

  5. Generating Autoclave-Level Mechanical Properties with Out-of-Autoclave Thermoplastic Placement of Large Composite Aerospace Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Out-of-autoclave thermoplastic tape/tow placement (TP-ATP) is nearing commercialization but suffers a moderate gap in mechanical properties compared with laminates...

  6. Significant Enhancement of Mechanical and Thermal Properties of Thermoplastic Polyester Elastomer by Polymer Blending and Nanoinclusion

    Directory of Open Access Journals (Sweden)

    Manwar Hussain

    2016-01-01

    Full Text Available Thermoplastic elastomer composites and nanocomposites were fabricated via melt processing technique by blending thermoplastic elastomer (TPEE with poly(butylene terephthalate (PBT thermoplastic and also by adding small amount of organo modified nanoclay and/or polytetrafluoroethylene (PTFE. We study the effect of polymer blending on the mechanical and thermal properties of TPEE blends with and without nanoparticle additions. Significant improvement was observed by blending only TPEE and virgin PBT polymers. With a small amount (0.5 wt.% of nanoclay or PTFE particles added to the TPEE composite, there was further improvement in both the mechanical and thermal properties. To study mechanical properties, flexural strength (FS, flexural modulus (FM, tensile strength (TS, and tensile elongation (TE were all investigated. Thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were used to analyze the thermal properties, including the heat distortion temperature (HDT, of the composites. Scanning electron microscopy (SEM was used to observe the polymer fracture surface morphology. The dispersion of the clay and PTFE nanoparticles was confirmed by transmission electron microscopy (TEM analysis. This material is proposed for use as a baffle plate in the automotive industry, where both high HDT and high modulus are essential.

  7. Combined effect of thermoplastic and thermosetting adhesives on properties of particleboard with rice husk core

    OpenAIRE

    Kwon,Jin Heon; Ayrilmis,Nadir; Han, Tae Hyung

    2014-01-01

    This study investigated the combined effect of adhesive type and content on the dimensional stability and mechanical properties of three-layer particleboards made from a mixture of wood particles (face layer: 30 wt %) and rice husk particles (core layer: 70 wt %). Two types of thermosetting adhesives, liquid urea-formaldehyde (UF) and phenol-formaldehyde (PF), and thermoplastic adhesive (low density polyethylene: LDPE) powder were used as binder in the experiments. Thickness swelling and wate...

  8. Development of a Rapid Thermoplastic Impregnation Device

    NARCIS (Netherlands)

    Weustink, A.P.D.

    2007-01-01

    A melt impregnation device for rapid thermoplastic impregnation of fiber bundles has been developed through modeling and experiments. The basic principles behind the thermoplastic impregnation process are investigated and the properties needed for a successful thermoplastic impregnation device are

  9. Preliminary Evaluation of the Properties of Dynamically Vulcanised Thermoplastic Rubbers

    National Research Council Canada - National Science Library

    Van Dyke, J. D; Gnatowski, Marek

    2004-01-01

    .... The project objective was to establish a correlation between blend composition and properties such as microstructure swelling index, tensile strength, elongation at break, hardness, and resistance...

  10. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    Science.gov (United States)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-01-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  11. Mechanical properties change of thermoplastic elastomer after using of different dosage of irradiation by beta rays

    Directory of Open Access Journals (Sweden)

    Mizera Ales

    2016-01-01

    Full Text Available Radiation processing of polymers is a well-established and economical commercial method of precisely modifying the properties of polymers. The industrial applications of the radiation processing of plastics and composites include polymerization, cross-linking, degradation and grafting. Radiation processing mainly involves the use of electron beams from electron accelerators. The Thermoplastic Elastomer (TPE was used in this research and the mechanical properties were investigated at the ambient temperature. Results demonstrate that TPE has higher values of tensile strength with the increased irradiation dose and it has decreased elongation at break. This behaviour leads to the expansion of these materials in the automotive and electrical industry.

  12. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures.

    Science.gov (United States)

    Fueki, Kenji; Ohkubo, Chikahiro; Yatabe, Masaru; Arakawa, Ichiro; Arita, Masahiro; Ino, Satoshi; Kanamori, Toshikazu; Kawai, Yasuhiko; Kawara, Misao; Komiyama, Osamu; Suzuki, Tetsuya; Nagata, Kazuhiro; Hosoki, Maki; Masumi, Shin-ichi; Yamauchi, Mutsuo; Aita, Hideki; Ono, Takahiro; Kondo, Hisatomo; Tamaki, Katsushi; Matsuka, Yoshizo; Tsukasaki, Hiroaki; Fujisawa, Masanori; Baba, Kazuyoshi; Koyano, Kiyoshi; Yatani, Hirofumi

    2014-04-01

    This position paper reviews physical and mechanical properties of thermoplastic resin used for non-metal clasp dentures, and describes feature of each thermoplastic resin in clinical application of non-metal clasp dentures and complications based on clinical experience of expert panels. Since products of thermoplastic resin have great variability in physical and mechanical properties, clinicians should utilize them with careful consideration of the specific properties of each product. In general, thermoplastic resin has lower color-stability and higher risk for fracture than polymethyl methacrylate. Additionally, the surface of thermoplastic resin becomes roughened more easily than polymethyl methacrylate. Studies related to material properties of thermoplastic resin, treatment efficacy and follow-up are insufficient to provide definitive conclusions at this time. Therefore, this position paper should be revised based on future studies and a clinical guideline should be provided. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. On the properties evolution of engineered surfaces of thin reinforced thermoplastic tapes during consolidation

    Science.gov (United States)

    Leon, Angel; Perez, Marta; Barasinski, Anais; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco

    2017-12-01

    Advanced thermoplastic composite materials look to add functional properties to the mechanical ones, the latter usually ensured by the continuous fibers involved in the composite preforms. For that purpose the use of reinforced thermoplastic resins are being considered. These resins usually integrate manometric particles, with a variety of shapes (rods, spheres, discs, ...) with enhanced functional properties, ensuring for example the increase of thermal or electrical conductivities. However, even when considering adequate particles distribution and orientation in the preforms, forming processes induced properties cannot be ignored and they are particuarly critical at the ply interfaces level, where the degree of intimate contact must be maximized while ensuring equivalent functional properties to the ones existing in the bulk. One possibility for maximizing the intimate contact and at the same time controlling the induced functional anisotropy consists of designing engineered surfaces consolidated by the combined action of temperature and pressure. The combined effect results in a microscopic flow that induces at its turn the evolution of the position and orientation of the particles, and consequently the evolution of the associated properties, e.g. thermal and electrical conductivities. In the present work we address a simplified modeling framework of the functional properties evolution during the consolidation of unidirectional tapes. It combines the squeeze flow modeling, the flow induced microstructural anisotropy and its impact on the thermal and electrical conductivities.

  14. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    Science.gov (United States)

    Davoodi, M. M.; Sapuan, S. M.; Ali, Aidy; Ahmad, D.; Khalina, A.

    2010-05-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  15. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    Energy Technology Data Exchange (ETDEWEB)

    Davoodi, M M; Sapuan, S M; Ali, Aidy [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia 43400 UPM Serdang, Selangor (Malaysia); Ahmad, D; Khalina, A, E-mail: makinejadm2@asme.org [Department of Biological and Agricultural Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2010-05-15

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  16. Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite.

    Science.gov (United States)

    Huang, Hui; Dobryden, Illia; Ihrner, Niklas; Johansson, Mats; Ma, Houyi; Pan, Jinshan; Claesson, Per M

    2017-05-15

    In polymer nanocomposites, particle-polymer interactions influence the properties of the matrix polymer next to the particle surface, providing different physicochemical properties than in the bulk matrix. This region is often referred to as the interphase, but detailed characterization of its properties remains a challenge. Here we employ two atomic force microscopy (AFM) force methods, differing by a factor of about 15 in probing rate, to directly measure the surface nanomechanical properties of the transition region between filler particle and matrix over a controlled temperature range. The nanocomposite consists of poly(ethyl methacrylate) (PEMA) and poly(isobutyl methacrylate) (PiBMA) with a high concentration of hydrophobized silica nanoparticles. Both AFM methods demonstrate that the interphase region around a 40-nm-sized particle located on the surface of the nanocomposite could extend to 55-70nm, and the interphase exhibits a gradient distribution in surface nanomechanical properties. However, the slower probing rate provides somewhat lower numerical values for the surface stiffness. The analysis of the local glass transition temperature (Tg) of the interphase and the polymer matrix provides evidence for reduced stiffness of the polymer matrix at high particle concentration, a feature that we attribute to selective adsorption. These findings provide new insight into understanding the microstructure and mechanical properties of nanocomposites, which is of importance for designing nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Morphology, Mechanical and Thermal Properties of Thermoplastic Polyurethane Containing Reduced Graphene Oxide and Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Michał Strankowski

    2018-01-01

    Full Text Available Polyurethane/graphene nanocomposites were synthesized using commercial thermoplastic polyurethane (TPU, Apilon 52DE55, and two types of graphene derivatives: graphene nanoplatelets (GNP and reduced graphene oxide (RGO. Fourier Transformation Infrared Spectroscopy Fourier Transformation Infrared Spectroscopy (FTIR spectroscopy, TEM, and SEM microscopy and XRD techniques were used to chemically and structurally characterize GNP and RGO nanofillers. The properties of the new TPU nanocomposite materials were studied using thermal analysis techniques (Dynamical Mechanical Analysis (DMA, Differential Scanning Calorimetry (DSC, Thermogravimetric Analysis (TG to describe the influence of graphene nanofillers on polyurethane matrix. Our investigation describes the comparison of two types of graphene derivatives, commercial one (GNP and synthesized (RGO on thermoplastic polyurethanes. These nanofillers provides opportunities to achieve compatibility with the TPU matrix. The property enhancements are attributed commonly to high aspect ratio of graphene nanoplatelets and filler–polymer interactions at the interface. The obtained nanocomposites exhibit higher thermal and mechanical properties due to the good dispersion of both nanofillers into TPU matrix. It was found that the addition of 2 wt % of the nanofiller could lead to a significant reinforcement effect on the TPU matrix. Also, with high content of nanofiller (GNP and RGO, the Payne effect was observed.

  18. Combination of magnetic and enhanced mechanical properties for copolymer-grafted magnetite composite thermoplastic elastomers.

    Science.gov (United States)

    Jiang, Feng; Zhang, Yaqiong; Wang, Zhongkai; Wang, Wentao; Xu, Zhaohua; Wang, Zhigang

    2015-05-20

    Composite thermoplastic elastomers (CTPEs) of magnetic copolymer-grafted nanoparticles (magnetite, Fe3O4) were synthesized and characterized to generate magnetic CTPEs, which combined the magnetic property of Fe3O4 nanoparticles and the thermoplastic elasticity of the grafted amorphous polymer matrix. Fe3O4 nanoparticles served as stiff, multiple physical cross-linking points homogeneously dispersed in the grafted poly(n-butyl acrylate-co-methyl methacrylate) rubbery matrix synthesized via the activators regenerated by electron transfer for atom transfer radical polymerization method (ARGET ATRP). The preparation technique for magnetic CTPEs opened a new route toward developing a wide spectrum of magnetic elastomeric materials with strongly enhanced macroscopic properties. Differential scanning calorimetry (DSC) was used to measure the glass transition temperatures, and thermogravimetric analysis (TGA) was used to examine thermal stabilities of these CTPEs. The magnetic property could be conveniently tuned by adjusting the content of Fe3O4 nanoparticles in CTPEs. Compared to their linear copolymers, these magnetic CTPEs showed significant increases in tensile strength and elastic recovery. In situ small-angle X-ray scattering measurement was conducted to reveal the microstructural evolution of CTPEs during tensile deformation.

  19. Properties and Biodegradability of Thermoplastic Starch Obtained from Granular Starches Grafted with Polycaprolactone

    Directory of Open Access Journals (Sweden)

    Z. B. Cuevas-Carballo

    2017-01-01

    Full Text Available Granular starches grafted with polycaprolactone (St-g-PCL were obtained using N-methylimidazole (NMI as a catalyst. The effect of the starch/monomer ratio and catalyst content was studied to obtain different levels of grafted PCL. The highest grafting percentage (76% and addition (43% were achieved for reactions with a starch/monomer ratio of 50/50 and 25% catalyst. The grafting of PCL on the starch granule was verified by the emergence of the carbonyl group in the FTIR spectra and the increased diameter of the grafted starch granule. Thermoplastic starch from ungrafted starch (TPS and grafted starch (TPGS was obtained by mixing ungrafted or grafted starch granules with water, glycerol, or sorbitol in a mixer. TPS and TPGS behave as plastic materials, and their mechanical properties depend on the type of plasticizer used. Materials with glycerol as the plasticizer exhibited less rigidity. The presence of starch-g-PCL results in a dramatic increase in the elongation of the thermoplastic material. The starch present in the TPS or TPGS was completely biodegraded while the grafted PCL was partially biodegraded after the enzymatic degradation of the materials.

  20. Mechanical properties of long carbon fiber reinforced thermoplastic (LFT) at elevated temperature

    Science.gov (United States)

    Wang, Qiushi

    Long fiber reinforced thermoplastics (LFT) possess high specific modulus and strength, superior damage tolerance and fracture toughness and have found increasing use in transportation, military, and aerospace applications. However, one of the impediments to utilizing these materials is the lack of performance data in harsh conditions, especially at elevated temperature. In order to quantify the effect of temperature on the mechanical properties of carbon fiber reinforced thermoplastic composites, carbon fiber PAA composite plates containing 20% and 30% carbon fiber were produced using extrusion/compression molding process and tested at three representative temperatures, room temperature (RT 26°C), middle temperature (MID 60°C) and glass transition temperature (Tg 80°C). A heating chamber was designed and fabricated for the testing at elevated temperature. As temperature increases, flexural modulus, flexural strength, tensile modulus and tensile strength decrease. The highest reduction observed in stiffness (modulus) values of 30% CF/PAA at Tg in the 00 orientation is 75%. The reduction values were larger for the transverse (perpendicular to flow direction) samples than the longitudinal (flow direction) samples. The property reduction in 30% CF/PAA is larger than 20% CF/PAA. Furthermore, an innovative method was developed to calculate the fiber content in carbon fiber reinforced composites by burning off the neat resin and sample in a tube furnace. This method was proved to be accurate (within 1.5 wt. % deviation) by using burning off data obtained from CF/Epoxy and CF/Vinyl Ester samples. 20% and 30% carbon/PAA samples were burned off and carbon fiber content was obtained using this method. The results of the present study will be helpful in determining the end-user applications of these composite materials. Keywords: Long Carbon Fibers, Elevated Temperature, Mechanical Properties, Burn off Test.

  1. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi; Tucker III, Charles L.; Costa, Franco

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predicted stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.

  2. Carbon fiber reinforced thermoplastic composites from acrylic polymer matrices: Interfacial adhesion and physical properties

    Directory of Open Access Journals (Sweden)

    H. Kishi

    2017-04-01

    Full Text Available Acrylic polymers have high potential as matrix polymers for carbon fiber reinforced thermoplastic polymers (CFRTP due to their superior mechanical properties and the fact that they can be fabricated at relatively low temperatures. We focused on improving the interfacial adhesion between carbon fibers (CFs and acrylic polymers using several functional monomers for co-polymerization with methyl methacrylate (MMA. The copolymerized acrylic matrices showed good adhesion to the CF surfaces. In particular, an acrylic copolymer with acrylamide (AAm showed high interfacial adhesive strength with CFs compared to pure PMMA, and a hydroxyethyl acrylamide (HEAA copolymer containing both amide and hydroxyl groups showed high flexural strength of the CFRTP. A 3 mol% HEAA-copolymerized CFRTP achieved a flexural strength almost twice that of pure PMMA matrix CFRTP, and equivalent to that of an epoxy matrix CFRP.

  3. FUNCTIONAL PROPERTIES OF DEFATTED CHICKPEA (CICER ARIETINUM, L. FLOUR AS INFLUENCED BY THERMOPLASTIC EXTRUSION

    Directory of Open Access Journals (Sweden)

    Maria Filomena Claret Fernandes de Aguiar VALIM

    2009-07-01

    Full Text Available

    Defatted chickpea (Cicer arietinum, L flour was submitted to thermoplastic extrusion at three feed moisture levels (13%, 18% and 27%. The functional properties of raw and extruded flours were investigated. The nitrogen solubility index of raw chickpea flour was minimum at pH 4.0 but increased at both lower and higher pHs. Extrusion reduced nitrogen solubility drastically for all feed moisture levels. Water and oil absorption capacity were significantly (p O < 05 increased after extrusion treatment. Foam stability could be improved by extrusion and was positively influenced by alkaline pH. It was also verified that extrusion cooking increased significantly (p O < 05 the emulsifying capacity of the extruded flour with 13% moisture level in water.

  4. Preparation and Properties of Functional Graphene/Thermoplastic Polyurethane Composite Film

    Directory of Open Access Journals (Sweden)

    ZHENG Hui-dong

    2016-11-01

    Full Text Available The modified graphene oxide(DD-GO was reacted by the Didodecyldimethylammonium bromide (DDAB and graphene oxide,and then reduced via L-ascorbic acid to obtain functional graphene(DD-RGO. Functional graphene (DD-RGO/thermoplastic polyurethane (TPU composite films were prepared by solution on the coating machine. The morphology and properties of DD-RGO/TPU composite films were investigated by FTIR, XRD, FE-SEM, oxygen transmission rate tester and high resistance meter. The results show that DD-RGO with fold layer structure is evenly dispersed in TPU matrix, and the thermal stability, barrier properties and antistatic properties of TPU composite film have been significantly improved. When the mass fraction of DD-RGO is 2%, compared with the pure TPU film, the oxygen transmission rate has been reduced by 50% and the volume resistivity has been increased by 7 orders of magnitude. The barrier properties and antistatic properties of composite films have been improved significantly.

  5. Novel multiphase systems based on thermoplastic chitosan: Analysis of the structure-properties relationships

    Science.gov (United States)

    Avérous, Luc; Pollet, Eric

    2016-03-01

    In the last years, biopolymers have attracted great attention. It is for instance the case of chitosan, a linear polysaccharide. It is a deacetylated derivative of chitin, which is the second most abundant polysaccharide found in nature after cellulose. Chitosan has been found to be nontoxic, biodegradable, biofunctional, and biocompatible in addition to having antimicrobial and antifungal properties, and thus has a great potential for environmental (packaging,) or biomedical applications.For preparing chitosan-based materials, only solution casting or similar methods have been used in all the past studies. Solution casting have the disadvantage in low efficiency and difficulty in scaling-up towards industrial applications. Besides, a great amount of environmentally unfriendly chemical solvents are used and released to the environment in this method. The reason for not using a melt processing method like extrusion or kneading in the past studies is that chitosan, like many other polysaccharides such as starch, has very low thermal stability and degrade prior to melting. Therefore, even if the melt processing method is more convenient and highly preferred for industrial production, its adaptation for polysaccharide-based materials remains very difficult. However, our recently published studies has demonstrated the successful use of an innovative melt processing method (internal mixer, extrusion,) as an alternative route to solution casting, for preparing materials based on thermoplastic chitosan. These promising thermoplastic materials, obtained by melt processing, have been the main topic of recent international projects, with partners from different countries Multiphase systems based on various renewable plasticizers have been elaborated and studied. Besides, different blends, and nano-biocomposites based on nanoclays, have been elaborated and fully analyzed. The initial consortium of this vast project was based on an international consortium (Canada, Australia

  6. Interactions, structure and properties in poly(lactic acid/thermoplastic polymer blends

    Directory of Open Access Journals (Sweden)

    B. Imre

    2014-01-01

    Full Text Available Blends were prepared from poly(lactic acid (PLA and three thermoplastics, polystyrene (PS, polycarbonate (PC and poly(methyl methacrylate (PMMA. Rheological and mechanical properties, structure and component interactions were determined by various methods. The results showed that the structure and properties of the blends cover a relatively wide range. All three blends have heterogeneous structure, but the size of the dispersed particles differs by an order of magnitude indicating dissimilar interactions for the corresponding pairs. Properties change accordingly, the blend containing the smallest dispersed particles has the largest tensile strength, while PLA/PS blends with the coarsest structure have the smallest. The latter blends are also very brittle. Component interactions were estimated by four different methods, the determination of the size of the dispersed particles, the calculation of the Flory-Huggins interaction parameter from solvent absorption, from solubility parameters, and by the quantitative evaluation of the composition dependence of tensile strength. All approaches led to the same result indicating strong interaction for the PLA/PMMA pair and weak for PLA and PS. A general correlation was established between interactions and the mechanical properties of the blends.

  7. Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment

    Directory of Open Access Journals (Sweden)

    Sadaharu Nakamura

    2010-12-01

    Full Text Available Mechanical properties of thermoplastic polyurethane elastomers based on either polyether or polycarbonate (PC-glycols, 4,4’-dipheylmethane diisocyanate (1,1’-methylenebis(4-isocyanatobenzene, 1,4-butanediol, were controlled by restriction of crystallization of polymer glycols. For the polyether glycol based-polyurethane elastomers (PUEs, poly(oxytetramethylene glycol (PTMG, and PTMG incorporating dimethyl groups (PTG-X and methyl side groups (PTG-L were employed as a polymer glycol. For the PC-glycol, the randomly copolymerized PC-glycols with hexamethylene (C6 and tetramethylene (C4 units between carbonate groups with various composition ratios (C4/C6 = 0/100, 50/50, 70/30 and 90/10 were employed. The degree of microphase separation and mechanical properties of both the PUEs were investigated using differential scanning calorimetry, dynamic viscoelastic property measurements and tensile testing. Mechanical properties could be controlled by changing the molar ratio of two different monomer components.

  8. Experimental analysis on the coupled effect between thermo-optical properties and microstructure of semi-crystalline thermoplastics

    Science.gov (United States)

    Boztepe, Sinan; Thiam, Abdoulahad; de Almeida, Olivier; Le Maoult, Yannick; Schmidt, Fabrice

    2016-10-01

    Radiation heat transfer is the most common method used in thermoforming processes of thermoplastic polymers due to their poor thermal conductivity. Considering the fact that the thermo-optical characteristics of polymers play a major role in the efficiency of radiative heat transfer in bulk polymers, microstructure of semi-crystalline thermoplastics is one of the key factors to understand this heat transfer phenomenon in depth. In this study, a relation between the microcrystalline structure of polyolefin (PO) and its effect on the thermo-optical properties was experimentally analyzed. Information on the microcrystalline structure of the samples was obtained by determining the degree of crystallinity (Xc) thanks to Differential Scanning Calorimetry (DSC). Using Fourier Transform Infrared (FT-IR) spectroscopy and integrating sphere, optical characteristics of the PO samples were analyzed considering two spectrums that are in near-infrared (NIR) and middle-infrared (MIR) spectral regions respectively. The analyses showed that the degree of crystallinity has a great effect on the thermo-optical characteristics of the PO - particularly considering transmission - in NIR range. Such a coupled effect can be functionalized and adopted to develop an advanced radiative heat transfer model that may be used for addressing various problems on infrared (IR) heating of heterogeneous materials, particularly semi-crystalline thermoplastics. In the last part of the paper, a theoretical approach for consideration of the heterogeneity of semi-crystalline thermoplastics in a radiative heat transfer model was highlighted.

  9. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xilei; Jiang, Yufeng; Jiao, Chuanmei, E-mail: jiaochm@qust.edu.cn

    2014-02-15

    Highlights: • Smoke suppression of FeOOH on flame retardant TPU composites has been investigated. • FeOOH has excellent smoke suppression abilities for flame retardant TPU composites. • FeOOH has good ability of char formation, hence improved smoke suppression property. -- Abstract: This article mainly studies smoke suppression properties and synergistic flame retardant effect of ferrite yellow (FeOOH) on flame retardant thermoplastic polyurethane (TPU) composites using ammonium polyphosphate (APP) as a flame retardant agent. Smoke suppression properties and synergistic flame retardant effect of FeOOH on flame retardant TPU composites were intensively investigated by smoke density test (SDT), cone calorimeter test (CCT), scanning electron microscopy (SEM), and thermal-gravimetric analysis (TGA). Remarkably, the SDT results show that FeOOH can effectively decrease the amount of smoke production with or without flame. On the other hand, the CCT data reveal that the addition of FeOOH can apparently reduce heat release rate (HRR), total heat release (THR), and total smoke release (TSR), etc. Here, FeOOH is considered to be an effective smoke suppression agent and a good synergism with APP in flame retardant TPU composites, which can greatly improve the structure of char residue realized by TGA and SEM results.

  10. Effect of EMA and antioxidants on properties of thermoplastic starch blown films

    Science.gov (United States)

    Threepopnatkul, P.; Kulsetthanchalee, C.; Sittattrakul, A.; Kaewjinda, E.

    2015-07-01

    The objectives of this study were to investigate the effect of poly(ethylene-co-methyl acrylate) (EMA) at 10, 30 and 50 wt% on the morphological properties, moisture sorption, water vapor permeability and biodegradability of thermoplastic starch (TPS). Urea and formamide were used as a mixed plasticizer. In addition, the effect of antioxidants namely, 3,5-di-tert-butyl-4-hydroxyhydrocinnamate (DTBH), butylated hydroxytoluene (BHT) and bis(octadecyl)hydroxylamine (BOH) at 1 wt% on the properties of TPS/EMA film was investigated. TPS/EMA films were produced by a blown film molding machine and characterized by scanning electron microscropy, moisture sorption, water vapor permeability and biodegradability measurement. Results found that the increment of EMA content in the TPS matrix could improve the water sorption, water vapor permeability and biodegradability properties of TPS/EMA films. For biodegradation, the weight loss of the blended films was directly proportional to TPS content. Regarding the antioxidants effect, the water vapor permeability of TPS/EMA films containing DTBH was higher than the one with BOH and BHT. However, the antioxidants contributed little to the biodegradability of TPS/EMA films and had no effect on the moisture sorption of TPS/EMA films.

  11. Effect of Rubber Nanoparticle Agglomeration on Properties of Thermoplastic Vulcanizates during Dynamic Vulcanization

    Directory of Open Access Journals (Sweden)

    Hanguang Wu

    2016-04-01

    Full Text Available We previously reported that the dispersed rubber microparticles in ethylene-propylene-diene monomer (EPDM/polypropylene (PP thermoplastic vulcanizates (TPVs are actually agglomerates of rubber nanoparticles. In this study, based on this new understanding of the microstructure of TPV, we further revealed the microstructure-properties relationship of EPDM/PP TPV during dynamic vulcanization, especially the effect of the size of rubber nanoparticle agglomerates (dn, the thicknesses of PP ligaments (IDpoly and the rubber network on the properties of EPDM/PP TPV. We were able to simultaneously obtain a high tensile strength, elongation at break, elastic modulus, and elasticity for the EPDM/PP TPV by the achievement of a smaller dn, a thinner IDpoly and a denser rubber network. Interestingly, the effect of dn and IDpoly on the elastic modulus of EPDM/PP TPV composed of rubber nanoparticle agglomerates is different from that of EPDM/PP TPVs composed of rubber microparticles reported previously. The deformation behavior of the TPVs during stretching was studied to understand the mechanism for the achievement of good mechanical properties. Interestingly, the rubber nanoparticle agglomerates are oriented along the tensile direction during stretching. The TPV samples with smaller and more numerous rubber nanoparticle agglomerates can slow down the development of voids and cracks more effectively, thus leading to increase in tensile strength and elongation at break of the EPDM/PP TPV.

  12. Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite

    Directory of Open Access Journals (Sweden)

    Y. A. El-Shekeil

    2012-12-01

    Full Text Available In this study, the effect of polymeric Methylene Diphenyl Diisocyanate (pMDI chemical treatment on kenaf (Hibiscus cannabinus reinforced thermoplastic polyurethane (TPU/KF was examined using two different procedures. The first consisted of treating the fibers with 4% pMDI, and the second involved 2% NaOH + 4% pMDI. The composites were characterized according to their tensile properties, Fourier Transform Infrared Spectroscopy (FTIR and Scanning Electron Microscopy (SEM. The treatment of the composite with 4% pMDI did not significantly affect its tensile properties, but the treatment with 2% NaOH + 4% pMDI significantly increased the tensile properties of the composite (i.e., 30 and 42% increases in the tensile strength and modulus, respectively. FTIR also showed that treatment with 2% NaOH + 4% pMDI led to the strongest H-bonding. Additionally, the surface morphology of specimens after tensile fracture confirmed that the composite treated with 2% NaOH + 4% pMDI had the best adhesion and wettability.

  13. Renewable Polymer/ Thermoplastics Polyethylene Blended with Enhanced Mechanical and UV Stability Properties

    Directory of Open Access Journals (Sweden)

    Salim Nurul Syamimi M.

    2016-01-01

    Full Text Available Blends of Renewable Polymer (RP and thermoplastic polyethylene (LDPE and HDPE may contribute to make recycling more economically attractive. In this study, the monomer is mixed with flexible isocynate as a crosslinker, these mixture is called Renewable Polymer. Renewable polymers are mixed in a Low-density polyethylene (LDPE and High-density polyethylene (HDPE with a ratio of 5%, 10%, 15%, 20%, 25% and 30%. The aim of this work to make LDPE/RP and HDPE/RP blends injected via injection molding and to evaluate their mechanical properties via tensile test. Accelerated weathering test up for 500 hours, 1000 hours, 1500 hours, 2000 hours, 2500 hours and 3000 hours. The blends yielded tensile strength and maximum elongation at break curves very dependent on their composition, especially regarding the presence of necking. The tensile strength increase at 500 hours, while maximum elongation at break were found to decreased with increase of UV irradiation hours. In conclusion, RP content and UV irradiation time play significant roles in controlling mechanical properties of the RP-blended with LDPE and HDPE synthetic polymer, thus providing the opportunity to modulate polymer properties.

  14. Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Strankowski Michał

    2015-12-01

    Full Text Available In this study, thermally reduced graphene oxide (TRG-containing polyurethane nanocomposites were obtained by the extrusion method. The content of TRG incorporated into polyurethane elastomer systems equaled 0.5, 1.0, 2.0 and 3.0 wt%. The morphology, static and dynamic mechanical properties, and thermal stability of the modified materials were investigated. The application of TRG resulted in a visible increase in material stiffness as confirmed by the measurements of complex compression modulus (E′ and glass transition temperature (Tg. The Tg increased with increasing content of nanofiller in the thermoplastic system. The addition of thermally reduced graphene oxide had a slight effect on thermal stability of the obtained materials. The incorporation of 0.5, 1.0, 2.0 and 3.0 wt% of TRG into a system resulted in increased char residues compared to unmodified PU elastomer. Also, this study demonstrated that after exceeding a specific amount of TRG, the physicomechanical properties of modified materials start to deteriorate.

  15. Mechanical and thermal properties of PP/PBT blends compatibilized with triblock thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    Ignaczak Wojciech

    2015-09-01

    Full Text Available A linear triblock copolymer, poly(styrene-b-etylene/butylene-b-styrene(SEBS thermoplastic elastomer (TPE grafted with maleic anhydride was used for compatibilization of PP/PBT blends. PP/PBT blends of different mass ratios 60/40, 50/50, 40/60 were mixed with 2.5, 5.0 and 7.5 wt.% of SEBS copolymer in a twin screw extruder. Differential scanning calorimetry and dynamic mechanical analysis were performed to define the phase structure of PP/PBT blends. TPE with a rubbery mid-block shifted the glass transition of PP/PBT blend towards lower temperatures, and significant decrease the crystallization temperature of a crystalline phase of PP component was observed. The influence of the amount of compatibilizer and the blend composition on the mechanical properties (tensile and flexural strengths, toughness and moduli was determined. Addition of 5 wt.% of a triblock TPE led to a three-fold increase of PP/PBT toughness. A significant increase of impact properties was observed for all materials compatibilized with the highest amount of SEBS copolymer.

  16. Blending of Hydrocarbon and Rosin Ester-basedResins to Study its Effect on the Physical andMechanical Properties of Thermoplastic Road Markings

    Directory of Open Access Journals (Sweden)

    S.M. Mirabedini

    2009-12-01

    Full Text Available In this study, the effect of hydrocarbon and rosin ester resins combination on the physical and mechanical properties of thermoplastic road markings were evaluated. At first, two basic thermoplastic road marking formulations based on hydrocarbon and rosin ester resins were prepared. Several samples of the blends of two basic formulations for thermoplastic road marking were characterized and compared by their softening points, abrasion resistance, color data changes, DMTA and tensile strength values. The results showed that hydrocarbon-based thermoplastic road markings have better weathering resistance and rosin ester based materials illustrated enhanced heat resistance. The inclusion of rosin ester thermoplastic road marking into the hydrocarbon-based formulations, improves compatibility of the hydrocarbon resin and dibutyl phthalate (DBP(, as well as their physical and mechanical properties. The unique properties of rosin arise from its hydrophobic chain skeleton and its hydrophilic carboxy groups which contribute to its excellent solubility and compatibility with a variety of other synthetic resins. The best performance was obtained with 50 wt % inclusion of rosin ester to hydrocarbon based compound. DMTA analysis revelation with combination of hydrocarbon and rosin ester-based road markings showed that the decreasing trend in elastic modulus is shifted to higher temperature, and as a result it keeps the hardness and ductile properties of thermoplastic road markings unchanged. More favored raw materials for compatibilization of compounds in road marking formulations lead to higher elongation- at-break and an increased toughness.

  17. Water proof and strength retention properties of thermoplastic starch based biocomposites modified with glutaraldehyde.

    Science.gov (United States)

    Yeh, Jen-taut; Hou, Yuan-jing; Cheng, Li; Wang, Ya-Zhou; Yang, Liang; Wang, Chuen-kai

    2015-01-01

    Water proof and strength retention properties of thermoplastic starch (TPS) resins were successfully improved by reacting glutaraldehyde (GA) with starch molecules during their gelatinization processes. Tensile strength (σf) values of initial and aged TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens improved significantly to a maximal value as GA contents approached an optimal value, while their moisture content and elongation at break values reduced to a minimal value, respectively, as GA contents approached the optimal value. The σf retention values of (TPS100BC0.02GA0.5)75PLA25 specimen aged for 56 days are more than 50 times higher than those of corresponding aged TPS and TPS100BC0.02 specimens, respectively. New melting endotherms and diffraction peaks of VH-type starch crystals were found on DSC thermograms and WAXD patterns of aged TPS or TPS100BC0.02 specimens, respectively, while negligible retrogradation effect was found for most aged TPS100BC0.02GAx and/or (TPS100BC0.02GAx)75PLA25 specimens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Synthesis, structure and properties of thermoplastic poly(ester–siloxane elastomers

    Directory of Open Access Journals (Sweden)

    VESNA V. ANTIC

    2006-07-01

    Full Text Available Two series of thermoplastic poly(ester–siloxane elastomers (TPES, with hard segments based on poly(butylene terephthalate (PBT and soft segments based on poly(dimethylsiloxane (PDMS, were synthesized by high-temperature, two-step transesterification reaction in the melt. In series I, themass ratio of hard and soft segments was kept constant (57:43, while the length of the segments was varied, whereas in series II, the mass ratio of hard and soft segments was varied in range from 70:30 to 40:60, with a constant length of the soft segments. The segmented structure of the poly(ester–siloxane copolymers was verified by 1H-NMR spectroscopy of the soluble and insoluble fractions, obtained after extraction of the samples with chloroform. The influence of the structure and composition of the TPES on the melting temperatures and degrees of crystallinity was investigated by differential scanning calorimetry (DSC. The rheological properties were investigated by dynamic mechanical analysis (DMA.

  19. Structure-Property Relationships in Tough, Superabsorbent Thermoplastic Elastomers for Hemorrhage Control

    Science.gov (United States)

    Beyer, Frederick; Bain, Erich; Long, Tyler; Mrozek, Randy; Savage, Alice; Martin, Halie; Dadmun, Mark; Lenhart, Joseph

    Between 2001 and 2009, uncontrolled hemorrhaging from major trauma accounted for the deaths of roughly 80% of wounded soldiers with potentially survivable injuries. Modern hemostatic materials are limited in their ability to deliver therapeutic agents, causing tissue damage themselves, or being difficult to remove intact. The goal of this study is to create a mechanically robust polymer that takes up as much as 1000 wt% water in seconds while maintaining sufficient toughness to be removed intact from the wound intact. A thermoplastic elastomer scaffold in which physical crosslinks provide mechanical toughness might provide an appropriate combination of fast swelling and excellent toughness if the matrix material can be engineered to be strongly hydrophilic and swell rapidly. In this work, a commercial SBS triblock copolymer has been modified with poly(acrylic acid) side chains, resulting in materials that are superabsorbent but retain good mechanical properties when saturated. Although SAXS experiments failed to show any significant changes in morphology, even with 800 wt% water uptake, preliminary SANS experiments using selectively deuterated materials and swelling with D2O show significant changes in morphology. Our most recent findings will be presented.

  20. Mechanical and Thermal Properties and Morphology of Thermoplastic Polyurethane (TPU/Clay Composites

    Directory of Open Access Journals (Sweden)

    Leandro Pizzatto

    2015-11-01

    Full Text Available In this study, thermoplastic polyurethane (TPU composites were prepared with different nanoclay contents (1, 3 and 10 wt%. The nanoclay Cloisite ®30B (C30B was dispersed in the TPU matrix by melt processing using a twin-screw extruder. The synthesis method of TPU involved the two-step bulk polymerization of polyesterpolyol and 4,4’ diphenylmethanediisocyanate with butane-1,4-diol as the chain extender. The dispersion of the nanoclay particles and its effect on the mechanical and thermal properties of the composites was investigated. The characterization of TPU/nanoclay composites was carried out by means of scanning electron microscopy, energy dispersion microanalysis and X ray diffraction. The mechanical characterization was performed through determination of the tensile strength. The TPU 3 wt% composite showed the best improvement with increases in stress and tensile at break (28% and 35%, respectively, compared to the neat TPU (sample without nanoclay. The differential scanning calorimetry and thermogravimetry analyses for composites indicated that the nanoclay did not affect significantly the glass transition, melt, and degradation temperatures of the polymeric matrix, but reduces the molecular mobility.

  1. Effect of thermoplastic polyurethane content on properties of PC/TPU blend filled with Montmorillonite

    Directory of Open Access Journals (Sweden)

    G. M. Shashidhara

    2013-03-01

    Full Text Available The present study was taken up to investigate the effect of addition of Montmorillonite (MMT to Polycarbonate/Thermoplastic polyurethane (PC/TPU blends. A master batch of PC/MMT (70/30 was prepared using Hake Rheomixer and PC/TPU blends filled with MMT of different compositions (90/10/5, 80/20/5, 70/30/5 were prepared by melt mixing using required quantities of master batch, PC and TPU in a twin screw extruder (TSE. Blends of PC/TPU of similar compositions (without MMT were also prepared using twin screw extruder. The test specimens were prepared by injection molding. The samples were characterized in terms of mechanical (as per relevant ASTM standards, thermal and dynamic mechanical properties. It was observed that addition of 5 phb of MMT to PC/TPU system improves tensile strength by 34 %, flexural strength by 8.6 % and flexural modulus by 16.7 %, storage modulus by 25 % and Shore D hardness by 16 % in all the compositions containing MMT. Differencial Scanning Calorimetric (DSC and Dynamic Mechanical Analysis (DMA studies revealed that the Tg shift towards lower values when compared with neat PC.The heat deflection temperature (HDT of blends with MMT was found to increase with the reinforcement.

  2. Economic assessment of utilizing protective properties of level coal seams

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtin, A.F.; Batmanov, Yu.K.; Gainutdinov, I.A.

    1982-12-01

    Increasing mining depth negatively influences mining efficiency and safety. At depths to 600 m 10% of coal comes from seams prone to rock bursts. At depths exceeding 600 m proportion of coal from seams prone to rock bursts increases to 40%. Investigations carried out in Ukrainian coal mines show that coal losses (due to rock burst hazard) in level seams mined by a longwall system amount to 4.6 Mt per year. Cost of rock burst prevention and repairs after rock bursts amounts to 12 million rubles per year. About 68% of coal from level coal seams comes from long coal pillars mined by a longwall system. In level coal seams prone to rock bursts this proportion is 40% lower (proportion of longwall mining is reduced due to increased rock burst hazards). Only 10% of coal seams prone to rock bursts are mined using a system of stress relaxation by cutting another overlying or underlying coal seam (utilizing protective properties of a coal seam). A method for economic analysis of protective properties of coal seams in seam groups is described. Using the method the optimum order of mining coal seams in a seam group is determined. Examples of the method's use are analyzed. (3 refs.) (In Russian)

  3. The Effect of the Melt Viscosity and Impregnation of a Film on the Mechanical Properties of Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Jong Won Kim

    2016-06-01

    Full Text Available Generally, to produce film-type thermoplastic composites with good mechanical properties, high-performance reinforcement films are used. In this case, films used as a matrix are difficult to impregnate into tow due to their high melt viscosity and high molecular weight. To solve the problem, in this paper, three polypropylene (PP films with different melt viscosities were used separately to produce film-type thermoplastic composites. A film with a low melt viscosity was stacked so that tow was impregnated first and a film with a higher melt viscosity was then stacked to produce the composite. Four different composites were produced by regulating the pressure rising time. The thickness, density, fiber volume fraction (Vf, and void content (Vc were analyzed to identify the physical properties and compare them in terms of film stacking types. The thermal properties were identified by using differential scanning calorimetry (DSC and dynamical mechanical thermal analysis (DMTA. The tensile property, flexural property, interlaminar shear strength (ILSS, and scanning electron microscopy (SEM were performed to identify the mechanical properties. For the films with low molecular weight, impregnation could be completed fast but showed low strength. Additionally, the films with high molecular weight completed impregnation slowly but showed high strength. Therefore, appropriate films should be used considering the forming process time and their mechanical properties to produce film-type composites.

  4. Influence of Engage® copolymer type on the properties of Engage®/silicone rubber-based thermoplastic dynamic vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available Thermoplastic vulcanizates (TPVs are a special class of thermoplastic elastomers, which are produced by simultaneously mixing and crosslinking a rubber with a thermoplastic polymer at an elevated temperature. Peroxide-cured TPVs based on blends of silicone rubber and thermoplastic Engage of two different types, mainly ethylene-octene and ethylenebutene copolymers at different blend ratios have been developed. A detailed comparative study of ethylene-octene vs. ethylene-butene based TPVs are mainly focused in this paper. These TPVs exhibit very good overall mechanical and electrical properties. With increasing amount of Engage in the blends at a fixed concentration of peroxide and coagent, tensile strength, modulus and hardness of the TPVs were found to increase considerably. Ageing characteristics and recyclability of silicone rubber based TPVs are also found excellent. Rheological studies confirm the pseudoplastic nature of these TPVs.

  5. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Miguel Nicolas [Univ. of California, Berkeley, CA (United States)

    1994-01-01

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  6. Structural Characteristics and Physical Properties of Tectonically Deformed Coals

    Directory of Open Access Journals (Sweden)

    Yiwen Ju

    2012-01-01

    Full Text Available Different mechanisms of deformation could make different influence on inner structure and physical properties of tectonically deformed coal (TDC reservoirs. This paper discusses the relationship between macromolecular structure and physical properties of the Huaibei-Huainan coal mine areas in southern North China. The macromolecular structure and pore characteristics are systematically investigated by using techniques such as X-ray diffraction (XRD, high-resolution transmission electron microscopy (HRTEM, electron paramagnetic resonance (EPR, nuclear magnetic resonance (NMR, and low-temperature nitrogen adsorption method. The results suggest that under the directional stress, basic structural units (BSU arrangement is closer, and the orientation becomes stronger from brittle deformed coal to ductile deformed coal. Structural deformation directly influences the macromolecular structure of coal, which results in changes of pore structure. The nanoscale pores of the cataclastic coal structure caused by the brittle deformation are mainly mesopores, and the proportion of mesopores volume in ductile deformed coal diminishes rapidly. So the exploration and development potential of coalbed gas are good in reservoirs such as schistose structure coal, mortar structure coal and cataclastic structure coal. It also holds promise for a certain degree of brittle deformation and wrinkle structure coal of low ductile deformation or later superimposed by brittle deformation.

  7. Gondwana coals of Bhutan Himalaya - occurrence, properties and petrographic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A.K.; Alam, M.M.; Ghose, S.

    1988-03-01

    A narrow belt of highly inclined coal-bearing Gondwana strata occurs in the extreme southeastern part of Bhutan Himalaya. Recently, a systematic survey was undertaken along this coal belt and coals of three areas were analyzed in detail for the evaluation of their physico-chemical properties and petrographic characteristics. The entire region is in the midst of the Great Himalayan orogenic belt, and the whole stratigraphic sequence underwent several diastrophic movements in the geological past. The massive effects of these orogenies is more pronounced in the coal beds, of Gondwana sequence, and due to severe crushing and tectonic shearing these coals became powdery and flaky in nature. Significantly, the coals retained their pre-deformational rank exhibiting typical high-volatile, low-rank, bituminous characters, with mild caking propensities. Also these coals are markedly low in sulphur, phosphorus, chlorine and carbonate content like that of Peninsular Gondwana coals. Petrographic studies of these Bhutan coals revealed a close similarity with the eastern Raniganj coals (Upper Permian) of Peninsular India. The tectonic shearing and crushing of the coals are exhibited by the frequent presence of microfolding, microfaulting, and other compressional structures. However, the coals of all the three areas have shown a consistently low order of reflectance values. This typical retention of pre-deformational low-rank bituminous character is a significant feature of Bhutan coals. It shows that massive orogenic movements were only able to physically crush these coals but could not generate the requisite thermal regime to raise the rank of these coals. 35 refs., 4 figs., 5 tabs.

  8. Fabrication of thermoplastic polyester elastomer/layered zinc hydroxide nitrate nanocomposites with enhanced thermal, mechanical and combustion properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei; Ma, Liyan; Song, Lei; Hu, Yuan, E-mail: yuanhu@ustc.edu.cn

    2013-08-15

    The objective of this study is to explore the potential of layered zinc hydroxide nitrate modified with sodium benzoate as nanoparticle in thermoplastic polyester elastomer (TPEE). The organically modified zinc hydroxide nitrate was compounded with TPEE using solution blending method. The nanocomposite structure was characterized by means of X-ray diffraction and transmission electron microscopy. The results showed that the nanoparticle was homogenously dispersed in TPEE matrix, and partially exfoliated structure was formed. The thermal behavior, mechanical and thermal combustion properties of the novel nanocomposite were studied respectively through differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA) and microscale combustion calorimeter (MCC). For the nanocomposite containing 7 wt% nanoparticle, the crystallization temperature evaluated by DSC was increased by 10 °C. The storage modulus at −95 °C measured by DMA was improved by around 26%. The heat release capacity (an indicator of a material fire hazard) from MCC testing was reduced by about 56% (compared to the results of neat TPEE). - Highlights: • We prepare zinc hydroxide nitrate modified by sodium benzoate (SB-ZHN). • We prepare and characterize thermoplastic polyester elastomer/SB-ZHN nanocomposites. • We investigate the thermal and combustion properties of the nanocomposites. • We study the thermodynamic properties of the nanocomposites.

  9. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    Science.gov (United States)

    Martinetti, Luca

    At service temperatures, A--B--A thermoplastic elastomers (TPEs) behave similarly to filled (and often entangled) B-rich rubbers since B block ends are anchored on rigid A domains. Therefore, their viscoelastic behavior is largely dictated by chain mobility of the B block rather than by microstructural order. Relating the small- and large-strain response of undiluted A--B--A triblocks to molecular parameters is a prerequisite for designing associated TPE-based systems that can meet the desired linear and nonlinear rheological criteria. This dissertation was aimed at connecting the chemical and topological structure of A--B--A TPEs with their viscoelastic properties, both in the linear and in the nonlinear regime. Since extensional deformations are relevant for the processing and often the end-use applications of thermoplastic elastomers, the behavior was investigated predominantly in uniaxial extension. The unperturbed size of polymer coils is one of the most fundamental properties in polymer physics, affecting both the thermodynamics of macromolecules and their viscoelastic properties. Literature results on poly(D,L-lactide) (PLA) unperturbed chain dimensions, plateau modulus, and critical molar mass for entanglement effect in viscosity were reviewed and discussed in the framework of the coil packing model. Self-consistency between experimental estimates of melt chain dimensions and viscoelastic properties was discussed, and the scaling behaviors predicted by the coil packing model were identified. Contrary to the widespread belief that amorphous polylactide must be intrinsically stiff, the coil packing model and accurate experimental measurements undoubtedly support the flexible nature of PLA. The apparent brittleness of PLA in mechanical testing was attributed to a potentially severe physical aging occurring at room temperature and to the limited extensibility of the PLA tube statistical segment. The linear viscoelastic response of A--B--A TPEs was first

  10. THE STUDY OF THE TECHNICAL PROPERTIES OF MEMBRANES HIGH-STYRENE THERMOPLASTIC ELASTOMER

    Directory of Open Access Journals (Sweden)

    A. A. Sedykh

    2014-01-01

    Full Text Available Summary. In the prevention of gastric diseases flexible optical fiber harness with camera and lighting after its extraction from the stomach is subjected to disassembly and continuous sterilization. Protection flexible optical fiber tourniquet, disposable and transparent sheath reduces the duration of the disassembly and sterilization. As the material for the shell of the recommended developed by the Voronezh branch of the FSUE "NIISK" high-styrene block copolymers Styrotep-65. The aim of this work was the development of technologies for films, protective shells of TEC and estimation of their technical parameters. As a benchmark comparison was tested extruded film Styrotep-65. The orientation of the macromolecules of the polymer along the sleeve during extraction provided the anisotropy of the properties of the film along and across the sleeves. In the study of properties of solutions of thermoplastic elastomer is established that the increase in solution viscosity provides greater film thickness in a single dunking them in forms. We investigated the effect of the concentration of a solution Styrotep-65 in toluene and the speed of rotation of a spindle of a Brookfield viscometer PV-E on their viscosity. With increasing concentration of the polymer solution with 19,0 to 26.8 % of the mass. the level of viscosity was increased from 104 to 330 MPa•S. In the interval of increasing the rotational speed of the spindle from 2.0 to 10.0 rpm viscosity solutions is not dependent on the concentration increased due to manifestations of thixotropy. A further increase in the speed of rotation of the spindle 10 to 100 rpm did not affect the viscosity of the solutions. This is true for ideal fluids. Film cast on a horizontal surface of the cellophane from a 10 % toluene solution, was characterized by lower strength than extruded, but with a large elongation at break. Determined the impact of the multiplicity of dipping forms in solution and polymer solution

  11. Effect of cassava peel and cassava bagasse natural fillers on mechanical properties of thermoplastic cassava starch: Comparative study

    Science.gov (United States)

    Edhirej, Ahmed; Sapuan, S. M.; Jawaid, Mohammad; Zahari, Nur Ismarrubie; Sanyang, M. L.

    2017-12-01

    Increased awareness of environmental and sustainability issues has generated increased interest in the use of natural fiber reinforced composites. This work focused on the use of cassava roots peel and bagasse as natural fillers of thermoplastic cassava starch (TPS) materials based on cassava starch. The effect of cassava bagasse (CB) and cassava peel (CP) content on the tensile properties of cassava starch (CS) biocomposites films was studied. The biocomposites films were prepared by casting technique using cassava starch (CS) as matrix and fructose as plasticizer. The CB and CP were added to improve the properties of the films. The addition of both fibers increased the tensile strength and modulus while decreased the elongation at break of the biocomposites films. Films containing CB showed higher tensile strength and modulus as compared to the films containing the same amount of CP. The addition of 6 % bagasse increased the modulus and maximum tensile stress to 581.68 and 10.78 MPa, respectively. Thus, CB is considered to be the most efficient reinforcing agent due to its high compatibility with the cassava starch. The use of CB and CP as reinforcement agents for CS thermoplastic cassava added value to these waste by-products and increase the suitability of CS composite films as environmentally friendly food packaging material.

  12. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-02-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  13. Thermodynamic properties of pulverized coal during rapid heating devolatilization processes

    Energy Technology Data Exchange (ETDEWEB)

    Proscia, W.M.; Freihaut, J.D. [United Technologies Research Center, E. Hartford, CT (United States); Rastogi, S.; Klinzing, G.E. [Univ. of Pittsburg, PA (United States)

    1994-07-01

    The thermodynamic properties of coal under conditions of rapid heating have been determined using a combination of UTRC facilities including a proprietary rapid heating rate differential thermal analyzer (RHR-DTA), a microbomb calorimeter (MBC), an entrained flow reactor (EFR), an elemental analyzer (EA), and a FT-IR. The total heat of devolatilization, was measured for a HVA bituminous coal (PSOC 1451D, Pittsburgh No. 8) and a LV bituminous coal (PSOC 1516D, Lower Kittaning). For the HVA coal, the contributions of each of the following components to the overall heat of devolatilization were measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of coal and char samples was performed at the University of Pittsburgh using a PC-based image analysis system, BET apparatus, helium pcynometer, and mercury porosimeter. The bulk density, true density, CO{sub 2} surface area, pore volume distribution, and particle size distribution as a function of extent of reaction are reported for both the HVA and LV coal. Analyses of the data were performed to obtain the fractal dimension of the particles as well as estimates for the external surface area. The morphological data together with the thermodynamic data obtained in this investigation provides a complete database for a set of common, well characterized coal and char samples. This database can be used to improve the prediction of particle temperatures in coal devolatilization models. Such models are used both to obtain kinetic rates from fundamental studies and in predicting furnace performance with comprehensive coal combustion codes. Recommendations for heat capacity functions and heats of devolatilization for the HVA and LV coals are given. Results of sample particle temperature calculations using the recommended thermodynamic properties are provided.

  14. Thermoplastic behaviour and structural evolution of coke and char particles in a single particle reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Strezov; Jianglong Yu; Guisu Liu; John A. Lucas [University of Newcastle, Mayfield, NSW (Australia). Newbolds Applied Research

    2003-07-01

    Although coking and thermal coals have quite disparate properties and applications, both coal types undergo devolatilisation in their respective utilisation processes. The resultant carbonised materials, coke and char, show significant variations in the resulting physical structure. In both cases, particles ranging from highly porous cenospheres to very dense particles are produced. Previous studies have concluded that the physical structure affects highly significant process variables such as burnout efficiency of char, ash formation during combustion and the strength of lump coke in the blast furnace. It is therefore necessary to understand the evolution of physical structure during carbonisation of coals. In the present work a direct observation of particle swelling behaviour and bubbling phenomena during pyrolysis of coking and thermal coal particles was conducted using a single particle reactor. Coking and thermal coals were thermally treated under conditions pertinent to their thermoplastic development, e.g. coking coals were subjected to low heating rates while the thermal coals under high heating rates. Bubble growth and ruptures during the plastic stage were captured using a CCD video camera equipped with a long distance microscopic lens. There were similarities in bubble formation between both thermal and coking coals such as multi-bubble and single bubble development and rupture and consequent particle shrinkage. Comparative and quantitative analysis of the thermoplastic behaviour of the coking and thermal coals are here outlined in detail. 13 refs., 8 figs., 2 tabs.

  15. Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Rohan Stanger

    2014-01-01

    Full Text Available A new technique that allows dynamic measurement of thermal properties, expansion and the elemental chemistry of the volatile matter being evolved as coal is pyrolysed is described. The thermal and other properties are measured dynamically as a function of temperature of the coal without the need for equilibration at temperature. In particular, the technique allows for continuous elemental characterisation of tars as they are evolved during pyrolysis and afterwards as a function of boiling point. The technique is demonstrated by measuring the properties of maceral concentrates from a coal. The variation in heats of reaction, thermal conductivity and expansion as a function of maceral composition is described. Combined with the elemental analysis, the results aid in the interpretation of the chemical processes contributing to the physical and thermal behaviour of the coal during pyrolysis. Potential applications in cokemaking studies are discussed.

  16. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  17. Influence of various peroxides in PP/EPDM thermoplastic vulcanizates at varied blend ratios

    NARCIS (Netherlands)

    Kinsuk Naskar, K.N.; Noordermeer, Jacobus W.M.

    2006-01-01

    Thermoplastic vulcanizates (TPVs) or dynamic vulcanizates containing finely dispersed micron-size cross-linked rubber particles in a thermoplastic matrix exhibit performance properties of the conventional vulcanized rubbers, however, they can be processed as thermoplastics. The basic objective of

  18. Lignin-Based Thermoplastic Materials.

    Science.gov (United States)

    Wang, Chao; Kelley, Stephen S; Venditti, Richard A

    2016-04-21

    Lignin-based thermoplastic materials have attracted increasing interest as sustainable, cost-effective, and biodegradable alternatives for petroleum-based thermoplastics. As an amorphous thermoplastic material, lignin has a relatively high glass-transition temperature and also undergoes radical-induced self-condensation at high temperatures, which limits its thermal processability. Additionally, lignin-based materials are usually brittle and exhibit poor mechanical properties. To improve the thermoplasticity and mechanical properties of technical lignin, polymers or plasticizers are usually integrated with lignin by blending or chemical modification. This Review attempts to cover the reported approaches towards the development of lignin-based thermoplastic materials on the basis of published information. Approaches reviewed include plasticization, blending with miscible polymers, and chemical modifications by esterification, etherification, polymer grafting, and copolymerization. Those lignin-based thermoplastic materials are expected to show applications as engineering plastics, polymeric foams, thermoplastic elastomers, and carbon-fiber precursors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Morphological Parameters in Relation to the Electromagnetic Properties of Microcellular Thermoplastic Polyurethane Foam in X-Band Frequency Ranges

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Moeini

    2017-04-01

    Full Text Available Microcellular thermoplastic polyurethane foams are examined as absorbing materials in the X-band (8.2-12.4 GHz frequency range by means of experiment. In this work, we aim to establish relationships between foam morphology including cell size and air volume fraction and electromagnetic properties including absorption, transmission and reflection quality. Nanocomposites based on thermoplastic polyurethane containing carbon black were prepared by coagulation method. In this procedure 15 wt% carbon black-containing nanocomposite was converted to microcellular foams using batch foaming process and supercritical carbon dioxide as physical foaming agent. The morphology of the foams was evaluated by scanning electron microscopy. S-parameters of the samples were measured by a vector network analyzer (VNA and the effect of morphological parameters such as cell size and air volume fraction on the absorbing properties was investigated. We also established structure/properties relationships which were essential for further optimizations of the materials used in the construction of radar absorbing composites. Foaming reduced the percolation threshold of the nanocomposites due to the reduction in the average distance between nanoparticles. Foaming and dielectric constant reduction dropped the reflection percentage significantly. The increase in air volume fraction in the foam increased absorption per its weight, because of multiple scattering in composite media. The sensitivity of electromagnetic wave toward the variation of cell size is strongly weaker than that toward the variation of air volume fraction. Electromagnetic properties of the microcellular foams deviated a little from effective medium theories (EMTs. Air volume fraction of the cells was a function of cell size and smaller cells showed higher absorption.

  20. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R. [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstrasse 49, 52062 Aachen (Germany)

    2015-05-22

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10{sup 17} m{sup −3} is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with

  1. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    Science.gov (United States)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-05-01

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x1017 m-3 is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with sufficient bond

  2. Effect of different types of peroxides on rheoliogical. mechanical and morphological properties of thermoplastic vulcanizates based on natural rubber/polypropylene blends

    NARCIS (Netherlands)

    Thitithammawong, Anoma; Thitithammawong, A.; Nakason, Charoen; Sahakaro, Kannika; Noordermeer, Jacobus W.M.

    2007-01-01

    Influences of various types and concentrations of peroxides on the properties of thermoplastic vulcanizates based on natural rubber/polypropylene (PP) blends were investigated. The objective was to find a proper balance between the influences of degree of crosslinking of the rubber and degradation

  3. Correlation between thermal, optical and morphological properties of heterogeneous blends of poly(3-hexylthiophene) and thermoplastic polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    PatrIcio, PatrIcia S O [Departamento de QuImica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte MG (Brazil); Calado, Hallen D R [Departamento de QuImica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte MG (Brazil); Oliveira, Flavio A C de [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte MG (Brazil); Righi, Ariete [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte MG (Brazil); Neves, Bernardo R A [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte MG (Brazil); Silva, Glaura G [Departamento de QuImica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte MG (Brazil); Cury, Luiz A [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte MG (Brazil)

    2006-08-16

    A correlation between thermal, optical and morphological properties of self-sustained films formed from blends of poly(3-hexylthiophene) (P3HT) and thermoplastic polyurethane (TPU), with 1, 10 and 20 wt% of P3HT in TPU, is established. Images of scanning electron microscopy (SEM) show the formation of domains of P3HT into the TPU matrix, characterizing the blend material as heterogeneous. The heat capacity (C{sub p}) dependence on P3HT contents was investigated in a large temperature interval. In the region of the TPU glass transition, the difference between the experimental and predicted {delta}C{sub p} values is more pronounced for the 1 wt% case, which strongly suggests that in this case there is a higher influence of the P3HT chains on the TPU matrix. The SEM images for the 1 wt% blended film present the formation of the smallest P3HT domains in the TPU matrix. The relatively high reduction of the PL intensity of the pure electronic transition peak in the 1 wt% blended film, in comparison to the other blended films and also to a pure P3HT film, favours the assumption that the smallest P3HT domains are at the origin of a more structural disordered character. This fact is in agreement with the results obtained by Raman spectroscopy and also by photoluminescence resolved by polarization in stretched self-sustained films, showing an ample correlation between morphological, thermal and optical properties of these blended materials. In addition, the thermoplastic properties of the polyurethane configure very good conditions for tensile drawing of P3HT and other conjugated polymer molecules.

  4. Research of rheological properties improvement methods of coal-water fuel based on low-grade coal

    Directory of Open Access Journals (Sweden)

    Zenkov Andrey

    2017-01-01

    Full Text Available Experimental studies of coal-water fuel (CWF rheological properties based on 3B brown coal have been conducted using different processing methods, such as rotary flows modulation device (RFMD, sodium hydroxide and lignosulfonate. Physicochemical properties of initial solid fuel have been determined using JEOL JCM 6000 microscope. Optimal method of coal-water treatment has been determined based on obtained data considering its influence on viscosity and sedimentation stability of coal-water slurry (CWS.

  5. Role and composition of the mobile phase in coal

    Energy Technology Data Exchange (ETDEWEB)

    Grint, A.; Mehani, S.; Trewhella, M.; Crook, M.J.

    1985-10-01

    Extraction of Pittsburgh and Illinois No. 6 coals with tetrahydrofuran to remove a significant proportion of the mobile phase resulted in the elimination of thermoplastic properties. Cocarbonization of these extracted residues with large polycondensed aromatic molecules such as decacyclene and coronene resulted in the restoration of thermoplastic properties. It is proposed that large thermally stable aromatic molecules can perform a similar role to the molecular entities present in the mobile phase of bituminous coals, and that the presence of hydroaromatic (hydrogen donor) species in the mobile phase is unnecessary for the development of thermoplastic properties. The ability of thermally stable polycondensed aromatics to confer thermoplastic properties to coal appears to be related either to their hydrogen shuttling or radical stabilization propensity. The amounts and chemical nature of extracts from four coals (lignitic to high-volatile bituminous) were investigated. With increasing rank, the yields, aromaticity and degree of ring condensation of the extract (the mobile phase) all increased. For the two bituminous coals studied, the majority of the mobile phase was shown to consist of these thermally stable polycondensed aromatic species. 29 references.

  6. The Influence of Thermoplastic Starch and Banana Fibre Contents on Physical and Thermal Properties of LLDPE

    Science.gov (United States)

    Kahar, A. W. M.; Abduati Salem, A. E.

    2017-06-01

    Blending of linear low density polyethylene (LLDPE), thermoplastic starch (TPS) and banana fiber (BF) have been studied. Two types of systems were prepared; the matrix having different ratio of LLDPE/TPS and, the LLDPE/TPS composites having 5 - 30 wt% BF. Morphological changes using scanning electron microscope (SEM) were observed and its showed that TPS particle are homogenously dispersed in LLDPE matrix. On the other hand BF was found to be well embedded in TPS phase, showing the good interaction between BF and TPS phases. This observation show an agreement with the Young’s modulus value which is increased with the BF contents. The increment in Young’s modulus value was also attributed to the difficulties in LLDPE/TPS chains movement with the presence of BF.

  7. Tribological properties investigation of the thermoplastic elastomers surface with the AFM lateral forces mode

    Science.gov (United States)

    Kuznetsova, T. A.; Zubar, T. I.; Lapitskaya, V. A.; Sudzilouskaya, K. A.; Chizhik, S. A.; Didenko, A. L.; Svetlichnyi, V. M.; Vylegzhanina, M. E.; Kudryavtsev, V. V.; Sukhanova, T. E.

    2017-10-01

    The series of new thermoplastic elastomer films based on copoly(urethane-imide)s (coPUI)s and nanocomposites containing from 1 to 10 wt. % carbon nanofillers of different morphology (single-walled carbon nanotubes, carbon nanofibers, and graphene) as well as WS2 and WSe2 nanoparticles, were prepared and investigated by atomic force microscopy in contact mode. The friction coefficient (Cfr) on the films surfaces under conditions of true slip was determined both in one scan field and with multiple scans (200-400) in one place. The measurements were carried out at room temperature and at a heating up to 120°C. It is shown that at heating up to 75-85°C, the friction coefficient of some coPUI decreases significantly. The same effect can be achieved also after 100 scans during multi-scan testing at 20°C.

  8. Changes in the mechanical properties of thermoplastic potato starch in relation with changes in B-type crystallinity

    NARCIS (Netherlands)

    Soest, van J.J.G.; Hulleman, S.H.D.; Wit, de D.; Vliegenthart, J.F.G.

    1996-01-01

    The influence of crystallization on the stress-strain behaviour of thermoplastic potato starch has been monitored. Potato starch has been processed by extrusion with glycerol and water added as plasticizers. The thermoplastic starch consists of a molecular network of semicrystalline amylose and

  9. Coal Liquids: Manufacture and Properties. A Review.

    Science.gov (United States)

    1982-09-01

    digestion/atomic ab- sorption spectroscopy. Trace elements of copper, chromium, nickel, man- ganese and zinc were determined by silic -free ash fusion...characterize coal liquids, tar sand bitumens and shale oils. 170. Rumsfeld, D., "Department of Defense Liquid Hydrocarbon Fuel Policy for Equipment

  10. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites.

    Science.gov (United States)

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-04-01

    The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Poly(lactic acid/thermoplastic starch sheets: effect of adipate esters on the morphological, mechanical and barrier properties

    Directory of Open Access Journals (Sweden)

    Marianne Ayumi Shirai

    2016-02-01

    Full Text Available Abstract Blends of poly(lactic acid (PLA and thermoplastic starch (TPS plasticized with adipate esters (diisodecyl adipate and diethyl adipate having different molecular weight were used to produce sheets. The calendering-extrusion process at a pilot scale was used, and the mechanical, barrier, and morphological characterization of the obtained materials were performed. The increase in the TPS content affected the mechanical properties of the sheets by increasing the elongation and decreasing the rigidity. TPS conferred a more hydrophilic character to the sheets, as observed from the water vapor permeability results. The sheets plasticized with diisodecyl adipate (DIA, having a higher molecular weight, had better mechanical and barrier properties than diethyl adipate (DEA plasticized sheets, indicating that DIA was more effective as plasticizer. Micrographs obtained by confocal laser microscopy and scanning electron microscopy showed different morphologies when different proportions of PLA and TPS were used (dispersed or co-continuous structures, which were strongly associated with the mechanical and barrier properties.

  12. Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites.

    Science.gov (United States)

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-06-01

    The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Study on the Mechanical Properties of Oil Palm Mesocarp Fibre-Reinforced Thermoplastic

    Directory of Open Access Journals (Sweden)

    Olusola Femi Olusunmade

    2016-01-01

    Full Text Available Oil palm mesocarp fibre obtained from a palm oil processing mill was washed with detergent and water to remove the oil and sun-dried to enhance good adhesion to Linear Low Density Polyethylene (LLDPE. The fibre was pulverized and filtered through a sieve of pore size 300 microns. The Oil Palm Mesocarp Fibre Reinforced Thermoplastic (OPMFRT was produced with a form of hand lay-up method and varying fibres weight ratio in the matrix from 5 wt% to 25 wt% in steps of 5 wt%. Tensile test was carried out to determine the tensile strength, tensile modulus, and elongation at break of the material. The hardness and impact strength of the composite were also determined. The results showed that tensile modulus and hardness of the OPMFRT increased by 50% and 24.56%, respectively, while tensile strength, impact strength, and percentage elongation of the OPMFRT decreased by 36.78%, 39.07%, and 95.98%, respectively, as fibre loading increased from 5 wt% to 25 wt%. The study concluded that the application of the OPMFRT developed should be restricted to areas demanding high rigidity and wear resistance.

  14. Mechanical Properties of Dynamically Vulcanized Thermoplastic Polyurethane (TPU/Polybutadiene Rubber (BR Blends

    Directory of Open Access Journals (Sweden)

    Ji-Hoo Kim

    2016-12-01

    Full Text Available To obtain thermoplastic polyurethane (TPU with low hardness, dynamically vulcanized TPU/polybutadiene rubber(BR(70/30 blends were prepared. The effect of dicumyl peroxide (DCP content and stabilizers on the tensile strength and elongation at break of the dynamically vulcanized blends was examined. The tensile strength and elongation at break of the dynamically vulcanized blends decrease with increasing content of DCP. The addition of optimal content of stabilizer leads to the improvement of tensile strength and elongation at break of the blends. Also, the effect of sulfur cure systems and accelerators on the tensile strength and elongation of the blends was investigated. The tensile strength and elongation at break of all the dynamically vulcanized TPU/BR (70/30 blends using 1-step processing are not higher than those of simple TPU/BR (70/30 blends. However, the tensile strength and elongation of the dynamically vulcanized blends prepared at 8 min (mixing time using 2-step processing are higher than those of the simple blends.

  15. Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends.

    Science.gov (United States)

    Peres, Anderson M; Pires, Ruthe R; Oréfice, Rodrigo L

    2016-01-20

    The great quantity of synthetic plastic discarded inappropriately in the environment is forcing the search for materials that can be reprocessable and biodegradable. Blends between synthetic polymers and natural and biodegradable polymers can be good candidates of such novel materials because they can combine processability with biodegradation and the use of renewable raw materials. However, traditional polymers usually present high levels of recyclability and use the well-established recycling infrastructure that can eventually be affected by the introduction of systems containing natural polymers. Thus, this work aims to evaluate the effect of reprocessing (simulated here by multiple extrusions) on the structure and properties of a low density polyethylene/thermoplastic starch (LDPE/TPS) blend compared to LDPE. The results indicated that multiple extrusion steps led to a reduction in the average size of the starch-rich phases of LDPE/TPS blends and minor changes in the mechanical and rheological properties of the materials. Such results suggest that the LDPE/TPS blend presents similar reprocessability to the LDPE for the experimental conditions used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The influence of mechanical properties in the electrical breakdown in poly-styrene-ethylene-butadiene-styrene thermoplastic elastomer

    Science.gov (United States)

    Kollosche, Matthias; Melzer, Michael; Becker, Andre; Stoyanov, Hristian; McCarthy, Denis N.; Ragusch, Hülya; Kofod, Guggi

    2009-03-01

    Dielectric elastomer actuators (DEA) are a class of eletro-active polymers with promising properties for a number of applications, however, such actuators are prone to failure. One of the leading failure mechanisms is the electrical breakdown. It is already well-known that the electro-mechanical actuation properties of DEA are strongly influenced by the mechanical properties of the elastomer and compliant electrodes. It was recently suggested that also the electrical breakdown in such soft materials is influenced by the mechanical properties of the elastomer. Here, we present stress-strain measurements obtained on two tri-block thermoplastic elastomers (SEBS 500040 and SEBS 500120, poly-styrene-ethylene-butadiene-styrene), with resulting large differences in mechanical properties, and compare them to measurements on the commonly used VHB 4910. Materials were prepared by either direct heat-pressing of the raw material, or by dissolving in toluene, centrifuging and drop-casting. Experiments showed that materials prepared with identical processing steps showed a difference in stiffness of about 20%, where centrifuged and drop-casted films were seen to be softer than heat-pressed films. Electric breakdown measurements showed that for identically processed materials, the stiffness seemed to be a strong indicator of the electrical breakdown strength. It was therefore found that processing leads to differences in both stiffness and electrical breakdown strength. However, unexpectedly, the softer drop-cast films had a much higher breakdown strength than the heatpressed films. We attribute this effect to impurities still present in the heat-pressed films, since these were not purified by centrifuging.

  17. Preparation and Properties of Novel Thermoplastic Vulcanizate Based on Bio-Based Polyester/Polylactic Acid, and Its Application in 3D Printing

    Directory of Open Access Journals (Sweden)

    Yu Gao

    2017-12-01

    Full Text Available Thermoplastic vulcanizate (TPV combines the high elasticity of elastomers and excellent processability of thermoplastics. Novel bio-based TPV based on poly (lactide (PLA and poly (1,4-butanediol/2,3-butanediol/succinate/itaconic acid (PBBSI were prepared in this research. PBBSI copolyesters were synthesized by melting polycondensation, and the molecular weights, chemical structures and compositions of the copolyesters were characterized by GPC, NMR and FTIR. Bio-based 2,3-butanediol was successfully incorporated to depress the crystallization behavior of the PBBSI copolyester. With an increase of 2,3-butanediol content, the PBBSI copolyester transformed from a rigid plastic to a soft elastomer. Furthermore, the obtained TPV has good elasticity and rheological properties, which means it can be applied as a 3D-printing material.

  18. Removable thermoplastic appliances modified by incisal cuts show altered biomechanical properties during tipping of a maxillary central incisor

    Directory of Open Access Journals (Sweden)

    Phillipp Brockmeyer

    2017-08-01

    Full Text Available Abstract Background The present study aimed to evaluate the force delivery of removable thermoplastic appliances (RTAs, modified by different sized incisal cuts, during tipping of a maxillary central incisor in palatal and vestibular direction. Methods Forty-five RTAs from three different materials (Biolon®, Erkodur®, Ideal Clear® of the same thickness (1 mm were used. Analysis was performed on a separated maxillary central incisor which was part of a resin model with a complete dentition. In 15 RTAs, of different material, a cut was inserted at the incisal edge of tooth 11. In 15 other appliances, the cut was extended to teeth 12 and 21. Fifteen aligners remained uncut. The experimental tooth was tipped starting from the zero position in 0.05° steps to a maximal deflection of ± 0.42° of the incisal edge in vestibular and palatal direction, after positioning the RTA onto the model. Results The horizontal (Fx and the vertical (Fz force components were decreased by approximately half with increasing cut size. Fz values changed during palatal tipping from a weak intrusive force, for aligners without cut, to an extrusive force with increasing cut size. Compared to both other materials used (Erkodur® and Ideal Clear®, the Biolon® aligners showed significantly higher Fx and Fz values (p < 0.0001, respectively. Conclusions RTAs modified by different sized incisal cuts show altered biomechanical properties and an inversion of the vertical force component, during tipping of a maxillary central incisor.

  19. Properties of CF/PA6 friction spun hybrid yarns for textile reinforced thermoplastic composites

    Science.gov (United States)

    Hasan, MMB; Nitsche, S.; Abdkader, A.; Cherif, Ch

    2017-10-01

    Due to their excellent strength, rigidity and damping properties as well as low weight, carbon fibre reinforced composites (CFRC) are widely being used for load bearing structures. On the other hand, with an increased demand und usage of CFRCs, effective methods to re-use waste carbon fibre (CF) materials, which are recoverable either from the process scraps or from the end-of-life components are attracting increased attention. In this paper, hybrid yarns consisting of staple CF and polyamide 6 (PA 6) are manufactured on a DREF-3000 friction spinning machine with various machine parameters such as spinning drum speed and suction air pressure. The relationship between different textile physical properties of the hybrid yarns, such as tensile strength and elongation with different spinning parameters and CF content of hybrid yarn is investigated. Furthermore, the tensile properties of uni-directional (UD) composites manufactured from the developed hybrid yarn shows 80% of the UD composite strength made from CF filament yarn.

  20. Mechanical, dynamic-mechanical and thermal properties of soy protein-based thermoplastics with potential biomedical applications

    NARCIS (Netherlands)

    Vaz, C.A.; Mano, J.F.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.A.

    2002-01-01

    In this study the tensile and the dynamic-mechanical behavior of injection-molded samples of various soy protein thermoplastic compounds were evaluated as a function of the amount of glycerol, type and amount of ceramic reinforcement, and eventual incorporation of coupling agents. The incorporation

  1. Compatibility, Morphology, Mechanical Properties and Biodegradability of Poly(styrene-ethylene-propylenestyrene/ Modified Thermoplastic Starch Blends

    Directory of Open Access Journals (Sweden)

    Saaid Rahimi Bandarabadi

    2016-09-01

    Full Text Available The effect of modified starch on the properties of poly(styrene-ethylenepropylene- styrene tri-block copolymer was studied. Chemical treatment of starch with maleic anhydride was accomplished in an internal mixer in the presence of glycerol. The reaction was confirmed using Fourier infrared spectroscopy (FTIR and titration. The blend samples containing 10, 20, 30 and 50 wt% were obtained by melt blending and their mechanical, morphological and dynamic-mechanical properties were studied. Scanning electron microscopy (SEM images displayed droplet-matrix morphology and with increases in modified starch up to 50 wt% some partial co-continuous morphology was also observed. With increase of modified starch in the compound, the size of dispersed phase increased. DMTA results revealed that the partial compatibility was obtained because of slight difference between glass transition temperatures of two phases in the presence of modified starch. The peak of modified starch shifted to higher values and the differences between the two peaks decreased, indicating partial compatibility. Mechanical properties including tensile, elongation-at-break and modulus were also determined and the results showed that the mechanical properties of the sample were higher than those of neat TPS because of the higher compatibility. Tensile strength was decreased with increase in modified starch content due to the absence of strong interfacial adhesion. Moduli of the samples were increased with increase in modified starch content due to higher stiffness of starch. Biodegradability of the samples was evaluated by weight loss percentage using compost test. A rapid degradation was observed in the first 45 days and with increase of the modified starch content the degree of degradation was increased.

  2. Rheology, processing, and mechanical properties of thermoplastic/graphite fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Scobbo, J.J. Jr.

    1989-01-01

    Various cause and effect relations between the rheology, processing and mechanical properties of poly(ether ether ketone) (PEEK) and poly(arylene sulfide) (PAS) matrix composites were studied. The test methods and characterization schemes used emphasize novel techniques for characterizing composites that have not been used previously. A dynamic mechanical analyzer has been modified and used to characterize transition temperatures of the neat matrix resins and the 60 volume percent continuous graphite fiber reinforced composites. Transitions related to local order may have been found in PEEK at 380{degree}C and PAS at 345{degree}C. Transitions such as these have not been reported previously using dynamic mechanical analysis. Basic rheological behavior of the resins has been studied using dynamic mechanical analysis. Similar dynamic tests were performed on PEEK and PAS matrix unidirectional prepreg tape-based laminates. Tests were performed for the first time in simple shear with the matrix in the melt state. Simple shear deformation is of interest because it represents flow behavior of laminated composites in processing operations such as thermoforming. A simple model of resin layers between fibrous plates describes the observed behavior. A bending mode dynamic test has been developed to determine laminate softening temperatures. This test has been shown to be beneficial in the characterization of composite elastic properties at room temperature. The test requires less material and labor than other more common mechanical property tests. Processing studies were conducted where the radiative heating of laminates was simulated to determine optimum thermoforming cycle times.

  3. Surface Properties of Photo-Oxidized Bituminous Coals: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Natural weathering has a detrimental effect on the hydrophobic nature of coal, which in turn can influence clean-coal recovery during flotation. Few techniques are available that can establish the quality of coal surfaces and that have a short analysis time to provide input for process control. Luminescence emissions which can be quantified with an optical microscope and photometer system, are measurably influenced by degree of weathering as well as by mild storage deterioration. In addition, it has been shown that when vitrinite is irradiated with a relatively high intensity flux of violet- or ultraviolet- light in the presence of air, photo-oxidation of the surface occurs. The combination of measuring the change in luminescence emission intensity with degree of surface oxidation provided the impetus for the current investigation. The principal aim of this research was to determine whether clear correlations could be established among surface oxygen functionality, hydrophobicity induced by photo-oxidation, and measurements of luminescence intensity and alteration. If successful, the project would result in quantitative luminescence techniques based on optical microscopy that would provide a measure of the changes in surface properties as a function of oxidation and relate them to coal cleanability. Two analytical techniques were designed to achieve these goals. Polished surfaces of vitrain bands or a narrow size fraction of powdered vitrain concentrates were photo-oxidized using violet or ultraviolet light fluxes and then changes in surface properties and chemistry were measured using a variety of near-surface analytical techniques. Results from this investigation demonstrate that quantitative luminescence intensity measurements can be performed on fracture surfaces of bituminous rank coals (vitrains) and that the data obtained do reveal significant variations depending upon the level of surface oxidation. Photo-oxidation induced by violet or ultraviolet light

  4. Study on the combustion properties of bio-coal briquette blends of ...

    African Journals Online (AJOL)

    This study was carried out to investigate the properties of bio-coal briquette produced from blending cassava stalk and coal. The cassava stalk and coal lumps were carbonized at 160 oC, pulverized and used to produce biocoal briquettes of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %,70 %, 80 %, 90 % and 100 % biomasses.

  5. Fly ash from coal and biomass for use in concrete : Origin, properties and performance

    NARCIS (Netherlands)

    Saraber, A.J.

    2017-01-01

    Coal fly ash is widely used in as raw material in concrete industry because it can replace part of the cement and fly ash contributes to improve certain properties of concrete. As a way to reduce the contribution of coal fired power plants to the climate change, more and more coal is replaced by

  6. Effects of main parameters on rheological properties of oil-coal slurry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yong-gang; Hao Li-fang; Xiong Chu-an; Sun Xiu-ying [China University of Mining & Technology, Beijing (China). School of Chemical and Environmental Engineering

    2006-09-15

    Oil-coal slurry prepared in coal direct liquefaction is a dispersed solid-liquid suspension system. In this paper, some factors such as solvent properties, solid concentrations and temperatures, which affect viscosity change of oil-coal slurry, were studied. The viscosity of coal slurry was measured using rotary viscometer, and the rheological properties have been investigated. The viscosity and rheological curves were plotted and regressed, respectively. The results show that the coal slurry behaves a pseudoplastic and thixotropic property. The rheological type of coal slurry was ascertained and its rheological equations were educed. The oil-coal slurry changes to non-Newtonian fluid from Newtonian fluid with the increasing of solid concentration. 10 refs., 5 figs., 3 tabs.

  7. Thermoplastic-carbon fiber hybrid yarn

    Science.gov (United States)

    Ketterer, M. E.

    1984-01-01

    Efforts were directed to develop processing methods to make carbon fiber/thermoplastic fiber preforms that are easy to handle and drapeable, and to consolidate them into low void content laminates. The objectives were attained with the development of the hybrid yarn concept; whereby, thermoplastic fiber can be intimately intermixed with carbon fiber into a hybrid yarn. This was demonstrated with the intermixing of Celion 3000 with a Celanese liquid crystal polymer fiber, polybutylene terepthalate fiber, or polyetheretherketone fiber. The intermixing of the thermoplastic matrix fiber and the reinforcing carbon fiber gives a preform that can be easily fabricated into laminates with low void content. Mechanical properties of the laminates were not optimized; however, initial results indicated properties typical of a thermoplastic/carbon fiber composites prepared by more conventional methods.

  8. Deposit growth and property development in coal-fired furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L. [Sandia National Lab., Livermore, CA (United States)

    1995-11-01

    The objectives of this research project are: (1) to provide a self-consistent database of simultaneously measured, time-resolved ash deposit properties in well-controlled and well-defined environments and (2) to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. This project is distinguished from related work being done elsewhere by: (1) the development and deployment of in-situ diagnostics to monitor deposit properties, including heat transfer coefficients, porosity, emissivity, tenacity, strength, density, and viscosity; (2) the time resolution of such properties during deposit growth; (3) simultaneous measurement of structural and composition properties; (4) development of algorithms from a self-consistent, simultaneously measured database that includes the interdependence of properties; and (5) application of the results to technologically relevant environments such as those being planned under Combustion 2000 program. Work completed during FY94 emphasized diagnostic development. During FY95, this development work will be completed and we will emphasize application of the diagnostics to meet the other project objectives. Included in this work are the development and application of two in-situ, real-time diagnostic systems for monitoring the properties of inorganic materials on Heat transfer surfaces and in the gas-phase during controlled combustion of selected coal samples in Sandia`s Multifuel Combustor (MFC). Also, several diagnostics are being incorporated into the MFC that will eventually be used to characterize ash deposit properties.

  9. Fractal analysis of acoustic emission parameter series of coal with different properties under uniaxial loading

    Science.gov (United States)

    Yang, Huiming

    2017-08-01

    In order to study acoustic emission (AE) evolution characteristics of coal with different mechanical properties in failure process, uniaxial compression experiments of coals from 4 mines were carried out to analyse fractal feature of AE time series by G-P algorithm. The results indicate that AE parameter series of all 4 different coals have fractal feature, and the fractal dimension value of coal with different properties go through a process of “first rise, then fall”. The change of AE fractal dimension value can reflect the cracking evolution in coal failure process, which is closely related with the failure phase. The continuous decline of AE fractal dimension can be viewed as a precursor of impending failure of coal, which could provide theoretical basis for the AE pre-warning model establishment of coal dynamic disaster.

  10. Determination of baghouse performance from coal and ash properties: part

    Energy Technology Data Exchange (ETDEWEB)

    Bush, P.V.; Snyder, T.R.; Chang, R.L.

    1989-02-01

    Baghouse performance at utility coal-fired power plants is determined by baghouse design, operating procedures, and the characteristics of the ash that is collected as a dustcake on the fabric filter. The Electric Power Research Institute has conducted laboratory research to identify the fundamental properties of dustcake ash that influence baghouse performance. A database was assembled including measured characteristics of dustcake ash and data describing operating parameters and performance of full-scale and pilot-scale baghouses. Semi-empirical models were developed that describe the effects of particle morphology, particle size, ash cohesivity and ash chemistry on filtering pressure drop and particulate emissions. Cohesivity was identified as the primary ash characteristic affecting baghouse performance. Predictions of performance can be based on physical or chemical characterizations of the ash to be filtered.

  11. Effects of coal properties on the production rate of combustion solid residue

    Energy Technology Data Exchange (ETDEWEB)

    Durgun, D. [Catalagzi Thermal Plant, Catalagzi, Zonguldak (Turkey); Genc, A. [Department of Environmental Engineering, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey)

    2009-11-15

    The production rates of furnace bottom ash in a pulverized coal-fired power plant were monitored for a two-year period and its variations with respect to coal properties were analyzed. The power plant was originally designed to fire the coal sludge generated from a washing process; however, the coal sludge and its mixture with low-rank bituminous coal have been started to be used as the main fuel with time. The results of the hardgrove grindability measurements have shown that the grinding properties of sludge or its mixtures could not be predicted based on proximate analysis (moisture, ash, carbon and volatile contents); it could only be determined by experiments. The production rate of bottom ash in this particular power plant remained relatively insensitive to the high ash and moisture contents and could be estimated almost only by knowing the calorific value of the source coal. The evaluated dependency was linear. (author)

  12. Les élastomères thermoplastiques (TPE Structure, propriétés, mise en oeuvre, applications. Synthèse bibliographique. Première partie Thermoplastic Elastomers (Tpe Structure, Properties, Processing, Applications. Bibliographic Synthesis. Part One

    Directory of Open Access Journals (Sweden)

    Nicaud J.

    2006-11-01

    Full Text Available Les élastomères thermoplastiques sont des matériaux relativement nouveaux qui se caractérisent à la fois par une mise en oeuvre rapide analogue à celle des polymères thermoplastiques et par des propriétés intermédiaires entre celles des élastomères vulcanisés et des polymères thermoplastiques plastifiés. On passe en revue de façon succincte les principaux élastomères thermoplastiques commerciaux ou en développement. Pour chacun d'eux, on décrit brièvement la structure, les propriétés, la mise en oeuvre et les applications. Thermoplastic elastomers are relatively new materials that are characterized both by rapid implementation, similar to that of thermoplastic polymers, and by properties intermediate between those of vulcanized elastomers and plasticized thermoplastic polymers. This article makes a succinct review of the leading commercial thermoplastic elastomers or the ones being developed. For each of them, a brief description is given of the structure, properties, implementation and applications.

  13. Thermoplastic welding apparatus and method

    Science.gov (United States)

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  14. Phase transformations in synthesis technologies and sorption properties of zeolites from coal fly ash

    Directory of Open Access Journals (Sweden)

    О. Б. Котова

    2016-08-01

    Full Text Available Coal fly ash is generated in the course of combustion of coal at thermal power plants. Environmental problems increase sharply without disposing that industrial waste. Technologies were tested of hydrothermal synthesis of zeolites from fly ash forming during combustion of coal at thermal power plants of the Pechora coal basin and dependences were identified of the experiment conditions on physical and chemical properties of the end product. It is demonstrated that synthesizing zeolites from fly ash is the first stage of forming ceramic materials (ceramic membranes, which defines the fundamental character (importance of that area of studies. It was for the first time that sorption and structural characteristics and cation-exchange properties of fly ash from the Pechora basin coals were studied with respect to, Ba2+ and Sr2+.

  15. Effect of different plasticizers on the properties of bio-based thermoplastic elastomer containing poly(lactic acid and natural rubber

    Directory of Open Access Journals (Sweden)

    V. Tanrattanakul

    2014-06-01

    Full Text Available Bio-based thermoplastic elastomers (TPE containing natural rubber and poly(lactic acid were prepared by melt blending in an internal mixer. The blend ratio was 60% of natural rubber and 40% of poly(lactic acid. Dynamic vulcanization of natural rubber was performed with the sulfur system. The 2 mm – thick sheet samples were prepared by compression molding. The objective of this study was to investigate the effect of plasticization of PLA on the mechanical and physical properties of the derived TPE. Four plasticizers were selected: tributyl acetyl citrate (TBAC, tributyl citrate (TBC, glycerol triacetate (GTA, and triethyl-2-acetyl citrate (TEAC. The investigated properties were the tensile properties, tear strength, thermal ageing and ozone resistance, hardness, resilience, tension set and compression set. All plasticizers increased the strain at break. TBAC and TBC increased the stress at break. All plasticizers decreased the tear strength, hardness and resilience, and slightly changed the tension and compression set. TBAC seemed to be the best plasticizer for the TPE. The presence of 4 pph (parts per hundred resin of plasticizer provided the highest strength and tensile toughness and the strain at break increased with the increasing plasticizer content. The plasticizers decreased the Tg and Tcc of the PLA and did not affect the degree of crystallinity of PLA in the TPE.

  16. Removable thermoplastic appliances modified by incisal cuts show altered biomechanical properties during tipping of a maxillary central incisor.

    Science.gov (United States)

    Brockmeyer, Phillipp; Kramer, Katharina; Böhrnsen, Florian; Gruber, Rudolf Matthias; Batschkus, Sarah; Rödig, Tina; Hahn, Wolfram

    2017-08-28

    The present study aimed to evaluate the force delivery of removable thermoplastic appliances (RTAs), modified by different sized incisal cuts, during tipping of a maxillary central incisor in palatal and vestibular direction. Forty-five RTAs from three different materials (Biolon®, Erkodur®, Ideal Clear®) of the same thickness (1 mm) were used. Analysis was performed on a separated maxillary central incisor which was part of a resin model with a complete dentition. In 15 RTAs, of different material, a cut was inserted at the incisal edge of tooth 11. In 15 other appliances, the cut was extended to teeth 12 and 21. Fifteen aligners remained uncut. The experimental tooth was tipped starting from the zero position in 0.05° steps to a maximal deflection of ± 0.42° of the incisal edge in vestibular and palatal direction, after positioning the RTA onto the model. The horizontal (Fx) and the vertical (Fz) force components were decreased by approximately half with increasing cut size. Fz values changed during palatal tipping from a weak intrusive force, for aligners without cut, to an extrusive force with increasing cut size. Compared to both other materials used (Erkodur® and Ideal Clear®), the Biolon® aligners showed significantly higher Fx and Fz values (p tipping of a maxillary central incisor.

  17. Effect of thermoplastic polyurethane (TPU) on the thermal and mechanical properties of polylactic acid (PLA)/curcumin blends

    Science.gov (United States)

    Sharifah, I. S. S.; Adnan, M. D. A.; Nor Khairusshima, M. K.; Shaffiar, N. M.; Buys, Y. F.

    2018-01-01

    Polylactic acid (PLA) is known to be brittle by nature and thus limits the flexibility of the polymer. A possible solution to enhance the flexibility of PLA is to add a flexible polymeric based material such as thermoplastic polyurethane (TPU). In this study, 30-50 wt% of TPU was added into PLA/curcumin blends to improve its flexibility. Thermal analysis using differential scanning calorimetry shows that further additions of TPU at the expense of PLA did not affect the glass transition temperature, crystallisation temperature and melting temperature of the blends. Fibers of PLA/curcumin/TPU were successfully drawn and Single Fiber Tensile Test (SFTT) showed vast improvement in elongation at break. The initial addition of 30 wt% of TPU to the brittle PLA/curcumin composition causes a significant increase in elongation at break by 39 times and further additions at 50 wt %, the elongation at break increases by 105 times. However, with the increase in elongation, a decrease in strength and Young’s modulus was observed.

  18. Elemental properties of coal slag and measured airborne exposures at two coal slag processing facilities.

    Science.gov (United States)

    Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L

    2017-05-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: (a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; (b) full-shift area air samples for dust, metals, and crystalline silica; and (c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43-0.48% (4,300-4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2-38 mg/m3) and bag house (21 mg/m3) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1-6.6 mg/m3 total; and 0.1-0.4 mg/m3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing

  19. Acetylation of chicken feathers for thermoplastic applications.

    Science.gov (United States)

    Hu, Chunyan; Reddy, Narendra; Yan, Kelu; Yang, Yiqi

    2011-10-12

    Poultry feathers are renewable resources, inexpensive and abundantly available, but have limited applications. Although keratin extracted from feathers has been chemically modified, there are no reports on the chemical modification or development of thermoplastics from poultry feathers. Acetylation is an inexpensive and environmentally friendly approach to make biopolymers thermoplastic. Several biopolymers have been acetylated and used to produce fibers, films, and extrudates. In this research, chicken feathers were acetylated, and the structure and properties of the acetylated feathers were studied. Acetylation conditions such as concentration of chemicals and catalyst and time and temperature of acetylation were optimized. Acetylation of feathers was confirmed using Fourier transform infrared (FTIR) and pyrolysis-gas chromatography-mass spectrometry (P-GC-MS). The acetylated feathers were analyzed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to understand their thermal behavior. Acetylated feathers were thermoplastic and could be compression molded to form transparent films despite the relatively low percentage of acetyl content.

  20. Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers

    NARCIS (Netherlands)

    Wisse, Eva; Spiering, A. J. H.; van Leeuwen, Ellen N. M.; Renken, Raymond A. E.; Dankers, Patricia Y. W.; Brouwer, Linda A.; van Luyn, Marja J. A.; Harmsen, Martin C.; Sommerdijk, Nico A. J. M.; Meijer, E. W.

    2006-01-01

    The molecular recognition properties of the hydrogen bonding segments in biodegradable thermoplastic elastomers were explored, aiming at the further functionalization of these potentially interesting biomaterials. A poly(epsilon-caprolactone)-based poly(urea) 2 was synthesized and characterized in

  1. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  2. Carbonization of coal blends: mesophase formation and coke properties

    Energy Technology Data Exchange (ETDEWEB)

    Grint, A.; Marsh, H.

    1981-12-01

    Laboratory investigations of strength of cokes from blends of coals incorporating pitch were supported by 7 kg trials. The stronger cokes showed a greater interaction between coal and pitch to produce an interface component of anisotropic mozaics which is relatively resistant to crack propagation. The process whereby coal is transformed into coke includes the formation of a fluid zone in which develop nematic liquid crystals and anisotropic carbon which is an essential component of metallurgical coke. Strength, thermal and oxidation resistance of coke can be discussed in terms of the size and shape of the anisotropic carbon which constitutes the optical texture of pore-wall material of coke. Coals of different rank form cokes with different optical textures. Blending procedures of non-caking, caking and coking coals involve the interactions of components of the blend to form mesophase and optical texture. Petroleum pitches used as additives are effective in modifying the carbonization process because of an ability to participate in hydrogen transfer reactions. (35 refs.)

  3. A Basic Study on the General Properties and the Effective Utilization of Coal Ash for Earth Work Problem

    OpenAIRE

    棚橋, 由彦; 後藤, 恵之輔; 宮川, 英也; 持下, 輝雄

    1992-01-01

    Coal ash produced at the thermal power plants is one of the largest source of waste materials in Japan. Due to environment protection and increasing problems of the disposing of coal ash, there are important reasons for its effective utilization for earth work problem. This paper deals with the general properties of coal ash and the laboratory investigations on the effective utilization of coal ash for earth work problem. Specific earth work problems are included light-weight fill and subgrad...

  4. Thermoforming of thermoplastic matrix composites. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Harper, R.C.

    1992-03-01

    Long-fiber-reinforced polymer matrix composites find widespread use in a variety of commercial applications requiring properties that cannot be provided by unreinforced plastics or other common materials of construction. However, thermosetting matrix resins have long been plagued by production processes that are slow and difficult to automate. This has limited the use of long-fiber-reinforced composites to relatively low productivity applications in which higher production costs can be justified. Unreinforced thermoplastics, by their very nature, can easily be made into sheet form and processed into a variety of formed shapes by various pressure assisted thermoforming means. It is possible to incorporate various types of fiber reinforcement to suit the end use of the thermoformed shape. Recently developed thermoplastic resins can also sometimes correct physical property deficiencies in a thermoset matrix composite. Many forms of thermoplastic composite material now exist that meet all the requirements of present day automotive and aerospace parts. Some of these are presently in production, while others are still in the development stage. This opens the possibility that long-fiber-reinforced thermoplastics might break the barrier that has long limited the applications for fiber-reinforced composites. 37 refs., 8 figs., 5 tabs.

  5. Properties of carbonisation products obtained from impregnated coal

    Czech Academy of Sciences Publication Activity Database

    Plevová, Eva; Šugárková, Věra; Kaloč, M.; Vaculíková, Lenka

    -, - (2008), s. 52-61. ISBN 978-80-248-1939-6 Grant - others:GA CŘ(CZ) GA105/00/1698 Institutional research plan: CEZ:AV0Z30860518 Keywords : chlorides * impregnation * coal Subject RIV: CC - Organic Chemistry

  6. Fuel properties of bituminous coal and pyrolytic oil mixture

    Science.gov (United States)

    Hamdan, Hazlin; Sharuddin, Munawar Zaman; Daud, Ahmad Rafizan Mohamad; Syed-Hassan, Syed Shatir A.

    2014-10-01

    Investigation on the thermal decomposition kinetics of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0,70:30,60:40,0:100) was conducted using a Thermogravimetric Analyzer (TGA). The materials consisted of Clermont bituminous coal (Australia) and bio-oil (also known as pyrolytic oil) from the source of Empty Fruit Bunch (EFB) that was thermally converted by means of pyrolysis. Thermal decomposition of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under non-isothermal conditions from room temperature to 1000°C at heating rate of 10°C/min. The apparent activation energy (Ea.) and pre-exponential factor (A) were calculated from the experimental results by using an Arrhenius-type kinetic model which first-order decomposition reaction was assumed. All kinetic parameters were tabulated based on the TG data obtained from the experiment. It was found that, the CBS fuel has higher reactivity than Clermont coal fuel during pyrolysis process, as the addition of pyrolytic oil will reduce the Ea values of the fuel. The thermal profiles of the mixtures showed potential trends that followed the characteristics of an ideal slurry fuel where high degradation rate is desirable. Among the mixture, the optimum fuel was found at the ratio of 60:40 of pyrolytic oil/coal mixtures with highest degradation rate. These findings may contribute to the development of a slurry fuel to be used in the vast existing conventional power plants.

  7. Effect of the molecular weight of sodium polystyrene sulfonate on the properties of coal water slurry

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y.; Gao, F.; Li, Y. [Ningxia University, Yinchuan (China)

    2006-06-15

    Three sodium polystyrene sulfonate (PSS) additives with different molecular weight and 8 coals are selected to evaluate the effect of molecular weight of PSS on the properties of coal water slurry (CWS). The range of weight average molecular weight of PSS for preparing coal water slurry is from 53400 to 333900. The results indicate that the slurryability of CWS of 8 coals decreases as the molecular weight of PSS increases. The relation between slurry ability of CWS and molecular weight of PSS is attributed to the adsorption of PSS on the coal particles. The adsorption quantity of PSS with low molecular weight on the coal particles is larger than that of PSS with high molecular weight. On the other hand, the rheological behavior of CWS of 8 coals is changed from dilatant flow to pseudoplastic one as the increase of molecular weight of PSS. The static stability of CWS is also improved with increasing molecular weight of PSS. 9 refs., 3 figs., 3 tabs.

  8. Phase-equilibrium properties of coal-derived liquids. Technical progress report, January-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.; Kidnay, A.J.

    1981-07-01

    On July 1, 1980, work was initiated on a program for experimental vapor liquid equilibrium measurements on coal derived liquids. During the last six months design of the equilibrium flash vaporization system was completed and all major equipment was delivered. Most of the construction work of the system was also completed. Construction and evaluation of the equipment should be completed by the end of the summer. Work was also started on the gas-liquid chromatography analytical procedures. Coal derived liquids are a new and vital class of industrial compounds for which there are limited thermodynamic data. The principal investigators have conducted a program in the measurement and correlation of the enthalpy of coal derived liquids. Programs have also been undertaken to measure volumetric properties and K values of light gas-model compound systems and to measure dew points, vapor pressures and hydrogen solubilities in model compound and coal derived liquid systems. The objective of the present study is to measure equilibrium K values of coal derived liquids and model compounds representative of coal liquids, and to use the results in the development of engineering correlations. The program is divided into three major areas: (1) design, construction, and evaluation of an equilibrium flash vaporization system for temperatures between 70 and 700/sup 0/F, at pressures up to 2000 psia; (2) measurements on samples of both coal derived liquids and mixtures of model compounds; and (3) preparation of engineering correlations for the measured K values and vapor liquid equilibria.

  9. Effects of Thermal Treatment on the Dynamic Mechanical Properties of Coal Measures Sandstone

    Science.gov (United States)

    Li, Ming; Mao, Xianbiao; Cao, Lili; Pu, Hai; Mao, Rongrong; Lu, Aihong

    2016-09-01

    Many projects such as the underground gasification of coal seams and coal-bed methane mining (exploitation) widely involve the dynamic problems of coal measures sandstone achieved via thermal treatment. This study examines the dynamic mechanical properties of coal measures sandstone after thermal treatment by means of an MTS653 high-temperature furnace and Split Hopkinson pressure bar test system. Experimental results indicate that 500 °C is a transition point for the dynamic mechanical parameters of coal measures sandstone. The dynamic elastic modulus and peak strength increase linearly from 25 to 500 °C while the dynamic peak strain decreases linearly over the same temperature range. The dynamic elastic modulus and peak strength drop quickly from 500 to 800 °C, with a significant increase in the dynamic peak strain over the same temperature range. The rock mechanics are closely linked to material composition and mesoscopic structure. Analysis by X-ray diffraction and scanning electron microscopy indicate that the molecules inside the sandstone increase in density due to the thermal expansion of the material particles, which effectively improves the deformation resistance and carrying capacity of the sandstone and reduces the likelihood of axial deformation. With heat treatment that exceeds 500 °C, the dynamic mechanical properties rapidly weaken due to the decomposition of kaolinite; additionally, hot cracking of the mineral particles within the materials arises from coal sandstone internal porosity, and other defects gradually appear.

  10. Assessment of slagging properties of Novomoskovsk coal from the Western Donbass region

    Energy Technology Data Exchange (ETDEWEB)

    Dik, Eh.P.; Surovitskii, V.D.; Soboleva, A.N.; Kozhanov, D.S.; Dadvani, I.E. (Vsesoyuznyi Teplotekhnicheskii Institut (USSR))

    1989-01-01

    Using the example of Novomoskovsk coals (characterized by a Na{sub 2}O content of up to 0.85%, a moisture content of 22.5%, ash content of 20.0%, sulfur content of 1.8%, calorific value of 17.6 MJ/kg), describes the equipment and method used in an investigation into the slagging properties of saline coals. Based on the results (presented in tabular and graphical form) of measurements of the sodium content in the secondary deposits in relation to gas temperature, the ash content in the original coal and its deposits, the dependence of the partial saturation pressure of Na{sub 2}SO{sub 4} on temperature and the Na{sub 2}O content in the deposits, concludes that these coals have a slagging temperature 150-200 C below that of coals with the worst slagging properties currently used in the USSR (approximately 950 C) and produce significantly more furnace contamination. If these coals are to be used commercially, a special boiler should be designed or they should be burned in conjunction with other fuels. Further investigations are needed. 3 refs.

  11. The evaluation of properties of coal mass from the viewpoint of environment

    Energy Technology Data Exchange (ETDEWEB)

    Foniok, R.; Lukes, M. [Research Mining Inst., Ostrava-Radvanice (Czechoslovakia)

    1995-12-01

    This paper deals with the evaluation of several various coal kinds from the Czech coalfields from the viewpoint of the development of thermal processes in coal mass due to their tendency towards self- ignition during storing. In such a case that no self-ignition during storing occurs, gaseous products are liberated into air, the quantity and composition of which depend upon fuel type and its temperature as well. From the environmental viewpoint, substances washed from stored coal are of a certain interest, too. In accordance with this fact, the importance of measures against self-heating of stored coal mass and the importance of a detailed observation of coal quality are concluded. The tables, which compare various coal kinds from the viewpoint of their behavior at self-ignition processes, are the integral part of this presented paper. Our greatest attention is paid to both the quantity and composition of gases being liberated in dependence upon the temperature of coal mass, and at its crushing with regard to selected methods and means of milling circuits before and explosion. Oxygen sorption by means of coal mass is also observed, being of a great importance for self-inertization of closed tanks. All the above-mentioned processes are demonstrated in form of graphic plots. Qualitative signs of coal mass are the basic means for its assessment from the viewpoint of emissions at burning/combustion, and the evaluation of explosive properties. A great attention is paid to explosion-proof means being produced in the Czech Republic. These means can be used for protection of milling circuits of power plants and heating plants or for safety systems of combustion chamber by means of insulation to secondary air main. Explosion-proof quci-acting valves, a special type of safety membrane and device for explosion suppression nip in the bud do represent the latest explosion-proof means.

  12. Characteristics and utilization of thermoplastic elastomers (TPE)-an overview

    Energy Technology Data Exchange (ETDEWEB)

    Roestamsjah [R and D Center for Applied Chemistry, Indonesian Inst. of Sciences (Indonesia)

    1998-10-01

    The unique feature of thermoplastic elastomer, the combining of processing characteristics of thermoplastics with the physical properties of vulcanized rubber is reviewed. Highlights of TPE and its characteristics is aimed to generate interest in TPE, where SANS technique will be utilized for its characterization. The topics discussed include rubber elasticity, state of aggregation of polymers, microseparation in block copolymer system, application of TPE, and finally some notes in developing interest in TPE and SANS in Indonesia. (author)

  13. Investigation of the efect of the coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.; Deignan, P. [Texas A& M Univ., College Station, TX (United States)

    1995-11-01

    Experiments were conducted to investigate the effect of particle size on coal-water slurry (CWS) surface tension properties. Two different coal powder samples of different size ranges were obtained through sieving of coal from the Upper Elkhorn Seam. The surfactant (anionic DDBS-soft, dodecylbenzene sulfonic acid) concentration varied from 0 to 1.0% in weight while the coal loading remained at 40% in weight for all the cases. A du Nouy ring tensiometer and a maximum bubble pressure tensiometer measured the static and dynamic surface tensions, respectively, The results show that both static and dynamic surface tensions tend to increase with decreasing coal particle sizes suspended in CWS fuels. Examination of the peak pressure, minimum pressure, surfactant diffusion time, and dead time were also made to correlate these microscopic pressure behavior with the macroscopic dynamic surface tension and to examine the accuracy of the experiment.

  14. Numerical Estimation of the Elastic Properties of Thin-Walled Structures Manufactured from Short-Fiber-Reinforced Thermoplastics

    Science.gov (United States)

    Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.

    2003-05-01

    A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.

  15. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    Energy Technology Data Exchange (ETDEWEB)

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  16. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1995-06-30

    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  17. Attribute based selection of thermoplastic resin for vacuum infusion process

    DEFF Research Database (Denmark)

    Prabhakaran, R.T. Durai; Lystrup, Aage; Løgstrup Andersen, Tom

    2011-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...

  18. The relative fire resistance of select thermoplastic materials. [for aircraft interiors

    Science.gov (United States)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The relative thermal stability, flammability, and related thermochemical properties of some thermoplastic materials currently used in aircraft interiors as well as of some candidate thermoplastics were investigated. Currently used materials that were evaluated include acrylonitrile butadiene styrene, bisphenol A polycarbonate, polyphenylene oxide, and polyvinyl fluoride. Candidate thermoplastic materials evaluated include: 9,9-bis(4-hydroxyphenyl)fluorene polycarbonate-poly(dimethylsiloxane) block polymer, chlorinated polyvinylchloride homopolymer, phenolphthalein polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylsulfone, and polyvinylidene fluoride.

  19. Examination of injection moulded thermoplastic maize starch

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.

  20. Silane Crosslinked Wood-Thermoplastic Composites

    OpenAIRE

    Bengtsson, Magnus

    2005-01-01

    Wood-thermoplastic composites are a more environmental friendly alternative for pressure-treated lumber but can also replace engineering plastic products. These composites have been on the market for more than ten years now and have mainly been used in building and automotive applications. The use of these materials has shown that long-term properties, durability, and toughness are the main problems. The aim of this study was to investigate if silane crosslinking could be one way of solving t...

  1. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  2. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan Sampath

    2000-01-01

    This final technical report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1996 to September 23, 1999 which covers the entire performance period of the project. During this period, modification, alignment, and calibration of the measurement system, measurement of devolatilization time-scales for single coal particles subjected to a range of heating rates and temperature data at these time-scales, and analysis of the temperature data to understand the effect of heating rates on coal thermal properties were carried out. A new thermodynamic model was developed to predict the heat transfer behavior for single coal particles using one approach based on the analogy for thermal property of polymers. Results of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 5} K/s. At these heating rates during the early stages of heating, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatilization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are a few data available in the coal literature for low heating rate experiments (10{sup 2}-10{sup 3} K/s) conducted by UTRC, our industrial partner, in this project. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time of the single particle experiments discussed above. The polymer analogy model was modified to include longer heating time on the order of several seconds to test these data. However, the model failed to predict these low heating rate data. It should be noted that UTRC's work showed reasonably good agreement with Merrick model heat capacity predictions at these low heating rates, but at higher heating rates UTRC observed that coal thermal response was heat flux dependent. It is concluded

  3. Thermodynamic model for calorimetric and phase coexistence properties of coal derived fluids. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1992-10-01

    The work on this project was initiated on September 1, 1989. The project consisted of three different tasks. 1. A thermodynamic model to predict VLE and calorimetric properties of coal liquids. 2. VLE measurements at high temperature and high pressure for coal model compounds and 3. Chromatographic characterization of coal liquids for distribution of heteroatoms. The thermodynamic model developed is an extension of the previous model developed for VLE of coal derived fluids (DOE Grant no. FG22-86PC90541). The model uses the modified UNIFAC correlation for the liquid phase. Some unavailable UNIFAC interactions parameters have been regressed from experimental VLE and excess enthalpy data. The model is successful in predicting binary VLE and excess enthalpy data. Further refinements of the model are suggested. An apparatus for the high pressure high temperature VLE data measurements has been built and tested. Tetralin-Quinoline is the first binary system selected for data measurements. The equipment was tested by measuring 325{degree}C isotherm for this system and comparing it with literature data. Additional isotherms at 350{degree}C and 370{degree}C have been measured. The framework for a characterization procedure for coal derived liquids has been developed. A coal liquid is defined by a true molecular weight distribution and distribution of heteroatoms as a function of molecular weights. Size exclusions liquid chromatography, elemental analysis and FTIR spectroscopy methods are used to obtain the molecular weight and hetroatom distributions. Further work in this area should include refinements of the characterization procedure, high temperature high pressure VLE data measurements for selective model compound binary systems, and improvement of the thermodynamic model using the new measured data and consistent with the developments in the characterization procedure.

  4. Time Effect of Water Injection on the Mechanical Properties of Coal and Its Application in Rockburst Prevention in Mining

    Directory of Open Access Journals (Sweden)

    Xiaofei Liu

    2017-11-01

    Full Text Available Coal seam water injection is widely used to prevent rockbursts in coal mines, and the duration of water injection is an important parameter related to the effectiveness of rockburst prevention, making it of practical importance to optimize the effective water injection duration. This paper presents the test results of the mechanical properties and pore structure of samples with different soaking time, obtained from a working face where rockburst occurred. Soaking time changes the mechanical properties of samples, and this time effect differs with the coal size (from centimeter to nanometer size. Results of numerical simulation and on-site tests in the Changgouyu coal mine demonstrated that water injection can effectively soften coal bodies and release or transfer stresses, and the time effect of water injection on rock prevention and control is apparent.

  5. Investigation on the Activity Activation and Cementitious Property of Coal Gangue with High Iron and Silica Contents

    Science.gov (United States)

    Wu, Hong; Li, Yu; Teng, Min; Yang, Yu

    2017-11-01

    The activity of coal gangue by thermal activation and composite activation technologies was investigated. The crystal composition, framework structure and morphology change were analyzed by XRD, FT-IR and SEM, respectively. The cementitious property of coal gangue was measured by strength test. The results showed that thermal activation decomposed kaolinite in coal gangue, and formed the metastable structure with a porous state, multiple internal broken bonds and large specific surface areas. Based on thermal activation, the added lime provided the alkaline environment, then this reduced the bond energy of reactant particles and the degree of crystallinity of quartz in coal gangue. The two activation methods could effectively improve the cementitious property of coal gangue based unburned bricks, and that the composite activation technology was superior performance.

  6. FibreChain: characterization and modeling of thermoplastic composites processing

    NARCIS (Netherlands)

    Rietman, Bert; Niazi, Muhammad Sohail; Akkerman, Remko; Lomov, S.V.

    2013-01-01

    Thermoplastic composites feature the advantage of melting and shaping. The material properties during processing and the final product properties are to a large extent determined by the thermal history of the material. The approach in the FP7-project FibreChain for process chain modeling of

  7. Investigations on electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl

    Science.gov (United States)

    Wei, Xiao-Ping; Sun, Weiwei; Zhang, Ya-Ling; Sun, Xiao-Wei; Song, Ting; Wang, Ting; Zhang, Jia-Liang; Su, Hao; Deng, Jian-Bo; Zhu, Xing-Feng

    2017-03-01

    Using full-potential local-orbital minimum-basis along with spin-polarized relativistic Korringa-Kohn-Rostoker methods, we study the electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl alloy. The alloy with Li2AgSb and Cu2MnAl structures are compared in terms of magnetic properties, and the electronic structures in two structures are also discussed. According to the calculated electronic states, it finds that the Zr2CoAl with Li2AgSb structure is half-metallic ferromagnet with an integral magnetic moment of 2.00μB , meanwhile we also notice the d-d and p-d hybridizations are responsible for the formation of minority-spin gap, furthermore, the fat-bands are applied to discuss the mixture between d and p electrons in the vicinity of the Fermi level. The Fermi surfaces related to the valence bands are constructed, and it is found that the spin-up valence bands 26, 27 and 28 across the Fermi energy dominate the nature of electrons. By mapping the system onto a Heisenberg Hamiltonian, we obtain the exchange coupling parameters, and observe that the Zr(A)-Co(C) and Zr(A)-Zr(B) interactions provide a major contribution for exchange interactions. Based on the calculated exchange coupling parameters, the Curie temperature is estimated to be 287.86 K at equilibrium, and also the dependence of Curie temperature on lattice constant related to the tunable Curie temperature in Zr2CoAl alloy is studied. Finally, we report the optical properties of Zr2CoAl alloy, and present the photon energy dependence of the absorption, the optical conductivity and the loss function.

  8. Design properties of coal liquids: edited workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Reilly, M.J. (eds.)

    1981-08-01

    The advent of synfuels will require a large measurement and modeling effort of new thermodynamic and physical properties. These data are required for the economic design and operation of proposed synfuel plants. The areas of data need are well defined. The pace of measurement will be restricted by laboratory availability. The cost for the required data and for their correlation and modeling will be substantial. And finally, the cost of doing all this work will be substantial. The plants we are talking about are energy plants and synfuel plants. They are energy intensive plants, and as such, they offer the prospects for a great deal of energy saving. To do so requires good data. In those critical areas where we start hunting the energy hogs, we will find that with +-20% data those hogs are pretty well hidden.

  9. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms.

    Science.gov (United States)

    Quan, Cui; Gao, Ningbo

    2016-01-01

    Concerns in the last few decades regarding the environmental and socioeconomic impacts of the dependence on fossil fuels have resulted in calls for more renewable and alternative energy sources. This has led to recent interest in copyrolysis of biomass and coal. Numerous reviews have been found related to individual pyrolysis of coal and biomass. This review deals mainly with the copyrolysis of coal and biomass and then compares their results with those obtained using coal and biomass pyrolysis in detail. It is controversial whether there are synergistic or additive behaviours when coal and biomass are blended during copyrolysis. In this review, the effects of reaction parameters such as feedstock types, blending ratio, heating rate, temperature, and reactor types on the occurrence of synergy are discussed. Also, the main properties of the copyrolytic products are pointed out. Some possible synergistic mechanisms are also suggested. Additionally, several outlooks based on studies in the literature are also presented in this paper.

  10. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms

    Directory of Open Access Journals (Sweden)

    Cui Quan

    2016-01-01

    Full Text Available Concerns in the last few decades regarding the environmental and socioeconomic impacts of the dependence on fossil fuels have resulted in calls for more renewable and alternative energy sources. This has led to recent interest in copyrolysis of biomass and coal. Numerous reviews have been found related to individual pyrolysis of coal and biomass. This review deals mainly with the copyrolysis of coal and biomass and then compares their results with those obtained using coal and biomass pyrolysis in detail. It is controversial whether there are synergistic or additive behaviours when coal and biomass are blended during copyrolysis. In this review, the effects of reaction parameters such as feedstock types, blending ratio, heating rate, temperature, and reactor types on the occurrence of synergy are discussed. Also, the main properties of the copyrolytic products are pointed out. Some possible synergistic mechanisms are also suggested. Additionally, several outlooks based on studies in the literature are also presented in this paper.

  11. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms

    Science.gov (United States)

    2016-01-01

    Concerns in the last few decades regarding the environmental and socioeconomic impacts of the dependence on fossil fuels have resulted in calls for more renewable and alternative energy sources. This has led to recent interest in copyrolysis of biomass and coal. Numerous reviews have been found related to individual pyrolysis of coal and biomass. This review deals mainly with the copyrolysis of coal and biomass and then compares their results with those obtained using coal and biomass pyrolysis in detail. It is controversial whether there are synergistic or additive behaviours when coal and biomass are blended during copyrolysis. In this review, the effects of reaction parameters such as feedstock types, blending ratio, heating rate, temperature, and reactor types on the occurrence of synergy are discussed. Also, the main properties of the copyrolytic products are pointed out. Some possible synergistic mechanisms are also suggested. Additionally, several outlooks based on studies in the literature are also presented in this paper. PMID:27722171

  12. Composition, morphology, properties of coal fly ash microspheres and their application for conditioning liquid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Anshits, N.N. [Institute of Chemistry and Chemical Technology, SB RAS (ICCT SB RAS), Krasnoyarsk (Russian Federation)]. E-mail: anshits@icct.ru; Salanov, A.N.; Vereshchagina, T.A.; Kruchek, D.M.; Bajukov, O.A.; Tretyakov, A.A.; Revenko, Yu.A.; Anshits, A.G

    2006-07-01

    Using methods of the Moessbauer spectroscopy, scanning electron microscopy, and thermodynamic analysis of phase formation in silicate multi-component melts, the detailed study of composition, morphology, and properties of fly ash microspheres resulting from combustion of three coals (Irsha-Borodinskii, Kuznetskii and Ekibastuzskii) was carried out. About 60 microspherical products with an iron content of 2-94 wt.% Fe{sub 2}O{sub 3} were obtained. The ranges of microsphere composition, suitable for liquid radioactive waste solidification in the forms of iron phosphate (36-94 wt.% Fe{sub 2}O{sub 3}) and aluminosilicate (2-20 wt.% Fe{sub 2}O{sub 3}) ceramics were determined. The possibility of producing porous materials and specific microspherical sorbents, based on coal fly ash cenospheres and their application for mobilisation of liquid radioactive waste solidification was demonstrated. (author)

  13. Changes in the macromolecular structure of coals with pyrolysis temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ndaji, F.E.; Butterfield, I.M.; Thomas, K.M. [University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom). Northern Carbon Research Labs., Dept. of Chemistry

    1997-01-01

    The macromolecular structure of coal is characterised by its cross-link density. This paper describes a study of the effect of pyrolysis temperature on the macromolecular structure of coal using solvent swelling techniques. Heat treatment initially dissociates the intermolecular interactions in the coal and cleaves some cross-links, leading to increase in the solvent swelling of the coal, which indicates a decrease in the cross-link density. The solvent swelling reaches a maximum before cross-linking reactions predominate, causing a progressive increase in cross-link density and a decrease in solvent swelling. For lower-rank coals there appears to be an overlap (near the temperature of minimum cross-link density) of the dissociation of intermolecular interactions and thermal decomposition. Appreciable decrease in the apparent cross-link density of high-rank coals as indicated by increase in solvent swelling was observed only after thermal decomposition had commenced. Major decomposition involves cross-linking reactions leading to the formation of chars. However, the solvent swelling characteristics continue to change above the resolidification temperature, eventually ceasing at {approximately}600{degree}C. The results are discussed in relation to measurements of thermoplastic properties and devolatilization characteristics. 23 refs., 4 figs., 3 tabs.

  14. Composition and properties of jet and diesel fuels derived from coal and shale

    Science.gov (United States)

    Solash, J.; Hazlett, R. N.

    1981-02-01

    Important properties controlling the availability and efficient use of fuels for Navy aircraft and ships are a) low temperature properties, b) stability, c) combustion behavior, and d) safety. In general, these critical properties are controlled by composition. Therefore, a variety of instrumental analyses-capillary gas chromatography, liquid chromatography, carbon-13 and proton nmr, and electron impact and field ionization mass spectrometry-have been applied to jet and diesel fuels made from coal and shale. The low temperature properties are controlled by n-alkanes and the combustion behavior is degraded by aromatics as well as partially saturated polynuclear arometics. Fuel stability is degraded by sulfur and nitrogen compounds, both of which are prevalent in middle distillate fields derived from a alternative fossil fuel sources.

  15. Carbon fiber reinforced thermoplastic composites for future automotive applications

    Science.gov (United States)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  16. Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption

    Science.gov (United States)

    Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.

    2009-01-01

    This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.

  17. Combustion properties, water absorption and grindability of raw/torrefied biomass pellets and Silantek coal

    Science.gov (United States)

    Matali, Sharmeela; Rahman, Norazah Abdul; Idris, Siti Shawaliah; Yaacob, Nurhafizah

    2017-12-01

    Torrefaction, also known as mild pyrolysis, is proven to convert raw biomass into a value-added energy commodity particularly for application in combustion and co-firing systems with improved storage and handling properties. This paper aims to compare the characteristics of Malaysian bituminous coal i.e. Silantek coal with raw and torrefied biomass pellet originated from oil palm frond and fast growing tree species, Leucaena Leucocephala. Biomass samples were initially torrefied at 300 °C for 60 minutes. Resulting torrefied biomass pellets were analysed using a number of standard fuel characterisation analyses i.e. elemental analysis, proximate analysis and calorific content (high heating values) experiments. Investigations on combustion characteristics via dynamic thermogravimetric analysis (TGA), grindability and moisture uptake tests were also performed on the torrefied biomass pellets. Better quality bio-chars were produced as compared to its raw forms and with optimal process conditions, torrefaction may potentially produces a solid fuel with combustion reactivity and porosity equivalent to raw biomass while having compatible energy density and grindability to coal.

  18. Study on Roadheader Cutting Load at Different Properties of Coal and Rock

    Directory of Open Access Journals (Sweden)

    Xueyi Li

    2013-01-01

    Full Text Available The mechanism of cutting process of roadheader with cutting head was researched, and the influences of properties of coal and rock on cutting load were deeply analyzed. Aimed at the defects of traditional calculation method of cutting load on fully expressing the complex cutting process of cutting head, the method of finite element simulation was proposed to simulate the dynamic cutting process. Aimed at the characteristics of coal and rock which affect the cutting load, several simulations with different firmness coefficient were taken repeatedly, and the relationship between three-axis force and firmness coefficient was derived. A comparative analysis of cutting pick load between simulation results and theoretical formula was carried out, and a consistency was achieved. Then cutting process with a total cutting head was carried out on this basis. The results show that the simulation analysis not only provides a reliable guarantee for the accurate calculation of the cutting head load and improves the efficiency of the cutting head cutting test but also offers a basis for selection of cutting head with different geological conditions of coal or rock.

  19. Resistance Welding of Thermoplastic Composites : Process and Performance

    NARCIS (Netherlands)

    Shi, H.

    2014-01-01

    Compared to thermoset composites, thermoplastic composites are drawing more and more attention by aircraft industries not only due to their excellent material properties but also due to their potentials to reduce cycle time and structure cost by using low-cost manufacturing technologies such as

  20. Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising

  1. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    Science.gov (United States)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  2. Study on the Combustion Properties of Bio-Coal Briquette Blends of ...

    African Journals Online (AJOL)

    2017-10-09

    Oct 9, 2017 ... Bio-coal briquettes are very low in price as compared to ... shell, coconut shell, groundnut shell, oil palm fiber, coffee husk and coal ... Comparison of different fuels and coal briquettes was conducted on a typical indoor stove in-use in. Pakistan. The results depicted that coal briquettes emit less harmful ...

  3. Free-radical concentrations and other properties of pile-irradiated coals

    Science.gov (United States)

    Friedel, R.A.; Breger, I.A.

    1959-01-01

    Five coals reacted quite differently when they were exposed to pile-irradiation. Little or no change was found in free-radical content for the three coals of lowest carbon content, whereas the two coals of highest carbon content were found to have a considerable increase in free-radical content. The infrared spectra and the apparent hardness of the irradiated coals of higher carbon content indicate that polymerization occurred. Radiation of these coals in chemical reagents may promote reactivity.

  4. Influence of coal-specific fly ash properties upon baghouse performance: a comparison of two extreme examples

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.; Sears, D.R.

    1984-01-01

    Pilot plant data with a large number of lignite and subbituminous coals have demonstrated that shaker baghouse efficiency is highly coal specific with large differences in baghouse penetration for different coals. A previous report has presented these findings along with an observed correlation between elemental fly ash composition and baghouse penetration. This paper presents a further investigation of the relationship between fly ash properties and baghouse penetration with woven glass fabric and shaker cleaning. The focus will be on two coals which represent the good and poor extremes of filter performance. The coal and ash properties of a lignite showing good filter performance are compared with the properties of a lignite demonstrating very poor performance. An examination of both chemical and physical ash properties which include elemental compositions as a function of size, particulate size distribution, particle surface morphology, and other physical descriptors is presented in an attempt to determine causes of grossly different baghouse performance. The work described in this paper was not funded by the US Environmental Protection Agency and therefore the contents do not necessarily reflect the views of the Agency and no official endorsement shoud be inferred. 12 references.

  5. Extraction and characterization of polysaccharides from tamarind seeds, rice mill residue, okra waste and sugarcane bagasse for its Bio-thermoplastic properties.

    Science.gov (United States)

    Chandra Mohan, C; Harini, K; Vajiha Aafrin, B; Lalitha Priya, U; Maria Jenita, P; Babuskin, S; Karthikeyan, S; Sudarshan, K; Renuka, V; Sukumar, M

    2018-04-15

    The aim of the present study is to extract potential thermoplastic polysaccharides from agricultural industrial wastes. Polysaccharides were extracted from renewable agro industrial wastes such as tamarind seeds [rich in starch (TSS)], okra head waste [rich in mucilage polysaccharide (OMP)], sugarcane bagasse [rich in cellulose (SBC)] and residual rice mill wastes [rich in starch and fiber (RS)]. Urigam variety of tamarind seed starch found to be an amylose rich starch. Different polysaccharides extracted from agro wastes were found to be having high thermal stability, except okra polysaccharide (comparatively low). X-ray diffraction pattern of tamarind seed starch proved its high crystallinity index. Crystallinity index of investigated polysaccharides were found to be in the order of SBC > TSS > RS > OMP. Chemical nature of extracted polysaccharides was confirmed by Fourier transform infrared spectroscopic analysis. Residual rice bran starch granules and tamarind seed starch globules were found to be having comparatively reduced particle size than sugarcane bagasse cellulose and okra mucilage. Scanning electron microscopic analysis revealed the cluster formations of RS granules and TSS globules. Residual rice bran starch found to be associated with other fibers (present in outer coat of rice). Okra mucilage and SBC were examined to be having linear sheets and linear bundles structures, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Design of an experimental setup to measure tool-ply and ply-ply friction in thermoplastic laminates

    NARCIS (Netherlands)

    ten Thije, R.H.W.; Akkerman, Remko

    2009-01-01

    Friction plays an important role in forming processes of thermoplastic laminates. A model is currently developed to predict the frictional properties of these materials and validation experiments are being conducted. The development of a friction measurement rig for thermoplastic composites is not

  7. Determination of properties of clean coal technology post-process residue

    Directory of Open Access Journals (Sweden)

    Agnieszka Klupa

    2016-01-01

    Full Text Available This article presents the possibilities of using modern measuring devices to determine the properties of process residues (Polish acronym: UPP. UPP was taken from the combustion process from a power plant in Silesia. Determining the properties of UPP is the basis for making decisions about its practical application, for example, as a raw material to obtain useful products such as: pozzolan, cenosphere or zeolite, for which there is demand. The development of advanced technology and science has given rise to modern and precise research tools that contribute to the development of appropriate methods to assess the properties of post-process residue. For this study the following were used: scanning electron microscope with EDS microanalysis and an analyzer for particle size-, shape- and number- analysis. The study conducted confirms the effectiveness of SEM analysis to determine the properties of post-process residue from Clean Coal Technologies (CCT. The results obtained are an introduction to further research on the determination of properties of CCT post-process residue. Research to determine the properties of CCT post-process residue only began relatively recently.

  8. Short fiber reinforced thermoplastic blends

    NARCIS (Netherlands)

    Malchev, P.G.

    2008-01-01

    The present thesis investigates the potential of short fiber reinforced thermoplastic blends, a combination of an immiscible polymer blend and a short fiber reinforced composite, to integrate the easy processing solutions available for short fiber reinforced composites with the high mechanical

  9. Investigation of the effect of coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels: Final report, July 1, 1994-June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.

    1996-10-01

    The scope of the project is two fold: (1) examining particle size effect on interfacial properties of CWS fuels by measuring static and dynamic surface tension properties of specially prepared CWS samples containing different ranges of coal particle sizes, and (2) studying the effect of particle size on CWS atomization characteristics by measuring mean diameters of several different CWS sprays generated by sonic air blasting. The results show that both static and dynamic surface tensions decrease with increasing coal particle size and mean droplet diameter of CW-S sprays also decreases with increasing coal particle size. Based on the experimental evidence we conjecture that three different energies are competing in slurry atomization: (1) the internal capillary holding between particles and water, (2) the interfacial surface tensile energy at the slurry surface contacting air, and (3) the external air blast shear energy acting against the former two energies. The internal capillary holding force decreases with increasing particle size. This force is believed to play a major role in determining the effect of particle size on CWS atomization.

  10. Deformation properties of sedimentary rocks in the process of underground coal gasification

    Directory of Open Access Journals (Sweden)

    Mirosława Bukowska

    2015-01-01

    Full Text Available The article presents results of research into changes in deformation properties of rocks, under influence of temperature, during the process of underground coal gasification. Samples of carboniferous sedimentary rocks (claystones and sandstones, collected in different areas of Upper Silesian Coal Basin (GZW, were heated at the temperature of between 100 and 1000–1200 °C, and then subjected to uniaxial compression tests to obtain a full stress-strain curves of the samples and determine values of residual strain and Poisson's ratio. To compare the obtained values of deformation parameters of rocks, tested in dry-air state and after heating in a given range of temperature, normalised values of residual strain and Poisson's ratio were determined. Based on them, coefficient of influence of temperature on tested deformation parameters was determined. The obtained values of the coefficient can be applied in mining practice to forecast deformability of gangue during underground coal gasification, when in the direct surrounding of a georeactor there are claystones or sandstones. The obtained results were analysed based on classification of uniaxial compression strength of GZW gangue, which formed the basis for dividing claystones and sandstones into very low, low, medium and high uniaxial compression strength rocks. Based on the conducted tests it was concluded that the influence of uniaxial compression strength on the value of residual strain, unlike the influence of grain size of sandstones, is unambiguous within the range of changes in the parameter. Among claystones changes in the value of Poisson's ratio depending on their initial strength were observed. Sandstones of different grain size either increased or decreased the value of Poisson's ratio in comparison with the value determined at room temperature in dry-air conditions.

  11. Acetylation of rice straw for thermoplastic applications.

    Science.gov (United States)

    Zhang, Guangzhi; Huang, Kai; Jiang, Xue; Huang, Dan; Yang, Yiqi

    2013-07-01

    An inexpensive and biodegradable thermoplastic was developed through acetylation of rice straw (RS) with acetic anhydride. Acetylation conditions were optimized. The structure and properties of acetylated RS were characterized by fourier transform infrared (FTIR), solid-state (13)C NMR spectroscopy, X-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that acetylation of RS has successfully taken place, and comparing with raw RS, the degree of crystallinity decreased and the decomposition rate was slow. The acetylated RS has got thermoplasticity when weight ratio of RS and acetic anhydride was 1:3, using sulphuric acid (9% to RS) as catalyst in glacial acetic acid 35°C for 12h, and the dosage of solvent was 9 times RS, in which weight percent gain (WPG) of the modified RS powder was 35.5% and its percent acetyl content was 36.1%. The acetylated RS could be formed into transparent thin films with different amount of plasticizer diethyl phthalate (DEP) using tape casting technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Tough and Sustainable Graft Block Copolymer Thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiuyang; Li, Tuoqi; Mannion, Alexander M.; Schneiderman, Deborah K.; Hillmyer, Marc A.; Bates, Frank S. (UMM)

    2016-03-15

    Fully sustainable poly[HPMC-g-(PMVL-b-PLLA)] graft block copolymer thermoplastics were prepared from hydroxypropyl methylcellulose (HPMC), β-methyl-δ-valerolactone (MVL), and l-lactide (LLA) using a facile two-step sequential addition approach. In these materials, rubbery PMVL functions as a bridge between the semirigid HPMC backbone and the hard PLLA end blocks. This specific arrangement facilitates PLLA crystallization, which induces microphase separation and physical cross-linking. By changing the backbone molar mass or side chain composition, these thermoplastic materials can be easily tailored to access either plastic or elastomeric behavior. Moreover, the graft block architecture can be utilized to overcome the processing limitations inherent to linear block polymers. Good control over molar mass and composition enables the deliberate design of HPMC-g-(PMVL-b-PLLA) samples that are incapable of microphase separation in the melt state. These materials are characterized by relatively low zero shear viscosities in the melt state, an indication of easy processability. The simple and scalable synthetic procedure, use of inexpensive and renewable precursors, and exceptional rheological and mechanical properties make HPMC-g-(PMVL-b-PLLA) polymers attractive for a broad range of applications.

  13. Functionalization of Graphene Nanoplatelet and the Shape Memory Properties of Nanocomposite Based on Thermoplastic Elastomer Polyurethane/Poly(vinyl chloride/Graphene Nanoplateletes

    Directory of Open Access Journals (Sweden)

    Milad karimtehrani

    2017-09-01

    Full Text Available In this study, shape memory polymers (SMPs based on thermoplastic polyurethane/ poly(vinylchloride/ graphen nanoplatelet  (TPU/PVC/GNP were produced via solution method using tetrahydrofuran(THF solvent. Blend ratio of the all samples was 60/40 (w/w and GNP concentration were 0.5, 1 and 2 W.t% from neat and functionalized GNP. In order to get better dispersion of GNP and inhibit from their agglomeration, functionalization with polycaprolactam was accomplished. At first, nanoparticles were treated with nitric acid and in the next step acylation was done using tionylcholride and finally polycaprolactam was grafted on the surface of nano platelet graphen. The functionaliztion reactions were tracked using fourier transfer infra red (FTIR, thermal gravimetric analysis (TGA and ultraviolet chromatography.The results of these tests showed the successful reaction has been occurred and polycaprolactam was grafted on the surface of GNP. The presence of new peaks in FTIR spectra at 1165 and cm-1 and the loss weight in TGA by 10 and 30wt. % for modified nanoparticles in comparison to pristine one revealed the successful occurrence of modifications reaction reactions.Morphology of the samples was studied using scanning electron microscopy (SEM and the results depicted that a fine dispersion of graphen nanoplatelet  was obtained in comparison to samples including unfunctionalized nanoparticles.  Shape memory induction and the measurement of shape fixity and shape recovery were done using thermal-mechanical analyzer (TMA. The results showed that the shape fixity was increased from 76.8 to 83% and shape recovery was increased from 81.5 to 86.7% for the sample containing modified GNp due to better dispersion of the nanoparticles.

  14. Phase equilibrium properties of coal-derived liquids. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.; Kidnay, A.J.

    1983-12-22

    An experimental apparatus capable of making accurate high temperature, high pressure vapor-liquid equilibria measurements was designed, constructed, and evaluated. The basic system is a flow equilibrium flash vaporization apparatus similar to those used for petroleum liquids. The final equilibrium cell is a visual cell using a sapphire window with a gold o-ring for sealing. Vapor pressures of pure water were measured from 126 to 307/sup 0/C to test the equipment. The system was next evaluated using the ethanol-water binary system. Data were obtained at 150, 200, and 250/sup 0/C. At 150/sup 0/C and 200/sup 0/C or at low ethanol concentrations there was substantial agreement between our data and data in the literature. At higher ethanol concentrations approaching the azeotrope there was some disagreement which was later found to be due to inconsistencies in the literature data. These results established the reliability of the equipment for binary mixture vapor liquid equilibrium measurements. The first system studied of relevance to coal-derived liquid properties was the m-cresol/quinoline binary system. This system was selected since these compounds are typical of the hetero-atomic species present in coal-derived liquids. Numerous difficulties were encountered. After resolving the experimental difficulties, reliable data were obtained for the system at 250/sup 0/C. An azeotrope was found in the system at a m-cresol composition in the region of 5 mole percent. 47 references, 19 figures, 16 tables.

  15. Study on quality improvement of palm trunk by thermoplastic impregnation

    Science.gov (United States)

    Rosli, F.; Ghazali, C. M. R.; Abdullah, M. M. A. B.; Hussin, K.

    2017-09-01

    Due to abundance of palm trunk waste, palm trunk can be used as alternative raw material of wood composites to replace future timber. However, the morphological of palm trunk is not truly woody material, so the quality improvement was studied by thermoplastic impregnation at different soaking time. The effect of thermoplastic resin impregnation on the morphological, physical and mechanical was investigated in this study. It was found that the amount of resin uptake to the palm trunk ranged from 3.85% to 6.25%. The density, thickness swelling and water absorption of treated palm trunk significantly improved. While, the modulus of rupture (MOR) and modulus of elasticity (MOE) of treated palm trunk was greater than untreated. This findings in this study indicated that thermoplastic resin would be considered alternative to formaldehyde-based resin to improved properties of palm trunk. At the request of all authors and with the approval of the proceedings editor, article 020268 titled, "Study on Quality Improvement of Palm Trunk by Thermoplastic Impregnation," is being retracted from the public record due to the fact that it is a duplication of article 020153 published in the same volume.

  16. Research into properties of dust from domestic central heating boiler fired with coal and solid biofuels

    Directory of Open Access Journals (Sweden)

    Konieczyński Jan

    2017-06-01

    Full Text Available The aim of this research was to assess the content and composition of the pollutants emitted by domestic central heating boilers equipped with an automatic underfeed fuel delivery system for the combustion chamber. The comparative research was conducted. It concerned fuel properties, flue gas parameters, contents of dust (fl y ash and gaseous substances polluting the air in the flue gases emitted from a domestic CH boiler burning bituminous coal, pellets from coniferous wood, cereal straw, miscanthus, and sunflower husks, coniferous tree bark, and oats and barley grain. The emission factors for dust and gaseous air pollutants were established as they are helpful to assess the contribution of such boilers in the atmospheric air pollution. When assessing the researched boiler, it was found out that despite the development in design and construction, flue gases contained fly ash with a significant EC content, which affected the air quality.

  17. Effect of coal weathering on technological properties of cokes produced at different scales

    Energy Technology Data Exchange (ETDEWEB)

    Cimadevilla, J.L.G.; Alvarez, R.; Pis, J.J. [Instituto Nacional del Carbon (INCAR), CSIC, Apartado 73. 33080 Oviedo (Spain)

    2005-04-25

    The effect of weathering (natural oxidation) on the technological properties of cokes obtained at three different scales (laboratory, pilot plant and semi-industrial), from two medium volatile bituminous coals stored at INCAR open stockyard for several months, has been studied in this work. The results show that the procedure developed at laboratory scale is useful for studying the evolution of coke quality because the trends of the main quality indexes (mechanical strength and reactivity to CO{sub 2}) are in agreement with those of the cokes produced at larger scales. Furthermore, it was found that the total porosity and the micropores specific surface area of the cokes vary with the scale of carbonization, and that they increase as follows: semi-industrial

  18. Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno [National Institute of Standards and Technology (NIST), Boulder, CO (United States). Physical and Chemical Properties Division

    2008-09-15

    We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

  19. Modeling of particle radiative properties in coal combustion depending on burnout

    Science.gov (United States)

    Gronarz, Tim; Habermehl, Martin; Kneer, Reinhold

    2017-04-01

    In the present study, absorption and scattering efficiencies as well as the scattering phase function of a cloud of coal particles are described as function of the particle combustion progress. Mie theory for coated particles is applied as mathematical model. The scattering and absorption properties are determined by several parameters: size distribution, spectral distribution of incident radiation and spectral index of refraction of the particles. A study to determine the influence of each parameter is performed, finding that the largest effect is due to the refractive index, followed by the effect of size distribution. The influence of the incident radiation profile is negligible. As a part of this study, the possibility of applying a constant index of refraction is investigated. Finally, scattering and absorption efficiencies as well as the phase function are presented as a function of burnout with the presented model and the results are discussed.

  20. Thermoplastics for aircraft interiors

    Science.gov (United States)

    Silverman, B.

    1978-01-01

    The goal for this contract is the development of processes and techniques for molding thermally stable, fire retardant, low smoke emitting polymeric materials. Outlined in this presentation are: (1) the typical molding types; (2) a program schedule; (3) physical properties of molding types with the test methods to be used; (4) general properties of injection molding materials; and (5) preliminary materials selection.

  1. Diamond turning of thermoplastic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  2. Sulfur and ash reduction potential and selected chemical and physical properties of United States coals. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.; Fuchs, W. (USDOE Pittsburgh Energy Technology Center, PA (USA). Coal Preparation Div.); Jacobsen, P.S. (Burns and Roe Services Corp., Pittsburgh, PA (USA))

    1991-02-01

    This report presents the washability and comprehensive characterization results of 184 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Central Region of the United States. This is the second of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. The complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is given for the composited washability data, selected chemical and physical properties and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Central Region coals. Graphical summations are presented by state, section and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 5 tabs.

  3. Attribute Based Selection of Thermoplastic Resin for Vacuum Infusion Process: A Decision Making Methodology

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Lystrup, Aage; Løgstrup Andersen, Tom

    2012-01-01

    The composite industry looks toward a new material system (resins) based on thermoplastic polymers for the vacuum infusion process, similar to the infusion process using thermosetting polymers. A large number of thermoplastics are available in the market with a variety of properties suitable...... for different engineering applications, and few of those are available in a not yet polymerised form suitable for resin infusion. The proper selection of a new resin system among these thermoplastic polymers is a concern for manufactures in the current scenario and a special mathematical tool would...... be beneficial. In this paper, the authors introduce a new decision making tool for resin selection based on significant attributes. This article provides a broad overview of suitable thermoplastic material systems for vacuum infusion process available in today’s market. An illustrative example—resin selection...

  4. Development and Characterization of Amorphous Thermoplastic Matrix Graphene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Alfonso Maffezzoli

    2012-10-01

    Full Text Available The aim of the present work is the development of amorphous thermoplastic matrix nanocomposites based on graphite nanoparticles. Different types of graphite were used, including unmodified graphite, graphene nanoplatelets and graphite intercalation compounds. Graphite intercalation compounds were subjected to thermal treatment to attain exfoliation of the nanofiller. The exfoliation process was studied by means of thermal analysis. The nanofillers and nanocomposites were characterized by means of X-ray Diffraction (XRD and Scanning Electron Microscope (SEM analysis. The nanocomposites were further characterized by means of mechanical and dielectric analysis. The flammability of the nanocomposites was also analyzed. Results obtained indicate that addition of the nanofiller allows improving the proprieties of the amorphous thermoplastic matrix. The effect of the degree of dispersion of the nanofiller is particularly relevant for the dielectric properties of the nanocomposites, whereas no direct correlation between degree of dispersion and mechanical properties can be observed.

  5. Solid state photoluminescence thermoplastic starch film containing graphene quantum dots.

    Science.gov (United States)

    Javanbakht, Siamak; Namazi, Hassan

    2017-11-15

    Fluorescent polymer films, a matrix of thermoplastic starch (TPS) based bio-polymer and graphene quantum dots (GQDs) were fabricated by a casting method. The GQDs provide solid state fluorescent properties to the prepared thermoplastic starch graphene quantum dots (TPS/GQD). The fluorescent, thermal, mechanical and optical properties of TPS/GQD were investigated. High optical transparency (88-91%) and well dispersion of GQDs (1-17wt%) in the polymeric matrix of TPS/GQD nanocomposite was observed. The maximum photoluminescence intensity of materials has been obtained at 50wt% of GQD content. These materials have great potential to use in flexible electronic displays, light emitting diodes (LED), GQD-LED packaging and other optoelectronics applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Thermoplastic high performance cable insulation systems for flexible system operation

    OpenAIRE

    Vaughan, A.S.; Green, C.D.; Hosier, I.L.; Stevens, G.C.; Pye, A.; Thomas, J.L.; Sutton, S.J.; Guessens, T.

    2015-01-01

    Crosslinked polyethylene (XLPE) has been the cable insulation material of choice in many different transmission and distribution applications for many years and, while this material has many desirable characteristics, its thermo-mechanical properties have consequences for both continuous and emergency cable ratings which, in turn, have implications for system operational flexibility. In this paper, we describe the principles and two embodiments through which new thermoplastic insulation syste...

  7. Studies of the relationship between mineral matter and grinding properties for low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Ural, Suphi [Department of Mining Engineering, Cukurova University, 01330 Adana (Turkey); Akildiz, Mustafa [Department of Geological Engineering, Cukurova University, 01330, Adana (Turkey)

    2004-10-22

    Investigations into the effects of mineral matter content on Hardgrove Grindability Index (HGI) were carried out on some low-rank Turkish coals. Quantitative X-ray diffraction (XRD) analyses were carried out using an interactive data processing system (SIROQUANT(TM)) based on Rietveld interpretation methods. Selective leaching processes were used to determine the water and acid-soluble contents of coal samples. Among the coal seams tested, the HGI values of Elbistan coal samples presented a large range from 39 to 83, whereas Tufanbeyli coal samples ranged from 48 to 69. Treatment of the coal with water, ammonium acetate, and hydrochloric acid showed that a considerable part of the ash-forming inorganic matter occurs in water-soluble, acid-soluble, or ion-exchangeable form. Grindability tests on samples of varied water and acid-soluble content showed a significant effect of water and acid-soluble contents on HGI.

  8. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    OpenAIRE

    Ramzi Hannan Nurul Izzati Raihan; Shahidan Shahiron; Ali Noorwirdawati; Maarof Mohamad Zulkhairi

    2017-01-01

    The government is currently implementing policies to increase the usage of coal as fuel for electricity generation. At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond). However, millions of tons of coal ash (bottom ash) waste are collected in ponds near power plant stations. Since bottom ash has been classified as hazardous material th...

  9. Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets

    Directory of Open Access Journals (Sweden)

    C. A. Forero Nuñez

    2016-02-01

    Full Text Available The continuous increase of the world energy demand, the rise of fossil fuels costs, and the strong environmental policies around the globe are some of the reasons for the wood pellets industry increase. However, there are some other available biomass feedstocks capable of being densified for energy production. Among the various options, the use of mixed biomass pellets is becoming remarkable due to the wide variety of species, although more research is needed in order to enhance the mechanical properties of these pellets. This study aims to identify the effect of particle size on the mechanical properties of sawdust and coal pellets when cocoa pod husks are used as an additive. Cocoa pod husks have a similar composition to sawdust and less sulfur and nitrogen than coal. Thus, the use of this additive might decrease the environmental impact during coal pellets combustion. Results show an attractive potential of cocoa pod husks grinds for pellet production, an increase of the durability of coal pellets mixed with this raw material, and similar performance between cocoa pod husks and sawdust pellets. The compression ratio, the compressive and impact resistance varied linearly with the addition of cocoa pod husks.

  10. Interlaminar toughness of fusion bonded thermoplastic composites

    NARCIS (Netherlands)

    Sacchetti, Francisco R.

    2017-01-01

    Thermoplastic composites are of increasing interest to the aerospace industry. The melt-processability of the thermoplastic matrix allows for fast manufacturing and assembling techniques, such as thermoforming and fusion bonding, which are also highly suitable for process automation. Fusion bonding

  11. Residual Stresses in Thermoplastic Composites: A Review

    Directory of Open Access Journals (Sweden)

    M.M. Shokrieh

    2008-12-01

    Full Text Available Applications of thermoplastic composites have developed extensively. The thermoplastic composites in comparison with the thermoset composites have many advantages. Thermoplastic composites can be melted and remolded many times. The duration of manufacturing process of these composites is short, producing very tough material, and the welding ability and multiple recyclings are their further advantages. The lack of knowledge in this group of composites is the main obstacle in their development. In this review the research works in the field of residual stresses in thermoplastic composites is presented. First, a literature survey on the available research on residual stresses on thermoplastics and thermoplastic composites reinforced with short fibers is compiled. Moreover a review on the available research on residual stresses on thermoplastic composites reinforced with long fibers is presented as well. The effects of the residual stresses on these composites are discussed. Experimental techniques for the measurement of residual stresses in thermoplastic composites and the methods for reducing the existing residual stresses are studied.

  12. Coal-bed methane water: effects on soil properties and camelina productivity

    Science.gov (United States)

    Every year the production of coal-bed natural gas in the Powder River Basin results in the discharge of large amounts of coal-bed methane water (CBMW) in Wyoming; however, no sustainable disposal methods for CBMW are currently available. A greenhouse study was conducted to evaluate the potential to ...

  13. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2012-01-01

    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  14. An experimental study on the hazard assessment and mechanical properties of porous concrete utilizing coal bottom ash coarse aggregate in Korea.

    Science.gov (United States)

    Park, Seung Bum; Jang, Young Il; Lee, Jun; Lee, Byung Jae

    2009-07-15

    This study evaluates quality properties and toxicity of coal bottom ash coarse aggregate and analyzes mechanical properties of porous concrete depending on mixing rates of coal bottom ash. As a result, soundness and resistance to abrasion of coal bottom ash coarse aggregate were satisfied according to the standard of coarse aggregate for concrete. To satisfy the standard pertaining to chloride content, the coarse aggregates have to be washed more than twice. In regards to the result of leaching test for coal bottom ash coarse aggregate and porous concrete produced with these coarse aggregates, it was satisfied with the environment criteria. As the mixing rate of coal bottom ash increased, influence of void ratio and permeability coefficient was very little, but compressive and flexural strength decreased. When coal bottom ash was mixed over 40%, strength decreased sharply (compressive strength: by 11.7-27.1%, flexural strength: by maximum 26.4%). Also, as the mixing rate of coal bottom ash increased, it was confirmed that test specimens were destroyed by aggregate fracture more than binder fracture and interface fracture. To utilize coal bottom ash in large quantities, it is thought that an improvement method in regards to strength has to be discussed such as incorporation of reinforcing materials and improvement of aggregate hardness.

  15. Thermoplastic film prevents proppant flowback

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, P.D.; Weaver, J.D.; Parker, M.A.; King, D.G. [Halliburton Energy Services, Duncan, OK (United States)

    1996-02-05

    Thermoplastic film added to proppants is effective and economical for preventing proppant flowback after an hydraulic fracturing treatment. Most other methods, such as resin-coated proppant and fiber, for controlling proppant flowback have drawbacks that added to treatment costs by requiring long downtime, costly additives, or frequent equipment replacement. Thermoplastic film does not react chemically with fracturing fluids. After the proppant is placed in the fracture, the film strips intertwine with the proppant grains or at higher temperatures, the strips become adhesive and shrink forming consolidated clusters that hold open the newly created fractures and prevent proppant from flowing back. The low cost of the film means that the strips can be used throughout the fracturing job or in selected stages. The strips are compatible with fracturing fluid chemistry, including breakers and crosslinkers, and can be used in wells with a wide range of bottom hole temperatures. The end result is a well that can be brought back on-line in a short time with little proppant flowback. This paper reviews the cost benefits and performance of these proppants.

  16. Long-term Effects of Rock Type on Appalachian Coal Mine Soil Properties.

    Science.gov (United States)

    Nash, Whitney L; Daniels, W Lee; Haering, Kathryn C; Burger, James A; Zipper, Carl E

    2016-09-01

    Rock-derived overburden material is used as a topsoil substitute for reclamation of Appalachian coal mines. We evaluated five mixtures ( = 4 each) of sandstone (SS) and siltstone (SiS) overburden as topsoil substitutes for 25+ years to quantify changes in mine soil properties. The study area was planted only to tall fescue [ (Schreb.)], but over 50 herbaceous species invaded over time. Standing biomass was highest in early years (5.2-9.3 Mg ha in 1983) and was strongly affected by rock type (SS > SiS), declined significantly by 1989 (1.5-2.4 Mg ha), and then increased again (2×) by 2008. However, there was no long-term rock type effect on standing biomass. Rock fragments and texture differed after 26 yr, with fewer rock fragments in the SS-dominated mixtures (53 vs. 77% in SiS) and lower sand and higher clay in the SiS-dominated mixtures. Soil pH initially ranged from 5.45 (SS) to 7.45 (SiS), dropped for several years, increased in all SiS mixes, and then slowly declined again to 5.65 (SS) to 6.46 (SiS) over the final 15 yr. Total N, organic matter, and cation exchange capacity increased with time, and extractable P decreased. Chemical weathering was most apparent initially, but physical weathering of rock fragments and changes in texture continued throughout the study period. Influences of original rock mixtures remained apparent after 25+ yr in both physical and chemical properties of these mine soils, which remained much coarser than local native soils but were higher in pH, exchangeable cations, and extractable P. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Coal data base - thesaurus 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The thesaurus contains the vocabulary used to index the Coal Data Base maintained by IEA Coal Research Technical Information Service. The Data Base contains indexed and abstracted references to publicly-available literature covering all aspects of the coal industry. The subject areas covered include: economics and management, reserves and exploration, mining, preparation, transport and handling, coal properties and constitution, processing and conversion, combustion, waste management, environ mental aspects, coal products, and health and safety. The indexing terms are used in the preparation of the annual subject index to Coal Abstracts and should be useful in searching other data bases for material relevant to the coal industry. (Available from IEA Coal Research)

  18. Effect of fibre treatments on tensile properties of ethylene vinyl acetate/natural rubber/mengkuang leaf fibre (EVA/NR/MLF) thermoplastic elastomer composites

    Science.gov (United States)

    Hashim, Faiezah; Ismail, Hanafi; Rusli, Arjulizan

    2017-07-01

    Nowadays, a great attention has been dedicated to natural fibers as reinforcement for polymer composites. Natural fibers, compared to glass fibers, exhibit better mechanical properties, such as stiffness, impact strength, flexibility and modulus. However, certain drawbacks, such as the incompatibility between fibers and polymer matrices, the tendency to form aggregates during processing and the poor resistance to moisture, reduce the use of these natural fibers as reinforcements in polymers. Several treatments and modifications are being used to improve the adhesion between fibre and matrix. In this work, the effect of bleaching treatments using hydrogen peroxide in the Mengkuang leaf fibre (MLF) was evaluated on tensile properties of Ethylene Vinyl Acetate (EVA)/Natural Rubber (NR)/MLF composites. Treated MLF were mixed with the EVA/NR blend in Haake internal mixer at 120 °C and rotor speed of 50 rpm for 10 minutes. Fibre morphology and the fibre/matrix interface ware further characterized by scanning electron microscopy (SEM). The tensile strength was increased by about 8% as compared to the composites with untreated fibers. The increased adhesion between fiber and matrix was also observed by SEM. Thus, EVA/NR/MLF composites reinforced with the treated fibres exhibited better tensile properties than untreated EVA/NR/MLF composites.

  19. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    National Research Council Canada - National Science Library

    Nurul Izzati Raihan Ramzi Hannan; Shahiron Shahidan; Noorwirdawati Ali; Mohamad Zulkhairi Maarof

    2017-01-01

    .... At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond...

  20. Evaluation of Effectiveness of Lignosulfonate Application for Organic Coal-Water Fuel Rheological Properties Improvement

    Directory of Open Access Journals (Sweden)

    Osipov Vitaliy

    2016-01-01

    Full Text Available The effect of lignosulfonate on viscosity of organic coal-water-fuel (OCWF was investigated. Brown coal from “Borodinskoe” deposit, waste oil Motul 8100 X-Clean 5W-30-C3, distilled water and powdered lignosulfonate was used as raw materials for slurry preparation. OCWF viscosity were measured using a rotational viscometer BROOKFIELD DV-II + Pro EXTRA. Optimum lignosulfonate concentration was obtained (1.3-1.4%.

  1. Reconstruction of 3D Micro Pore Structure of Coal and Simulation of Its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Guang-zhe Deng

    2017-01-01

    Full Text Available This article takes the low permeability coal seam in the coalfield of South Judger Basin in Xinjiang, as a research object. The pore structure characteristics of coal rock mass in low permeability coal seam were analyzed quantitatively using scanning electron microscopy (SEM through the methods of statistics and digital image analysis. Based on the pore structure parameters and the distribution function of the coal rock mass, a three-dimensional porous cylinder model with different porosity was reconstructed by FLAC3D. The numerical simulation study of reconstructed pore model shows that (1 the porosity and the compressive strength have obvious nonlinear relation and satisfy the negative exponential relation; (2 the porosity significantly affects the stress distribution; with the increase of micro porosity, the stress distribution becomes nonuniform; (3 the compressive failures of different models are mainly shear failures, and the shape of fracture section is related to porosity; (4 the variation of seepage coefficient of the pore reconstruction model is consistent with the development of micro cracks. The micro mechanism of the deformation and failure of coal and the interaction of multiphase flow with porosity are revealed, which provides a theoretical reference for the clean development of the low permeability coal seam.

  2. Potential of water-washing of rape straw on thermal properties and interactions during co-combustion with bituminous coal.

    Science.gov (United States)

    Ma, Qiulin; Han, Lujia; Huang, Guangqun

    2017-06-01

    The aim of this work was to study the thermal properties and interactions during co-combustion of rape straw (RS) before and after water-washing with bituminous coal. A series of experiments was conducted to investigate the properties and interactions during co-combustion of RS with bituminous coal (at 10, 20, 40 and 60% RS). The feasibility and potential of water-washing as an RS pre-treatment was also explored. Reactivity and the amount of heat released followed a quadratic trend, while changes to the degree of interactions between the fuels conformed to a cosine curve. Water-washing increased the ignition and burn-out temperatures and slightly decreased reactivity. Demineralization negatively affected the previously synergistic co-firing relationship, nevertheless, the amount of heat released increased by 10.28% and the average activation energy (146kJ/mol) was lower than that of the unwashed blend (186kJ/mol). Overall, water-washing of RS could prove a useful pre-treatment before co-combustion with bituminous coal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Improved adhesion for thermoplastic polymers using oxyfluorination

    Science.gov (United States)

    Achereiner, F.; Münstedt, H.; Zeiler, T.

    2008-03-01

    Industrial applications of thermoplastic polymers are often limited by their poor adhesion properties. In this work the effect of surface oxyfluorination on the adhesion properties was investigated for polyethylene (PE), polyoxymethylene (POM), polybutylene terephthalate (PBT) and polyamide 6 (PA6). The adhesive joint strength was quantified using lap-shear tests. These results were correlated with the changes in the chemical composition of the surface, determined by X-ray photoelectron spectroscopy (XPS), in the surface free energy, measured by the contact angle method, and in the topography, using white-light confocal microscopy. The adhesive strength is strongly improved for all four polymers, but the degree of this increase depends on the polymer type. The surface free energy shows a similar trend for all four polymers. A high surface free energy exceeding 50 mN/m was observed after oxy-fluorination, whereby the polar component was strongly predominant. Surface topography measurements show no significant increase of the surface roughness. So the effect of oxyfluorination results primarily in increased wettability and polarity, due to changes of the chemical composition of the surface. XPS measurements confirm the integration of fluorine and oxygen groups in the polymer chain, which correlates with the increased polarity.

  4. Residual stresses in rubber formed thermoplastic composites

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Lamers, E.A.D.; Akkerman, Remko; Brucato, V.

    2003-01-01

    The rubber pressing process is applied for the rapid production of thermoplastic composite products. However, rubber pressed products show geometrical distortions, such as warpage, due to processinduced residual stresses. An experimental study is performed to measure the curvature after rubber

  5. Local structure, paramagnetic properties, and porosity of natural coals: Spectroscopic studies

    Science.gov (United States)

    Konchits, A. A.; Shanina, B. D.; Valakh, M. Ya.; Yanchuk, I. B.; Yukhymchuk, V. O.; Alexeev, A. D.; Vasilenko, T. A.; Molchanov, A. N.; Kirillov, A. K.

    2012-08-01

    Using methods of the scanning electron microscopy, Raman scattering of light(RS), and electron paramagnetic resonance (EPR), consistent research of the local structure and magnetic features of different types of raw coal samples from Donetsk basin is carried out. It is established that the ratio of the main peak intensities of RS spectrum D and G is inversely related to the volatile substance amount Vdaf in the coal samples. The study of the kinetic behavior of the EPR line width in hydrogen, oxygen, and methane sorption-desorption processes in each coal sample helped determine that the diffusion coefficient value for hydrogen in coal at room temperature is equal to DН = (2 ÷ 7) × 10-5 cm2/s. It is demonstrated that the oxygen diffusion occurs with time according to two different exponential laws with diffusion coefficients DO,1 = 5 × 10-6 cm2/s and DO,2 = 5.5 × 10-7 cm2/s, respectively. The smaller coefficient corresponds to the diffusion caused by the hopping process. Finally, it is established that the anthracite is a unique type of coal which does not possess the ability "to conserve" the significant EPR line width after oxygen pumping out from the samples.

  6. Swelling of coal measure rocks. Effect of watre on mechanical properties of coal measure rocks (4th Report)

    Energy Technology Data Exchange (ETDEWEB)

    Ichinose, Masatomo; Uchino, Ken' ichi (Kyushu Univ., Faculty of Engineering, Fukuoka, Japan)

    1989-06-12

    Magnitude of free expansion and expansion pressure of rocks were measured for studying the effect of water absorption on their mechanical properties. Measurement of free expansion was conducted in three directions. Measurement of expansion pressure was conducted under complete suppression of expansion and under various load for extrapolation to obtain the pressure of complete suppression of expansion both values of which were compared. Apparatuses for both measurings were shown by figures. As the result of experiment, those were obtained that most of the samples showed sharp initial expansion and became slower with time, that two ways of measurement of expansion pressure gave almost similar results, that rocks with the larger expansion gave the larger decrease of mono-axial compression strength, that some rocks showed appreciable anisotropy of expansion which ment necessity of at least two directional measurement, and that correlation between magnitude of expansion and expansion pressure was not clearily recognized. 15 refs., 17 figs., 1 tab.

  7. Phase-equilibrium properties of coal-derived liquids. Technical progress report, January-June 1982

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.; Kidnay, A.J.

    1982-07-01

    On July 1, 1980, work was initiated on a program for experimental vapor liquid equilibrium measurements on coal-derived liquids. During the last six months, data for the binary system water-ethanol were obtained at 150/sup 0/C, 200/sup 0/C, and 250/sup 0/C. At 150/sup 0/C and 200/sup 0/C or low ethanol concentrations, there was substantial agreement between our data and data in the literature. At 250/sup 0/C or ethanol concentrations greater than 0.4 mole fraction, there is disagreement, which is probably due to uncertainties in the literature data. Work was begun on the m-cresol-quinoline binary system, which is a system that should be of significance in coal-derived liquid studies. Work is continuing on characterizing coal-derived liquid boiling point fractions.

  8. Thermophysical properties of composite fuel based on T grade coal (Alardinskoe deposit) and timber industry wastes

    Science.gov (United States)

    Yankovsky, S. A.; Tolokolnikov, A. A.; Gubin, V. E.; Slyusarskiy, K. V.; Zenkov, A. V.

    2017-09-01

    Results of experimental studies of composite fuel thermal decomposition processes based on T grade coal (Alardinskoe deposit) and timber industry wastes (fine wood) are presented. C, H, N, S weight percentage of each component of composite fuel was determined experimentally. It has been established that with an increase in wood concentration up to 50% in composite fuel, its energy characteristics decrease by less than 3.6%, while the yield of fly ash is 39.7%. An effective composite fuel composition has been defined as 50%/50%. Results of performed experimental studies suggest that it is possible to use composite fuels based on coal and wood at thermal power plants.

  9. Thermoplastic Polyurethanes with Isosorbide Chain Extender

    Energy Technology Data Exchange (ETDEWEB)

    Javni, Ivan; Bilic, Olivera; Bilic, Nikola; Petrovic, Zoran; Eastwood, Eric; Zhang, Fan; Ilavsky, Jan

    2015-12-15

    Isosorbide, a renewable diol derived from starch, was used alone or in combination with butane diol (BD) as the chain extender in two series of thermoplastic polyurethanes (TPU) with 50 and 70% polytetramethylene ether glycol (PTMEG) soft segment concentration (SSC), respectively. In the synthesized TPUs, the hard segment composition was systematically varied in both series following BD/isosorbide molar ratios of 100 : 0; 75 : 25; 50 : 50; 25 : 75, and 0 : 100 to examine in detail the effect of chain extenders on properties of segmented polyurethane elastomers with different morphologies. We found that polyurethanes with 50% SSC were hard elastomers with Shore D hardness of around 50, which is consistent with assumed co-continuous morphology. Polymers with 70% SSC displayed lower Shore A hardness of 74–79 (Shore D around 25) as a result of globular hard domains dispersed in the soft matrix. Insertion of isosorbide increased rigidity, melting point and glass transition temperature of hard segments and tensile strength of elastomers with 50% SSC. These effects were weaker or non-existent in 70% SSC series due to the short hard segments and low content of isosorbide. We also found that the thermal stability was lowered by increasing isosorbide content in both series.

  10. A Comprehensive Review on the Properties of Coal Bottom Ash in Concrete as Sound Absorption Material

    Directory of Open Access Journals (Sweden)

    Ramzi Hannan Nurul Izzati Raihan

    2017-01-01

    Full Text Available The government is currently implementing policies to increase the usage of coal as fuel for electricity generation. At the same time, the dependency on gas will be reduced. In addition, coal power plants in Malaysia produce large amounts of industrial waste such as bottom ash which is collected in impoundment ponds (ash pond. However, millions of tons of coal ash (bottom ash waste are collected in ponds near power plant stations. Since bottom ash has been classified as hazardous material that threatens the health and safety of human life, an innovative and sustainable solution has been introduced to reuse or recycle industrial waste such as coal bottom ash in concrete mixtures to create a greener and more sustainable world. Bottom ash has the potential to be used as concrete material to replace fine aggregates, coarse aggregates or both. Hence, this paper provides an overview of previous research which used bottom ash as fine aggregate replacement in conventional concrete. The workability, compressive strength, flexural strength, and sound absorption of bottom ash in concrete are reviewed.

  11. Phase equilibrium properties of coal derived liquids. Technical progress report, July-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.; Kidnay, A.J.

    1982-01-01

    The objective of the present study is to measure equilibrium K values of coal derived liquids and model compounds representative of coal liquids, and to use the results in the development of engineering correlations. The program is divided into three major areas: (1) Design, construction, and evaluation of an equilibrium flash vaporization system for temperatures between 70 and 700/sup 0/F, at pressures up to 2000 psia. (2) Measurements on samples of both coal derived liquids and mixtures of model compounds. (3) Preparation of engineering correlations for the measured K values and vapor liquid equilibria. On July 1, 1980, work was initiated on a program for experimental vapor liquid equilibrium measurements on coal derived liquids. During the last six months calibration of the pressure and temperature measuring equipment was completed. The system was tested for a single component system by reproducing the vapor pressure curve for pure water. Work was started on the water-ethanol binary system and one data point was obtained. These components were selected because reliable data for these components are available for comparison.

  12. Studies of coal slurries property; Slurry no seijo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, M.; Aihara, Y.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Sakaki, T.; Shibata, M.; Hirosue, H. [Kyushu National Industrial Research Institute, Saga (Japan)

    1996-10-28

    It was previously found that the increase of slurry temperature provides a significant effect of slurry viscosity reduction for the coal slurry with high concentration of 50 wt%. To investigate the detailed influence of slurry temperature for the coal slurry with concentration of 50 wt%, influence of temperature on the successive change of apparent viscosity was observed at the constant shear rate. When the concentration of coal was increased from 45 wt% to 50 wt%, viscosity of the slurry was rapidly increased. When heated above 70{degree}C, the apparent viscosity decreased during heating to the given temperature, but it increased successively after reaching to the given temperature. The apparent viscosity showed higher value than that of the initial viscosity. The coal slurry with concentration of 50 wt% showed the fluidity of Newtonian fluid at the lower shear rate region, but showed the fluidity of pseudo-plastic fluid at the higher shear rate region. The slurry having high apparent viscosity by the successive change showed higher apparent viscosity with increasing the higher even by changing the shear rate. 1 ref., 4 figs.

  13. Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic

    Science.gov (United States)

    Bettini, Paolo; Alitta, Gianluca; Sala, Giuseppe; Di Landro, Luca

    2017-02-01

    A simple technique for the production of continuous fiber reinforced thermoplastic by fused deposition modeling, which involves a common 3D printer with quite limited modifications, is presented. An adequate setting of processing parameters and deposition path allows to obtain components with well-enhanced mechanical characteristics compared to conventional 3D printed items. The most relevant problems related to the simultaneous feeding of fibers and polymer are discussed. The properties of obtained aramid fiber reinforced polylactic acid (PLA) in terms of impregnation quality and of mechanical response are measured.

  14. Sustainable green composites of thermoplastic starch and cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2014-04-01

    Full Text Available Green composites have gained renewed interest as environmental friendly materials and as biodegradable renewable resources for a sustainable development. This review provides an overview of recent advances in green composites based on thermoplastic starch (TPS and cellulose fibers. It includes information about compositions, preparations, and properties of starch, cellulose fibers, TPS, and green composites based on TPS and cellulose fibers. Introduction and production of these recyclable composites into the material market would be important for environmental sustainability as their use can decrease the volume of petroleum derived plastic waste dumps. Green composites are comparable cheap and abundant, but further research and development is needed for a broader utilization.

  15. Final Report: Interphase Analysis and Control in Fiber Reinforced Thermoplastic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Jon J. Kellar; William M. Cross; Lidvin Kjerengtroen

    2009-03-14

    This research program builds upon a multi-disciplinary effort in interphase analysis and control in thermoplastic matrix polymer matrix composites (PMC). The research investigates model systems deemed of interest by members of the Automotive Composites Consortium (ACC) as well as samples at the forefront of PMC process development (DRIFT and P4 technologies). Finally, the research investigates, based upon the fundamental understanding of the interphases created during the fabrication of thermoplastic PMCs, the role the interphase play in key bulk properties of interest to the automotive industry.

  16. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    Science.gov (United States)

    Kühr, C.; Spörrer, A.; Altstädt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  17. Improving soil enzyme activities and related quality properties of reclaimed soil by applying weathered coal in opencast-mining areas of the Chinese loess plateau

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [College of Environment and Resources, Shanxi University, Taiyuan (China); CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai (China); Shao, Hongbo [CAS/Shandong Provincial Key Laboratory of Coastal Environmental Process, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai (China); Institute for Life Sciences, Qingdao University of Science and Technology (QUST), Qingdao (China); Li, Weixiang; Bi, Rutian [Shanxi Agricultural University, Taigu (China); Bai, Zhongke [Department of Land Science Technology, University of Geosciences, Beijing (China)

    2012-03-15

    There are many problems for the reclaimed soil in opencast-mining areas of the Loess Plateau of China such as poor soil structure and extreme poverty in soil nutrients and so on. For the sake of finding a better way to improve soil quality, the current study was to apply the weathered coal for repairing soil media and investigate the physicochemical properties of the reclaimed soil and the changes in enzyme activities after planting Robinia pseucdoacacia. The results showed that the application of the weathered coal significantly improved the quality of soil aggregates, increased the content of water stable aggregates, and the organic matter, humus, and the cation exchange capacity of topsoil were significantly improved, but it did not have a significant effect on soil pH. Planting R. pseucdoacacia significantly enhanced the activities of soil catalase, urease, and invertase, but the application of the weathered coal inhibited the activity of catalase. Although the application of appropriate weathered coal was able to significantly increase urease activity, the activities of catalase, urease, or invertase had a close link with the soil profile levels and time. This study suggests that applying weathered coals could improve the physicochemical properties and soil enzyme activities of the reclaimed soil in opencast-mining areas of the Loess Plateau of China and the optimum applied amount of the weathered coal for reclaimed soil remediation is about 27 000 kg hm{sup -2}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. High-temperature thermoplastic strengthening of steels St3sp and 09G2S

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, A.G.; Sinel`nikova, M.Yu.; Kozhevnikov, I.V. [N.E. Bauman Moscow State Technical Univ. (Russian Federation)] [and others

    1992-01-01

    One of the promising trends of improving the mechanical properties of rolled metal is its thermoplastic treatment (TPT) at high (HTPT) and low (LTPT) temperatures. The method of TPT suggested by the All-Union Research Institute of Metallurgical Machinery Construction is a technological modification of the thermal-strain methods of strengthening steels and alloys. 8 refs., 3 tabs.

  19. Creep damage index as a sensitive indicator of damage accumulation in thermoplastic laminates

    Czech Academy of Sciences Publication Activity Database

    Minster, Jiří; Šperl, Martin; Šepitka, J.

    2018-01-01

    Roč. 37, č. 3 (2018), s. 147-154 ISSN 0731-6844 Institutional support: RVO:68378297 Keywords : damage accumulation * thermoplastic laminate * cyclic tensile loading * time-dependent properties * microindentation Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 1.086, year: 2016 http://journals.sagepub.com/doi/pdf/10.1177/0731684417735184

  20. Properties, origin and nomenclature of rodlets of the inertinite maceral group in coals of the central Appalachian basin, U.S.A.

    Science.gov (United States)

    Lyons, P.C.; Finkelman, R.B.; Thompson, C.L.; Brown, F.W.; Hatcher, P.G.

    1982-01-01

    Resin rodlets, sclerenchyma strands and woody splinters, which are collectively called rodlets, were studied by chemical, optical petrographic, and scanning-electron microscopic (SEM) techniques. A study was made of such rodlets from the bituminous coal beds of the central Appalachian basin (Pennsylvanian; Upper Carboniferous) of the United States. Comparisons were made with rodlets from coal beds of the Illinois basin, the Southern Anthracite Field of Pennsylvania, the St. Rose coal field of Nova Scotia, and European and other coal fields. In order to determine their physical and chemical properties, a detailed study was made of the rodlets from the Pomeroy coal bed (high volatile A bituminous coal; Monongahela Formation; Upper Pennsylvanian) of Kanawha County, West Virginia. The origin of the rodlets was determined by a comparative analysis of a medullosan (seed fern) stem from the Herrin (No. 6) coal bed (high volatile C bituminous coal; Carbondale Formation) from Washington County, Illinois. Rodlets are commonly concentrated in fusain or carbominerite layers or lenses in bituminous coal beds of the central Appalachian basin. Most of the rodlets examined in our study were probably derived from medullosan seed ferns. The three types of rodlets are distinguished on the basis of cellularity, morphology and fracture. The resin rodlets studied by us are noncellular and appear to be similar in properties and origin to those found in coal beds of the Middle and Upper Pennsylvanian of the Illinois basin. The resin rodlets extracted from the Pomeroy coal bed exhibit high relief and high reflectance when polished and viewed in reflected light; they are opaque in transmitted light. In cross section, the resin rodlets are oval to round and have diameters ranging from 60 to 450 ??m. Many are solid, but some have vesicles, canals or cavities, which are commonly filled with clay, probably kaolinite. Typically, they have distinct fracture patterns ("kerfs") in longitudinal and

  1. Modelling of the viscoelastic behaviour of steel reinforced thermoplastic pipes

    NARCIS (Netherlands)

    Kruijer, M.P.; Warnet, Laurent; Akkerman, Remko

    2006-01-01

    This paper describes the analysis of the time dependent behaviour of a steel reinforced thermoplastic pipe. This new class of composite pipes is constructed of a HDPE (high-density polyethylene) liner pipe, which is over wrapped with two layers of thermoplastic tape. The thermoplastic tapes are

  2. Effects of coal slag corrosion on the mechanical properties of sintered {alpha}-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Hannel, S.E. [Ecole Centrale, Lyon (France); Breder, K.; Joslin, D.L. [Oak Ridge National Lab., TN (United States)

    1997-03-01

    Tubes of sintered SiC were exposed for 500 h in a laboratory furnace to three different coal slags at three temperatures. No corrosive attack or strength reduction was observed after exposure at 1090{degrees}C. At 1260{degrees}C the least viscous slag caused formation of corrosion pits and loss of strength. At 1430{degrees}C formation of iron silicides at the interface between the slag and the base material caused severe loss of strength for slags with the highest and the lowest viscosity, while the specimens exposed to the slag with medium viscosity and medium iron content survived quite well. The results show that mechanical strength can be retained for certain coal slag - temperature combinations.

  3. Preparation and Cation Exchange Properties of Zeolitic Adsorbents Using Fused Coal Fly Ash and Seawater

    Science.gov (United States)

    Hirai, Takashi; Wajima, Takaaki; Yoshizuka, Kazuharu

    For the development of functional material using coal fly ash discharged from thermal power plants, we have prepared zeolitic adsorbents derived from alkaline fused coal fly ash in several aqueous saline media to obtain the optimized preparation condition. The NH4+ exchange capacity of the product prepared at 80°C for 12 hours in diluted seawater using the precursor fused at 500°C was 4.6 mmol⁄g which is equivalent that of product prepared in deionized water. Zeolite-X and zeolite-A were produced in all aqueous media, in addition hydroxysodalite was produced over 12 hours. It was suggested that zeolite-A transform into hydroxysodalite in the products. The zeolitic adsorbents having high ion exchange capacity could be prepared in twice diluted seawater at 6-12 hours in 80°C using a precursor fused at 500°C.

  4. Determination of baghouse performance from coal and ash properties: part II

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Snyder, T.R.; Chang, R.L.

    1989-03-01

    Baghouse performance at utility coal-fired power plants is determined by baghouse design, operating procedures, and the characteristics of the ash that is collected as a dustcake on the fabric filter. The Electric Power Research Institute has conducted laboratory research to identify the fundamental variables that influence baghouse performance. A database was assembled including measured characteristics of coal and dustcake ash, and data describing operating parameters and performance of full-scale and pilot-scale baghouses. Predictions of performance can be based on physical characteristics of the ash to be filtered (discussed in Part I of this article), as well as chemical characterizations of the ash, or empirical correlations with the alkali content of the source coal. The effects of design and operational variables can be included in these predictions. Baghouse performance can be optimized by exercising proper operating practices and by selecting a filtering fabric and cleaning method matched to the cohesivity of the ash to be collected. 13 refs., 13 figs., 2 tabs.

  5. Chem I Supplement: The Geochemistry of Coal: I. The Classification and Origin of Coal.

    Science.gov (United States)

    Schobert, Harold H.

    1989-01-01

    Discusses the composition and properties of various types of coal. Follows the origin of coal and amounts available in the ground. Explores the anaerobic decay needed to produce coal. Touches upon the greenhouse effect. (MVL)

  6. Determining the hydraulic and fracture properties of the Coal Seam Gas well by numerical modelling and GLUE analysis

    Science.gov (United States)

    Askarimarnani, Sara; Willgoose, Garry; Fityus, Stephen

    2017-04-01

    Coal seam gas (CSG) is a form of natural gas that occurs in some coal seams. Coal seams have natural fractures with dual-porosity systems and low permeability. In the CSG industry, hydraulic fracturing is applied to increase the permeability and extract the gas more efficiently from the coal seam. The industry claims that it can design fracking patterns. Whether this is true or not, the public (and regulators) requires assurance that once a well has been fracked that the fracking has occurred according to plan and that the fracked well is safe. Thus defensible post-fracking testing methodologies for gas generating wells are required. In 2009 a fracked well HB02, owned by AGL, near Broke, NSW, Australia was subjected to "traditional" water pump-testing as part of this assurance process. Interpretation with well Type Curves and simple single phase (i.e. only water, no gas) highlighted deficiencies in traditional water well approaches with a systemic deviation from the qualitative characteristic of well drawdown curves (e.g. concavity versus convexity of drawdown with time). Accordingly a multiphase (i.e. water and methane) model of the well was developed and compared with the observed data. This paper will discuss the results of this multiphase testing using the TOUGH2 model and its EOS7C constitutive model. A key objective was to test a methodology, based on GLUE monte-carlo calibration technique, to calibrate the characteristics of the frack using the well test drawdown curve. GLUE involves a sensitivity analysis of how changes in the fracture properties change the well hydraulics through and analysis of the drawdown curve and changes in the cone of depression. This was undertaken by changing the native coal, fracture, and gas parameters to see how changing those parameters changed the match between simulations and the observed well drawdown. Results from the GLUE analysis show how much information is contained in the well drawdown curve for estimating field scale

  7. The tensile strength test of thermoplastic materials based on poly(butylene terephtalate

    Directory of Open Access Journals (Sweden)

    Rzepecka Anna

    2017-01-01

    Full Text Available Thermoplastic composites go toward making an increasingly greater percentage of all manufacturing polymer composites. They have a lot of beneficial properties and their manufacturing using injecting and extrusion methods is a very easy and cheap process. Their properties significantly overtake the properties of traditional materials and it is the reason for their use. Scientists are continuously carrying out research to find new applications of composites materials in new industries, not only in the automotive or aircraft industry. When thermoplastic composites are manufactured a very important factor is the appropriate accommodation of tensile strength to their predestination. Scientists need to know the behaviour of these materials during the impact of different forces, and the factors of working in normal conditions too. The main aim of this article was macroscopic and microscopic analysis of the structure of thermoplastic composites after static tensile strength test. Materials which were analysed were thermoplastic materials which have poly(butylene terephthalate – PBT matrix reinforced with different content glass fibres – from 10% for 30%. In addition, research showed the necessary force to receive fracture and set their distinguishing characteristic down.

  8. The effect of cocoa (Theobroma cacao L on the basic color stability of thermoplastic nylon resin dentures

    Directory of Open Access Journals (Sweden)

    Amiyatun Naini

    2011-11-01

    Full Text Available Nylon thermoplastic resin is material of choice for the making of flexible. This denture do not use wire retention, but has the physical properties of water absorption. In the oral cavity, it will always be in contact with food and beverages consumed. One of the foods that are consumed by the public is chocolate. This study aimed to determine the effect of cocoa (Theobroma cacao L on color stability of the thermoplastic nylon denture base. The study sample was thermoplastic nylon (valplast with a size of 10x10x2 mm soaked in the chocolate solution for 7 and 14 days. As the control, the sample soaked with distilled water. The color testing stability used was densitometer. There were significant differences between the control group (distilled water and the chocolate solution. This was due to dissolved components/tannin having a capillary flow diffusion into thermoplastic nylons that causing discoloration. The conclusion of this study, there was the effect of cocoa (Theobroma cacao L against the color stability of the nylon thermoplastic denture base. The longer time of immersion of nylon thermoplastic the greater the change in color.

  9. The analysis of thermoplastic characteristics of special polymer sulfur composite

    Science.gov (United States)

    Książek, Mariusz

    2017-01-01

    Specific chemical environments step out in the industry objects. Portland cement composites (concrete and mortar) were impregnated by using the special polymerized sulfur and technical soot as a filler (polymer sulfur composite). Sulfur and technical soot was applied as the industrial waste. Portland cement composites were made of the same aggregate, cement and water. The process of special polymer sulfur composite applied as the industrial waste is a thermal treatment process in the temperature of about 150-155°C. The result of such treatment is special polymer sulfur composite in a liquid state. This paper presents the plastic constants and coefficients of thermal expansion of special polymer sulfur composites, with isotropic porous matrix, reinforced by disoriented ellipsoidal inclusions with orthotropic symmetry of the thermoplastic properties. The investigations are based on the stochastic differential equations of solid mechanics. A model and algorithm for calculating the effective characteristics of special polymer sulfur composites are suggested. The effective thermoplastic characteristics of special polymer sulfur composites, with disoriented ellipsoidal inclusions, are calculated in two stages: First, the properties of materials with oriented inclusions are determined, and then effective constants of a composite with disoriented inclusions are determined on the basis of the Voigt or Rice scheme. A brief summary of new products related to special polymer sulfur composites is given as follows: Impregnation, repair, overlays and precast polymer concrete will be presented. Special polymer sulfur as polymer coating impregnation, which has received little attention in recent years, currently has some very interesting applications.

  10. Changes in optical properties, chemistry, and micropore and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Schimmelmann, A.

    2009-01-01

    Changes in high-volatile bituminous coal (Pennsylvanian) near contacts with two volcanic intrusions in Illinois were investigated with respect to optical properties, coal chemistry, and coal pore structure. Vitrinite reflectance (Ro) increases from 0.62% to 5.03% within a distance of 5.5??m from the larger dike, and from 0.63% to 3.71% within 3.3??m from the small dike. Elemental chemistry of the coal shows distinct reductions in hydrogen and nitrogen content close to the intrusions. No trend was observed for total sulfur content, but decreases in sulfate content towards the dikes indicate thermochemical sulfate reduction (TSR). Contact-metamorphism has a dramatic effect on coal porosity, and microporosity in particular. Around the large dike, the micropore volume, after a slight initial increase, progressively decreases from 0.0417??cm3/g in coal situated 4.7??m from the intrusive contact to 0.0126??cm3/g at the contact. Strongly decreasing mesopore and micropore volumes in the altered zone, together with frequent cleat and fracture filling by calcite, indicate deteriorating conditions for both coalbed gas sorption and gas transmissibility. ?? 2008 Elsevier B.V. All rights reserved.

  11. Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification

    Directory of Open Access Journals (Sweden)

    Insoo Ye

    2015-04-01

    Full Text Available The behaviors of the slag layers formed by the deposition of molten ash onto the wall are important for the operation of entrained coal gasifiers. In this study, the effects of design/operation parameters and slag properties on the slag behaviors were assessed in a commercial coal gasifier using numerical modeling. The parameters influenced the slag behaviors through mechanisms interrelated to the heat transfer, temperature, velocity, and viscosity of the slag layers. The velocity profile of the liquid slag was less sensitive to the variations in the parameters. Therefore, the change in the liquid slag thickness was typically smaller than that of the solid slag. The gas temperature was the most influential factor, because of its dominant effect on the radiative heat transfer to the slag layer. The solid slag thickness exponentially increased with higher gas temperatures. The influence of the ash deposition rate was diminished by the high-velocity region developed near the liquid slag surface. The slag viscosity significantly influenced the solid slag thickness through the corresponding changes in the critical temperature and the temperature gradient (heat flux. For the bottom cone of the gasifier, steeper angles were favorable in reducing the thickness of the slag layers.

  12. Apparatus for thermoforming thermoplastic sheet materials

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, L.W.; Kovacs, F.; Vlahek, J.

    1985-02-19

    The present invention relates to an improved plug or tool for use in the production of shaped articles from thermoplastic sheet materials. An important feature of the present invention is that the tool or plug comprises a body portion which incorporates one or more inserts which possess a thermal conductivity different from the thermal conductivity of the body portion.

  13. Forming of UD fibre reinforced thermoplastics

    NARCIS (Netherlands)

    Haanappel, Sebastiaan

    2013-01-01

    Composite materials are a serious competitor for lightweight metals used in the aerospace and automotive industry. Uni-directional (UD) carbon fibre reinforced thermoplastics are favoured due to their high specific strength and stiffness, but also their good toughness, impact and chemical resistance

  14. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  15. Thermoplastic microcantilevers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Greve, Anders; Keller, Stephan Urs; Vig, Asger Laurberg

    2010-01-01

    Nanoimprint lithography has been exploited to fabricate micrometre-sized cantilevers in thermoplastic. This technique allows for very well defined microcantilevers and gives the possibility of embedding structures into the cantilever surface. The microcantilevers are fabricated in TOPAS and are up...

  16. Multiple mechanisms for the loss of coking properties caused by mild air oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Lee, D.; Schmidt, T.; Grint, A.

    1986-04-01

    Evidence is presented for the existence of at least three different mechanisms by which low temperature oxidation (weathering) destroys coal's coking properties. Lithium aluminium hydride reduction of Bruceton coal oxidized for 28 days restores the FSI to its initial value of 8 from a value of 3. After 220 days oxidation, reduction raises the FSI from 0.5 to 2. Clearly, two different processes are responsible for the FSI decrease. The pyridine solvent swelling change during this time is quite small, much smaller than observed by Liotta. Thus the oxidative increase in cross-link density observed by Liotta is a third mechanism of thermoplasticity loss. The initial FSI decrease, that reversible by reduction, is tentatively ascribed to oxidative loss of readily donatable hydrogen from the coal. The second mechanism remains uncharacterized. 14 references.

  17. Effects of coal and wheat husk additives on the physical, thermal and mechanical properties of clay bricks

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Iqbal, Y.; Muhammad, R.

    2017-07-01

    The use of by-products as additives in brick industry is gaining increased research attention due to their effective role in decreasing the total energy needs of industrial furnaces. In addition, these additives leave pores upon burning, causing a decrease in thermal conductivity and affect the mechanical properties of bricks as well. In the present study, various proportions of coal and wheat husk were used as additives in the initial ingredients of clay bricks. Microstructure, thermal conductivity, coefficient of thermal diffusivity, water absorption, shrinkage, compressive strength and bulk density of fired clay bricks with and without additives were investigated. Clay bricks containing 5–15wt.% additives were found to be within the permissible limits for most of the recommended standard specifications. (Author)

  18. Effects of coal and wheat husk additives on the physical, thermal and mechanical properties of clay bricks

    Directory of Open Access Journals (Sweden)

    Safeer Ahmad

    2017-05-01

    Full Text Available The use of by-products as additives in brick industry is gaining increased research attention due to their effective role in decreasing the total energy needs of industrial furnaces. In addition, these additives leave pores upon burning, causing a decrease in thermal conductivity and affect the mechanical properties of bricks as well. In the present study, various proportions of coal and wheat husk were used as additives in the initial ingredients of clay bricks. Microstructure, thermal conductivity, coefficient of thermal diffusivity, water absorption, shrinkage, compressive strength and bulk density of fired clay bricks with and without additives were investigated. Clay bricks containing 5–15 wt.% additives were found to be within the permissible limits for most of the recommended standard specifications.

  19. Coal geology

    National Research Council Canada - National Science Library

    Thomas, Larry

    2013-01-01

    This book provides a comprehensive overview of the field of coal geology. All aspects of coal geology are covered in one volume, bridgint the gap between the academic aspects and the practical role of geology in the coal industry...

  20. Extrusion foaming of protein-based thermoplastic and polyethylene blends

    Science.gov (United States)

    Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.

    2016-03-01

    Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.

  1. Sustainable Triblock Copolymers for Application as Thermoplastic Elastomers

    Science.gov (United States)

    Ding, Wenyue; Wang, Shu; Ganewatta, Mitra; Tang, Chuanbing; Robertson, Megan

    Thermoplastic elastomers (TPEs), combining the processing advantages of thermoplastics with the flexibility and extensibility of elastomeric materials, have found versatile applications in industry, including electronics, clothing, adhesives, and automotive components. ABA triblock copolymers, in which A represents glassy endblocks and B the rubbery midblock, are commercially available as TPEs, such as poly(styrene-b-butadiene-b-styrene) (SBS) or poly(styrene-b-isoprene-b-styrene) (SIS). However, the commercial TPEs are derived from fossil fuels. The finite availability of fossil fuels and the environmental impact of the petroleum manufacturing have led to the increased interest in the development of alternative polymeric materials from sustainable sources. Rosin acids are promising replacement for the petroleum source due to their abundance in conifers, rigid molecular structures, and ease of functionalization. In this study, we explored the utilization of a rosin acid derivative, poly(dehydroabietic ethyl methacrylate) (PDAEMA), as a sustainable alternative for the glassy domain. The triblock copolymer poly(dehydroabietic ethyl methacrylate-b-n-butyl acylate-b-dehydroabietic ethyl methacrylate) (DnBD) was synthesized and characterized. DnBD exhibited tunable morphological and thermal properties. Tensile testing revealed elastomeric behavior.

  2. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.; Ilias, S.

    1993-12-31

    Very little data is available on the thermodynamic properties of coal model compounds in liquid phase at high pressures. The authors present preliminary compilations of available data. It is anticipated that they will require vapor pressure and saturated liquid density data for coal model compounds in their high pressure liquid equation of state development. These data sets have also been compiled and are presented. They have at this time completed a review of techniques for high pressure density measurements. Some thought is being given to the possibility of building an apparatus to carry out density measurements for selected model compounds. Finally, they reproduce the Thomson et al equation and describe their preliminary procedure to test this equation with available high pressure thermodynamic data. They acknowledge the possibility that a number of modifications of the Thomson equation will be necessary before a reasonably accurate liquid state equation of state for coal model compound emerges.

  3. Mineral matter and ash in coal

    Energy Technology Data Exchange (ETDEWEB)

    Vorres, K.S. (ed.)

    1986-01-01

    The ACS Division of Fuel Chemistry was responsible for the symposium, held in Philadelphia in 1984, that gave rise to the 38 typescript papers in this volume. They are concerned with the chemistry of coal mineral matter, coal ash properties and their prediction, coal ash deposition in boilers, and catalysis by ash and mineral matter in coal utilization.

  4. Melting behavior of typical thermoplastic materials--an experimental and chemical kinetics study.

    Science.gov (United States)

    Wang, Nan; Tu, Ran; Ma, Xin; Xie, Qiyuan; Jiang, Xi

    2013-11-15

    A medium-scale melting experiment rig was designed and constructed in this study. A detailed experimental study was conducted on the melting behavior and the chemical kinetic characteristics of three typical thermoplastic materials, including polypropylene (PP), polyethylene (PE) and polystyrene (PS). It is observed that the thermal decomposition of the thermoplastic materials mainly consists of three stages: the initial heating stage, the melting-dominated stage and the gasification-dominated stage. Melting of the materials examined takes place within a certain temperature range. The melting temperature of PS is the lowest, moreover, it takes the shortest time to be completely liquefied. To quantitatively represent the chemical kinetics, an nth-order reaction model was employed to interpret the thermal decomposition behavior of the materials. The calculated reaction order is largely in accordance with the small-scale thermal gravimetric analysis (TGA). The small difference between the results and TGA data suggests that there are some limitations in the small-scale experiments in simulating the behavior of thermoplastic materials in a thermal hazard. Therefore, investigating the thermal physical and chemical properties of the thermoplastic materials and their thermal hazard prevention in medium or large-scale experiments is necessary for the fire safety considerations of polymer materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing.

    Science.gov (United States)

    Müller, Carmen M O; Laurindo, João Borges; Yamashita, Fabio

    2012-06-20

    The aim of this study was to produce thermoplastic starch (TPS) films and to enhance their properties by reinforcing them with hydrophilic and hydrophobic nanoclays. TPS films were prepared by extrusion and thermopressing, and their crystallinity, water vapor permeability (WVP), and mechanical properties were studied. The hydrophilic nanoclay lowered the material WVP due to the formation of an intercalated composite. The hydrophobic nanoclays increased the rigidity of the films but did not alter the tensile strength. The blending of nanoclays with thermoplastic starch modifies the mechanical properties and WVP, and these changes are strongly associated with the dispersion of nanoclay in the polymer matrix. The dispersion, in turn, depends on the compatibility of the matrix and the nanoclay in terms of the hygroscopicity and the concentration in which the nanoclay is used. The addition of nanoclays to starch-based films is a promising way to enhance them for industrial manufacture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Influence of natural weathering of two medium-volatile bituminous coals of similar rank on coke quality; Influencia de la alteracion meteorica de dos carbones coquizables con contenido medio de materia volatil en la calidad del coque producido

    Energy Technology Data Exchange (ETDEWEB)

    Casal, M.D.; Diez, M.A.; Alvarez, R.; Barriocanal, C.; Canga, C.S.; Pis, J.J. [Instituto Nacional del Carbon. Oviedo (Spain)

    1998-06-01

    The study of the weathering of the two bituminous coals stored at the INCAR stockyard and its influence on coke quality is presented. These coals of similar rank are present in industrial blends used by the Corporation Siderurgica Integral (CSI) for the production of blast-furnace coke. Of all the techniques used to determine the degree of weathering, via thermoplastic properties. Gieseler plastometry was found to be the most sensitive. Coking tests were carried out in the semi-industrial coking plant at INCAR. The effect of weathering on each coal series is completely different. Weathering produces a loss of maximum fluidity accompanied by a decrease in aliphatic hydrogen in both coals. However, the los rate is different in each case. Coke quality clearly decreases in one, while in the other improves at first but then gradually deteriorates. An improvement in coke quality due to weathering not only affects some high-volatile coals as it is well known but also medium-volatile coals. (Author) 16 refs.

  7. Biostimulators from coal

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, L.V.

    1984-04-01

    A report is presented on a meeting of the Bureau of the Scientific Council of the Ministry of Coal Industry of the USSR on chemistry of fossil fuels held on 21-22 November 1983 in Moscow. Papers delivered during the meeting are evaluated. Chemistry of black and brown coal from the USSR was analyzed. Chemical coal properties which are of particular significance for coal use as an agricultural fertilizer (biostimulator of plant growth) were investigated. Brown and black coal with the highest oxidation level used as a fuel by power plants could be used for production of fertilizers with a high content of humic acids. Tests carried out in the USSR in various climatic zones (in the North and in Central Asia) showed that biostimulators from coal improved plant growth, reduced ripening period, increased crops, improved physical properties of soils (prevented moisture losses). Utilizing selected wastes from coal processing for production of biostimulators was also discussed. Methods for coal preparation for biostimulant production (crushing, screening, chemical processing) were evaluated. Prospects of biostimulator use in land reclamation were discussed.

  8. Development of a self-consistent thermodynamic- and transport-property correlation framework for the coal conversion industry. Phase I. Semiannual report, September 1, 1980-February 28, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Starling, K.E.; Lee, L.L.; Kumar, K.H.

    1981-01-01

    During the first half year of this research program the following elements of research have been performed: (1) the development of an improved pure component data bank, including collection and processing of data which is 70% complete as to substance, (2) calculation of distillable coal fluid thermodynamic properties using a multiparameter corresponding states correlation, (3) application of the most general density-cubic equation of pure fluids and (4) initiation of research to extend the corresponding states correlation framework to polar fluids. Primary conclusions of the first phase of this research program are that the three parameter corresponding states correlation predicts lighter coal fluid properties to a reasonable level of accuracy, and that a cubic equation can predict pure fluid thermodynamic properties on par with non-cubic equations of state.

  9. Adsorption properties of zeolites synthesized from coal fly ash for Cu (II).

    Science.gov (United States)

    Song, Huiping; Cheng, Huaigang; Zhang, Zepeng; Cheng, Fangqin

    2014-09-01

    This study explored the hydrothermal synthesis of zeolites in a homogeneous reactor using coal fly ash (CFA) as a raw material via a two-step method at normal pressure. Fourier transform infrared spectroscopy and X-ray powder diffraction analysis showed that the synthetic products has the basic structural unit of microporous zeolite molecular sieves, and consiste of zeolite 4A and zeolite X. The ability of zeolites synthesized from CFAto adsorb Cu(ll) was studied. The optimal conditions for adsorption were as follows: pH 5 and dosage of modified CFA 4g l(-1). The isothermal adsorption of zeolites of Cu(ll) showed that the maximum adsorption quantity ranged from 69.44 (at 20 degrees C) to 140.85 mg g(-1) (at 50 degrees C). Adsorption kinetics analysis showed that chemical adsorption was the rate-controlling step. Apparent activation energy data, however, showed that the process of adsorption of Cu(II) had the features of physical adsorption. Thus, the adsorption process included both chemical and physical adsorption.

  10. Pressure generation beneath a new thermoplastic cast.

    Science.gov (United States)

    Mohler, L R; Pedowitz, R A; Byrne, T P; Gershuni, D H

    1996-01-01

    A new cast immobilizer that is heat-shrunk to conform to an injured extremity was examined. The purpose of these studies was to compare pressures beneath the thermoplastic cast with those beneath fiberglass casts on a laboratory model and on the forearms of human volunteers. Pressures measured beneath fiberglass casts on metal cylinders averaged 36 mm Hg. Thermoplastic casts on the smaller cylinder that allowed 42% shrinkage produced a mean pressure of 25 mm Hg; those placed on the larger cylinder that allowed 17% shrinkage produced a mean pressure of 39 mm Hg. Pressures measured on the forearms of healthy volunteers averaged 22 mm Hg beneath fiberglass casts and 31 mm Hg beneath the thermoplastic casts. These pressures were considerably less than pressures that have been shown to occlude the microcirculation of the skin. Acute compartment syndromes result from swelling within a limited space and remain a serious concern clinically when swelling is anticipated under any type of constraining cast. The results of these studies indicate that the new cast should not produce a greater risk of circulatory compromise to the limb than previously used fiberglass materials.

  11. Continuous welding of unidirectional fiber reinforced thermoplastic tape material

    Science.gov (United States)

    Schledjewski, Ralf

    2017-10-01

    Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.

  12. Investigation of Polyvinyl Chloride and Thermoplastic Polyurethane Waste Blend Miscibility

    Directory of Open Access Journals (Sweden)

    Agnė LAUKAITIENĖ

    2013-12-01

    Full Text Available In this study the miscibility of polyvinyl chloride (PVC and poly-e-caprolactone based thermoplastic polyurethanes (TPU waste blends were investigated by dilute solution viscometry. The miscibility criteria a, Db, DB, and D[h] were used to assess the degree of miscibility of polymers in tetrahydrofuran solution. Also, to assess the miscibility and microstructure of PVC/TPU blends obtained by solution casting have been characterized by X-ray diffraction. The tensile strength and deformability properties varying on the blend composition were determined. It was found that PVC and TPU are partially miscible, their blend is amorphous and show two-phase structure. TPU changes the mechanical behaviour of PVC the blends. Increase of TPU content causes PVC elongation at break increase and tensile strength decreases. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.3145

  13. Properties of geopolymer from circulating fluidized bed combustion coal bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    Topcu, Ilker Bekir, E-mail: ilkerbt@ogu.edu.tr [Eskisehir Osmangazi University, Civil Engineering Department, 26480 Eskisehir (Turkey); Toprak, Mehmet Ugur [Eskisehir Osmangazi University, Civil Engineering Department, 26480 Eskisehir (Turkey)

    2011-01-25

    Research highlights: {yields} Dry cured geopolymers exhibit a heterogeneous and porous gel matrix. {yields} The Si/Na atomic ratio of the main reaction product (N-A-S-H gel) is close to 1. {yields} Low Si/Na ratio (0.5) correspond to a more crystalline stage of the N-A-S-H gel. {yields} N-A-S-H gel has small pores which facilitate the escape of moisture when it is heated. {yields} N-A-S-H gel became more amorphous, attaining higher Si/Al ratio of 4.54 at 800 deg. C. - Abstract: Compressive strength, atomic ratios and microstructure of geopolymer mortars (GM) made from circulating fluidized bed combustion (CFBC) coal bottom ash (CBA) were investigated to observe the effect of air curing at ambient temperature (AC) at 20 deg. C and 90% RH, dry curing (DC) at 80 deg. C and 40% RH for 20 h. The 28-d compressive strength of GM exposed to AC (GM-AC) and DC (GM-DC) were 26.23 and 24.14 MPa, respectively. The Si/Na atomic ratio of the main reaction product (N-A-S-H gel) was close to 1. Geopolymer gel (apparently crystalline) having low Si/Na ratio (0.5) may correspond to a more advanced or developed stage of the aluminosilicate gel. It was observed that the geopolymerization was completed before the N-A-S-H gel formed when Si/Na ratio of GM is close to 2. The color of the GM changed from pink to grey and the structure became denser with almost no pores, when the temperature increased from 400 to 800 deg. C. The N-A-S-H gel became more amorphous due to the sintering reactions attaining Si/Al and Si/Na ratios of 4.54 and 0.98, respectively.

  14. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing

    Science.gov (United States)

    Villegas, Irene F.; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  15. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  16. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  17. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  18. Optical Characterization of Doped Thermoplastic and Thermosetting Polymer-Optical-Fibers

    Directory of Open Access Journals (Sweden)

    Igor Ayesta

    2017-03-01

    Full Text Available The emission properties of a graded-index thermoplastic polymer optical fiber and a step-index thermosetting one, both doped with rhodamine 6G, have been studied. The work includes a detailed analysis of the amplified spontaneous emission together with a study of the optical gains and losses of the fibers. The photostability of the emission of both types of fibers has also been investigated. Comparisons between the results of both doped polymer optical fibers are presented and discussed.

  19. Phase-equilibrium properties of coal-derived liquids. Technical progress report, January-July 1983. [70 to 700/sup 0/F; up to 2000 psia

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.; Kidnay, A.J.

    1983-07-01

    Thermodynamic property research is justly recognized as invaluable by process and design engineers in the petroleum, chemical, and allied industries. Thermodynamic data for pure fluids or complex mixtures are essential in the optimum design of both physical and chemical processing units. Coal-derived liquids are a new and vital class of industrial compounds for which there are limited thermodynamic data. Programs have been undertaken to measure volumetric properties and K values of light gas-model compound systems and to measure dew points, vapor pressures, and hydrogen solubilities in model compound and coal-derived liquid systems. The objective of the present study is to measure equilibrium K values of coal-derived liquids and model compounds representative of coal liquids, and to use the results in the development of engineering correlations. The program is divided into three major areas: design, construction, and evaluation of an equilibrium flash vaporization system for temperatures between 70 and 700/sup 0/F and pressures up to 2000 psia; measurements on samples of both coal-derived liquids and mixtures of model compounds; and preparation of engineering correlations for the measured K values and vapor liquid equilibria. Due to continued leaks of potentially harmful cresol and quinoline in the flash-vaporization cell it became necessary for us to shut down the equipment for reasons of safety. Efforts to seal the original cell over the large temperature cycles required proved ineffective. Thus, the major effort during the past six months was the design, construction, and development of a new equilibrium cell that would maintain the seal between the cell and the sight window over many temperature cycles. The final design which accomplishes this objective uses a custom-fabricated sapphire window with custom gold o-rings used for the seals. Due to the unanticipated equipment development, the data-collection effort has been delayed.

  20. The impact of flue gas cleaning technologies in coal-fired power plants on the CCN distribution and cloud properties in Germany

    Science.gov (United States)

    Bangert, M.; Vogel, B.; Junkermann, W.; Brachert, L.; Schaber, K.

    2013-05-01

    Gas-cleaning technologies used in modern coal-fired power plants cause an unintended nucleation of H2SO4 aerosol droplets during the cleaning process. As a result, high concentrations of ultra-fine aerosol droplets are emitted into the atmosphere. In this study, the impact of these emissions on the atmospheric aerosol distribution, on the cloud condensation nuclei number concentration, and consequently on cloud properties is investigated. Therefore, a sophisticated modeling framework is used combining regional simulations of the atmospheric aerosol distribution and its impact on cloud properties with detailed process simulations of the nucleation during the cleaning process inside the power plant. Furthermore, the simulated aerosol size distributions downwind of the coal-fired power plants are compared with airborne aerosol measurements performed inside the plumes.

  1. Management of coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.M. [IEA Coal Research, London (United Kingdom)

    1999-10-01

    Stockpile management is an important part of the coal handling process from mine to customer. Virtually all coal producers and consumers make use of stockpiles at their facilities, either to serve as a buffer between material delivery and processing or to enable coal blending to meet quality requirements. This report begins by examining why stockpiles are employed. The stacking and reclaiming of piles, and the reduction of noise arising from the handling equipment is then discussed, along with stockpile automation and management. Good sampling and analysis procedures are essential for coal quality management. Sampling systems, representative samples and on-line analysis are described. Stock auditing to reconcile the amount of coal in the stockpiles is also covered. Coals are susceptible to weathering and atmospheric oxidation during storage in open-air piles. Properties and processes affected by coal oxidation and weathering, including heating value losses, handleability, cleaning, combustion and coking are examined. Spontaneous combustion poses safety, environmental, economic and handling problems if it becomes established in stockpiles. Factors affecting spontaneous combustion are discussed with the emphasis on prevention, detection and control. Stockyard operators are under constant social and political pressures to improve the environmental acceptability of their operations. Thus the control, prevention, and monitoring of fugitive dust emissions, and the composition, collection and treatment of stockpile runoff are addressed. The prevention and control of flowslides is also covered. Experience has shown that with good stockpile design and management, most coals can be safely stored in an environmentally acceptable way. 187 refs., 41 figs., 8 tabs.

  2. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Serena Coiai

    2015-06-01

    Full Text Available Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix, but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  3. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    Science.gov (United States)

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Imprinting of confining sites for cell cultures on thermoplastic substrates

    Science.gov (United States)

    Cone, C. D.; Fleenor, E. N.

    1969-01-01

    Prevention of test cell migration beyond the field of observation involves confining cells or cultures in microlagoons made in either a layer of grease or a thermoplastic substrate. Thermoplastic films or dishes are easily imprinted with specifically designed patterns of microlagoons.

  5. Textile impregnation with thermoplastic resin - models and application

    NARCIS (Netherlands)

    Loendersloot, Richard; Grouve, Wouter Johannes Bernardus; Lamers, E.A.D.; Wijskamp, Sebastiaan; Kelly, P.A.; Bickerton, S.; Lescher, P.; Govignon, Q.

    2012-01-01

    One of the key issues of the development of cost-effective thermoplastic composites for the aerospace industry is the process quality control. A complete, void free impregnation of the textile reinforcement by the thermoplastic resin is an important measure of the quality of composites. The

  6. Non-contact inline monitoring of thermoplastic CFRP tape quality using air-coupled ultrasound

    Science.gov (United States)

    Essig, W.; Fey, P.; Meiler, S.; Kreutzbruck, M.

    2017-02-01

    Beginning with the aerospace industry, fiber reinforced plastics have spread towards many applications such as automotive, civil engineering as well as sports and leisure articles. Their superior strength and stiffness to mass ratio made them the number one material for achieving high performance. Especially continuous fiber reinforced plastics allow for the construction of structures which are custom tailored to their mechanical loads by adjusting the paths of the fibers to the loading direction. The two main constituents of CFRP are carbon fibers and matrix. Two possibilities for matrix material exist: thermosetting and thermoplastic matrix. While thermosetting matrix may yield better properties with respect to thermal loads, thermoplasticity opens a wide range of applications due to weldability, shapeability, and compatibility to e.g. injection molded thermoplastic materials. Thin (0.1 mm) thermoplastic continuous fiber CFRP tapes with a width of 100 mm were examined using air-coupled ultrasound. Transducers were arranged in reflection as well as transmission setup. By slanted incidence of the ultrasound on the tape surface, guided waves were excited in the material in fiber direction and perpendicular to the fiber direction. Artificial defects - fiber cuts, matrix cuts, circular holes, low velocity impacts from tool drop, and sharp bends - were produced. Experiments on a stationary tape showed good detectability of all artificial defects by guided waves. Also the effects of variation in material properties, fiber volume content and fiber matrix adhesion being the most relevant, on guided wave propagation were examined, to allow for quality assessment. Guided wave measurements were supported by destructive analysis. Also an apparatus containing one endless loop of CFRP tape was constructed and built to simulate inline testing of CFRP tapes, as it would be employed in a CFRP tape production environment or at a CFRP tape processing facility. The influences of tape

  7. Electronic structures and magnetic and optical properties of Co-Al alloys

    CERN Document Server

    Rhee, J Y; Kudryavtsev, Y V; Lee, Y P

    1999-01-01

    The electronic structures, the magnetic moments and the optical conductivity spectra of the Co sub 1 sub - sub x Al sub x (x=0.5, 0.4375, and 0.375) alloys were calculated using the tight-binding linearized-muffin-tin-orbital method. The supercell method was employed to calculate the properties of the alloys with the off-stoichiometric concentrations. The calculated magnetic moments were in reasonable agreement with the experimental results. The inclusion of corrections for both the real and the imaginary parts of the self-energy markedly improved the agreement between the experimental and calculated the optical conductivity spectra.

  8. Performance Modification of Asphalt Binders using Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    H. I. Al-Abdul Wahhab

    2004-12-01

    Full Text Available There is a need to improve the performance of asphalt binders to minimize stress cracking that occurs at low temperatures and plastic deformation at high temperatures. Importation of used asphalt-polymers from abroad, leads to an increase in the total construction cost as compared to the cost if the used polymers were of local origin. The main objective of this research was to modify locally produced asphalt. Ten polymers were identified as potential asphalt modifiers based on their physical properties and chemical composition. After preliminary laboratory evaluation for the melting point of these polymers, five polymers were selected for local asphalt modification. In the initial stage, required mixing time was decided based on the relation between shear loss modulus and mixing time .The optimum polymer content was selected based on Superpave binder performance grade specifications.The suitability of improvement was verified through the evaluation of permanent deformation and fatigue behavior of laboratory prepared asphalt concrete mixes. The results indicated that the rheological properties of the modified binders improved significantly with sufficient polymer content (3%. The aging properties of the modified binders were found to be dependent on the type of polymer.The fatigue life and resistance to permanent deformation were significantly improved due to enhanced binder rheological properties.  Thus, local asphalts can be modified using thermoplastic polymers.

  9. Modelling and simulation of the consolidation behavior during thermoplastic prepreg composites forming process

    Science.gov (United States)

    Xiong, H.; Hamila, N.; Boisse, P.

    2017-10-01

    Pre-impregnated thermoplastic composites have recently attached increasing interest in the automotive industry for their excellent mechanical properties and their rapid cycle manufacturing process, modelling and numerical simulations of forming processes for composites parts with complex geometry is necessary to predict and optimize manufacturing practices, especially for the consolidation effects. A viscoelastic relaxation model is proposed to characterize the consolidation behavior of thermoplastic prepregs based on compaction tests with a range of temperatures. The intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Within a hyperelastic framework, several simulation tests are launched by combining a new developed solid shell finite element and the consolidation models.

  10. Noncontact Microembossing Technology for Fabricating Thermoplastic Optical Polymer Microlens Array Sheets

    Directory of Open Access Journals (Sweden)

    Xuefeng Chang

    2014-01-01

    Full Text Available Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate, PS (polyStyrene, and PC (polycarbonate from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs.

  11. Mechanical responses of filled thermoplastic elastomers

    Science.gov (United States)

    Wang, M.; Shan, D. C.; Liao, Y.

    2017-12-01

    In this paper, several mechanical responses of thermoplastic polyurethane (TPU) filled with nano-scale attapulgite (AT) particles, including cyclic loading-unloading behavior, dynamic mechanical behavior and stress relaxation have been investigated. With the addition of AT, it is noticed that the strength, modulus and stress relaxation time of TPU increased significantly compared to that of unfilled materials. It is also observed that, whether filled or unfilled TPU, pronounced inelastic mechanical features such as Mullins effect, residual strain and hysteresis, occurred mainly during the first load loop, but became more notable with AT increase.

  12. Reactive Plasticizers for High Temperature Quinoxaline Thermoplastics

    Science.gov (United States)

    1976-06-01

    phenylene-diamine (III) in m-cresol. Compound III is the end-capping agent used in the synthesis of ATQ oligomers (Reference 7). 6 AFML-TR-76-28 Solid...mixing, the plasticizer and thermoplastic were dissolved in chloroform and either coprecipitated into methanol or cast into film by removal of the...and then 150 mg of platinum oxide catalyst was carefully added. The flask was shaken under a hydrogen pressure of 55 psi until no further pressure drop

  13. Thermoforming continuous fiber-reinforced thermoplastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiang.

    1990-01-01

    In this research the forming process was first decomposed into basic deformation elements with simple geometries, and models were then developed for these elements. A series-parallel model was developed for predicting the upper and lower bounds of composite shear modulus at forming temperature based on the fiber content, fiber distribution, and matrix shear modulus. A shear-flexure model was proposed to describe the initial load-deflection behavior of thermoplastic composites in bending. A ply buckling model was developed which included the contributions from both a surface tension term and a ply buckling term.

  14. Coal desulfurization

    Science.gov (United States)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  15. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  16. Characterization of carbon-fiber reinforced polyetherimide thermoplastic composites using mechanical and ultrasonic methods

    Science.gov (United States)

    ALHaidri, Mohannad

    Continuous fiber-reinforced thermoplastics (CFRT) have the potential for being a mass-produced material for high-performance applications. The primary challenge of using CFRT is achieving fiber wet-out due to the high viscosity of thermoplastics. This results in higher temperatures and pressures required for processing the composites. Co-mingling thermoplastic fibers with a reinforcing fiber, potentially, can enable better wetting by reducing the distance the matrix needs to flow. This could result in shorter cycle times and better consolidation at lower temperatures and pressures. In this study, a polyetherimide (PEI) fiber was comingled with carbon fibers (CF). The resultant fibers were woven into fabrics and processed through a compression-molding technique to form laminates. Control specimens were also fabricated using films of PEI layered between plies of woven carbon-fiber materials. The manufactured CFRT panels were evaluated using ultrasonic C-scans (scans in two spatial dimensions) and then characterized for mechanical properties. The specimens produced using the co-mingled fibers had the cycle time reduced significantly compared to the film CFRT, although the results from the mechanical property evaluations were mixed. The behaviors in the co-mingled laminates can be attributed to the resin- and void-content distribution and the fiber-bundle orientations in the cured composite.

  17. Green composites of thermoplastic corn starch and recycled paper cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2011-08-01

    Full Text Available Ecological concerns have resulted in a renewed interest in environmental-friendly composites issues for sustainabledevelopment as a biodegradable renewable resource. In this work we used cellulose fibers from recycled newspaper as reinforcementfor thermoplastic starch in order to improve its mechanical, thermal and water resistance properties. The compositeswere prepared from corn starch plasticized by glycerol (30% wt/wt of glycerol to starch as matrix that was reinforcedwith micro-cellulose fibers, obtained from used newspaper, with fiber content ranging from 0 to 8% (wt/wt of fibers to matrix.Physical properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetricanalysis, water absorption measurement and scanning electron microscopy. The results showed that higherfibers content raised the tensile strength and elastic modulus up to 175% and 292%, respectively, when compared to thenon-reinforced thermoplastic starch. The addition of the fibers improved the thermal resistance and decreased the waterabsorption up to 63%. Besides, scanning electron microscopy illustrated a good adhesion between matrix and fibers. Theseresults indicated that thermoplastic starch reinforced with recycled newspaper cellulose fibers could be fruitfully used ascommodity plastics being strong, cheap, abundant and recyclable.

  18. Phase equilibrium properties of coal-derived liquids. Technical progress report, July-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.; Kidnay, A.J.

    1981-01-01

    A wide variety of methods have been used to study the phase behavior of mixtures, including: Measuring the phase boundary of binary mixtures, observing property discontinuities from volumetric measurements, and thermal measurements of mixtures, measuring the composition of samples in batch systems, measuring the composition of samples from continuous remixing and separation in recirculating systems, gas-liquid chromatography, and measuring the composition of samples from a once-through flow system. A major difficulty associated with measuring phase behavior of complex mixtures is the need to characterize the vapor and liquid sample products. This generally requires the collection of considerable quantities of the liquid and vapor products. Of all the methods listed, the only method which can generate significant quantities of both liquid and vapor products is the once-through flow method. This method has been used previously in determining the K values for petroleum fractions. For these reasons, we have designed a flow equilibrium flash vaporization system similar to the ones previously used on petroleum liquids.

  19. Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Annabelle; Kurokawa, Naruki; Hillmyer, Marc A. (UMM)

    2017-05-03

    Thermoplastic elastomers (TPEs) composed of ABA block polymers exhibit a wide variety of properties and are easily processable as they contain physical, rather than chemical, cross-links. Poly(γ-methyl-ε-caprolactone) (PγMCL) is an amorphous polymer with a low entanglement molar mass (Me = 2.9 kg mol–1), making it a suitable choice for tough elastomers. Incorporating PγMCL as the midblock with polylactide (PLA) end blocks (fLA = 0.17) results in TPEs with high stresses and elongations at break (σB = 24 ± 2 MPa and εB = 1029 ± 20%, respectively) and low levels of hysteresis. The use of isotactic PLA as the end blocks (fLLA = 0.17) increases the strength and toughness of the material (σB = 30 ± 4 MPa, εB = 988 ± 30%) due to its semicrystalline nature. This study aims to demonstrate how the outstanding properties in these sustainable materials are a result of the entanglements, glass transition temperature, segment–segment interaction parameter, and crystallinity, resulting in comparable properties to the commercially relevant styrene-based TPEs.

  20. Improved construction materials for polar regions using microcellular thermoplastic foams

    Science.gov (United States)

    Cunningham, Daniel J.

    1994-01-01

    Microcellular polymer foams (MCF) are thermoplastic foams with very small cell diameters, less than 10 microns, and very large cell densities, 10(exp 9) to 10(exp 15) cells per cubic centimeter of unfoamed material. The concept of foaming polymers with microcellular voids was conceived to reduce the amount of material used for mass-produced items without compromising the mechanical properties. The reasoning behind this concept was that if voids smaller than the critical flaw size pre-existing in polymers were introduced into the matrix, they would not affect the overall strength of the product. MCF polycarbonate (PC), polystyrene (PS), and polyvinyl chloride (PVC) were examined to determine the effects of the microstructure towards the mechanical properties of the materials at room and arctic temperatures. Batch process parameters were discovered for these materials and foamed samples of three densities were produced for each material. To quantify the toughness and strength of these polymers, the tensile yield strength, tensile toughness, and impact resistance were measured at room and arctic temperatures. The feasibility of MCF polymers has been demonstrated by the consistent and repeatable MCF microstructures formed, but the improvements in the mechanical properties were not conclusive. Therefore the usefulness of the MCF polymers to replace other materials in arctic environments is questionable.

  1. Thermoplastic starch/ethylene vinyl alcohol/forsterite nanocomposite as a candidate material for bone tissue engineering.

    Science.gov (United States)

    Mahdieh, Zahra; Bagheri, Reza; Eslami, Masoud; Amiri, Mohammad; Shokrgozar, Mohammad Ali; Mehrjoo, Morteza

    2016-12-01

    Recently, biodegradable polymers such as starch based blends have been well renowned in the biomedical field. Studies have considered them suitable for bone scaffolds, bone cements, tissue engineering scaffolds, drug delivery systems and hydrogels. The aim of this study was to synthesize nanocomposite biomaterial consisting a blend of thermoplastic starch and ethylene vinyl alcohol as the polymer matrix, and nano-structured forsterite as the ceramic reinforcing phase for bone tissue engineering applications. Furthermore, vitamin E was applied as a thermal stabilizer during melt compounding. Extrusion and injection molding were incorporated for melt blending and shaping of samples, respectively. With blending thermoplastic starch and ethylene vinyl alcohol, some properties of thermoplastic starch such as degradation rate and water absorption were modified. In addition, using nanoforsterite as the ceramic reinforcing phase resulted in the improvement of mechanical and biological traits. The addition of nanoforsterite decreased the weight loss of the thermoplastic starch and ethylene vinyl alcohol blend in simulated body fluid. Moreover, this addition modified the pH in the MTT (methyl thiazolyl tetrazolium) assay and stimulated the cell proliferation. Cell adhesion assays indicated a favorable interaction between cells and the biomaterial. The proposed nanocomposite has appropriate biocompatibility, as well as mechanical properties in order to be used in bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  3. Development of electroactive nanofibers based on thermoplastic polyurethane and poly(o-ethoxyaniline) for biological applications.

    Science.gov (United States)

    Cruz, Karina Ferreira Noronha; Formaggio, Daniela Maria Ducatti; Tada, Dayane Batista; Cristovan, Fernando Henrique; Guerrini, Lilia Müller

    2017-02-01

    Electroactive nanofibers based on thermoplastic polyurethane (TPU) and poly(alkoxy anilines) produced by electrospinning has been explored for biomaterials applications. The thermoplastic polyurethane is a biocompatible polymer with good mechanical properties. The production of TPU nanofibers requires the application of high voltage during electrospinning in order to prepare uniform mats due to its weak ability to elongate during the process. To overcome this limitation, a conductive polymer can be incorporated to the process, allowing generates mats without defects. In this study, poly(o-ethoxyaniline) POEA doped with dodecylbenzene sulfonic acid (DBSA) was blended with thermoplastic polyurethane (TPU) by solution method. Films were produced by casting and nanofibers were prepared by electrospinning. The effect of the POEA on morphology, distribution of diameter and cell viability of the nanofibers was evaluated. The results demonstrated that the incorporation of POEA in TPU provided to the mats a suitable morphology for cellular growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 601-607, 2017. © 2016 Wiley Periodicals, Inc.

  4. Biopolymer-based thermoplastic mixture for producing solid biodegradable shaped bodies and its photo degradation stability

    Science.gov (United States)

    Sulong, Nurulsaidatulsyida; Rus, Anika Zafiah M.

    2013-12-01

    In recent years, biopolymers with controllable lifetimes have become increasingly important for many applications in the areas of agriculture, biomedical implants and drug release, forestry, wild life conservation and waste management. Natural oils are considered to be the most important class of renewable sources. They can be obtained from naturally occurring plants, such as sunflower, cotton, linseed and palm oil. In Malaysia, palm oil is an inexpensive and commodity material. Biopolymer produced from palm oil (Bio-VOP) is a naturally occurring biodegradable polymer and readily available from agriculture. For packaging use however, Bio-VOP is not thermoplastic and its granular form is unsuitable for most uses in the plastics industry, mainly due to processing difficulties during extrusion or injection moulding. Thus, research workers have developed several methods to blend Bio-VOP appropriately for industrial uses. In particular, injections moulding processes, graft copolymerisation, and preparation of blends with thermoplastic polymers have been studied to produce solid biodegradable shaped bodies. HDPE was chosen as commercial thermoplastic materials and was added with 10% Bio-VOP for the preparation of solid biodegradable shaped bodies named as HD-VOP. The UV light exposure of HD-VOP at 12 minutes upon gives the highest strength of this material that is 17.6 MPa. The morphological structure of HD-VOP shows dwi structure surface fracture which is brittle and ductile properties.

  5. Nonlinear viscoelastic characterization of molten thermoplastic vulcanizates (TPV) through large amplitude harmonic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, Jean L. [University P. and M. Curie-Paris 6, Polymer Rheology and Processing, Vitry-sur-Seine (France)

    2007-10-15

    The so-called thermoplastic vulcanizates (TPV) are essentially blends of a crystalline thermoplastic polymer (e.g., polypropylene) and a vulcanizable rubber composition, prepared through a special process called dynamic vulcanization, which yields a fine dispersion of micron-size crosslinked rubber particles in a thermoplastic matrix. Such materials are by nature complex polymer systems, i.e., multiphase, heterogeneous, typically disordered materials for which structure is as important as composition. Correctly assessing their rheological properties is a challenging task for several reasons: first, even if the uniformity of their composition is taken for granted, TPV are indeed very complicated materials, not only heterogeneous but also with a morphology related to their composition; second, their morphology can be affected by the flow field used; third, the migration of small labile ingredients (e.g., oil, curative residue, etc.) can in the meantime significantly change the boundary flow conditions, for instance through self-lubrication due to phase separation of the oil, or wall slip, or both. The aims of the work reported were to investigate a series of commercial TPV through the so-called Fourier transform rheometry, a testing technique especially developed to accurately investigate the nonlinear viscoelastic domain. Results are tentatively interpreted in terms of material composition and structure. (orig.)

  6. Reaction between coal and ferric chloride (III)

    Energy Technology Data Exchange (ETDEWEB)

    Kochkanyan, R.O.; Khripunov, S.V.; Baranov, S.N.

    1988-05-01

    Investigates absorption of ferric chloride (III) with free and filled (hexahydrate) coordination spheres, and antimony chloride (V) by various rank coal (brown coal to anthracite). Determines magnitude of specific absorption due to dynamic pore formation. Confirms polyassociative structure of coal with donor-acceptor characteristics and its similarity with polyassociative frame matrix in clathrate forming compounds. Gives specifications of coal used and provides data on specific absorption, diffractograms and paramagnetic characteristics of coal and adduct, and others. States that coal exhibits properties of intermolecular donor-acceptor complex with charge transfer and with comparatively unstable bonds which determine their paramagnetism and high specific absorption. 9 refs.

  7. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  8. Desulphurization of lakhra coal (Pakistan) by beneficial ...

    African Journals Online (AJOL)

    Conditions were established under which more than 65-80% of the organic sulfur present in coal could be removed without effecting thermodynamical properties of Coal. Keywords: Desulphurization, Coal, Beneficial Microorganisms Technology Journal of Modeling, Design and Management of Engineering Systems, Vol.

  9. Coal - testing methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-04-01

    This Standard specifies the method for the particle-size analysis, the method for determination of the float and sink characteristics, the method for determination of Hardgrove grindability indices, the method for determination of the crucible swelling number, the method for determination of the swelling properties, the method for determination of the fluidity properties, the method for determination of the coking properties, the method for determination of the fusibility of ash, and the method for determination of Roga indices of coal.

  10. Rapid coal characterization by FT-I. R. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fredericks, P.M.; Osborn, P.R.; Swinkels, D.A.J.

    1984-01-01

    A method is described for the rapid characterization of bituminous coals based on factor analysis of the FT-I.R. spectra of a wide variety of coals from several countries. Correlations between the factor loadings and some significant coal properties are reported. Weaker, but in some cases still useful, correlations were made between coke properties and factor loadings from analysis of the FT-I.R. spectra of the corresponding coals or coal blends. 18 references

  11. Pyrolysis characteristics of typical biomass thermoplastic composites

    Science.gov (United States)

    Cai, Hongzhen; Ba, Ziyu; Yang, Keyan; Zhang, Qingfa; Zhao, Kunpeng; Gu, Shiyan

    The biomass thermoplastic composites were prepared by extrusion molding method with poplar flour, rice husk, cotton stalk and corn stalk. The thermo gravimetric analyzer (TGA) has also been used for evaluating the pyrolysis process of the composites. The results showed that the pyrolysis process mainly consists of two stages: biomass pyrolysis and the plastic pyrolysis. The increase of biomass content in the composite raised the first stage pyrolysis peak temperature. However, the carbon residue was reduced and the pyrolysis efficiency was better because of synergistic effect of biomass and plastic. The composite with different kinds of biomass have similar pyrolysis process, and the pyrolysis efficiency of the composite with corn stalk was best. The calcium carbonate could inhibit pyrolysis process and increase the first stage pyrolysis peak temperature and carbon residue as a filling material of the composite.

  12. Friction and bending in thermoplastic composites forming processes

    NARCIS (Netherlands)

    Sachs, Ulrich

    2014-01-01

    With the demand for better fuel economy in the aerospace and automotive industries, lightweight polymer matrix composites became an attractive alternative for metal structures. Despite the inherently higher toughness and impact damage resistance of thermoplastics, thermoset matrix composites are

  13. Characterization of thermoplastic composites for hot stamp forming

    NARCIS (Netherlands)

    Rietman, Bert; Grouve, Wouter; Akkerman, Remko

    2014-01-01

    This paper describes state-of-the-art characterization methods for thermoplastic composites at high processing temperature and provides a few examples of application in simulations of the hot stamp forming process.

  14. Coal plasticity at high heating rates and temperatures. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  15. Comparison of molecular sieve properties in microporous chars from low-rank bituminous coal activated by steam and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jasienko-Halat, M.; Kedzior, K. [Wroclaw Univ. of Technology (Poland). Inst. of Chemistry and Technology of Petroluem and Coal

    2005-07-01

    A Polish high volatile bituminous coal was subjected to air oxidation, carbonization and gaseous activation. The activation with steam and carbon dioxide was performed to low levels of burn-off: 5-25%. Sorption measurements Of CO{sub 2}, as well as of organic vapours with increasing molecular sizes (CH{sub 2}Cl{sub 2}, C{sub 6}H{sub 6}, C{sub 6}H{sub 12}, CCl{sub 4}) were applied to evaluate the porous structure of the activated chars. Steam and carbon dioxide develop the microporous system according to the same mechanism-opening (burn-off 5-10%) and then widening of the narrow micropores. For char from the oxidized coal mainly a widening of the narrow micropores takes place. Comparing both activating agents, it was stated that for steam greater micropore volumes were obtained. This was confirmed by other authors for chars from brown coal and coking coal, but was in disagreement with the results for olive stones and carbon fibres. This would indicate the importance of the carbon precursor in the formation of the porous structure of carbon materials by different activating agents. In the region of studied burn-offs, among the micropore sizes useful for separation of gases and vapours with small molecules, micropore volumes with widths close to 0.4-0.5 nm are dominating. At very low burn-offs (5-10%), steam activation renders greater micropore volumes within these sizes, than does activation with carbon dioxide. But with increasing burn-off (15-25%), this phenomenon becomes reversed. This effect is still more accentuated for the preoxidized coal.

  16. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  17. Electricity from Coal Combustion: Improving the hydrophobicity of oxidized coals

    Science.gov (United States)

    Seehra, Mohindar; Singh, Vivek

    2011-03-01

    To reduce pollution and improve efficiency, undesirable mineral impurities in coals are usually removed in coal preparation plants prior to combustion first by crushing and grinding coals followed by gravity separation using surfactant aided water flotation. However certain coals in the US are not amendable to this process because of their poor flotation characteristics resulting in a major loss of an energy resource. This problem has been linked to surface oxidation of mined coals which make these coals hydrophilic. In this project, we are investigating the surface and water flotation properties of the eight Argonne Premium (AP) coals using x-ray diffraction, IR spectroscopy and zeta potential measurements. The role of the surface functional groups, (phenolic -OH and carboxylic -COOH), produced as a result of chemisorptions of O2 on coals in determining their flotation behavior is being explored. The isoelectric point (IEP) in zeta potential measurements of good vs. poor floaters is being examined in order to improved the hydrophobicity of poor floating coals (e.g. Illinois #6). Results from XRD and IR will be presented along with recent findings from zeta potential measurements, and use of additives to improve hydrophobicity. Supported by USDOE/CAST, Contract #DE-FC26-05NT42457.

  18. MECHANICAL BEHAVIOUR OF THERMOPLASTIC STARCH/MONTMORILLONITE/ALUMINA TRIHYDRATE NANOCOMPOSITES

    Directory of Open Access Journals (Sweden)

    FIRNAAZ AHAMED

    2016-09-01

    Full Text Available Thermoplastic starch (TPS is a biodegradable biopolymer that has exhibited great prospects to replace conventional synthetic polymers in commercial applications. However, one of the most critical limitations of TPS is the lack of crucial mechanical properties. This study proposes the novel combination of cassava starch, montmorillonite nanoclay (MMT and alumina trihydrate (ATH in the form of a nanocomposite which is expected to demonstrate improved mechanical properties. The nanocomposites were processed through melt-extrusion in twin-screw extruder where loadings of MMT and ATH were varied between 1 to 6 wt% and 26 to 37 wt%, respectively. The mechanical properties were evaluated through tensile testing according to ASTM D882. The fractured surfaces of the specimens were evaluated using scanning electron microscopy (SEM to further validate the mechanical properties of the nanocomposites. The melt viscosity and processability of the nanocomposites were also evaluated through melt flow index (MFI testing according to ASTM D1238. Presence of MMT and ATH in TPS demonstrated increase in Young’s modulus, maximum tensile stress and decrease in elongation at break up to 57.6 MPa, 5.1 MPa and 39.2%, respectively. In the presence of ATH, increase in loading of MMT continued to improve Young’s modulus and maximum tensile stress while declining elongation at break. Without ATH, MMT was only capable of improving mechanical strength up to a loading of 3 wt% where adverse effects were observed when the loading was further increased to 6 wt%. Increase in loadings of both MMT and ATH, simultaneously were found to depreciate the MFI and thus, the processability of the nanocomposites.

  19. Additive free thermoplastic vulcanizates based on natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Manas, E-mail: mondal@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaft, 01069 Dresden (Germany); Gohs, Uwe, E-mail: gohs@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden (Germany); Wagenknecht, Udo [Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden (Germany); Heinrich, Gert [Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Polymerwerkstoffe, Hohe Straße 6, 01069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaft, 01069 Dresden (Germany)

    2013-12-16

    Electron induced reactive processing (EIReP) is an eco-friendly and sustainable reactive processing method based on the use of high energy electrons. It was used to cross-link the elastomeric domain phase during melt mixing in order to prepare natural rubber (NR) and polypropylene (PP) based thermoplastic vulcanizates (TPVs). The electron treatment with various values of absorbed dose showed a prominent effect on mechanical, rheological, and morphological characteristics of the PP/NR TPVs. SEM and TEM studies confirmed that these TPVs can exists across the co-continuous or discrete phase morphology. The maximum set of mechanical properties (tensile strength of 15 MPa and elongation at break of more than 500%) were obtained at an absorbed dose of 100 kGy for a 50/50 blend ratio of NR and PP without addition of any compatibilizer or chemicals. At higher values of absorbed dose the degradation of polypropylene showed a negative impact on the properties of the TPVs. Depending on the morphology and the evaluation of mechanical properties a structure–property co-relationship is drawn on the basis of common phenomenological understanding of the TPVs. - Highlights: • Dynamic vulcanization of 50:50 PP/NR blend by high energy electron beam. • PP/NR TPVs show rubber like behavior with melt processability. • High tensile strength of 15 MPa and large extensibility beyond 500%. • Complete phase inversed morphology from NR to PP matrix. • Vulcanized natural rubber particle size of 1–3 μm.

  20. Surface electrochemical control for the fine coal and pyrite separation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.; Bodily, D.M.

    1989-01-01

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  1. Surface electrochemical control for fine coal and pyrite separation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weibai; Huang, Qinping; Li, Jun; Riley, A.; Turcotte, S.B.; Benner, R.E.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-01-01

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report covers a Raman spectroscopy of species produced electrochemically on pyrite surfaces.

  2. Development of a phenomenological model for coal slurry atomization

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)

    1995-11-01

    Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.

  3. Western Coal/Great Lakes Alternative export-coal conference

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

  4. Source rock properties of lacustrine mudstones and coals (oligocene Dong Hom Formation), onshore Song Hong Basin, Northern Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H.; Nielsen, L.H.; Nytoft, H.P. [Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Tru, V.; Duc, N.A. [Vietnam Petroluem Inst., Hanoi (Vietnam)

    2005-01-01

    Oligocene lacustrine mudstones and coals of the Dong Ho Formation outcropping around Dong Ho, at the northern margin of the mainly offshore Cenozoic Song Hong Basin (northern Vietnam), include highly oil-prone potential source rocks. Mudstone and coal samples were collected and analysed for their content of total organic carbon and total sulphur, and source rock screening data were obtained by Rock-Eval pyrolysis. The organic matter composition in a number of samples was analysed by reflected light microscopy. In addition, two coal samples were subjected to progressive hydrous pyrolysis in order to study their oil generation characteristics, including the compositional evolution in the extracts from the pyrolysed samples. The organic material in the mudstones is mainly composed of fluorescing amorphous organic matter, liptodetrinite and alginite with Botryococcus-morphology (corresponding to Type I kerogen). The mudstones contain up to 19.6 wt.% TOC and Hydrogen Index values range from 436-572 mg HC/g TOC. From a pyrolysis S{sub 2} versus TOC plot it is estimated that about 55% of the mudstones' TOC can be pyrolised into hydrocarbons; the plot also suggests that a minimum content of only 0.5 wt.% TOC is required to saturate the source rock to the expulsion threshold. Humic coals and coaly mudstones have Hydrogen Index values of 318-409 mg HC/g TOC. They are dominated by huminite (Type III kerogen) and generally contain a significant proportion of terrestrial-derived liptodetrinite. Upon artificial maturation by hydrous pyrolysis, the coals generate significant quantities of saturated hydrocarbons, which are probably expelled at or before a maturity corresponding to a vitrinite reflectance of 0.97%R{sub o}. This is earlier than previously indicated from Dong Ho Formation coals with a lower source potential. The composition of a newly discovered oil (well B10-STB-1x) at the NE margin of the Song Hong Basin is consistent with contributions from both source rocks

  5. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  6. Extrusion and characterization of thermoplastic starch sheets from "macho" banana.

    Science.gov (United States)

    Alanís-López, P; Pérez-González, J; Rendón-Villalobos, R; Jiménez-Pérez, A; Solorza-Feria, J

    2011-08-01

    Starch isolated from macho banana was oxidized by using 2.5% and 3.5% (w/w) of sodium hypochlorite. Native and oxidized starches with glycerol were processed using a conical twin screw extruder to obtain thermoplastic laminates or sheets, which were partially characterized. Oxidized banana starches presented higher moisture and total starch but lower ash, protein, lipids, and apparent amylose content than the native starch. Micrographs of sheets from oxidized starches showed wrinkles and cavities presumably caused by the plasticizer, but with less free glycerol and unplasticized starch granules than those from native starch. Sheets from oxidized starch showed a notorious increase in all thermal parameters (To, Tp, and ΔH), mechanical properties (tensile strength, elongation at break, and elasticity), and solubility. Banana starch X-ray diffraction patterns corresponded to a mixture of the A- and B-type polymorphs, with apparently slightly higher crystallinity in oxidized specimens than in native starch. A similar trend was observed in the corresponding sheets. Due to the pollution problem caused by the conventional plastics, there has been a renewed interest in biodegradable sheets, because they may have the potential to replace conventional packaging materials. Banana starch might be an interesting raw material to be used as edible sheet, coating or in food packaging, and preservation, because it is biodegradable, cheap, innocuous, and abundant. © 2011 Institute of Food Technologists®

  7. Rheological behaviour of thermoplastic poly(ester-siloxanes

    Directory of Open Access Journals (Sweden)

    Antić Vesna V.

    2010-01-01

    Full Text Available Two series of thermoplastic elastomers (TPES based on poly(dimethylsiloxane, (PDMS as the soft segment and poly(butylene terephthalate (PBT as the hard segment, were analyzed by dynamic mechanical spectroscopy. In the first TPES series the lengths of both hard and soft segments were varied while the mass ratio of the hard to soft segments was nearly constant (about 60 mass%. In the second series, the mass ratio of hard and soft segments was varied in the range from 60/40 to 40/60, with a constant length of soft PDMS segments. The influence of the structure and composition of TPESs on the rheological properties, such as complex dynamic viscosity, η*, the storage, G’, and loss, G”, shear modulus as well as the microphase separation transition temperature, TMST, was examined. The obtained results showed that the storage modulus of the TPESs increased in a rubbery plateau region with increasing degree of crystallinity. The rheological measurements of TPESs also showed that a microphase reorganization occurred during the melting process. The microphase separation transition temperatures were in the range from 220 to 234 °C. In the isotropic molten state, the complex dynamic viscosity increased with increasing both the content and lenght of hard PBT segments.

  8. Estimation of the deformation and filtration properties of coal by adsorption test data based on solution of the inverse problem

    Science.gov (United States)

    Nazarova, L. A.; Nazarov, L. A.; Vandamme, M.; Pereira, J.-M.

    2017-06-01

    A geomechanical 2D model of the experiment on constrained adsorption deformation of cylindrical rock samples and a numerical-analytical method of solving the corresponding boundary-value problem based on coordinatewise averaging of the system of poroelasticity equations for the orthotropic model of the medium have been developed. It has been shown that the axial and radial deformations measured in the experiment are proportional to the volume-averaged adsorption stresses. Using the results of laboratory testing of coal samples, the coefficient inverse problem of determining the deformation characteristics and permeability of the matrix has been stated and solved. It has been revealed that Young's moduli of the latter are greater by two or three times and the permeability is at least two orders of magnitude lower than the corresponding effective values for the sample, which is caused by the natural fracturing of coals.

  9. Coal in a sustainable society

    Energy Technology Data Exchange (ETDEWEB)

    Louis Wibberley [BHP Minerals Technology (Australia)

    2001-12-01

    This report builds on an earlier ACARP project C8049 Environmental Credentials of Coal and is aimed at assisting the coal industry to understand the role of coal in a sustainable society, for both iron and steel production, and for electricity generation. Iron and steel life cycle analysis (LCA) case studies show that, in terms of resource energy and greenhouse gas emissions (GGEs), the emerging coal based technologies compare favourably with gas based routes, if displacement credits can be claimed. There is clearly a change emerging in technologies for iron and steel production which favours the use of coal, and the coupling of hot metal production to electric arc furnaces. The 'dash to gas' is slowing. An important issue for the Australian coal industry is the relationship between coal properties and operating performance for these emerging technologies. 19 electricity LCA case studies have been carried out for a wide range of technologies. A number of opportunities have been identified from these for reducing the GGEs for coal based electricity generation technologies. LCAs were also carried out on cement production, coal production, and coal mine waste and fly ash utilisation. The GGE results for cement compared favourably with those published by the IEA when allowance was made for fly ash and blast furnace slag use in Australian cements, the results were in agreement with those published by the Cement Industry Federation. Extensive overseas discussions confirmed that coal's positive attributes will underpin the transition to more sustainable energy systems. It is therefore important to reverse the decline in coal R&D which has occurred in many developed countries, and to transfer technology (eg through CDM) to developing countries, and in particular China and India.

  10. Novel polymer blends with thermoplastic starch

    Science.gov (United States)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the

  11. Viscoelasticity of new generation thermoplastic polyurethane vibration isolators

    Science.gov (United States)

    Bek, Marko; Betjes, Joris; von Bernstorff, Bernd-Steffen; Emri, Igor

    2017-12-01

    This paper presents the analysis of pressure dependence of three thermoplastic polyurethane (TPU) materials on vibration isolation. The three TPU Elastollan® materials are 1190A, 1175A, and 1195D. The aim of this investigation was to analyze how much the performance of isolation can be enhanced using patented Dissipative bulk and granular systems technology. The technology uses granular polymeric materials to enhance materials properties (without changing its chemical or molecular composition) by exposing them to "self-pressurization," which shifts material energy absorption maxima toward lower frequencies, to match the excitation frequency of dynamic loading to which a mechanical system is exposed. Relaxation experiments on materials were performed at different isobaric and isothermal states to construct mastercurves, the time-temperature-pressure interrelation was modeled using the Fillers-Moonan-Tschoegl model. Dynamic material functions, related to isolation stiffness and energy absorption, were determined with the Schwarzl approximation. An increase in stiffness and energy absorption at selected hydrostatic pressure, compared to its stiffness and energy absorption at ambient conditions, is represented with κk(p, ω), defining the increase in stiffness and κd(p, ω), defining the increase in energy absorption. The study showed that close to the glassy state, moduli of 1190A and 1195D are about 6-9 times higher compared to 1175A, whereas their properties at ambient conditions are, for all practical purposes, the same. TPU 1190A turns out to be most sensitive to pressure: at 300 MPa its properties are shifted for 5.5 decades, while for 1195D and 1175A this shift is only 3.5 and 1.5 decades, respectively. In conclusion, the stiffness and energy absorption of isolation may be increased with pressure for about 100 times for 1190A and 1195D and for about 10 times for 1175A.

  12. Studies on the influence of structurally different peroxides in polypropylene/ethylene alpha olefin thermoplastic vulcanizates (TPVs

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Novel thermoplastic vulcanizates (TPVs based on polypropylene (PP and new generation ethylene-octene copolymer (EOC have been developed by dynamic vulcanization process, which involves melt-mixing and simultaneously crosslinking a rubber with a thermoplastic. In this paper technologically compatibilized blends of PP and EOC were dynamically vulcanized by coagent assisted peroxide crosslinking system. The effect of structurally different types of peroxides, namely dicumyl peroxide, di-tert butyl peroxy isopropyl benzene and tert-butyl cumyl peroxide with varying concentrations on the properties on TPVs was mainly studied. The physico-mechanical, thermal and morphological properties of these TPVs were characterized by using X-ray diffraction (XRD, differential scanning calorimeter (DSC and scanning electron microscopy (SEM.

  13. Synthesis of biodegradable thermoplastic elastomers (BTPE based on ε-caprolactone

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available Aiming to mimic blood vessels, biodegradable thermoplastic elastomer (BTPE is designed to be elastic, flexible and tough. A series of biodegradable triblock copolymers and poly(ester-urethanes (PEU based on ε-caprolactone have been synthesized and studied. The crystallinity of the poly(ε-caprolactone used as soft segment has been disrupted by incorporating either L-lactide (L-LA units or trimethylene carbonate (TMC units. Our studies suggest that soft segment composition does affect the mechanical properties significantly.

  14. COORDINATION COMPOUNDS OF OXOVANADIUM(IV BASED ON S-METHYLISOTHIOSEMICARBAZIDE AS DYES FOR THERMOPLASTIC POLYMERS

    Directory of Open Access Journals (Sweden)

    Maria Cocu

    2015-12-01

    Full Text Available We have investigated the properties as dyes of coordination compounds synthesized by us previously (8-(1',2'-naphthyl-1-R-3-methyl-6-thiomethyl-4,5,7-triazanona-1,3,5,7-tetraenato-1,1'-diolato(--O1, O1', N4, N7-vanadil, where R=CH3 (1 , C6H5 (2, which can be used for colouring thermoplastic masses. The compounds have a high photostability (7 points, thermostability (>250° and an intensity of colour that give a low consumption (0.006-0.010g.

  15. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.

    2017-12-06

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.

  16. Processing and characterization of recycled poly(ethylene terephthalate) blends with chain extenders, thermoplastic elastomer, and/or poly(butylene adipate-co-terephthalate)

    Science.gov (United States)

    Yottha Srithep; Alireza Javadi; Srikanth Pilla; Lih-Sheng Turng; Shaoqin Gong; Craig Clemons; Jun Peng

    2011-01-01

    Poly(ethylene terephthalate) (PET) resin is one of the most widely used thermoplastics, especially in packaging. Because thermal and hydrolytic degradations, recycled PET (RPET) exhibits poor mechanical properties and lacks moldability. The effects of adding elastomeric modifiers, chain extenders (CE), and poly(butylenes adipate-co-terephthalate), PBAT, as a toughener...

  17. Remote Performance Monitoring of a Thermoplastic Composite Bridge at Camp Mackall, NC

    Science.gov (United States)

    2011-11-01

    full Wheatstone bridge with a signal amplifier and excitation voltage regulator. A thin slice of the thermoplastic bridge material was incorporated... Bridge at Camp Mackall, NC Final Report on Project F08-AR13, Task A—Thermoplastic Composite Bridges Co ns tr uc tio n En gi ne er in g R es ea rc h...Thermoplastic Composite Bridge at Camp Mackall, NC Final Report on Project F08-AR13, Task A—Thermoplastic Composite Bridges Richard G. Lampo

  18. Enhancing Thermal Conductivity of Hexagonal Boron Nitride Filled Thermoplastics for Thermal Interface Management

    Science.gov (United States)

    Prindl, John

    Hexagonal Boron Nitride has been shown to enhance thermal conductivity in polymer composites more so than conventional ceramic fillers. However, to see a significant increase in thermal conductivity a high loading level of the advanced ceramic is often needed which can have an adverse effect on the mechanical behavior of the composite part. Applications for thermal management using thermal interface materials (TIM) continue to grow with thermoplastic injection molded parts emerging as an area for market growth. There is a growing need for published technical data in this particular area of application. In the current study, the thermal conductivity and mechanical behavior of hexagonal Boron Nitride (hBN) loaded thermoplastic composites is investigated. The main objectives of this work is produce a novel data package which illustrates the effects of hBN, loaded at high concentrations, across several different thermoplastic resins with the ultimate goal being to find a desirable formulation for specific thermal management applications. The desired properties for such applications being high thermal conductivity and high electrical resistivity with a minimal decrease in mechanical properties. Hexagonal BN cooling filler agglomerates were compounded into polypropylene (PP), nylon-6 (PA-6), and thermoplastic elastomer (TPE) via twin-screw extruder at 3 different loading levels. Injection molded samples were produced and characterized to show varying degrees of thermal conductivity and mechanical strength. Results from this research showed that in all cases, the thermal conductivity increased with increasing levels of hBN addition. The largest increases in thermal conductivity were seen in the PA-6 and TPE systems with the possible indication of exceeding the percolation threshold in the TPE system. This is hypothesized to occur due to the preferential migration of hBN to form conduction pathways around the elastomeric domains in the TPE matrix. Though TPE produced

  19. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata).

    Science.gov (United States)

    Sahari, J; Sapuan, S M; Zainudin, E S; Maleque, M A

    2013-02-15

    In recent years, increasing environmental concerns focused greater attention on the development of biodegradable materials. A thermoplastic starch derived from bioresources, sugar palm tree was successfully developed in the presence of biodegradable glycerol as a plasticizer. Sugar palm starch (SPS) was added with 15-40 w/w% of glycerol to prepare workable bioplastics and coded as SPS/G15, SPS/G20, SPS/G30 and SPS/G40. The samples were characterized for thermal properties, mechanical properties and moisture absorption on exposure to humidity were evaluated. Morphological studies through scanning electron microscopy (SEM) were used to explain the observed mechanical properties. Generally, the addition of glycerol decrease the transition temperature of plasticized SPS. The mechanical properties of plasticized SPS increase with the increasing of glycerol but up to 30 w/w%. Meanwhile, the water absorption of plasticized SPS decrease with increasing of glycerol. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Preparation of polypropylene thermoplastic container via thermoforming process

    Science.gov (United States)

    Ruqiyah Nik Hassan, Nik; Amira Mohd Ghazali, Farah; Aziz Jaafar, Abdul; Mazni Ismail, Noor

    2016-02-01

    In this study, plastic containers made of polypropylene (PP) sheets were fabricated via vacuum thermoforming. Thermoforming is a process used in fabricating plastic parts by changing flat thermoplastic sheet to three dimensional shapes. In preparing these thermoplastic containers, the design and fabrication of mould were first done by using Catia V5 software and CNC milling machine, respectively. The thermoforming process was then performed at various temperatures ranging from 160°C until 200°C on the PP sheet to form the container. From the experiment, it can be suggested that the outcomes of final thermoplastic containers are significantly depends on temperature control during thermoforming process and also the vent holes design of the mould.

  1. Nanocellular thermoplastic foam and process for making the same

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lingbo; Costeux, Stephane; Patankar, Kshitish A.; Moore, Jonathan D.

    2015-09-29

    Prepare a thermoplastic polymer foam having a porosity of 70% or more and at least one of: (i) an average cell size of 200 nanometers or less; and (ii) a nucleation density of at least 1.times.1015 effective nucleation sites per cubic centimeter of foamable polymer composition not including blowing agent using a foamable polymer composition containing a thermoplastic polymer selected from styrenic polymer and (meth)acrylic polymers, a blowing agent comprising at least 20 mole-percent carbon dioxide based on moles of blowing agent and an additive having a Total Hansen Solubility Parameter that differs from that of carbon dioxide by less than 2 and that is present at a concentration of 0.01 to 1.5 weight parts per hundred weight parts thermoplastic polymer.

  2. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  3. Synthesis and characterization of thermoplastic polyphenoxyquinoxalines

    Science.gov (United States)

    Erdem, Haci Bayram

    This research was divided into two main parts. In the first part, a new facile route to relatively inexpensive thermoplastic polyphenoxyquinoxalines was developed. The synthetic route involves the aromatic nucleophilic substitution reaction of bisphenols with 2,3-dichloroquinoxaline. The dichloro monomer was prepared in two steps. In the first step, oxalic acid was condensed with o-phenylenediamine to give 2,3-dihydroxyquinoxaline. In the second step, 2,3-dihydroxyquinoxaline was treated with thionyl chloride to give 2,3-dichloroquinoxaline. This monomer was successfully polymerized with bisphenol-A, bisphenol-S, hexafluorobisphenol-A and 9,9-bis(4-hydroxyphenyl)fluorenone. Hydroquinone and biphenol, however, can not be polymerized to high molecular weight polymers because of the premature precipitation of crystalline oligomers. The glass transition temperatures of the high molecular weight polymers prepared from a series of bisphenols range from 191 °C to 279 °C, and their thermal decomposition temperatures are around 500 °C. The polymers are soluble in a wide range of solvents and can be solution-cast into thin films that are colorless and transparent. The polymers have tensile strengths ranging from 61 to 107 MPa, and tensile moduli ranging from 3.5 to 2.3 GPa. The synthesis of polymer obtained from 2,3-dichloroquinoxaline and bisphenol-A was scaled up to afford 500 g of material. This polymer is a thermoplastic with a melt-viscosity less than 1000 Pa.s. at 300 °C. The notched Izod impact strength of injection-molded samples of this polymer is 40.7 J/m. In the second part of this research, the synthetic method has been modified to allow the preparation of quinoxaline containing polyimides. Thus, 2,3-dichloroquinoxaline was treated either with p-nitrophenol followed by reduction of nitro groups, or with p-aminophenols to directly obtain the desired 2,3-(4-aminophenoxy)quinoxaline. This diamine was polymerized with 3,3',4,4'-biphenyldianhydride, 4

  4. Major new Colombian coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, J.

    1998-09-01

    Amcoal with partners Rio Tinto and Glencore, is developing a new large coal export operation in Colombia, following an agreement last year to combine the Cerrejon Centrale and Oreganal coal properties. Three major groups have been awarded a contract to develop the Cerrejon Sur block. Five new mining concessions in the Guajira region south of El Cerrejon will be developed. Colombia has proven and inferred coal reserves amounting to more than 20,000 Mt and hopes to be producing 50 Mt/y by 2005. 1 tab., 1 map.

  5. Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources.

    Science.gov (United States)

    Hojabri, Leila; Kong, Xiaohua; Narine, Suresh S

    2010-04-12

    An unsaturated terminal diol, 1,18-octadec-9-endiol (ODEDO), and a saturated terminal diol, 1,9-nonanediol (NDO), were synthesized from oleic acid. The feasibility of utilizing these new diols for the production of thermoplastic polyurethanes (TPUs) was demonstrated by reacting them with a fatty acid-derived diisocyanate, 1,7-heptamethylene diisocyanate (HPMDI), and a commercially available petroleum-derived diisocyanate, 1,6-hexamethylene diisocyanate (HDI). One type of phase structure was obtained for both TPUs in this study, owing to the similarity between the ODEDO and NDO molecular structure. In addition, double yielding behavior (observed for the first time in polyurethanes) was observed in the stress-strain curves for both TPU systems. Compared to the TPUs prepared from HDI, the totally biobased TPUs (ODEDO-NDO-HPDMI) demonstrated comparable properties within acceptable tolerances, considering the impacts on physical properties due to the odd-even effect introduced by the HPDMI. This work is the first that establishes the production of linear thermoplastic polyurethanes entirely from lipid feedstock.

  6. Radiation induced functionalism of polyethylene and ground tire rubber for their reactive compatibility in thermoplastic elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Fainleib, A.; Grigoryeva, O. [Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kiev 02160 (Ukraine); Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico)], e-mail: fainleib@i.kiev.ua

    2009-07-01

    Reactive compatibility of recycled low-or high-density polyethylenes (LDPE and HDPE, respectively) and ground tire rubber (GTR) via chemical interactions of pre-functionalized components in their blend interface has been carried out. Polyethylene component was functionalized with maleic anhydride (MAH) as well as the rubber component was modified via functionalism with MAH or acrylamide using chemically or irradiation ({gamma} rays) induced grafting techniques. Additional coupling agents such as-p-phenylene diamine (PDA) and polyamide fiber (PAF, from fiber wastes) were used for some thermoplastic elastomer (TPE) producing. The grafting degree and molecular mass distribution of the chromatography analyses, respectively. TPE materials based on synthesized reactive polyethylenes and GTR as well as ethylene-propylene-diene monomer rubber were prepared by dynamic vulcanization of the rubber phase inside thermoplastic (polyethylene) matrix and their phase structure, and main properties have been studied using DSC, TGA, DMTA and mechanical testing. As a final result, the high performance TPE with improved mechanical properties has been developed. (Author)

  7. Analysis of thermoplastic polyimide + polymer liquid crystal blends

    Science.gov (United States)

    Gopalanarayanan, Bhaskar

    Thermoplastic polyimides (TPIs) exhibit high glass transition temperatures (Tsbgs), which make them useful in high performance applications. Amorphous and semicrystalline TPIs show sub-Tsbg relaxations, which can aid in improving strength characteristics through energy absorption. The alpha relaxation of both types of TPIs indicates a cooperative nature. The semicrystalline TPI shows thermo-irreversible cold crystallization phenomenon. The polymer liquid crystal (PLC) used in the blends is thermotropic and with longitudinal molecular structure. The small heat capacity change (Delta Csb{p}) associated with the glass transition indicates the PLC to be rigid rod in nature. The PLC shows a small endotherm associated with the melting. The addition of PLC to the semicrystalline TPI does not significantly affect the Tsbg or the melting point (Tsbm). The cold crystallization temperature (Tsbc) increases with the addition of the PLC, indicating channeling phenomenon. The addition of PLC also causes a negative deviation of the Delta Csb{p}, which is another evidence for channeling. The TPI, PLC and their blends show high thermal stability. The semicrystalline TPI absorbs moisture; this effect decreases with the addition of the PLC. The absorbed moisture does not show any effect on the degradation. The addition of PLC beyond 30 wt.% does not result in an improvement of properties. The amorphous TPI + PLC blends also show the negative deviation of Delta Csb{p} from linearity with composition. The addition of PLC causes a decrease in the thermal conductivity in the transverse direction to the PLC orientation. The thermomechanical analysis indicates isotropic expansivity for the amorphous TPI and a small anisotropy for the semicrystalline TPI. The PLC shows large anisotropy in expansivity. Even 5 wt.% concentration of PLC in the blend induces considerable anisotropy in the expansivity. Thus, blends show controllable expansivity through PLC concentration. Amorphous TPI + PLC

  8. Roles of nanofiller structure on mechanical behavior of thermoplastic nanocomposites

    Science.gov (United States)

    Weon, Jong Il

    The roles of nanofiller structural parameters, such as filler shape, aspect ratio and orientation, on mechanical properties of thermoplastic nanocomposites have been studied. A commercial grade nylon-6/clay nanocomposite is subjected to a large-scale simple shear orientation process and the resulting morphology is investigated on various length scale levels. Both the orientation and the aspect ratio of nanoclays, which can be altered by the simple shear process, have been studied. The incorporation of well-dispersed nanoclays into the nylon-6 matrix greatly reduces the chain mobility as well as the crystallinity of nylon-6. The exfoliated nanocomposites show that the global orientation of clay layers dictates the orientation of crystalline lamellae. Two types of lamellar orientation are observed, as revealed by small-angle X-ray scattering. One type of lamellae is oriented ˜41° away from the clay surface, whereas the simple shear process induces another weak preferred lamellar orientation nearly perpendicular to the clay surface. The formation of those lamellar orientations appears to be related to both orientation of the clay in the nanocomposite and the simple shear process. It is found that the modulus, strength, and heat distortion temperature of the nanocomposites decrease as the clay aspect ratio and degree of orientation are reduced. The micromechanics-based models accurately describe the relationship between clay structural parameters and the corresponding moduli for exfoliated nanocomposites. The impact fracture mechanisms of polypropylene (PP)-calcium carbonate (CaCO3) nanoparticles have been investigated. A detailed investigation reveals that the CaCO 3 nanoparticles act as stress concentrators to initiate massive crazes, followed by shear banding in the PP matrix.

  9. Microstructure and mechanical properties of coal tar pitch-based 2D-C/C composites with a filler addition

    Energy Technology Data Exchange (ETDEWEB)

    Chollon, G.; Siron, O.; Takahashi, J.; Yamauchi, H.; Maeda, K.; Kosaka, K. [University of Bordeaux 1, Pessac (France)

    2001-07-01

    In order to improve the flexural and the inter-laminar shear strength of coal tar pitch-based 2D-C/C composites, fillers (carbon blacks and colloidal graphite) were introduced between the UD layers before the first infiltration of pitch. Matrix parts made of the filler/pitch-based cokes showed fine mosaic microtextures. They were found at the interface between the layers. Whereas the tensile strength is not affected, the flexural strength and the ILSS were significantly increased by the addition of fillers. The original structure of the inter-layer matrix parts and the decrease of the number of flaws were found to be responsible for the improvement of the shear strength of the 0/90 degrees UD layers.

  10. Resistance properties of a bend in dense-phase pneumatic conveying of pulverized coal under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Chen, X.P.; Liang, C.; Xu, P. [Southeast University, School of Energy and Environment, Nanjing (China)

    2011-01-15

    Experiments of high-pressure dense-phase pneumatic conveying of pulverized coal with different mean particle sizes using nitrogen were carried out in an experimental test facility with a conveying pressure of up to 4 MPa. The effects of three representative operating parameters (solids-to-gas mass flow ratio, conveying pressure, mean particle size) on the total pressure drop were examined. The pressure drops across the horizontal and vertical bends were analyzed by experimental and analytical calculation. The results show that the pressure drop due to gas friction is of much less significance, while the pressure drop due to the solids friction component of the total pressure drop dominates. There exists a relationship between the pressure drop due to solids kinetic energy loss and mass flux of solids. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Prospects for use of micronized coal in power industry

    Energy Technology Data Exchange (ETDEWEB)

    Burdukov, A.P.; Konovalov, V.V.; Yusupov, T.S. [Inst. of Thermophysics SB RAS, Novosibirsk (Russian Federation)

    2002-07-01

    Heat-and-power engineering is the basis for industrial development of developed countries and the main energy fuel for plants is coal. The main directions in improvement of coal energy technologies are related to better ignition of fuel and to gas and mazut substitution with pulverized coal. This paper considerers the prospects of energy coal enrichment and the method for production of ultrafine coal with the average size of particles about 10-20 microns, and the existing machines for ultrafine coal production. This method increases substantially the velocity of ignition and combustion of pulverized coal flame. The changes of physical and chemical properties of coal after grinding were considered, and the processes of ignition, combustion of micronized coal, spaying and stabilization of flame combustion were analyzed in this paper. The problem of ultrafine coal ignition were considered also. 20 refs., 3 figs., 1 tab.

  12. Prospects for use of micronized coal in power industry

    Directory of Open Access Journals (Sweden)

    Burdukov Anatolii P.

    2002-01-01

    Full Text Available Heat-and-power engineering is the basis for industrial development of developed countries and the main energy fuel for plants is coal. The main directions in improvement of coal energy technologies are related with better ignition of powered fuel and with gas and mazut substitution with coal powder. This paper considered the prospects of energy coal enrichment and the method for production of ultrafine coal with the average size of particles about 10-20 microns, and the existing machines for ultrafine coal production. This method increases substantially the velocity of ignition and combustion of pulverized coal flame. The changes of physical and chemical properties of coal after grinding were considered, the processes of ignition, combustion of micronized coal, spaying and stabilization of flame combustion were analyzed in this paper. The problem of ultrafine coal ignition were considered also.

  13. Use of high-temperature, high-torque rheometry to study the viscoelastic properties of coal during carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.C.; Duffy, J.J.; Snape, C.E.; Steel, K.M. [University of Nottingham, Nottingham (United Kingdom)

    2007-09-15

    When coal is heated in the absence of oxygen it softens at approximately 400 degrees C, becomes viscoelastic, and volatiles are driven off. With further heating, the viscous mass reaches a minimum viscosity in the range of 10{sup 3}-10{sup 5} Pa s and then begins to resolidify. A high-torque, high-temperature, controlled-strain rheometer with parallel plates has been used to study the theology during this process. Under shear, the viscosity of the softening mass decreases with increasing shear rate. During resolidification, the viscosity increases as C-C bond formation and physical interactions gives rise to an aromatic network, but, under shear, the network breaks apart and flows. This is viewed as a yielding of the structure. The higher the shear rate, the earlier the yielding occurs, such that if the shear rate is low enough, the structure is able to build. Also, further into resolidification lower shear rates are able to break the structure. It is proposed that resolidification occurs through the formation of aromatic clusters that grow and become crosslinked by non-covalent interactions. As the clusters grow, the amount of liquid surrounding them decreases and it is thought that the non-covalent interactions between clusters and liquid could decrease and the ability of growing clusters to move past each other increases, which would explain the weakening of the structure under shear. This work is part of a program of work aimed at attaining a greater understanding of microstructural changes taking place during carbonization for different coals, in order to understand the mechanisms that give rise to good quality cokes and coke oven problems such as excessive wall pressure.

  14. Linear orthotropic viscoelasticity model for fiber reinforced thermoplastic material based on Prony series

    Science.gov (United States)

    Endo, Vitor Takashi; de Carvalho Pereira, José Carlos

    2017-05-01

    Material properties description and understanding are essential aspects when computational solid mechanics is applied to product development. In order to promote injected fiber reinforced thermoplastic materials for structural applications, it is very relevant to develop material characterization procedures, considering mechanical properties variation in terms of fiber orientation and loading time. Therefore, a methodology considering sample manufacturing, mechanical tests and data treatment is described in this study. The mathematical representation of the material properties was solved by a linear viscoelastic constitutive model described by Prony series, which was properly adapted to orthotropic materials. Due to the large number of proposed constitutive model coefficients, a parameter identification method was employed to define mathematical functions. This procedure promoted good correlation among experimental tests, and analytical and numerical creep models. Such results encourage the use of numerical simulations for the development of structural components with the proposed linear viscoelastic orthotropic constitutive model. A case study was presented to illustrate an industrial application of proposed methodology.

  15. Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate.

    Science.gov (United States)

    Battegazzore, Daniele; Bocchini, Sergio; Nicola, Gabriele; Martini, Eligio; Frache, Alberto

    2015-03-30

    Isosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake. Indeed, maize starch was directly mixed with the solid plasticizer and direct fed in the main hopper of a co-rotating twin screw extruder. Starch plasticization was assessed by X-ray diffraction (XRD) and dynamic-mechanical analysis (DMTA). Oxygen permeability, water uptake and mechanical properties were measured at different relative humidity (R.H.) values. These three properties turned out to be highly depending on the R.H. No retrogradation and changing of the material properties were occurred from XRD and DMTA after 9 months. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Thermoplastic Elastomer Part Color as Function of Temperature Histories and Oxygen Atmosphere During Selective Laser Sintering

    Science.gov (United States)

    Kummert, C.; Josupeit, S.; Schmid, H.-J.

    2017-11-01

    The influence of selective laser sintering (SLS) parameters on PA12 part properties is well known, but research on other materials is rare. One alternative material is a thermoplastic elastomer (TPE) called PrimePart ST that is more elastic and shows a distinct SLS processing behavior. It undergoes a three-dimensional temperature distribution during the SLS process within the TPE part cake. To examine this further, a temperature measurement system that allows temperature measurements inside the part cake is applied to TPE in the present work. Position-dependent temperature histories are directly correlated with the color and mechanical properties of built parts and are in very good agreement with artificial heat treatment in a furnace. Furthermore, it is clearly shown that the yellowish discoloration of parts in different intensities is not only temperature dependent but also influenced by the residual oxygen content in the process atmosphere. Nevertheless, the discoloration has no influence on the mechanical part properties.

  17. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites.

    Science.gov (United States)

    Reinprecht, Yarmilla; Arif, Muhammad; Simon, Leonardo C; Pauls, K Peter

    2015-01-01

    Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.

  18. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites.

    Directory of Open Access Journals (Sweden)

    Yarmilla Reinprecht

    Full Text Available Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs grown in different environments were incorporated into PP at 20% (wt/wt by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.

  19. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites

    Science.gov (United States)

    Reinprecht, Yarmilla; Arif, Muhammad; Simon, Leonardo C.; Pauls, K. Peter

    2015-01-01

    Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP) matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs) grown in different environments were incorporated into PP at 20% (wt/wt) by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL) for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue. PMID:26167917

  20. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  1. Methodology used for the determination of physical and mechanical properties of crushed coal and new criteria for the selection of calculating parameters according to which coal bins in thermal power plants are dimensioned

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, R. [Mining Institute Belgrade, Belgrade (Yugoslavia)

    1997-07-01

    In order to acquire the data necessary for design engineering of coal bins in thermal power plants (TPP), an enhanced research method has been adopted, along with new criteria for the interpretation of the results obtained in the course of crushed coal testing, considering the shearing strength values and the expected elastic deformations of bin walls. The investigations presented in this paper have been carried out in the Thermal Power Plant - Nikola Tesla-B, (TPPNT) in Obrenovac, Yugoslavia. 6 refs., 1 tab.

  2. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  3. Deformation characteristics of thermoplastics in single point incremental forming

    Science.gov (United States)

    Maaß, F.; Gies, S.; Tekkaya, A. E.

    2017-10-01

    Single point incremental forming (SPTF) is a manufacturing process to produce complex shaped parts by the CNC controlled movement of a hemispherical forming tool. The poor geometrical accuracy is one of the dominant process limits in SPTF. Several references deal with approaches to improve the geometrical accuracy in SPTF, especially for sheet metal forming. However, forming thermoplastic materials with high geometrical accuracy is even more difficult due to the large elastic recovery upon unloading. As already shown for SPTF of metal sheets, overbending the workpiece is one opportunity to improve the geometrical accuracy. The aim of this research is to investigate how SPTF process parameters effect the resulting geometry and bulging of thermoplastic sheets. The research is done experimentally using Polyvinylchloride (PVC) and high density Polyethylene (PE-HD). Tt includes a strategy to reduce bulging effects by overbending the material. The experiments were performed on a CNC milling machine equipped with a single point forming tool and a simple support to fix the workpiece. To investigate the influence of the process parameters on the geometrical accuracy, linear grooves were manufactured into thermoplastic sheets. The geometric quality of the formed thermoplastic parts was evaluated by means of three-dimensional optical measurement. Tool radius, initial sheet thickness and workpiece material showed a strong correlation with the bulge height of the final part. Depending on the considered process parameter, the bulge height can be reduced up to 98%.

  4. The compression of wood/thermoplastic fiber mats during consolidation

    Science.gov (United States)

    Karl R. Englund; Michael P. Wolcott; John C. Hermanson

    2004-01-01

    Secondary processing of non-woven wood and wood/thermoplastic fiber mats is generally performed using compression molding, where heated platens or dies form the final product. Although the study and use of wood-fiber composites is widespread, few research efforts have explicitly described the fundamentals of mat consolidation. In contrast, the wood composite literature...

  5. Compression molding of chopped woven thermoplastic composite flakes

    NARCIS (Netherlands)

    Abdul Rasheed, Mohammed Iqbal

    2016-01-01

    Continuous fiber reinforced composites with high-performance thermoplastic polymer matrices have an enormous potential in terms of performance, production rate, cost efficiency and recyclability. The use of this relatively new class of materials by the aerospace and automotive industry has been

  6. Residual Strains in Thick Thermoplastic Composites : An Experimental Approach

    NARCIS (Netherlands)

    Parlevliet, P.P.

    2010-01-01

    Thermoplastic composites are currently investigated for application in windmill turbine blades for their recyclability. A suitable manufacturing technology for these thick structures is liquid resin infusion followed by in-situ polymerisation of Anionic Polyamide-6 (APA-6). During manufacturing of

  7. Characterization of composites fabricated from discontinuous random carbon fiber thermoplastic matrix sheets produced by a paper making process

    Science.gov (United States)

    Ducote, Martin Paul, Jr.

    In this thesis, a papermaking process was used to create two randomly oriented, high performance composite material systems. The primary objective of this was to discover the flexural properties of both composite systems and compare those to reported results from other studies. In addition, the process was evaluated for producing quality, randomly oriented composite panels. Thermoplastic polymers have the toughness and necessary strength to be alternatives to thermosets, but with the promise of lower cycle times and increased recyclability. The wet-lay papermaking process used in this study produces a quality, randomly oriented thermoplastic composite at low cycle times and simple production. The materials chosen represent high performance thermoplastics and carbon fibers. Short chopped carbon fiber filled Nylon 6,6 and PEEK composites were created at varying fiber volume fractions. Ten nylon based panels and five PEEK based panels were subjected to 4-point flexural testing. In several of the nylon-based panels, flexural testing was done in multiple direction to verify the in-plane isotropy of the final composite. The flexural strength performance of both systems showed promise when compared to equivalent products currently available. The flexural modulus results were less than expected and further research should be done into possibly causes. Overall, this research gives good insight into two high performance engineering composites and should aid in continued work.

  8. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume.

    Science.gov (United States)

    Montero, Belén; Rico, Maite; Rodríguez-Llamazares, Saddys; Barral, Luis; Bouza, Rebeca

    2017-02-10

    Starches from different vegetal sources (tuber, cereal and legume) were plasticized with an invariant glycerol content and reinforced with cellulose nanocrystals by solution casting method. The influence of both, starch nature and filler amount, in the crystallinity and the extension of plasticization have been analyzed by X-ray diffraction. Thermoplastic starches (TPS) morphologies were obtained by scanning electron microscopy. Mechanical properties and thermal stability were analyzed by dynamomechanical and thermogravimetric analysis. Water absorption evolution was studied as well. A major extension in plasticization (high amylopectin starches) led to matrices with large starch-rich domains, a good thermal stability and resistance to water absorption but low stiffness. The incorporation of cellulose nanoparticles favoured plasticization and increased the rigidity in TPS films, as well as the thermal stability and moisture resistance. The aim of this work was to obtain bio-based thermoplastic starch films for replacing petroleum-derived ones in packaging industry, especially for short-life applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Increased Performance of Thermoplastic Packaging Materials by Using a Mild Oxidizing Biobased Additive

    Directory of Open Access Journals (Sweden)

    Ferdinand Männle

    2012-01-01

    Full Text Available Green additives such as prodegradants based on natural fatty acids and iron can improve the environmental profile of thermoplastic packaging materials. We present two studies in which this is demonstrated. In the first study, the addition of a green prodegradant to a 5-layer gas barrier laminate during processing provided a laminate with significantly reduced oxygen transmission due to the resulting oxygen-consuming degradation process. The result shows that material reduction and cost efficiency of packaging laminates can be combined, since 5-layer laminates with reduced oxygen barrier layer thickness and retained gas barrier properties are feasible. The products are interesting from an ecological and economic aspect. In the second study, the addition of a green prodegradant to several qualities of polypropylene that are used in packaging applications leads to materials that are readily degraded in accelerated weathering. The molecular weight of the modified polypropylenes after 830 hours of accelerated weathering is reduced from typically 80.000 g/mole to 1.500–2.500 g/mole. At such molecular weight levels, digestion by microorganisms is feasible. The mild prodegradant used in the study does not lead to degradation during processing. Thermoplastics containing such additives are therefore fully recyclable provided that they have not been exposed to a long period of weathering.

  10. High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware

    Science.gov (United States)

    Gardner, John M.; Stelter, Christopher J.; Yashin, Edward A.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing (or 3D printing) via Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling (FDM), is a process where material is placed in specific locations layer-by-layer to create a complete part. Printers designed for FFF build parts by extruding a thermoplastic filament from a nozzle in a predetermined path. Originally developed for commercial printers, 3D printing via FFF has become accessible to a much larger community of users since the introduction of Reprap printers. These low-cost, desktop machines are typically used to print prototype parts or novelty items. As the adoption of desktop sized 3D printers broadens, there is increased demand for these machines to produce functional parts that can withstand harsher conditions such as high temperature and mechanical loads. Materials meeting these requirements tend to possess better mechanical properties and higher glass transition temperatures (Tg), thus requiring printers with high temperature printing capability. This report outlines the problems and solutions, and includes a detailed description of the machine design, printing parameters, and processes specific to high temperature thermoplastic 3D printing.

  11. Thermoplastic-thermosetting merged polyimides via furan-maleimide Diels–Alder polymerization

    Directory of Open Access Journals (Sweden)

    Yogesh S. Patel

    2017-02-01

    Full Text Available Novel thermoplastic-thermosetting merged polyimide system has been developed via Diels–Alder intermolecular polymerization of bisfuran namely, 2,5-bis(furan-2-ylmethylcarbamoyl terephthalic acid A with a series of bismaleimides B1–4. Thus obtained intermediate Diels–Alder adducts C1–4 were aromatized and imidized (i.e. cyclized through carboxylic and amide groups to afford thermoplastic-thermosetting merged polyimides D1–4. Bisfuran A was prepared by the condensation of pyromellitic dianhydride with furan-2-ylmethanamine and characterized by elemental, spectral, thermal and LCMS analyses. Synthesized Diels–Alder adducts C1–4 and polyimides D1–4 were characterized by elemental analysis, spectral features, number average molecular weight (Mn‾, degree of polymerization (DP and thermal analysis. To facilitate the correct structural assessment and to be able to verify the occurrence of the DA adducts and PIs, a model compound 4 was prepared from phthalic anhydride and furan-2-ylmethanamine in a similar way. FTIR spectral features of polyimides D1–4 were compared with model compound 4 and they were found to be quite identical. The ‘in situ' void-free glass fiber reinforced composites GFRC1–4 were prepared from the produced system and characterized by chemical, mechanical and electrical analyses. All the composites showed good mechanical, electrical and thermal properties and good resistance to organic solvents and mineral acids.

  12. Investigation of Bauschinger effect in thermo-plastic polymers for biodegradable stents

    Directory of Open Access Journals (Sweden)

    Schümann Kerstin

    2017-09-01

    Full Text Available The Bauschinger effect is a phenomenon metals show as a result of plastic deformation. After a primary plastic deformation the yield strength in the opposite loading direction decreases. The aim of this study is to investigate if there is a phenomenon similar to Bauschinger effect in thermoplastic polymers for stent application that would influence the mechanical properties of these biodegradable implants. Combined uniaxial tensile with subsequent compression tests as well as conventional compression tests without prior tensile loading were performed using biodegradable polymers for stent application (PLLA and a PLLA based blend. Comparing the results of compression tests with prior tensile loading to the compression-only tests a decrease in compressive strength can be observed for both of the tested materials. The conclusion of the performed experiments is that there is a phenomenon similar to Bauschinger effect not only in metallic materials but also in the examined thermoplastic polymers. The observed reduction of compressive strength as a consequence of prior tensile loading can influence the mechanical behaviour, e.g. the radial strength, of polymeric stents after sustaining a complex load history due to crimping and expansion.

  13. Study of friction and wear of thermoplastic vulcanizates: the correlation with abraded surfaces topology

    Science.gov (United States)

    Harea, E.; Stoček, R.; Machovský, M.

    2017-05-01

    The work was focused on the study of friction and wear properties of thermoplastic vulcanizates (TPV) based on polypropylene (PP), natural rubber (NR) and styrene butadiene rubber (SBR) compounds containing all common additives and curatives using ball-on-flat method. Pure materials and binary TPV blends of PP/NR, as well those of PP/SBR with the compositions 95/5, 75/25 and 50/50 (in weight %) were compounded and analysed. It is very well known that the coefficient of friction (COF), as well as wear values of pure thermoplastic matrix are significantly lower than those for pure rubber. Thus, it was found that the friction coefficient and wear of TPVs significantly increased in accordance with increased content of rubber material. Surprisingly, NR compared with SBR of similar concentrations in PP matrix, considerably affected wear of samples and the friction coefficient remained almost unaffected. Finally the topology of abraded surfaces were examined by using scanning electron microscopy (SEM) in order to understand the relationship between the COF, wear process and the composition of TPVs.

  14. Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, O.N.; Haynes, R.J. [University of Queensland, St Lucia, Qld. (Australia)

    2009-11-15

    Increasing proportions of coal fly ash were co-composted with municipal green waste to produce manufactured soil for landscaping use. Only the 100% green waste treatment reached a thermophilic composting phase ({ge} 50{sup o}C) which lasted for 6 days. The 25% and 50% ash treatments reached 36-38{sup o}C over the same period while little or no self-heating occurred in the 75% and 100% ash treatments. Composted green waste had a low bulk density and high total and macro-porosity. Addition of 25% ash to green waste resulted in a 75% increase in available water holding capacity. As the proportions of added ash in the composts increased, the organic C, soluble C, microbial biomass C, basal respiration and activities of beta-glucosidase, L-asparaginase, alkali phosphatase and arylsulphatase enzymes in the composted products all decreased. It could be concluded that addition of fly ash to green waste at a proportion higher than 25% did not improve the quality parameters of manufactured soil.

  15. The evaluation of geopolymer properties prepared by alkali activation of black coal ashes with high content of loss on ignition

    Directory of Open Access Journals (Sweden)

    Michalíková Františka

    2010-11-01

    Full Text Available The utilization of fly ashes in Slovakia is lower than in other countries and dumping of fly ashes prevails. The dumping changeschemical and phase composition of fly ashes and so it decreases possibilities for their utilization. Fly ashes are mainly used in buildingindustry, where the content of loss on ignition (LOI is limited due to standards. Black coal fly ashes produced in Slovakia have a highcontent of loss on ignition – more than 20 % - so they straight utilization in building industry is not possible. The current possibility fortheir utilization is in geopolymer synthesis. Products with 28-day compression strength of 35.7 MPa and 180-day compression strengthof 55.0 MPa were obtained by alkali activation of fly ashes with 23.25 % LOI with 8 wt% Na2O and their next hardening in temperatureof 80 °C during 6 hours. Products have a great frost-resistance and aggressive environments resistance (NaCl a H2SO4 solutions.

  16. A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chengliang [Univ. of Kentucky, Lexington, KY (United States)

    1993-01-01

    Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

  17. Castor oil and commercial thermoplastic polyurethane membranes modified with polyaniline: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Junior, Jose Humberto Santos; Meneguzzi, Alvaro; Ferreira, Carlos Arthur, E-mail: jhsajunior@globomail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegtre, RS (Brazil). Dept. de Engenharia de Materiais; Bertuol, Daniel Assumpcao [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Engenharia Quimica; Amado, Franco Dani Rico [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologia

    2013-11-01

    The study of conducting polymeric membranes is decisive in some areas, as in fuel cells and electrodialysis. This work aims the study of membranes using conventional and conductive polymers blends. Two types of polyurethane were used as conventional polymers, commercial thermoplastic polyurethane and polyurethane synthesized from castor oil and 4-4-dicyclohexylmethane isocyanate. Two kinds of conducting polymers were used, polyaniline doped with organic acid and a self doped polyaniline. The polymers and the membranes were characterized by electrical conductivity, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM). The synthesis of the membranes produced was proper, featuring a complete reaction, analyzed by FTIR. The membranes also showed good mechanical properties and thermal stability ( Almost-Equal-To 220 Degree-Sign C). Among the membranes studied, the polyaniline doped with p-toluenesulphonic acid obtained higher thermal and viscoelastic properties. Thus they can be used in separation techniques using membranes. (author)

  18. Improved thermal stability and wettability behavior of thermoplastic polyurethane / barium metaborate composites

    Energy Technology Data Exchange (ETDEWEB)

    Baştürka, Emre; Madakbaş, Seyfullah; Kahraman, Memet Vezir, E-mail: smadakbas@marmara.edu.tr [Department of Chemistry, Marmara University, Istanbul (Turkey)

    2016-03-15

    In this paper, it was targeted to the enhance thermal stability and wettability behavior of thermoplastic polyurethane (TPU) by adding barium metaborate. TPU-Barium metaborate composites were prepared by adding various proportions of barium metaborate to TPU. The chemical structures of the composites were characterised by fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. All prepared composites have extremely high Tg and thermal stability as determined from DSC and TGA analysis. All composite materials have the Tg ranging from 15 to 35 °C. The surface morphologies of the composites were investigated by a scanning electron microscopy. Mechanical properties of the samples were characterized with stress-strain test. Hydrophobicity of the samples was determined by the contact angle measurements. The obtained results proved that thermal, hydrophobic and mechanical properties were improved. (author)

  19. Environment-friendly, flame retardant thermoplastic elastomer-magnesium hydroxide composites

    Science.gov (United States)

    Tang, Hao; Chen, Kunfeng; Li, Xiaonan; Ao, Man; Guo, Xinwen; Xue, Dongfeng

    Halogen-free and environment-friendly magnesium hydroxide (Mg(OH)2) was synthesized to enhance the flame retardant properties of thermoplastic elastomer (TPE). When the Mg(OH)2 content was optimized to 35wt.%, the TPE-Mg(OH)2 composites exhibited the best flame retardant properties. The results showed that there was a delay of ignition time of the samples containing Mg(OH)2; compared with the samples without Mg(OH)2, the heat release rate and total heat release decrease by 31.4% and 35.6%, while total smoke production and mass loss rate reduce by 56% and 34.2%, respectively. This work opens a door to manufacture fire-resistant polymer-based composites with environmental-friendly flame retardant additives by controllable crystallization and chemical strategies.

  20. Castor oil and commercial thermoplastic polyurethane membranes modified with polyaniline: a comparative study

    Directory of Open Access Journals (Sweden)

    José Humberto Santos Almeida Júnior

    2013-01-01

    Full Text Available The study of conducting polymeric membranes is decisive in some areas, as in fuel cells and electrodialysis. This work aims the study of membranes using conventional and conductive polymers blends. Two types of polyurethane were used as conventional polymers, commercial thermoplastic polyurethane and polyurethane synthesized from castor oil and 4-4-dicyclohexylmethane isocyanate. Two kinds of conducting polymers were used, polyaniline doped with organic acid and a self doped polyaniline. The polymers and the membranes were characterized by electrical conductivity, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, dynamic mechanical analysis (DMA and scanning electron microscopy (SEM. The synthesis of the membranes produced was proper, featuring a complete reaction, analyzed by FTIR. The membranes also showed good mechanical properties and thermal stability (≈ 220 °C. Among the membranes studied, the polyaniline doped with p-toluenesulphonic acid obtained higher thermal and viscoelastic properties. Thus they can be used in separation techniques using membranes.

  1. A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Thermoplastic elastomer based on polypropylene (PP and acrylic rubber (ACM was investigated, with special attention on the compatibilization and dynamic vulcanization. ACM component contains chlorine and carboxyl groups along the backbone, which act as center for the curing and reactive compatibilization. The last event was carried out by adding a combination of maleic anhydride-modified PP (PP-g-MA and triethylene tetramine (TETA, which act as interfacial agents between PP and ACM phases. The effectiveness of the compatibilization was suggested from mixing torque and viscosity, determined from rheological measurements. Outstanding mechanical performance, especially elongation at break, and better tensile set (lower values were obtained with the compatibilization. The dynamic vulcanization also resulted in good mechanical properties for compatibilized blends, but the performance was inferior to that observed for non vulcanized blends. The effect of the compatibilization and/or dynamic vulcanization on the dynamic mechanical, thermal, morphological and stress relaxation properties was investigated.

  2. Thermoplastic Polyurethanes Stemming from Castor Oil: Green Synthesis and Their Application in Wood Bonding

    Directory of Open Access Journals (Sweden)

    Shaolong Li

    2017-09-01

    Full Text Available We report an efficient and green approach to synthesize a linear castor oil-based polyurethane (CPU without using any solvent or catalyst. Diol monomers were first synthesized by the aminolysis reaction between castor oil and diamines; this was accomplished within 6 h at 130 °C. Polymerization of the diols and isocyanate was further confirmed by Fourier transform infrared (FTIR, 1H-nuclear magnetic resonance (1H-NMR, and gel permeation chromatography analyses. The resultant CPUs showed a good thermal stability with an initial degradation temperature higher than 300 °C, and their mechanical and wood bonding property can be modulated by the structures of diamine. In addition, the CPUs possessed a satisfying water resistance property with the water absorption amount lower than 2%. The green conversion of castor oil to thermoplastic polyurethane affords new opportunities in bio-based industries.

  3. Novel Thermoplastic Elastomers Based on Benzofulvene: Synthesis and Mechanical Properties

    Science.gov (United States)

    2015-12-01

    replacing cellulose with functionalized carbon nanotubes (CNT) and Fe3O4 nanoparticles (NPs), TPEs with type III architecture were successfully...molecular could be prepared quickly in water as the reaction medium. Particles of polymers could be directly applied for coating and painting without

  4. Mechanical properties of recycled thermoplastics | Niang | Journal of ...

    African Journals Online (AJOL)

    The widespread use of recycled plastics has been restricted in part because of the limited state of knowledge about the behavior of this recycled material and the lack of unified design procedures. The material behaves differently in tension and compression, and the non-linear nature of recycled plastic makes some ...

  5. Method selection for mercury removal from hard coal

    Directory of Open Access Journals (Sweden)

    Dziok Tadeusz

    2017-01-01

    Full Text Available Mercury is commonly found in coal and the coal utilization processes constitute one of the main sources of mercury emission to the environment. This issue is particularly important for Poland, because the Polish energy production sector is based on brown and hard coal. The forecasts show that this trend in energy production will continue in the coming years. At the time of the emission limits introduction, methods of reducing the mercury emission will have to be implemented in Poland. Mercury emission can be reduced as a result of using coal with a relatively low mercury content. In the case of the absence of such coals, the methods of mercury removal from coal can be implemented. The currently used and developing methods include the coal cleaning process (both the coal washing and the dry deshaling as well as the thermal pretreatment of coal (mild pyrolysis. The effectiveness of these methods various for different coals, which is caused by the diversity of coal origin, various characteristics of coal and, especially, by the various modes of mercury occurrence in coal. It should be mentioned that the coal cleaning process allows for the removal of mercury occurring in mineral matter, mainly in pyrite. The thermal pretreatment of coal allows for the removal of mercury occurring in organic matter as well as in the inorganic constituents characterized by a low temperature of mercury release. In this paper, the guidelines for the selection of mercury removal method from hard coal were presented. The guidelines were developed taking into consideration: the effectiveness of mercury removal from coal in the process of coal cleaning and thermal pretreatment, the synergy effect resulting from the combination of these processes, the direction of coal utilization as well as the influence of these processes on coal properties.

  6. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  7. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  8. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  9. Microbial solubilization of coal

    Science.gov (United States)

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  10. Ultra-fine coal characterization. 12th progress report

    Energy Technology Data Exchange (ETDEWEB)

    Smit, F. J.

    1988-02-29

    Research continued on this program to relate beneficiation characteristics of ultra-fine coals to the mineral-matter liberation and bulk properties of the coals. Washability tests are reported here which quantify mineral-matter liberation during ultra-fine grinding of Pittsburgh, Pocahontas No. 3, Sunnyside, Anderson and Beulah-Zap coals. The first three are bituminous coals from Pennsylvania, West Virginia and Utah, respectively, and the last two are a subbituminous coal from the Powder River area of Wyoming and a lignite coal from North Dakota. 4 refs., 5 tabs.

  11. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; Alan Davis; David C. Glick; Patrick G. Hatcher; Gareth D. Mitchell; Daniel Carson; Lei Hou

    1999-11-01

    This project generated and distributed coal samples and accompanying analytical data for use in research by DOE contractors and others. All activities specified under the five-year contract (as revised) and a six-month no-cost extension have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to research and commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for preserving samples in long-term storage. In addition to the 33 DECS samples, 23 PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the 5.5 years, 570 samples in 1,586 containers, 2,109 data printouts, and individual data items from 34,208 samples were distributed. All DECS samples are now available for distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (-20 mesh U.S.), and minus 0.25 mm (-60 mesh U.S.).

  12. Fungal attack on coal: 1. Modification of hard coal by fungi

    Energy Technology Data Exchange (ETDEWEB)

    Hofrichter, M.; Bublitz, F.; Fritsche, W. [Friedrich-Schiller-University of Jena, Jena (Germany). Inst. of Microbiology

    1997-11-01

    Within a screening program more than 750 fungal strains were tested for their ability to attack a German hard coal (Westerholt Mine). Six strains were selected, which modified the physico-chemical properties of hard coal pieces placed on the overgrown surface of Petri dishes (loss of the compact coal structure, `erosion`, increase in wettability). One of these strains, Coprinus sclerotigenis C142-1, liberated 2-hydroxybiphenyl, alkylated benzenes and polycyclic aromatic hydrocarbons (PAH) from powdered hard coal. It is presumed that most of these compounds were liberated from micropores inside of the hard coal macromolecule. Investigations using hard coal derived asphaltenes indicate that the liberation of hydroxylated biphenyl by C. sclerotigenis is due to a real cleavage of chemical bonds. The cultivation of the white-rot fungus Panus tigrinus on wood shavings coated with asphaltenes led to a decrease of the average molecular weights of these hard coal-derived hydrogenation products. 18 refs., 6 figs., 1 tab.

  13. Establishment and maintenance of a coal sample bank and data base. Final report, April 8, 1988--September 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Glick, D.C.

    1993-11-01

    This DOE contract continued support for the DOE Coal Sample Bank and Data Base at Penn State. At the beginning of the contract, a new type of container was evaluated for long-term storage of coal samples ranging in quantity from a few grams to over 10 kg (22 lbs). Gieseler fluid behavior, oxidation of pyrite to sulfates, loss of heating value, and other properties were monitored over time. Based on preliminary results, these foil and polyethylene laminate bags were believed to be a significant improvement over the drums, buckets and cans previously used. Use of the bags was therefore instituted with DECS-1, the first sample collected under the contract. Twenty-two DECS samples were collected, ranging in rank from lignite to anthracite and representing the five most productive coal provinces of the US. Over 6500 containers of DECS samples were created under the contract and 750 containers of 34 PSOC samples are supported by the contract. Each sample was characterized by proximate and ultimate analysis, petrographic (vitrinite reflectance and maceral) analysis, physical and thermoplastic testing, and inorganic element analysis. The resulting data, and geologic data on each sample, were entered in a data base which can be used to produce a formatted five-page or one-page printout for each sample. An interactively operated data base can be searched, sorted or summarized to produce tables of selected data or to identify samples meeting a requestor`s criteria. During the period covered, 2,313 printouts, and 204 special data reports resulting in distribution of data on 34,086 samples, were provided on request.

  14. Structural parameters of perhydrous Indian coals

    Energy Technology Data Exchange (ETDEWEB)

    Khare, P.; Baruah, B.P. [CSIR, Jorhat (India). North East Institute of Science & Technology

    2010-07-01

    Higher hydrogen content of perhydrous coals exhibits a different composition and physicochemical properties in comparison with normal coals. In the present investigation, a structural study of perhydrous coals and coke was done using FTIR and HPLC data. These coals have high volatile matter with high-calorific values and low-moisture content. The structural study suggests that the major structural units of these coals are simple phenols with para-alkyl substituted derivatives. They have high alkyl substitution groups and low aromatic compounds. The structural studies reveal that these coals contain high amounts of low-molecular weight PAH compounds with 1-2 ring structures. These 1-2 ring structures have high H/C ratios as compared to large ring polyaromatic hydrocarbons (PAHs). It may also be one of the reasons for high H/C ratios in these coals. The alkyl groups contribute significantly to their high volatile matter (VM) contents. The presence of alcoholic groups found in pyrolytic products may also be due to the conversion of catechol-like structures to those of cresols. Coal properties, such as moisture, VM, H/C ratio, and CV, do not correlate with the rank as normally classified. A definite relationship has been found between the characteristics of these coals, char/cokes, and aromatic characters (f{sub a}, H{sub ar}).

  15. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications

    Energy Technology Data Exchange (ETDEWEB)

    Sotiriou, Georgios A.; Singh, Dilpreet; Zhang, Fang [Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115 (United States); Chalbot, Marie-Cecile G. [Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Spielman-Sun, Eleanor [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Hoering, Lutz [BASF SE, Material Physics, 67056 Ludwigshafen (Germany); Kavouras, Ilias G. [Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Lowry, Gregory V. [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Wohlleben, Wendel [Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115 (United States); BASF SE, Material Physics, 67056 Ludwigshafen (Germany); Demokritou, Philip, E-mail: pdemokri@hsph.harvard.edu [Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115 (United States)

    2016-03-15

    Highlights: • Nano-enabled products might reach their end-of-life by thermal decomposition. • Thermal decomposition provides two by-products: released aerosol and residual ash. • Is there any nanofiller release in byproducts? • Risk assessment of potential environmental health implications. - Abstract: Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of widely used NEPs, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications.

  16. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  17. Sumpor u ugljenu (Sulphur in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2004-12-01

    utilisation of coals with low sulphur concentrations (typically < 1 wt %, the removal of cleaning prior to utilisation. The methods for the removal of sulphur from coal can be divided into: physical, chemical and microbiological. The mineral sulphur components can be removed or reduced by commercial methods of coal washing, flotation and agglomeration. A number of chemical desulphurization for the removal of, both, pyritic and organic sulphur have been advocated. The chemical desulphurization methods however, have two major drawbacks. Namely, they are often expensive and they destroy the caking properties of coal. Certain microorganisms have been used to consume or convert selectively most of the pyritic sulphur as well as some of the organic sulphur in coal. The process is also cheaper than chemical desulphurization and does not affect the caking properties of coking coal.

  18. Physical and chemical coal cleaning

    Science.gov (United States)

    Wheelock, T. D.; Markuszewski, R.

    1981-02-01

    Coal is cleaned industrially by freeing the occluded mineral impurities and physically separating the coal and refuse particles on the basis of differences in density, settling characteristics, or surface properties. While physical methods are very effective and low in cost when applied to the separation of coarse particles, they are much less effective when applied to the separation of fine particles. Also they can not be used to remove impurities which are bound chemically to the coal. These deficiencies may be overcome in the future by chemical cleaning. Most of the chemical cleaning methods under development are designed primarily to remove sulfur from coal, but several methods also remove various trace elements and ash-forming minerals. Generally these methods will remove most of the sulfur associated with inorganic minerals, but only a few of the methods seem to remove organically bound sulfur. A number of the methods employ oxidizing agents as air, oxygen, chlorine, nitrogen dioxide, or a ferric salt to oxidize the sulfur compounds to soluble sulfates which are then extracted with water. The sulfur in coal may also be solubilized by treatment with caustic. Also sulfur can be removed by reaction with hydrogen at high temperature. Furthermore, it is possible to transform the sulfur bearing minerals in coal to materials which are easily removed by magnetic separation.

  19. Underground coal gasification - the Velenje Coal Mine energy and economic calculations

    Directory of Open Access Journals (Sweden)

    Konovšek Damjan

    2017-01-01

    Full Text Available Underground coal gasification (UCG is a viable possibility for the exploitation of vast coal deposits that are unreachable by conventional mining and can meet the energy, economic and environmental demands of the 21st century. Due to the complexity of the process, and the site-specific coal and seam properties, it is important to acknowledge all the available data and past experiences, in order to conduct a successful UCG operation. Slovenia has huge unmined reserves of coal, and therefore offers the possibility of an alternative use of this domestic primary energy source. According to the available underground coal gasification technology, the energy and economic assessment for the exploitation of coal to generate electricity and heat was made. A new procedure for the estimation of the energy efficiency of the coal gasification process, which is also used to compare the energy analyses for different examples of coal exploitation, was proposed, as well as the technological schemes and plant operating mode in Velenje, and the use of produced synthetic coal gas (syngas. The proposed location for the pilot demonstration experiment in Velenje Coal Mine was reviewed and the viability of the underground coal gasification project in Velenje was determined.

  20. Processing of bituminous coal tar at high temperature with bituminous coal additive

    Energy Technology Data Exchange (ETDEWEB)

    von Hartmann, G.B.; Hupfer, H.; Leonhardt, P.

    1943-05-10

    In short tests, results of the effects of a bituminous coal addition to the processing of tar and pitch were obtainable. Coal used was that from the Heinitz Mines (Upper Silesian), saturated with 1--1.2% iron sulphate. On a mixture of bituminous coal tar residue and tar oil, with a relatively low level of solids and asphalt, a substitution was made for the addition of 2% alkalized iron-grude-catalyst with 20% coal. The same yield was reached using a straight-run procedure. The coal gave somewhat more gasification and additional asphalt in the sludge without increasing the solids content correspondingly. In spite of this, the carbonization results were somewhat improved, which led one to conclude that the coal addition fostered the decomposition of the tar asphalt, and, that the asphalt from the coal could be better carbonized than that out of the tar. One found, also, that the tar mixture with coal additive permitted trouble-free hydrogenation to gasoline and middle oil. Still another short test met with success. A bituminous coal tar pitch containing 24% benzene solids and 36% asphalt, which could not be processed with iron catalyst or even molybdenum-grude, was hydrogenated to gasoline and middle oil with a usable yield of .25 by a 20--25% addition of coal. Here too, the carbonization results were good. The addition of coal had no notable influence on the properties of the resulting oils. The document included test procedures. 11 tables.

  1. Interfacial Stress Transfer in an Aramid Reinforced Thermoplastic Elastomer

    OpenAIRE

    Coffey, Austin

    2007-01-01

    Abstract The interfacial micromechanics of Twaron 2200 aramid fibers in an engineering thermoplastic elastomer (Pebax 7033, polyether amide block co-polymer) has been investigated by determining the distribution of interfacial shear stress along fibers in single-fiber model composites using Raman spectroscopy. The effects of various fiber surface treatments on the interfacial shear stress and fragmentation of the aramid fibers are discussed. The fiber average stress in...

  2. The Place for Thermoplastic Composites in Structural Components

    Science.gov (United States)

    1987-12-01

    hydroforming of thermoplastics is so attractive is that it takes advantage of sheet-metal forming technology that has been in development for many years. High ...interfacial bond strength and fracture energies (Table D-1). Note the high bond strength of treated type I fibers and a correspondingly low fracture energy ...value, indicating little energy dissipated in the pull-out of fractured fibers. The untreated type I fibers have a low bond strength and a high pull-out

  3. Thermoplastic polymers surfaces for Dip-Pen Nanolithography of oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Suriano, Raffaella [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Biella, Serena, E-mail: serena.biella@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Cesura, Federico; Levi, Marinella; Turri, Stefano [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2013-05-15

    Different thermoplastic polymers were spin-coated to prepare smooth surfaces for the direct deposition of end-group modified oligonucleotides by Dip-Pen Nanolithography. A study of the diffusion process was done in order to investigate the dependence of calibration coefficient and quality of deposited features on environmental parameters (temperature, relative humidity) and ink's molecular weight and functionality. The optimization of the process parameters led to the realization of high quality and density nanoarrays on plastics.

  4. Process for preparing tapes from thermoplastic polymers and carbon fibers

    Science.gov (United States)

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  5. Shear Strength of Single Lap Joint Aluminium-Thermoplastic Natural Rubber (Al-TPNR) Laminated Composite

    Science.gov (United States)

    Muzakkar, M. Z.; Ahmad, S.; Yarmo, M. A.; Jalar, A.; Bijarimi, M.

    2013-04-01

    In this work, we studied the effect of surface treatment on the aluminium surface and a coupling agent to improve adhesion between aluminium with organic polymer. Thermoplastic natural rubber (TPNR) matrix was prepared by melt blending of natural rubber (NR), liquid natural rubber (LNR) compatibilizer, linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH). The PEgMAH concentration used was varied from 0% - 25%. In addition, the aluminium surface was pre-treated with 3-glycidoxy propyl trimethoxy silane (3-GPS) to enhance the mechanical properties of laminated composite. It was found that the shear strength of single lap joint Al-TPNR laminated composite showing an increasing trend as a function of PE-g-MAH contents for the 3-GPS surface treated aluminium. Moreover, the scanning electron microscope (SEM) revealed that the strength improvement was associated with the chemical state of the compound involved.

  6. Degradation assessment of natural weathering on low density polyethylene/thermoplastic soya spent powder blends

    Science.gov (United States)

    Nuradibah, M. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.

    2015-07-01

    Soya spent powder was blended with low density polyethylene (LDPE) ranging from 5-25 wt%. Glycerol was added to soya spent powder (SSP) for preparation of thermoplastic soya spent powder (TSSP). Then, the blends were exposed to natural weathering for 6 months. The susceptibility of the LDPE/soya spent powder blends based on its tensile, morphological properties and structural changes was measured every three months. The tensile strength of LDPE/TSSP blends after 6 months of weathering was the lowest compared to the other blends whereas LDPE/SSP blends after 6 months of weathering demonstrated the lowest elongation at break (Eb). Large pore can be seen on the surface of 25 wt% of LDPE/SSP blends.

  7. Enzymatic Synthesis and Chemical Recycling of Novel Polyester-Type Thermoplastic Elastomers

    Directory of Open Access Journals (Sweden)

    Tsukuru Yagihara

    2012-06-01

    Full Text Available Novel polyester-type thermoplastic elastomers based on poly(alkylene succinates were synthesized by the lipase-catalyzed copolymerization of cyclic diol/succinate oligomer and cyclic diol/alkylthiosuccinate oligomer. These copolymers exhibited biodegradabilities by activated sludge and a wide range of thermal and mechanical properties that were dependent on the molecular structure and the content of side alkylthio groups. The degree of crystallinity of the copolymer decreased with increasing content of alkylthio groups, which were introduced into the polymer chain as a soft segment. Furthermore, lipase-catalyzed depolymerization of these copolymers into cyclic oligomers and repolymerization of the oligomers was carried out. A repolymerized copolymer having the same Mw and monomer composition as the initial copolymer was obtained, indicating the chemical recyclability of the copolymer.

  8. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    Science.gov (United States)

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  9. Coal liquefaction

    Science.gov (United States)

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  10. Chemical and Pyrolytic Thermogravimetric Characterization of Nigerian Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The discovery of new coal deposits in Nigeria presents solutions for nation’s energy crises and prospects for socioeconomic growth and sustainable development. Furthermore, the quest for sustainable energy to limit global warming, climate change, and environmental degradation has necessitated the exploration of alternatives using cleaner technologies such as coal pyrolysis. However, a lack of comprehensive data on physico-chemical and thermal properties of Nigerian coals has greatly limited their utilization. Therefore, the physico-chemical properties, rank (classification, and thermal decomposition profiles of two Nigerian bituminous coals – Afuze (AFZ and Shankodi-Jangwa (SKJ – were examined in this study. The results indicate that the coals contain high proportions of C, H, N, S, O and a sufficiently high heating value (HHV for energy conversion. The coal classification revealed that the Afuze (AFZ coal possesses a higher rank, maturity, and coal properties compared to the Shankodi-Jangwa (SKJ coal. A thermal analysis demonstrated that coal pyrolysis in both cases occurred in three stages; drying (30-200 °C, devolatilization (200-600 °C, and char decomposition (600-1000 °C. The results also indicated that pyrolysis at 1000 °C is not sufficient for complete pyrolysis. In general, the thermochemical and pyrolytic fuel properties indicate that the coal from both places can potentially be utilized for future clean energy applications.

  11. Influence of moisture absorption on properties of fiber reinforced polyamide 6 composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Løgstrup Andersen, Tom; Lystrup, Aage

    2011-01-01

    A state-of-the art study of thermoplastic polymer matrix materials for fiber composites has identified polyamide 6 (PA6) as a potential candidate thermoplastic polymer relevant for manufacturing large composite structures like wind turbine blades. The mechanical properties of PA6 are highly...

  12. Mathematical modeling of the in-mold coating process for injection-molded thermoplastic parts

    Science.gov (United States)

    Chen, Xu

    In-Mold Coating (IMC) has been successfully used for many years for exterior body panels made from compression molded Sheet Molding Compound (SMC). The coating material is a single component reactive fluid, designed to improve the surface quality of SMC moldings in terms of functional and cosmetic properties. When injected onto a cured SMC part, IMC cures and bonds to provide a pain-like surface. Because of its distinct advantages, IMC is being considered for application to injection molded thermoplastic parts. For a successful in mold coating operation, there are two key issues related to the flow of the coating. First, the injection nozzle should be located such that the thermoplastic substrate is totally covered and the potential for air trapping is minimized. The selected location should be cosmetically acceptable since it most likely will leave a mark on the coated surface. The nozzle location also needs to be accessible for easy of maintenance. Secondly, the hydraulic force generated by the coating injection pressure should not exceed the available clamping tonnage. If the clamping force is exceeded, coating leakage will occur. In this study, mathematical models for IMC flow on the compressible thermoplastic substrate have been developed. Finite Difference Method (FDM) is first used to solve the 1 dimensional (1D) IMC flow problem. In order to investigate the application of Control Volume based Finite Element Method (CV/FEM) to more complicated two dimensional IMC flow, that method is first evaluated by solving the 1D IMC flow problem. An analytical solution, which can be obtained when a linear relationship between the coating thickness and coating injection pressure is assumed, is used to verify the numerical results. The mathematical models for the 2 dimensional (2D) IMC flow are based on the generalized Hele-Shaw approximation. It has been found experimentally that the power law viscosity model adequately predicts the rheological behavior of the coating

  13. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  14. Thermoplastic elastomer with advanced hydrophilization and bonding performances for rapid (30 s) and easy molding of microfluidic devices.

    Science.gov (United States)

    Lachaux, Julie; Alcaine, Clara; Gómez-Escoda, Blanca; Perrault, Cécile M; Duplan, David Olea; Wu, Pei-Yun Jenny; Ochoa, Iñaki; Fernandez, Luis; Mercier, Olaf; Coudreuse, Damien; Roy, Emmanuel

    2017-07-25

    One of the most important areas of research on microfluidic technologies focuses on the identification and characterisation of novel materials with enhanced properties and versatility. Here we present a fast, easy and inexpensive microstructuration method for the fabrication of novel, flexible, transparent and biocompatible microfluidic devices. Using a simple hot press, we demonstrate the rapid (30 s) production of various microfluidic prototypes embossed in a commercially available soft thermoplastic elastomer (sTPE). This styrenic block copolymer (BCP) material is as flexible as PDMS and as thermoformable as classical thermoplastics. It exhibits high fidelity of replication using SU-8 and epoxy master molds in a highly convenient low-isobar (0.4 bar) and iso-thermal process. Microfluidic devices can then be easily sealed using either a simple hot plate or even a room-temperature assembly, allowing them to sustain liquid pressures of 2 and 0.6 bar, respectively. The excellent sorption and biocompatibility properties of the microchips were validated via a standard rhodamine dye assay as well as a sensitive yeast cell-based assay. The morphology and composition of the surface area after plasma treatment for hydrophilization purposes are stable and show constant and homogenous distribution of block nanodomains (∼22° after 4 days). These domains, which are evenly distributed on the nanoscale, therefore account for the uniform and convenient surface of a "microfluidic scale device". To our knowledge, this is the first thermoplastic elastomer material that can be used for fast and reliable fabrication and assembly of microdevices while maintaining a high and stable hydrophilicity.

  15. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  16. Sources of coal reserve data

    Energy Technology Data Exchange (ETDEWEB)

    Skolits, D.; Lee, R.

    1982-11-01

    This report is a partially annotated bibliography of sources of coal reserve data and information for the United States. The references are divided into General Sources, including those containing data for all or large portions of the United States, and into individual sections for each state. Items that are parts of recurring series are identified by an asterick. In addition to the bibliographies, the authors conducted an independent survey of appropriate data sources. Attention was given primarily to those data sources having estimates of the quantity and geographical location of coal resources. Studies that report only on carbonizing properties, preparation characteristics, sulfur content or other analyses were not included.

  17. The behaviour of coal blends in power station boilers

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.; Horne, P.A.; McGhee, B.F.; Gibson, J.R. [Mitsui Babcock Energy Ltd., Renfrew (United Kingdom)

    1998-12-31

    The milling characteristics of coal blends were studied to provide quantitative information which allows the calculation of the Hardgrove Index (HGI) values of coal blends from those of the constituent coals; to provide data on the power requirement to produce a given mill output fineness, and abrasion rates of mill components when milling coal blends, relative to the behaviour of the constituent coals; to investigate the combustion behaviour of coal blends in pulverized fuel-fired systems by carrying out testwork in a semi-industrial combustion test facility, and to assess the deposition characteristics and the potential for utilization of the ashes produced by the combustion of coal blends. It was found that both the HGI and the Abrasion Index values of coals are additive properties. There were linear correlations between the slope of the Rosin-Rammler plot of the Mini-mill product size distribution and both the blend compositions and the HGI values of the coals and coal blends. Investigations showed that the fusion behaviour of the coal ash blends is rather complex, and that the characteristic ash fusion temperature are not additive in a simple way. A number of correlations were found between the ash fusion temperatures of the coals and coal ash blends. 1 ref., 45 figs., 10 tabs., 1 app.

  18. Enhancement of mechanical properties and interfacial adhesion by chemical odification of natural fibre reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Erasmus, E

    2008-11-01

    Full Text Available Natural fibres are often used for reinforcing thermoplastics, like polypropylene, to manufacture composite materials exhibiting numerous advantages such as high mechanical properties, low density and biodegradability. The mechanical properties of a...

  19. Steam coal forecaster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This quarterly forecasting service provides a short-term analysis and predictions of the international steam coal trade. Sections are entitled: market review; world steam coal at a glance; economics/foreign exchange; demand (reviewing the main purchasing companies country-by-country); supply (country-by-country information on the main producers of steam coal); and freight. A subscription to Steam Coal Forecaster provides: a monthly PDF of McCloskey's Steam Coal Forecaster sent by email; access to database of stories in Steam Coal Forecaster via the search function; and online access to the latest issue of Steam Coal.

  20. Lactic acid polymers: strong, degradable thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrenberg, R.H.

    1981-01-01

    Copolymers of lactic and glycolic acids are being developed by researchers at Battelle and elsewhere as renewable-resource plastics. Other uses include matrices for controlled release of drugs and pesticides as well as in prosthetic devices. In contrast to conventional plastics, lactic acid polymers are biodegradable, and after several months exposure to moisture, these materials convert back to natural harmless products. The properties of lactic acid polymers are examined.

  1. Printing Electronic Components from Copper-Infused Ink and Thermoplastic Mediums

    Science.gov (United States)

    Flowers, Patrick F.

    resistors with resistances spanning 3 orders of magnitude. The carbon black and graphene filaments were brittle and fractured easily, but the copper-based filament could be bent at least 500 times with little change in its resistance. Impedance measurements made on the thermoplastic filaments demonstrate that the copper-based filament had an impedance similar to a conductive PCB trace at 1 MHz. Dual material 3D printing was used to fabricate a variety of inductors and capacitors with properties that could be predictably tuned by modifying either the geometry of the components, or the materials used to fabricate the components. These resistors, capacitors, and inductors were combined to create a fully 3D printed high-pass filter with properties comparable to its conventional counterparts. The relatively low impedance of the copper-based filament enable its use to 3D print a receiver coil for wireless power transfer. We also demonstrate the ability to embed and connect surface mounted components in 3D printed objects with a low-cost ($1,000 in parts), open source dual-material 3D printer. This work thus demonstrates the potential for FFF 3D printing to create complex, three-dimensional circuits composed of either embedded or fully-printed electronic components.

  2. Characterisation of metal–thermoplastic composite hybrid joints by means of a mandrel peel test

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthias B.; Grouve, Wouter Johannes Bernardus; Warnet, Laurent

    2016-01-01

    Fastener free metal–carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the metal–thermoplastic composite interface is crucial for the performance of the entire hybrid joint. Optimisation of the interface requires an

  3. Determination of carbon fiber adhesion to thermoplastic polymers using the single fiber/matrix tensile test

    Science.gov (United States)

    Bascom, W. D.; Cordner, L. W.; Hinkley, J. L.; Johnston, N. J.

    1986-01-01

    The single fiber adhesion shear test has been adapted to testing the adhesion between carbon fiber and thermoplastic polymers. Tests of three thermoplastics, polycarbonate, polyphenylene oxide and polyetherimide indicate the shear adhesion strength is significantly less than of an epoxy polymer to the same carbon fiber.

  4. Effects of weathering on color loss of natural fiber : thermoplastic composites

    Science.gov (United States)

    Robert H. Falk; Colin. Felton; Thomas. Lundin

    2000-01-01

    The technology currently exists to manufacture natural fiber-thermoplastic composites from recycled materials. Development of commodity building products from these composites would open huge markets for waste-based materials in the United States. To date, the construction industry has only accepted wood-thermoplastic composite lumber and only for limited applications...

  5. The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthijn; Grouve, Wouter; Akkerman, Remko

    2017-01-01

    Co-consolidated titanium – carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the interface between the titanium and the thermoplastic composite is crucial for the strength of the entire hybrid joint. Application of a

  6. Method for bonding a thermoplastic polymer to a thermosetting polymer component

    NARCIS (Netherlands)

    Van Tooren, M.J.L.

    2012-01-01

    The invention relates to a method for bonding a thermoplastic polymer to a thermosetting polymer component, the thermoplastic polymer having a melting temperature that exceeds the curing temperature of the thermosetting polymer. The method comprises the steps of providing a cured thermosetting

  7. Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites

    Science.gov (United States)

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. The WPC typically use virgin or recycled thermoplastic as the substrate and wood fiber as the filler. A major application of the WPC is in non-structural building appli...

  8. Effects of weathering on color loss of natural fiber thermoplastic composites

    Science.gov (United States)

    R.H. Falk; C. Felton; T. Lundin

    2001-01-01

    The technology currently exists to manufacture natural fiber thermoplastic composites from recycled materials. Development of commodity-building products from these composites would open up huge markets for waste-based materials in the US. To date, the construction industry has only accepted wood thermoplastic composite lumber (and only for limited applications). In...

  9. Tool-ply friction in thermoplastic composite forming (CD-rom)

    NARCIS (Netherlands)

    ten Thije, R.H.W.; Akkerman, Remko; van der Meer, L.; Ubbink, M.P.; Boisse, P.

    2008-01-01

    Friction is an important phenomenon that can dominate the resulting product geometry of thermoplastic composites upon forming. A model was developed that predicts the friction between a thermoplastic laminate and a rigid tool. The mesoscopic model, based on the Reynolds’ equation for thin film

  10. Fuel Characterization of Newly Discovered Nigerian Coals

    Science.gov (United States)

    Bevan Nyakuma, Bemgba; Oladokun, Olagoke; Jauro, Aliyu; Damian Nyakuma, Denen

    2017-07-01

    This study seeks to characterize and highlight the fuel properties, rank, and classification of coals from Ihioma (IHM) and Ogboligbo (OGB) in Imo and Kogi states of Nigeria, respectively. The fuel properties were examined based on ultimate, proximate, and bomb calorific analyses. The results indicated that IHM coal contains comparatively higher C and H but lower O, N, and S content than OGB. In addition, the nitrogen (N) and sulphur (S) content for both coal samples were above 0.7 wt.% and 1.5 wt.%, respectively, which indicates high potential for pollutant emissions. Furthermore, the coal proximate properties were below 5 wt.% for Moisture; Volatiles (70 wt.%); Fixed Carbon (45 wt.%) and Ash (2.5 wt.%) on average. IHM coal has an HHV of 19.40 MJ/kg whereas OGB is 15.55 MJ/kg. This is due to the low carbon (C), hydrogen (H) and high oxygen (O) content in OGB whereas IHM contains higher VM and HHV. Furthermore, OGB presents better handling, storage, and transport potential. Furthermore, OGB has a higher fuel ratio and value index due to lower moisture, ash content, and volatiles. Based on the ASTM D388 standard, the coals were classified as Lignite (Brown) Low-Rank Coals (LRCs) with potential for energy recovery.

  11. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  12. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  13. Technical problems of coal-liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Sakabe, T.

    1974-10-01

    A discussion based partly on the author's experience with a 60 kg/day pilot plant for coal paste liquefaction operated by the Japan National Research Institute for Pollution and Resources from 1956 to 1961 covers the hydrogenation technology developed by I.G. Farbenindustrie in the 1930's, including composition and properties of the coal and the coal/oil/catalyst paste, heat exchange and energy requirement, and reaction conditions, catalysts, and products of the German industrial plants of the 1930's and 1940's, the demonstration plant of the U.S. Bureau of Mines (1949 to 1952), and the Japanese test plant; and brief surveys of the process developed by Carbide and Carbon Chem. Co., the CSF method by Consolidated Coal Co., and the H-Coal process by Hydrocarbon Research, Inc.

  14. Lower cost gasification power cycles for Australian coals and conditions

    Energy Technology Data Exchange (ETDEWEB)

    Louis Wibberley; Doug Palfreyman; Peter Scaife

    2008-03-15

    The report gives an assessment of the thermal efficiency, water consumption, flexibility and comparative costs of several alternative IGCC concepts for a range of Australian coals. Other novel configurations are also considered, especially for smaller scale (<100 MW) plants. The premise for the study is that the best options for Australia may not be the same as for other regions, due to differences in coal properties, local availability of coal seam gas and coal mine waste coal, demographics, water resources, increasing peak demands, and the need for smaller efficient, efficient dry-cooled decentralised plants. 36 refs., 39 figs., 12 tabs.

  15. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    Energy Technology Data Exchange (ETDEWEB)

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  16. Quantitative determination of modal content and morphological properties of coal sulphides by digital image analysis as a tool to check their flotation behaviour

    Energy Technology Data Exchange (ETDEWEB)

    E. Coz; R. Castroviejo; D. Bonilla; F.J. Garcia Frutos [ETS Ingenieros de Minas, Madrid (Spain)

    2003-10-01

    An efficient depression of coal sulphides in the flotation process means a healthier environment and may be essential for the sustainability of a coal operation. Nitric and ferric oxidative pre-treatment of coal pyrite have been tested to improve pyrite depression, and the results are compared with those from the process of raw, not pre-treated coal. The removal indexes point to nitric pre-treatment as the best, but depression is still low. The microscopic study of feed and products, coupled to Digital Image Analysis (DIA) in all the cases, provide important clues to understand the behaviour of pyrite, which can be related to quantitative parameters, such as the exposition ratio (ER), and to qualified interpretation of the textures. Pyrite shows in the first float an unexpected hydrophobic behaviour, which is due to its occurrence as framboids, or porous particles which may be intergrown with organic matter and behave as coal. In general, the flotation results can be predicted from the DIA-data, e.g. depression of liberated pyrite into the tailings, increased by oxidative pre-treatments by 300% (ferric) or by >400% (nitric); or concentration of middlings with lower pyrite ER in the floats. DIA is an efficient tool to obtain some important quantitative informations which otherwise would be inaccessible (e.g. the morphological data on >1,000,000 pyrite particles for this study), and its use should be enhanced to check ore processing. 10 refs., 10 figs., 5 tabs.

  17. Production of cenospheres from coal fly ash through vertical thermal flame (VTF) process

    OpenAIRE

    Soh, WM; J. Tan; Heng, JYY; Cheeseman, C

    2016-01-01

    Coal fly ash is a complex mixture of anthropogenic materials produced during the combustion of pulverised coal in coal fired power plants. They pose environmental concerns that lead to air and water pollution. Effort has been done to reduce the production of coal fly ash or to extract potentially valuable products from coal fly ash, such as cenospheres. Cenospheres are light, low density, thin-walled hollow ceramic microsphere with unique properties. Conventional cenosphere production methods...

  18. Petrographic characterization of Kentucky coals. Quarterly progress report, March 1982-May 1982

    Energy Technology Data Exchange (ETDEWEB)

    Hower, J.C.; Ferm, J.C.; Cobb, J.C.; Trinkle, E.J.; Frankie, K.A.; Poe, S.H.; Baynard, D.N.; Graese, A.M.; Raione, R.P.

    1982-01-01

    The project Petrographic characterization of Kentucky coals consists of three specific areas of coal petrology: spectral fluorescence of liptinite macerals, properties of semi-inert macerals, and size/form/microlithotype association of pyrite/marcasite. Additional research on the Mannington and Dunbar coals in western Kentucky and the Alma coal zone in eastern Kentucky will apply techniques developed in the first three areas. Suites of coals from other states will also be studied to expand the variability in the sample set.

  19. Structural, thermal and surface characterization of thermoplastic polyurethanes based on poly(dimethylsiloxane

    Directory of Open Access Journals (Sweden)

    Pergal Marija V.

    2014-01-01

    Full Text Available In this study, the synthesis, structure and physical properties of two series of thermoplastic polyurethanes based on hydroxypropyl terminated poly(dimethylsiloxane (HP-PDMS or hydroxyethoxy propyl terminated poly(dimethylsiloxane (EO-PDMS as a soft segment, and 4,4’-methylenediphenyl diisocyanate and 1,4-butanediol as a hard segment were investigated. Each series is composed of samples prepared with a different soft segment. The polyurethanes were synthesized by two-step polyaddition in solution. The effects of the type and content of PDMS segments on the structure, thermal and surface properties of copolymers were studied by 1H NMR, 13C NMR and two-dimensional NMR (HMBC and ROESY spectroscopy, GPC, DSC, TGA, WAXS, SEM, water contact angle and water absorption measurements. Thermal properties investigated by DSC indicated that the presence of soft PDMS segments lowers the glass transition and melting temperatures of the hard phase as well as the degree of crystallinity. SEM analysis of copolymers with a lower soft segment content confirmed the presence of spherulite superstructures, which arise from the crystallization of the hard segments. When compared with polyurethanes prepared from HP-PDMS, copolymers synthesized from EO-PDMS with the same content of the soft segments have higher degree of crystallinity, better thermal stability and less hydrophobic surface. Our results show that the synthesized polyurethanes have good thermal and surface properties, which could be further modified by changing the type or content of the soft segments.

  20. Preparation and Characterization of Cellulose Nanofibril Films from Wood Fibre and Their Thermoplastic Polycarbonate Composites

    Directory of Open Access Journals (Sweden)

    S. Panthapulakkal

    2012-01-01

    Full Text Available The aim of this study was to develop cellulose-nanofibril-film-reinforced polycarbonate composites by compression molding. Nano fibres were prepared from wood pulp fibres by mechanical defibrillation, and diameter distribution of the fibres produced was in the range of 1–100 nm. Nanofibre films were prepared from the nanofibre suspensions and were characterized in terms of strength properties, crystallinity, and thermal properties. Strength and modulus of the nano fibre films prepared were 240 MPa and 11 GPa, respectively. Thermal properties of the sheets demonstrated the suitability of processing fibre sheets at high temperature. Tensile properties of the films subjected to composite-processing conditions demonstrated the thermal stability of the fibre films during the compression molding process. Nanocomposites of different fibre loads were prepared by press-molding nano fibre sheets with different thickness in between polycarbonate sheet at 205°C under pressure. The tensile modulus and strength of the polycarbonate increased with the incorporation of the fibres. The strength of the thermoplastic increased 24% with 10% of the fibres and is increased up to 30% with 18% of the fibres. Tensile modulus of the polycarbonate demonstrated significant enhancement (about 100%.

  1. Production and 3D printing processing of bio-based thermoplastic filament

    Directory of Open Access Journals (Sweden)

    Gkartzou Eleni

    2017-01-01

    Full Text Available In this work, an extrusion-based 3D printing technique was employed for processing of biobased blends of Poly(Lactic Acid (PLA with low-cost kraft lignin. In Fused Filament Fabrication (FFF 3D printing process, objects are built in a layer-by-layer fashion by melting, extruding and selectively depositing thermoplastic fibers on a platform. These fibers are used as building blocks for more complex structures with defined microarchitecture, in an automated, cost-effective process, with minimum material waste. A sustainable material consisting of lignin biopolymer blended with poly(lactic acid was examined for its physical properties and for its melt processability during the FFF process. Samples with different PLA/lignin weight ratios were prepared and their mechanical (tensile testing, thermal (Differential Scanning Calorimetry analysis and morphological (optical and scanning electron microscopy, SEM properties were studied. The composition with optimum properties was selected for the production of 3D-printing filament. Three process parameters, which contribute to shear rate and stress imposed on the melt, were examined: extrusion temperature, printing speed and fiber’s width varied and their effect on extrudates’ morphology was evaluated. The mechanical properties of 3D printed specimens were assessed with tensile testing and SEM fractography.

  2. Development and characterization of advanced silicon based thermoplastic elastomers for PV encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Oreski, G. [Polymer Competence Center Leoben GmbH, Leoben (Austria); Randel, P. [Wacker Chemie AG, Burghausen (Germany)

    2010-07-01

    The identification and qualification of new materials for solar cell encapsulation is a major focus in PV research. Silicon-based thermoplastic elastomers (TPSE) are a promising candidate material for PV solar cell encapsulation. They combine thermoplastic processability with outstanding silicon properties, like low temperature flexibility or high UV resistance. Several TPSE formulations with different chemical composition, molar mass and UV absorber content were investigated and exposed to temperature and moisture (damp heat test). To describe chemical degradation and physical aging, reference and aged materials were characterized by infrared spectroscopy in attenuated total reflection mode (ATR), by UV/VIS/NIR spectroscopy, by dynamic mechanical analysis (DMA) and by tensile tests. All investigated TPSE films are highly transparent in the solar range, showing high transmittance values around 0.9. TPSE films are highly flexible with a ductile behavior and low elastic modulus values in a wide temperature range from -50 to 100 C. Chemical composition, molar mass and UV absorber content affected the mechanical properties and the softening temperature (70 to 100 C) as well as the aging behavior of the investigated TPSE films. The observed yellowing after aging was strongly dependent on polymerization parameters. Also the thermo-mechanical properties were significantly influenced by damp heat testing and physical aging was observed. Furthermore, a softening effect, which shifted the softening temperature seen with the DMA to lower temperatures, was induced by the high humidity level. Assumedly humidity is a more critical factor than temperature or UV radiation. Based on these findings, enhanced TPSE formulations with advanced weathering stability and better thermo-mechanical properties have been developed and investigated. After damp heat tests, the new materials exhibited less yellowing than comparable solar cell encapsulation materials. Also the thermo

  3. Use of Vacuum Bagging for Fabricating Thermoplastic Microfluidic Devices

    Science.gov (United States)

    Cassano, Christopher L.; Simon, Andrew J.; Liu, Wei; Fredrickson, Carl; Fan, Z. Hugh

    2014-01-01

    In this work we present a novel thermal bonding method for thermoplastic microfluidic devices. This simple method employs a modified vacuum bagging technique, a concept borrowed from the aerospace industry, to produce conventional thick substrate microfluidic devices, as well as multi-layer film devices. The bonds produced using this method are superior to those obtained using conventional thermal bonding methods, including thermal lamination, and are capable of sustaining burst pressures in excess of 550 kPa. To illustrate the utility of this method, thick substrate devices were produced, as well as a six-layer film device that incorporated several complex features. PMID:25329244

  4. FIBER ORIENTATION IN INJECTION MOLDED LONG CARBON FIBER THERMOPLASTIC COMPOSITES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin; Nguyen, Ba Nghiep; Mathur, Raj N.; Sharma, Bhisham; Sangid, Michael D.; Costa, Franco; Jin, Xiaoshi; Tucker III, Charles L.; Fifield, Leonard S.

    2015-03-23

    A set of edge-gated and center-gated plaques were injection molded with long carbon fiber-reinforced thermoplastic composites, and the fiber orientation was measured at different locations of the plaques. Autodesk Simulation Moldflow Insight (ASMI) software was used to simulate the injection molding of these plaques and to predict the fiber orientation, using the anisotropic rotary diffusion and the reduced strain closure models. The phenomenological parameters of the orientation models were carefully identified by fitting to the measured orientation data. The fiber orientation predictions show very good agreement with the experimental data.

  5. Nanoimprint technology nanotransfer for thermoplastic and photocurable polymers

    CERN Document Server

    Taniguchi, Jun; Mizuno, Jun; Saito, Takushi

    2013-01-01

    Nanoscale pattern transfer technology using molds is a rapidly advancing area and one that has seen much recent attention due to its potential for use in nanotechnology industries and applications. However, because of these rapid advances, it can be difficult to keep up with the technological trends and the latest cutting-edge methods. In order to fully understand these pioneering technologies, a comprehensive understanding of the basic science and an overview of the techniques are required. Nanoimprint Technology: Nanotransfer for Thermoplastic and Photocurable Polymers covers

  6. Computational modelling of a thermoforming process for thermoplastic starch

    Science.gov (United States)

    Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.

    2007-05-01

    Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its

  7. Induction Consolidation of Thermoplastic Composites Using Smart Susceptors

    Energy Technology Data Exchange (ETDEWEB)

    Matsen, Marc R

    2012-06-14

    This project has focused on the area of energy efficient consolidation and molding of fiber reinforced thermoplastic composite components as an energy efficient alternative to the conventional processing methods such as autoclave processing. The expanding application of composite materials in wind energy, automotive, and aerospace provides an attractive energy efficiency target for process development. The intent is to have this efficient processing along with the recyclable thermoplastic materials ready for large scale application before these high production volume levels are reached. Therefore, the process can be implemented in a timely manner to realize the maximum economic, energy, and environmental efficiencies. Under this project an increased understanding of the use of induction heating with smart susceptors applied to consolidation of thermoplastic has been achieved. This was done by the establishment of processing equipment and tooling and the subsequent demonstration of this fabrication technology by consolidating/molding of entry level components for each of the participating industrial segments, wind energy, aerospace, and automotive. This understanding adds to the nation's capability to affordably manufacture high quality lightweight high performance components from advanced recyclable composite materials in a lean and energy efficient manner. The use of induction heating with smart susceptors is a precisely controlled low energy method for the consolidation and molding of thermoplastic composites. The smart susceptor provides intrinsic thermal control based on the interaction with the magnetic field from the induction coil thereby producing highly repeatable processing. The low energy usage is enabled by the fact that only the smart susceptor surface of the tool is heated, not the entire tool. Therefore much less mass is heated resulting in significantly less required energy to consolidate/mold the desired composite components. This energy

  8. Thermoplastic starch materials prepared from rice starch; Preparacao e caracterizacao de materiais termoplasticos preparados a partir de amido de arroz

    Energy Technology Data Exchange (ETDEWEB)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S., E-mail: barbarapont@gmail.co [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2009-07-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  9. Reactivity of coal in direct hydrogenation processes: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R. M.; Miller, R. L.

    1989-07-01

    This research program consisted of two facets dealing with fundamental and applied studies on coal reactivity under direct hydroliquefaction conditions. The first facet was concerned with an investigation of the relationship between coal reactivity and coal properties. Data on the rate and extent of direct coal hydroliquefaction for 5 bituminous coals from the Argonne Premium Sample Bank were measured. Data on rate of conversion of coal to THF and toluene solubles were modeled with a simple reversible rate expression, and activation energies for conversion to each solvent solubility class determined. Data on carbon and proton distribution in the coals were obtained by /sup 1/H-NMR and /sup 13/C-NMR. A strong correlation of activation energy with the aliphatic hydrogen content of the coal was found for conversion to THF solubles. The second facet of the program dealt with a mechanistic study of the effect of hydrogen on the rate and extent of coal liquefaction. The objective was to investigate the effect of radical quenching by aromatic and hydroaromatic vehicles on the activity and selectivity of hydrogen under conditions relevant to direct coal hydroliquefaction. The experimental portion of the program consisted of a series of runs on a model compound system, followed by experiments utilizing 5 bituminous coals from the Argonne Premium Coal sample bank. 45 refs., 14 figs., 17 tabs.

  10. Development of thermoplastic elastomers based on maleated ethylene propylene rubber (m-EPM and polypropylene (PP by dynamic vulcanization

    Directory of Open Access Journals (Sweden)

    2007-08-01

    Full Text Available Dicumyl peroxide (DCP-cured thermoplastic vulcanizates (TPVs based on blends of maleated ethylene propylene rubber (m-EPM and polypropylene (PP using maleated-PP as a compatibilizer have been developed. Physical properties of these TPVs change significantly with concentrations of DCP and rubber/plastic blend ratios. Important correlations were obtained from rheometer delta torque values with various physical properties of the TPVs like tension set and crosslink density etc. Wide angle X-ray diffraction study confirms that concentration of DCP has a strong influence on the crystallinity of PP, which might affect the final physical properties of TPVs. The recyclability and ageing characteristics of these TPVs are also found excellent.

  11. Coal desulfurization process

    Science.gov (United States)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  12. Functional group analysis of coal and coal products by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perry, D.L.; Grint, A.

    1986-04-01

    In a number of technologies such as polymers and carbon fibres, where there is a similar interest in the nature of organic functional groups and their effect on material performance, the technique of x-ray photoelectron spectroscopy (XPS), also known as electron spectroscopy for chemical analysis (ESCA), has been applied successfully to a wide range of problems. However XPS is a technique which is little used in coal science. Since it has high surface sensitivity and the specific surfaces properties of coals play an important role in a number of coal technologies, e.g. flotation and agglomeration, it is perhaps surprising that XPS is not used more extensively. The reasons for this may lie in some of the discouraging references in the literature. For example early work by Frost et al found no relationship between oxygen concentrations determined by XPS and the bulk analysis of a series of float-sink fractions. More recently Huffmann et al observed that oxidation of bituminous coals for up to 383 days at 50/sup 0/C in air completely destroyed Geiseler fluidity but neither XPS nor DRIFT (Diffuse Reflectance FTIR) spectroscopy could detect any parallel changes in the functional group composition of the coal. This paper describes the application of XPS to coal, coal reactions and coal products. The aim is to present a critical evaluation in the context of other techniques which are applied to coal.

  13. Significance of coal petrological investigations in coal bed methane exploration - Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Misra, B.K.; Singh, B.D.; Singh, A. [Birbal Sahni Institute of Paleobotany, Lucknow (India)

    2006-11-25

    Understanding of sorption and desorption processes of gas by coal is important in coal bed methane (CBM) estimation and determining its producibility. The results of the investigations carried out so far in Australia, on the role of coal type and rank in CBM storage and recovery are found to be inapplicable in the context of Indian coals. This is probably because the Australian Permian coals were considered as a two-component system - vitrinite- and inertinite-rich (liptinite macerals being present in negligible amount), when tested through sorption and desorption experiments. Liptinite maceral group, the third component of almost all high-volatile bituminous Permian coals of India, comprising hydrogen-rich plant parts (mostly the sporinite, spores and pollen), was not acknowledged in the model studies. Likewise, two lithotype bands - bright and dull including bulk coal samples were tested for the preceding experiments, whereas a third lithotype band semi-bright, the common lithotype of Permian coals was not included in such studies. Besides some general and specific comments on observations made, it is suggested to explore the role of liptinite macerals in sorption properties in different lithotypes; and assess coal permeability on three band components.

  14. Processability of Pultrusion Using Natural Fiber and Thermoplastic Matrix

    Directory of Open Access Journals (Sweden)

    Tham Nguyen-Chung

    2007-01-01

    Full Text Available Fundamental mechanisms of the pultrusion process using commingled yarns of polypropylene matrix and discontinuous flax fiber to produce thermoplastic profiles were investigated in numerical and experimental manners. Essential issue is the fact that all natural fibers are discontinuous by nature, which may negatively influence the processability. The pultrusion process will be only successful if the pulling force exerted on the solidified pultrudates can be transmitted to the regions of unmelted commingled yarns by “bridging over” those melted regions within the die. This can be realized by applying a sufficient number of small yarn bundles of high compactness rather than a thicker single bundle of lower compactness as the raw material. Furthermore, the possibility of adding extra melt into the yarn bundles by side-fed extrusion has been investigated showing that the impregnation can be improved only for the outer layers of yarns, which is owed to the high viscosity of the thermoplastic melt and the limited length of the die.

  15. Interlaminate Deformation in Thermoplastic Composite Laminates: Experimental-Numerical Correlation

    Directory of Open Access Journals (Sweden)

    Fang Y.

    2010-06-01

    Full Text Available The interlaminar deformation behaviors of thermoplastic AS4/PEEK composite laminates subjected to static tensile loading are investigated by means of microscopic moiré interferometry with high spatial resolution. The fully threedimensional orthotropic elastic-plastic analysis of interlaminar deformation for the thermoplastic laminates is developed in this paper, and used to simulate the stress-strain curves of tensile experiment for its angle-ply laminates. Under uniaxial tensile loading, the 3D orthotropic elastic-plastic FE analysis and microscopic moiré interferometry of interlaminar deformations are carried out for the [±25]S4 laminates. The quantitative local-filed experimental results of interlaminar shear strain and displacements at freeedge surface of the laminate are compared with corresponding numerical results of the orthotropic elastic-plastic FE model. It is indicated that the numerical tensile stressstrain curves of angle-ply laminates computed with 3D orthotropic elastic-plastic model are agree with experimental results. The numerical interlaminar displacement U and shear strain γxz are also consistent with the experimental results obtained by moiré interferometry. It is expected the elastic-plastic interlaminar stresses and deformations analysis for the optimal design and application of AS4/PEEK laminates and its structures.

  16. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2009-01-01

    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  17. Poly(CL/DLLA-b-CL multiblock copolymers as biodegradable thermoplastic elastomers

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Lactic acid and ∑-caprolactone based polymers and their derivates are widely used in biomedical applications. Different properties are introduced by modifying the composition. In this study, poly(ε-caprolactone/D,L-lactide-b-poly(ε-caprolactone multiblock copolymers were synthesized as poly(ester-urethanes (PEUs by polymerizing in two steps involving ring-opening polymerization of precursors and by diisocyanate linking of precursors to produce thermoplastic elastomers (TPEs. The precursors and products were characterized by SEC, 1H-NMR and DSC, and dynamic mechanical study (by dynamic mechanical analysis, DMA as well as morphological characterization (by transmission electron microscopy, TEM of the product TPEs was carried out. Tensile and creep recovery properties of them were also studied. According to the characterizations, all the polymerizations were successful, and the prepared TPEs showed clear elastic behavior. In the DMA scans, rubbery plateau in the storage modulus curves between Tg and terminal flow region was clearly detectable indicating elasticity. The TEM images demonstrated phase separation of amorphous and crystalline blocks when the degree of crystallinity of the hard blocks was high enough. The elongations of TPEs varied between 800–1800%, while the modulus was 7–66 MPa. Two different types of recovery tests indicated the creep properties of TPEs to be highly dependent on the degree of crystallinity.

  18. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  19. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    Science.gov (United States)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  20. Effect of flotation on preparation of coal-water slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K.; Laskowski, J.S. [University of British Columbia, Vancouver, BC (Canada)

    2009-07-01

    In order to study the effect of flotation reagents on the properties of coal-water slurry, a sub-bituminous coal was cleaned via either forward flotation or reverse flotation. The froth product from the forward flotation, obtained with the use of diesel oil and MIBC, and the tailings of the reverse flotation, carried out with dextrin-tannic acid depressants and dodecyltrimethylammonium chloride collector, were used in the preparation of coal-water slurries. It was shown that while it was possible to obtain the coal-water slurry with a high-solids content from the coal rendered hydrophilic (tailings from the coal reverse flotation), in the case of the hydrophobic product (froth product from the forward flotation) a dispersing agent was required to obtain the coal-water slurry of the same high-solids content.

  1. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix A, Part 1. Coal preparation and cleaning assessment study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report evaluates the state of the art and effectiveness of physical coal cleaning as a potential strategy for controlling SO/sub x/ emissions in coal fired power generation. Coal properties which are significantly altered by physical coal cleaning were determined. The effects of the changes in properties as they relate to pulverized coal firing, fluidized bed combustion and low Btu gasification for combined cycle powered generation were studied. Available coal washability data were integrated by computer with U.S. coal reserve data. Approximately 18% of the demonstrated coal reserve were matched with washability data. Integrated data appear in the Appendix. Current coal preparation practices were reviewed. Future trends were determined. Five process flow sheets representing increasing levels of cleaning sophistication were prepared. The clean product from each flow sheet will meet U.S. EPA New Source Performance Standards. Capital and operating costs for each case were estimated. Environmental control technology and environmental impact associated with current coal preparation and cleaning operations were assessed. Physical coal cleaning is widely practiced today. Where applicable it represents the least expensive method of coal sulfur reduction. Developmental physical and chemical coal cleaning processes were studied. The chemical methods have the advantage of being able to remove both pyritic sulfur and organic sulfur present in the coal matrix. Further R and D efforts will be required before commercialization of these processes.

  2. Do we have to consider temperature-dependent material properties in large-scale environmental impact assessments of underground coal gasification?

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas

    2015-04-01

    Underground coal gasification (UCG) can increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce environmental impacts such as ground subsidence associated with groundwater pollution due to generation of hydraulic connectivities between the UCG reactor and adjacent aquifers. These changes overburden conductivity may introduce potential migration pathways for UCG contaminants such as organic (phenols, benzene, PAHs and heterocyclics) and inorganic (ammonia, sulphates, cyanides, and heavy metals) pollutants. Mitigation of potential environmental UCG impacts can be achieved by improving the understanding of coupled thermo-hydro-mechanical processes in the rocks surrounding the UCG reactor. In the present study, a coupled thermo-mechanical model has been developed to carry out a parameter sensitivity analysis and assess permeability changes derived from volumetric strain increments in the UCG reactor overburden. Our simulation results demonstrate that thermo-mechanical rock behavior is mainly influenced by the thermal expansion coefficient, tensile strength and elastic modulus of the surrounding rock. A comparison of temperature-dependent and temperature-independent simulation results indicates high variations in the distribution of total displacements in the UCG reactor vicinity related to thermal stress, but only negligible differences in permeability changes. Hence, temperature-dependent thermo-mechanical parameters have to be considered in the assessment of near-field UCG impacts, while far-field models can achieve a higher computational efficiency by using temperature-independent thermo-mechanical parameters. Considering the findings of the present study in the large-scale assessment of

  3. Coal Production 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  4. Coal worker's pneumoconiosis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis (CWP) is a lung disease that ...

  5. Surface electrochemical control for the fine coal and pyrite separation. Technical progress report, October 1, 1989--December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanxiong; Hu, Weibai; Wann, Jyi-Perng; Zhu, Ximeng; Wadsworth, M.E.; Bodily, D.M.

    1989-12-31

    Ongoing work includes the characterization of coal pyrites, the floatability evaluation of typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces.

  6. Surface electrochemical control for fine coal and pyrite separation. Technical progress report, July 1, 1991--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Weibai; Huang, Qinping; Li, Jun; Riley, A.; Turcotte, S.B.; Benner, R.E.; Zhu, Ximeng; Bodily, D.M.; Liang, Jun; Zhong, Tinghe; Wadsworth, M.E.

    1991-12-31

    The ongoing work includes the characterization of coal pyrites, the floatability evaluation of three typical US coal samples, the flotation behavior of coal pyrites, the electrochemical measurement of the surface properties of coal pyrites, and the characterization of species produced at pyrite surfaces. This report covers a Raman spectroscopy of species produced electrochemically on pyrite surfaces.

  7. Coal terminal project report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    Malaysia is building the necessary infrastructure to cope with an increasing demand for electricity. Its restructured energy policy has led to construction of the 2,100 MW Manjung coal-fired power plant in the state of Perak, for which coal has to be imported via the new Lekiv Bulk Terminal (LBT) adjacent to the plant. Contracts for the LBC and the TNBJ coal stockyard were awarded to the Koch Consortium. The article describes equipment for handling and storing coal. 4 photos.

  8. Inorganic constituents in coal

    Energy Technology Data Exchange (ETDEWEB)

    A. Radenovic [University of Zagreb, Sisak (Croatia). Faculty of Metallurgy

    2006-07-01

    Coal contains not only organic matter but also small amounts of inorganic constituents. More than one hundred different minerals and virtually every element in the periodic table have been found in coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates), minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the order of w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprised in coal. The fractions of trace elements usually decrease when the rank of coal increases. Fractions of the inorganic elements are different, depending on the coal bed and basin. A variety of analytical methods and techniques can be used to determine the mass fractions, mode of occurrence, and distribution of organic constituents in coal. There are many different instrumental methods for analysis of coal and coal products but atomic absorption spectroscopy (AAS) is the one most commonly used. Fraction and mode of occurrence are one of the main factors that have influence on transformation and separation of inorganic constituents during coal conversion. Coal, as an important world energy source and component for non-fuels usage, will be continuously and widely used in the future due to its relatively abundant reserves. However, there is a conflict between the requirements for increased use of coal on the one hand and less pollution on the other. It's known that the environmental impacts, due to either coal mining or coal usage, can be: air, water and land pollution. Although, minor components, inorganic constituents can exert a significant influence on the economic value, utilization, and environmental impact of the coal.

  9. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  10. Assessment of Current Process Modeling Approaches to Determine Their Limitations, Applicability and Developments Needed for Long-Fiber Thermoplastic Injection Molded Composites

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.; Kunc, Vlastimil; Norris, Robert E.; Phelps, Jay; Tucker III, Charles L.

    2006-11-30

    This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents’ material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understanding of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.

  11. Microwave Induced Welding of Carbon Nanotube-Thermoplastic Interfaces for Enhanced Mechanical Strength of 3D Printed Parts

    Science.gov (United States)

    Sweeney, Charles; Lackey, Blake; Saed, Mohammad; Green, Micah

    Three-dimensional (3D) printed parts produced by fused-filament fabrication of a thermoplastic polymer have become increasingly popular at both the commercial and consumer level. The mechanical integrity of these rapid-prototyped parts however, is severely limited by the interfillament bond strength between adjacent extruded layers. In this report we propose for the first time a method for welding thermoplastic interfaces of 3D printed parts using the extreme heating response of carbon nanotubes (CNTs) to microwave energy. To achieve this, we developed a coaxial printer filament with a pure polylactide (PLA) core and a CNT composite sheath. This produces parts with a thin electrically percolating network of CNTs at the interfaces between adjacent extruded layers. These interfaces are then welded together upon microwave irradiation at 2.45GHz. Our patent-pending method has been shown to increase the tensile toughness by 1000% and tensile strength by 35%. We investigated the dielectric properties of the PLA/CNT composites at microwave frequencies and performed in-situ microwave thermometry using a forward-looking infrared (FLIR) camera to characterize the heating response of the PLA/CNT composites upon microwave irradiation.

  12. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs.

    Science.gov (United States)

    Boere, Kristel W M; Visser, Jetze; Seyednejad, Hajar; Rahimian, Sima; Gawlitta, Debby; van Steenbergen, Mies J; Dhert, Wouter J A; Hennink, Wim E; Vermonden, Tina; Malda, Jos

    2014-06-01

    Hydrogels can provide a suitable environment for tissue formation by embedded cells, which makes them suitable for applications in regenerative medicine. However, hydrogels possess only limited mechanical strength, and must therefore be reinforced for applications in load-bearing conditions. In most approaches the reinforcing component and the hydrogel network have poor interactions and the synergetic effect of both materials on the mechanical properties is not effective. Therefore, in the present study, a thermoplastic polymer blend of poly(hydroxymethylglycolide-co-ε-caprolactone)/poly(ε-caprolactone) (pHMGCL/PCL) was functionalized with methacrylate groups (pMHMGCL/PCL) and covalently grafted to gelatin methacrylamide (gelMA) hydrogel through photopolymerization. The grafting resulted in an at least fivefold increase in interface-binding strength between the hydrogel and the thermoplastic polymer material. GelMA constructs were reinforced with three-dimensionally printed pHMGCL/PCL and pMHMGCL/PCL scaffolds and tested in a model for a focal articular cartilage defect. In this model, covalent bonds at the interface of the two materials resulted in constructs with an improved resistance to repeated axial and rotational forces. Moreover, chondrocytes embedded within the constructs were able to form cartilage-specific matrix both in vitro and in vivo. Thus, by grafting the interface of different materials, stronger hybrid cartilage constructs can be engineered. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

    2006-04-01

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  14. Coal production 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  15. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay.

    Science.gov (United States)

    B, Ayana; Suin, Supratim; Khatua, B B

    2014-09-22

    Highly exfoliated, biodegradable thermoplastic starch (TPS)/polylactic acid (PLA)/sodium montmorillonite (NaMMT) nanocomposites were prepared by an eco-friendly approach, involving in-situ gelatinization of potato starch in presence of dispersed nanoclay followed by melt mixing with PLA. The morphological analysis revealed that the NaMMT was selectively dispersed into the TPS in a highly delaminated manner. An increase in mechanical as well as thermomechanical properties was evident in the presence of PLA and more influenced in the presence of clay. The water absorption was significantly decreased in the presence of PLA (∼8%) itself and both PLA and clay (∼8-12%) in the nanocomposites. The improved mechanical properties along with its biodegradability might lead to a new green material in the area of packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Analysis of coal prices for thermal power plants. [Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Cuk, L.; Stojkovic, D.

    1983-07-01

    Data are given on the operating costs, transportation costs and coal prices (expressed in Dinar/t and in Dinar/kJ 10/SUP/6) of 20 major Yugoslav coal mines and 15 coal fired power plants for the period 1977-1981. Despite the average increase of coal prices of 19.67% and the increased transportation cost of 18.7% almost all of the mines sold their coal to power plants at prices below mine operating costs. The negative impact of an inappropriate national coal price policy on coal mine development is stressed (almost 75% of Yugoslav coal production is consumed by power plants). Recommendations are made for changes in the coal price policy. In addition to calorific value, the following factors should be included in the determination of price: operating conditions of a mine, chemical and physical properties of coal (size, moisture, ash and sulfur content, etc.). Power plant consumption of coal is expected to increase from the present 42 Mt/a to 175 Mt/a at the turn of the century.

  17. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Energy International is developing a technology that will create a staged formulation with the first coal form (Mulled Coal) that can be stored, transported, and pumped. Just prior to combustion, the Mulled Coal (MC) would be modified to provide the properties needed for proper atomization. This concept is an alternative to the expensive and energy intensive thermal drying processing of fine coal wet cakes. The material is suitable for both direct feed use in conventional and fluid bed combustors as well as on-site conversion to combustible slurries. By maintaining the coal form relatively close to the feed wet cake, only minor processing with low additive levels and low energy blending needed at the point of production. Its conversion to slurry or other use-feed form is made near the time of use and thus the requirements for stability, climatic control, and other storage, transport, and handling requirements are much less severe.

  18. Toughening of Poly(lactic acid and Thermoplastic Cassava Starch Reactive Blends Using Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Anibal Bher

    2018-01-01

    Full Text Available Poly(lactic acid (PLA was reactively blended with thermoplastic cassava starch (TPCS and functionalized with commercial graphene (GRH nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.

  19. Preparation and Characterisation of Linear Low-Density Polyethylene / Thermoplastic Starch Blends Filled with Banana Fibre

    Science.gov (United States)

    Kahar, A. W. M.; Ann, L. Ju

    2017-06-01

    In this study, the influence of banana fibre (BF) loading using sodium hydroxide (NaOH) pre-treated and succinic anhydride-treated (SA) BF on the mechanical properties of linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) matrix is investigated. LLDPE/TPS/BF composites were developed under different BF conditions, with and without chemical modifications with the BF content ranging from 5% to 30% based on the total composite. The tensile strength showed an increase with an increase of fibre content up to 10%, thereby decreasing gradually beyond this level. NaOH pre-treated and SA treated BF added with LLDPE/TPS composite displays a higher tensile strength as compared to untreated BF in LLDPE/TPS composites. Thermal behaviour of the BF incorporated in LLDPE/TPS composite was characterised using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). This showed that SA treated BF exhibits better thermal stability, compared to other composites. This is because of the improvement in interfacial adhesion existing between both the fibre and matrix. In addition, a morphology study confirmed that pre-treated and treated BF had excellent interfacial adhesion with LLDPE/TPS matrix, leading to better mechanical properties of resultant composites.

  20. Preparation and Characterization of Talc Filled Thermoplastic Polyurethane/Polypropylene Blends

    Directory of Open Access Journals (Sweden)

    Emi Govorčin Bajsić

    2014-01-01

    Full Text Available The effect of the addition of talc on the morphology and thermal properties of blends of thermoplastic polyurethane (TPU and polypropylene (PP was investigated. The blends of TPU and PP are incompatible because of large differences in polarities between the nonpolar crystalline PP and polar TPU and high interfacial tensions. The interaction between TPU and PP can be improved by using talc as reinforcing filler. The morphology was observed by means of scanning electron microscopy (SEM. The thermal properties of the neat polymers and unfilled and talc filled TPU/PP blends were studied by using dynamic mechanical analysis (DMA, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The addition of talc in TPU/PP blends improved miscibility in all investigated TPU/T/PP blends. The DSC results for talc filled TPU/PP blends show that the degree of crystallinity increased, which is due to the nucleating effect induced by talc particles. The reason for the increased storage modulus of blends with the incorporation of talc is due to the improved interface between polymers and filler. According to TGA results, the addition of talc enhanced thermal stability. The homogeneity of the talc filled TPU/PP blends is better than unfilled TPU/PP blends.

  1. An assessment of grindability index of coal

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Ambar Nath [Central Fuel Research Institute, F.R.I., Dist. Dhanbad, Bihar (India)

    2002-04-20

    Grindability index of coal is an important technological parameter to understand the behaviour and assess the relative hardness of coals of varying ranks and grades during comminution. This is usually determined by Hardgrove Grindability Index (HGI), which involves requirement of a costly grinding equipment and accessories not readily available and affordable. Due to heterogeneous character of coals as regards maturity, petrological constituents, mineral impurities, etc. as well as mechanism of comminution render such determination rather difficult, leading to poor reproducibility and repeatability of HGI value, contrary to other analyses for coal characterisation. As such, it often gives misleading results to understand and explain properties emerging from other analyses and testing. In view of such problems, many attempts have been done in the past to develop correlation of HGI with simple analytical composition of coal. In this perspective a fresh attempt in arriving at a more reliable and reproducible correlation with proximate analysis alone is reported. Such an index termed as Statistical Grindability Index (SGI), may be found useful in assessment of coal behaviour not only in crushing and grinding of coal but also its friability vis-a-vis dust emission during comminution.

  2. Optical and thermomechanical investigations on thermoplastic nanocomposites with surface-modified silica nanoparticles

    Science.gov (United States)

    Becker, Carsten; Mueller, Peter; Schmidt, Helmut K.

    1998-07-01

    Dynamic mechanical thermal analysis (DMTA) and UV/VIS spectroscopy were applied to investigate the thermomechanical and optical properties of thermoplastic nanocomposites. The thermoplastic matrix material used was a copolymer derived from methylmethacrylate (MMA) and 2-hydroxyethylmethacrylate (HEMA). To improve the mechanical properties, especially in the high temperature region above the glass transition temperature (Tg) of the matrix, the copolymer was filled with spherical 10 nm silica particles (filler content 2, 5, and 10 vol% respectively). The particles were introduced in the polymer matrix after appropriate surface coating to control the filler dispersion in the matrix and the filler/matrix adhesion. The coating was performed using acetoxypropyltrimethoxysilane (APTS) to achieve higher filler/matrix compatibility compared to unmodified silica particles dispersed in the polymer matrix. Methacryloxypropyltrimethoxysilane (MPTS) was used to improve filler/matrix adhesion by covalent bonding between the filler surface and polymer matrix. The appearance of the poly(MMA-co- HEMA) nanocomposites (denoted:PMH nanocomposites) changes from translucent for the systems containing uncoated silica to more transparent for the compositions containing silane coated silica. This is indicated by a decrease in scattering/absorbance losses from 1.48 dB/cm to 1.06 dB/cm at (lambda) equals 650 nm. Investigations of the morphology of the same nanocomposites using transmission electron microscopy (TEM) showed that by coating the particles with silane an almost perfect dispersion of the fillers in the matrix can be realized. The more homogeneous dispersion of the silane coated particles in the polymer matrix compared to the uncoated silica is responsible for the increase in transparency of the systems. However, the composition dependence of the refractive index is in accordance with the expected behavior and shows a decrease with increasing amounts of silica (0% silica: ne equals

  3. Tribological behavior of plasma-polymerized aminopropyltriethoxysilane films deposited on thermoplastic elastomers substrates

    Energy Technology Data Exchange (ETDEWEB)

    Alba-Elías, Fernando, E-mail: fernando.alba@unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/Luis de Ulloa 20, 26004 Logroño, La Rioja (Spain); Sainz-García, Elisa; González-Marcos, Ana [Department of Mechanical Engineering, University of La Rioja, c/Luis de Ulloa 20, 26004 Logroño, La Rioja (Spain); Ordieres-Meré, Joaquín [ETSII, Polytechnic University of Madrid, c/José Gutiérrez Abascal 2, 28006 Madrid (Spain)

    2013-07-01

    Thermoplastic elastomers (TPE) are multifunctional polymeric materials that are characterized by moderate cost, excellent mechanical properties (high elasticity, good flexibility, hardness, etc.), high tensile strength, oxidation and wettability. With an objective of reducing the superficial friction coefficient of TPE, this work analyzes the characteristics of coating films that are based on aminopropyltriethoxysilane (APTES) over a TPE substrate. Since this material is heat-sensitive, it is necessary to use a technology that permits the deposition of coatings at low temperatures without affecting the substrate integrity. Thus, an atmospheric-pressure plasma jet system (APPJ) with a dielectric barrier discharge (DBD) was used in this study. The coated samples were analyzed by Scanning Electron Microscopy, Atomic Force Microscopy, Fourier-Transform Infrared with Attenuated Total Reflectance Spectroscopy, X-ray Photoelectron Spectroscopy and tribological tests (friction coefficient and wear rate). The studies showed that the coated samples that contain a higher amount of forms of silicon (SiOSi) and nitrogen (amines, amides and imines) have lower friction coefficients. The sample coated at a specific plasma power of 550 W and an APTES flow rate of 1.5 slm had the highest values of SiOSi and nitrogen-containing groups peak intensity and atomic percentages of Si2p and SiO{sub 4}, and the lowest percentages of C1s and average friction coefficient. The results of this research permit one to conclude that APPJ with a DBD is a promising technique to use in coating SiO{sub x} and nitrogen-containing groups layers on polymeric materials. - Highlights: • SiO{sub x} thin films on thermoplastic elastomers by atmospheric pressure plasma jet. • Study of influence of plasma power and precursor flow rate on film's properties. • Friction coefficient is inversely related to the amount of SiOSi and N groups. • Nitrogen groups from the ionization gas (N{sub 2}) seem to

  4. Processing Optimization of Deformed Plain Woven Thermoplastic Composites

    Science.gov (United States)

    Smith, John R.; Vaidya, Uday K.

    2013-12-01

    This research addresses the processing optimization of post-manufactured, plain weave architecture composite panels consisted of four glass layers and thermoplastic polyurethane (TPU) when formed with only localized heating. Often times, during the production of deep drawn composite parts, a fabric preform experiences various defects, including non-isothermal heating and thickness variations. Minimizing these defects is of utmost importance for mass produceability in a practical manufacturing process. The broad objective of this research was to implement a design of experiments approach to minimize through-thickness composite panel variation during manufacturing by varying the heating time, the temperature of heated components and the clamping pressure. It was concluded that the heated tooling with least area contact was most influential, followed by the length of heating time and the amount of clamping pressure.

  5. Fabrication of metallic glass micro grooves by thermoplastic forming

    Science.gov (United States)

    Wang, Fengyan; Zhang, Hong; Liang, Xiong; Gong, Feng; Ma, Jiang

    2017-02-01

    Metallic glasses (MGs) are considered as ideal materials for miniature fabrication because of their excellent thermoplastic forming ability in the supercooled liquid region. We show that Pd-based MG micro grooves, which are essential for microdluidic devices, can be prepared by a highly efficient and precise fabrication method. The scanning electron microscope observation and surface profiler measurement show that the MG micro grooves have superior dimensional accuracy. The excellent corrosion resistance of MGs compared with silicon, which is the conventional microfluidic device material, is also proved by the weight-loss corrosion method. Our results indicate that MG can be a promising candidate material for the fabrication of microfluidic devices and may have broad applications in the biomedical areas.

  6. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Science.gov (United States)

    Quadrini, Fabrizio; Squeo, Erica Anna; Prosperi, Claudia

    2010-01-01

    A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force) were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a strong interpenetration of adjacent layers was observed.

  7. Instability-related delamination growth in thermoset and thermoplastic composites

    Science.gov (United States)

    Gillespie, John W., Jr.; Carlsson, Leif A.; Rothschilds, Robert J.

    1988-01-01

    Mixed-mode crack propagation in compressively loaded thermoset and thermoplastic composite columns with an imbedded through-width delamination is investigated. Beam theory is used to analyze the geometrically nonlinear load-deformation relationship of the delaminated subregion. The elastic restraint model (ERM), combined with existing FSM modeling of the crack-tip region, yields expressions for the Mode I and Mode II components of the strain energy release rate G(I) and G(II) to predict the critical load at the onset of delamination growth. Experimental data were generated for geometries yielding a wide range of G(I)/G(II) ratios at the onset of crack growth. A linear mixed-mode crack growth criterion in conjunctuion with the ERM provides good agreement between predicted and measured critical loads for both materials studied.

  8. Liners of thermoplastic composites in oil field tubulars

    Energy Technology Data Exchange (ETDEWEB)

    Melve, B. [Statoil Research Centre, Trondheim (Norway); Grini, K. [Univ. of Trondheim, Trondheim (Norway)

    1997-12-31

    The buckling resistance of thermoplastic composite liners in steel production tubing has been studied by theoretical models, numeric models and practical collapse tests. The materials studied were hoop wound glass fibre/polypropylene with and without a pure polypropylene inner layer. The numerical results show that a large increase in buckling resistance is achieved when the liner is partially supported by the steel tube in comparison with a free liner. The test results for the unsupported liner were in agreement with standard theories. The combined laminate did not perform as well as predicted because the polypropylene layer delaminated and buckled away from the composite layer. Thermoforming of the ends to suit the threaded end connectors was also shown to be possible. (au)

  9. Diode Laser Assisted Filament Winding of Thermoplastic Matrix Composites

    Directory of Open Access Journals (Sweden)

    Claudia Prosperi

    2010-01-01

    Full Text Available A new consolidation method for the laser-assisted filament winding of thermoplastic prepregs is discussed: for the first time a diode laser is used, as well as long glass fiber reinforced polypropylene prepregs. A consolidation apparatus was built by means of a CNC motion table, a stepper motor and a simple tensioner. Preliminary tests were performed in a hoop winding configuration: only the winding speed was changed, and all the other process parameters (laser power, distance from the laser focus, consolidation force were kept constant. Small wound rings with an internal diameter of 25 mm were produced and compression tests were carried out to evaluate the composite agglomeration in dependence of the winding speed. At lower winding speeds, a stronginterpenetration of adjacent layers was observed.

  10. Multiphase design of autonomic self-healing thermoplastic elastomers

    Science.gov (United States)

    Chen, Yulin; Kushner, Aaron M.; Williams, Gregory A.; Guan, Zhibin

    2012-06-01

    The development of polymers that can spontaneously repair themselves after mechanical damage would significantly improve the safety, lifetime, energy efficiency and environmental impact of man-made materials. Most approaches to self-healing materials require the input of external energy, healing agents, solvent or plasticizer. Despite intense research in this area, the synthesis of a stiff material with intrinsic self-healing ability remains a key challenge. Here, we show a design of multiphase supramolecular thermoplastic elastomers that combine high modulus and toughness with spontaneous healing capability. The designed hydrogen-bonding brush polymers self-assemble into a hard-soft microphase-separated system, combining the enhanced stiffness and toughness of nanocomposites with the self-healing capability of dynamic supramolecular assemblies. In contrast to previous self-healing polymers, this new system spontaneously self-heals as a single-component solid material at ambient conditions, without the need for any external stimulus, healing agent, plasticizer or solvent.

  11. Creep of thermoplastic polyurethane reinforced with ozone functionalized carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2012-09-01

    Full Text Available This work focused on the mechanical behavior, especially creep resistance, of thermoplastic polyurethane (TPU filled with ozone-treated multi-walled carbon nanotubes (MWCNTs. It was found that the ozone functionalization of MWCNTs could improve their dispersion and interfacial adhesion to the TPU matrix as proved by scanning electron microscope and Raman spectrometer. It finally contributed to the enhancement of Young’s modulus and yield strength of TPU/MWCNT composites. Moreover, the creep resistance and recovery of MWCNT/TPU composites revealed a significant improvement by incorporating ozone functionalized MWCNTs. The strong interaction between the modified MWCNTs and TPU matrix would enhance the interfacial bonding and facilitate the load transfer, resulting in low creep strain and unrecovered strain.

  12. Preparation and characterization of thermoplastic starch/zein blends

    Directory of Open Access Journals (Sweden)

    Elisângela Corradini

    2007-09-01

    Full Text Available Blends of starch and zein plasticized with glycerol were prepared by melting processing in an intensive batch mixer connected to a torque rheometer at 160 °C. The resulting mixtures were compression molded and then characterized by scanning electron microscopy, differential scanning calorimetry, wide-angle X ray diffraction and water-absorption experiments. The blends were immiscible, showing two distinct phases of starch and zein. The water uptake at equilibrium and its diffusion coefficient were determined. The water uptake at equilibrium decreased with increasing zein content. The diffusion coefficient fell sharply on addition of 20% zein and remained constant as zein content was increased. No appreciable effect of zein on starch crystallization was observed by X ray diffraction. The use of zein in thermoplastic starch compositions causes a decrease in the water sensitivity of these materials and lower its melt viscosity during processing making zein a suitable and very promising component in TPS compositions.

  13. Electrospun Thermoplastic Polyurethane Mats Containing Naproxen– Cyclodextrin Inclusion Complex

    Directory of Open Access Journals (Sweden)

    Akduman Çiğdem

    2014-12-01

    Full Text Available Incorporation of cyclodextrins (CDs into electrospun nanofibrous materials can be considered as potential candidates for functional medical textile applications. Naproxen (NAP is a type of non-steroidal anti-inflammatory drug commonly administered for the treatment of pain, inflammation and fever. Drug-inclusion complex formation with CDs is an approach to improve the aqueous solubility via molecular encapsulation of the drug within the cavity of the more soluble CD molecule. In this study, NAP or different NAP-CD inclusion complexes loaded nanofibres were successfully produced through electrospinning and characterised. The inclusion complex loaded mats exhibited significantly faster release profiles than NAP-loaded thermoplastic polyurethane (TPU mats. Overall, NAP-inclusion complex loaded TPU electrospun nanofibres could be used as drug delivery systems for acute pain treatments since they possess a highly porous structure that can release the drug immediately.

  14. Oxidized potato starch based thermoplastic films : Effect of combination of hydrophilic and amphiphilic plasticizers

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Broekhuis, Antonius A.

    Different combinations of hydrophilic (glycerol and water) and amphiphilic (isoleucine) plasticizers were studied in the production of thermoplastic starch (TPS) powders and films from oxidized potato starch. All powder samples had an irregular and shrivelled morphology. In all mixtures containing

  15. Bending behavior of thermoplastic composite sheets viscoelasticity and temperature dependency in the draping process

    CERN Document Server

    Ropers, Steffen

    2017-01-01

    Within the scope of this work, Steffen Ropers evaluates the viscoelastic and temperature-dependent nature of the bending behavior of thermoplastic composite sheets in order to further enhance the predictability of the draping simulation. This simulation is a useful tool for the development of robust large scale processes for continuously fiber-reinforced polymers (CFRP). The bending behavior thereby largely influences the size and position of wrinkles, which are one of the most common processing defects for continuously fiber-reinforced parts. Thus, a better understanding of the bending behavior of thermoplastic composite sheets as well as an appropriate testing method along with corresponding material models contribute to a wide-spread application of CFRPs in large scale production. Contents Thermoplastic Prepregs Draping Simulation of Thermoplastic Prepregs Bending Characterization of Textile Composites Modeling of Bending Behavior Target Groups Researchers and students in the field of polymer, lightweight,...

  16. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Science.gov (United States)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  17. Three-dimensional structure of olefinic thermoplastic elastomer blends using electron tomography

    NARCIS (Netherlands)

    Sengupta, P.; Noordermeer, Jacobus W.M.

    2005-01-01

    The present communication reports the first use of electron tomography in reconstructing the three-dimensional morphology in thermoplastic elastomer blends. The blends investigated were dynamically vulcanized blends of ethylene-propylene-diene (EPDM) rubber/poly(propylene)/oil and

  18. A review of recent developments in joining high-performance thermoplastic composites

    Science.gov (United States)

    Cole, K. C.

    1991-06-01

    There is currently a great deal of interest in the use of thermoplastic polymers as matrices in fiber reinforced composites for high performance applications, such as those encountered in the aerospace industry. These materials include polyether ether ketone (PEEK), polyphenylene sulphide (PPS), polyetherimide (PEI), polyamideimide (PAI), polyamides, polyimides, and polysulphones. A literature review is provided on the different ways of joining high performance thermoplastic composites by adhesive and fusion bonding. The discussion on adhesive bonding includes examination of the performance of specific adhesive/thermoplastic combinations and of techniques for the preparation of composite surfaces: abrasion, etching, flame, and plasma treatments. Thermoplastic composite welding techniques discussed in depth include the following: heated press welding, resistance welding, induction welding, and ultrasonic welding. Works which examine or compare applications for these bonding techniques are also reviewed.

  19. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  20. Coal to gas substitution using coal?!

    Science.gov (United States)

    Kempka, Thomas; Schlüter, Ralph

    2010-05-01

    Substitution of carbon-intensive coal with less carbon-intensive natural gas for energy production is discussed as one main pillar targeting reduction of antrophogenic greenhouse gas emissions by means of climate change mitigation. Other pillars are energy efficiency, renewable energies, carbon capture and storage as well as further development of nuclear energy. Taking into account innovative clean coal technologies such as UCG-CCS (underground coal gasification with carbon capture and storage), in which coal deposits are developed using directional drilling technologies and subsequently converted into a synthesis gas of high calorific value, the coupled conceptual approach can provide a synergetic technology for coal utilization and mitigation of carbon emissions. This study aims at the evaluation of UCǴ s carbon mitigation potentials and the review of the economical boundary conditions. The analytical models applied within this study are based on data available from world-wide UCG projects and extensive laboratory studies. In summary, scenarios considering costs and carbon storage potentials are economically feasible and thus competitive with less carbon-intensive energy generation technologies such as natural gas. Thus, coal to gas substitution can be one of the coal based options.

  1. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  2. Thermal Emissivity and Cigarette Coal Temperature During Smolder

    Directory of Open Access Journals (Sweden)

    Lyman CS

    2014-12-01

    Full Text Available Coal temperatures affect the burn properties of cigarettes. Thermal imaging was used to determine the average maximum surface coal temperatures during smolder of cigarettes of different tobacco types. The thermal imaging camera was calibrated against a reference blackbody. An emissivity correction was necessary since the set point temperatures of the reference blackbody did not correspond to the measured temperatures of the reference blackbody. A 0.87 camera emissivity was applied to provide accurate coal temperatures at a corrected emissivity of approximately 1. The average maximum surface coal temperatures during smolder of unfiltered single-tobacco-type cigarettes and a commercial blend cigarette were determined (with the camera lens focused parallel to the cigarette, and no discernible differences among them were found. The calculated average maximum surface coal temperature during smolder for all cigarettes was 584 AA± 15 °C. During smolder, thermocouples were used to measure the temperature of the gas phase (along the central axis of coal, and the thermal imaging camera was used to measure the temperature of the solid phase of the coal's surface. Using thermocouples, the peak coal temperatures in the center of the coal during smolder for three filtered single-tobacco-type cigarettes were 736-744 °C. Peak coal temperatures, measured by thermal imaging, on the surface of the coal (with the camera lens focused coaxially with the coal and the ash removed for the same three single-tobacco-type cigarettes had a range of 721-748 °C. There was good correspondence between the two techniques. These results confirm that during smolder the gas-phase temperature inside the coal (as measured with the thermocouple and the solid-phase temperatures beneath the ash (as measured with the camera are in near thermal equilibrium. With proper calibration, a thermal imaging system is a good alternative to thermocouples for measuring cigarette coal

  3. Classification of bituminous coals - Application of the technique of optimal sections in coal classification

    Science.gov (United States)

    Peng, C.

    1981-01-01

    The method of optimal sections was used for the classification of bituminous coals according to the degree of metamorphism and processing properties (e.g., the caking property). Coals are classified into low volatile, medium-low volatile, and high volatile depending on the amounts of volatiles with metamorphism section points of 20, 28, and 36% on a dry and ash-free basis. Based on the coke strength as the cross-reference, the coals are grouped into the noncaking, weakly caking, medium caking, and strongly caking types. Finally, the coals are subdivided into seven groups including noncaking and extra-strongly caking; thus, a natural classification is evolved and a numerical system set up for their classification.

  4. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  5. Modification of epoxy resins with thermoplastic segmented polycarbonate-based polyurethanes

    Directory of Open Access Journals (Sweden)

    Pavličević Jelena

    2014-01-01

    Full Text Available In this work, epoxy hybrid materials were synthesized by addition of thermoplastic segmented aliphatic polyurethanes with good elastic properties. The modified epoxy samples were obtained by curing of previously homogenized mixture of prepared polyurethane melts, epoxy resin and crosslinking agent Jeffamine D-2000. The influence of different weight content of polyurethanes (5, 10 and 15 wt. % compared to pure epoxy resin as well the influence of different hard segments of elastomers (20, 25 and 30 wt. % on the curing of modified epoxy systems was studied. The curing was followed by differential scanning calorimetry (DSC, in dynamic regime from 30 to 300°C, at three heating rates (5, 10 and 20°C/min. With the increase of hard segments content of polyurethanes added in higher concentration (10 and 15 wt. % into epoxy matrix, the temperature of maximum ratio of curing was shifted to lower values (from 205 to 179°C. Obtained DSC data were analyzed using two integral methods (Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose and one differential kinetic model (Friedman. The significant differences were observed in the second part of the epoxy curing (for the reaction degrees higher than 60 %, where the values of activation energies remarkably increase. The addition of polyurethane elastomers retarded the curing process due to decreased mobility of reactant molecules caused by higher viscosity of reaction mixture. By detailed analysis of determined kinetic parameters, it is concluded that the influence of slow diffusion is more pronounced in the presence of thermoplastic polycarbonate-based polyurethanes, which confirmed their effect on the mechanism of epoxy curing. The highest tensile strength and hardness showed the DGEBA modified with the polyurethane with highest hard segment content. Increasing the hard segment content of polyurethane and its concentration in matrix, the tensile strength of modified epoxy was increased. The elongation at break of

  6. Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams

    Science.gov (United States)

    Ries, S.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.

  7. A Preliminary Investigation of Ductility-Enhancement Mechanism through In Situ Nanofibrillation in Thermoplastic Matrix Composites

    Directory of Open Access Journals (Sweden)

    Bhaskar Patham

    2013-01-01

    Full Text Available A preliminary investigation of interrelationships between tensile stress-strain characteristics and morphology evolution during deformation is conducted on a commercially available thermoplastic composite with a low-surface-energy nanofibrillating poly(tetrafluoroethylene (PTFE additive. In this class of composites, the deformation-associated nanofibrillation of the low-surface-energy additive has been hypothesized to provide an additional dissipation mechanism, thereby enhancing the ductility of the composite. This class of composites offers potential for automotive light weighting in exterior and interior body and fascia applications; it is therefore of interest to investigate processing-structure-property interrelationships in these materials. This study specifically probes the interrelationships between the plastic deformation within the matrix and the fibrillation of the low-surface-energy additive; tensile tests are carried out at two different temperatures which are chosen so as to facilitate and suppress plastic deformation within the matrix polymer. Based on these preliminary investigations, it is noted that PTFE fibrillation acts synergistically with the ductile deformation of the matrix resin resulting in higher strains to failure of the composite; the results also suggest that the mechanism of fibrillation-assisted enhancement of strains to failure may not operate in the absence of matrix plasticity.

  8. Temperature dependent tensile and flexural rigidities of a cross-ply thermoplastic for a forming model

    Science.gov (United States)

    Dangora, L. M.; Sherwood, J. A.; Parker, J. C.; Mitchell, C. J.; White, K. D.

    2016-10-01

    This paper discusses the characterization of temperature dependent tensile and flexural rigidities for Dyneema® HB80, a cross-ply thermoplastic lamina. The low coefficient of friction of this material posed a challenge to securing specimens during tensile testing. Therefore, modification to the standard gripping method was implemented to facilitate the collection of meaningful test data. Furthermore, a long gauge length was selected to mitigate the influence of slippage on the measure of the elastic modulus. An experimental setup is presented to characterize the bending behavior above ambient temperature conditions based on the vertical cantilever method. The material properties derived from the test data were implemented in a finite element model of the cross ply lamina. The finite element model was generated using a hybrid discrete mesoscopic approach, and deep draw forming of the material was simulated to investigate its formability. Simulation results were compared with an experimental forming trial to demonstrate the capabilities of the model to predict the development of out-of-plane waves during preform manufacturing.

  9. Thermoplastic elastomers containing 2D nanofillers: montmorillonite, graphene nanoplatelets and oxidized graphene platelets

    Directory of Open Access Journals (Sweden)

    Paszkiewicz Sandra

    2015-12-01

    Full Text Available This paper presents a comparative study on which type of platelets nanofiller, organic or inorganic, will affect the properties of thermoplastic elastomer matrix in the stronger manner. Therefore, poly(trimethylene terephthalate-block-poly(tetramethylene oxide copolymer (PTT-PTMO based nanocomposites with 0.5 wt.% of clay (MMT, graphene nanoplatelets (GNP and graphene oxide (GO have been prepared by in situ polymerization. The structure of the nanocomposites was characterized by transmission electron microscopy (TEM in order to present good dispersion without large aggregates. It was indicated that PTT-PTMO/GNP composite shows the highest crystallization temperature. Unlike the addition of GNP and GO, the introduction of MMT does not have great effect on the glass transition temperature of PTMO-rich soft phase. An addition of all three types of nanoplatelets in the nanocomposites caused the enhancement in tensile modulus and yield stress. Additionally, the cyclic tensile tests showed that prepared nanocomposites have values of permanent set slightly higher than neat PTT-PTMO.

  10. Hybrid RTM process: Monitoring and processing of composites based on reactive thermoplastic systems

    Science.gov (United States)

    Dkier, Mohamed; Lamnawar, Khalid; Maazouz, Abderrahim

    2017-10-01

    In this work, hybrid process coupling "Reactive Extrusion" and "Resin Transfer Molding" machine (T-ERTM) equipped with an instrumented mold was designed and developed. Polyamides model matrix according to two kinds of polymerizations were studied as well anionic and chain extension reactions. For the former, different ratios of catalyst and activator were investigated. For the latter, various formulations of prepolymer with chain extender (CA) were studied at different stoichiometry ratios and temperatures. Since that both reaction kinetics are very fast to be monitored at short times by usual technics, the chemo-rheological evolutions were firstly studied ex-situ by coupling rheology with FTIR and dielectric spectroscopy (DRS). Secondly, the T-ERTM process with an "instrumented mold" was developed with specific dielectric sensors in order to in-situ track viscosity and reaction evolution. The in-situ results corroborate the ex-situ ones aforementioned. Overall, a processing window was obtained for each reactive system to ensure a good preform impregnation for the manufacturing of complex and continuous glass fiber-reinforced parts. Herein, the Time-Temperature-Transformation-equivalent diagrams were established to obtain Thermoplastic composites with tailored mechanical and physical properties.

  11. Thermoplastic deformation of ferromagnetic CoFe-based bulk metallic glasses

    Science.gov (United States)

    Wu, Chenguang; Hu, Renchao; Man, Qikui; Chang, Chuntao; Wang, Xinmin

    2017-12-01

    The superplastic deformation behavior of the ferromagnetic Co31Fe31Nb8B30 bulk metallic glass (BMG) in the supercooled liquid region was investigated. At a given temperature, the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at high strain rates. The high thermal stability of this glassy alloy system offers an enough processing window to thermoplastic forming (TPF), and the strong processing ability was examined by simple micro-replication experiments. It is demonstrated that the TPF formability on length scales ranging down to nanometers can be achieved in the selected experimental condition. Based on the analysis of deformation behavior, the nearly full density sample (i.e. nearly 100%), was produced from water-atomized glassy powders and consolidated by the hot-pressing technique. The sample exhibits good soft-magnetic and mechanical properties, i.e., low coercive force of 0.43 Oe, high initial permeability of 4100 and high Vickers hardness 1398. These results suggest that the hot-pressing process opens up possibilities for the commercial exploitation of BMGs in engineering applications.

  12. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  13. Melt-mixed thermoplastic composites containing carbon nanotubes for thermoelectric applications

    Directory of Open Access Journals (Sweden)

    Beate Krause

    2016-08-01

    Full Text Available Flexible thermoelectric materials are prepared by melt mixing technique, which can be easily scaled up to industrial level. Hybrid filler systems of carbon nanotubes (CNTs and copper oxide (CuO, which are environmental friendly materials and contain abundant earth elements, are melt mixed into a thermoplastic matrix, namely polypropylene (PP. With the CNT addition, an electrical network could be built up inside the insulating PP for effective charge transport. The effect of CuO addition is determined by the corresponding CNT concentration. At high CNT concentration, largely above the percolation threshold (φc, ca. 0.1 wt%, the change in the TE properties is small. In contrast, at CNT concentration close to φc, the co-addition of CuO could simultaneously increase the electrical conductivity and Seebeck coefficient. With 5 wt% CuO and 0.8 wt% CNTs where a loose percolated network is formed, the Seebeck coefficient was increased from 34.1 µV/K to 45 µV/K while the electrical conductivity was from 1.6 × 10−3 S/cm to 3.8 × 10−3 S/cm, leading to a power factor of 9.6 × 10−4 µW/mK2 (cf. 1.8 × 10−4 µW/mK2 for the composite with only 0.8 wt% CNTs.

  14. Impact Behavior of Composite Fan Blade Leading Edge Subcomponent with Thermoplastic Polyurethane Interleave

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.

    2015-01-01

    Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.

  15. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was

  16. Effect of pyrolysis conditions on reactivity of clean coals produced from poor quality coals

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Natas, P.; Basinas, P.; Sakellaropoulos, G.P. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece)

    2005-07-01

    A preventive fuels pre-treatment technique, based on low temperature carbonization has been tested. Clean coals were produced from two Greek poor quality coals (Ptolemais and Megalopolis) and an Australian coal sample, in a lab-scale fixed bed reactor, under helium atmosphere and ambient pressure. The effects of carbonisation temperature (200-900{sup o}C) and residence time (5-120 min) on the properties of the obtained chars were investigated. Special attention was paid to the polluting compounds (S,N,Hg and Cl) removal. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralised coal. The reactivity under combustion conditions of the chars produced was also investigated. It was observed that low temperature carbonisation could contribute to clean coal production by effectively removing the major part of the existing polluting compounds in the coals. Thus, depending on coal type, nitrogen, mercury and chlorine conversion continuously increase with temperature, while sulphur removal seems to reach a plateau above 500-600{sup o}C. Furthermore, the prolongation of carbonisation time above 20 min does not affect the elements conversion of the pollutants. Therefore carbonization at 500-600{sup o}C for about 20 min could be considered sufficient for clean coal production for poor quality coals. The reactivity of the prepared clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermobalance at ambient pressure and 20{sup o}C/min heating rate. At increased pyrolysis temperatures higher initial combustion temperatures were observed, due to the volatile reduction in char production stage. Mineral matter removal leads to increased char reactivity by increasing both the initial combustion temperature and the combustion rate. 13 refs., 18 figs., 1 tab.

  17. Warning Method of Coal Bursting Failure Danger by Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Guang-Jian Liu

    2015-01-01

    Full Text Available Electromagnetic radiation (EMR can reflect the stress state and deformation level of coal, yet its warning indexes correlated with coal properties and roof caving is poorly understood. The laboratory observations of EMR effects of coal samples bursting failure and in situ investigations in the process of roof caving are presented in this paper. EMR peak with increasing stress is discussed when the failure of coal samples happens, which provides an explanation to EMR signals positively correlated well with the stress loaded. The linearly increasing relation is also found between EMR intensity and the uniaxial compressive strength, and EMR maximum amplitudes and pulses behave a logarithmic accretion tendency with bursting energy indexes of coal. By in situ investigations, it is well found that EMR amplitude can effectively warn coal deformation and failure based on the critical value 120 mV proposed from experiments.

  18. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  19. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  20. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    Science.gov (United States)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.