WorldWideScience

Sample records for coal single stage

  1. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))

    1993-05-01

    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  2. Two-stage catalytic up-grading of vacuum residue of a Wandoan coal liquid. [Vacuum residue of coal liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, I.; Sakanishi, K.; Korai, Y.; Fujitsu, H.

    1986-08-01

    A successive two-stage hydrotreatment using a commercial Ni-Mo/Al/sub 2/O/sub 3/ catalyst (HDN-30) was applied to the vacuum residue of a Wandoan coal liquid to achieve high levels of hydrocracking, hydrodenitrogenation and hydrodeoxygenation. Two-stage hydrotreatment in 1-methylnaphthalene containing 20wt% fluoranthene as a solvent at solvent/coal liquid ratio of unity removed 83% (overall) of nitrogen and 90% (overall) of oxygen in the asphaltene (benzene-soluble fraction) at 380/sup 0/C for 3 h and at 420/sup 0/C for 3h under hydrogen pressure of 15 MPa and 14 MPa, respectively, while the single stage treatment at 420/sup 0/C for 3 h removed only 41% and 46%, respectively. The same two-stage treatment allowed the overall denitrogenation of 51% and the overall deoxygenation of 67% from a mixture of asphaltene and preasphaltene (THF-soluble fraction). Addition of the catalyst prior to the second stage reaction increased the removal of nitrogen and oxygen to 75 and 82%, respectively, indicating significant catalyst deactivation by the preasphaltene fraction in the first stage. Increasing the solvent/coal liquid ratio to 2 or addition of tetrahydrofluoranthene as a component of the solvent increased the removal of nitrogen and oxygen to 70 and 80%, respectively. Such two-stage hydrotreatment was also effective in refining the whole residue, allowing denitrogenations and deoxygenations of 68 and 75% respectively using tetrahydrofluoranthene. The coke, unreacted coal and minerals in the residue may not cause acute catalyst deactivation. High dissolving ability of the reaction solvents is very effective to decrease catalyst deactivation by carbon deposition. The successive two-stage hydrotreatment also enhanced hydrocracking of polar and resin fractions in the residue into oils (conversion, 65%). (Abstract Truncated)

  3. Transport fuels from two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Cebolla, V.; Fernandez, I.; Martinez, M.T.; Miranda, J.L.; Oelert, H.; Prado, J.G. (Instituto de Carboquimica CSIC, Zaragoza (Spain))

    1994-03-01

    Four Spanish lignites and their vitrinite concentrates were evaluated for coal liquefaction. Correlationships between the content of vitrinite and conversion in direct liquefaction were observed for the lignites but not for the vitrinite concentrates. The most reactive of the four coals was processed in two-stage liquefaction at a higher scale. First-stage coal liquefaction was carried out in a continuous unit at Clausthal University at a temperature of 400[degree]C at 20 MPa hydrogen pressure and with anthracene oil as a solvent. The coal conversion obtained was 75.41% being 3.79% gases, 2.58% primary condensate and 69.04% heavy liquids. A hydroprocessing unit was built at the Instituto de Carboquimica for the second-stage coal liquefaction. Whole and deasphalted liquids from the first-stage liquefaction were processed at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The effects of liquid hourly space velocity (LHSV), temperature, gas/liquid ratio and catalyst on the heteroatom liquids, and levels of 5 ppm of nitrogen and 52 ppm of sulphur were reached at 450[degree]C, 10 MPa hydrogen pressure, 0.08 kg H[sub 2]/kg feedstock and with Harshaw HT-500E catalyst. The liquids obtained were hydroprocessed again at 420[degree]C, 10 MPa hydrogen pressure and 0.06 kg H[sub 2]/kg feedstock to hydrogenate the aromatic structures. In these conditions, the aromaticity was reduced considerably, and 39% of naphthas and 35% of kerosene fractions were obtained. 18 refs., 4 figs., 4 tabs.

  4. Kinetics of coal liquefaction during heating-up and isothermal stages

    Energy Technology Data Exchange (ETDEWEB)

    Xian Li; Haoquan Hu; Shengwei Zhu; Shuxun Hu; Bo Wu; Meng Meng [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2008-04-15

    Direct liquefaction of Shenhua bituminous coal was carried out in a 500 ml autoclave with iron catalyst and coal liquefaction cycle-oil as solvent at initial hydrogen of 8.0 MPa, residence time of 0-90 min. To investigate the liquefaction kinetics, a model for heating-up and isothermal stages was developed to estimate the rate constants of both stages. In the model, the coal was divided into three parts, easy reactive part, hard reactive part and unreactive part, and four kinetic constants were used to describe the reaction mechanism. The results showed that the model is valid for both heating-up and isothermal stages of liquefaction perfectly. The rate-controlled process for coal liquefaction is the reaction of preasphaltene plus asphaltene (PAA) to oil plus gas (O + G). The upper-limiting conversion of isothermal stage was estimated by the kinetic calculation. 21 refs., 4 figs., 4 tabs.

  5. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  6. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  7. 57Fe NGR studies on three-stage hydroliquefaction of coals

    International Nuclear Information System (INIS)

    Jamond, M.; Bacaud, R.; Bussiere, P.; Charcosset, H.; Nickel-Pepin-Donat, B.

    1990-01-01

    Iron Moessbauer spectroscopy has been performed on liquefaction residues of two different French coals. In a three-stage liquefaction of high volatile bituminous coal (Freyming), without an added catalyst, the coal pyrite is not entirely converted into pyrrhotites, whereas in the presence of an added catalyst, coal pyrite is totally transformed into more dispersed pyrrhotites than those from the sample without an added catalyst; furthermore, the whole added catalyst precursor is reduced into pyrrhotites. In the case of liquefaction of subbituminous coal (Gardanne), full conversion of coal pyrite into pyrrhotites (even without an added catalyst) occurs. In addition, in the presence of the added catalyst, besides pyrrhotites, FeS is evidenced. When molybdenum-iron oxide is added as a catalyst precursor, no mixed Fe-Mo phase is detected. (orig.)

  8. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  9. Distributed activation energy model for kinetic analysis of multi-stage hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Li, W.; Wang, N.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    2003-07-01

    Based on the new analysis of distributed activation energy model, a bicentral distribution model was introduced to the analysis of multi-stage hydropyrolysis of coal. The hydropyrolysis for linear temperature programming with and without holding stage were mathematically described and the corresponding kinetic expressions were achieved. Based on the kinetics, the hydropyrolysis (HyPr) and multi-stage hydropyrolysis (MHyPr) of Xundian brown coal was simulated. The results shows that both Mo catalyst and 2-stage holding can lower the apparent activation energy of hydropyrolysis and make activation energy distribution become narrow. Besides, there exists an optimum Mo loading of 0.2% for HyPy of Xundian lignite. 10 refs.

  10. Numerical simulations for the coal/oxidant distribution effects between two-stages for multi opposite burners (MOB) gasifier

    International Nuclear Information System (INIS)

    Unar, Imran Nazir; Wang, Lijun; Pathan, Abdul Ghani; Mahar, Rasool Bux; Li, Rundong; Uqaili, M. Aslam

    2014-01-01

    Highlights: • We simulated a double stage 3D entrained flow coal gasifier with multi-opposite burners. • The various reaction mechanisms have evaluated with experimental results. • The effects of coal and oxygen distribution between two stages on the performance of gasifier have investigated. • The local coal to oxygen ratio is affecting the overall efficiency of gasifier. - Abstract: A 3D CFD model for two-stage entrained flow dry feed coal gasifier with multi opposite burners (MOB) has been developed in this paper. At each stage two opposite nozzles are impinging whereas the two other opposite nozzles are slightly tangential. Various numerical simulations were carried out in standard CFD software to investigate the impacts of coal and oxidant distributions between the two stages of the gasifier. Chemical process was described by Finite Rate/Eddy Dissipation model. Heterogeneous and homogeneous reactions were defined using the published kinetic data and realizable k–ε turbulent model was used to solve the turbulence equations. Gas–solid interaction was defined by Euler–Lagrangian frame work. Different reaction mechanism were investigated first for the validation of the model from published experimental results. Then further investigations were made through the validated model for important parameters like species concentrations in syngas, char conversion, maximum inside temperature and syngas exit temperature. The analysis of the results from various simulated cases shows that coal/oxidant distribution between the stages has great influence on the overall performance of gasifier. The maximum char conversion was found 99.79% with coal 60% and oxygen 50% of upper level of injection. The minimum char conversion was observed 95.45% at 30% coal with 40% oxygen at same level. In general with oxygen and coal above or equal to 50% of total at upper injection level has shown an optimized performance

  11. Thermogravimetric analysis of multi-stage hydropyrolysis of different coals

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wang, N.; Li, B [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion

    2001-09-01

    Based on the characteristic of hydropyrolysis (HyPy), a multi-stage MHyPy of different coals was investigated using thermogravimetry. The results show that keeping the near peak temperature for some time in HyPy process can obviously increase the conversion rate, which is believed due to the full match between formation rate of free radicals and supply of hydrogen. The fast heating in MHyPy process results in the same conversion rate as that of the slow heating in HyPy process, which leads to the less reaction time and high yield of oil. The effect of MHyPy depends on the coal structure itself and it is notable for the coal with high H/C ratio. This suggests that the external hydrogen promotes the reaction between intrinsic hydrogen and free radicals. The MHyPy improves the removal of sulfur and nitrogen. 5 refs., 7 figs., 2 tabs.

  12. Efficient direct coal liquefaction of a premium brown coal catalyzed by cobalt-promoted fumed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, M.; Loewe, A.; Traa, Y. [Stuttgart Univ. (Germany). Inst. of Chemical Technology

    2013-11-01

    The search for alternatives in the fuel sector is an important technological challenge. An interim solution could be provided by direct coal liquefaction. Hydrogen economy and the lack of an efficient catalyst are the main obstacles for this process. We used a premium German brown coal with a high H/C molar ratio of 1.25 and nanostructured cobalt catalysts to improve the efficiency of direct coal liquefaction. We were able to recover and recycle the catalyst efficiently and reached good brown coal conversions and oil yields with single-stage coal liquefaction. The oil quality observed almost reached that of a conventional crude oil considering higher heating value (HHV), H/C molar ratio and aliphatic content. (orig.)

  13. Coal exports still growing

    International Nuclear Information System (INIS)

    Blain, M.

    1998-01-01

    It is shown that the swings and roundabouts of the Asian economic shake out and Australian dollar devaluation are starting to work their way through the Australian export coal market. Perhaps somewhat surprisingly, at this stage the results are not proving to be as bad as were at first predicted by some market watchers. Export revenue and tonnages are up 12% for the year to July 98. Coal exports totaling $9.5 billion left Australia's shores in the 12 months confirming coal as Australia's single largest export revenue earner. Sales volumes in the present financial year are still increasing, the market being driven by steadily increasing Asian demand for steaming coal from places like Korea, Malaysia, Thailand and the Philippines

  14. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim

    2006-01-01

    by the cocombustion tests appeared to be somewhat different compared to that of the laboratory-prepared ash samples. The heated stage XRD data provide useful information regarding the reactions among the various ash compounds and the phase transformations during the heating and cooling of the ash samples and helped...... a high-temperature rotational viscometer and a hot stage XRD. The produced data were used to calculate the operating temperature of a pilot-scale entrained flow reactor during the cocombustion of biomass/ coal samples in order to ensure the slag flow and to avoid corrosion of the walls due to liquid slag...

  15. Geomechanics of subsidence above single and multi-seam coal mining

    Directory of Open Access Journals (Sweden)

    A.M. Suchowerska Iwanec

    2016-06-01

    Full Text Available Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be extracted from seams either above or below previously extracted coal seams, a practice known as multi-seam mining. In order to accurately predict the subsidence above single and multi-seam longwall panels using numerical methods, constitutive laws need to appropriately represent the mechanical behaviour of coal measure strata. The choice of the most appropriate model is not always straightforward. This paper compares predictions of surface subsidence obtained using the finite element method, considering a range of well-known constitutive models. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate predictions of subsidence when compared to field measurements. The advantages and limitations of using each particular constitutive law are discussed. A comparison of the numerical predictions and field measurements of surface subsidence is also provided.

  16. Study of initial stage in coal liquefaction. Increase in oil yield with suppression of retrogressive reaction during initial stage; Ekika hanno no shoki katei ni kansuru kenkyu. 1.

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, K.; Kanaji, M.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For the coal liquefaction, improvement of liquefaction conditions and increase of liquefied oil yield are expected by suppressing the recombination through rapid stabilization of pyrolytic radicals which are formed at the initial stage of liquefaction. Two-stage liquefaction combining prethermal treatment and liquefaction was performed under various conditions, to investigate the effects of reaction conditions on the yields and properties of products as well as to increase liquefied oil yield. Consequently, it was found that the catalyst contributes greatly to the hydrogen transfer to coal at the prethermal treatment. High yield of n-hexane soluble fraction with products having low condensation degree could be obtained by combining the prethermal treatment in the presence of hydrogen and catalyst with the concentration of slurry after the treatment. This was considered to be caused by the synergetic effect between the improvement of liquefaction by suppressing polymerization/condensation at the initial stage of reaction through the prethermal treatment and the effective hydrogen transfer accompanied with the improvement of contact efficiency of coal/catalyst by the concentration of slurry at the stage of liquefaction. 4 refs., 8 figs.

  17. Study on multi-stage hydropyrolysis of coal in fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Li, W.; Li, B.-Q. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab of Coal Conversion

    1999-07-01

    The composition and quantity of the oil in hydropyrolysis (HyPy) and multi-stage HyPy with high and slow heating rate were compared and the effect of multistage HyPy process on desulfurization was investigated. Multistage HyPy of lignite and high sulphur coal were investigated and the effects of residence time, heating rate and pressure on product yields were studied. 6 refs., 4 figs., 2 tabs.

  18. Process analysis and mechanism of multi-stage hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wang, N.; Li, B.Q. [Chinese Academy of Science, Taiyuan (China). Inst. of Coal Chemistry, State Key Laboratory of Coal Conversion

    2002-07-01

    The mechanism of multi-stage hydropyrolysis of coal was probed through detailed analysis of products of hydropyrolysis with different holding methods. The results showed that the holding method significantly affects the product distributions, thus making an apparent difference in hydrogen utilization efficiency. The holding temperature should be about 350-500{degree}C during which more free radicals are produced rapidly. Pore-riched structures are formed at the holding stage at 350{degree}C due to the evolution of large amount of volatiles, which is favorable to the subsequent hydrogenation reaction. The holding at a low temperature favors the reaction of hydrogen with oxygen-containing groups, leading to the formation of phenol and avoiding the formation of water at a high temperature. The cleavage of chemical bonds in the char is mainly dependent-on the pyrolysis temperature. The effect of holding stage is to change the distribution and components of products via stabilizing the free radicals and hydrogenating the heavier products.

  19. Design considerations for single-stage and two-stage pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1988-09-01

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  20. In situ analysis of coal from single electrode resistance, self-potential and gamma-ray logs

    International Nuclear Information System (INIS)

    Kayal, J.R.

    1981-01-01

    Single electrode resistance, self-potential and gamma-ray logging have been carried out in North Karanpura, West Bokaro and Jharia coalfields of Gondwana basin in Eastern India. Correlation of these geophysical logs is found to be very useful in locating the coal beds, determining their accurate depths and thickness and approximate quality. Coal seams have been detected as very high resistive formations compared to sandstone/shale which are interbedded in the coal basin. High or low self-potential values are obtained against the coal beds depending on the borehole fluid conditions. Burnt coals (Jhama) are characterised as highly conductive beds. Gamma ray logs have been effectively used alongwith electrical logs for correlation and identification of coal seams. Further analysis of gamma-ray log data determines a linear relationship with ash content of coal. (author)

  1. Influence of Coal Quality on Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1998-01-01

    mixing pattern on NO formation under these conditions. Emissions from the opposed fired plant with all combustion air introduced through the burners could only be qualitatively reproduced by the pilot furnace. Under single stage conditions the test rig provided higher NO levels. Carbon in ash levels did...... not show any correlation between the coals and the furnaces. An engineering, mathematical model has been developed describing radiation heat transfer and coal combustion in full scale furnaces. The model has been validated against measured temperatures and the amount of carbon in fly ash. The model...

  2. New stage of clean coal technology in Japan; Clean coal technology no aratana tenkai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Y [Agency of Natural Resources and Energy, Tokyo (Japan)

    1996-09-01

    The paper described the positioning and new development of clean coal technology. Coal is an important resource which supplies approximately 30% of the energy consumed in all the world. In the Asian/Pacific region, especially, a share of coal in energy is high, around 60% of the world, and it is indispensable to continue using coal which is abundantly reserved. Japan continues using coal as an important energy among petroleum substituting energies taking consideration of the global environment, and is making efforts for development and promotion of clean coal technology aiming at further reduction of environmental loads. Moreover, in the Asian region where petroleum depends greatly upon outside the region, it is extremely important for stabilization of Japan`s energy supply that coal producing countries in the region promote development/utilization of their coal resources. For this, it is a requirement for Japan to further a coal policy having an outlook of securing stable coal supply/demand in the Asian region. 6 figs., 2 tabs.

  3. Desulfurization and denitrogenation of coal during multi-stage hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, N.; Li, W.; Li, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab of Coal Conversion

    2001-02-01

    The elemental composition of char of high sulfur Hongmiao coal in multi-stage hydropyrolysis (MHyPy) with different heating rates were analysed and compared with that from normal hydropyrolysis (HyPy). The results illustrated that the sulfur removal in MHyPy was greater than that in HyPy, and more sulfur was evolved as the easily recycled gas H{sub 2}S. Similar with the situation of sulfur, more nitrogen transferred to the gas phase easily to be dealt with and the clean char was obtained. During MHyPy the extent of desulfurization and denitrogenation was more remarkable at high rate than that at slow heating rate. 8 refs., 2 figs., 2 tabs.

  4. Effect of the Reburning Zone Stoichiometry on the Nox Concentration at the Three-Stage Combustion of Pulverized Coal

    Directory of Open Access Journals (Sweden)

    Chernetskaya Nelya

    2016-01-01

    Full Text Available Numerical study of heat and mass transfer taking into account the combustion of coal particles in the furnace at the three-stage combustion of pulverized coal was performed. Analysis of the reburning zone stoichiometry on the concentration of nitrogen oxides at the furnace outlet was made. The values of excess air in the primary and reburning combustion zones, providing for the concentration of nitrogen oxides at the furnace outlet is not more than 350 mg/m3 and unburned carbon not more than 1 % when burning coal with a high content of nitrogen were established.

  5. Studies on the catalysts for coal liquefaction. ; Kinetic discussion in initial stage of coal liquefaction. Sekitan ekikayo shokubai ni kansuru kenkyu. ; Sekitan ekika shoki dankai no sokudoronteki kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, T; Ikenaga, N; Oda, H; Yokokawa, C [Kansai University, Osaka (Japan). Faculty of Engineering

    1990-11-29

    Discussions were given on features of various kinds of coal liquefaction catalysts exhibited by them in hydrocracking of coal (Taiheiyo coal), and particularly on selectivity of the reaction in its initial stage. Four kinds of catalysts were tested: Adkins catalyst which is an oxide of copper and chromium, Fe2O3+S, Mo-TiO2 and MoS3-Al2O3. Three grams of coal and 0.3 gram each of the catalysts were charged into an autoclave reactor and experiment was conducted under an initial hydrogen pressure of 10 MPa, temperatures from 653 K to 693 K and for durations of 0 to 120 minutes to derive apparent reaction rate constants. The MoS3-Al2O3 catalyst has promoting the reaction apparently in the primary reaction at any temperature, while the other catalysts had the rate constants varied in the initial and the later stages. It was recognized that the temperature dependence of rate constants varies considerably according to the types of catalyst. Particularly the MoO3-TiO3 catalyst has small temperature dependence in the rate constants, and high molecular weight reducing power. 3 refs., 4 figs., 3 tabs.

  6. Test and evaluate the tri-gas low-Btu coal-gasification process. Final report, October 21, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M.G.

    1980-12-01

    This report describes the continuation of work done to develop the BCR TRI-GAS multiple fluidized-bed gasification process. The objective is the gasification of all ranks of coals with the only product being a clean, low-Btu fuel gas. Design and construction of a 100 lb/h process and equipment development unit (PEDU) was completed on the previous contract. The process consists of three fluid-bed reactors in series, each having a specific function: Stage 1 - pretreatment; Stage 2- - gasification; Stage 3 - maximization of carbon utilization. Under the present contract, 59 PEDU tests have been conducted. A number of these were single-stage tests, mostly in Stage 1; however, integrated PEDU tests were conducted with a western coal (Rosebud) and two eastern coals (Illinois No. 6 and Pittsburgh seam). Both Rosebud and Pittsburgh seam coals were gasified with the PEDU operating in the design mode. Operation with Illinois No. 6 seam coal was also very promising; however, time limitations precluded further testing with this coal. One of the crucial tasks was to operate the Stage 1 reactor to pretreat and devolatilize caking coals. By adding a small amount of air to the fluidizing gas, the caking properties of the coal can be eliminated. However, it was also desirable to release a high percentage of the volatile matter from the coal in this vessel. To accomplish this, the reactor had to be operated above the agglomerating temperature of caking coals. By maintaining a low ratio of fresh to treated coal, this objective was achieved. Both Illinois No. 6 and Pittsburgh seam coals were treated at temperatures of 800 to 900 F without agglomerating in the vessel.

  7. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  8. Comparisons of single-stage and two-stage approaches to genomic selection.

    Science.gov (United States)

    Schulz-Streeck, Torben; Ogutu, Joseph O; Piepho, Hans-Peter

    2013-01-01

    Genomic selection (GS) is a method for predicting breeding values of plants or animals using many molecular markers that is commonly implemented in two stages. In plant breeding the first stage usually involves computation of adjusted means for genotypes which are then used to predict genomic breeding values in the second stage. We compared two classical stage-wise approaches, which either ignore or approximate correlations among the means by a diagonal matrix, and a new method, to a single-stage analysis for GS using ridge regression best linear unbiased prediction (RR-BLUP). The new stage-wise method rotates (orthogonalizes) the adjusted means from the first stage before submitting them to the second stage. This makes the errors approximately independently and identically normally distributed, which is a prerequisite for many procedures that are potentially useful for GS such as machine learning methods (e.g. boosting) and regularized regression methods (e.g. lasso). This is illustrated in this paper using componentwise boosting. The componentwise boosting method minimizes squared error loss using least squares and iteratively and automatically selects markers that are most predictive of genomic breeding values. Results are compared with those of RR-BLUP using fivefold cross-validation. The new stage-wise approach with rotated means was slightly more similar to the single-stage analysis than the classical two-stage approaches based on non-rotated means for two unbalanced datasets. This suggests that rotation is a worthwhile pre-processing step in GS for the two-stage approaches for unbalanced datasets. Moreover, the predictive accuracy of stage-wise RR-BLUP was higher (5.0-6.1%) than that of componentwise boosting.

  9. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste

    International Nuclear Information System (INIS)

    Wu, Li-Jie; Kobayashi, Takuro; Li, Yu-You; Xu, Kai-Qin

    2015-01-01

    Highlights: • A single-stage and two two-stage anaerobic systems were synchronously operated. • Similar methane production 0.44 L/g VS_a_d_d_e_d from oily food waste was achieved. • The first stage of the two-stage process became inefficient due to serious pH drop. • Recycle favored the hythan production in the two-stage digestion. • The conversion of unsaturated fatty acids was enhanced by recycle introduction. - Abstract: Anaerobic digestion is an effective technology to recover energy from oily food waste. A single-stage system and temperature-phased two-stage systems with and without recycle for anaerobic digestion of oily food waste were constructed to compare the operation performances. The synchronous operation indicated the similar ability to produce methane in the three systems, with a methane yield of 0.44 L/g VS_a_d_d_e_d. The pH drop to less than 4.0 in the first stage of two-stage system without recycle resulted in poor hydrolysis, and methane or hydrogen was not produced in this stage. Alkalinity supplement from the second stage of two-stage system with recycle improved pH in the first stage to 5.4. Consequently, 35.3% of the particulate COD in the influent was reduced in the first stage of two-stage system with recycle according to a COD mass balance, and hydrogen was produced with a percentage of 31.7%, accordingly. Similar solids and organic matter were removed in the single-stage system and two-stage system without recycle. More lipid degradation and the conversion of long-chain fatty acids were achieved in the single-stage system. Recycling was proved to be effective in promoting the conversion of unsaturated long-chain fatty acids into saturated fatty acids in the two-stage system.

  10. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  11. Control of Single-Stage Single-Phase PV inverter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede

    2005-01-01

    In this paper the issue of control strategies for single-stage photovoltaic (PV) inverter is addressed. Two different current controllers have been implemented and an experimental comparison between them has been made. A complete control structure for the single-phase PV system is also presented......-forward; - and the grid current controller implemented in two different ways, using the classical proportional integral (PI) and the novel proportional resonant (PR) controllers. The control strategy was tested experimentally on 1.5 kW PV inverter....

  12. Steam coal processing technology: handling, high-order processing, COM, meth-coal

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, H.; Onodera, J.

    1982-01-01

    Topics covered include: various handling techologies (overland and marine transport, storage, water removal, drying, comminution and sizing); various coal processing technologies (gravity concentration, magnetic separation, multi-stage flotation, liquid-phase pelletizing, chemical processing); production methods for coal-oil mixtures (COM), their physical properties, stability, storage, transport, advantages, plus recent trends in research and development; production of coal-methanol slurry (meth-coal), its stability, storage, transport, utilization and environmental problems, plus latest trends in research and development. (In Japanese)

  13. Exploratory Research on Novel Coal

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.

    1998-05-01

    The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

  14. China's coal policy since 1979: A brief overview

    International Nuclear Information System (INIS)

    Shen Lei; Gao Tianming; Cheng Xin

    2012-01-01

    Since reform and opening-up in 1978, the coal industry in China has been developing rapidly. This article identified major factors affecting the growth of China's coal industry, immediate targets, economic policies, as well as structural reforms of the sector. Authors have divided its developing process into three stages: rapid growth of coal industry (1979–1992); close-down of small-scale coal mines (SCMs) (1993–2001); resource consolidation (2002–present). At the first stage, led by the ‘two-leg walking’ strategy, SCMs grew significantly, which eased the pressure of energy shortage. From the transition of planned economy to market economy, major state-owned coal mines (MSCs), which were not consistently profitable, would have to learn how to withstand severe competitions and survive. As a result, the central government took several measures to try to keep them alive. This situation was not changed until 2001. Large-scaled coal mine groups were then established by the government when China entered the WTO. MSCs were encouraged to merge with others to form a certain scale, as a way to compete with giant overseas. So a trial was firstly implemented in Shanxi province. - Highlights: ► Authors have divided the China coal developing process since 1979 into three stages. ► Some polices solve main problems in that stage, but it also lead to another matters in following stage. ► China coal industry need to establish large coal mine groups to compete with overseas coal giants. ► Environmental and safe policy will significantly affect coal industrial development in the future.

  15. Influence of Cu(NO32 initiation additive in two-stage mode conditions of coal pyrolytic decomposition

    Directory of Open Access Journals (Sweden)

    Larionov Kirill

    2017-01-01

    Full Text Available Two-stage process (pyrolysis and oxidation of brown coal sample with Cu(NO32 additive pyrolytic decomposition was studied. Additive was introduced by using capillary wetness impregnation method with 5% mass concentration. Sample reactivity was studied by thermogravimetric analysis with staged gaseous medium supply (argon and air at heating rate 10 °C/min and intermediate isothermal soaking. The initiative additive introduction was found to significantly reduce volatile release temperature and accelerate thermal decomposition of sample. Mass-spectral analysis results reveal that significant difference in process characteristics is connected to volatile matter release stage which is initiated by nitrous oxide produced during copper nitrate decomposition.

  16. Two-stage coal liquefaction without gas-phase hydrogen

    Science.gov (United States)

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  17. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  18. Indian coal industry: Growth perspective

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1993-01-01

    Growth perspective of Indian coal industry and their environmental aspects, are discussed. The complete coal chain comprises of mining including preparation and processing, transport, usage and disposal of solid, liquid and gaseous wastes. Proper environmental protection measures are therefore, required to be integrated at every stage. At mining stage, land reclamation, restoration of surface damaged by subsidence and proper treatment of effluents are the minimum requirement for effective environmental protection. Since coal will continue to be the major source of commercial energy in coming decades initiative will have to be taken in making coal a clean fuel from the point of view of its usage in different industries. Washing of high ash coals for reducing the ash content will go a long way in reducing the atmospheric pollution through better plant performance and reduced environmental pollution at the power plants. (author)

  19. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  20. Effects on NOx and SO2 Emissions during Co-Firing of Coal With Woody Biomass in Air Staging and Reburning

    Directory of Open Access Journals (Sweden)

    Nihad Hodžić

    2018-02-01

    Full Text Available Co-firing coal with different types of biomass is increasingly being applied in thermal power plants in Europe. The main motive for the use of biomass as the second fuel in coal-fired power plants is the reduction of CO2 emissions, and related financial benefits in accordance with the relevant international regulations and agreements. Likewise, the application of primary measures in the combustion chamber, which also includes air staging and/or reburning, results in a significant reduction in emission of polluting components of flue gases, in particular NOx emissions. In addition to being efficient and their application to new and future thermoblocks is practically unavoidable, their application and existing conventional combustion chamber does not require significant constructional interventions and is therefore relatively inexpensive. In this work results of experimental research of co-firing coals from Middle Bosnian basin with waste woody biomass are presented. Previously formed fuel test matrix is subjected to pulverized combustion under various temperatures and various technical and technological conditions. First of all it refers to the different mass ratio of fuel components in the mixture, the overall coefficient of excess air and to the application of air staging and/or reburning. Analysis of the emissions of components of the flue gases are presented and discussed. The impact of fuel composition and process temperature on the values of the emissions of components of the flue gas is determined. Additionally, it is shown that other primary measures in the combustion chamber are resulting in more or less positive effects in terms of reducing emissions of certain components of the flue gases into the environment. Thus, for example, the emission of NOx of 989 mg/ measured in conventional combustion, with the simultaneous application of air staging and reburning is reduced to 782 mg/, or by about 21%. The effects of the primary measures

  1. Damage evolution analysis of coal samples under cyclic loading based on single-link cluster method

    Science.gov (United States)

    Zhang, Zhibo; Wang, Enyuan; Li, Nan; Li, Xuelong; Wang, Xiaoran; Li, Zhonghui

    2018-05-01

    In this paper, the acoustic emission (AE) response of coal samples under cyclic loading is measured. The results show that there is good positive relation between AE parameters and stress. The AE signal of coal samples under cyclic loading exhibits an obvious Kaiser Effect. The single-link cluster (SLC) method is applied to analyze the spatial evolution characteristics of AE events and the damage evolution process of coal samples. It is found that a subset scale of the SLC structure becomes smaller and smaller when the number of cyclic loading increases, and there is a negative linear relationship between the subset scale and the degree of damage. The spatial correlation length ξ of an SLC structure is calculated. The results show that ξ fluctuates around a certain value from the second cyclic loading process to the fifth cyclic loading process, but spatial correlation length ξ clearly increases in the sixth loading process. Based on the criterion of microcrack density, the coal sample failure process is the transformation from small-scale damage to large-scale damage, which is the reason for changes in the spatial correlation length. Through a systematic analysis, the SLC method is an effective method to research the damage evolution process of coal samples under cyclic loading, and will provide important reference values for studying coal bursts.

  2. Delayed Single Stage Perineal Posterior Urethroplasty.

    Science.gov (United States)

    Ali, Shahzad; Shahnawaz; Shahzad, Iqbal; Baloch, Muhammad Umar

    2015-06-01

    To determine the delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture/distraction defect. Descriptive case series. Department of Urology, Jinnah Postgraduate Medical Centre, Karachi, from January 2009 to December 2011. Patients were selected for delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture / distraction defect. All were initially suprapubically catheterized followed by definitive surgery after at least 3 months. Thirty male patients were analyzed with a mean follow-up of 10 months, 2 patients were excluded as they developed failure in first 3 months postoperatively. Mean patient's age was 26.25 ± 7.9 years. On follow-up, 7 patients (23.3%) experienced recurrent stricture during first 10 months. Five (16.6%) patients were treated successfully with single direct visual internal urethrotomy. Two patients (6.6%) had more than one direct visual internal urethrotomy and considered failed. Re-do perineal urethroplasty was eventually performed. The overall success rate was 93.3% with permissive criteria allowing single direct visual internal urethrotomy and 76.6% with strict criteria allowing no more procedures postoperatively. Posterior anastomotic urethroplasty offers excellent long-term results to patients with posterior urethral trauma and distraction defect even after multiple prior procedures.

  3. Effects of intraparticle heat and mass transfer during devolatilization of a single coal particle

    NARCIS (Netherlands)

    Bliek, A.; Poelje, W.M.; van Swaaij, Willibrordus Petrus Maria; van Beckum, F.P.H.

    1985-01-01

    The objective of the present work is to elucidate the influence of intraparticle mass and heat transfer phenomena on the overall rate and product yields during devolatilization of a single coal particle in an inert atmosphere. To this end a mathematical model has been formulated which covers

  4. Life cycle assessment of opencast coal mine production: a case study in Yimin mining area in China.

    Science.gov (United States)

    Zhang, Li; Wang, Jinman; Feng, Yu

    2018-03-01

    China has the largest coal production in the world due to abundant resource requirements for economic development. In recent years, the proportion of opencast coal mine production has increased significantly in China. Opencast coal mining can lead to a large number of environmental problems, including air pollution, water pollution, and solid waste occupation. The previous studies on the environmental impacts of opencast coal mine production were focused on a single production process. Moreover, mined land reclamation was an important process in opencast coal mine production; however, it was rarely considered in previous research. Therefore, this study attempted to perform a whole environmental impact analysis including land reclamation stage using life cycle assessment (LCA) method. The Yimin opencast coal mine was selected to conduct a case study. The production of 100 tons of coal was used as the functional unit to evaluate the environmental risks in the stages of stripping, mining, transportation, processing, and reclamation. A total of six environmental impact categories, i.e., resource consumption, acidification, global warming, solid waste, eutrophication, and dust, were selected to conduct this assessment. The contribution rates of different categories of environmental impacts were significantly different, and different stages exhibited different consumption and emissions that gave rise to different environmental effects. Dust was the most serious environmental impact category, and its contribution rate was 36.81%, followed by global warming and acidification with contribution rates of 29.43% and 22.58%, respectively. Both dust and global warming were mainly affected in mining stage in Yimin opencast coal mine based on comprehensive analysis of environmental impact. Some economic and feasible measures should be used to mitigate the environmental impacts of opencast coal mine production, such as water spraying, clean transportation, increasing processing

  5. Coal liquefaction in early stage of NEDOL process 1t/d PSU; 1t/d PSU ni okeru ekika shoki hanno ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Kawabata, M.; Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    To investigate the behavior of coal liquefaction reaction in early stage as a part of studies on the coal liquefaction characteristics using NEDOL process 1 t/d process supporting unit (PSU), coal slurry sample was taken from the outlet of slurry preheater located in the upflow of liquefaction reactors, and was tested. Tanito Harum coal was used for liquefaction. Preheater was operated under the condition of pressure of 170 kg/cm{sup 2}, gas flow rate of 64 Nm{sup 3}/hr, and at temperature up to 410{degree}C at the outlet, in response to the standard test condition. The slurry sample was discharged into a high temperature separator with temperature of 250{degree}C. Liquefaction was not proceeded at the outlet of preheater. Solid residue yielded around 80%, and liquid yielded around 15%. Gases, CO and CO2, and water yielded also small amount around 3%. The solid sample contained much IOM fraction (tetrahydrofuran-insoluble and ash), and the liquid contained much heavy oil fraction. Hydrogenation was not proceeded, and the hydrogen consumption was very low showing below one-tenth of that at the usual operation. Hydrogen sulfide gas was formed at early stage, which suggested that the change of iron sulfide catalyst occur at early stage of liquefaction. 1 ref., 5 figs., 2 tabs.

  6. Development of advanced air-blown entrained-flow two-stage bituminous coal IGCC gasifier

    Directory of Open Access Journals (Sweden)

    Abaimov Nikolay A.

    2017-01-01

    Full Text Available Integrated gasification combined cycle (IGCC technology has two main advantages: high efficiency, and low levels of harmful emissions. Key element of IGCC is gasifier, which converts solid fuel into a combustible synthesis gas. One of the most promising gasifiers is air-blown entrained-flow two-stage bituminous coal gasifier developed by Mitsubishi Heavy Industries (MHI. The most obvious way to develop advanced gasifier is improvement of commercial-scale 1700 t/d MHI gasifier using the computational fluid dynamics (CFD method. Modernization of commercial-scale 1700 t/d MHI gasifier is made by changing the regime parameters in order to improve its cold gas efficiency (CGE and environmental performance, namely H2/CO ratio. The first change is supply of high temperature (900°C steam in gasifier second stage. And the second change is additional heating of blast air to 900°C.

  7. Coal: the metamorphosis of an industry

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Marie Martin-Amouroux

    2008-07-01

    Coal, a fuel that once dominated the global energy scene, is staging a come-back despite being environmentally dirty. The purpose of the paper is to analyse the return of King Coal to find out whether it is likely to be regain its dominance in the global energy in the future. In analysing the metamorphosis of the coal industry, the paper looks at the historical evolution of the industry and analyses the factors behind the change. The deficiencies of coal's competitors are also analysed. Using a scenario analysis, the future role of coal in the global energy mix is estimated as well. The paper finds that despite the domination of hydrocarbons in the global energy mix, coal has maintained a steady share and in some countries, it remained the main fuel. With the concerns of high-oil prices and peak oil, coal is regaining its domination in the power sector around the world. The industry has reformed and restructured itself to remain competitive. Consequently, it has the possibility of staging a come back as a dominant fuel.

  8. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon–ammonia working pair

    International Nuclear Information System (INIS)

    Xu, S.Z.; Wang, L.W.; Wang, R.Z.

    2016-01-01

    Highlights: • Activated carbon–ammonia multi-stage adsorption refrigerator was analyzed. • COP, exergetic efficiency and entropy production of cycles were calculated. • Single-stage cycle usually has the advantages of simple structure and high COP. • Multi-stage cycles adapt to critical conditions better than single-stage cycle. • Boundary conditions for choosing optimal cycle were summarized as tables. - Abstract: Activated carbon–ammonia multi-stage adsorption refrigeration cycle was analyzed in this article, which realized deep-freezing for evaporating temperature under −18 °C with heating source temperature much lower than 100 °C. Cycle mathematical models for single, two and three-stage cycles were established on the basis of thorough thermodynamic analysis. According to simulation results of thermodynamic evaluation indicators such as COP (coefficient of performance), exergetic efficiency and cycle entropy production, multi-stage cycle adapts to high condensing temperature, low evaporating temperature and low heating source temperature well. Proposed cycle with selected working pair can theoretically work under very severe conditions, such as −25 °C evaporating temperature, 40 °C condensing temperature, and 70 °C heating source temperature, but under these working conditions it has the drawback of low cycle adsorption quantity. It was found that both COP and exergetic efficiency are of great reference value in the choice of cycle, whereas entropy production is not so useful for cycle stage selection. Finally, the application boundary conditions of single-stage, two-stage, and three-stage cycles were summarized as tables according to the simulation results, which provides reference for choosing optimal cycle under different conditions.

  9. Delayed Single Stage Perineal Posterior Urethroplasty

    International Nuclear Information System (INIS)

    Ali, S.; Shahnawaz; Shahzad, I.; Baloch, M. U.

    2015-01-01

    Objective: To determine the delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture/distraction defect. Study Design: Descriptive case series. Place and Duration of Study: Department of Urology, Jinnah Postgraduate Medical Centre, Karachi, from January 2009 to December 2011. Methodology: Patients were selected for delayed single stage perineal posterior urethroplasty for treatment of posterior urethral stricture / distraction defect. All were initially suprapubically catheterized followed by definitive surgery after at least 3 months. Results: Thirty male patients were analyzed with a mean follow-up of 10 months, 2 patients were excluded as they developed failure in first 3 months postoperatively. Mean patients age was 26.25 ± 7.9 years. On follow-up, 7 patients (23.3 percentage) experienced recurrent stricture during first 10 months. Five (16.6 percentage) patients were treated successfully with single direct visual internal urethrotomy. Two patients (6.6 percentage) had more than one direct visual internal urethrotomy and considered failed. Re-do perineal urethroplasty was eventually performed. The overall success rate was 93.3 percentage with permissive criteria allowing single direct visual internal urethrotomy and 76.6% with strict criteria allowing no more procedures postoperatively. Conclusion: Posterior anastomotic urethroplasty offers excellent long-term results to patients with posterior urethral trauma and distraction defect even after multiple prior procedures. (author)

  10. Burnout behaviour of bituminous coals in air-staged combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kluger, F.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. of Process Engineering and Power Plant (IVD)

    2001-07-01

    In order to determine the influence on burnout by the combustion conditions and the coal preparation, three bituminous coals sold on the world market, from three different locations in Poland, South Africa, and Australia, were studied more closely. For this purpose, the coals were ground in two different particle size ranges, which, besides the influence of the combustion conditions, such a temperature, residence time, and stoichiometry, made it possible to also investigate the impact on burnout by the coal preparation. The experiments were carried out in an electrically heated entrained-flow reactor with a thermal input of 8.5 kW. The parameters for the experiments are wall temperature (1000-1350{degree}C), air ratio (0.6-1.15) and two particle sizes (70% {lt} 75 {mu}m, 90% {lt} 75 {mu}m). The results show that in general, for increasing temperatures, the burnout quality will improve. For the Australian Illawara coal, another outcome is increased NOx emissions. Lowering the air ratio in the reduction zone leads to less NOx emission but to increased unburnt matter in ash. For the smaller particle size fraction, the analysis of the different particle sizes shows an improvement of the burnout without a change in NOx emissions. 10 refs., 10 figs., 2 tabs.

  11. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  12. Reactivity of mechanical activated coals for special utilization

    Energy Technology Data Exchange (ETDEWEB)

    Turcaniova, L.; Kadarova, J.; Imrich, P.; Liptaj, T.; Vidlar, J.; Vasek, J.; Foldyna, F.; Sitek, J.; Balaz, P. [Slovak Academy of Science, Kosice (Slovakia). Inst. of Geotechnology

    2004-09-01

    The paper presents the coal activation effect as disintegration in the nano-submicron range and destruction carbon structure. The Slovak brown coal activated in planetary mill is characterised by destruction of organic structure of coal. The biggest activation effect connected with the destruction of C-C bonds of sp{sup 3} carbons has been confirmed by {sup 13}C NMR spectroscopy in the chemical structure of humic acids extracted from the coal sample activated for a period of 60 min. The specific surface of humic acids is much smaller then that of mechanically activated sample from which they were extracted. The black Czech coal was activated by two stage disintegration. In the first stage of mechanochemical activation using Grinding Aqueous Caustic Leaching, GACL method, a fine dispersed semiproduct is formed with the size of particles from 2.5 to 9000 nm. The additional disintegration using water jet increases the effect of disintegration in the submicron area of the coal product. The volume distribution maximum achieves in this stage about 60 wt% of 750 nm grains.

  13. Coking coal consumption of POSCO

    International Nuclear Information System (INIS)

    Yoo, B.C.

    1991-01-01

    Pohang Iron and Steel Company Limited (POSCO) was established in 1968. Molten iron was first produced in July 1973 after a 3 year construction period. The long awaited start up of Korea's first integrated steel works provided the momentum for the fast growth of our steel industry. In 1973, the first year of operation, POSCO purchased 770,000 tons of coal from the United States and Australia. The import tonnage was more than doubled in 1976 when we completed the second stage of Pohang Works and has continued to increase reaching 13.1 million tons last year. POSCO's coal consumption will increase one more time next year as the fourth stage of Kwangyang works starts to operate a new blast furnace with an annual molten iron production capacity of 2.8 million tons. Even though the new blast furnace will have the same capacity as the other 3 in Kwangyang, the additional coking coal requirement will be much smaller than the tonnages we needed for the other stages of the works. This paper reports that this is due to the increased use of pulverized coal

  14. Investigation on the transient enthalpy of coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Pei-fang; Wang, Na; Yu, Bo; Zhang, Bin; Liu, Yang; Zhou, Huai-chun [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    The transient enthalpy ({Delta}h) of coal/char combustion of the three different coals (including anthracite, bituminous, and lignite) during the process of combustion is determined as a function of burn-off degree by using thermo-gravimetric-differential scanning calorimeter (TG-DSC) simultaneous thermal analyzer, and The error of determining calorific values of coals/chars is less 5% compared the results of TG-DSC with that of an automatic isoperibol calorimeter. It is found that In the initial stage, all the {Delta}h of coals are greater than that of the char pyrolysized from parent coal for many of volatiles contained more a great deal of heat per unit mass oxidized at low temperature, it also imply that coal is more easily ignited than char corresponded; And in the middle stage, all the {Delta}h of coals is lower than that of the char pyrolysized, so the pyrolysized char oxidation can supply much more of thermo-energy per unit mass. {Delta}h are almost a constant when the burn-off degree is equal to between 0.35/0.15 and 0.95/0.85 for ZCY bituminous coal/char and JWY anthracite/char, between 0.35/0.35 and 0.75/0.9 for SLH lignite/char; In the later stage, the {Delta}h of the coal/char decreased with the burn-off degree, it imply that the activity of the coal/char decreases. Therefore, coal pyrolysis changes not only the structure of char, but also the property of release heat; the transient enthalpy of coal/char combustion has been in change with the burn-out degree.

  15. Single-stage-to-orbit versus two-stage-two-orbit: A cost perspective

    Science.gov (United States)

    Hamaker, Joseph W.

    1996-03-01

    This paper considers the possible life-cycle costs of single-stage-to-orbit (SSTO) and two-stage-to-orbit (TSTO) reusable launch vehicles (RLV's). The analysis parametrically addresses the issue such that the preferred economic choice comes down to the relative complexity of the TSTO compared to the SSTO. The analysis defines the boundary complexity conditions at which the two configurations have equal life-cycle costs, and finally, makes a case for the economic preference of SSTO over TSTO.

  16. Single stage reconstruction of complex anterior urethral strictures

    Directory of Open Access Journals (Sweden)

    Deepak Dubey

    2001-01-01

    Full Text Available Purpose: Single stage reconstruction of long, com-plex urethral strictures is technically demanding and may require the use of more than one tissue transfer technique. We describe our experience in the manage-ment of such strictures with a variety of urethroplasty techniques. Materials and Methods: Between 1989 and 1999, 25 men (mean age 38.5 years underwent single stage re-construction of panurethral, multiple segment or focally dense strictures [mean length 11.2 cm (range 8-17 cm]. 8 patients had combined substitution urethroplasty with a circumpenile fasciocutaneous flap and a free graft of bladder/buccal mucosa or tunica vaginalis . flap. In 10 patients a single tissue transfer technique was used. 3 patients underwent an augmented roof/floor strip ure-throplasty with a penile skin flap. 4 patients with multi-ple segment strictures (separate pendulous and bulbar underwent distal onlay flap and proximal anastomotic urethroplasty. Results: The median ,follow-up was 46.5 months (range 6-88 months. The mean postoperative flow rate improved to 22.5 ml/sec. 2 patients developed fistulae requiring repair. Recurrent stricture developed in 5 (20.8% patients, of which 2 were managed with visual internal urethrotomy, 2 with anastomotic urethroplasty and 1 with a two-stage procedure. Pseudodiverticulum and post-void dribbling were seen in 6 (25% patients. Conclusions: Successful outcome of single stage re-construction of long complex strictures can be achieved with a combination of various tissue transfer methods. The urologist who has a thorough knowledge of penile skin and urethral vascular anatomy and a wide array of substitution techniques in his armamentarium can un-dertake approach to such strictures.

  17. Concentrations of lithium in Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhuang; Li, Yanheng; Zhao, Cunliang; Lin, Mingyue; Wang, Jinxi; Qin, Shenjun [Hebei University of Engineering, Handan (China). Key Laboratory of Resource Exploration Research of Hebei Province

    2010-04-15

    Lithium is an important energy metal. Its concentrations in coals have been studied by many geologists. Its average content is only 14 mg/kg in the coals of the world. Lithium has never been reported as a coal associated deposit before. In order to study the concentrations in Chinese coals, 159 coal and gangue samples were taken from six coal mines and were determined by ICP-MS and the minerals in the samples were identified by X-ray powder diffraction. The results indicate that the Li contents in the coal samples from the Antaibao Coal Mine have reached the industry grade of coal associated deposits. In Tongxing Coal Mine, Li contents in the coal floor rock samples have reached the industry grade of independent lithium deposits. Main minerals are polylithionite, triphylite, zinnwaldite, lithionite and cookeite, which were transported into the peats. Therefore, lithium enriched is most likely in the synsedimentary stage in both coal mines. Furthermore, a revised average Li content in Chinese coals was given.

  18. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage.

    Science.gov (United States)

    Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Nakhla, George; El Naggar, M Hesham

    2012-05-01

    A comparative evaluation of single-stage and two-stage anaerobic digestion processes for biomethane and biohydrogen production using thin stillage was performed to assess the impact of separating the acidogenic and methanogenic stages on anaerobic digestion. Thin stillage, the main by-product from ethanol production, was characterized by high total chemical oxygen demand (TCOD) of 122 g/L and total volatile fatty acids (TVFAs) of 12 g/L. A maximum methane yield of 0.33 L CH(4)/gCOD(added) (STP) was achieved in the two-stage process while a single-stage process achieved a maximum yield of only 0.26 L CH(4)/gCOD(added) (STP). The separation of acidification stage increased the TVFAs to TCOD ratio from 10% in the raw thin stillage to 54% due to the conversion of carbohydrates into hydrogen and VFAs. Comparison of the two processes based on energy outcome revealed that an increase of 18.5% in the total energy yield was achieved using two-stage anaerobic digestion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. design, construction and measured performance of a single-stage

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Abstract. The design philosophy, construction and measured performances of a single stage, single entry centrifugal pump .... the tachometer spindle to be held against a recess in the motor shaft. The constructed centrifugal ...

  20. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  1. Efficacy of single-stage and two-stage Fowler–Stephens laparoscopic orchidopexy in the treatment of intraabdominal high testis

    Directory of Open Access Journals (Sweden)

    Chang-Yuan Wang

    2017-11-01

    Conclusion: In the case of testis with good collateral circulation, single-stage F-S laparoscopic orchidopexy had the same safety and efficacy as the two-stage F-S procedure. Surgical options should be based on comprehensive consideration of intraoperative testicular location, testicular ischemia test, and collateral circumstances surrounding the testes. Under the appropriate conditions, we propose single-stage F-S laparoscopic orchidopexy be preferred. It may be appropriate to avoid unnecessary application of the two-stage procedure that has a higher cost and causes more pain for patients.

  2. Separation of the constituents of coal

    Energy Technology Data Exchange (ETDEWEB)

    Betrand, M F

    1938-12-06

    A process is disclosed of separating, by means of dense aqueous solutions, the constituents of coal, isolated by preliminary crushing from each other and/or from barren and carbonaceous shales, comprising the addition to the washing water before treatment or during any stage of the preparation of the coal before separation, or to the dense separating solution of agents improving the wetting of the coal by water.

  3. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  4. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    International Nuclear Information System (INIS)

    Fair, C.E.; Cook, M.E.; Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  5. Nuclear magnetic resonance studies of ancient buried wood-II. Observations on the origin of coal from lignite to bituminous coal

    Science.gov (United States)

    Hatcher, P.G.; Breger, I.A.; Szeverenyi, N.; Maciel, G.E.

    1982-01-01

    Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures. ?? 1982.

  6. Study on dynamic multi-objective approach considering coal and water conflict in large scale coal group

    Science.gov (United States)

    Feng, Qing; Lu, Li

    2018-01-01

    In the process of coal mining, destruction and pollution of groundwater in has reached an imminent time, and groundwater is not only related to the ecological environment, but also affect the health of human life. Similarly, coal and water conflict is still one of the world's problems in large scale coal mining regions. Based on this, this paper presents a dynamic multi-objective optimization model to deal with the conflict of the coal and water in the coal group with multiple subordinate collieries and arrive at a comprehensive arrangement to achieve environmentally friendly coal mining strategy. Through calculation, this paper draws the output of each subordinate coal mine. And on this basis, we continue to adjust the environmental protection parameters to compare the coal production at different collieries at different stages under different attitude of the government. At last, the paper conclude that, in either case, it is the first arrangement to give priority to the production of low-drainage, high-yield coal mines.

  7. Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal Mines at different mine development stages using MODFLOW, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    L. Surinaidu

    2014-09-01

    Full Text Available The Singareni Collieries Company Ltd (SCCL is exploiting coal in the Godavari valley coal fields spread over 5.33 km2 in Andhra Pradesh, India. In the area, six workable coal seams have been identified in Barakar formation by the analysis of the geologic logs of 183 bore wells. A finite difference based numerical groundwater flow model is developed with twenty conceptual layers and with a total thickness of 320 m. The flow model was calibrated under steady state conditions and predicted groundwater inflows into the mine pits at different mine development stages. The groundwater budget results revealed that the mining area would receive net groundwater inflows of 5877 m3 day−1, 12,818 m3 day−1, 12,910 m3 day−1, 20,428 m3 day−1, 22,617 m3 day−1 and 14,504 m3 day−1 at six mine development stages of +124 m (amsl, +93 m (amsl, +64 m (amsl, +41 m (amsl, +0 m (amsl and −41 m (amsl, respectively. The results of the study can be used to plan optimal groundwater pumping and the possible locations to dewater the groundwater for safe mining at different mine development stages.

  8. Methodology of theory of stage-by-stage long-term preparation of sportsmen in single combats

    Directory of Open Access Journals (Sweden)

    Arziutov G.

    2010-04-01

    Full Text Available Results over of researches are brought on methodology of theory of stage-by-stage preparation of sportsmen in single combats. The structuralness of theory lies in possibility simple verifications of its substantive provisions, principles and laws. Development of methodology enables to begin creation of map of trainer on the stages of long-term preparation. Laws, conformities to law, principles and rules, must be collected in a map. A map enables the trainers of reserve sport to use its content during all stages of preparation of sportsman.

  9. Coal liquefaction becomes viable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    In 2003 the May/June issue of CoalTrans International speculated that coal liquefaction would become viable due to falling coal prices. This has not proved the case but the sustained high oil price is sparking new interest. A survey by Energy Intelligence and Marketing Research during November 2005 revealed a growth in the number of projects under development or at the feasibility stage. The article reports projects in China, the USA, Australia, New Zealand, the Philippines and India. China is commissioning the first wave of large liquefaction plants. The key question is whether other countries, particularly the USA, will follow.

  10. The application of the coal grain analysis method to coal liberation studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Firth, B.; Adair, B. [CSIRO Earth Science & Resource Engineering Brisbane, Qld. (Australia)

    2011-07-01

    Emerging coal markets such as the use of coal for conversion to liquid fuels and its use in fuels cells and as coal water slurries in diesel engines require coal products with different coal quality specifications than those applicable to traditional coal markets of coke making and conventional power generation. As well as quantifying coals in terms of their chemical and physical properties, detailed knowledge of the mineral inclusions within the coal particles is required to identify coals that are suited to economically produce the low-ash value coals required for these markets. After mining and processing, some particles can consist of essentially pure components of a single maceral or mineral phase whilst others are composite particles that are comprised of varying amounts of macerals and minerals. The proportion of particles that are present as pure components or as composites will be a function of the characteristics of the coal and the particle size. In general, it is considered that size reduction will result in liberation and hence increased yield. The amount of liberation that occurs during crushing or grinding a coal is however coal specific. Particle characterization information provided by an optical microscopic-imaging method, Coal Grain Analysis, was used to identify coals that might benefit from additional crushing to improve recovery of clean coal by new density separation techniques and by flotation. As expected, the results of these studies suggest that the degree of liberation that is obtained is coal specific, and, hence, yield improvements are also coal specific. Hence a quantitative method of investigating this issue is required.

  11. Single-session versus staged procedures for elective multivessel percutaneous coronary intervention.

    Science.gov (United States)

    Toyota, Toshiaki; Morimoto, Takeshi; Shiomi, Hiroki; Yamaji, Kyohei; Ando, Kenji; Ono, Koh; Shizuta, Satoshi; Saito, Naritatsu; Kato, Takao; Kaji, Shuichiro; Furukawa, Yutaka; Nakagawa, Yoshihisa; Kadota, Kazushige; Horie, Minoru; Kimura, Takeshi

    2018-06-01

    To clarify the effect of single-session multivessel percutaneous coronary intervention (PCI) strategy relative to the staged multivessel strategy on clinical outcomes in patients with stable coronary artery disease (CAD) or non-ST-elevation acute coronary syndrome. In the Coronary REvascularisation Demonstrating Outcome Study in Kyoto PCI/coronary artery bypass grafting registry cohort-2, there were 2018 patients who underwent elective multivessel PCI. Primary outcome measure was composite of all-cause death, myocardial infarction and stroke at 5-year follow-up. Single-session multivessel PCI and staged multivessel PCI were performed in 707 patients (35.0%) and 1311 patients (65.0%), respectively. The cumulative 5-year incidence of and adjusted risk for the primary outcome measure were not significantly different between the single-session and staged groups (26.7% vs 23.0%, p=0.45; HR 0.91, 95% CI 0.72 to 1.16, p=0.47). The 30-day incidence of all-cause death was significantly higher in the single-session group than in the staged group (1.1% vs 0.2%, p=0.009). However, the causes of death in 11 patients who died within 30 days were generally not related to the procedural complications, but related to the serious clinical status before PCI. For the subgroup analyses including age, gender, extent of CAD, severe chronic kidney disease and heart failure, there was no significant interaction between the subgroup factors and the effect of the single-session strategy relative to the staged strategy for the primary outcome measure. The single-session multivessel PCI strategy was associated with at least comparable 5-year clinical outcomes compared with the staged multivessel PCI, although the prevalence of the single-session strategy was low in the present study. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  13. Experimental and Numerical Investigation of Effect of Coal Rank on Burn-off Time in Pulverized Coal Combustion

    OpenAIRE

    Nozawa, Sohei; Wada, Nozomi; Matsushita, Yosuke; Yamamoto, Tsuyoshi; Omori, Motohira; Harada, Tatsuro

    2012-01-01

    Thermogravimetry (TG) for two different coal ranks, Loy Yang coal and Newlands coal, was carried out in an atmospheric air environment. Detailed parameters of the heterogeneous oxidation reaction for each coal rank were estimated by analyzing the TG results. Heat and mass transfer of a single pulverized coal particle that was heated at a constant temperature were numerically simulated. In this calculation, the decrease in the mass ratio caused by the oxidation reaction was considered. The num...

  14. Spatio-temporal evolution of apparent resistivity during coal-seam hydraulic flushing

    Science.gov (United States)

    Li, Dexing; Wang, Enyuan; Song, Dazhao; Qiu, Liming; Kong, Xiangguo

    2018-06-01

    Hydraulic flushing in gas predrainage is widely used, but the hydraulic-flushing effect is evaluated in a traditional way, by determining the desorption volume, moisture content, gas drainage rate and other conventional indices. To verify the rationality and feasibility of the multielectrode resistivity method in the evaluation of coal-seam hydraulic flushing and to research the spatio-temporal evolution of apparent resistivity during hydraulic flushing, a field test was conducted in 17# coal seam at Nuodong Mine, Guizhou. During hydraulic flushing, four stages were defined according to the variation in coal rock resistivity with time, namely, the preparation stage, the sharply decreasing stage, the rapidly increasing stage and the steady stage. The apparent resistivity of the coal rock mass is affected mainly by its own degree of fragmentation and flushing volume. A more serious rupture and a greater flushing volume yield a smaller apparent resistivity during the sharply decreasing stage and a higher resistivity during the stable stage. After three months of gas predrainage, the residual gas content and the gas pressure at different points in the expected affected area decrease below the critical value. Changes in the residual gas content and gas pressure at these points are consistent with the apparent resistivity, which validates the rationality and feasibility of the multielectrode resistivity method in evaluating coal-seam hydraulic flushing.

  15. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment

    Energy Technology Data Exchange (ETDEWEB)

    Kalaitzidis, Stavros; Siavalas, George; Christanis, Kimon [Dept. of Geology, University of Patras, 26504 Rio-Patras (Greece); Skarpelis, Nikos [Dept. of Geology and Geoenvironment, University of Athens, 15784 Zografou (Greece); Araujo, Carla Viviane [Petrobras-Cenpes GEOQ/PDEXP, Rua Horacio Macedo n 950, Cidade Universitaria - Ilha do Fundao, 21941-915 Rio de Janeiro (Brazil)

    2010-04-01

    The Pera-Lakkos coal located on top of bauxite deposits in the Ghiona mining district (Central Greece), is the only known Mesozoic (Late Cretaceous) coal in the country. It was derived from herbaceous plants and algae growing in mildly brackish mires that formed behind a barrier system during a regression of the sea, on a karstified limestone partly filled in with bauxitic detritus. Petrological, mineralogical and geochemical data point to the predominance of reducing conditions and intense organic matter degradation in the palaeomires. O/C vs. H/C and OI vs. HI plots, based on elemental analysis and Rock-Eval data, characterize kerogen types I/II. This reflects the relatively high liptinite content of the coal. Besides kerogen composition, O/C vs. H/C plot for the Pera-Lakkos coals is in accordance with a catagenesis stage of maturation in contrast with vitrinite reflectance and T{sub max} from Rock-Eval pyrolysis, which indicate the onset of oil window maturation stage. Suppression of vitrinite reflectance should be considered and the high liptinite content corroborates this hypothesis. Despite some favourable aspects for petroleum generation presented by the Pera-Lakkos coal, its maximum thickness (up to 50 cm) points to a restricted potential for petroleum generation. Coal oxidation took place either during the late stage of peat formation, due to wave action accompanying the subsequent marine transgression, or epigenetically after the emergence of the whole sequence due to percolation of drainage waters. Both options are also supported by the REE shale-normalized profiles, which demonstrate an upwards depletion in the coal layer. Oxidation also affected pyrite included in the coal; this led to the formation of acidic (sulfate-rich) solutions, which percolated downwards resulting in bleaching of the upper part of the underlying bauxite. (author)

  16. Influence of process parameters on coal combustion performance. Review, experiments and engineering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lans, R.P. van der

    1997-04-01

    The objective of this study is to improve the understanding of nitrogen oxide formation and carbon burnout during the combustion of pulverized coal, and to contribute to addressing the potential of chemical engineering models for the prediction of furnace temperatures, NO emissions and the amount of carbon in ash. To this purpose, the effect of coal quality on NO and burnout has been investigated experimentally, a radiation heat balance has been developed based on a simple chemical engineering methodology, and a mixing study has been conducted in order to describe the near burner macro mixing in terms of a reactor configuration. The influence of coal type and process conditions on NO formation and carbon burnout has been investigated experimentally in a 400 MW{sub e} corner fired boiler with over fire air, a 350 MW{sub e} opposed fired boiler, and in a 160 kW{sub t} pilot scale test rig. Three different coals were fired in each of the furnaces as part of the activities in group 3 of the European Union JOULE 2 Extension project `Atmospheric Pressure Combustion of Pulverized Coal and Coal Based Blends for Power Generation`. On the pilot scale test both single stage and air staged tests were performed. A simple, one-dimensional combustion and radiation heat transfer model has been developed for the furnace of full scale boilers. The model has been applied to the two boilers mentioned above, and is validated against measured temperatures and carbon in ash concentrations. A mixing study has been performed in order to initiate an investigation of the potential of chemical engineering models to predict NO from pulverized fuel burners. (EG) 11 refs.

  17. Staged combustion - main method for suppressing nitrogen oxides in pulverized-coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (USSR))

    1989-08-01

    Describes principles behind staged combustion, which is based on organizing furnace operations so that only part of the air from the fuel is taken into the furnace. The remaining air, which is needed for combustion, is fed as a tertiary blast jet into the intermediate flame zone. Following inflammation and combustion of the volatile matter, the oxygen concentration in the flame drops sharply causing a retardation of the oxidation reactions forming NO and an intensification of the reactions causing the nitrogen-containing radicals NH{sub i} and CN to be converted into N{sub 2}. When the reducing agents CO, H{sub 2} and CH{sub 4} are present in certain flame zones, even the nitrogen oxide is reduced to N{sub 2}. The NO concentrations in the flame are reduced until the jet of tertiary air is introduced. Discusses with reference to practice in the USA and Western Europe how to achieve maximum effect of this method for different types of boiler and presents the results of observations of the introduction of staged combustion to the BKZ-210-140 boiler burning Kuznetsk gassy coal. 5 refs.

  18. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  19. Coal fights back

    International Nuclear Information System (INIS)

    Ince, R.

    1990-01-01

    During the twentieth century coal has moved from being the dominant energy hero that fueled the industrial revolution to a background role: a fuel of last choice, a supplemental resource, and sometimes a convenient villain in the environmental debate. But, as this paper points out, the other side of the coin is that coal is dependable, plentiful, and the price is right. To examine the issue as it merits, reason will have to be substituted for emotion. We are currently in what the author of this paper calls the crisis enrichment stage of the debate. In this stage, when definitive knowledge is lacking, there is a temptation to imagine the worst, overcorrect the problem, and do considerable damage to energy supply and economic needs. The environmental movement has provoked a hunt for someone to blame for the world's current environmental situation. Without a proven culprit to blame for disturbances to some of the world's lakes and forests, it has been decided that coal is the cause. This paper makes a plea for balance, urging all parties to find some acceptable middle ground between energy production and environmental protection

  20. Studies on the catalysts for coal liquefaction. ; Rheological studies of coal liquefaction process. Sekitan ekikayo shokubai ni kansuru kenkyu. ; Sekitan ekika process no rheology teki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, T; Oda, H; Yokokawa, C [Kansai University, Osaka (Japan). Faculty of Engineering

    1991-11-07

    Hydrogenolysis of different rank coals as Taiheiyo coal (75.7C%) and Pittston coal (85.4C%) were conducted in the presence of four kinds of catalysts (CuCrO4, Fe2O3+S, MoO3-TiO2 and MoS3-Al2O3) with an addition of tetralin as vehicle. The variation in viscosity in every reaction system was traced in the initial stage of the reaction by a torque meter attached to an autoclave. As a result, in every system, the torque decreased in the initial stage of temperature rise because of reduction of a solvent viscosity. The torque subsequently increased with temperature indicating two peaks before the following gradual decrease. In Taiheiyo coal, both peaks were low, and its coal conversion was more than 85%, while in Pittston coal, both peaks were sharp and high, and both subsequent torque reduction and coal conversion were smaller than those of Taiheiyo coal. 5 refs., 10 figs., 2 tabs.

  1. Comparing a single-stage geocoding method to a multi-stage geocoding method: how much and where do they disagree?

    Directory of Open Access Journals (Sweden)

    Rice Kenneth

    2007-03-01

    Full Text Available Abstract Background Geocoding methods vary among spatial epidemiology studies. Errors in the geocoding process and differential match rates may reduce study validity. We compared two geocoding methods using 8,157 Washington State addresses. The multi-stage geocoding method implemented by the state health department used a sequence of local and national reference files. The single-stage method used a single national reference file. For each address geocoded by both methods, we measured the distance between the locations assigned by each method. Area-level characteristics were collected from census data, and modeled as predictors of the discordance between geocoded address coordinates. Results The multi-stage method had a higher match rate than the single-stage method: 99% versus 95%. Of 7,686 addresses were geocoded by both methods, 96% were geocoded to the same census tract by both methods and 98% were geocoded to locations within 1 km of each other by the two methods. The distance between geocoded coordinates for the same address was higher in sparsely populated and low poverty areas, and counties with local reference files. Conclusion The multi-stage geocoding method had a higher match rate than the single-stage method. An examination of differences in the location assigned to the same address suggested that study results may be most sensitive to the choice of geocoding method in sparsely populated or low-poverty areas.

  2. Single-stage Acetabular Revision During Two-stage THA Revision for Infection is Effective in Selected Patients.

    Science.gov (United States)

    Fink, Bernd; Schlumberger, Michael; Oremek, Damian

    2017-08-01

    The treatment of periprosthetic infections of hip arthroplasties typically involves use of either a single- or two-stage (with implantation of a temporary spacer) revision surgery. In patients with severe acetabular bone deficiencies, either already present or after component removal, spacers cannot be safely implanted. In such hips where it is impossible to use spacers and yet a two-stage revision of the prosthetic stem is recommended, we have combined a two-stage revision of the stem with a single revision of the cup. To our knowledge, this approach has not been reported before. (1) What proportion of patients treated with single-stage acetabular reconstruction as part of a two-stage revision for an infected THA remain free from infection at 2 or more years? (2) What are the Harris hip scores after the first stage and at 2 years or more after the definitive reimplantation? Between June 2009 and June 2014, we treated all patients undergoing surgical treatment for an infected THA using a single-stage acetabular revision as part of a two-stage THA exchange if the acetabular defect classification was Paprosky Types 2B, 2C, 3A, 3B, or pelvic discontinuity and a two-stage procedure was preferred for the femur. The procedure included removal of all components, joint débridement, definitive acetabular reconstruction (with a cage to bridge the defect, and a cemented socket), and a temporary cemented femoral component at the first stage; the second stage consisted of repeat joint and femoral débridement and exchange of the femoral component to a cementless device. During the period noted, 35 patients met those definitions and were treated with this approach. No patients were lost to followup before 2 years; mean followup was 42 months (range, 24-84 months). The clinical evaluation was performed with the Harris hip scores and resolution of infection was assessed by the absence of clinical signs of infection and a C-reactive protein level less than 10 mg/L. All

  3. Investigation of Advanced Propellants to Enable Single Stage to Orbit Launch Vehicles

    National Research Council Canada - National Science Library

    Mossman, Jason

    2006-01-01

    Single-Stage-To-Orbit (SSTO) launch vehicles designs offer the promise of reduced complexity and cost compared to multi-stage vehicles, as only one stage need be developed, produced, and maintained...

  4. The use of mechanically activated micronized coal in thermal power engineering

    Directory of Open Access Journals (Sweden)

    Burdukov Anatoliy P.

    2016-01-01

    Full Text Available Coal is one of the main energy resources and development of new promising technologies on its basis is certainly topical. This article discusses the use of new technology of gas and fuel oil replacement by mechanically activated micronized coal in power engineering: ignition and stabilization of pulverized coal flame combustion, as well as gasification of micronized coal in the flow. The new technology coal combustion with two stages of grinding is suggested. Optimization of the scheme of two-stage combustion is calculated. The first experimental data on the combustion process are obtained. The first demonstration tests on gas and heavy oil replacement by micronized coal during boiler ignition were carried out in the real power boiler with the capacity of 320 tons of steam per hour.

  5. British coal-down to the line

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The long-running saga of British Coal's decline is in its final stages with virtually no change from last October when the British government announced plants to close 31 of the 50 remaining mines. That announcement produced a political outcry but having privatized the electricity industry in 1990 the government had effectively left itself up the creek without a paddle. It had no powers to force the generators to buy more coal. The status of the British coal industry is discussed

  6. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jun; Xue, Sheng [CSIRO Earth Science and Resource Engineering, Kenmore (Australia); Cheng, Weimin; Wang, Gang [Shandong University of Science and Technology, Qingdao (China)

    2011-01-01

    Spontaneous combustion of coal (sponcom) is a major hazard in underground coal mining operations. If not detected early and managed properly, it can seriously affect mine safety and productivity. Gaseous products of sponcom, such as carbon monoxide, ethylene and hydrogen, are commonly used in coal mines as indicators to reflect the state of the sponcom. Studies have shown that ethylene starts to occur when sponcom reaches a characteristic temperature. However, due to dilution of ventilation air and detection limits of the instruments used for gas analysis at coal mines, ethylene cannot be detected until the sponcom has developed past its early stage, missing an optimum opportunity for mine operators to control the hazard. To address the issue, an ethylene-enriching system, based on its physical adsorption and desorption properties, has been developed to increase detection sensitivity of the ethylene concentration in mine air by about 10 times. This system has successfully been applied in a number of underground coal mines in China to detect sponcom at its early stage and enable mine operators to take effective control measures. This paper describes the ethylene enriching system and its application. (author)

  7. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis

    International Nuclear Information System (INIS)

    Du, Yuying; Jiang, Xuguang; Lv, Guojun; Ma, Xiaojun; Jin, Yuqi; Wang, Fei; Chi, Yong; Yan, Jianhua

    2014-01-01

    Highlights: • The Activation energy for the blends is lower than that of BR and coal when BR < 50%. • The BR/coal blends start to decompose at approximately 45 °C releasing ammonia. • The yield of gaseous products increases with increasing BR blending ratio. • NH 3 , alkanes and CO 2 increase with increasing BR blending ratio. • Interactions most likely occur between the BR and the coal during co-pyrolysis. - Abstract: In this work, the thermal behavior and kinetics of bio-ferment residue (BR) and coal blends during co-pyrolysis were investigated using TG-FTIR and kinetic analysis. The co-pyrolysis of BR and coal occurred in three major stages. The BR/coal blends lost most of their weight during the devolatilization stage. The kinetics of the BR/coal blends in this stage implied that the activation energy was lower than that of BR and coal below a certain BR blending ratio. The BR/coal blends started to decompose at approximately 45 °C, releasing ammonia followed by alkanes, carbon dioxide, methane and carbon monoxide. The total yield of gaseous products (primarily ammonia, alkanes and carbon dioxide) increased with increasing BR blending ratio. Moreover, interactions most likely occurred between the BR and the coal during co-pyrolysis

  8. The World Coal Quality Inventory: South America

    Science.gov (United States)

    Karlsen, Alex W.; Tewalt, Susan J.; Bragg, Linda J.; Finkelman, Robert B.

    2006-01-01

    Executive Summary-Introduction: The concepts of a global environment and economy are strongly and irrevocably linked to global energy issues. Worldwide coal production and international coal trade are projected to increase during the next several decades in an international energy mix that is still strongly dependent on fossil fuels. Therefore, worldwide coal use will play an increasingly visible role in global environmental, economic, and energy forums. Policy makers require information on coal, including coal quality data, to make informed decisions regarding domestic coal resource allocation, import needs and export opportunities, foreign policy objectives, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. The development of a worldwide, reliable, coal quality database would help ensure the most economically and environmentally efficient global use of coal. The U.S. Geological Survey (USGS), in cooperation with many agencies and scientists from the world's coal producing countries, originally undertook a project to obtain representative samples of coal from most of the world's producing coal provinces during a limited period of time (roughly 1998-2005), which is called the World Coal Quality Inventory (WoCQI). The multitude of producing coal mines, coal occurrences, or limited accessibility to sites in some countries can preclude collecting more than a single sample from a mine. In some areas, a single sample may represent an entire coal mining region or basin. Despite these limitations in sampling and uneven distribution of sample collection, the analytical results can still provide a general overview of world coal quality. The USGS intends to present the WoCQI data in reports and, when possible, in Geographic Information System (GIS) products that cover important coal bearing and producing regions.

  9. Methane production from coal by a single methanogen

    Science.gov (United States)

    Sakata, S.; Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.

    2017-12-01

    Previous geochemical studies indicate that biogenic methane greatly contributes to the formation of coalbed methane (CBM). It is unclear, however, what part of coal is used for the methane production and what types of microbes mediate the process. Here we hypothesized that methylotrophic methanogens use methoxylated aromatic compounds (MACs) derived from lignin. We incubated 11 species of methanogens belonging to order Methanosarcinales with 7 types of MACs. Two strains of methanogens, i.e., Methermicoccus shengliensis AmaM and ZC-1, produced methane from the MACs. In fact, these methanogens used over 30 types of commercially available MACs in addition to methanol and methylamines. To date, it is widely believed that methanogens use very limited number of small compounds such as hydrogen plus carbon dioxide, acetate, and methanol, and only three methanogenic pathways are recognized accordingly. Here, in contrast, two Methermicoccus strains used many types of MACs. We therefore propose this "methoxydotrophic" process as the fourth methanogenic pathway. Incubation of AmaM with 2-methoxybenzoate resulted in methanogenesis associated with the stoichiometric production of 2-hydroxybenzoate. Incubation with 2-methoxy-[7-13C] benzoate and with [13C] bicarbonate indicated that two thirds of methane carbon derived from the methoxy group and one third from CO2. Furthermore, incubation with [2-13C] acetate resulted in significant increases of 13C in both methane and CO2. These results suggest the occurrence of O-demethylation, CO2 reduction and acetyl-CoA metabolism in the methoxydotrophic methanogenesis. Furthermore, incubation of AmaM with lignite, subbituminous or bituminous coals in the bicarbonate-buffered media revealed that AmaM produced methane directly from coals via the methoxydotrophic pathway. Although 4 types of MACs were detected in the coal media in addition to methanol and methylamines, their total concentrations were too low to account for the methane

  10. Numerical Simulation of single-stage axial fan operation under dusty flow conditions

    Science.gov (United States)

    Minkov, L. L.; Pikushchak, E. V.

    2017-11-01

    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  11. Economics of coal-based electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hemming, D F; Johnston, R; Teper, M

    1979-01-01

    The report deals with base-load electricity generation from coal and compares the economics of four alternative technologies: conventional pulverised-fuel (PF) boiler with steam cycle; atmospheric fluidised-bed (AFB) boiler with steam cycle; pressurised fluidised-bed (PFB) boiler with combined cycle; and integrated air-blown coal gasification with combined cycle systems are compared for both a high sulphur (3.5%) coal with environmental regulations requiring 85% sulphur removal, and for a low sulphur coal without sulphur removal. The results indicate that there is no single clear 'winner' among the advanced technologies. The optimum system depends on coal price, required rate-of-return, sulphur content of the coal, taxation regime etc. (34 refs.) (Available from IEA Coal Research, Economic Assessment Service)

  12. Promising results after single-stage reconstruction of the nipple and areola complex

    DEFF Research Database (Denmark)

    Børsen-Koch, Mikkel; Bille, Camilla; Thomsen, Jørn B

    2013-01-01

    Introduction: Reconstruction of the nipple-areola complex (NAC) traditionally marks the end of breast reconstruction. Several different surgical techniques have been described, but most are staged procedures. This paper describes a simple single-stage approach. Material and Methods: We used...... reconstruction was 43 min. (30-50 min.). Conclusion: This simple single-stage NAC reconstruction seems beneficial for both patient and surgeon as it seems to be associated with faster reconstruction and reduced procedure-related time without compromising the aesthetic outcome or the morbidity associated...

  13. Semi-automated petrographic assessment of coal by coal grain analysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Jenkins, B.; Ofori, P.; Ferguson, K. [CSIRO Exploration and Mining, Pullenvale, Qld. (Australia)

    2007-04-15

    A new classification method, coal grain analysis, which uses optical imaging techniques for the microscopic characterisation of the individual grains present in coal samples is discussed. This differs from other coal petrography imaging methods in that a mask is used to remove the pixels of mounting resin to obtain compositional information of the maceral (vitrinite, inertinite and liptinite) and mineral abundances on each individual grain within each image. Experiments were conducted to establish the density of individual constituents in order to enable the density of each grain to be determined and the results reported on a mass basis. The grains were sorted into eight grain classes of liberated (single component) and composite grains. By analysing all streams (feed, concentrate and tailings) of the flotation circuit at a coal washing plant, the flotation response of the individual grain classes was tracked. This has implications for flotation process diagnostics and optimisation.

  14. Using coal mine saline water to produce chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Gnot, W; Turek, M; Walburg, Z

    1979-01-01

    Utilizing hard coal mine waters with salt concentration reaching 140 kg/mat3 in the chemical industry would significantly reduce the cost of protecting the natural environment from salt. The Institute of Chemistry and Inorganic Technology of the Silesian Technical University in Gliwice developed an efficient technology of producing chorine from underground black coal mine waters. A scheme of the technology is explained: double stage brine purification with magnesium hydroxide as by-product. During the first stage magnesium is precipitated using sodium hydroxide; after increasing salt content in the brine calcium and a low percentage of magnesium are removed by lye-sodium method. During the second stage sedimentation rate increases to 1.4 mm/s, and volume of sludge is only 1%. Magnesium hydroxide is removed using a method patented in Poland (after adding a flocculant magnesium hydroxide is left untouched). Only at a later stage does sedimentation occur. The proposed technology of utilizing mine water will be tested in an experimental plant which will be built at the Ziemowit black coal mine. (7 refs.) (In Polish)

  15. Single-stage Modified Duhamel procedure for Hirschsprung′s disease : Our experience

    Directory of Open Access Journals (Sweden)

    Paras R Kothari

    2012-01-01

    Full Text Available Introduction: Primary single-stage pull-through for Hirschsprung′s disease (HD has been reported to give comparable surgical outcomes to staged operations with less morbidity. Herein, we present our experience with single-stage Modified Duhamel procedure for management of HD. Patients and Methods: This was a review of 48 cases of HD who underwent single-stage Modified Duhamel procedure without a protective colostomy. Results: The age at surgery ranged from 6 months to 10 years (median - 9 months, mean - 2.3 years. The average weight of the child was 7.2 kg (range, 4.9-22 kg. 38 (79.2% patients had classical rectosigmoid HD, the rest being long segment HD (the proximal most level being the splenic flexure. The average duration of surgery was 175 minutes (range, 130-245 minutes. The average blood loss was 45 ml. The average hospital stay was 7.2 days (range: 6-10 days. The major postoperative complications (n=3 included postoperative adhesive intestinal obstruction, anastomotic leak and persistent constipation due to residual aganglionosis. Each required a re-exploration. Minor complications included surgical site infection (n=3 and post-operative enterocolitis (n=3, which were managed conservatively. Six patients had constipation for a limited period post-operatively. All patients have a satisfactory functional outcome and normal development and growth. Conclusions: For HD, we recommend that single-stage Modified Duhamel procedure should be the preferred approach in view of its low morbidity, satisfactory functional outcome and avoidance of stoma, multiple surgeries and economic benefit in view of decreased hospital stay.

  16. Lot-sizing for a single-stage single-product production system with rework of perishable production defectives

    NARCIS (Netherlands)

    Teunter, R.; Flapper, S.D.P.

    2003-01-01

    We consider a single-stage single-product production system. Produced units may be non-defective, reworkable defective, or non-reworkable defective. The system switches between production and rework. After producing a fixed number (N) of units, all reworkable defective units are reworked. Reworkable

  17. Coal gasification. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association, is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  18. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  19. Refining and end use study of coal liquids

    International Nuclear Information System (INIS)

    1998-01-01

    Two direct coal liquids were evaluated by linear programming analysis to determine their value as petroleum refinery feedstock. The first liquid, DL1, was produced from bitiuminous coal using the Hydrocarbon Technologies, Inc.(HTI) two-stage hydrogenation process in Proof of Concept Run No.1, POC-1. The second liquid, DL2,was produced from sub-bituminous coal using a three-stage HTI process in Proof of Concept Run No. 2, POC-2; the third stage being a severe hydrogenation process. A linear programming (LP) model was developed which simulates a generic 150,000 barrel per day refinery in the Midwest U.S. Data from upgrading tests conducted on the coal liquids and related petroleum fractions in the pilot plant testing phase of the Refining and End Use Study was inputed into the model. The coal liquids were compared against a generic petroleum crude feedstock. under two scenarios. In the first scenario, it was assumed that the refinery capacity and product slate/volumes were fixed. The coal liquids would be used to replace a portion of the generic crude. The LP results showed that the DL1 material had essentially the same value as the generic crude. Due to its higher quality, the DL2 material had a value of approximately 0.60 $/barrel higher than the petroleum crude. In the second scenario, it was assumed that a market opportunity exists to increase production by one-third. This requires a refinery expansion. The feedstock for this scenario could be either 100% petroleum crude or a combination of petroleum crude and the direct coal liquids. Linear programming analysis showed that the capital cost of the refinery expansion was significantly less when coal liquids are utilized. In addition, the pilot plant testing showed that both of the direct coal liquids demonstrated superior catalytic cracking and naphtha reforming yields. Depending on the coal liquid flow rate, the value of the DL1 material was 2.5-4.0 $/barrel greater than the base petroleum crude, while the DL2

  20. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  1. Report on the coal energy achievements in the Sunshine Project in fiscal 1988; 1989 nendo sunshine keikaku seika hokokusho. Sekitan energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    This paper describes the achievements in the Sunshine Project in fiscal 1988 in studies on coal liquefaction. The liquefaction mechanisms may be conceived to work in the following three manners: radicals produced by spontaneous bond and cleavage of coal molecules draw out hydrogen from the donor and stabilize it; bond, cleavage and stabilization due to hydrogenation from the donor to coal aromatic nucleus; and cleavage and stabilization due to work of active hydrogen discharged from the donor. How these mechanisms contribute to composition of the products depends on coals, liquefying conditions, and reactivity of the donor. Selection of the donor solvent requires design by which high liquefaction yield can be obtained with small amount of solvent. The oil plus asphaltene yield could have been approached to the ideal value through the moving liquefaction of gaseous phase hydrogen and catalyst-free hydrogen, with the 4HFL to coal ratio at 1.5 to 1. The gaseous phase hydrogen was found effective in reducing 4HFL. Liquefaction residual oil manufactured from Morwell brown coal subjected to BCL was hydrogenated in single stage or two stages to compare and discuss the solvent sorting constituents, reactivity of CLVR, and how the catalytic activity deteriorates. The cause for the catalyst deterioration was elucidated, and considerations were given on catalysts and reaction conditions for lightening and refining of CLVR. (NEDO)

  2. Single-stage versus two-stage anaerobic fluidized bed bioreactors in treating municipal wastewater: Performance, foulant characteristics, and microbial community.

    Science.gov (United States)

    Wu, Bing; Li, Yifei; Lim, Weikang; Lee, Shi Lin; Guo, Qiming; Fane, Anthony G; Liu, Yu

    2017-03-01

    This study examined the receptive performance, membrane foulant characteristics, and microbial community in the single-stage and two-stage anaerobic fluidized membrane bioreactor (AFMBR) treating settled raw municipal wastewater with the aims to explore fouling mechanisms and microbial community structure in both systems. Both AFMBRs exhibited comparable organic removal efficiency and membrane performances. In the single-stage AFMBR, less soluble organic substances were removed through biosorption by GAC and biodegradation than those in the two-stage AFMBR. Compared to the two-stage AFMBR, the formation of cake layer was the main cause of the observed membrane fouling in the single-stage AFMBR at the same employed flux. The accumulation rate of the biopolymers was linearly correlated with the membrane fouling rate. In the chemical-cleaned foulants, humic acid-like substances and silicon were identified as the predominant organic and inorganic fouants respectively. As such, the fluidized GAC particles might not be effective in removing these substances from the membrane surfaces. High-throughout pyrosequencing analysis further revealed that beta-Proteobacteria were predominant members in both AFMBRs, which contributed to the development of biofilms on the fluidized GAC and membrane surfaces. However, it was also noted that the abundance of the identified dominant in the membrane surface-associated biofilm seemed to be related to the permeate flux and reactor configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  4. Single-stage anterior high sacrectomy for locally recurrent rectal cancer.

    Science.gov (United States)

    Fawaz, Khaled; Khaled, Fawaz; Smith, Myles J; Moises, Cukier; Smith, Andrew J; Yee, Albert J M

    2014-03-01

    A review of prospectively collected data on a consecutive series of patients undergoing single-stage anterior high sacrectomy for locally recurrent rectal carcinoma (LRRC). To determine the clinical outcome of patients who underwent anterior high sacrectomy for LRRC. High sacrectomy for oncological resection remains technically challenging. Surgery has the potential to achieve cure in carefully selected patients. Complete (R0) tumor excision in LRRC may require sacrectomy. High sacral resections (S3 and above) typically require a combined anterior/supine and posterior/prone procedure. We investigated our experience performing single-stage anterior high sacrectomy for LRRC. A consecutive series of patients with LRRC without systemic metastases who underwent resection with curative intent requiring high sacrectomy were identified. A review of a prospectively maintained colorectal and spine cancer database data was performed. An oblique dome high sacral osteotomy was performed during a single-stage anterior procedure. Outcome measures included surgical resection margin status, hospital length of stay, postoperative complications, physical functioning status, and overall survival. Nineteen consecutive patients were treated between 2002 and 2011. High sacrectomy was performed at sacral level S1-S2 in 4 patients, S2-S3 in 9 patients, and through S3 in 6 patients. An R0 resection margin was achieved histologically in all 19 cases. There was 1 early (<30 d) postoperative death (1/19, 5%). At median follow-up of 38 months, 13 patients had no evidence of residual disease, 1 was alive with disease, and 4 had died of disease. Morbidities occurred in 15 of the 19 patients (79%). Although high sacrectomy may require a combined anterior and posterior surgical approach, our series demonstrates the feasibility of performing single-stage anterior high sacrectomy in LRRC, with acceptable risks and outcomes compared with the literature. The procedure described by us for LRRC lessens

  5. Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Pevida, C.; Rubiera, F.; Garcia, R.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2004-06-01

    Coal pyrolysis is the initial, accompanying reaction of a number of coal conversion processes such as hydrogenation, combustion and gasification. However, because of the inherent complexity of coal composition, it is difficult to describe coal pyrolysis clearly. Single model compounds have been used before in order to provide additional insight into the complex processes that occur in the pyrolysis of coal. Yet the picture obtained is a simplified one and certain important aspects such as coal structure, interactions between different surface groups and cross-links are omitted. The approach used in this work involves the preparation of a synthetic coal, SC, with a known structure by curing a mixture of single, well-defined model compounds. By means of chemical characterisation, the SC was shown to contain the macroscopic features of a high volatile coal (proximate and ultimate analyses). FTIR characterisation revealed the presence of functional groups similar to those of coal in the structure of the SC. Temperature-programmed pyrolysis tests were performed in a thermobalance linked to a mass spectrometer and a Fourier transform infrared analyser (TG/MS/FTIR). The thermal behaviour of the synthetic coal (i.e., rate of mass loss and the evolution profiles of gaseous compounds during pyrolysis tests) is very similar to that of the high volatile bituminous coal which was used as a reference material. The great advantage of using SC lies in the fact that its composition and structure can be accurately determined and employed in subsequent applications in basic and mechanistic studies.

  6. Fuel staging tests at the Kymijaervi power plant

    International Nuclear Information System (INIS)

    Kivelae, M.; Rotter, H.; Virkki, J.

    1990-01-01

    The aim of this study was to measure nitrogen oxide (NO x ) emissions and find the methods to reduce them in plants using coal and natural gas as fuel. The tests involved were made at the Kymijaervi Power Plant, Lahti, Finland. Coal and natural gas was used alone or mixed. With natural gas when using flue gas recirculation, the NO x emission level dropped from 330 mg/m 3 down to 60 mg/m 3 . A negative side effect was that the flue gas temperature increased. At coal combustion and staged combustion, the flue gas recirculation had no significant effect on the NO x emission level. At coal combustion, the staging of combustion air halved the NO x emission but the combustibles increased strongly. With fuel staging, using coal as main fuel and gas as staging fuel, the NO x emission level was decreased from 340 mg/m 3 to 170 mg/m 3 . At the same time the combustibles increased 2 %- units. Also the flue gas temperature increased a little. At the tests, the proportion of natural gas was rather high, one third of the fuel energy input, but it could not be decreased, because the gas flow ratio was already too low to ensure good mixing

  7. FY 1980 Report on results of Sunshine Project by Coal Group. Basic researches on coal liquefaction techniques by solvolysis; 1980 nendo sunshine keikaku sekitanhan hokokusho. Sekitan no solvolysis ekika gijutsu no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    The basic experimental researches were carried out for coal liquefaction by solvolysis. The studied items include hydrogenation conditions for treating the primary liquefied products, asphalt, pitch and model solvents (e.g., anthracene oil) in the presence of a commercial catalyst, solvolysis conditions for finely divided, molten coal using a hydrogenation recycled solvent, hydrotreating solvents, analysis of solvolysis-liquefied products, and liquefaction capacity of fractionated solvents for finely divided, molten coal. The studied items for separation of minerals include settlement at high temperature of the solid residue from the first liquefaction stage, and changed coal particle size distribution as a result of the first-stage liquefaction reactions in the presence of a hydrogenation solvent. The experimental study results indicate that conversion of finely divided molten coal into asphaltenes and preasphaltenes is notably accelerated in the phase-II coal liquefaction process by solvolysis, when a hydrotreating solvent is used for the first stage solvolysis process. (NEDO)

  8. Coal Matrix Deformation and Pore Structure Change in High-Pressure Nitrogen Replacement of Methane

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ji

    2018-01-01

    Full Text Available Coal matrix deformation is one of the main controlling factors for coal reservoir permeability changes in nitrogen foam fracturing. The characteristics and mechanism of coal matrix deformation during the process of adsorption/desorption were studied by isothermal adsorption/desorption experiments with methane and nitrogen. Based on the free-energy theories, the Langmuir equation, and elastic mechanics, mathematical models of coal matrix deformation were developed and the deformation characteristics in adsorption/desorption processes were examined. From the study, we deduced that the coal matrix swelling, caused by methane adsorption, was a Langmuir-type relationship with the gas pressure, and exponentially increased as the adsorption quantity increased. Then, the deformation rate and amplitude of the coal matrix decreased gradually with the increase of the pressure. At the following stage, where nitrogen replaces methane, the coal matrix swelling continued but the deformation amplitude decreased, which was only 19.60% of the methane adsorption stage. At the mixed gas desorption stage, the coal matrix shrank with the reduction of pressure and the shrinkage amount changed logarithmically with the pressure, which had the hysteresis effect when compared with the swelling in adsorption. The mechanism of coal matrix deformation was discussed through a comparison of the change of micropores, mesopores, and also part macropores in the adsorption process.

  9. Axial concentration profiles and N{sub 2}O flue gas in a pilot scale bubbling fluidised bed coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Tarelho, L.A.C.; Matos, M.A.A.; Pereira, F.J.M.A. [Environment and Planning Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2005-05-15

    Atmospheric Bubbling Fluidised Bed Coal Combustion (ABFBCC) of a bituminous coal and anthracite with particle diameters in the range 500-4000 {mu}m was investigated in a pilot-plant facility (circular section with 0.25 m internal diameter and 3 m height). The experiments were conducted at steady-state conditions using three excess air levels (10%, 25% and 50%) and bed temperatures in the 750-900 {sup o}C range. Combustion air was staged, with primary air accounting for 100%, 80% and 60% of total combustion air. For both types of coal, virtually no N{sub 2}O was found in significant amounts inside the bed. However, just above the bed-freeboard interface, the N{sub 2}O concentration increased monotonically along the freeboard and towards the exit flue. The N{sub 2}O concentrations in the reactor ranged between 0-90 ppm during bituminous coal combustion and 0-30 ppm for anthracite. For both coals, the lowest values occurred at the higher bed temperature (900 {sup o}C) with low excess air (10%) and high air staging (60% primary air), whereas the highest occurred at the lower bed temperature (750 {sup o}C for bituminous, 825 {sup o}C for anthracite) with high excess air (50%) and single stage combustion. Most of the observed results could be qualitatively interpreted in terms of a set of homogeneous and heterogeneous reactions, where catalytic surfaces (such as char, sand and coal ash) can play an important role in the formation and destruction of N{sub 2}O and its precursors (such as HCN, NH{sub 3} and HCNO) by free radicals (O, H, OH) and reducing species (H{sub 2}, CO, HCs)

  10. The impact of resource tax reform on China's coal industry

    International Nuclear Information System (INIS)

    Liu, Huihui; Chen, ZhanMing; Wang, Jianliang; Fan, Jihong

    2017-01-01

    Contributing to approximately two-thirds of primary energy consumption, coal usage is the focus of China's energy policies. To regulate the resource taxation system and reduce the burden of coal enterprises, the Chinese government launched a reform of its resource tax system in 2014 for coal, introducing the ad valorem system to replace the volume-based system that had been in place for the preceding thirty years. To assess the impact of the tax reform, this paper constructs two-stage dynamic game models by taking the coal and coal-fired power industries as the players. The market situations of shortage and oversupply are investigated separately. Empirical data are collected to estimate the model parameters for numerical simulations. The model results suggest that the tax reform will reduce both coal prices and the coal industry profitability if the tax levied on each ton of coal is maintained at the same level as before the reform, regardless of whether the market is in a shortage or an oversupply situation. However, the increased buyer's power will amplify the effect of the tax reform. The numerical simulations also provide an estimation of the tax rate of the ad valorem system that maintains the profit of the coal industry. Considering the demand and supply situations in China's coal market, policy recommendations are provided to guide further reform of China's resource tax system. - Highlights: • The paper examines the influence of resource tax reform on China's coal industry. • We construct two-stage game models between coal and coal-fired power industries. • Market situations of shortage and oversupply are studied in two taxation systems. • Coal price will decrease if maintaining the tax levied on each ton of coal the same. • To achieve the reform objective, the ad valorem tax rate should not be set too high.

  11. System and method for single-phase, single-stage grid-interactive inverter

    Science.gov (United States)

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  12. Study on the Low-Temperature Oxidation Law in the Co-Mining Face of Coal and Oil Shale in a Goaf—A Case Study in the Liangjia Coal Mine, China

    Directory of Open Access Journals (Sweden)

    Gang Wang

    2018-01-01

    Full Text Available The low-temperature oxidation law of coal and rock mass is the basis to study spontaneous combustion in goafs. In this paper, the low-temperature oxidation laws of coal, oil shale, and mixtures of coal and oil shale were studied by using laboratory programmed heating experiments combined with a field beam tube monitoring system. The results from the programmed heating experiments showed that the heat released from oil shale was less than that from coal. Coal had a lower carbon monoxide (CO-producing temperature than oil shale, and the mixture showed obvious inhibiting effects on CO production with an average CO concentration of about 38% of that for coal. Index gases were selected in different stages to determine the critical turning point temperature for each stage. The field beam tube monitoring system showed that the temperature field of the 1105 co-mining face of coal and oil shale in the goaf of the Liangjia Coal Mine presented a ladder-like distribution, and CO concentration was the highest for coal and lower for the mixture of coal and oil shale, indicating that the mixture of coal with oil shale had an inhibiting effect on CO production, consistent with the results from the programmed heating experiments.

  13. Strategies and limits in multi-stage single-point incremental forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, M.B.; Martins, P. A. F.

    2010-01-01

    paths. The results also reveal that the sequence of multi-stage forming has a large effect on the location of strain points in the principal strain space. Strain paths are linear in the first stage and highly non-linear in the subsequent forming stages. The overall results show that the experimentally......Multi-stage single-point incremental forming (SPIF) is a state-of-the-art manufacturing process that allows small-quantity production of complex sheet metal parts with vertical walls. This paper is focused on the application of multi-stage SPIF with the objective of producing cylindrical cups......-limit curves and fracture forming-limit curves (FFLCs), numerical simulation, and experimentation, namely the evaluation of strain paths and fracture strains in actual multi-stage parts. Assessment of numerical simulation with experimentation shows good agreement between computed and measured strain and strain...

  14. Evaluation of an automated single-channel sleep staging algorithm

    Directory of Open Access Journals (Sweden)

    Wang Y

    2015-09-01

    Full Text Available Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard F Kaplan1 1General Sleep Corporation, Euclid, OH, 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, 3Department of Psychology, University of Arizona, Tucson, AZ, USA Background: We previously published the performance evaluation of an automated electroencephalography (EEG-based single-channel sleep–wake detection algorithm called Z-ALG used by the Zmachine® sleep monitoring system. The objective of this paper is to evaluate the performance of a new algorithm called Z-PLUS, which further differentiates sleep as detected by Z-ALG into Light Sleep, Deep Sleep, and Rapid Eye Movement (REM Sleep, against laboratory polysomnography (PSG using a consensus of expert visual scorers. Methods: Single night, in-lab PSG recordings from 99 subjects (52F/47M, 18–60 years, median age 32.7 years, including both normal sleepers and those reporting a variety of sleep complaints consistent with chronic insomnia, sleep apnea, and restless leg syndrome, as well as those taking selective serotonin reuptake inhibitor/serotonin–norepinephrine reuptake inhibitor antidepressant medications, previously evaluated using Z-ALG were re-examined using Z-PLUS. EEG data collected from electrodes placed at the differential-mastoids (A1–A2 were processed by Z-ALG to determine wake and sleep, then those epochs detected as sleep were further processed by Z-PLUS to differentiate into Light Sleep, Deep Sleep, and REM. EEG data were visually scored by multiple certified polysomnographic technologists according to the Rechtschaffen and Kales criterion, and then combined using a majority-voting rule to create a PSG Consensus score file for each of the 99 subjects. Z-PLUS output was compared to the PSG Consensus score files for both epoch-by-epoch (eg, sensitivity, specificity, and kappa and sleep stage-related statistics (eg, Latency to Deep Sleep, Latency to REM

  15. Development, testing, and demonstration of an optimal fine coal cleaning circuit

    International Nuclear Information System (INIS)

    Mishra, M.; Placha, M.; Bethell, P.

    1995-01-01

    The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb)

  16. Development, testing, and demonstration of an optimal fine coal cleaning circuit

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, M.; Placha, M.; Bethell, P. [and others

    1995-11-01

    The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb).

  17. Use of skin stretchers for single-stage bilateral mastectomies in a dog and a cat.

    Science.gov (United States)

    Miyazaki, Yuta; Aikawa, Takeshi; Shimatsu, Taichi; Nishimura, Masaaki; Sadahiro, Shigeo

    2018-04-01

    To describe the application of skin stretchers for closure of single-stage bilateral mastectomies in a dog and a cat. Clinical case report. A 12-year-old intact female Miniature Dachshund and a 13-year-old spayed female domestic short-hair cat. Skin stretchers were applied to the site of the skin adjacent to mammary glands for 2-4 days before surgery. Cable tension was adjusted every 6-8 hours to elongate the skin and to achieve primary closure of single-stage bilateral mastectomy without tension. Wound closure after single-stage bilateral mastectomy was achieved without tension or major complication in both animals. Use of skin stretchers allows primary closure of single-stage bilateral mastectomy in dogs and cats. © 2017 The American College of Veterinary Surgeons.

  18. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  19. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  20. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z; Morikawa, M; Fujii, Y [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  1. Experimental Study on Properties of Methane Diffusion of Coal Block under Triaxial Compressive Stress

    Science.gov (United States)

    Zhao, Hong-Bao

    2014-01-01

    Taking the standard size coal block samples defined by ISRM as research objects, both properties of methane diffusion of coal block under triaxial compressive stress and characteristic influences caused by methane pressure were systematically studied with thermo-fluid-solid coupling with triaxial servocontrolled seepage equipment of methane-containing coal. The result shows the methane diffusion property of coal block under triaxial compressive stress was shown in four-stage as follow, first is sharply reduce stage, second is hyperbolic reduce stage, third is close to a fixed value stage, fourth stage is 0. There is a special point making the reduced rate of characteristic curve of methane diffusion speed become sharply small; the influences of shape of methane diffusion speed characteristic curve caused by methane pressure are not obvious, which only is shown in numerical size of methane diffusion speed. Test time was extended required by appear of the special point makes the reduce rate of methane diffusion speed become sharply small. The fitting four-phase relation of methane diffusion of coal block under triaxial compressive stress was obtained, and the idea is proposed that influences of the fitting four-phase relation caused by methane pressure were only shown in value of fitting parameters. PMID:25531000

  2. Reducing coal miner absenteeism

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.H.; Clingan, M.R. (Bureau of Mines, PA (USA). Pittsburgh Research Center)

    1989-09-01

    High absenteeism at coal mines can seriously affect safety and hamper productivity. Several effective strategies for achieving high attendance which mine operators may not have considered are presented and a method is proposed for implementing programs for minimizing absenteeism among coal miners. The best strategies for improving attendance will vary according to the needs and circumstances of the particular mine, however, the process for establishing such a program is relatively invariant. A four-stage process is recommended; evaluate data from prior attendance records, communicate attendance goals and policy, develop and implement an attendance promotion program, and recycle. 12 refs., 5 figs.

  3. The efficacy of single-stage open intramedullary nailing of neglected femur fractures.

    Science.gov (United States)

    Boopalan, P R J V C; Sait, Azad; Jepegnanam, Thilak Samuel; Matthai, Thomas; Varghese, Viju Daniel

    2014-02-01

    Neglected femur fractures are not rare in the developing world. Treatment options include single-stage open reduction and intramedullary nailing, or open release, skeletal traction, and then second-stage open intramedullary nailing, with bone grafting. Single-stage procedures have the potential advantage of avoiding neurovascular complications secondary to acute lengthening, but they require a second operation, with potentially increased resource use and infection risk. We sought to determine the (1) likelihood of union, (2) complications and reoperations, and (3) functional results with single-stage open intramedullary nailing without bone grafting in patients with neglected femur fractures. Between January 2003 and December 2007, 17 consecutive patients presented to our practice with neglected femoral shaft fractures. All were treated with single-stage nailing without bone grafting. There were 15 men and two women with a median age of 27 years. The average time from fracture to treatment was 13 weeks (range, 4-44 weeks). Eleven patients underwent open nailing with interlocked nails and six were treated with cloverleaf Kuntscher nails. Patients were followed for a minimum of 6 months (mean, 33 months; range, 6-72 months). The mean preoperative ROM of the knee was 28° (range, 10°-150°) and femoral length discrepancy was 3.1 cm (range, 1-5 cm). All fractures united and the mean time to union was 16 weeks (range, 7-32 weeks). There were no neurologic complications secondary to acute lengthening. The mean postoperative ROM of the knee was 130° (range, 60°-150°). All patients were able to return to preinjury work. Sixteen patients regained their original femoral length. One-stage open intramedullary nailing of neglected femoral diaphyseal fractures without bone grafting was safe and effective, and obviated the need for a two-stage approach. Although the findings need to be replicated in larger numbers of patients, we believe this technique may be useful in

  4. Coal rebounds for the final quarter

    Energy Technology Data Exchange (ETDEWEB)

    Soras, C.; Stodden, J.

    1987-11-01

    Coal production in the USA is up 0.3% by the end of September 1987 from the pace of one year ago. Most impressive has been the growth in demand at power plants where coal consumption is up by 13.5 million tons through the month of July. The coal markets turnabout is based upon the entire economic spectrum not upon a single large market. US steel mills represent intense power consuming activities as do the US chemicals, plastics, paper and pulp industries.

  5. The effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, M. [National Power plc, Swindon (United Kingdom)

    1999-04-01

    A comprehensive study is reported on the impact of coal quality on nitrogen oxides emissions and carbon burnout in utility boilers, with the aim of assessing their relationship and developing predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon burnout. Power station trials demonstrated that coal quality effects nitrogen oxides and burnout. The variability in boiler conditions also impacted on these factors. Lower nitrogen and higher volatile coals generally produced less NO{sub x}. Volatile content was the most important generic coal property for predicting burnout. Modelling rig tests, using data from advanced laboratory-scale tests, were found to be just as successful as using rig tests for predicting NO{sub x} performance of different coals. Laboratory-scale tests were found to be successful in providing accurate predictions of burnout for the coals studied. Mathematical models, however, were found to be less successful in this area and further work to develop this is required. A major achievement was CFD solutions of full-scale utility boiler furnaces in a single mesh. 32 refs., 15 figs., 33 tabs., 2 apps.

  6. Thermal behaviour and microanalysis of coal subbituminus

    Science.gov (United States)

    Heriyanti; Prendika, W.; Ashyar, R.; Sutrisno

    2018-04-01

    Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) is used to study the thermal behaviour of sub-bituminous coal. The DSC experiment was performed in air atmosphere up to 125 °C at a heating rate of 25 °C min1. The DSC curve showed that the distinct transitional stages in the coal samples studied. Thermal heating temperature intervals, peak and dissociation energy of the coal samples were also determined. The XRD analysis was used to evaluate the diffraction pattern and crystal structure of the compounds in the coal sample at various temperatures (25-350 °C). The XRD analysis of various temperatures obtained compounds from the coal sample, dominated by quartz (SiO2) and corundum (Al2O3). The increase in temperature of the thermal treatment showed a better crystal formation.

  7. Innovation Developments of Coal Chemistry Science in L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine

    Directory of Open Access Journals (Sweden)

    Shendrik, T.G.

    2015-11-01

    Full Text Available The article presents short historical review and innovation developments of Coal Chemistry Department of L.M. Litvinenko Institute, NAS of Ukraine connected with coal mine exploitation problems, search for decisions toward prevention of spontaneous combustion, dust control in mines, establishing structural chemical features of coal with different genesis and stages of metamorphism with the aim to develop new methods of their modification and rational use. The methods of obtaining inexpensive sorbents from Ukrainian raw materials (including carbon containing waste are proposed. The problems of modern coal chemistry science in IPOCC of NAS of Ukraine are outlined.

  8. Fuel oil from low-temperature carbonization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Thau, A

    1941-01-01

    A review has been given of German developments during the last 20 years. Four methods for the low-temperature carbonization of coal have been developed to the industrial stage; two involving the use of externally heated, intermittent, metallic chamber ovens; and two employing the principle of internal heating by means of a current of gas. Tar from externally heated retorts can be used directly as fuel oil, but that from internally heated retorts requires further treatment. In order to extend the range of coals available for low-temperature carbonization, and to economize metals, an externally heated type of retort constructed of ceramic material has been developed to the industrial stage by T. An excellent coke and a tar that can be used directly as fuel oil are obtained. The properties of the tar obtained from Upper Silesian coal are briefly summarized.

  9. A chemical engineering model for predicting NO emissions and burnout from pulverised coal flames

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L.S.; Glarborg, P.; Dam-Johansen, K.; Hepburn, P.W.; Hesselmann, G. [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1998-07-01

    This work is concerned with the applicability of modelling swirling pulverised coal flames with ideal chemical reactors. The objectives were to predict the emissions of NO and CO, and the burnout of char. The fluid dynamics were simplified by use of a system of ideal chemical reactors. The near burner zone was modelled as a well-stirred reactor, the jet expansion as a plug flow reactor, the external recirculation zone as a well-stirred reactor, and the down stream zone as a number of well-stirred reactors in series. A reduced model of a detailed reaction mechanism was applied to model gas phase chemistry and a novel model was developed for soot oxidation. A population balance was used to keep track of size and density changes for the char combustion. Individual particle temperatures were calculated for each size fraction. The model includes only one burner specific calibration parameter which is related to the mixing of air and fuel. The model was validated against experimental results from a 160 kH{sub th} pulverised coal burner. For single staged combustion at varying stoichiometries, for two stage combustion, and for different coals good agreement between model and experiment was obtained for NO emissions and carbon in ash. This work also indicates that the interaction between the homogeneous gas phase chemistry and the heterogeneous chemistry (soot and char), due to recombination of radicals on the surfaces, is of importance for the nitrogen chemistry in coal flames, especially for ammonia formation. 84 refs., 31 figs., 7 tabs.

  10. Shea meal and cotton stalk as potential fuels for co-combustion with coal.

    Science.gov (United States)

    Munir, S; Nimmo, W; Gibbs, B M

    2010-10-01

    The efficient management of waste biomass is an important environmental problem in agricultural countries. Often land-fill is the main disposal route with ramifications including CH(4) release having 21 times greater global warming potential per molecule than CO(2). Biomasses are considered to be CO(2)-neutral fuels when combusted. Moreover, they are renewable and covered by the renewable obligation scheme and eligible for certificates in the UK. The overall objective of the investigation is to assess the performance of selected biomass and coal co-firing under two different modes of operation, air-staging and fuel-staging with the benefit of reduced-NO(x) and SO(2) emissions in power plant. The biomasses chosen for the study, shea meal (SM) and cotton stalk (CS) have very different cellulose/lignin compositions and different reported thermal behaviour. A series of experiments have been carried out in a 20 kW, down fired combustor using coal, shea meal-coal and cotton stalk-coal blends under un-staged, air-staged and fuel-staged co-combustion configurations. For air-staging, an optimum value of primary zone stoichiometry SR(1)=0.9 was found. Keeping it fixed, the shea meal and cotton stalk content in the coal-biomass blends was set to 5%, 10% and 15% on thermal basis. NO reductions of 51% and 60% were achieved using SM and CS, respectively, with an optimum thermal biomass blending ratio (BBR) of 10%. The results obtained were compared with un-staged and air-staged results for coal without the addition of biomass. Similarly for fuel-staging, keeping the length of the reburn and burnout zone fixed, SM and CS were evaluated as reductive fuel using different reburn fuel fractions (R(ff)) of 5%, 10%, 15% and 20%. NO reductions of 83% and 84% were obtained with an optimum R(ff) of 15% with an optimum reburn zone stoichiometry of SR(2)=0.8 for both SM and CS, respectively. SO(2) reduction and char burnout efficiency were also evaluated. It was found that addition of

  11. Coal gasification. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    High-Btu natural gas has a heating value of 950 to 1,000 Btu per standard cubic foot, is composed essentially of methane, and contains virtually no sulfur, carbon monoxide, or free hydrogen. The conversion of coal to high-Btu gas requires a chemical and physical transformation of solid coal. However, because coal has widely differing chemical and physical properties, depending on where it is mined, it is difficult to process. Therefore, to develop the most suitable techniques for gasifying coal, ERDA, together with the American Gas Association is sponsoring the development of several advanced conversion processes. Although the basic coal-gasification chemical reactions are the same for each process, the processes under development have unique characteristics. A number of the processes for converting coal to high Btu and to low Btu gas have reached the pilot plant stage. The responsibility for designing, constructing and operating each of these pilot plants is defined and progress on each during the quarter is described briefly. The accumulation of data for a coal gasification manual and the development of mathematical models of coal gasification processes are reported briefly. (LTN)

  12. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  13. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  14. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  15. Power Generation from Coal 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Coal is the biggest single source of energy for electricity production and its share is growing. The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide. This book explores how efficiency is measured and reported at coal-fired power plants. With many different methods used to express efficiency performance, it is often difficult to compare plants, even before accounting for any fixed constraints such as coal quality and cooling-water temperature. Practical guidelines are presented that allow the efficiency and emissions of any plant to be reported on a common basis and compared against best practice. A global database of plant performance is proposed that would allow under-performing plants to be identified for improvement. Armed with this information, policy makers would be in a better position to monitor and, if necessary, regulate how coal is used for power generation. The tools and techniques described will be of value to anyone with an interest in the more sustainable use of coal.

  16. Recovery of clean coal fines through a combination of gravity concentrator and flotation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Banerjee, P.K.; Dutta, A.; Mishra, A. [Tata Steel, Jamshedpur (India). Research & Development

    2007-07-01

    Flotation feed is a mixture of coarse and ultra-fine fractions. During conditioning of the flotation feed with collector and frother, the finer fraction consumes more reagents as compared to coarser particles. This is mainly due to more specific surface area of the ultra fine than the coarse fraction. This favors the adsorption of reagents toward ultra-finer fractions leads to less complete surface coverage of coarse particles and more entrainment of finer gangue particles. This results in the lower yield of coarse fractions from the flotation circuit and loss in selectivity. Hence, the major challenge is to improve the recovery of the coarser fraction and selectivity of ultra-fine fractions by improving flotation kinetics of all size fractions. This article deals with an approach to overcome the improper reagent adsorption by fine and coarse coal fractions in the flotation circuit through an innovative washing circuit containing gravity operation and flotation processes. Flotation performance between a new washing circuit having stub cyclone and flotation and normal single-stage reagent addition flotation process is compared in terms of selectivity, separation efficiency, rate constant, and size-wise recovery. The washing circuit having stub cyclone and flotation processes improves the fine clean coal yield by 10% and reduces the consumption of reagent compared to the normal single-stage reagent addition flotation process.

  17. Study on HOPE Management Mode of Coal Enterprises Based on Systematic Thinking

    Science.gov (United States)

    Zhaoran, Zhang; Tianzhu, Zhang; Wenjing, Tong

    2018-02-01

    The extensive management mode of coal enterprises is no longer applicable to the demand of enterprise development under the new economic situation. Combined with the characteristics of coal mine production, based on the system of thinking, integration of lean, people, comprehensive, job management theory, formed HOPE management model, including a core system and three support systems and 18 elements. There are three stages in the development and implementation of this model. To 6S site management for the initial stage to job process reengineering for the intermediate stage to post value process control for the advanced stage. The successful implementation of HOPE model in coal enterprises needs comprehensive control from five aspects: lean culture construction, flattening organizational structure, cost control system, performance appraisal system and lean information management platform. HOPE model can be implemented smoothly and make “win-win” between enterprises and employees.

  18. The early stages of oxidation of magnesium single crystal surfaces

    International Nuclear Information System (INIS)

    Hayden, B.E.; Schweizer, E.; Koetz, R.; Bradshaw, A.M.

    1981-01-01

    The early stages of oxidation of Mg(001) and Mg(100) single crystal surfaces at 300 K have been investigated by LEED, ELS, work function and ellipsometric measurements. A sharp decrease in work function on both surfaces during the first 12 L exposure indicates the incorporation of oxygen in the earliest stages of the interaction. The incorporated oxygen on Mg(001) gives rise to a broadening of the integral order LEED spots for an exposure 3 L. (orig.)

  19. The nexus of the coal industry and the state in Australia: Historical dimensions and contemporary challenges

    International Nuclear Information System (INIS)

    Baer, Hans A.

    2016-01-01

    This article presents a historical account of the close relationship between the coal mining industry and the federal and various state governments, thus over time building a state/coal industry nexus in Australia. It examines (1) an early colonial stage extending from the late 18th century to around the time of Federation in 1902 when the nexus emerged; (2) an intermediate stage from the early 20th century to the late 1970s when the nexus became solidified; and (3) a late stage from the early 1980s to the present day when the corporate sector came to dominate the nexus. Both Coalition and Australian Labor Party governments have consistently supported the exploitation of Australia's coal and natural gas, including recently coal seam gas, and supported the expansion of coal ports. An opposition movement has called for leaving coal and coal seam gas in the ground and shifting Australia’s energy production to renewable sources, particularly solar and wind energy. The article highlights how the nexus between coal mining and the state inhibits action on climate change. It argues this can be transcended by energy policy directed at socializing coal mining, wedded to a program of transitioning it to renewable energy production. - Highlights: • A close nexus exists between the coal industry and the state in Australia. • An anti-coal movement has developed in recent years in Australia. • Breaking the coal industry/state nexus requires socialization of energy production. • This would enable a shift from reliance on coal to renewable energy sources.

  20. Design of single piece sabot for a single stage gas gun

    Science.gov (United States)

    Vemparala, Vignesh; Mathew, Arun Tom; Rao Koka, Tirumala

    2017-11-01

    Single piece sabot is a vital part in single stage gas guns for impact testing in aerospace industries. Depending on the type of projectile used the design of sabot varies to accommodate the testing equipment. The velocity of the projectile exiting the barrel is dependent on the material and shape of the sabot used. The material selected for the design of sabot is rigid polyurethane foam, due to their low elastic modulus and low density. Two samples of rigid PU foam is taken and tests are performed to get their exact material properties. These properties are incorporated in numerical simulation to determine the best fit for practical use. Since the PU foams has a wide range of porosity which plays a prominent role in deciding the exit velocity and accuracy of the projectile coming out of the barrel. By optimisation, to the best suitable material sample can be determined.

  1. Steam coal mines of tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G

    1986-07-01

    A comprehensive review of new steam coal mines being planned or developed worldwide. It shows that at least 20 major mines with a combined annual output of 110 million tonnes per annum, could add their coal to world markets in the next 10 years. The review highlights: substantial activity in Australia with at least four major mines at advanced planning stages; a strengthening of the South American export industry with 4 major mines operating in 10 years compared with just one today; no major export mines being developed in the traditional US mining areas; and the emergence of Indonesia as a major steam coal producer/exporter. The review also shows a reduction in cost/output ratios, and also the proximity of the new mines to existing infrastructure (e.g. export terminals, rail links).

  2. Nitrite reduction and methanogenesis in a single-stage UASB reactor.

    Science.gov (United States)

    Borges, L I; López-Vazquez, C M; García, H; van Lier, J B

    2015-01-01

    In this study, nitrite reduction and methanogenesis in a single-stage upflow anaerobic sludge blanket (UASB) reactor was investigated, using high-strength synthetic domestic wastewater as substrate. To assess long-term effects and evaluate the mechanisms that allow successful nitrite reduction and methanogenesis in a single-stage UASB, sludge was exposed to relatively high nitrite loading rates (315 ± 13 mgNO(2)(-)-N/(l.d)), using a chemical oxygen demand (COD) to nitrogen ratio of 18 gCOD/gNO(2)(-)-N, and an organic loading rate of 5.4 ± 0.2 gCOD/(l.d). In parallel, the effects of sludge morphology on methanogenesis inhibition were studied by performing short-term batch activity tests at different COD/NO(2)(-)-N ratios with anaerobic sludge samples. In long-term tests, denitrification was practically complete and COD removal efficiency did not change significantly after nitrite addition. Furthermore, methane production only decreased by 13%, agreeing with the reducing equivalents requirement for complete NO(2)(-) reduction to N₂. Apparently, the spatial separation of denitrification and methanogenesis zones inside the UASB reactor allowed nitrite reduction and methanogenesis to occur at the same moment. Batch tests showed that granules seem to protect methanogens from nitrite inhibition, probably due to transport limitations. Combined COD and N removal via nitrite in a single-stage UASB reactor could be a feasible technology to treat high-strength domestic wastewater.

  3. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  4. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  5. Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mahesh Iyer; Himanshu Gupta; Danny Wong; Liang-Shih Fan

    2005-09-30

    Hydrogen production from coal gasification can be enhanced by driving the equilibrium limited Water Gas Shift reaction forward by incessantly removing the CO{sub 2} by-product via the carbonation of calcium oxide. This project aims at using the OSU patented high-reactivity mesoporous precipitated calcium carbonate sorbent for removing the CO{sub 2} product. Preliminary experiments demonstrate the show the superior performance of the PCC sorbent over other naturally occurring calcium sorbents. Gas composition analyses show the formation of 100% pure hydrogen. Novel calcination techniques could lead to smaller reactor footprint and single-stage reactors that can achieve maximum theoretical H{sub 2} production for multicyclic applications. Sub-atmospheric calcination studies reveal the effect of vacuum level, diluent gas flow rate, thermal properties of the diluent gas and the sorbent loading on the calcination kinetics which play an important role on the sorbent morphology. Steam, which can be easily separated from CO{sub 2}, is envisioned to be a potential diluent gas due to its enhanced thermal properties. Steam calcination studies at 700-850 C reveal improved sorbent morphology over regular nitrogen calcination. A mixture of 80% steam and 20% CO{sub 2} at ambient pressure was used to calcine the spent sorbent at 820 C thus lowering the calcination temperature. Regeneration of calcium sulfide to calcium carbonate was achieved by carbonating the calcium sulfide slurry by bubbling CO{sub 2} gas at room temperature.

  6. Primary migration of Jurassic coal-derived oil in Santanghu basin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Zhong, N.; Ren, D. [China University of Mining and Technology, Beijing (China). Dept of Resource Exploitation Engineering

    2000-11-01

    It is known that the differential evolution of the multiple macerals results in 'oil generation by stage', and that 'early generation, early expulsion' is one of the preconditions for the efficient accumulation of the coal-derived oil. Based upon the study on the evolution of the physical properties, related to the hydrocarbon expulsion, of the Jurassic organic rock in Santanghu basin during the course of maturation, the mechanism of the primary migration of its coal-derived oil was discussed. The rapid loss of the inherent moisture in the organic rock was not accordant with the main generation stage of the coal-derived oil, so it was unrealistic that the oil migrated by dissolution in the expelled water. It is thought that the special forming mechanism of the continuous 'bitumen network' under the condition of over-pressure and an earlier history of primary migration may be essential to the Jurassic coal-derived oil in Santanghu basin. 17 refs., 4 figs.

  7. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    Science.gov (United States)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  8. Study on the Inference Factors of Huangling Coking Coal Pyrolysis

    Science.gov (United States)

    Du, Meili; Yang, Zongyi; Fan, Jinwen

    2018-01-01

    In order to reasonably and efficiently utilize Huangling coking coal resource, coal particle, heating rate, holding time, pyrolysis temperature and others factors were dicussed for the influence of those factor on Huangling coking coal pyrolysis products. Several kinds of coal blending for coking experiments were carried out with different kinds of coal such as Huangling coking coal, Xida coal with high ash low sufur, Xinghuo fat coal with hign sulfur, Zhongxingyi coking coal with high sulfur, Hucun lean coal, mixed meager and lean coal. The results shown that the optimal coal particle size distribution was 0.5~1.5mm, the optimal heating rate was 8°C/min, the optimal holding time was 15min, the optimal pyrolysis temperature was 800°C for Huangling coking coal pyrolysis, the tar yield increased from 4.7% to 11.2%. The maximum tar yield of coal blending for coking under the best single factor experiment condition was 10.65% when the proportio of Huangling coking coal was 52%.

  9. International Coal Report's coal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G [ed.

    1991-05-31

    Following introductory articles on factors affecting trade in coal and developments in the freight market, tables are given for coal exports and coal imports for major countries worldwide for 1989 and 1990. Figures are also included for coal consumption in Canada and the Eastern bloc,, power station consumption in Japan, coal supply and demand in the UK, electric utility coal consumption and stocks in the USA, coal production in Australia, Canada and USA by state, and world hard coal production. A final section gives electricity production and hard coal deliveries in the EEC, sales of imported and local coal and world production of pig iron and steel.

  10. Distribution of volatile sulphur containing products during fixed bed pyrolysis and gasification of coals

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1991-08-01

    Various coals were used to study the evolution of H{sub 2}S COS, and SO{sub 2} in a fixed bed reactor. For all types of coal, most of H{sub 2}S and SO{sub 2} were released during the devolatilization stage. COS was formed only during the gasification stage in the presence of CO{sub 2}.

  11. Clean Coal Technologies in China: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shiyan Chang

    2016-12-01

    Full Text Available Coal is the dominant primary energy source in China and the major source of greenhouse gases and air pollutants. To facilitate the use of coal in an environmentally satisfactory and economically viable way, clean coal technologies (CCTs are necessary. This paper presents a review of recent research and development of four kinds of CCTs: coal power generation; coal conversion; pollution control; and carbon capture, utilization, and storage. It also outlines future perspectives on directions for technology research and development (R&D. This review shows that China has made remarkable progress in the R&D of CCTs, and that a number of CCTs have now entered into the commercialization stage.

  12. NOFBX Single-Stage-to-Orbit Mars Ascent Vehicle Engine, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the continuation of our research and development of a Nitrous Oxide Fuel Blend (NOFBXTM) Single-Stage-to-Orbit (SSTO) monopropellant propulsion system for...

  13. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  14. Cleaner Coal in China [Chinese Version

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    China’s rapid economic growth has aroused intense interest around the world. Policy makers, industrialists, investors, environmentalists, researchers and others want to better understand the issues that this populous nation faces as it further develops an already thriving economy largely fuelled by coal. This study sheds light on the Chinese coal supply and transformation sectors. China’s rapid economic growth has aroused intense interest around the world. Policy makers, industrialists, investors, environmentalists, researchers and others want to better understand the issues that this populous nation faces as it further develops an already thriving economy largely fuelled by coal. This study sheds light on the Chinese coal supply and transformation sectors. China’s coal, mined locally and available at a relatively low cost, has brought enormous benefits to energy consumers in China and to those outside the country who enjoy the products of its coal-based economy. Yet from another perspective, China’s coal use has a high cost. Despite progress, health and safety in the thousands of small coal mines lag far behind the standards achieved in China’s modern, large mines. Environmental degradation is a real and pressing problem at all stages of coal production, supply and use. Adding to these burdens, emissions of carbon dioxide are of concern to the Chinese government as it embarks on its own climate protection strategy. Technology solutions are already transforming the way coal is used in China and elsewhere. This study explores the context in which the development and deployment of these technologies can be accelerated. Providing a large amount of new data, it describes in detail the situation in China as well as the experiences of other countries in making coal cleaner. Above all, the report calls for much greater levels of collaboration – existing bi-lateral and multi-lateral co-operation with China on coal is found lacking. China’s growing openness

  15. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis

    OpenAIRE

    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Zhang, Yupeng; Liu, Zheng

    2015-01-01

    Objective: The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation.Methods: Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reco...

  16. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  17. Privatisation of the British coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, R.V. (Norton Rose, London (UK))

    1991-01-01

    The article discusses the possible consequences of the impending privatisation of British Coal. It seems likely that deep mine operations will probably be divided up geographically but opencast mines may be left in single ownership. Freehold ownership of coal is likely to be transferred to the Crown and British Coal's powers to license small mines and opencast sites are likely to be absorbed into a general licensing system under control of the Department of Energy. Possible difficulties of public share issues are discussed - subsidence, environmental problems and also the uncertainty of the future market for British coal are mentioned. As an alternative, a series of contract sales of groups of mine properties could be made. Issues of common concern to future owners of the coal industry may lead to the creation of a new mineowner's trade association. Constraints in the areas of procurement and coal sales are discusssed briefly. Although a gloomy scenario is presented, it is suggested that some mines could become highly profitable. 1 ref.

  18. Practical Considerations Concerning the Interleaved Transition Mode Single-stage Ballast

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Kjær, Søren Bækhøj; Munk-Nielsen, Stig

    2002-01-01

    The aim of this paper is to present a novel single-stage interleaved ballast focusing on practical design aspects like: key current expression, overall losses, harmonic analysis of the differential-mode EMI current and preheating ballast function. A new preheating method is also presented. A PSPICE...

  19. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  20. A portable high-power diode laser-based single-stage ceramic tile grout sealing system

    Science.gov (United States)

    Lawrence, J.; Schmidt, M. J. J.; Li, L.; Edwards, R. E.; Gale, A. W.

    2002-02-01

    By means of a 60 W high-power diode laser (HPDL) and a specially developed grout material the void between adjoining ceramic tiles has been successfully sealed. A single-stage process has been developed which uses a crushed ceramic tile mix to act as a tough, inexpensive bulk substrate and a glazed enamel surface to provide an impervious surface glaze. The single-stage ceramic tile grout sealing process yielded seals produced in normal atmospheric conditions that displayed no discernible cracks and porosities. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 200 kW/ mm2 and at rates of up to 600 mm/ min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze. In terms of mechanical, physical and chemical characteristics, the single-stage ceramic tile grout was found to be far superior to the conventional epoxy tile grout and, in many instances, matched and occasionally surpassed that of the ceramic tiles themselves. What is more, the development of a hand-held HPDL beam delivery unit and the related procedures necessary to lead to the commercialisation of the single-stage ceramic tile grout sealing process are presented. Further, an appraisal of the potential hazards associated with the use of the HPDL in an industrial environment and the solutions implemented to ensure that the system complies with the relevant safety standards are given.

  1. Report for fiscal 1981 of Sunshine Program coal group. Basic research on Solvolysis liquefaction technology; 1981 nendo solvolysis ekika gijutsu no kiso kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Basic research is conducted on the Solvolysis liquefaction process for the purpose of producing from coal an ashless, low-sulfur, pollution-free liquid fuel. In the research on the Solvolysis liquefaction (1st stage liquefaction) of coal using a hydrogenation solvent, the Solvolysis liquefaction of coal is studied, for which a refined Solvolysis pitch containing coal substances and a hydride of solvent refined coal are used as Solvolysis liquefaction solvents for the 1st stage. In the research on the 1st stage liquefaction reaction conditions using a high-temperature closed process, two methods are employed. One is a method that uses a mini-pump type reactor in which a small hermetic container is submerged in a high-temperature solvent for rapid heating and the other is a method that uses a pipe type reactor in which coal slurry is caused to travel through a pipe heated to a high temperature. For the analysis of the 2nd stage liquefaction (hydrogenation) reaction conditions, the properties of the 2nd coal liquid, and the constitution of the 2nd coal liquid, and the for the research on the 1st stage liquefaction capacity, the hydrogenation of anthracene oil and solvent refined coal as recyclable solvent models is studied. (NEDO)

  2. Enterprise investment, local government intervention and coal overcapacity: The case of China

    International Nuclear Information System (INIS)

    Zhang, Yanfang; Zhang, Ming; Liu, Yue; Nie, Rui

    2017-01-01

    Long-term management of China's coal overcapacity depends on the targeted policy guidance on industry production capacity expansion in the overcapacity formation process. In this study, coal enterprise and local government are treated as game participants, and a three-stage dynamic game model has been developed to depict the boosting effect of the game behavior of coal enterprise's and local government's capacity investments in different markets of supply and demand. The results are shown in the following: (1) local government has been the 'behind-the-scenes' operator of over-investment and redundant construction, and its excessive interventions in coal industry investment have been the primary cause of overcapacity formation; (2) when the market is in short supply, coal enterprise's optimal behavior is to continuously increase the rate of investment growth until it reaches the threshold to obtain the maximum excess profits, ultimately leading to overinvestment in the industry; and (3) the key factors affecting the game abilities of coal enterprise and local government are the market's self-regulation and the central government's supervision intensity. Although the Chinese government, a highly vertically oriented bureaucratic structure, is implementing a mandatory de-capacity policy to alleviate the intensity of excessive coal capacity, it is not a long-term regularization on the supply-side reform. - Highlights: • The formation of China's coal overcapacity is studied from capacity investors. • A three-stage game is developed to depict the boosting effect of coal overcapacity. • Local government has been the 'behind-the-scenes' operators of coal overcapacity. • Coal enterprise's optimal strategy is reaching an investment-max with undersupply. • Chinese government should rely more on market mechanisms instead of intervention.

  3. Electric plants to gas, influence of both Mineral Matter and Air Oxidation in coal pyrolysis

    International Nuclear Information System (INIS)

    Mondragon, F.; Jaramillo, A.; Quintero, G.

    1995-01-01

    In this work some coal samples from different Colombia's deposits are analyzed. In first stage, material matter is removed from coal by acid treatment with HF/HCl, and aerial oxidation of coal is made with air in oven to 150 Centigrade degree temperature. In second stage, pyrolysis is carried out in two different techniques: 1. Thermogravimetric Analysis (TGA) and 2. Programmed Temperature Pyrolysis (PTP) in a pyrolyzer equipped with a quadrupole mass spectrometer. In both techniques, the coal samples are heated in different rates to 650 Centigrade degree. During PTP trials the evolution of CH4, H2S, hydrocarbons (m/z=42), CO2, benzene and toluene are monitored. Studied coal samples showed: 1). A gas conversion range between 48.8% to 21.8%; 2). A decrease in the gas conversion between 2% to 4%, when oxidation it is applied; 3). The temperature at the one which is presented the maximum evolution of CH4 is similar for all coal samples; 4). The maximum evolution of H2S depends on mineral matter composition, occurs between 480 to 550 Centigrade degrees and is presented due to pyrite decomposition. 5). The evolution of CO2 occurs between 100 to 650 Centigrade degree, its production is generated in different stage of the mentioned temperature range, and in some coal samples is presented due to inorganic origin

  4. Clean coal use in China: Challenges and policy implications

    International Nuclear Information System (INIS)

    Tang, Xu; Snowden, Simon; McLellan, Benjamin C.; Höök, Mikael

    2015-01-01

    Energy consumption in China is currently dominated by coal, a major source of air pollution and carbon emissions. The utilization of clean coal technologies is a likely strategic choice for China at present, however, although there have been many successes in clean coal technologies worldwide, they are not widely used in China. This paper examines the challenges that China faces in the implementation of such clean coal technologies, where the analysis shows that those drivers that have a negative bearing on the utilization of clean coal in China are mainly non-technical factors such as the low legal liability of atmospheric pollution related to coal use, and the lack of laws and mandatory regulations for clean coal use in China. Policies for the development of clean coal technologies are in their early stages in China, and the lack of laws and detailed implementation requirements for clean coal require resolution in order to accelerate China's clean coal developments. Currently, environmental pollution has gained widespread attention from the wider Chinese populace and taking advantage of this opportunity provides a space in which to regain the initiative to raise people’s awareness of clean coal products, and improve enterprises’ enthusiasm for clean coal. - Highlights: • Clean coal is not widely used in China due to many management issues. • Legal liability of pollution related with coal utilization is too low in China. • China is lack of laws and mandatory regulations for clean coal utilization. • It is difficult to accelerate clean coal utilization by incentive subsidies alone.

  5. Single-staged uniportal VATS in the supine position for simultaneous bilateral primary spontaneous pneumothorax.

    Science.gov (United States)

    Kim, Kyung Soo

    2017-05-15

    Simultaneous bilateral primary spontaneous pneumothorax (SBPSP) is rare, but requires surgery on both sides, in patients with definite bilateral bullae to prevent life-threatening conditions. Recently, uniportal video-assisted thoracoscopic surgery (VATS) has been widely accepted as a less invasive technique for the treatment of pneumothorax. Thus, we introduced single-staged uniportal VATS technique in the supine position, for the management of two cases of SBPSP. A 17-year-old boy presented with bilateral spontaneous pneumothorax and he underwent single-staged uniportal VATS in the supine position. Single wide draping in consecutive bilateral approaches removes the needs of changing patients' position. Whole thoracoscopic procedure for wedge resection of bullae lesions was conducted without difficulty. The total operation time took 65 min and the patient discharged 3 days after the operation. The patient was followed for 24 months without recurrence of both sides. Another 18-year-old boy was admitted with bilateral spontaneous pneumothorax and single-staged uniportal VATS was also performed in the supine position. The total operation time took 79 min and the patient discharged on postoperative day 4. He was followed for 19 months without recurrence of both sides. Single-staged uniportal VATS approach yielded satisfactory results from simplicity that not requires position change compared to conventional multi-ports VATS in the lateral position, and with better cosmetics. This technique is thought to be a feasible procedure in selective patients with SBPSP or with contralateral bullae for preventive role.

  6. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  7. Surgical reconstruction of pressure ulcer defects: a single- or two-stage procedure?

    LENUS (Irish Health Repository)

    Laing, Tereze A

    2012-02-01

    BACKGROUND: The surgical management of pressure ulcers traditionally involved staged procedures, with initial debridement of necrotic or infected material followed by reconstruction at a later date when the wound was deemed viable and free of gross infection. However, over the past decade, it has been suggested that a single-stage procedure, combining initial debridement and definitive reconstruction, may provide advantages over staged surgery. We present our experience with the staged approach and review the current evidence for both methods. SUBJECTS AND SETTINGS: : We reviewed medical records of all patients referred to our service for pressure ulcer management between October 2001 and October 2007. The National Rehabilitation Hospital is the national center in Ireland for primary rehabilitation of adults and children suffering from spinal and brain injury, serving patients locally and from around the country. METHODS: All subjects who were managed surgically underwent a 2-stage procedure, with initial debridement and subsequent reconstruction. The main outcome measures were length of hospital stay, postoperative morbidity and mortality, and time to complete ulcer healing. RESULTS: Forty-one of 108 patients with 58 pressure ulcers were managed surgically. All patients underwent initial surgical debridement and 20 patients underwent subsequent pressure ulcer reconstruction. Postreconstructive complications occurred in 5 patients (20%). The mean time to complete ulcer healing was 17.4 weeks. Partial flap necrosis occurred in 3 patients, but there were no episodes of flap failure. CONCLUSIONS: We achieved favorable results with a 2-stage reconstruction technique and suggest that the paucity of evidence related to single-stage procedures does not support a change in surgical management.

  8. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million

  9. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A drowned lycopsid forest above the Mahoning coal (Conemaugh Group, Upper Pennsylvanian) in eastern Ohio, U.S.A

    Science.gov (United States)

    DiMichele, W.A.; Eble, C.F.; Chaney, D.S.

    1996-01-01

    Over 800 mud-filled casts of upright lycopsid tree stumps have been documented immediately above the Mahoning coal in an active underground mine located in northwestern Jefferson County, Ohio. The coal body originated as a pod-shaped peat body of ??? 60 km2. Trees are rooted at several levels within a thin (15-40 cm) bone coal directly above the banded coal; they extend upward up to 15 cm into overlying, flat-bedded, carbonaceous mudstones that coarsen up. From a maximum basal diameter of 1.2 m, stumps taper upward to diameters no less than 0.3 m. Within single-entry transects, trees are identified as lepidodendrids on the basis of gross morphology, external stem patterns, and attached stigmarian root systems, and provisionally as Lepidophloios or Lepidodendron by associated palynology of the enclosing matrix. Palynological analyses of incremental seam samples indicate an initial dominance of lycopsid spores with lepidodendracean affinities (Lycospora granulata from Lepidophloios hallii), replaced upwards by tree-fern spores, with a reoccurrence of lepidodendracean spores in the upper benches; spores of Sigillaria (Crassispora) are abundant only at the base of the coal. Petrographic analyses indicate a parallel trend from vitrinite-rich to inertinite- and liptinite-rich upward in the coal body. All data indicate that the peat represented by the Mahoning coal was drowned slowly. During the earliest stages of inundation, a lycopsid forest was re-established, only to be subsequently drowned.

  11. FY 1999 basic survey of coal resource development. Coal GIS survey; 1999 nendo sekitan shigen kaihatsu kiso chosa. Sekitan GIS chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The purpose of this survey is to construct a comprehensive coal field assessment technology system which can promptly cope with any natural conditions/geological situations of coal field. As to the GIS (geographical information system) which can unifiedly manage/analyze various data being used in other fields, survey was conducted of present situations/technology trends of the resource related GIS, and at the same time the survey is aimed at applying it to the coal resource field. In the survey in this fiscal year, based on the survey made in FY 1998, applicability of GIS function was verified for Australia where the coal GIS is prepared. And the fundamental design was made to construct a coal GIS considered of concrete application in the stage of coal resource exploration and resource assessment. In the fundamental design, prototypes of individual functions of the system were made. Making the analysis using the actual data, expansion and complication of the system size were advanced step by step toward the completion of the system. Such prototypical development method was adopted. (NEDO)

  12. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  13. Chemical and Pyrolytic Thermogravimetric Characterization of Nigerian Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2016-12-01

    Full Text Available The discovery of new coal deposits in Nigeria presents solutions for nation’s energy crises and prospects for socioeconomic growth and sustainable development. Furthermore, the quest for sustainable energy to limit global warming, climate change, and environmental degradation has necessitated the exploration of alternatives using cleaner technologies such as coal pyrolysis. However, a lack of comprehensive data on physico-chemical and thermal properties of Nigerian coals has greatly limited their utilization. Therefore, the physico-chemical properties, rank (classification, and thermal decomposition profiles of two Nigerian bituminous coals – Afuze (AFZ and Shankodi-Jangwa (SKJ – were examined in this study. The results indicate that the coals contain high proportions of C, H, N, S, O and a sufficiently high heating value (HHV for energy conversion. The coal classification revealed that the Afuze (AFZ coal possesses a higher rank, maturity, and coal properties compared to the Shankodi-Jangwa (SKJ coal. A thermal analysis demonstrated that coal pyrolysis in both cases occurred in three stages; drying (30-200 °C, devolatilization (200-600 °C, and char decomposition (600-1000 °C. The results also indicated that pyrolysis at 1000 °C is not sufficient for complete pyrolysis. In general, the thermochemical and pyrolytic fuel properties indicate that the coal from both places can potentially be utilized for future clean energy applications.

  14. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  15. NOx emissions and potential NOx reduction for low volatile Australian coals: End-of-grant report

    International Nuclear Information System (INIS)

    Holcombe, D.; Nelson, P.F.; Kelly, M.D.; Gupta, R.P.; Wall, T.F.

    1994-09-01

    The objective of this project was to improve the understanding of NO x formation from the combustion of low-volatile Australian coals. A secondary objective was to develop NO x reduction techniques which will improve the export market potential of these coals. Low volatile coals frequently have high nitrogen levels. In addition, they differ from high volatile coals in their behaviour in the early part of the combustion process, which largely determines the level of NO x that will be formed. Low volatile coals were examined with respect to the release of nitrogen species during the early stage of PF combustion. These species are precursors to NO x and it is at this stage of combustion that furnace conditions are important in determining whether these species become NO x or are reduced to molecular nitrogen. Pilot scale measurements of NO x concentrations from the combustion of the coals were undertaken under a range of conditions to provide data on the relevance of furnace parameters as well as of coal properties. Finally, mathematical models of coal combustion with NO x formation were developed, to be able to incorporate data on nitrogen species released from coal, and to use this information as well as furnace conditions to predict NO x concentrations. (author). Tabs., figs., refs

  16. Concentration of gallium in the Permo-Carboniferous coals of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cunliang; Qin, Shenjun; Yang, Yinchao; Li, Yanheng; Lin, Mingyue [Hebei University of Engineering, Handan (China)

    2009-10-15

    Gallium is widely used in electronic industry and its current price is about 500 US dollars per kilogram. It has been found that its contents are very high in Permo-Carboniferous coal of China. In order to look for valuable associated gallium deposits in coal, gallium contents of 177 coal samples were determined by using inductively coupled plasma-mass spectrometry (ICP-MS) and the data of 873 coal samples from Chinese Permo-Carboniferous coalfields were collected. The results show that the average gallium concentration of Chinese Permo-Carboniferous coals is 15.49{mu}g{center_dot}g{sup -1}. There are two concentration types of gallium in Chinese Permo-Carboniferous coals: one type is that gallium has enriched to an ore deposit, and another type is that gallium is locally enriched in coal seams, but has not formed a valuable associated gallium ore deposit. The gallium concentration in Chinese Permo-Carboniferous coal may have several different sources: concentration in sedimentation stage, magmatic hydrothermal inputs and low-temperature hydrothermal fluids.

  17. Environmental monitoring handbook for coal conversion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Salk, M.S.; DeCicco, S.G. (eds.)

    1978-05-01

    The primary objectives of the Department of Energy's (DOE) coal conversion program are to demonstrate the environmental acceptability, technical feasibility, and economic viability of various technologies for gaseous, liquid, and solid fuels from coal. The Environmental Monitoring Handbook for Coal Conversion Facilities will help accomplish the objective of environmental acceptability by guiding the planning and execution of socioeconomic and environmental monitoring programs for demonstration facilities. These programs will provide information adequate to (1) predict, insofar as is possible, the potential impacts of construction and operation of a coal conversion plant, (2) verify the occurrence of these or any other impacts during construction and operation, (3) determine the adequacy of mitigating measures to protect the environment, (4) develop effluent source terms for process discharges, and (5) determine the effectiveness of pollution control equipment. Although useful in a variety of areas, the handbook is intended primarily for contractors who, as industrial partners with DOE, are building coal conversion plants. For the contractor it is a practical guide on (1) the methodology for developing site- and process-specific environmental monitoring programs, (2) state-of-the-art sampling and analytical techniques, and (3) impact analyses.To correspond to the phases of project activity, the subject matter is divided into four stages of monitoring: (1) a reconnaissance or synoptic survey, (2) preconstruction or baseline, (3) construction, and (4) operation, including process monitoring (prepared by Radian Corp., McLean, Va.). For each stage of monitoring, guidelines are given on socioeconomics, aquatic and terrestrial ecology, air quality and meteorology, surface and groundwater quality, geohydrology and soil survey, and surface water hydrology.

  18. On-line nuclear ash gauge for coal based on gamma-ray transmission techniques

    International Nuclear Information System (INIS)

    Rizk, R.A.M.; El-Kateb, A.H.; Abdul-Kader, A.M.

    1999-01-01

    Developments and applications of on-line nuclear gauges in the coal industry are highly requested. A nuclear ash gauge for coal, based on γ-ray transmission techniques is developed. Single and dual energy γ-ray beams are used to determine the ash content of coal. The percentage ash content as a function of the γ-ray intensities transmitted through coal samples is measured and sensitivity curves are obtained. An empirical formulation relating the ash content values to the γ-ray intensities is derived. Preliminary results show that both single and dual energy γ-ray transmission techniques can be used to give a rapid on-line estimation of the ash concentration values in coal with low cost and reasonable accuracy, but the dual one is much preferable. (author)

  19. Applying Rock Engineering Systems (RES approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines

    Directory of Open Access Journals (Sweden)

    Amir Saffari

    2013-12-01

    Full Text Available Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Systems (RES approach as a systematic method for analyzing and classifying is proposed in engineering projects. The present study is concerned with employing the RES approach to categorize coal spontaneous combustion in coal regions. Using this approach, the interaction of parameters affecting each other in an equal scale on the coal spontaneous combustion was evaluated. The Intrinsic, geological and mining characteristics of coal seams were studied in order to identifying important parameters. Then, the main stages of implementation of the RES method i.e. interaction matrix formation, coding matrix and forming a list category were performed. Later, an index of Coal Spontaneous Combustion Potential (CSCPi was determined to format the mathematical equation. Then, the obtained data related to the intrinsic, geological and mining, and special index were calculated for each layer in the case study (Pashkalat coal region, Iran. So, the study offers a perfect and comprehensive classification of the layers. Finally, by using the event of spontaneous combustion occurred in Pashkalat coal region, an initial validation for this systematic approach in the study area was conducted, which suggested relatively good concordance in Pashkalat coal region.

  20. Result of design and test operation of a coal boiler at Hyogo Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Yasuhiko; Sato, Noriyuki

    1987-05-01

    This boiler is the first coal boiler for the oil refineries in Japan (Installed in Oct., 1986 at Idemitsu Petrochemical Co.) Causes for using coal as a fuel are a conversion to less expensive fuel and offering a technical service to the users of coal through the combustion of coal and learning of a handling technique. The type of boiler is Babcock single barrel radiant type and has 150 t/d capacity with single fuel combustion of coal. Auxiliary equipments are a pulverizer, a transportation and storage unit, a denitration unit, a dust collector, a desulfurization unit, and an ash disposal unit. Main considerations in the design are measures for the security of finely pulverized coal, clogging prevention for coal and ash. A test operation revealed 7 % of combustible loss and 160 - 250 ppm of NOx content at a charge inlet of denitration unit. Actual operation exhibited no clogging at the denitration unit of troubles due to scaling. Design for raw materials is to blend 4 imported coals (from Australia and Canada, etc) and 3 Japanese ones. (7 figs, 2 tabs)

  1. An overview of coal preparation initiatives with application to coal conversion in South Africa

    International Nuclear Information System (INIS)

    Reinecke, C.F.; Bunt, J.R.

    1999-01-01

    Coal has for many years been the most important energy resource in South Africa and has contributed to more than 70 % of South Africa's energy needs in 1998. The large in-situ coal deposits (in excess of 120 x 10 9 t) and relatively large recoverable reserves (about 33.5 x 10 9 t) will ensure that coal will for many a year still be South Africa's single biggest energy resource. Biomass burning consumes approximately 11 Mt/a of which 8 Mt/a is natural wood. This equals natural wood production. The use of firewood is considered to be unsustainable. Of the 225 Mt/a of coal extracted in South Africa in 1998, 67.0 Mt/a was exported. Of this, 62.9 Mt/a were exported as steam coal, 2.1 Mt/a as metallurgical coal, and the rest as anthracite. Current exports are conducted via the Richards Bay terminal (63.6 Mt/a), Durban (2.0 Mt/a) and a small amount via Maputo. The Richards Bay terminal is to be expanded to 72 Mt/a by 1999. It is also very important to note that most of the coal resources possess calorific values of below 25 MJ/kg, which limits its utilization to power generation (Eskom) and processes such as fixed bed dry bottom gasification (Sasol). A break-down of production and usage of coal by the various controlling groups in South Africa shows that Sasol (54.2 Mt/a) and Escom (91.0 Mt/a) are major consumers of coal. It has been proposed earlier by Horsfall (1993) that for power generation and coal conversion, the in-situ quality is generally regarded as satisfactory for use. All that is required in the way of processing is crushing to an appropriate top size and, for conversion, screening of the unwashed coal. Most other consumers require some degree of beneficiation, which generally entails the removal of stone/shale and low quality coal. More recently, the introduction of destoning plants at Duvha Colliery (Larcodems) and New Vaal Colliery (Drewboy washers) has significantly reduced the abrasiveness content of these local thermal coals, together with an increase

  2. Biodesulphurisation of high sulphur coal by heap leaching

    Energy Technology Data Exchange (ETDEWEB)

    J. Cara; M.T. Carballo; A. Moran; D. Bonilla; O. Escolano; F.J. Garcia Frutos [Universidad de Leon, Leon (Spain). Departamento de Ingenieria Quimica

    2005-10-01

    The biodesulphurisation of coal carried out in pile could be an interesting option to clean coal. In view of the good results obtained in biodesulphurisation test column at lab scale on a sample of semianthracite coal that proceed of an industrial plant with a high sulphur content, mainly pyritic sulphur, the feasibility of the process at pilot plant scale was studied. The pile was formed with 6 ton of gravity middlings coal sample with a grain size -12+0.5 mm from S.A. Hullera Vasco-Leonesa industrial plant. The coal has a total sulphur content of 3.78% and a pyritic sulphur content of 2.88%, the rest of sulphur is organic sulphur. The biodesulphurisation process in pilot plant follows three stages: stabilization of the pile, biodesulphurisation and washing. Heap was sampled twice during stabilisation stage, at the end of desulphurisation process and finally once washed. A pyritic sulphur removal of 39% and total sulphur removal of 23% was obtained. To complete the bioleaching process, the treatment of purge of leachate was carried out with the objective to recycling to head of process. The best treatment was a pre-treatment of the leachate until pH 4, and further treatment by reverse osmosis of the clarified water. Comparing this process with conventional precipitation to reach disposal limits, the reagents consumption and sludges were reduced considerably and due to the high quality of permeate it permits to recycle it to head of process. 18 refs., 6 figs., 6 tabs.

  3. Effect of sulfur or hydrogen sulfide on initial stage of coal liquefaction in tetralin; Sekitan ekika shoki katei ni okeru io to ryuka suiso no hatasu yakuwari

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, M. [Government Industrial Research Institute, Kyushu, Saga (Japan)

    1996-10-28

    It is well known that the solubilization of coal can be accelerated by adding sulfur or hydrogen sulfide during direct liquefaction of difficult coals. From the studies of authors on the coal liquefaction under the conditions at rather low temperatures between 300 and 400{degree}C, liquefaction products with high quality can be obtained by suppressing the aromatization of naphthene rings, but it was a problem that the reaction rate is slow. For improving this point, results obtained by changing solvents have been reported. In this study, to accelerate the liquefaction reaction, Illinois No.6 coal was liquefied in tetralin at temperature range from 300 to 400{degree}C by adding a given amount of sulfur or hydrogen sulfide at the initial stage of liquefaction. The addition of sulfur or hydrogen sulfide provided an acceleration effect of liquefaction reaction at temperature range between 300 and 400{degree}C. The addition of sulfur or hydrogen sulfide at 400{degree}C increased the oil products. At 370 and 400{degree}C, the liquid yield by adding sulfur was slightly higher than that by adding hydrogen sulfide, unexpectedly. The effects of sulfur and hydrogen sulfide were reversed when increasing the hydrogen pressure. 5 figs., 1 tab.

  4. Single-stage osseointegrated implants for nasal prosthodontic rehabilitation: A clinical report.

    Science.gov (United States)

    de Carvalho, Bruna M D F; Freitas-Pontes, Karina M; de Negreiros, Wagner A; Verde, Marcus A R L

    2015-08-01

    Malignant tumors in the nasal region may be treated by means of invasive surgical procedures, with large facial losses. Nasal prostheses, retained by osseointegrated facial implants, instead of plastic surgery, will, in most patients, offer good biomechanical and cosmetic results. This clinical report describes the prosthetic rehabilitation of a patient with nasal cancer who had the entire nasal vestibule removed in a single-stage surgical procedure in order to shorten the rehabilitation time. The nasal prosthesis was built on a 3-magnet bar and was made of platinum silicone with intrinsic pigmentation, thereby restoring the patient's appearance and self-esteem. The authors concluded that single-stage implants may reduce the rehabilitation time to as little as 1 month, and the correct use of materials and techniques may significantly improve the nasal prosthesis. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Recording single neurons' action potentials from freely moving pigeons across three stages of learning.

    Science.gov (United States)

    Starosta, Sarah; Stüttgen, Maik C; Güntürkün, Onur

    2014-06-02

    While the subject of learning has attracted immense interest from both behavioral and neural scientists, only relatively few investigators have observed single-neuron activity while animals are acquiring an operantly conditioned response, or when that response is extinguished. But even in these cases, observation periods usually encompass only a single stage of learning, i.e. acquisition or extinction, but not both (exceptions include protocols employing reversal learning; see Bingman et al.(1) for an example). However, acquisition and extinction entail different learning mechanisms and are therefore expected to be accompanied by different types and/or loci of neural plasticity. Accordingly, we developed a behavioral paradigm which institutes three stages of learning in a single behavioral session and which is well suited for the simultaneous recording of single neurons' action potentials. Animals are trained on a single-interval forced choice task which requires mapping each of two possible choice responses to the presentation of different novel visual stimuli (acquisition). After having reached a predefined performance criterion, one of the two choice responses is no longer reinforced (extinction). Following a certain decrement in performance level, correct responses are reinforced again (reacquisition). By using a new set of stimuli in every session, animals can undergo the acquisition-extinction-reacquisition process repeatedly. Because all three stages of learning occur in a single behavioral session, the paradigm is ideal for the simultaneous observation of the spiking output of multiple single neurons. We use pigeons as model systems, but the task can easily be adapted to any other species capable of conditioned discrimination learning.

  6. Two-stage single-volume exchange transfusion in severe hemolytic disease of the newborn.

    Science.gov (United States)

    Abbas, Wael; Attia, Nayera I; Hassanein, Sahar M A

    2012-07-01

    Evaluation of two-stage single-volume exchange transfusion (TSSV-ET) in decreasing the post-exchange rebound increase in serum bilirubin level, with subsequent reduction of the need for repeated exchange transfusions. The study included 104 neonates with hyperbilirubinemia needing exchange transfusion. They were randomly enrolled into two equal groups, each group comprised 52 neonates. TSSV-ET was performed for the 52 neonates and the traditional single-stage double-volume exchange transfusion (SSDV-ET) was performed to 52 neonates. TSSV-ET significantly lowered rebound serum bilirubin level (12.7 ± 1.1 mg/dL), compared to SSDV-ET (17.3 ± 1.7 mg/dL), p < 0.001. Need for repeated exchange transfusions was significantly lower in TSSV-ET group (13.5%), compared to 32.7% in SSDV-ET group, p < 0.05. No significant difference was found between the two groups as regards the morbidity (11.5% and 9.6%, respectively) and the mortality (1.9% for both groups). Two-stage single-volume exchange transfusion proved to be more effective in reducing rebound serum bilirubin level post-exchange and in decreasing the need for repeated exchange transfusions.

  7. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    Science.gov (United States)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress

  8. Investigations into NOx emissions and burnout for coals with high ash content in a bench scale test facility

    Energy Technology Data Exchange (ETDEWEB)

    Greul, U.; Kluger, F.; Peter, G.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    2000-07-01

    At the Stuttgart University's Institute of Process Engineering and Power Plant Technology (IVD) investigations of in-furnace DeNOx technologies with regard to their NOx reduction efficiency are carried out using an electrically heated bench-scale test facility to evaluate the effect of different process parameters independently. The DeNOx technologies of air and fuel staging have been demonstrated to be effective control techniques to reduce NOx from stationary sources. For a wide range of brown and hard coals from Europe, South Africa and Australia test runs with air-staged combustion have been carried out. The ash content of the hard coals used was in the range between 8 and 28%. The investigated parameters were temperature (1000-1300{degree}C), stoichiometry (1.25-0.55), and residence time (1-6 s) in the fuel rich primary zone. With increasing temperatures and residence times in fuel-rich conditions in air-staged combustion NOx emissions below 300 mg/m{sup 3} can be achieved even with hard coals. For a few brown coals NOx values lower than 100 mg/m{sup 3} are possible. Dependent on the coal rank individual parameters are more important than others. For low and medium volatile hard coals the increasing of the residence time is more effective than higher temperature or lower air ratios in the primary zone. However, with high volatile hard coal or brown coal as primary fuel the influence of temperature and stoichiometry in the primary zone plays a key role for NOx reduction effectiveness. The burnout led to restrictions in large scale applications for air-staged combustion especially with hard coals as primary fuel. Investigations at different primary air ratios and temperatures show the effect of these parameters on the burnout values along the course of combustion. 7 refs., 14 figs., 2 tabs.

  9. Single-stage micro-scale solvent extraction in parallel microbore tubes using MDIMJ

    International Nuclear Information System (INIS)

    Darekar, Mayur; Singh, K.K.; Joshi, J.M.; Mukhopadhyay, S.; Shenoy, K.T.

    2016-01-01

    Single-stage micro-scale solvent extraction of U(VI) from simulated lean streams is explored using micro-scale contactor comprising of a MDIMJ (Monoblock Distributor with Integrated Microfluidic Junction) and PTFE microbore tubes. 30% (v/v) TBP in dodecane has been used as the extracting phase. The objective of the study is to demonstrate numbering up approach for scale-up of micro-scale extraction using indigenously conceptualized and fabricated MDIMJ. First the performance of MIDIMJ for equal flow distribution is tested. Then the effects of inlet flow rate and O/A ratio on stage efficiency and percentage extraction are studied. The experiments show that it is easy to scale-up single-stage micro-scale solvent extraction by using MDIMJ for numbering up approach. Maximum capacity tested is 4.8 LPH. With O/A = 2/1, more than 90% extraction is achieved in a very short contact time of less than 3s. The study thus demonstrates possibility of process intensification and easy scale-up of micro-scale solvent extraction

  10. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS, VOLUME 1, TESTING IN A 10 MILLION BTU/HR EXPERIMENTAL FURNACE

    Science.gov (United States)

    The document gives results of tests conducted in a 2 MWt experimental furnace to: (1) investigate ways to reduce NOx emissions from utility coal burners without external air ports (i.e., with internal fuel/air staging); and (2) improve the performance of calcium-based sorbents fo...

  11. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  12. Coal into the 21st century

    International Nuclear Information System (INIS)

    Beecy, D.J.

    1991-01-01

    The Plenary lecture to the conference addresses coal technologies with improved environmental performance to serve 21st century needs. The US DoE recognises the need for 'premium' processes for all stages of the fuel cycle. This has led to a research focus on fundamental science and technology

  13. Survey on development of brown coal liquefaction techniques; Kattan ekika gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-09-01

    Described herein are results of literature survey on brown coal liquefaction reactions and elementary techniques. Liquefaction of brown coal in the presence of CO and steam, or CO, H{sub 2} and steam has been investigated. It is not clear by the literature survey whether it is superior to the normal process which uses hydrogen. Brown coal contains moisture at high contents, and the drying techniques are necessary to be developed for its liquefaction. The future coal liquefaction plant will be much larger than the past one, and there are a number of problems to be solved, such as those involved in the designs of large-sized high-pressure slurry pumps, heat exchangers and preheaters. It is also necessary to develop the materials of and production techniques for large reactors which are serviceable under severe conditions. The solid-liquid separation for liquefaction products involves a number of the elementary techniques characteristic of coal liquefaction processes, and needs many technological developments. The one-stage brown coal liquefaction process is compared with the two-stage process for the secondary hydrogenation of SCR, but no clear conclusions are reached. (NEDO)

  14. Twenty-five years of the common market in coal, 1953--1978

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The development of the common market for coal is traced from its creation on 10 February 1953 by the High Authority of the European Coal and Steel Community up to the recent past. Describes the position assumed by coal in the Community's energy supply, the changes on the individual markets for solid fuels and the development of the factors affecting supply, including technical progress in the Community's coal mining industry. The changes which have transformed the world energy market are also described. There follows an account of the role played by the Community, in particular the ECSC executive, in the various stages of development of the common market in coal. Chapter 3 deals with the consolidation during the transitional period provided for in the ECSC Treaty; Chapter 4 describes the events of the coal crisis and Chapter 5 is devoted to Community energy policy since the oil crisis of 1973/74 from the coal industry's viewpoint. The appendix contains 39 tables of statistics covering all important aspects of the coal sector since the common market was established.

  15. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2017-01-01

    Full Text Available Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE, which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the influence of different height to diameter ratio on the acoustic emission characteristics of coal-rock damage evolution was discussed by microparticle flow PFC2D software platform. The results show that coal-rock size influences the uniaxial compressive strength, peak strain, and elastic modulus of itself; the size effect has little effect on the acoustic emission law of coal-rock damage and the effects of the size of coal-rock samples on acoustic emission characteristics are mainly reflected in three aspects: the triggering time of acoustic emission, the strain range of strong acoustic emission, and the intensity of acoustic emission; the damage evolution of coal-rock specimen can be divided into 4 stages: initial damage, stable development, accelerated development, and damage.

  16. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  17. Coal and nuclear electricity fuels

    International Nuclear Information System (INIS)

    Rahnama, F.

    1982-06-01

    Comparative economic analysis is used to contrast the economic advantages of nuclear and coal-fired electric generating stations for Canadian regions. A simplified cash flow method is used with present value techniques to yield a single levelized total unit energy cost over the lifetime of a generating station. Sensitivity analysis illustrates the effects of significant changes in some of the cost data. The analysis indicates that in Quebec, Ontario, Manitoba and British Columbia nuclear energy is less costly than coal for electric power generation. In the base case scenario the nuclear advantage is 24 percent in Quebec, 29 percent in Ontario, 34 percent in Manitoba, and 16 percent in British Columbia. Total unit energy cost is sensitive to variations in both capital and fuel costs for both nuclear and coal-fuelled power stations, but are not very sensitive to operating and maintenance costs

  18. Co-combustion of waste with coal in a circulating fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Abelha, P.; Lopes, H.; Cabrita, I. [DEECA-INETI, Lisboa (Portugal)

    2002-07-01

    The results of a study of cocombustion of waste with coal is described. Various wastes (biomass, sludge, and refuse derived fuel) were burned with coal in a circulating fluidised bed combustor. Conditions that prevent segregated combustion, reduce production of nitrogen oxides, and attain high combustion efficiency were studied. The effects of variations in air staging in the riser, mixing of air with volatiles, coal/biomass ratio, methods of feeding biomass, and temperature are described. 5 refs., 3 figs., 5 tabs.

  19. Callus Distraction Versus Single-Stage Lengthening With Bone Graft for Treatment of Brachymetatarsia: A Systematic Review.

    Science.gov (United States)

    Jones, Marc D; Pinegar, David M; Rincker, Sarah A

    2015-01-01

    Brachymetatarsia deformity is a cosmetically displeasing anomaly that can become physically symptomatic. The surgical techniques most commonly used to repair the anomaly include single-stage lengthening with a bone graft, callus distraction, or a combination of bone grafting and callus distraction. A systematic review of the published data was performed to compare the outcomes of these 3 surgical procedures. A total of 61 studies reporting the use of callus distraction or single-stage lengthening, or both, for the treatment of brachymetatarsia were included in the present review. The incidence of major postoperative complications after callus distraction, single-stage lengthening, and the combination procedure was 49 (12.62%), 13 (3.72%), and 3 (33.33%), respectively. The number of minor complications with callus distraction, single-stage lengthening, and the combination procedure was 152 (39.18%), 55 (15.76%), and 1 (11.11%); the mean percentage of the original length achieved was 37.36%, 25.98% and 36.00%; and the mean length achieved was 17.5, 13.2, and 14.0 mm, respectively. The healing index (mo/cm) and healing time was 2.31 and 16.04 weeks, 1.90 and 9.35 weeks, and 3.93 and 14.62 weeks for callus distraction, single-stage lengthening, and the combination procedure, respectively. Our findings indicate that the callus distraction technique is associated with greater length gained but results in greater complication rates and requires almost twice the time to heal. Single-stage lengthening with a bone graft was associated with fewer complications and faster healing times than callus distraction but with lesser gains in length. From the information reported in the studies we reviewed, the prevalence of bilateral brachymetatarsia was 44.52%, and the female/male ratio was 13.7:1. Both of these findings seem to contradict the usual data given (72% for bilateral brachymetatarsia and a female/male ratio of 25:1). Copyright © 2015 American College of Foot and

  20. Coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    ACR's Coal 1992, the successor to the ACR Coal Marketing Manual, contains a comprehensive set of data on many aspects of the Australian coal industry for several years leading up to 1992. Tables and text give details of coal production and consumption in New South Wales, Queensland and other states. Statistics of the Australian export industry are complemented by those of South Africa, USA, New Zealand, Canada, Indonesia, China, Colombia, Poland and ex-USSR. Also listed are prices of Australian coking and non-coking coal, Australian coal stocks (and those of other major countries), loading port capacities, freight rates and coal quality requirements (analysis of coals by brand and supplier). A listing of Australian coal exporting companies is provided. A description of the spot Coal Screen Dealing System is given. World hard coal imports are listed by country and coal imports by major Asian countries tabulated. A forecast of demand by coal type and country up to the year 2000 is included.

  1. Application of zeolite-based catalyst to hydrocracking of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, H.; Sato, T.; Yoshimura, Y.; Hinata, A.; Yoshitomi, S.; Castillo Mares, A.; Nishijima, A. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-06-01

    Y-zeolite supported catalysts were applied to the hydrocracking of coal-derived liquids. By the introduction of two-stage upgrading consisting of hydrotreating and hydrocracking, Wandoan coal-derived middle distillate was hydrocracked over Ni-Mo/Y-zeolite, producing a high gasoline fraction yield. Zeolite supported catalysts gave little hydrocracked compounds in the hydroprocessing of coal-derived heavy oils, even after hydrotreatment. The reaction inhibitors which seriously poison the active sites of zeolites were found to be small nitrogen-containing molecules. In the hydroprocessing of coal-derived heavy oils, zeolite supported catalysts were inferior to alumina supported catalysts. This is due to the high hydrocracking but low hydrogenation activity of zeolite supported catalysts. 22 refs., 5 figs., 11 tabs.

  2. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Science.gov (United States)

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes coal. The nanopore structure (coal. PMID:25126601

  3. Effect of burn-off on physical and chemical properties of coal char; Gas ka shinko ni tomonau sekitan char no tokusei henka

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.; Tamura, K.; Hashimoto, H.; Funaki, M.; Suzuki, T. [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-28

    For high-efficiency coal gasification, investigations were given on effect of coal chars with different conversion rates on coal gasification reactivity. In coal gasification, reactivity of char after pyrolysis governs the efficiency. The reference char conversion in CO2 gasification of coal (weight loss) changes linearly in the initial stage of the reaction, but the reactivity declines as the end point is approached. Char surface area is as large as 400 m{sup 2}/g in the initial stage with the conversion at 20%, but it decreases in the final stage. This phenomenon relates closely with changes in pore size and crystalline structure. Change in the Raman value R which shows incompleteness of char graphite structure and amorphous carbon ratio suggests that an active portion with high reactivity is oxidized preferentially, and a portion with low reactivity remains finally. Minerals in coal are known to accelerate the gasification. However, their catalytic effect is related with chemical forms, and complex as they may change into inactive sulfides and silicates under severe reaction conditions. Change in forms of calcium compounds may also be involved in decline of the reactivity in the latter stage. 8 refs., 4 figs.

  4. Composition and microstructure of a furnace ash deposit from a coal-fired utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Fessler, R R

    1980-07-01

    An exploratory study of the structure and composition of furnace-ash deposits was carried out using optical metallography, electron microprobe analysis, scanning electron microscopy, and energy-dispersive X-ray analysis. The results of these analyses were supplemented by studies of particulate melting temperature using hot-stage microscopy to measure melting temperature, and energy-dispersive X-ray analyses to measure composition of melted particles. It was found that the general structure of the ash deposit was a matrix of glassy, spherical particles having a wide range of composition in which unfused particles containing iron oxide and calcium oxide were dispersed. At the imprint of the tube surface a considerable concentration of calcium, sulphur and iron was found. Near the fused outer surface of the deposit, the glassy materials had melted into a porous, glassy slag containing spherical globules of iron oxide combined with other materials. There were no systematic compositional gradients from the tube surface to the fused outer layer except for the sulfur layer found only at the tube surface. However, there were significant differences in composition from particle to particle and these differences were similar to those found in the coal mineral matter as isolated by low-temperature ashing. Single particles of low-temperature ash were found having low fusion temperatures, in the range of fusion temperatures for particles in furnance has. Thus, the glassy spheres found in furnace deposits could originate from single coal particles, without the need of interactions among coal particles or ash particles.

  5. Development of coal partial hydropyrolysis process

    Energy Technology Data Exchange (ETDEWEB)

    Hideaki Yabe; Takafumi Kawamura; Kohichiroh Gotoh; Akemitsu Akimoto [Nippon Steel Corporation, Chiba (Japan)

    2005-07-01

    Coal partial hydropyrolysis process aims at co-production of high yield of light oil such as BTX and naphthalene and synthesis gas from a low rank coal under a mild hydropyrolysis condition. The characteristic of this process is in the two-staged entrained hydropyrolysis reactor composed of the reformer and gasifier. This reactor arrangement gives us high heat efficiency of this process. So far, in order to evaluate the process concept a small-scale basic experiment and a 1t/day process development unit study were carried out. The experimental results showed that coal volatiles were partially hydrogenated to increase the light oil and hydrocarbon gases at the condition of partial hydropyrolysis such as pressure of 2-3MPa, temperature of 700-900{sup o}C and hydrogen concentration of 30-50%. This process has a possibility of producing efficiently and economically liquid and gas products as chemicals and fuel for power generation. As a further development in the period of 2003 to 2008, a 20t/day pilot plant study named ECOPRO (efficient co-production with coal flash hydropyrolysis technology) has been started to establish the process technologies for commercialization. 12 refs., 6 figs., 3 tabs.

  6. Fill Rates of Single-Stage and Multistage Supply Systems

    OpenAIRE

    Matthew J. Sobel

    2004-01-01

    A supply system's fill rate is the fraction of demand that is met from on-hand inventory. This paper presents formulas for the fill rate of periodic review supply systems that use base-stock-level policies. The first part of the paper contains fill-rate formulas for a single-stage system and general distributions of demand. When demand is normally distributed, an exact expression uses only the standard normal distribution and density functions, and a good approximation uses only the standard ...

  7. Research on pyrolysis characteristics and kinetics of super fine and conventional pulverized coal

    International Nuclear Information System (INIS)

    Zhang Chaoqun; Jiang Xiumin; Wei Lihong; Wang Hui

    2007-01-01

    Based on isothermal thermogravimetric analysis (TGA) and kinetic equations, the optimization toolbox of MATLAB was applied to study the effects of particle size and heating rate on the pyrolysis characteristics and kinetics and to obtain the mechanism function and kinetic parameters of Yuanbaoshan coal at four different particle sizes and heating rates. The pyrolysis characteristics of the samples were analyzed using thermogravimetric (TG) curves and differential thermogravimetric (DTG) curves. The results show that the coal pyrolysis process is strongly affected by heating rate and particle size. As the heating rate increases, the temperature of volatile matter initiation increases, the total volatile matter evolved decreases and the DTG peak shifts toward higher temperature. As the particle size decreases, the temperature of volatile matter initiation of the coal sample decreases and the maximum rate of mass loss increases. In the pyrolysis of coal, the activation energies of the samples were found to increase with growing particle size and decreasing heating rate for both of the devolatilization temperature stages. In the lower temperature stage, the coal samples show a great difference in mechanism function at different particle sizes and heating rates

  8. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  9. Nanodiamond Formation at the Lithogenesis and Low-Stages of Regional Metamorphism

    Science.gov (United States)

    Simakov, S. K.; Melnik, N. N.; Vyalov, V. I.

    2018-02-01

    Samples of gilsonite from Adzharia, anthraxolite and graphite of coal from Taimyr, shungite from Karelia, and anthracite from Donbass are studied using Raman spectroscopy. Peaks at 1600 cm-1, indicating the presence of nanographite, are recorded in all samples. The anthracite sample from Donbass, 1330 cm-1, corresponds to the sp 3-line of carbon hybridization conforming to a nanodiamond. It is concluded that in nature diamonds can be formed at late stages of lithogenesis (catagensis, metagenesis), and for coals, it can occur at the zeolite stage of regional metamorphism of rocks, before the green schist stage.

  10. Mathematical methods in geometrization of coal field

    Science.gov (United States)

    Shurygin, D. N.; Kalinchenko, V. M.; Tkachev, V. A.; Tretyak, A. Ya

    2017-10-01

    In the work, the approach to increase overall performance of collieries on the basis of an increase in accuracy of geometrization of coal thicknesses is considered. The sequence of stages of mathematical modelling of spatial placing of indicators of a deposit taking into account allocation of homogeneous sites of thickness and an establishment of quantitative interrelations between mountain-geological indicators of coal layers is offered. As a uniform mathematical method for modelling of various interrelations, it is offered to use a method of the group accounting of arguments (MGUA), one of versions of the regressive analysis. This approach can find application during delimitation between geological homogeneous sites of coal thicknesses in the form of a linear discriminant function. By an example of division into districts of a mine field in the conditions of mine “Sadkinsky” (East Donbass), the use of the complex approach for forecasting of zones of the small amplitude of disturbance of a coal layer on the basis of the discriminant analysis and MGUA is shown.

  11. Influence of the microwave irradiation dewatering on the combustion characteristics of Chinese brown coals

    Science.gov (United States)

    Ge, Lichao; Feng, Hongcui; Xu, Chang; Zhang, Yanwei; Wang, Zhihua

    2018-02-01

    This study investigates the influence of microwave irradiation on coal composition, pore structure, coal rank, and combustion characteristics of typical brown coals in China. Results show that the upgrading process significantly decreased the inherent moisture, and increased calorific value and fixed carbon content. After upgrading, pore distribution extended to micropore region, oxygen functional groups were reduced and destroyed, and the apparent aromaticity increased suggesting an improvement in the coal rank. Based on thermogravimetric analysis, the combustion processes of upgraded coals were delayed toward the high temperature region, and the temperatures of ignition, peak and burnout increased. Based on the average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and a high rank coal. In ignition and burnout segments, the activation energy increased but exhibited a decrease in the combustion stage.

  12. Coal, an energy for the future: Energy transition - Promises difficult to be kept; Asset repurchasing - those who still believe in it; Technologies - in the pursuit of green coal; Interview 'Coal will still be here in 2040'

    International Nuclear Information System (INIS)

    Cognasse, Olivier; Delamarche, Myrtille; Dupin, Ludovic

    2017-01-01

    A first article evokes the recent evolution of world coal demand which is notably due to its ban in some European countries, and to its decrease in China for environmental reasons and in the USA for economic reasons (emergence of shale gas). However, the demand is still increasing in India, in South-East Asia and in Africa. The article also evokes the difficulties of banks and governments to implement their commitments to phase out coal, and outlines that some emerging countries are able to implement a better transition. As the main European energy utilities are committed in phasing out coal, a second article evokes various purchases of coal plants made by other actors (utilities or investors) in different countries. The third article proposes an overview of technological efforts and achievements to reduce CO_2 emissions by coal plants (super-critical and ultra-critical plants, projects of carbon capture and storage). The next article presents the case of the German RDK8 supercritical coal plant which, as other new German coal plants, implements new technologies to improve its efficiency. An article proposes an overview of the various carbon and particle emissions and water pollution associated with the different stages of coal use, from its extraction to its use in the most modern thermal plants. Finally, an expert comments in an interview the general trend of thermal coal, the shutting down of Chinese installations and the evolution of Chinese consumption, and expected evolutions in other Asian countries, in the USA and in Europe. She outlines that coal will still be present in 2040

  13. Structural insights from boron tribromide ether cleavage into lignites and low maturity coals from the New Zealand Coal Band

    DEFF Research Database (Denmark)

    Glombitza, Clemens; Mangelsdorf, Kai; Horsfield, Brian

    2011-01-01

    structure, boron tribromide (BBr3) ether cleavage was applied to a series of lignite and coal samples of different maturity (R0 0.27–0.80%) obtained from coal mines and natural outcrops from the North and South Island of New Zealand. Terminal ether-bound alcohols rapidly decrease during diagenesis and occur...... over geological time scales. Polyether compounds were detected with chain length up to five carbon atoms. After a small decrease during the diagenetic phase these compounds occur in relatively high concentrations, even in the main catagenetic stage. This suggests that these linkage structures represent...

  14. Growth of carbon nanofilaments on coal foams

    Energy Technology Data Exchange (ETDEWEB)

    Montserrat Calvo; Ana Arenillas; Roberto Garcia; Sabino R. Moinelo [Instituto Nacional del Carbon (INCAR), Oviedo (Spain)

    2009-01-15

    Nanofilamentous carbon was grown on a carbon foam by catalytic chemical vapour deposition (CVD) using the decomposition of ethylene/hydrogen mixtures over Ni. The carbon foam was obtained from a coal by a two-stage thermal process, with the first stage taking place at a temperature within the plastic region of the precursor coal. The extent of porosity and the pore size of the foam were mainly influenced by the pressure reached in the reactor during the first stage. In the CVD process, 700{sup o}C was the optimum temperature for obtaining good yields of nanofilaments. A low ethylene/hydrogen ratio (1/4) in the reactive gas gave rise to almost only short and thin carbon nanostructures. A higher proportion of C{sub 2}H{sub 4} (4/1, C{sub 2}H{sub 4}/H{sub 2}) gave better yields of nanofilaments, with good proportions of higher-length and higher-diameter (up to around 0.5 {mu}m) structures. Among the carbon forms produced, transmission electron microscopy revealed the predominance of fishbone-type nanofibres, with some bamboo-like nanotubes being also observed. 41 refs., 7 figs., 3 tabs.

  15. Quantitative characterization of pulverized coal and biomass–coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    International Nuclear Information System (INIS)

    Qian, Xiangchen; Wang, Chao; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao

    2012-01-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass–coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass–coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow. (paper)

  16. Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    Science.gov (United States)

    Qian, Xiangchen; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao; Wang, Chao

    2012-08-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass-coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass-coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow.

  17. The causes and consequences of blown-up coal dust

    International Nuclear Information System (INIS)

    Vrins, E.L.M.; Van Zuylen, E.J.

    1991-11-01

    The goal of the Dutch National Research Program Coal (NOK), which started in 1983, is to eliminate technical, economic and ecological objections, connected with the large-scale use of coal. The Blown-up Coal Dust program, which is completed in 1991, aimed at problems that arise, due to the dispersion of coal dust in the vicinity of coal storage and transshipment areas. The accumulated knowledge is categorized according to the route the dust itself follows, starting with activities that cause the dust and continuing up to the effects, of which nuisance in the neighborhood is the most important. The successive chapters are: Activities, Emission, Concentration, Deposition, Pollution and Nuisance and other effects. Inventories of available knowledge, models and measuring equipment have been carried out for each part. The models describe the connection between the various stages of the progress of the dust, from cause to consequence. Newly developed measuring equipment was tested in practice. Various analysis techniques were used and evaluated, such as gravimetric, chemical and optical analysis. A specific coal dust analysis technique is not available. 15 figs., 23 tabs., 1 appendix, 263 refs

  18. Risk factors for the undermined coal bed mining method

    Energy Technology Data Exchange (ETDEWEB)

    Arad, V. [Petrosani Univ., Petrosani (Romania). Dept. of Mining Engineering; Arad, S. [Petrosani Univ., Petrosani (Romania). Dept of Electrical Engineering

    2009-07-01

    The Romanian mining industry has been in a serious decline and is undergoing ample restructuring. Analyses of reliability and risk are most important during the early stages of a project in guiding the decision as to whether or not to proceed and in helping to establish design criteria. A technical accident occurred in 2008 at the Petrila coal mine involving an explosion during the exploitation of a coal seam. Over time a series of technical accidents, such as explosions and ignitions of methane gas, roof blowing phenomena or self-ignition of coal and hazard combustions have occurred. This paper presented an analysis of factors that led to this accident as well an analysis of factors related to the mining method. Specifically, the paper discussed the geomechanical characteristics of rocks and coal; the geodynamic phenomenon from working face 431; the spontaneous combustion phenomenon; gas accumulation; and the pressure and the height of the undermined coal bed. It was concluded that for the specific conditions encountered in Petrila colliery, the undermined bed height should be between 5 and 7 metres, depending on the geomechanic characteristics of coal and surrounding rocks. 8 refs., 1 tab., 3 figs.

  19. Effect of stress on the diffusion kinetics of methane during gas desorption in coal matrix under different equilibrium pressures

    Science.gov (United States)

    Li, Chengwu; Xue, Honglai; Hu, Po; Guan, Cheng; Liu, Wenbiao

    2018-06-01

    Stress has a significant influence on gas diffusion, which is a key factor for methane recovery in coal mines. In this study, a series of experiments were performed to investigate effect of stress on the gas diffusivity during desorption in tectonic coal. Additionally, the desorbed data were modeled using the unipore and bidisperse models. The results show that the bidisperse model better describes the diffusion kinetics than the unipore model in this study. Additionally, the modeling results using the bidisperse approach suggest that the stress impact on the macropore diffusivity is greater than the stress on the micropore diffusivity. Under the same equilibrium pressure, the diffusivity varies with stress according to a four-stage function, which shows an ‘M-shape’. As the equilibrium gas pressure increased from 0.6 to 1.7 MPa, the critical point between stage 2 and stage 3 and between stage 3 and stage 4 transferred to a low stress. This difference is attributed to the gas pressure effects on the physical and mechanical properties of coal. These observations indicate that both the stress and gas pressure can significantly impact gas diffusion and may have significant implications on methane recovery in coal mines.

  20. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  1. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  2. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  3. Second stage gasifier in staged gasification and integrated process

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  4. Coking coal outlook from a coal producer's perspective

    International Nuclear Information System (INIS)

    Thrasher, E.

    2008-01-01

    Australian mine production is recovering from massive flooding while Canadian coal shipments are limited by mine and rail capacity. Polish, Czech, and Russian coking coal shipments have been reduced and United States coking coal shipments are reaching their maximum capacity. On the demand side, the Chinese government has increased export taxes on metallurgical coal, coking coal, and thermal coal. Customers seem to be purchasing in waves and steel prices are declining. This presentation addressed the global outlook for coal as well as the challenges ahead in terms of supply and demand. Supply challenges include regulatory uncertainty; environmental permitting; labor; and geology of remaining reserves. Demand challenges include global economic uncertainty; foreign exchange values; the effect of customers making direct investments in mining operations; and freight rates. Consolidation of the coal industry continued and several examples were provided. The presentation also discussed other topics such as coking coal production issues; delayed mining permits and environmental issues; coking coal contract negotiations; and stock values of coking coal producers in the United States. It was concluded that consolidation will continue throughout the natural resource sector. tabs., figs

  5. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    Science.gov (United States)

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  6. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  7. Carbon foams from coals. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Montserrat Calvo; Roberto Garcia; Ana Arenillas; Isabel Suarez; Sabino R. Moinelo [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-12-01

    Carbon foams were obtained from a bituminous coal with good plasticity properties by a two-stage thermal process under different pressure and temperature conditions. The first stage was a controlled carbonisation treatment under pressure at 450 and 500{sup o}C. In the second stage the carbonisation product was baked at 1100{sup o}C. The foams produced display a macroporous texture with pressure and temperature determining the mean pore size and the amount of pores. The pressure increase reduces the pore size, while the increasing temperature increases the pore volume. 10 refs., 6 figs., 3 tabs.

  8. Further Investigations on Simultaneous Ultrasonic Coal Flotation

    Directory of Open Access Journals (Sweden)

    Safak Gokhan Ozkan

    2017-09-01

    Full Text Available This study investigates the flotation performance of a representative hard coal slime sample (d80 particle size of minus 0.2 mm obtained from the Prosper-Haniel coal preparation plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell refurbished from an old ultrasonic cleaning bath (2.5 L volume equipped with a single frequency (35 kHz and two different power levels (80–160 W and a sub-aeration-type flotation machine operating at a stable impeller speed (1200 rpm and air rate (2.5 L/min. The reagent combination for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages (40–300 g/t with controlling water temperature (20–25 °C at natural pH (6.5–7.0. The batch coal flotation results were analyzed by comparing the combustible recovery (% and separation efficiency (% values, taking mass yield and ash concentrations of the froths and tailings into account. It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the floated products with lower ash values than the conventional flotation despite using similar reagent dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

  9. Distilling shale and coal

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, H; Young, G

    1923-01-09

    In a process of recovering oil from shale or coal the material is ground and may be subjected to a cleaning or concentrating process of the kind described in Specification 153,663 after which it is distilled in a furnace as described in Specification 13,625/09 the sections of the furnace forming different temperature zones, and the rate of the passage of the material is regulated so that distillation is complete with respect to the temperature of each zone, the whole distillation being accomplished in successive stages. The vapors are taken off at each zone and superheated steam may be passed into the furnace at suitable points and the distillation terminated at any stage of the process.

  10. Theoretical evaluation of the efficiency of gas single-stage reciprocating compressor medium pressure units

    Science.gov (United States)

    Busarov, S. S.; Vasil'ev, V. K.; Busarov, I. S.; Titov, D. S.; Panin, Ju. N.

    2017-08-01

    Developed earlier and tested in such working fluid as air, the technology of calculating the operating processes of slow-speed long-stroke reciprocating stages let the authors to obtain successful results concerning compression of gases to medium pressures in one stage. In this connection, the question of the efficiency of the application of slow-speed long-stroke stages in various fields of technology and the national economy, where the working fluid is other gas or gas mixture, is topical. The article presents the results of the efficiency evaluation of single-stage compressor units on the basis of such stages for cases when ammonia, hydrogen, helium or propane-butane mixture is used as the working fluid.

  11. Aquatic ecosystems in the coal mining landscape of the upper Olifants River, and the way forward

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2014-03-01

    Full Text Available can provide guidance on managing water ecosystems in the future at various stages of mining operations, which include understanding the interface between water ecosystems and coal mining activities, assessing the likelihood of coal mining activities...

  12. Mass-transfer in extraction and reextraction as a single-stage process

    International Nuclear Information System (INIS)

    Rodriguez del Cerro, M.; Trilleros, J.A.; Otero de la Gandara, J.L.

    1987-01-01

    The rate of mass transfer between water and naftenic acid and threebutilphosphate in kerosen are studied in the two possibilities to or from water. The two insoluble phases are brought in to intimate contact with dispersed phase droplets, in a single-stage process. The evolution of the equilibrium distribution of solute is taken in consideration. (author)

  13. Millijoule Pulse Energy Second Harmonic Generation With Single-Stage Photonic Bandgap Rod Fiber Laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas Tanggaard

    2011-01-01

    In this paper, we demonstrate, for the first time, a single-stage Q-switched single-mode (SM) ytterbium-doped rod fiber laser delivering record breaking pulse energies at visible and UV light. We use a photonic bandgap rod fiber with a mode field diameter of 59μm based on a new distributed...

  14. Utilization of coal ash/coal combustion products for mine reclamation

    International Nuclear Information System (INIS)

    Dolence, R.C.; Giovannitti, E.

    1997-01-01

    Society's demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations

  15. Speciation of arsenic in Canadian feed-coal and combustion by-products

    Energy Technology Data Exchange (ETDEWEB)

    F. Goodarzi; F.E. Huggins [Natural Resourses Canada (Canada). Geological Survey of Canada-Calgary Division

    2003-07-01

    It is important to determine the oxidation state of arsenic in coal and coal combustion products, as this is generally the single most critical factor determining the toxicity of this element towards humans. However, the same factor is also important for understanding the volatility and reactions of arsenic forms in combustion and their leachability and mobility in ash-disposal situations. In this work, XAFS spectroscopy has been used to examine the speciation of arsenic in Canadian subbituminous and bituminous feed-coals and their combustion products. The concentration of arsenic in the feed-coals varied from < 2 ppm for subbituminous to 54 ppm for bituminous coals. Significant differences were noted in how arsenic occurs in subbituminous and bituminous coals, but, although such differences might influence the initial volatility and reactions of arsenic during coal combustion, arsenic is found almost entirely in the less toxic As{sup 5+} oxidation state in combustion products from both types of coal. (Abstract only)

  16. A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations

    Science.gov (United States)

    Christlieb, Andrew J.; Feng, Xiao; Seal, David C.; Tang, Qi

    2016-07-01

    We propose a high-order finite difference weighted ENO (WENO) method for the ideal magnetohydrodynamics (MHD) equations. The proposed method is single-stage (i.e., it has no internal stages to store), single-step (i.e., it has no time history that needs to be stored), maintains a discrete divergence-free condition on the magnetic field, and has the capacity to preserve the positivity of the density and pressure. To accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the finite difference WENO method proposed in Christlieb et al. (2015) [23], where the focus is on a high-order discretization of the fluxes (as opposed to the conserved variables). We use the version where fluxes are expanded to third-order accuracy in time, and for the fluid variables space is discretized using the classical fifth-order finite difference WENO discretization. We use constrained transport in order to obtain divergence-free magnetic fields, which means that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation for the magnetic field) and magnetic potential equations alongside each other, and set the magnetic field to be the (discrete) curl of the magnetic potential after each time step. In this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of the magnetic potential, where we start with technology used for Hamilton-Jacobi equations in order to construct a non-oscillatory magnetic field. The end result is an algorithm that is similar to our previous work Christlieb et al. (2014) [8], but this time the time stepping is replaced through a Taylor method with the addition of a positivity-preserving limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter that considers a linear combination of high and low-order numerical fluxes. The choice of the free

  17. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  18. The effects of non-controllable factors in efficiency evaluation of Turkish Coal Enterprises

    Energy Technology Data Exchange (ETDEWEB)

    Kasap, Y.; Konuk, A.; Gasimov, R.N.; Kilic, A.M.

    2007-12-15

    In this study, which aims to examine the effects of non-controllable factors as well as input parameters on the efficiency performances of Turkish Coal Mine Enterprises, eight enterprises within Turkish Coal Enterprises (TCE) were examined. In order to keep the study as up-to-date as possible, data from the latest year (2005) was examined. For each enterprise, the outputs consisted of the amount of the production sold and the total income gained in the corresponding year; the controllable inputs consisted of investment expenditure, overburden stripping and number of staff; and non-controllable inputs consisted of total reserve and low heat values. In order to measure the effects of non-controllable inputs on enterprise efficiency, three-stage modified data envelopment analysis (DEA) model was employed. In the first stage, information concerning the efficiency of the enterprises was gained by using only the controllable inputs and outputs. In the second stage, the effects of non-controllable inputs on controllable inputs in inefficient enterprises were examined. Lastly in the third stage, the new efficiency values were calculated by means of DEA where controllable inputs and outputs modified according to non-controllable inputs were used. Considering the non-controllable inputs as a result of the analyses conducted with three-stage DEA model, it was determined that the average efficiency value of Turkish Coal Enterprises increased from 87.5% to 92.3%.

  19. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  20. Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.

    Science.gov (United States)

    Rice, D.D.; Clayton, J.L.; Pawlewicz, M.J.

    1989-01-01

    .5 ppt), are chemically wetter (C1/C1-5 values range from 0.85 to 0.95), and contain less CO2 (< 2%). These gases are interpreted to have been derived from type III kerogen dispersed in marine shales of the underlying Lewis Shale and nonmarine shales of the Fruitland Formation. In the underlying Upper Cretaceous Dakota Sandstone and Tocito Sandstone Lentil of the Mancos Shale, another gas type is produced. This gas is associated with oil at intermediate stages of thermal maturity and is isotopically lighter and chemically wetter at the intermediate stage of thermal maturity as compared with gases derived from dispersed type III kerogen and coal; this gas type is interpreted to have been generated from type II kerogen. Organic matter contained in coal beds and carbonaceous shales of the Fruitland Formation has hydrogen indexes from Rock-Eval pyrolysis between 100 and 350, and atomic H:C ratios between 0.8 and 1.2. Oxygen indexes and atomic O:C values are less than 24 and 0.3, respectively. Extractable hydrocarbon yields are as high as 7,000 ppm. These values indicate that the coal beds and carbonaceous shales have good potential for the generation of liquid hydrocarbons. Voids in the coal filled with a fluorescent material that is probably bitumen is evidence that liquid hydrocarbon generation has taken place. Preliminary oil-source rock correlations based on gas chromatography and stable carbon isotope ratios of C15+ hydrocarbons indicate that the coals and (or) carbonaceous shales in the Fruitland Formation may be the source of minor amounts of condensate produced from the coal beds at relatively low levelsof thermal maturity (Rm=0.7). ?? 1989.

  1. Automatic crack detection method for loaded coal in vibration failure process.

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    Full Text Available In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM. A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.

  2. Coal briquetting at the presence of humates as the binding substance

    Directory of Open Access Journals (Sweden)

    Zh. Arziev

    2013-09-01

    Full Text Available The results of coal briquetting at the presence of humates derived from coal at the stage of its chemical preparation by the extraction method are resulted in the paper. The conditions of briquetting and strength characteristics of the received briquettes are optimized. It is demonstrated that briquettes with the durability reaching 3 MPa can be derived from a coal fines using sodium, ammonium and silicate humates as binding substance. Water solutions of ammonium, sodium and silicate humates with concentration from 0,1-2% can be recommended for practical purposes. It is recommended to expose coal briquettes on a basis of ammonium humate to the thermal treatment at temperature 200°C as necessary of long storage (more than a year. The technological scheme of briquetting and the working project of creation of briquette factory with productivity of 40 000 tons of coal per year are developed.

  3. Analysis of radionuclides in airborne effluents from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants.

  4. Analysis of radionuclides in airborne effluents from coal-fired power plants

    International Nuclear Information System (INIS)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants. (orig.)

  5. Coal summit II

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Various papers were presented on world coal trade. Papers include: Poland as a producer and exporter of coal; the dynamics of world coal trade; Cerrejon coal production perspectives; present state of the Australian coal industry; present state of the EC coal market and future prospects; prospects of US coal exports to Europe; forecast of Italian coal supply and demand through 1990; statistics from coal transportation outlook; status of world coal ports.

  6. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  7. Single-section mines carve out a market

    International Nuclear Information System (INIS)

    Sanda, A.P.

    1991-01-01

    In the Appalachian states of Pennsylvania, West Virginia, Kentucky and Virginia there are large operations whose complexes are an agglomeration of one and two-section mines; large operators whose own mines are augmented by small contractors; small contractors whose one-section mines collectively make them large operators within this genre; and independent, sole-owner operators of single-contract mines. Finally, there is the totally independent operator who negotiates his own leases, mines his own coal and searches for his own markets. The article profiles 6 single section mines. Mines were chosen on criteria including: the equipment in use; obtaining a representive sample of the states with many small coal mines particularly West Virginia, Virginia and Kentucky; the divergence of operators and situations. The mines chosen were: Elk Run; Kinney Branch Coal Co. No. 5 mine; A ampersand G No. 1 mine; Dotson and Rife Coal Co.; Bullion Hollow Coal Co.; and Bruce Coal. The article includes production rates and mine specifications. 1 tab

  8. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies

    Science.gov (United States)

    Adeosun, Adewale; Huang, Qian; Li, Tianxiang; Gopan, Akshay; Wang, Xuebin; Li, Shuiqing; Axelbaum, Richard L.

    2018-02-01

    In pulverized coal burners, coal particles usually transition from a locally reducing environment to an oxidizing environment. The locally reducing environment in the near-burner region is due to a dense region of coal particles undergoing devolatilization. Following this region, the particles move into an oxidizing environment. This "reducing-to-oxidizing" transition can influence combustion processes such as ignition, particulate formation, and char burnout. To understand these processes at a fundamental level, a system is required that mimics such a transition. Hence, we have developed and characterized a two-stage Hencken burner to evaluate the effect of the reducing-to-oxidizing transition and particle-to-particle interaction (which characterizes dense region of coal particles) on ignition and ultrafine aerosol formation. The two-stage Hencken burner allows coal particles to experience a reducing environment followed by a transition to an oxidizing environment. This work presents the results of the design and characterization of the new two-stage Hencken burner and its new coal feeder. In a unique approach to the operation of the flat-flame of the Hencken burner, the flame configurations are operated as either a normal flame or inverse flame. Gas temperatures and oxygen concentrations for the Hencken burner are measured in reducing-to-oxidizing and oxidizing environments. The results show that stable flames with well-controlled conditions, relatively uniform temperatures, and species concentrations can be achieved in both flame configurations. This new Hencken burner provides an effective system for evaluating the effect of the reducing-to-oxidizing transition and particle-to-particle interaction on early-stage processes of coal combustion such as ignition and ultrafine particle formation.

  9. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation in surgical treatment for single-segment lumbar spinal tuberculosis.

    Science.gov (United States)

    Zeng, Hao; Wang, Xiyang; Zhang, Penghui; Peng, Wei; Liu, Zheng; Zhang, Yupeng

    2015-01-01

    The aim of this study is to determine the feasibility and efficacy of surgical management of single-segment lumbar spinal tuberculosis (TB) by using single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. Seventeen cases of single-segment lumbar TB were treated with single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation. The mean follow-up was 36.9 months (range: 24-62 months). The kyphotic angle ranged from 15.2-35.1° preoperatively, with an average measurement of 27.8°. The American Spinal Injury Association (ASIA) score system was used to evaluate the neurological deficits and erythrocyte sedimentation rate (ESR) used to judge the activity of TB. Spinal TB was completely cured in all 17 patients. There was no recurrent TB infection. The postoperative kyphotic angle was 6.6-10.2°, 8.1° in average, and there was no significant loss of the correction at final follow-up. Solid fusion was achieved in all cases. Neurological condition in all patients was improved after surgery. Single-stage posterior transforaminal lumbar interbody fusion, debridement, limited decompression, 3-column reconstruction, and posterior instrumentation can be a feasible and effective method the in treatment of single-segment lumbar spinal TB.

  10. CO2 Emission Factors for Coals

    Directory of Open Access Journals (Sweden)

    P. Orlović-Leko

    2015-03-01

    Full Text Available Emission factors are used in greenhouse gas inventories to estimate emissions from coal combustion. In the absence of direct measures, emissions factors are frequently used as a quick, low cost way to estimate emissions values. Coal combustion has been a major contributor to the CO2 flux into the atmosphere. Nearly all of the fuel carbon (99 % in coal is converted to CO2 during the combustion process. The carbon content is the most important coal parameter which is the measure of the degree of coalification (coal rank. Coalification is the alteration of vegetation to form peat, succeeded by the transformation of peat through lignite, sub-bituminous, bituminous to anthracite coal. During the geochemical or metamorphic stage, the progressive changes that occur within the coal are an increase in the carbon content and a decrease in the hydrogen and oxygen content resulting in a loss of volatiles. Heterogeneous composition of coal causes variation in CO2 emission from different coals. The IPCC (Intergovernmental Panel on Climate Change has produced guidelines on how to produce emission inventories which includes emission factors. Although 2006 IPCC Guidelines provided the default values specified according to the rank of the coal, the application of country-specific emission factors was recommended when estimating the national greenhouse gas emissions. This paper discusses the differences between country-specific emission factors and default IPCC CO2 emission factors, EF(CO2, for coals. Also, this study estimated EF(CO2 for two different types of coals and peat from B&H, on the basis fuel analyses. Carbon emission factors for coal mainly depend on the carbon content of the fuel and vary with both rank and geographic origin, which supports the idea of provincial variation of carbon emission factors. Also, various other factors, such as content of sulphur, minerals and macerals play an important role and influence EF(CO2 from coal. Carbonate minerals

  11. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    Science.gov (United States)

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186

  12. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    Directory of Open Access Journals (Sweden)

    Tongbin Zhao

    2014-01-01

    Full Text Available Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  13. Deformation Failure Characteristics of Coal Body and Mining Induced Stress Evolution Law

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2014-01-01

    Full Text Available The results of the interaction between coal failure and mining pressure field evolution during mining are presented. Not only the mechanical model of stope and its relative structure division, but also the failure and behavior characteristic of coal body under different mining stages are built and demonstrated. Namely, the breaking arch and stress arch which influence the mining area are quantified calculated. A systematic method of stress field distribution is worked out. All this indicates that the pore distribution of coal body with different compressed volume has fractal character; it appears to be the linear relationship between propagation range of internal stress field and compressed volume of coal body and nonlinear relationship between the range of outburst coal mass and the number of pores which is influenced by mining pressure. The results provide theory reference for the research on the range of mining-induced stress and broken coal wall.

  14. Developmental effects of aerosols and coal burning particles in zebrafish embryos

    International Nuclear Information System (INIS)

    Olivares, Alba; Drooge, Barend L. van; Casado, Marta; Prats, Eva; Serra, Montserrat; Ven, Leo T. van der; Kamstra, Jorke H.; Hamers, Timo; Hermsen, Sanne; Grimalt, Joan O.; Piña, Benjamin

    2013-01-01

    Embryo toxicity of particles generated by combustion processes is of special concern for human health. A significant part of these toxic effects is linked to the binding of some pollutants (like polycyclic aromatic hydrocarbons or PAHs) to the Aryl hydrocarbon Receptor (AhR) and the activation of target genes, like the cytochrome P4501A. This activity was analyzed for ambient air and coal-combustion particle extracts in zebrafish embryos (the cyp1aDarT assay) and in two single-cell bioassays: the yeast-based YCM-RYA and the DR-luc (rat cells) assay. Observed AhR ligand activity of samples generally correlated to the predicted toxic effect according to their PAH composition, except for one of the coal combustion samples with an anomalously high activity in the cyp1aDarT assay. This sample induced deformities in zebrafish embryos. We concluded that the combination of morphological and molecular assays may detect embryonic toxic effects that cannot be predicted from chemical analyses or single-cell bioassays. -- Highlights: ► Samples from air particulated matter and coal waste gob showed embryo toxicity in zebrafish. ► PAHs composition of samples does not adequately predict the toxic effects in zebrafish. ► Active coal waste gob samples show maximal AhR-ligand activity and induce deformations in zebrafish embryos. -- Aerosols and coal burning particles showed a strong developmental toxicity in zebrafish, in a degree that cannot be directly predicted from chemical analyses or single-cell bioassays

  15. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals

    Science.gov (United States)

    Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan

    2014-06-01

    Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of

  16. Underground coal mining technology - the future

    Energy Technology Data Exchange (ETDEWEB)

    Lama, R P [Kembla Coal and Coke Pty Limited, Wollongong, NSW (Australia)

    1989-01-01

    Discusses development of underground coal mining in Australia in the last four decades. The following aspects are reviewed: technology for underground mining (longwall mining, unidirectional cutting, bidirectional cutting, operation of more than one shearer on a working face, optimum dimensions of longwall blocks), longwall productivity (productivity increase will depend on increasing the availability factor of equipment, reducing failures due to human errors, organizational models, improving on-site decision making, improving monitoring, maintenance, planning and scheduling, concept of 'Transparent Mine'), roadway development systems (types of heading machines, standard systems for mine drivage and roof bolting and their productivity), size of coal mines, man and material transport systems (20,000-30,000 t/d from a single longwall face, mine shafts with a diameter 9-10 m), mine layout design (layout of longwall blocks, main intakes and returns situated in rock layers), mine environmental systems (ventilation systems, gas control), management, training and interpersonal relationships. Future coal mines will be developed with an integral capacity of 8-10 Mt/a from a single longwall operation with main development arteries placed in rocks. Development of gate roadways will require novel solutions with continuous cutting, loading and bolting. Information technology, with the concept of 'transparent mine', will form the backbone of decision making.

  17. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  18. Experimental study of rapid brown coal pyrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Lin; Sun, Shaozeng; Meng, Shun; Meng, Xianyu; Guo, Yangzhou [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.

    2013-07-01

    Rapid coal pyrolysis is a very important step in the early stage of combustion. Rapid pyrolysis experiments of a brown coal at high temperature have been studied on a laminar drop tube furnace. The volatile mass release measured in this study is high for low rank coal. The activation energy and pre-exponential factor of pyrolysis are 19901.22 kJ/mol and 102.71, respectively. The nitrogen distribution between volatile and char is 0.54. With the increase of temperature, the yields of NH{sub 3} decreases, while those of HCN increases, leading the value of HCN/NH{sub 3} to become larger. At high temperature, the main nitrogen- containing species of pyrolysis in volatile is HCN.

  19. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million. Construction for the demonstration project was started in July 1993. Pre-operational tests were initiated in August 1995, and construction was completed in November 1995. Commercial operation began in November 1995, and the demonstration period was completed in December

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  1. Adaptive kanban control mechanism for a single-stage hybrid system

    Science.gov (United States)

    Korugan, Aybek; Gupta, Surendra M.

    2002-02-01

    In this paper, we consider a hybrid manufacturing system with two discrete production lines. Here the output of either production line can satisfy the demand for the same type of product without any penalties. The interarrival times for demand occurrences and service completions are exponentially distributed i.i.d. variables. In order to control this type of manufacturing system we suggest a single stage pull type control mechanism with adaptive kanbans and state independent routing of the production information.

  2. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Zamansky, Vladimir M.; Lissianski, Vitali V.

    2001-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO x and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO x control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO x reduction in basic coal reburning depends on process conditions, initial NO x and coal type. Up to 60% NO x reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO x reduction in reburning by coal gasification products. Modeling predicted that composition of coal

  3. Wet treatment of low-quality coal; Tratamiento de Carbones de Baja Calidad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This project was aimed at the theoretical investigation of the wet oxidation destruction process of low-quality coal under occurrence of oxygen, which could permit the use of slack with a high ratio of inert materials with the above-mentioned technology. This first stage of the project is posed as the theoretical stage in which the proposed patterns are examined and then the pattern which is considered the most profitable one of all the patterns examined up to now is selected. Then the computer simulation was carried out using the process simulator ASPEN PLUS which is used in order to simulate all the stages of the life-cycle of a treatment plant. Afterwards the kinetic equation for the oxidation process of low-quality coal was examined. It can be deduced from the theoretical studies carried out that the technology of wet oxidation can be applied to the treatment of slacks. At a second stage of the project this technology will be examined at an experimental level. (Author)

  4. Planning framework for the accommodation for coal development by Wollongong City

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The major objectives of this study are to determine the significance of the coal mining industry for Wollongong City, and to provide Wollongong City with a framework for accommodating development related to the coal industry. In this first stage of the study, the significance of the coal industry to Wollongong City is broadly analysed. The results of this examination illustrate that the coal industry has a significant impact on the National, State and Local economies. Transportation has played a major role in facilitating or inhibiting the development of the coal industry over time. It is expected that transportation inputs will continue to be a major factor in the economic development of the coal, and iron and steel industries. In this context, existing transportation conditions in the study area are examined and future needs estimated. Part one therefore provides the basis for part two which examines formulation of a short term coal haulage strategy, environmental impact assessment of short and long term strategies including description of the present environment affected by the strategies, identification of environmental safeguards to be incorporated into the strategies, sources of finance, and formulation of a plan to provide council with a comprehensive approach in dealing with impacts of coal transport in a time framework.

  5. Participatory Communication and Sustainability Development: Case Study of Coal Mining Environment in East Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Inda Fitryarini

    2018-03-01

    Full Text Available This essay tries to analyze about participatory communication, especially those currently practiced in coal mining communities in Samarinda, East Kalimantan Province, Indonesia. In addition, specific practices to facilitate participatory communication are identified and discussed. This essay is based on the author's research on environmental conflicts in coal mining areas. The conclusion of this essay is that community participatory communication in coal mining industry area is still at a pseudo participatory stage.

  6. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  7. New current control based MPPT technique for single stage grid connected PV systems

    International Nuclear Information System (INIS)

    Jain, Sachin; Agarwal, Vivek

    2007-01-01

    This paper presents a new maximum power point tracking algorithm based on current control for a single stage grid connected photovoltaic system. The main advantage of this algorithm comes from its ability to predict the approximate amplitude of the reference current waveform or power that can be derived from the PV array with the help of an intermediate variable β. A variable step size for the change in reference amplitude during initial tracking helps in fast tracking. It is observed that if the reference current amplitude is greater than the array capacity, the system gets unstable (i.e. moves into the positive slope region of the p-v characteristics of the array). The proposed algorithm prevents the PV system from entering the positive slope region of the p-v characteristics. It is also capable of restoring stability if the system goes unstable due to a sudden environmental change. The proposed algorithm has been tested on a new single stage grid connected PV configuration recently developed by the authors to feed sinusoidal current into the grid. The system is operated in a continuous conduction mode to realize advantages such as low device current stress, high efficiency and low EMI. A fast MPPT tracker with single stage inverter topology operating in CCM makes the overall system highly efficient. Specific cases of the system, operating in just discontinuous current mode and discontinuous current mode and their relative merits and demerits are also discussed

  8. Species- and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Roe, J.H.; Hopkins, W.A.; Jackson, B.P. [University of Georgia, Aiken, SC (US)

    2005-07-01

    Information on species- and stage-specific patterns of contaminant accumulation is generally lacking for amphibians, yet such information could provide valuable knowledge on how amphibians interact with contaminants. We assessed concentrations of As, Cd, Cu, Ni, Pb, Se, Sr, and Zn in whole bodies of larval, recently metamorphosed, and adult life stages in Bufo terrestris and Rana sphenocephala from a site that currently receives coal combustion waste (CCW) discharge, a site where CCW was formerly discharged that has undergone natural attenuation for 30 years, and a nearby reference site. For the majority of elements (As, Cd, Cu, Ni, Pb, Zn), concentrations were highest in larvae, but Se and Sr concentrations remained elevated in later life stages, likely because these elements are S and Ca analogs, respectively, and are thus retained throughout structural changes during metamorphosis. Element concentrations were generally higher in B. terrestris than in R. sphenocephala. Concentrations of As, Se, and Sr were up to 11-35 times higher in metamorphs emigrating from CCW-polluted wetlands compared to unpolluted wetlands, suggesting metamorphosed amphibians can transport trace elements from aquatic disposal basins to nearby uncontaminated terrestrial habitats. In addition, anurans utilizing naturally revegetated sites up to 30 years after CCW disposal ceases are exposed to trace elements, although to a lesser degree than sites where CCW is currently discharged.

  9. Compressed gas combined single- and two-stage light-gas gun

    Science.gov (United States)

    Lamberson, L. E.; Boettcher, P. A.

    2018-02-01

    With more than 1 trillion artificial objects smaller than 1 μm in low and geostationary Earth orbit, space assets are subject to the constant threat of space debris impact. These collisions occur at hypervelocity or speeds greater than 3 km/s. In order to characterize material behavior under this extreme event as well as study next-generation materials for space exploration, this paper presents a unique two-stage light-gas gun capable of replicating hypervelocity impacts. While a limited number of these types of facilities exist, they typically are extremely large and can be costly and dangerous to operate. The design presented in this paper is novel in two distinct ways. First, it does not use a form of combustion in the first stage. The projectile is accelerated from a pressure differential using air and inert gases (or purely inert gases), firing a projectile in a nominal range of 1-4 km/s. Second, the design is modular in that the first stage sits on a track sled and can be pulled back and used in itself to study lower speed impacts without any further modifications, with the first stage piston as the impactor. The modularity of the instrument allows the ability to investigate three orders of magnitude of impact velocities or between 101 and 103 m/s in a single, relatively small, cost effective instrument.

  10. The Incidence of Complications in Single-stage Endoscopic Stone Removal for Patients with Common Bile Duct Stones: A Propensity Score Analysis.

    Science.gov (United States)

    Saito, Hirokazu; Kadono, Yoshihiro; Kamikawa, Kentaro; Urata, Atsushi; Imamura, Haruo; Matsushita, Ikuo; Kakuma, Tatsuyuki; Tada, Shuji

    2018-02-15

    Objective Single-stage endoscopic stone removal for choledocholithiasis is an advantageous approach because it is associated with a shorter hospital stay; however, few studies have reported the incidence of complications related to this procedure in detail. The aim of this study was to examine the incidence of complications and efficacy of this procedure. Methods This retrospective study investigated the incidence of complications in 345 patients with naive papilla who underwent therapeutic endoscopic retrograde cholangiopancreatography (ERCP) for choledocholithiasis at three institutions between April 2014 and March 2016 by a propensity score analysis. The efficacy of single-stage endoscopic stone removal was assessed based on a hospital stay of within 7 days and the number of ERCP attempts. Results Among 114 patients who underwent single-stage endoscopic stone removal, 15 patients (13.2%) experienced complications. Among the remaining 231 patients in the two-stage endoscopic stone removal group, complications were observed in 17 patients (7.4%). The propensity score analysis, which was adjusted for confounding factors, revealed that single-stage endoscopic stone removal was not a significant risk factor for complications (p=0.52). In patients in whom >10 min was required for deep cannulation, single-stage endoscopic stone removal was not a significant risk factor for complications in the propensity score analysis (p=0.37). In the single-stage group, the proportion of patients with a hospital stay of within 7 days was significantly higher and the number of ERCP attempts was significantly lower in comparison to the two-stage group (p <0.0001 and <0.0001, respectively). Conclusion Single-stage endoscopic stone removal did not increase the incidence of complications associated with ERCP and was effective for reducing the hospital stay and the number of ERCP attempts.

  11. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  12. Fiscal 1995 coal production/utilization technology promotion subsidy/clean coal technology promotion business/regional model survey. Study report on `Environmental load reduction measures: feasibility study of a coal utilization eco/energy supply system` (interim report); 1995 nendo sekitan seisan riyo gijutsu shinkohi hojokin clean coal technology suishin jigyo chiiki model chosa. `Kankyo fuka teigen taisaku: sekitan riyo eko energy kyokyu system no kanosei chosa` chosa hokokusho (chukan hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The coal utilization is expected to make substantial growth according to the long-term energy supply/demand plan. To further expand the future coal utilization, however, it is indispensable to reduce environmental loads in its total use with other energies, based on the coal use. In this survey, a regional model survey was conducted as environmental load reduction measures using highly cleaned coal which were taken in fiscal 1993 and 1994. Concretely, a model system was assumed which combined facilities for mixed combustion with coal and other energy (hull, bagasse, waste, etc.) and facilities for effective use of burned ash, and potential reduction in environmental loads of the model system was studied. The technology of mixed combustion between coal and other energy is still in a developmental stage with no novelties in the country. Therefore, the mixed combustion technology between coal and other energy is an important field which is very useful for the future energy supply/demand and environmental issues. 34 refs., 27 figs., 48 tabs.

  13. A tetrad of bicuspid aortic valve association: A single-stage repair

    Science.gov (United States)

    Barik, Ramachandra; Patnaik, A. N.; Mishra, Ramesh C.; Kumari, N. Rama; Gulati, A. S.

    2012-01-01

    We report a 27 years old male who presented with a combination of both congenital and acquired cardiac defects. This syndrome complex includes congenital bicuspid aortic valve, Seller's grade II aortic regurgitation, juxta- subclavian coarctation, stenosis of ostium of left subclavian artery and ruptured sinus of Valsalva aneurysm without any evidence of infective endocarditis. This type of constellation is extremely rare. Neither coarctation of aorta with left subclavian artery stenosis nor the rupture of sinus Valsalva had a favorable pathology for percutaneus intervention. Taking account into morbidity associated with repeated surgery and anesthesia patient underwent a single stage surgical repair of both the defects by two surgical incisions. The approaches include median sternotomy for rupture of sinus of Valsalva and lateral thoracotomy for coarctation with left subclavian artery stenosis. The surgery was uneventful. After three months follow up echocardiography showed mild residual gradient across the repaired coarctation segment, mild aortic regurgitation and no residual left to right shunt. This patient is under follow up. This is an extremely rare case of single stage successful repair of coarctation and rupture of sinus of Valsalva associated with congenital bicuspid aortic valve. PMID:22629035

  14. Large Conization and Laparoendoscopic Single-Port Pelvic Lymphadenectomy in Early-Stage Cervical Cancer for Fertility Preservation

    Directory of Open Access Journals (Sweden)

    Polat Dursun

    2013-01-01

    Full Text Available Fertility preservation in early-stage cervical cancer is a hot topic in gynecologic oncology. Although radical vaginal trachelectomy (RVT is suggested as a fertility preserving approach, there are some serious concerns like cervical stenosis, second trimester loss, preterm delivery in survivors, and lack of residual tumor in the majority of the surgical specimens. Therefore, less radical surgical operations have been proposed in early-stage cervical carcinomas. On the other hand, single-incision laparoscopic surgery (SILS is an evolving endoscopic approach for minimal access surgery. In this report, we present a case with early-stage cervical cancer who wishes to preserve fertility. We successfully performed single-port pelvic lymphadenectomy and large conization to preserve fertility potential of the patient. We think that combination of less radical approach like conization and single-port pelvic lymphadenectomy might be less minimally invasive and is still an effective surgical approach in well-selected cases with cervical carcinomas. Incorporation of single-port laparoscopy into the minimally invasive fertility sparing management of the cervical cancer will improve patients outcome with less complications and better cosmesis. Further studies are needed to reach a clear conclusion.

  15. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  16. Bulk analysis of coal

    International Nuclear Information System (INIS)

    Sowerby, B.D.

    1982-01-01

    Nuclear techniques used in the coal industry to determine specific energy, ash and moisture are outlined. Ash analysis by radioisotope X-ray techniques include a single X-ray measurement using a transmission or backscatter geometry and techniques with compensation for iron variations. Neutron techniques can be used to measure the concentration of some specific elements in coal. The measurement of specific energy, ash and moisture then depends on the correlation of the particular parameter with the measured elemental composition. Carbon can be determined by a combination of a measurement of 4.43 MeV 12 C gamma-rays from neutron inelastic scattering with a separate 60 Co gamma-ray scattering measurement. Sulphur meters are based on the measurement of 5.42 MeV neutron capture of gamma rays

  17. Coal tar phototherapy for psoriasis reevaluated: erythemogenic versus suberythemogenic ultraviolet with a tar extract in oil and crude coal tar

    International Nuclear Information System (INIS)

    Lowe, N.J.; Wortzman, M.S.; Breeding, J.; Koudsi, H.; Taylor, L.

    1983-01-01

    Recent studies have questioned the therapeutic value of coal tar versus ultraviolet (UV) radiation and their relative necessity in phototherapy for psoriasis. In this investigation, different aspects of tar phototherapy have been studied in single-blind bilateral paired comparison studies. The effects of 1% crude coal tar were compared with those of petrolatum in conjunction with erythemogenic and suberythemogenic doses of ultraviolet light (UVB) using a FS72 sunlamp tubed cabinet. Crude coal tar was clinically superior to petrolatum with suberythemogenic ultraviolet. With the erythemogenic UVB, petrolatum was equal in efficacy to crude coal tar. Suberythemogenic UVB was also used adjunctively to compare the effects of a 5% concentration of a tar extract in an oil base to 5% crude coal tar in petrolatum or the oil base without tar. The tar extract in oil plus suberythemogenic UVB produced significantly more rapid improvement than the oil base plus UVB. The direct bilateral comparison of equal concentrations of tar extract in oil base versus crude coal tar in petrolatum in a suberythemogenic UV photo regimen revealed no statistical differences between treatments. In a study comparing tar extract in oil and the oil base without ultraviolet radiation, the tar extract in oil side responded more rapidly

  18. Influence of thermoplastic properties on coking pressure generation: Part 1 - A study of single coals of various rank

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; Merrick R. Mahoney; Karen M. Steel [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2010-07-15

    In this study a number of high coking pressure coals with different fluidities were evaluated alongside a number of low pressure coals also with differing fluidities. This was to establish rheological parameters within which a coal may be considered potentially dangerous with regards to coking pressure. The results have confirmed and elaborated on previous findings which show that parallel plate displacement ({Delta}L) and axial force profiles can be used to distinguish between high and low pressure coals, with peak values indicating cell rupture and subsequent pore network formation. This is thought to correspond with plastic layer compaction in the coke oven. For low pressure coals pore coalescence occurs quite early in the softening process when viscosity/elasticity are decreasing and consequently a large degree of contraction/collapse is observed. For higher pressure coals the process is delayed since pore development and consequently wall thinning progress at a slower rate. If or when a pore network is established, a lower degree of contraction/collapse is observed because the event occurs closer to resolidification, where viscosity and elasticity are increasing. For the higher fluidity, high coking pressure coals, a greater degree of swelling is observed prior to cell rupture, and this is considered to be the primary reason for the high coking pressure observed with these coals. An additional consequence of these events is that high pressure coals are likely to contain a higher proportion of closed cells both at and during resolidification, reducing permeability in both the semi-coke and high temperature plastic layers, respectively. Using a rheological mapping approach to follow viscoelastic changes during carbonisation it has been possible to identify specific regions associated with dangerous coals. 76 refs., 11 figs., 3 tabs.

  19. Grid Integration of Single Stage Solar PV System using Three-level Voltage Source Converter

    Science.gov (United States)

    Hussain, Ikhlaq; Kandpal, Maulik; Singh, Bhim

    2016-08-01

    This paper presents a single stage solar PV (photovoltaic) grid integrated power generating system using a three level voltage source converter (VSC) operating at low switching frequency of 900 Hz with robust synchronizing phase locked loop (RS-PLL) based control algorithm. To track the maximum power from solar PV array, an incremental conductance algorithm is used and this maximum power is fed to the grid via three-level VSC. The use of single stage system with three level VSC offers the advantage of low switching losses and the operation at high voltages and high power which results in enhancement of power quality in the proposed system. Simulated results validate the design and control algorithm under steady state and dynamic conditions.

  20. The erosion/corrosion of small superalloy turbine rotors operating in the effluent of a PFB coal combustor

    Science.gov (United States)

    Zellars, G. R.; Benford, S. M.; Rowe, A. P.; Lowell, C. E.

    1979-01-01

    The operation of a turbine in the effluent of a pressurized fluidized bed (PFB) coal combustor presents serious materials problems. Synergistic erosion/corrosion and deposition/corrosion interactions may favor the growth of erosion-resistant oxides on blade surfaces, but brittle cracking of these oxides may be an important source of damage along heavy particle paths. Integrally cast alloy 713LC and IN792 + Hf superalloy turbine rotors in a single-stage turbine with 6% partial admittance have been operated in the effluent of a PFB coal combustor for up to 164 hr. The rotor erosion pattern exhibits heavy particle separation with severe erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern gives a spectrum of erosion/oxidation/deposition as a function of blade position. The data suggest that preferential degradation paths may exist even under the targeted lower loadings (less than 20 ppm).

  1. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  2. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  3. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  4. Dermal uptake of polycyclic aromatic hydrocarbons after hairwash with coal-tar shampoo

    Energy Technology Data Exchange (ETDEWEB)

    Schooten, F.-J. van; Moonen, E.J.C.; Rhijnsburger, E.; Agen, B. van; Thijssen, H.H.W.; Kleinjans, J.C.S. [University of Limburg, Maastricht (Netherlands). Dept. of Health Risk Analysis and Toxicology

    1994-11-26

    Describes an experiment to assess the dermal uptake of polycyclic aromatic hydrocarbons (PAHs) after hairwashing with coal tar antidandruff shampoo. The urinary excretion of 1-hydroxypyrene (1-OH-P), a PAH metabolile was used to assess internal dose of PAH. A single use of coal tar shampoo resulted in increased 1-OH-P excretion in all members of the experimental group compared with the control group using a non-coal tar antidandruff shampoo. It is suggested that repeated use of coal tar shampoo would result in a high internal dose of carcinogenic PAH. 5 refs., 1 fig.

  5. Coal fired steam generation for heavy oil recovery

    International Nuclear Information System (INIS)

    Firmin, K.

    1992-01-01

    In Alberta, some 21,000 m 3 /d of heavy oil and bitumen are produced by in-situ recovery methods involving steam injection. The steam generation requirement is met by standardized natural-gas-fired steam generators. While gas is in plentiful supply in Alberta and therefore competitively priced, significant gas price increases could occur in the future. A 1985 study investigating the alternatives to natural gas as a fuel for steam generation concluded that coal was the most economic alternative, as reserves of subbituminous coal are not only abundant in Alberta but also located relatively close to heavy oil and bitumen production areas. The environmental performance of coal is critical to its acceptance as an alternate fuel to natural gas, and proposed steam generator designs which could burn Alberta coal and control emissions satisfactorily are assessed. Considerations for ash removal, sulfur dioxide sorption, nitrogen oxides control, and particulate emission capture are also presented. A multi-stage slagging type of coal-fired combustor has been developed which is suitable for application with oilfield steam generators and is being commissioned for a demonstration project at the Cold Lake deposit. An economic study showed that the use of coal for steam generation in heavy oil in-situ projects in the Peace River and Cold Lake areas would be economic, compared to natural gas, at fuel price projections and design/cost premises for a project timing in the mid-1990s. 7 figs., 3 tabs

  6. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  7. Thermovolumetric investigations of steam gasification of coals and their chars

    Directory of Open Access Journals (Sweden)

    Porada Stanisław

    2017-01-01

    Full Text Available The process of steam gasification of three coals of various rank and three chars obtained from these coals by the ex-situ method at 900 °C was compared. In the coal gasification process, the pyrolysis stage plays a very important part, which is connected with its direct impact on the kinetics of gasification of the resulting char. What is more, taking into consideration the impact of pyrolysis conditions on char properties, it should be anticipated that the gasification kinetics of coal and char, formed from it by the ex situ method, will be different. In order to examine and compare the process of gasification of coals and chars, an isothermal thermovolumetric method, designed by the authors, was applied. For all the examined samples the measurements were performed at three temperatures, i.e. 850, 900, and 950 °C, and at the pressure of 0.1 MPa. An evaluation of the impact of raw material on the steam gasification of the examined samples was made. The carbon conversion degree and the kinetic parameters of CO and H2 formation reaction were calculated. It was observed that the course of gasification is different for coals and chars obtained from them and it can be concluded that coals are more reactive than chars. Values of kinetic parameters of carbon monoxide and hydrogen formation calculated for coals and corresponding chars are also different. Due to the observed differences the process of gasification of coals and of chars with steam should not be equated.

  8. New coal

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Specially dedicated to coal, this edition comprises a series of articles of general interest dealing with the position of the French coalmining industry (interview with M.P. Gardent), the coal market in France, the work of CERCHAR, etc. New techniques, in-situ gasification of deep coal, gasification of coal by nuclear methods, the conversion of coal into petrol, the Emile Huchet power plant of Houilleres du Bassin de Lorraine, etc., are dealt with.

  9. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Foust, C.R.; Milora, S.L.

    1990-01-01

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1--2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3--5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2--3 km/s

  10. Recommended procedures and methodology of coal description

    Science.gov (United States)

    Chao, E.C.; Minkin, J.A.; Thompson, C.L.

    1983-01-01

    . Such diagrams can be used either for tracing compositional variations throughout a single coal-bed profile or for comparing variations between different coal beds.

  11. Kinetic Study of Coal and Biomass Co-Pyrolysis Using Thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila W. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Chaudharib, Kiran [West Virginia Univ., Morgantown, WV (United States). Department of Chemical Engineering; Turtonb, Richard [West Virginia Univ., Morgantown, WV (United States). Department of Chemical Engineering

    2013-10-29

    The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

  12. Banking on coal: perspectives on a Cape Breton community within an international context

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D.F.

    1997-12-31

    The development of the coal mining industry in Inverness, Cape Breton, Nova Scotia is described from the discovery of coal in the 17th century to the closing of the last mine in 1953, with its aftermath within the single industry community. The impact of the mines and unions on the community, public perception of coal miners, the miners self-perception, social and religious aspects, and politics are considered. Studies of three other coal mining communities (in Great Britain, the United States, and Australia) are examined, as a comparison. 140 refs., 283 notes, 11 photos.

  13. Industrial use of coal and clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  14. Effects of catalysts on combustion characteristics and kinetics of coal-char blends

    Science.gov (United States)

    Hu, Yingjie; Wang, Zhiqiang; Cheng, Xingxing; Liu, Ming; Ma, Chunyuan

    2018-04-01

    The effects of Fe2O3, CaO, and MnO2 on the combustion characteristics and kinetics of coal-char blends were investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that catalysts exhibited positive effects on the combustion characteristics of coal-char blends, especially in the initial period of coal-char blends combustion. With catalysts addition (mass 1.5%), it could improves volatile matter release, and reduces ignition point, promotes char to begin burning under lower temperature. The ignition index (C) was increased, respectively, by 27% for Fe2O3, 6% for CaO, 11.3% for MnO2, and the combustion characteristic index ( S ) was increased respectively, by 29% for Fe2O3, 5% for CaO, 8.3% for MnO2. In addition, two kinetic models (R2 and F1) were adopted to calculate the kinetic parameters in different stage of combustion processes. The results showed that with Fe2O3 or CaO addition, the activation energy at second stage decreases from 86.0 KJ/mol to 76.92 KJ/mol and 75.12 KJ/mol, respectively. There are no obvious decreases at the third stage of samples combustion process.

  15. Modes of occurrence of potentially hazardous elements in coal: levels of confidence

    Science.gov (United States)

    Finkelman, R.B.

    1994-01-01

    The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.

  16. Experimental study of reduce of nitrogen oxides emission in the Environment at the Ekibastuz coal combustion

    International Nuclear Information System (INIS)

    Korabejnikova, V.K.

    2004-01-01

    For revealing conditions decrease in emissions of nitrogen oxide in an environment at three-stage burning of coal dust Ekibastuz coal with use two-line burners (on were the experimental research of test on fiery the stand as a result of which acknowledgement of theoretical results is received. (author)

  17. Influence of metal additives on pyrolysis behavior of bituminous coal by TG-FTIR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wenjuan; Fang, Mengxiang; Cen, Jianmeng; Li, Chao; Luo, Zhongyang; Cen, Kefa [Zhejiang Univ., Hangzhou (China). State Key Lab. of Clean Energy Utilization

    2013-07-01

    To study the catalytic effects of alkali, alkaline earth and transition metal additives on coal pyrolysis behavior, bituminous coal loaded NaCl, KCl, CaCl{sub 2}, MgCl{sub 2}, FeCl{sub 3} and NiCl{sub 2} was respectively investigated using Thermogravimetry and Fourier Transform Infrared Spectroscopy (TG-FTIR). Results indicated that the maximum mass loss rate decreased under the metal additives in the primary pyrolysis stage. The total mass loss of pyrolysis was reduced in metals catalyzed pyrolysis except for Na loaded sample. Kinetic analysis was taken for all samples adopting the method of Coats-Redfern. Activation energy of raw coal in the primary pyrolysis stage was 92.15vkJ.mol{sup -1}, which was lowered to 44.59-73.42 kJ.mol{sup -1} under metal additives. The orders of catalytic effect for this bituminous coal were Mg > Fe > Ca > Ni > K > Na according to their activation energies. Several investigated volatiles including CH{sub 4}, CO{sub 2}, CO, toluene, phenol and formic acid were identified from FTIR spectra. The yields of CH{sub 4}, CO{sub 2}, toluene, phenol and formic acid were decreased, but the evolution of CO was increased. The presence of metals in the coal samples have been involved in a repeated bond-forming and bond-breaking process, which greatly hindered the release of tars during pyrolysis as the tar precursors were connected to coal/char matrix and were thermally cracked, becoming a part of char.

  18. Total generating costs: coal and nuclear plants

    International Nuclear Information System (INIS)

    1979-02-01

    The study was confined to single and multi-unit coal- and nuclear-fueled electric-generating stations. The stations are composed of 1200-MWe PWRs; 1200-MWe BWRs; 800-and 1200-MWe High-Sulfur Coal units, and 800- and 1200-MWe Low-Sulfur Coal units. The total generating cost estimates were developed for commercial operation dates of 1985 and 1990; for 5 and 8% escalation rates, for 10 and 12% discount rates; and, for capacity factors of 50, 60, 70, and 80%. The report describes the methodology for obtaining annualized capital costs, levelized coal and nuclear fuel costs, levelized operation and maintenance costs, and the resulting total generating costs for each type of station. The costs are applicable to a hypothetical Middletwon site in the Northeastern United States. Plant descriptions with general design parameters are included. The report also reprints for convenience, summaries of capital cost by account type developed in the previous commercial electric-power cost studies. Appropriate references are given for additional detailed information. Sufficient detail is given to allow the reader to develop total generating costs for other cases or conditions

  19. Reducing the emissions of nitrogen oxides when burning Kuznetsk bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-02-01

    Bituminous coals from the Kuzbass have a high nitrogen content. As a result, emissions of NO/SUB/x from power stations burning these coals frequently exceed the existing Standard. In order to reduce NO/SUB/x emissions tests were carried out using stage-wise combustion, supplying to the burners only part of the air required for complete combustion. The remaining air is supplied via tertiary nozzles situated about 14 m above the burners. As a result of the tests, this method of combustion is recommended for low-sulphur Kuznetsk coals for all sub-critical boilers having dry-bottom furnaces. Extension to boilers with wet-bottom furnaces and to supercritical boilers requires further investigation.

  20. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance.

    Science.gov (United States)

    Xiao, Benyi; Qin, Yu; Zhang, Wenzhe; Wu, Jing; Qiang, Hong; Liu, Junxin; Li, Yu-You

    2018-02-01

    The temperature-phased anaerobic digestion (TPAD) of food waste was studied for the purpose of comparing with single-stage mesophilic and thermophilic anaerobic digestion. The biogas and methane yields in the TPAD during the steady period were 0.759 ± 0.115 L/g added VS and 0.454 ± 0.201 L/g added VS, which were lower than those in the two single-stage anaerobic digestion. The improper sludge retention time may be the reason for the lower biogas and methane production in TPAD. The removal of volatile solids in the TPAD was 78.55 ± 4.59% and the lowest among the three anaerobic digestion processes. The reaction ratios of the four anaerobic digestion steps in the TPAD were all lower than those in the two single-stage anaerobic digestion. The energy conversion efficiency of the degraded substrate in the TPAD was similar with those in single-stage mesophilic and thermophilic anaerobic digestion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hydrodeoxygenation of oils from cellulose in single and two-stage hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, J.D.; Snape, C.E. [Strathclyde Univ., Glasgow (United Kingdom); Luengo, C.A. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Fisica Aplicada

    1996-09-01

    To investigate the removal of oxygen (hydrodeoxygenation) during the hydropyrolysis of cellulose, single and two-stage experiments on pure cellulose have been carried out using hydrogen pressures up to 10 MPa and temperatures over the range 300-520{sup o}C. Carbon, oxygen and aromaticity balances have been determined from the product yields and compositions. For the two-stage tests, the primary oils were passed through a bed of commercial Ni/Mo {gamma}-alumina-supported catalyst (Criterion 424, presulphided) at 400{sup o}C. Raising the hydrogen pressure from atmospheric to 10 MPa increased the carbon conversion by 10 mole % which was roughly equally divided between the oil and hydrocarbon gases. The oxygen content of the primary oil was reduced by over 10% to below 20% w/w. The addition of a dispersed iron sulphide catalyst further increased the oil yield at 10 MPa and reduces the oxygen content of the oil by a further 10%. The effect of hydrogen pressure on oil yields was most pronounced at low flow rates where it is beneficial in helping to overcome diffusional resistances. Unlike the dispersed iron sulphide in the first stage, the use of the Ni-Mo catalyst in the second stage reduced both the oxygen content and aromaticity of the oils. (Author)

  2. Phase transformations in synthesis technologies and sorption properties of zeolites from coal fly ash

    Directory of Open Access Journals (Sweden)

    О. Б. Котова

    2016-08-01

    Full Text Available Coal fly ash is generated in the course of combustion of coal at thermal power plants. Environmental problems increase sharply without disposing that industrial waste. Technologies were tested of hydrothermal synthesis of zeolites from fly ash forming during combustion of coal at thermal power plants of the Pechora coal basin and dependences were identified of the experiment conditions on physical and chemical properties of the end product. It is demonstrated that synthesizing zeolites from fly ash is the first stage of forming ceramic materials (ceramic membranes, which defines the fundamental character (importance of that area of studies. It was for the first time that sorption and structural characteristics and cation-exchange properties of fly ash from the Pechora basin coals were studied with respect to, Ba2+ and Sr2+.

  3. Atomic absorption spectrophotometry for the determination of metallic impurities in coal

    International Nuclear Information System (INIS)

    Silva, M.J.S.F. da.

    1983-06-01

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, through replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release, to atmosphere, of toxic elements such as As, Hg, Pb, Sb, Se, Cd, Zn and others is of great concern. Increase in atmospheric pollution will take place by burning increased amounts of coal. In addition, some of those elements are concentrated in fly ashes. The determination of impurities in coal is also important for the Figueiras Project in the Nuclebras Mineral Prospection Program. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The atomic absorption spectrophotometry is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentrations. The need of a previous treatment of the sample is overcome by using an acid attack (HNO 3 + HClO 4 + HF) which has proved to be rapid and efficient. (Author) [pt

  4. Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics

    Science.gov (United States)

    Im, Ui-Su; Kim, Jiyoung; Lee, Seon Ho; Lee, Byung-Rok; Peck, Dong-Hyun; Jung, Doo-Hwan

    2017-12-01

    In the present study, surface texture features and chemical properties of two types of cokes, made from coal tar by either 1-stage heat treatment or 2-stage heat treatment, were researched. The relationship between surface texture characteristics and the chemical properties was identified through molecular weight distribution, insolubility of coal tar, weight loss with temperature increase, coking yield, and polarized light microscope analysis. Rapidly cleared anisotropy texture in cokes was observed in accordance with the coking temperature rise. Quinoline insolubility and toluene insolubility of coal tar increased with a corresponding increases in coking temperature. In particular, the cokes produced by the 2-stage heat treatment (2S-C) showed surface structure of needle cokes at a temperature approximately 50°C lower than the 1-stage heat treatment (1S-C). Additionally, the coking yield of 2S-C increased by approximately 14% in comparison with 1S-C.

  5. Defining geographic coal markets using price data and shipments data

    International Nuclear Information System (INIS)

    Waarell, Linda

    2005-01-01

    Given the importance of coal in world energy supply an analysis of the relevant geographic market is essential for consumers, producers, as well as for competition policy. The purpose of this paper is to define the relevant economic market for steam and coking coal, and to test the hypothesis of single world markets for these coal products. Methodologically the paper relies on two different tests for defining markets, using both shipments data and price data. The results from both methods point in the same direction. In the case of coking coal the results indicate that the market is essentially global in scope, and also that the market has become more integrated over time. The results for steam coal show that the market is more regional in scope, and there exist no clear tendencies of increased integration over time. One policy implication of the finding that the steam coal market is more regional in scope, and thus that the market boundary is smaller than if the market would have been international, is that a merger and acquisition in this market likely would have been of a more concern for antitrust authorities than the same activity on the coking coal market

  6. New method for reduction of burning sulfur of coal

    International Nuclear Information System (INIS)

    Lyutskanov, L.; Dushanov, D.

    1998-01-01

    The coal pyrolysis is key phase in the the pyrolysis-combustion cycle as it provides char for combustor. The behaviour of sulfur compounds during coal pyrolysis depends on factors as rank of coal, quantity of sulfur and sulfur forms distribution in the coal, quantity and kind of mineral matter and the process conditions. The mineral content of coal may inhibit or catalyze the formation of volatile sulfur compounds. The pyrolysis itself is a mean of removing inorganic and organic sulfur but anyway a portion of it remains in the char while the other moves into the tar and gas. The aim of this study was to determine an optimal reduction of burning sulfur at the coal pyrolysis by varying parametric conditions. The pyrolysis of different kinds of coal has been studied. The samples with size particles o C at atmospheric pressure and with a heating rate of 6-50 o C min -1 . They were treated with exhaust gas and nitrogen at an addition of steam and air. The char obtained remains up to 10 min at the final temperature. The char samples cool without a contact with air. Two methods of desulfurization-pyrolysis were studied - using 9-vertical tubular reactor and 9-horizontal turning reactor. The results obtained show that at all samples there is a decrease of burning sulfur with maximal removal efficiency 83%. For example at a pyrolysis of Maritsa Iztok lignite coal the burning sulfur is only 16% in comparison with the control sample. The remained is 90% sulfate, 10% organic and pyrite traces when a mixture 'exhaust gas-water stream-air' was used. The method of desulfurization by pyrolysis could be applied at different kinds of coal and different conditions. Char obtained as a clean product can be used for generating electric power. This innovation is in a stage of patenting

  7. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  8. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  9. Genomic Prediction of Single Crosses in the Early Stages of a Maize Hybrid Breeding Pipeline

    Directory of Open Access Journals (Sweden)

    Dnyaneshwar C. Kadam

    2016-11-01

    Full Text Available Prediction of single-cross performance has been a major goal of plant breeders since the beginning of hybrid breeding. Recently, genomic prediction has shown to be a promising approach, but only limited studies have examined the accuracy of predicting single-cross performance. Moreover, no studies have examined the potential of predicting single crosses among random inbreds derived from a series of biparental families, which resembles the structure of germplasm comprising the initial stages of a hybrid maize breeding pipeline. The main objectives of this study were to evaluate the potential of genomic prediction for identifying superior single crosses early in the hybrid breeding pipeline and optimize its application. To accomplish these objectives, we designed and analyzed a novel population of single crosses representing the Iowa Stiff Stalk synthetic/non-Stiff Stalk heterotic pattern commonly used in the development of North American commercial maize hybrids. The performance of single crosses was predicted using parental combining ability and covariance among single crosses. Prediction accuracies were estimated using cross-validation and ranged from 0.28 to 0.77 for grain yield, 0.53 to 0.91 for plant height, and 0.49 to 0.94 for staygreen, depending on the number of tested parents of the single cross and genomic prediction method used. The genomic estimated general and specific combining abilities showed an advantage over genomic covariances among single crosses when one or both parents of the single cross were untested. Overall, our results suggest that genomic prediction of single crosses in the early stages of a hybrid breeding pipeline holds great potential to redesign hybrid breeding and increase its efficiency.

  10. Species-and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes

    International Nuclear Information System (INIS)

    Roe, John H.; Hopkins, William A.; Jackson, Brian P.

    2005-01-01

    Information on species-and stage-specific patterns of contaminant accumulation is generally lacking for amphibians, yet such information could provide valuable knowledge on how amphibians interact with contaminants. We assessed concentrations of As, Cd, Cu, Ni, Pb, Se, Sr, and Zn in whole bodies of larval, recently metamorphosed, and adult life stages in Bufo terrestris and Rana sphenocephala from a site that currently receives coal combustion waste (CCW) discharge, a site where CCW was formerly discharged that has undergone natural attenuation for 30 years, and a nearby reference site. For the majority of elements (As, Cd, Cu, Ni, Pb, Zn), concentrations were highest in larvae, but Se and Sr concentrations remained elevated in later life stages, likely because these elements are S and Ca analogs, respectively, and are thus retained throughout structural changes during metamorphosis. Element concentrations were generally higher in B. terrestris than in R. sphenocephala. Concentrations of As, Se, and Sr were up to 11-35 times higher in metamorphs emigrating from CCW-polluted wetlands compared to unpolluted wetlands, suggesting metamorphosed amphibians can transport trace elements from aquatic disposal basins to nearby uncontaminated terrestrial habitats. In addition, anurans utilizing naturally revegetated sites up to 30 years after CCW disposal ceases are exposed to trace elements, although to a lesser degree than sites where CCW is currently discharged. - Results suggest that metamorphosed amphibians can transport trace elements from aquatic disposal basins to non-contaminated habitats

  11. Species-and stage-specific differences in trace element tissue concentrations in amphibians: implications for the disposal of coal-combustion wastes

    Energy Technology Data Exchange (ETDEWEB)

    Roe, John H. [University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 (United States); Hopkins, William A. [University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 (United States)]. E-mail: hopkins@srel.edu; Jackson, Brian P. [University of Georgia, Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, SC 29802 (United States)

    2005-07-15

    Information on species-and stage-specific patterns of contaminant accumulation is generally lacking for amphibians, yet such information could provide valuable knowledge on how amphibians interact with contaminants. We assessed concentrations of As, Cd, Cu, Ni, Pb, Se, Sr, and Zn in whole bodies of larval, recently metamorphosed, and adult life stages in Bufo terrestris and Rana sphenocephala from a site that currently receives coal combustion waste (CCW) discharge, a site where CCW was formerly discharged that has undergone natural attenuation for 30 years, and a nearby reference site. For the majority of elements (As, Cd, Cu, Ni, Pb, Zn), concentrations were highest in larvae, but Se and Sr concentrations remained elevated in later life stages, likely because these elements are S and Ca analogs, respectively, and are thus retained throughout structural changes during metamorphosis. Element concentrations were generally higher in B. terrestris than in R. sphenocephala. Concentrations of As, Se, and Sr were up to 11-35 times higher in metamorphs emigrating from CCW-polluted wetlands compared to unpolluted wetlands, suggesting metamorphosed amphibians can transport trace elements from aquatic disposal basins to nearby uncontaminated terrestrial habitats. In addition, anurans utilizing naturally revegetated sites up to 30 years after CCW disposal ceases are exposed to trace elements, although to a lesser degree than sites where CCW is currently discharged. - Results suggest that metamorphosed amphibians can transport trace elements from aquatic disposal basins to non-contaminated habitats.

  12. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir M. Zamansky; Vitali V. Lissianski

    2001-09-07

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The overall objective of this project is to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized carbon in ash and move the FFR technology to the demonstration and commercialization stage. Specifically, the project entails: (1) optimizing FFR with injection of gasified and partially gasified fuels with respect to NO{sub x} and carbon in ash reduction; (2) characterizing flue gas emissions; (3) developing a process model to predict FFR performance; (4) completing an engineering and economic analysis of FFR as compared to conventional reburning and other commercial NO{sub x} control technologies, and (5) developing a full-scale FFR design methodology. The project started in August 2000 and will be conducted over a two-year period. The work includes a combination of analytical and experimental studies to identify optimum process configurations and develop a design methodology for full-scale applications. The first year of the program included pilot-scale tests to evaluate performances of two bituminous coals in basic reburning and modeling studies designed to identify parameters that affect the FFR performance and to evaluate efficiency of coal pyrolysis products as a reburning fuel. Tests were performed in a 300 kW Boiler Simulator Facility to characterize bituminous coals as reburning fuels. Tests showed that NO{sub x} reduction in basic coal reburning depends on process conditions, initial NO{sub x} and coal type. Up to 60% NO{sub x} reduction was achieved at optimized conditions. Modeling activities during first year concentrated on the development of coal reburning model and on the prediction of NO{sub x} reduction in reburning by coal gasification products. Modeling predicted that

  13. Effect of coal blending on the leaching characteristics of arsenic and selenium in fly ash from fluidized bed coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, F.; Yamada, N.; Sato, A.; Ninomiya, Yoshihiko [Chubu Univ., Aichi (Japan). Dept. of Applied Chemistry; Zhang, L. [Monash Univ., Clayton, VIC (Australia). Dept. of Chemical Engineering

    2013-07-01

    The capture ability of fly ash to arsenic (As) and selenium (Se) was investigated through the combustion of two single bituminous coals A and B and their mixture (blending ratio of 1:1, wt/wt) in a lab-scale fluidized bed reactor. The leaching characteristics of As and Se in corresponding fly ash were also conducted according to Japanese Industrial Standard (JIS). Speciation of As and Se during fly ash leaching test were predicted from the perspective of thermodynamic equilibrium. The results indicate that, combustion of coal B, containing abundant calcium, possesses a higher capture ability of As and Se than that of coal A through possible chemical reaction between As/Se with CaO. Leaching behavior of As and Se from fly ash is strongly dependent on the pH of the leachate. Free calcium in fly ash generates an alkaline leachate during leaching test and subsequently reduces As and Se leaching, which cause the leaching ratio of As and Se in fly ash derived from the combustion of coal B was much lower, relative to that in coal A. Combustion of blending coal promotes the overall capture ability of the fly ash to As/Se and reduces their leaching from fly ash through the synergy of free CaO between this two kind of fly ash.

  14. Performance of the rebuilt SUERC single-stage accelerator mass spectrometer

    Science.gov (United States)

    Shanks, Richard P.; Ascough, Philippa L.; Dougans, Andrew; Gallacher, Paul; Gulliver, Pauline; Rood, Dylan H.; Xu, Sheng; Freeman, Stewart P. H. T.

    2015-10-01

    The SUERC bipolar single-stage accelerator mass spectrometer (SSAMS) has been dismantled and rebuilt to accommodate an additional rotatable pre-accelerator electrostatic spherical analyser (ESA) and a second ion source injector. This is for the attachment of an experimental positive-ion electron cyclotron resonance (ECR) ion source in addition to a Cs-sputter source. The ESA significantly suppresses oxygen interference to radiocarbon detection, and remaining measurement interference is now thought to be from 13C injected as 13CH molecule scattering off the plates of a second original pre-detector ESA.

  15. Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base

    International Nuclear Information System (INIS)

    Croft, Gregory D.; Patzek, Tad W.

    2009-01-01

    By applying the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production can be modeled with a single Hubbert curve that extends to the practical end of commercial production of this highest-rank coal. The production of bituminous coal from existing mines is about 80% complete and can be carried out at the current rate for the next 20 years. The production of subbituminous coal from existing mines can be carried out at the current rate for 40-45 years. Significant new investment to extend the existing mines and build new ones would have to commence in 2009 to sustain the current rate of coal production, 1 billion tons per year, in 2029. In view of the existing data, we conclude that there is no spare coal production capacity of the size required for massive coal conversion to liquid transportation fuels. Our analysis is independent of other factors that will prevent large-scale coal liquefaction projects: the inefficiency of the process and either emissions of greenhouse gases or energy cost of sequestration

  16. Coal information 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This volume is a comprehensive reference book on current world coal market trends and long-term prospects to 2010. It contains an in-depth analysis of the 1995 international coal market covering prices, demand, trade, supply and production capacity as well as over 450 pages of country specific statistics on OECD and key non-OECD coal producing and consuming countries. The book also includes a summary of environmental policies on climate change and on coal-related air quality issues as well as essential facts on coal-fired power stations in coal-importing regions, on coal ports world-wide and on emission standards for coal-fired boilers in OECD countries. Coal Information is one of a series of annual IEA statistical publications on major energy sources; other reports are Oil and Gas Information and Electricity Information. Coal Information 1995 is published in July 1996. (author)

  17. How Selby coal will reach the surface

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    In many respects this conveyor will exemplify the NCB's intention to employ the latest technology at Selby. This single conveyor will be almost 15km long, and will bring coal to the surface from almost 1 km below ground level. A steel cord belt, 1300 mm wide and weighing over 2500 tonnes, will travel at up to 8.4 m/s to bring as much as 3200 t/h of coal to the surface. The conveyor is capable of delivering up to 1800 t/h of coal even from the furthest and deepest point in the conveyor run. Maximum tension in the belt is almost 200 tonnes, and even on the slack side of the pulley, the tension will be 68 tonnes. Eleven bunkering points will each be capable of feeding 750 tonnes of coal per hour, and a computerized control will ensure that the required mix is brought from the bunkers without exceeding the maximum capacity of the conveyor. When maximum tonnage is not being handled, the conveyor will be capable of running at the lowest speed which is capable of bringing out the tonnage on the belt. This minimizes wear and tear on all moving parts of the system. From each bunkering point, the coal will be fed down a chute onto a short accelerating conveyor which feeds the coal centrally onto the main conveyor and ensures that it is moving in the same direction as the main conveyor.

  18. A two-phase inspection model for a single component system with three-stage degradation

    International Nuclear Information System (INIS)

    Wang, Huiying; Wang, Wenbin; Peng, Rui

    2017-01-01

    This paper presents a two-phase inspection schedule and an age-based replacement policy for a single plant item contingent on a three-stage degradation process. The two phase inspection schedule can be observed in practice. The three stages are defined as the normal working stage, low-grade defective stage and critical defective stage. When an inspection detects that an item is in the low-grade defective stage, we may delay the preventive replacement action if the time to the age-based replacement is less than or equal to a threshold level. However, if it is above this threshold level, the item will be replaced immediately. If the item is found in the critical defective stage, it is replaced immediately. A hybrid bee colony algorithm is developed to find the optimal solution for the proposed model which has multiple decision variables. A numerical example is conducted to show the efficiency of this algorithm, and simulations are conducted to verify the correctness of the model. - Highlights: • A two-phase inspection model is studied. • The failure process has three stages. • The delayed replacement is considered.

  19. Coal pyrolysis and char burnout under conventional and oxy-fuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Makhadmeh, L.; Maier, J.; Scheffknecht, G. [Stuttgart Univ. (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

    2009-07-01

    Coal utilization processes such as combustion or gasification generally involve several steps i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases, and heterogeneous reactions of the solid (char) with the reactant gases. Most of the reported work about coal pyrolysis and char burnout were performed at low temperatures under environmental conditions related to the air firing process with single particle tests. In this work, coal combustion under oxy-fuel conditions is investigated by studying coal pyrolysis and char combustion separately in practical scales, with the emphasis on improving the understanding of the effect of a CO{sub 2}-rich gas environment on coal pyrolysis and char burnout. Two coals, Klein Kopje a medium volatile bituminous coal and a low-rank coal, Lausitz coal were used. Coal pyrolysis in CO{sub 2} and N{sub 2} environments were performed for both coals at different temperatures in an entrained flow reactor. Overall mass release, pyrolysis gas concentrations, and char characterization were performed. For char characterization ultimate analysis, particle size, and BET surface area were measured. Chars for both coals were collected at 1150 C in both CO{sub 2} and N{sub 2} environments. Char combustion was performed in a once-through 20 kW test facility in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} atmospheres. Besides coal quality, oxygen partial pressure was chosen as a variable to study the effect of the gas environment on char burnout. In general, it is found that the CO{sub 2} environment and coal rank have a significant effect on coal pyrolysis and char burnout. (orig.)

  20. Experimental Investigation of Coal Dust Wettability Based on Surface Contact Angle

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-01-01

    Full Text Available Wettability is one of the key chemical properties of coal dust, which is very important to dedusting. In this paper, the theory of liquid wetting solid was presented firstly; then, taking the gas coal of Xinglongzhuang coal mine in China as an example, by determination of critical surface tension of coal piece, it can be concluded that only when the surface tension of surfactant solution is less than 45 mN/m can the coal sample be fully wetted. Due to the effect of particle dispersity, compared with the contact angle of milled coal particle, not all the contact angles of screened coal powder with different sizes have a tendency to increase. Furthermore, by the experiments of coal samples’ specific surface areas and porosities, it can be achieved that the volume of single-point total pore decreases with the gradual decreasing of coal’s porosity, while the ultramicropores’ dispersities and multipoint BET specific surface areas increase. Besides, by a series of contact angle experiments with different surfactants, it can be found that with the increasing of porosity and the decreasing of volume percentage of ultramicropore, the contact angle tends to reduce gradually and the coal dust is much easier to get wetted.

  1. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  2. Use of atomic absorption spectrometry to determine metallic impurities in coal

    International Nuclear Information System (INIS)

    Silva, M.J.S.F. da.

    1983-01-01

    The Brazilian Energetic Alternative Program expects the reduction of our dependence on foreign energy sources, by replacing fuel oil by mineral coal. Its gasification by means of nuclear energy must be also considered. However, the intensive burning of coal leads to serious environmental problems. During its combustion the release to atmosphere of toxic elements such as As, Hg, Pb, Zn and others is of great concern. Hence, it is important to have reliable analytical methods which can monitor inorganic constituents at various stages of coal production and utilization. The AAS is a suitable analytical technique to determine pollutants in coal because it is sensitive, simple, economic and cover a large range of concentration. The need of a previous treatment of sample is overcome by using an acid attack (HNO 3 + HClO 4 + HF) which has been proved to be rapid and efficient. (Author) [pt

  3. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  4. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  5. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  6. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    Science.gov (United States)

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up. Copyright

  7. Dispatcher's monitoring systems of coal preparation processes. Systemy dyspozytorskiej kontroli procesow wzbogacania wegla

    Energy Technology Data Exchange (ETDEWEB)

    Cierpisz, S [Politechnika Slaska, Gliwice (Poland); Cierpisz, T; Glowacki, D; Puczylowski, T [Min-Tech Sp. z o.o., Katowice (Poland)

    1994-08-01

    The computer-based control and dispatcher's monitoring systems for coal preparation plants are described. The article refers to the local automation systems of coal blending production, control systems of heavy media separation process and dispatcher's visualization systems of technological lines operation. The effects of implementation of the above mentioned systems as well as some experiences gained at the designing and operational stages are given. (author). 2 refs., 6 figs.

  8. Prediction of unburned carbon and NOx in a tangentially fired power station using single coals and blends

    Energy Technology Data Exchange (ETDEWEB)

    R.I. Backreedy; J.M. Jones; L. Ma; M. Pourkashanian; A. Williams; A. Arenillas; B. Arias; J.J. Pis; F. Rubiera [University of Leeds, Leeds (United Kingdom). Energy and Resources Research Institute

    2005-12-01

    Two approaches can be employed for prediction of NOx and unburned carbon. The first approach uses global models such as the 'slice' model which requires the combustor reaction conditions as an input but which has a detailed coal combustion mechanism. The second involves a computational fluid dynamic model that in principle can give detailed information about all aspects of combustion, but usually is restricted in the detail of the combustion model because of the heavy computational demands. The slice model approach can be seen to be complimentary to the CFD approach since the NOx and carbon burnout is computed using the slice model as a post-processor to the CFD model computation. The slice model that has been used previously by our group is applied to a commercial tangentially fired combustor operated in Spain and using a range of Spanish coals and imported coals, some of which are fired as blends. The computed results are compared with experimental measurements, and the accuracy of the approach assessed. The CFD model applied to this case is one of the commercial codes modified to use a number of coal combustion sub-models developed by our group. In particular it can use two independent streams of coal and as such it can be used for the combustion of coal blends. The results show that both model approaches can give good predictions of the NOx and carbon in ash despite the fact that certain parts of the coal combustion models are not exactly the same. However, if a detailed insight into the combustor behaviour is required then the CFD model must be used. 28 refs., 4 figs., 6 tabs.

  9. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  10. Prediction of coking dynamics for wet coal charge

    Directory of Open Access Journals (Sweden)

    Kardaś Dariusz

    2015-09-01

    Full Text Available A one-dimensional transient mathematical model describing thermal and flow phenomena during coal coking in an oven chamber was studied in the paper. It also accounts for heat conduction in the ceramic oven wall when assuming a constant temperature at the heating channel side. The model was solved numerically using partly implicit methods for gas flow and heat transfer problems. The histories of temperature, gas evolution and internal pressure were presented and analysed. The theoretical predictions of temperature change in the centre plane of the coke oven were compared with industrialscale measurements. Both, the experimental data and obtained numerical results show that moisture content determines the coking process dynamics, lagging the temperature increase above the water steam evaporation temperature and in consequence the total coking time. The phenomenon of internal pressure generation in the context of overlapping effects of simultaneously occurring coal transitions - devolatilisation and coal permeability decrease under plastic stage - was also discussed.

  11. Investigation of Advanced Propellants to Enable Single Stage to Orbit Launch Vehicles

    Science.gov (United States)

    2006-10-30

    ERS-PAS-2006-205) 13. SUPPLEMENTARY NOTES Graduate work for California State University, Fresno 14. ABSTRACT Single-Stage-To-Orbit ( SSTO ...and maintained. Despite well-funded development efforts, no SSTO vehicles have been fielded to date. Existing chemical rocket and vehicle...technologies do not enable feasible SSTO designs. In the future, new propellants with advanced properties could enable SSTO launch vehicles. A parametric

  12. Slagging behavior of upgraded brown coal and bituminous coal in 145 MW practical coal combustion boiler

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuya; Pak, Haeyang; Takubo, Yoji [Kobe Steel, Ltd, Kobe (Japan). Mechanical Engineering Research Lab.; Tada, Toshiya [Kobe Steel, Ltd, Takasago (Japan). Coal and Energy Technology Dept.; Ueki, Yasuaki [Nagoya Univ. (Japan). Energy Science Div.; Yoshiie, Ryo; Naruse, Ichiro [Nagoya Univ. (Japan). Dept. of Mechanical Science and Engineering

    2013-07-01

    The purpose of this study is to quantitatively evaluate behaviors of ash deposition during combustion of Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. A blended coal consisting 20 wt% of the UBC and 80 wt% of the bituminous coal was burned for the combustion tests. Before the actual ash deposition tests, the molten slag fractions of ash calculated by chemical equilibrium calculations under the combustion condition was adopted as one of the indices to estimate the tendency of ash deposition. The calculation results showed that the molten slag fraction for UBC ash reached approximately 90% at 1,523 K. However, that for the blended coal ash became about 50%. These calculation results mean that blending the UBC with a bituminous coal played a role in decreasing the molten slag fraction. Next, the ash deposition tests were conducted, using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at 1,523 K in the boiler to measure the amount of ash deposits. The results showed that the mass of deposited ash for the blended coal increased and shape of the deposited ash particles on the tube became large and spherical. This is because the molten slag fraction in ash for the blended coal at 1,523 K increased and the surface of deposited ash became sticky. However, the mass of the deposited ash for the blended coal did not greatly increase and no slagging problems occurred for 8 days of boiler operation under the present blending conditions. Therefore, appropriate blending of the UBC with a bituminous coal enables the UBC to be used with a low ash melting point without any ash deposition problems in a practical boiler.

  13. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  14. Evaluation of NOX emissions from TVA coal-fired power plants

    International Nuclear Information System (INIS)

    Jones, J.W.; Stamey-Hall, S.

    1991-01-01

    The paper gives results of a preliminary evaluation of nitrogen oxide (NOx) emissions from 11 Tennessee Valley Authority (TVA) coal-fired power plants. Current EPA AP-42 emission factors for NOx from coal-fired utility boilers do not account for variations either in these emissions as a function of generating unit load, or in designs of boilers of the same general type, particularly wall-fired boilers. The TVA has compiled short-term NOx emissions data from 30 units at 11 TVA coal-fired plants. These units include cyclone, cell burner, single wall, opposed wall, single tangential, and twin tangential boiler firing designs. Tests were conducted on 29 of the 30 units at high load; 18 were also tested at reduced load. NOx emissions rates were calculated for each test and compared to the calculated rate for each boiler type using AP-42. Preliminary analysis indicates that: (1) TVA cyclone-fired units emit more NOx than estimated using AP-42; (2) TVA cell burner units emit considerably more NOx than estimated; (3) most TVA single-wall-fired units emit slightly more NOx than estimated; (4) most TVA single-furnace tangentially fired units emit less NOx than estimated at high load, but the same as (or more than) estimated at reduced load; and (5) most TVA twin-furnace tangentially fired units, at high load, emit slightly more NOx than estimated using AP-42

  15. Historical costs of coal-fired electricity and implications for the future

    International Nuclear Information System (INIS)

    McNerney, James; Doyne Farmer, J.; Trancik, Jessika E.

    2011-01-01

    We study the cost of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation cost, energy density, thermal efficiency, plant construction cost, interest rate, capacity factor, and operations and maintenance cost. The dominant determinants of cost have been the price of coal and plant construction cost. The price of coal appears to fluctuate more or less randomly while the construction cost follows long-term trends, decreasing from 1902 to 1970, increasing from 1970 to 1990, and leveling off since then. Our analysis emphasizes the importance of using long time series and comparing electricity generation technologies using decomposed total costs, rather than costs of single components like capital. By taking this approach we find that the history of coal-fired electricity suggests there is a fluctuating floor to its future costs, which is determined by coal prices. Even if construction costs resumed a decreasing trend, the cost of coal-based electricity would drop for a while but eventually be determined by the price of coal, which fluctuates while showing no long-term trend. - Research highlights: → 125-year history highlights the dominant determinants of coal-fired electricity costs. → Results suggest a fluctuating floor to future costs, determined by coal prices. → Analysis emphasizes importance of comparing technologies using decomposed total costs.

  16. Sustainable global energy development: The case of coal

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    . Even more expensive advanced clean coal combustion technologies could noticeably displace gas-fired combined cycle plants in regions with 'reasonably cheap gas prices' (EU) at regimes higher than 6500 h/year and even 4500 h/year. The worldwide replacement of old coal power plants by advanced coal combustion technologies would reduce world CO 2 emissions by 7 - 8 %. For the next decade or more, advanced clean coal combustion may well be the most effective single technology option to combat climate change, bridging the time for coal sequestration to gain maturity. Carbon sequestration in integrated multi-product chemical refineries - the next step - and carbon disposal are the subject of intense research. Against these realities and perspectives, coal's image remained poor. The global coal and associated industries would be well advised to join forces in a proactive campaign highlighting the potential of sustainable development from coal. Acceptance by the public and more balanced policies are at that price. Coal is not part of the problem of sustainability and energy poverty, but part of the solution. (author)

  17. Single-stage soft tissue reconstruction and orbital fracture repair for complex facial injuries.

    Science.gov (United States)

    Wu, Peng Sen; Matoo, Reshvin; Sun, Hong; Song, Li Yuan; Kikkawa, Don O; Lu, Wei

    2017-02-01

    Orbital fractures with open periorbital wounds cause significant morbidity. Timing of debridement with fracture repair and soft tissue reconstruction is controversial. This study focuses on the efficacy of early single-stage repair in combined bony and soft tissue injuries. Retrospective review. Twenty-three patients with combined open soft tissue wounds and orbital fractures were studied for single-stage orbital reconstruction and periorbital soft tissue repair. Inclusion criteria were open soft tissue wounds with clinical and radiographic evidence of orbital fractures and repair performed within 48 h after injury. Surgical complications and reconstructive outcomes were assessed over 6 months. The main outcome measures were enophthalmos, pre- and post-CT imaging of orbits, scar evaluation, presence of diplopia, and eyelid position. Enophthalmos was corrected in 16/19 cases and improved in 3/19 cases. 3D reconstruction of CT images showed markedly improved orbital alignment with objective measurements of the optic foramen to cornea distance (mm) in reconstructed orbits relative to intact orbits of 0.66, 95% confidence interval [CI] (lower 0.33, upper 0.99) mm. The mean baseline of Stony Brook Scar Evaluation Scale was 0.6, 95%CI (0.30-0.92), and for 6 months, the mean score was 3.4, 95%CI (3.05-3.73). Residual diplopia in secondary gazes was present in two patients; one patient had ectropion. Complications included one case of local wound infection. An early single-stage repair of combined soft tissue and orbital fractures yields satisfactory functional and aesthetic outcomes. Complications are low and likely related to trauma severity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  19. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  20. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals

    International Nuclear Information System (INIS)

    Ge, Lichao; Zhang, Yanwei; Xu, Chang; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    This study investigates the influence of hydrothermal dewatering performed at different temperatures on the combustion characteristics of Chinese low-rank coals with different coalification maturities. It was found that the upgrading process significantly decreased the inherent moisture and oxygen content, increased the calorific value and fixed carbon content, and promoted the damage of the hydrophilic oxygen functional groups. The results of oxygen/carbon atomic ratio indicated that the upgrading process converted the low-rank coals near to high-rank coals which can also be gained using the Fourier transform infrared spectroscopy. The thermogravimetric analysis showed that the combustion processes of upgraded coals were delayed toward the high temperature region, and the upgraded coals had higher ignition and burnout temperature. On the other hand, based on the higher average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and the Da Tong bituminous coal. In ignition segment, the activation energy increased after treatment but decreased in the combustion stage. The changes in coal compositions, microstructure, rank, and combustion characteristics were more notable as the temperature in hydrothermal dewatering increased from 250 to 300 °C or coals of lower ranks were used. - Highlights: • Typical Chinese lignites with various ranks are upgraded by hydrothermal dewatering. • Upgraded coals exhibit chemical compositions comparable with that of bituminous coal. • FTIR show the change of microstructure and improvement in coal rank after upgrading. • Upgraded coals exhibit difficulty in ignition but combust easily. • More evident effects are obtained for raw brown coal with relative lower rank.

  1. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  2. Comparative emissions from Pakistani coals and traditional coals

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y X [Guangzhou Medical College (China). Dept. of Hygiene; Huang, L F [Guangzhou Health and Anti-epidemic Station (China)

    1994-12-31

    Briquette coal has been widely used for domestic cooking and heating in many Chinese cites over the last two decades. To determine whether burning briquette coal contributes significantly to indoor air pollution, a study was performed in cities-of Southern China in which the measured levels of SO{sub 2}, NO{sub x}, TSP, SD, B(a)P in the kitchens of coal burning families were compared with levels obtained in families using gas. Significantly higher contentions of these pollutants, whose peaks correlated with daily cooking episodes, were detected in coal burning families. The levels of TSP and B(a)P were further found to be dependent on cooking methods, with deep frying and stir-frying of meat generating the most indoor TSP and B(a)P. Briquette coal burning was found to be the source of B(a)P contamination in food. A higher incidence of chronic pharyngitis as well as a suppressed salivary bacteriolytic enzyme activity were found in children of coal burning families. Epidemiologic and laboratory studies also show a close association between coal burning and the incidence of lung cancer in females. (author)

  3. Third symposium on coal preparation. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The third Symposium on Coal preparation, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Fourteen papers from the proceedings have been entered individually into EDB and ERA; five additional papers had been entered previously from other sources. Topics covered involved chemical comminution and chemical desulfurization of coal (aimed at reducing sulfur sufficiently with some coals to meet air quality standards without flue gas desulfurization), coal cleaning concepts, removing coal fines and recycling wash water, comparative evaluation of coal preparation methods, coal refuse disposal without polluting the environment, spoil bank reprocessing, noise control in coal preparation plants, etc. (LTN)

  4. Gondwana basins and their coal resources in Bangladesh

    International Nuclear Information System (INIS)

    Nehaluddin, M.; Sultan-ul-Islam, M.

    1994-01-01

    Fault bounded five Gondwana basins have been discovered in the north western Bangladesh. Among these basins show considerable amount of coal deposits. The Gondwana rocks are highly formed during the Permo-carboniferous diastrophism and later on acquired dynamic characters. In almost all basins, the Permian rocks overlie the Precambrian basement and underlie either the Tertiary or the Cretaceous sediments, structural, stratigraphic, and depositional history of these basins is more or less similar. The sedimentary sequences are composed of light to dark gray, fine to very coarse grained, sub angular to sub rounded felspathic sandstone, dark grey carbonaceous shale and sandstone, variegated conglomerate and thick coal seams (single seam max. 42.38m). The rocks are often alternated and bear the characteristics of cyclic sedimentation. The depositional environments varied from restricted drainage to open fluvial dominated low to moderate sinuous drainage system. The coal bearing basins were flanked by vegetated and swampy over bank. Age of these coals is suggested to be the late permian. Proved and probable reserves of coal in Jamalganj-Paharpur basin are 670 and 1,460 million metric tons, in Barapukuria basin 303 and 3899 million metric tons; in Barapukuria basin 303 and 389 million metric tons; and in Khalaspir basin 143 and 685 million metric tons respectively. The coal is high volatile, low sulphur, bituminous type. It can be used for different forms of thermal conversion. (author)

  5. Low NO{sub x} burner modifications to front-fired pulverized coal boilers

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, R G; Wagner, M

    1998-07-01

    Madison Gas and Electric Blount Street Station Units 8 and 9 are Babcock and Wilcox pulverized coal fired and natural gas fired boilers. These boilers were build in the late 1950's and early 1960's with each boiler rated at 425,000 lb./hr of steam producing 50 MW of electricity. The boilers are rated at 9,500 F at 1,350 psig. Each unit is equipped with one Ljungstroem air heater and two B and W EL pulverizers. These units burn subbituminous coal with higher heating value of 10,950 Btu/LB on an as-received basis. The nitrogen content is approximately 1.23% with 15% moisture. In order to comply with the new Clean Air Act Madison Gas and Electric needs to reduce NO{sub x} on these units to less than .5 LB/mmBtu. Baseline NO{sub x} emissions on these units range between .8--.9 lb./mmBtu. LOIs average approximately 8%. Madison Gas and Electric contracted with RJM Corporation to modify the existing burners to achieve this objective. These modifications consisted of adding patented circumferentially and radially staged flame stabilizers, modifying the coal pipe, and replacing the coal impeller with a circumferentially staged coal spreader. RJM Corporation utilized computational fluid dynamics modeling in order to design the equipment to modify these burners. The equipment was installed during the March 1997 outage and start-up and optimization was conducted in April 1997. Final performance results and economic data will be included in the final paper.

  6. Multiple kernel learning using single stage function approximation for binary classification problems

    Science.gov (United States)

    Shiju, S.; Sumitra, S.

    2017-12-01

    In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.

  7. Hoe Creek II field experiment on underground coal gasification, preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Aiman, W.R.; Thorsness, C.B.; Hill, R.W.; Rozsa, R.B.; Cena, R.; Gregg, D.W.; Stephens, D.R.

    1978-02-27

    A second in-situ coal gasification experiment was performed by Lawrence Livermore Laboratory at Hoe Creek in Wyoming. The Linked Vertical Wells scheme for in-situ coal gasification was used. The experiment took 100 days for air flow testing, reverse combustion linking, forward combustion gasification, and post-burn steam flow. Air was used for gasification except for a 2-day test with oxygen and steam. Reverse combustion linking took 14 days at 1.6 m/day. Air requirements for linking were 0.398 Mgmol per meter of link assuming a single direct link. The coal pyrolysed during linking was 17 m/sup 3/, which corresponds to a single link 1.0 m in diameter. There was, however, strong evidence of at least two linkage paths. The detected links stayed below the 3 m level in the 7.6 coal seam; however, the product flow from the forward-burn gasification probably followed the coal-overburden interface not the reverse burn channels at the 3 m level. A total of 232 Mgmols (194 Mscf) of gas was produced with heating value above 125 kJ/mol (140 Btu/scf) for significant time periods and an average of 96 kJ/mol (108 Btu/scf). During the oxygen-steam test the heating value was above 270 kJ/gmol (300 Btu/scf) twice and averaged 235 kJ/gmol (265 Btu/scf). The coal recovery was 1310 m/sup 3/ (1950 ton). Gasification was terminated because of decreasing product quality not because of burn through. The product quality decreased because of increasing underground heat loss.

  8. The μ-RWELL: A compact, spark protected, single amplification-stage MPGD

    Science.gov (United States)

    Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.

    2016-07-01

    In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, 50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.

  9. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  10. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  11. Report on 1979 result of Sunshine Project (detailed design). Part 1. Forty t/day solvolysis coal liquefaction pilot plant; 1979 nendo 40T/nichi solvolysis sekitan pilot plant shosai sekkei. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The subject design documents are the compilation of the result of the design operation for the 'detailed design of 40 t/day class solvolysis coal liquefaction pilot plant'. The design of this pilot plant was conducted using, as the fundamental reference, the basic data provided by Kyushu National Industrial Research Institute and Kyushu University and the results of a contract research on '1 t/day class solvolysis coal liquefaction plant'. The subject detailed design was intended for Phase 1 centering on a single stage liquefaction - coal liquefaction (transformation into pitch) by solvolysis liquefaction reaction. The areas covered consists of the pre-treatment process, material mixing process, reaction process, reaction freezing process, coke separation process, SR recovery process, pitch refining process, utility facilities, and waste water treatment facilities. Incidentally, the processes for which the design operation has been completed this year, particularly the reaction process, coke separation process, SR recovery process, etc., are in the field untrodden technologically in the world; therefore, their design method is supposed to be established from the results of the R and D on coal liquefaction, '1 t/day class solvolysis coal liquefaction plant.' (NEDO)

  12. Report on 1979 result of Sunshine Project (detailed design). Part 1. Forty t/day solvolysis coal liquefaction pilot plant; 1979 nendo 40T/nichi solvolysis sekitan pilot plant shosai sekkei. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The subject design documents are the compilation of the result of the design operation for the 'detailed design of 40 t/day class solvolysis coal liquefaction pilot plant'. The design of this pilot plant was conducted using, as the fundamental reference, the basic data provided by Kyushu National Industrial Research Institute and Kyushu University and the results of a contract research on '1 t/day class solvolysis coal liquefaction plant'. The subject detailed design was intended for Phase 1 centering on a single stage liquefaction - coal liquefaction (transformation into pitch) by solvolysis liquefaction reaction. The areas covered consists of the pre-treatment process, material mixing process, reaction process, reaction freezing process, coke separation process, SR recovery process, pitch refining process, utility facilities, and waste water treatment facilities. Incidentally, the processes for which the design operation has been completed this year, particularly the reaction process, coke separation process, SR recovery process, etc., are in the field untrodden technologically in the world; therefore, their design method is supposed to be established from the results of the R and D on coal liquefaction, '1 t/day class solvolysis coal liquefaction plant.' (NEDO)

  13. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  14. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    Science.gov (United States)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in

  15. Coal and Energy.

    Science.gov (United States)

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  16. Asia's coal and clean coal technology market potential

    International Nuclear Information System (INIS)

    Johnson, C.J.; Binsheng Li

    1992-01-01

    The Asian region is unique in the world in having the highest economic growth rate, the highest share of coal in total primary energy consumption and the highest growth rate in electricity generation capacity. The outlook for the next two decades is for accelerated efforts to control coal related emissions of particulates and SO 2 and to a lessor extent NO x and CO 2 . Only Japan has widespread use of Clean Coal Technologies (CCTs) however a number of economies have plans to install CCTs in future power plants. Only CCTs for electricity generation are discussed, and are defined for the purpose of this paper as technologies that substantially reduce SO 2 and/or NO x emissions from coal-fired power plants. The main theses of this paper are that major increases in coal consumption will occur over the 1990-2010 period, and this will be caccompanied by major increases in coal related pollution in some Asian economies. Coal fired electricity generation is projected to grow at a high rate of about 6.9 percent per year over the 1990-2010 period. CCTs are projected to account for about 150 GW of new coal-fired capacity over the 1990-2010 period of about one-third of all new coal-fired capacity. A speculative conclusion is that China will account for the largest share of CCT additions over the 1990-2010 period. Both the US and Japan have comparative advantages that might be combined through cooperation and joint ventures to gain a larger share of the evolving CCT market in Asia. 5 refs., 7 figs., 4 tabs

  17. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  18. Supply constraints : Australia and Canada coal industry face logistics and capacity challenges

    International Nuclear Information System (INIS)

    Borsato, J.

    2010-01-01

    Australia and Canada are benefiting from a global increase in coal consumption, but face challenges regarding coal and coal export capacity. Coal is Australia's biggest export commodity, accounting for over 50 percent of world coking coal exports, with almost 75 percent of those exports destined for Asian markets, primarily Japan. However, the number of ships delayed at Australian ports hit a record of 223 bulk carriers in early 2010. Compared to Canada, Australia faces greater logistical issues getting coal into port and onto ships at its 9 loading terminals. Two of Canada's 3 major shipping terminals, Westshore and Neptune, have some additional capacity. Its third terminal, Ridley Island, has considerable potential to carry more coal. With 98 percent of all coal moved by rail in Australia, rail issues also hinder growth. A national approach to planning freight transport on both roads and rail is being developed. While infrastructure issues remain the single greatest barrier to export growth for Australia's coal sector, Canada's most immediate issues pertain to mine permitting and mine-site expansion. In 2009, Canada exported 28 million tonnes of coal, 90 percent of it metallurgical. With approximately 70 million tonnes of annual production, mostly in British Columbia and Alberta, coal remains the number one commodity in Canada carried by rails and shipped from ports. 1 fig.

  19. Coal gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-29

    The proposal concerns a stage in the process of cooling the synthetic gas produced in a coal gasification plant at temperatures above 900/sup 0/C. The purpose is to keep the convection heating surface of the subsequent waste heat plant free of dirt. According to the invention, the waste heat plant has a radiation area connected before it, on the heating surfaces of which the slack carried over solidifies. This radiation area has a hydraulic and thermal cleaning system, which can be raised or lowered in a water bath. The subclaims concern all the constructional characteristics of this cleaning system, which causes the solidified slack to crack.

  20. Cultivating yeast in fractions of light oil from black coal resin. [Candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Kucher, R.V.; Pavlyuk, M.I.; Dzumedzei, N.V.; Turovskii, A.A.

    1982-11-01

    Feasibility of using a light fraction of black coal oil from the Avdeevskii coking plant as a substrate for growing microorganisms was studied. Candida tropicalis was adapted to the light oil in multiple stages and in continually changing conditions. Maximum growth of the yeast occurred in fractions of the oil with boiling points of 363, 373-293 K. It was demonstrated that low temperature fractions of the hard coal oil are a source of hydrocarbons and energy in microbiological processes. Surface-active materials, such as sodium lauryl sulfate and syntanol-15, stimulate the growth of the yeast in light oil fractions from hard coal resin. (5 refs.) (In Russian)

  1. Quantitative applications of gamma densitometry in the coal industry: a critique

    International Nuclear Information System (INIS)

    Shea, P.; Sher, R.; Gozani, T.

    1982-01-01

    This paper discusses the use of gamma densitometry to quantitatively assay bulk samples of coal on a continuous basis. Devices using these principles to determine mass flows are on the market, and work is progressing in several countries on instruments to determine ash content. The theoretical limits of applicability and inherent assumptions of these techniques are discussed, primarily as applied to dry bulk coal, but with some discussion of the more complicated problems of slurried coal. Gamma rays are generated by sources, usually a single radioactive element. These have several advantages over XRF, the main one being that no power is required to generate gammas. However, there are a limited number of gamma sources with useful energies, long enough half-lives to be economically useful, and clean spectra (that is, relatively few energies emitted by the source in question). Gamma densitometry measurements by single and multiple-energy transmission and backscatter measurements are discussed. A general formalism for analyzing multiple-energy systems is presented. While multi-energy systems can, in principle, pick out as many groups of elements as energies used, the matrices involved are ill-conditioned and thus require accurate measures of count rate (i.e., long counting times or high source intensities) to achieve acceptable errors. Changes in coal composition and profile of coal on a belt were also seen to be important sources of error. Transmission measurements are more amenable to analysis than backscatter, which are essentially transmission measurements made on a distributed source. In addition, transmission measurements are not restricted to low energy gamma sources, and can survey the entire bulk of coal rather than just the upper portion. The special problems of slurried coal measurements are briefly discussed

  2. Swelling behavior of several bituminous coals and their thermally treated coals

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Heng-fu; Cao, Mei-xia; Wang, Zhi-cai [Anhui University of Technology, Maanshan (China). School of Chemistry & Chemical Engineering

    2007-07-01

    The swelling behavior in different solvents of 4 bituminous coals with different ranks and their residues from extraction by CS{sub 2}/NMP mixed solvent (l:1 in volume) were measured. The change in swelling property of the four coals thermally treated at different temperature was observed. The results show that the swelling ratio decreases with increasing rank of coal. For lower rank bituminous coals the swelling ratios in polar solvent are higher than those in non-polar solvent, and this difference decreases with increasing rank. The cross-linking densities of the four residues decrease, and the swelling ratios increase compared with those of raw coals. The swelling ratios of the four thermally treated coals under 150{sup o}C in CS{sub 2} increase, suggesting the decrease in crosslinking density of them. When the thermal treatment temperature increases to 240{sup o}C, the swelling rations of the other three coals in NMP and CS{sub 2} increase again except gas coal, demonstrating the further decrease in crosslinking density. This result is coincident with the extraction yield change in the mixed solvent of the thermally treated coal. For example, the extraction yield of lean coal treated at 240{sup o}C increases from 6.9% to 17.3%. FT-IR results show the removal of oxygen group of the thermally treated coals. This may explain the increase in swelling ratio and extraction yield in the mixed solvent of coal after thermal treatment. The cross-linking density of the thermally treated coal decreases because of the break of hydrogen bonds due to removal of C = 0 and -OH oxygen groups during the thermal treatment, resulting in the increases of swelling ratio and extraction yield in the mixed solvent of thermally treated coal compared with those of raw coal. 15 refs., 3 figs., 6 tabs.

  3. Proceedings of the sixth APEC Coal Flow Seminar. Coal in the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The 6th APEC Coal Flow Seminar titled on 'The coal in the new millennium' was held in Korea from March 14 to March 16, 2000, and the proceedings were summed up. In this seminar, as to economies of coal consumption countries and coal supply countries in the APEC region, discussions were made on coal supply/demand, coal price, environmental problems and others. The keynote address was 'Twenty first century coal in the APEC region and Republic of Korea' given by Mr. Gam Yeol Lee from Korea. The main theme of the seminar was 'The status quo for the coal market,' and lectures titled on the following were given from Japan: 'The status quo of coal purchase by the Japanese electric company and its outlook' and 'A perspective of coal fired IPP under environmental constraints and deregulation of electricity.' Lectures from Australia: 'Responding to coal market growth in APEC regions by the Australian coal industry' and 'The coal price impact on coal supply and demand.' Further discussions were made on 'The long-term outlook for coal supply/demand' and 'Economies report on the outlook for coal supply/demand.' (NEDO)

  4. Comparison of feature and classifier algorithms for online automatic sleep staging based on a single EEG signal

    NARCIS (Netherlands)

    Radha, M.; Garcia Molina, G.; Poel, M.; Tononi, G.

    2014-01-01

    Automatic sleep staging on an online basis has recently emerged as a research topic motivated by fundamental sleep research. The aim of this paper is to find optimal signal processing methods and machine learning algorithms to achieve online sleep staging on the basis of a single EEG signal. The

  5. DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG.

    Science.gov (United States)

    Supratak, Akara; Dong, Hao; Wu, Chao; Guo, Yike

    2017-11-01

    This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.

  6. Computerization of administration and operation management in Polish black coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Mastej, R.; Syrkiewicz, J. (Centralny Osrodek Informatyki Gornictwa (Poland))

    1990-08-01

    Characterizes main solutions of the computerized management model adopted in Poland for the mining industry and the technical and oganizational structure of computer system application. Computer systems for black coal mines and the range of microprocessor application are shown in block diagrams. The COIG mining information center makes about 45 computer system modules with independent implementation available for black coal mines. The general concept foresees central data processing in the COIG center on the ODRA 1305 and ICL 297 computers with the G-3 operating system in the first stage and an ICL series 39 computer with the VME operating system in the second stage. For mines where no transmission lines are available local solutions based on smaller ICL computers, minicomputers or computer networks with the NOVELL network operating system or multi-access systems with the UNIX operating system are planned. 3 refs.

  7. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  8. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  9. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  10. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  11. High tech conveyors unitize Selby coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    Designs proposed by Anderson Strathclyde PLC and Cable Belt for single-flight conveyors to bring the output of the five Selby mines to the surface have both been developed by the UK National Coal Board. Both designs extend the limits of conveyor technology and are expected to economise on transport and longwalling costs. 4 references.

  12. New opportunities for U.S. coal and mineral exporters

    International Nuclear Information System (INIS)

    Watkins, J.A.

    1992-01-01

    U.S. exports of coal, metals and industrial minerals to the European Community were valued at $2.4 billion in 1989, representing 47 percent of total export revenues generated by these materials. Coal was the single largest contributor to the value of mineral exports to the EC with total sales of approximately $2 billion in 1989. With the extinction of trade barriers that will be triggered by the economic and political unification of Europe, new opportunities for U.S. minerals exporters are likely to develop. This paper examines the overall impact of European integration on U.S. metal and industrial mineral exports and provides a more rigorous analysis of the outlook for thermal and coking coal exports to the EC during the next decade

  13. South Blackwater Coal`s maintenance program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, J. [South Blackwater Coal Limited, Blackwater, Qld. (Australia)

    1998-09-01

    The South Blackwater operation consists of two opencut mining areas and two underground mines (Laleham and Kenmure) near Blackwater in central Queensland, all of which supply coal to a central coal preparation plant. South Blackwater Coal Ltd. recently developed a maintenance improvement programme, described in this article. The programme involved implementation systems of key performance indicators (KPIs), benchmaking, condition monitoring, work planning and control, failure analysis and maintenance audit. Some improvements became almost immediately apparent, others were quite gradual. Major results included: improved availability (and reliability) of all opencast fleets, improvements in rear dump availability; reduced maintenance man-hours for opencast fleets; and increased availability of the coal handling and preparation plant. The paper is an edited version of that presented at the `Maintenance in mining conference` 16-19 March 1998, held in Bali, Indonesia. 4 figs., 2 photos.

  14. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  15. Coal prices rise

    International Nuclear Information System (INIS)

    McLean, A.

    2001-01-01

    Coking and semi hard coking coal price agreements had been reached, but, strangely enough, the reaching of common ground on semi soft coking coal, ultra low volatile coal and thermal coal seemed some way off. More of this phenomenon later, but suffice to say that, traditionally, the semi soft and thermal coal prices have fallen into place as soon as the hard, or prime, coking coal prices have been determined. The rise and rise of the popularity of the ultra low volatile coals has seen demand for this type of coal grow almost exponentially. Perhaps one of the most interesting facets of the coking coal settlements announced to date is that the deals appear almost to have been preordained. The extraordinary thing is that the preordination has been at the prescience of the sellers. Traditionally, coking coal price fixing has been the prerogative of the Japanese Steel Mills (JSM) cartel (Nippon, NKK, Kawasaki, Kobe and Sumitomo) who presented a united front to a somewhat disorganised force of predominantly Australian and Canadian sellers. However, by the time JFY 2001 had come round, the rules of the game had changed

  16. Design of generic coal conversion facilities: Process release---Direct coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The direct liquefaction portion of the PETC generic direct coal liquefaction process development unit (PDU) is being designed to provide maximum operating flexibility. The PDU design will permit catalytic and non-catalytic liquefaction concepts to be investigated at their proof-of-the-concept stages before any larger scale operations are attempted. The principal variations from concept to concept are reactor configurations and types. These include thermal reactor, ebullating bed reactor, slurry phase reactor and fixed bed reactor, as well as different types of catalyst. All of these operating modes are necessary to define and identify the optimum process conditions and configurations for determining improved economical liquefaction technology.

  17. Health impacts of coal and coal use: Possible solutions

    Science.gov (United States)

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  18. Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-08-15

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO{sub x} Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable.

  19. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    Science.gov (United States)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  20. The resistive plate WELL detector as a single stage thick gaseous multiplier detector

    Energy Technology Data Exchange (ETDEWEB)

    Bressler, Shikma; Breskin, Amos; Moleri, Luca; Kumar, Ashwini; Pitt, Michael [Department of Particle Physics and Astrophysics, Weizmann Institute of Science (WIS) (Israel); Kudella, Simon [Institut fuer Experimentelle Kernphysik (IEKP), KIT (Germany)

    2015-07-01

    Gaseous Electron Multiplier (GEM) detector use high electric fields inside the h ole of a foil to achieve a high charge multiplication. As a thicker version of G EMs based on printed circuit board (PCB) structures, Thick Gaseous Electron Multiplier (THGEM) detectors combine the high gain of a GEM foil with the robustness, stability and low production costs of a PCB and allow a large quantity of applications that require the coverage of a large area at low cost and moderate spatial resolution. One application the Weizmann Institute of Science (WIS) develops as a member of the RD51 framework is the Resistive Plate WELL (RPWELL) detector. This single stage detector allows a very stable, discharge free operation at high gain (10{sup 5}). The single stage operation allows a low total height and make s the RPWELL a candidate for the Digital Hadronic Calorimeter (DHCAL) of the International Large Detector (ILD) at the International Linear Collider (ILC). The talk gives an insight into the way the RPWELL works and shows results from the last test beam.

  1. Proceedings of the sixth APEC Coal Flow Seminar. Coal in the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The 6th APEC Coal Flow Seminar titled on 'The coal in the new millennium' was held in Korea from March 14 to March 16, 2000, and the proceedings were summed up. In this seminar, as to economies of coal consumption countries and coal supply countries in the APEC region, discussions were made on coal supply/demand, coal price, environmental problems and others. The keynote address was 'Twenty first century coal in the APEC region and Republic of Korea' given by Mr. Gam Yeol Lee from Korea. The main theme of the seminar was 'The status quo for the coal market,' and lectures titled on the following were given from Japan: 'The status quo of coal purchase by the Japanese electric company and its outlook' and 'A perspective of coal fired IPP under environmental constraints and deregulation of electricity.' Lectures from Australia: 'Responding to coal market growth in APEC regions by the Australian coal industry' and 'The coal price impact on coal supply and demand.' Further discussions were made on 'The long-term outlook for coal supply/demand' and 'Economies report on the outlook for coal supply/demand.' (NEDO)

  2. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  3. Coal marketing manual 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This manual provides information on the international coal market in tabulated format. Statistics are presented for the Australian coal industry, exports, currency movements, world coal production, coal and coke imports and exports. Detailed information is provided on the Australian coal industry including mine specific summaries. Pricing summaries for thermal and coking coal in 1987, coal quality standards and specifications, trends in coal prices and stocks. Imports and exports for World coal and coke, details of shipping, international ports and iron and steel production. An exporters index of Australian and overseas companies with industry and government contacts is included. 15 figs., 67 tabs.

  4. Stress analysis of longwall top coal caving

    Energy Technology Data Exchange (ETDEWEB)

    Alehossein, H.; Poulsen, B.A. [CSIRO Exploration & Mining, Brisbane, Qld. (Australia)

    2010-01-15

    Longwall top coal caving (LTCC) is a relatively new method of mining thick coal seams that is currently achieving high productivity and efficiency. The technique is similar to traditional longwall mining in that a cutting head slices coal from the lower section of the coal seam onto a conveyor belt installed in front of the hydraulic support near the cutting face. In modern LTCC an additional rear conveyor belt is located behind the support, to which the flow of the caved coal from the upper part of the seam can be controlled by a moveable flipper attached to the canopy of the support. The mining method relies on the fracturing of the top coal by the front abutment pressure to achieve satisfactory caving into the rear conveyor. This paper develops a yield and caveability criterion based on in situ conditions in the top coal in advance of the mining face (yield) and behind the supports (caveability). Yielding and caving effects are combined into one single number called caving number (CN), which is the multiplication result of caving factor (CF) and yield factor (YF). Analytical derivations are based on in situ stress conditions, Mohr-Coulomb and/or Hoek-Brown rock failure criteria and an on-associated elastoplastic strain softening material behaviour. The yield and caveability criteria are in agreement with results from both numerical studies and mine data. The caving number is normalised to mining conditions of a reference Chinese mine (LMX mine) and is used to assess LTCC performance at fourteen other Chinese working longwalls that have had varying success with the LTCC technology. As a predictive model, results of this analytical/numerical study are useful to assess the potential success of caving in new LTCC operations and in different mining conditions.

  5. Stages of destruction and elastic compression of granular nanoporous carbon medium at high pressures

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Ledenyov, O.P.; Bobrova, N.B.; Chupikov, A.A.

    2015-01-01

    The granular nanoporous carbon medium, made of the cylindrical coal granules of the adsorbent of CKT-3, at an influence by the high pressures from 1 MPa to 3 GPa has been researched. The eight consecutive stages of the material's specific volume change, which is characterized by a certain dependence of the volume change on the pressure change, have been registered. It is shown that there is a linear dependence on the double log-log plot of the material's specific volume change on the pressure for an every stage of considered process. The two stages are clearly distinguished: a stage of material's mechanical destruction, and a stage of elastic compression of material without the disintegration of structure at a nano-scale. The hysteresis dependence of the material's specific volume change on the pressure change at the pressure decrease is observed. The small disperse coal dust particles jettisoning between the high pressure cell and the base plate was observed, resulting in the elastic stress reduction in relation to the small disperse coal dust particles volume. The obtained research data can be used to improve the designs of air filters for the radioactive chemical elements absorption at the NPP with the aims to protect the environment

  6. Workability of coal seams in the Upper Silesian Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Fels, M; Soltysik, K

    1978-04-01

    This paper presents results of an investigation on workability of coal seams of stratigraphic groups from 100 to 700 in the: Upper Silesian Coal Basin. Analyzed are 2900 petrographic logs taken in the longwall workings and in narrow openings as well as about 9000 individual samples. Workability of coal seams, floors and partings is determined. Workability is described by the indicator f, (according to the Protodyakonov shatter method) and the indicator U, (compression strength of the unshaped test samples). The mean percentage content of indivi dual petrographic groups of coal as well as the mean workability indicator, f, of coals in the stratigraphic groups of coal seams in Upper Silesia are also determined.

  7. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  8. Application of a three-dimensional network model to coal dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, I.

    1986-01-01

    A bond-flow correlated network model has been successfully used to calculate equilibrium desaturation curves, single phase permeabilities and two phase flow properties (dewatering curves) for coal filter cakes. A new method of pore volume assignment is presented in which the pore volume occupied by the large pores (which give a capillary pressure less than 0.5 psia) is assigned to the nodes and the rest is distributed to the bonds according to the pore size distribution. The micrographic pore size distribution, used as an input, is determined experimentally. Equilibrium desaturation curves for -32 mesh, -200 mesh and -100 + 200 mesh coal cakes (Pittsburgh Seam Coal), formed with distilled water, have been calculated. The results for six -32 mesh coal cakes formed with surfactants show that the effect of surfactants can be accounted for by modifying one of the model parameters - the entry diameter constant. A correlation is presented to estimate the modified entry diameter constant using experimentally determined surface tension and contact angle values. The size distribution of particles in dispersed state has been correlated with that in the cake which in turn has been correlated with the pore size distribution. An equilibrium desaturation curve has been successfully calculated for -32 mesh Pittsburgh Seam coal using the pore size distribution estimated from the dispersed particle size distribution. Calculated single phase permeabilities, using a bond-flow correlated network and a simple cubic lattice, agree with the experimental values better than a bond-correlated network using a face-centered cubic lattice.

  9. Ultravitrinite coals from Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Lapo, A.V.; Letushova, I.A.

    1979-03-01

    Chemical and petrographic analysis was conducted on coals from the Anadyrya and Bukhti Ugol'noi deposits. Characteristics of the most prevalent type of vitrinite coals in both regions are presented here. Anadyrya coals belong to a transitional phase between brown coal and long flame. Ultravitrinite coals predominate. Gas coals from Bukti Ugol'noi have a higher carbon content than Anadyrya coals. They also have a higher hydrogen content and yield of initial resin. In several cases there was also a higher yield of volatile substances. Chukotka coals are characterized by a 10 percent higher initial resin yield than equally coalified Donetsk coals, other indicators were equal to those of Donetsk coals. Because of this, Chukotka coals are suitable for fuel in power plants and as raw materials in the chemical industry. (15 refs.) (In Russian)

  10. Numerical simulations of single and multi-staged injection of H2 in a supersonic scramjet combustor

    Directory of Open Access Journals (Sweden)

    L. Abu-Farah

    2014-12-01

    Full Text Available Computational fluid dynamics (CFD simulations of a single staged injection of H2 through a central wedge shaped strut and a multi-staged injection through wall injectors are carried out by using Ansys CFX-12 code. Unstructured tetrahedral grids for narrow channel and quarter geometries of the combustor are generated by using ICEM CFD. Steady three-dimensional (3D Reynolds-averaged Navier-stokes (RANS simulations are carried out in the case of no H2 injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection. Shear stress transport (SST based on k-ω turbulent model is adopted. Flow field visualization (complex shock waves interactions and static pressure distribution along the wall of the combustor are predicted and compared with the experimental schlieren images and measured wall static pressures for validation. A good agreement is found between the CFD predicted results and the measured data. The narrow and quarter geometries of the combustor give similar results with very small differences. Multi-staged injections of H2 enhance the turbulent H2/air mixing by forming vortices and additional shock waves (bow shocks.

  11. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  12. Structural elucidation, molecular representation and solvent interactions of vitrinite-rich and inertinite-rich South African coals

    Science.gov (United States)

    van Niekerk, Daniel

    The structural differences and similarities of two Permian-aged South African coals, vitrinite-rich Waterberg and inertinite-rich Highveld coals (similar rank, carbon content and Permian age), were evaluated. With South African coals the opportunity presented itself to study not only Permian-aged Gondwana vitrinite but also inertinite. It was expected that these coals would differ from Northern hemisphere Carboniferous coals. It was concluded from various structural data that both coals, although different in maceral composition and depositional basins, are similar in their base structural composition. The main differences were that the inertinite-rich Highveld coal was more ordered, more aromatic, and had less hydrogen than the vitrinite-rich Waterberg coal. Analytical data were used to construct large-scale advanced molecular representations for vitrinite-rich Waterberg and inertinite-rich Highveld coals. The three-dimensional models were structurally diverse with a molecular weight range of 78 to 1900 amu. The vitrinite-rich coal model consisted of 18,572 atoms and 191 individual molecules and the inertinite-rich coal model consisted of 14,242 atoms and 158 individual molecules. This largescale modeling effort was enabled by the development of various PERL scripts to automate various visualization and analytical aspects. Coal swelling studies were conducted using the traditional pack-bed swelling method and a new novel single-particle stop-motion videography swelling method with NMP and CS2/NMP solvents. The pack-bed swelling showed that vitrinite-rich coal had a greater swelling extent and that swelling extent for both coals was greater in CS2/NMP binary solvent than for NMP. Single-particle swelling experiments showed that both coals, for both solvents, exhibit overshoot-type and climbing-type swelling behaviors. Inertinite-coal had a faster swelling rate, in both solvents, than the vitrinite-rich coal. The single-particle swelling data was used to calculate

  13. Clinical Outcomes and Risks of Single-stage Bilateral Unicompartmental Knee Arthroplasty via Oxford Phase III

    Directory of Open Access Journals (Sweden)

    Tong Ma

    2015-01-01

    Full Text Available Background: Osteoarthritis often affects the joint bilaterally, and the single-stage (SS unicompartmental knee arthroplasty (UKA is advantageous in terms of a single anesthesia administration, a short hospital stay, lower medical costs, and enhanced patient convenience. However, the complication risk of SS UKA continues to be debated. The aim of this article was to evaluate the clinical effectiveness, complications, and functional recovery of SS and two-stage (TS UKA. Methods: From January 2008 to December 2013, we compared a series of 36 SS UKA with 45 TS UKA for osteoarthritis. The mean age was 65.4 years (range: 55-75 years. The mean body mass index was 25.2 kg/m 2 (range: 22-29 kg/m 2 . The pre- and post-operative Oxford Knee Scores (OKSs, complications, operative times, tourniquet times, the amount of drainage, and hemoglobin (Hb were evaluated. The Chi-square test, Fisher′s exact test, and paired and grouped t-tests were used in this study. Results: The mean follow-up was 50 months. No complications of death, fat embolism, deep vein thrombosis, and prosthetic infection were reported. Patients who underwent SS UKA had a shorter cumulative anesthesia time (113.5 vs. 133.0 min, P 0.05. At the final follow-up, the mean OKS improved from 39.48 ± 5.69 to 18.83 ± 3.82 (P 0.05. Patients who underwent SS UKA had a faster recovery. Conclusions: The single-staged UKA offers the benefits of a single anesthesia administration, reduced total anesthetic time, decreased overall rehabilitation time, and absence of an increase in perioperative mortality or complications compared with the TS bilateral UKA.

  14. Proposition of primary methods for nitrogen oxides emissions reduction at coal-fired 200 MW power unit (Yugoslavia)

    International Nuclear Information System (INIS)

    Repic, B.; Mladenovic, R.; Crnomarkovic, N.

    1997-01-01

    The combustion of coal is followed by increased pollution of the environment with toxic products. Together with the generation of other pollutants, the emission of nitrogen oxides (NO x ) represents, due to its high toxicity, a great environmental risk. Appropriate measures must be taken for lowering NO x emission, both on new facilities and those already in operation. Basic technologies (primary reduction methods) of several generations, developed until now and used in practice, are presented in the paper. The technologies applicable on domestic facilities and adjusted to domestic coals have been given particular consideration. Proposition of primary methods for NO x emission reduction at coal-fired 200 MW power unit at TPS 'Nikola Tesla' is analyzed. The following methods have been considered in detail: flue gases recirculation, multi-stage combustion, low-NO x burners, additional over-fire air, multi-stage air intake into the furnace, staged fuel injection, grinding fineness increase, etc. Considerations were performed according to existing constructive characteristics of the furnace and the burners, and characteristics of used fuels, i. e. lignites from Kolubara pit. (Author)

  15. Computer-aided planning of brown coal seam mining in regard to coal quality

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, R.; Lehmann, A.; Rabe, H.; Richter, S.

    1988-09-01

    Discusses features of the geologic SORVER software developed at the Freiberg Fuel Institute, GDR. The program processes geologic data from exploratory wells, petrographic characteristics of a coal seam model, technological mining parameters and coal quality requirements of consumers. Brown coal reserves of coking coal, gasification coal, briquetting coal and steam coal are calculated. Vertical seam profiles and maps of seam horizon isolines can be plotted using the program. Coal quality reserves along the surface of mine benches, mining block widths and lengths for excavators, maximum possible production of individual coal qualities by selective mining, and coal quality losses due to mining procedures are determined. The program is regarded as a means of utilizing deposit reserves more efficiently. 5 refs.

  16. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  17. Modeling condom-use stage of change in low-income, single, urban women.

    Science.gov (United States)

    Morrison-Beedy, Dianne; Carey, Michael P; Lewis, Brian P

    2002-04-01

    This study was undertaken to identify and test a model of the cognitive antecedents to condom use stage of change in low-income, single, urban women. A convenience sample of 537 women (M=30 years old) attending two urban primary health care settings in western New York State anonymously completed questionnaires based primarily on two leading social-cognitive models, the transtheoretical model and the information-motivation-behavioral skills model. We used structural equation modeling to examine the direct and indirect effects of HIV-related knowledge, social norms of discussing HIV risk and prevention, familiarity with HIV-infected persons, general readiness to change sexual behaviors, perceived vulnerability to HIV, and pros and cons of condom use on condom-use stage of change. The results indicated two models that differ by partner type. Condom-use stage of change in women with steady main partners was influenced most by social norms and the pros of condom use. Condom-use stage of change in women with "other" types (multiple, casual, or new) of sexual partners was influenced by HIV-related knowledge, general readiness to change sexual behaviors, and the pros of condom use. These findings suggest implications for developing gender-relevant HIV-prevention interventions. Copyright 2002 Wiley Periodicals, Inc.

  18. Coal structure and reactivity changes induced by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Pevida, C.; Garcia, R.; Pis, J.J. [Department of Energy and Environment, Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Steel, K.M.; Patrick, J.W. [Fuel Technology Group, School of Chemical, Environmental and Mining Engineering, Nottingham University, University Park, NG7 2RD Nottingham (United Kingdom)

    2002-12-01

    The aim of this work was to determine the influence that an advanced demineralisation procedure has on the combustion characteristics of coal. A high-volatile bituminous coal with 6.2% ash content was treated in a mixture of hydrofluoric and fluorosilicic acids (HF/H{sub 2}SiF{sub 6}). Nitric acid was used either as a pretreatment, or as a washing stage after HF/H{sub 2}SiF{sub 6} demineralisation, with an ash content as low as 0.3% being attained in the latter case. The structural changes produced by the chemical treatment were evaluated by comparison of the FTIR spectra of the raw and treated coal samples. The devolatilisation and combustibility behaviour of the samples was studied by using a thermobalance coupled to a mass spectrometer (TGA-MS) for evolved gas analysis. The combustibility characteristics of the cleaned samples were clearly improved, there being a decrease in SO{sub 2} emissions.

  19. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  20. Mineral and inorganic chemical composition of the Pernik coal, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Yossifova, Mariana G. [Geological Institute, Acad. G. Bonchev Str., Bl.24, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-11-22

    The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that

  1. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  2. Split and collectorless flotation to medium coking coal fines for multi-product zero waste concept

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Shobhana; Bhattacharyya, K.K. [Mineral Processing Division, National Metallurgical Laboratory, Jamshedpur-831007 (India)

    2007-06-15

    The medium coking coal fines of - 0.5 mm from Jharia coal field were taken for this investigation. The release analysis of the composite coal reveals that yield is very low at 10.0% ash, about 25% at 14% ash and 50% at 17% ash level. The low yield is caused by the presence of high ash finer fraction. The size-wise ash analysis of - 0.5 mm coal indicated that - 0.5 + 0.15 mm fraction contains less ash than - 0.15 mm fraction. Thus, the composite feed was split into - 0.5 + 0.15 mm and - 0.15 mm fractions and subjected to flotation separately. The low ash bearing fraction (- 0.5 + 0.15 mm) was subjected to two stages collectorless flotation to achieve the concentrate with 10% ash. The cleaner concentrate (18.9%) with 10% ash was recovered which has an application in metallurgical industries. The concentrate of 30.2% yield with 12.5% ash could be achieved in one stage collectorless flotation which is suitable for use in coke making as sweetener. As the - 0.15 mm fraction contains relatively high ash, collector aided flotation using sodium silicate was performed to get a concentrate of 23.6% yield with about 17% ash. The blending of this product with cleaner tail obtained from - 0.5 + 0.15 mm produces about 35.0% yield with 17% ash and that can be utilized for coke making. The reject from the two fractions can be used for conventional thermal power plant or cement industries using a 23.5% ash after one stage collector aided flotation and the final tailings produced content ash of 61.6% can be used for fluidization combustion bed (FBC). This eventually leads to complete utilization of coal. (author)

  3. Single stage three level grid interactive MPPT inverter for PV systems

    International Nuclear Information System (INIS)

    Ozdemir, Saban; Altin, Necmi; Sefa, Ibrahim

    2014-01-01

    Highlights: • A three phase three-level NPC inverter for grid interactive PV systems is proposed. • A novel MPPT algorithm is introduced for single stage systems. • The proposed algorithm is robust with respect to parameter variations of PV system. • THD level is measured as 3.45% and it meets the international standards (<5%). • Total system efficiency is measured as 93.08%. - Abstract: In this study, three-phase, single stage neutral point clamped grid interactive inverter is designed and implemented. The reference current of the voltage source inverter is determined by maximum power point tracking sub-program in order to obtain maximum power from photovoltaic modules instantaneously. Proposed control is realized via TMS320F28335 32-bit floating point processor. The modified incremental conductance method is applied for maximum power point tracking; the PI regulator is used to control the inverter output current shape and level. Galvanic isolation is provided by a line frequency transformer that matches inverter output voltage to the grid voltage level and prevents DC current injection into the grid. Experimental results show that the designed inverter imports energy to the grid with unity power factor, total harmonic distortion level is 3.45% and this value is in the limits of the international standards. In addition, the total efficiency of the system is measured as 93.08%. The proposed system gets the maximum power from photovoltaic module and dispatches into the grid without using additional DC/DC converter

  4. Comprehensive report to Congress Clean Coal Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This project will demonstrate Integrated Gasification Combined Cycle (IGCC) technology in a commercial application by the repowering of an existing City Water, Light and Power (CWL P) Plant in Springfield, Illinois. The project duration will be 126 months, including a 63-month demonstration period. The estimated cost of the project is $270,700,000 of which $129,357,204 will be funded by DOE. The IGCC system will consist of CE's air-blown, entrained-flow, two-stage, pressurized coal gasifier; an advanced hot gas cleanup process; a combustion turbine modified to use low Btu coal gas; and all necessary coal handling equipment. An existing 25-MWe steam turbine and associated equipment will also be part of the IGCC system. The result of repowering will be an IGCC power plant with low environmental emissions and high net plant efficiency. The repowering will increase plant output by 40 MWe through addition of the combustion turbine, thus providing a total IGCC capacity of a nominal 65 MWe. 3 figs., 2 tabs.

  5. The coupling of coal and nuclear energy for the long-term supply of energy and raw materials

    International Nuclear Information System (INIS)

    Knizia, K.

    1986-10-01

    In view of the limited world reserves of fossil fuels and the increase in demand to be expected because of the continued growth of the world population, coal and nuclear energy will have to make an increasing contribution to the energy supply. Their contribution will range from electricity generation to the heat sector and to the raw materials market via various gases obtained from them. The further development towards this field of tasks will lead first via the gasification of coal. It will be carried out autothermally in the first stage of development. The gas produced is suitable for realising considerable improvements in efficiency as compared to coal-fired power stations of present-day design since it will permit the generation of electricity via combined gas turbine/steam turbine processes. Efforts are being made to take further the processes based on this technology by introducing a sodium circuit in addition to the coal gasification, which will make it possible to keep the plants required for coal gasification small. In later stages, this technology will also be suitable for producing a considerable improvement in the diversion of heat at high temperatures from high-temperature reactor nuclear power stations for several purposes. (author)

  6. Promotive study on preparation of basis for foreign coal import. Study on coal renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Yoji [Japan Economic Research Institute, Tokyo

    1988-09-16

    This is an interim report on the coal renaissance study carried out in 1987 as a part of the Promotive Study on Preparation of Basis for Foreign Coal Import. The background and ideology of coal renaissance, future aspect of demand for coal, problems pertaining to the expansion of application, and a proposal for the expansion of coal usage are described in order. The role of coal expected as an alternate fuel for petroleum, development of new application fields for coal, conversion to coal, contribution of Japan to the stablization of international coal supply are outlined. Coal renaissance aims, based on technology, at stimulation of coal demand, change in the image of coal, and the utilization of the accumulated abundant knowhow. The aspect of coal demand in 2000, solution and current status of various restricting factors relating to the use of coal in general industry, and the remaining problems are discussed. 6 figures, 10 tables.

  7. Propulsion requirements for reusable single-stage-to-orbit rocket vehicles

    Science.gov (United States)

    Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger

    1994-05-01

    The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.

  8. Numerical analysis of single and multiple particles of Belchatow lignite dried in superheated steam

    Science.gov (United States)

    Zakrzewski, Marcin; Sciazko, Anna; Komatsu, Yosuke; Akiyama, Taro; Hashimoto, Akira; Kaneko, Shozo; Kimijima, Shinji; Szmyd, Janusz S.; Kobayashi, Yoshinori

    2018-03-01

    Low production costs have contributed to the important role of lignite in the energy mixes of numerous countries worldwide. High moisture content, though, diminishes the applicability of lignite in power generation. Superheated steam drying is a prospective method of raising the calorific value of this fuel. This study describes the numerical model of superheated steam drying of lignite from the Belchatow mine in Poland in two aspects: single and multi-particle. The experimental investigation preceded the numerical analysis and provided the necessary data for the preparation and verification of the model. Spheres of 2.5 to 30 mm in diameter were exposed to the drying medium at the temperature range of 110 to 170 °C. The drying kinetics were described in the form of moisture content, drying rate and temperature profile curves against time. Basic coal properties, such as density or specific heat, as well as the mechanisms of heat and mass transfer in the particular stages of the process laid the foundations for the model construction. The model illustrated the drying behavior of a single particle in the entire range of steam temperature as well as the sample diameter. Furthermore, the numerical analyses of coal batches containing particles of various sizes were conducted to reflect the operating conditions of the dryer. They were followed by deliberation on the calorific value improvement achieved by drying, in terms of coal ingredients, power plant efficiency and dryer input composition. The initial period of drying was found crucial for upgrading the quality of coal. The accuracy of the model is capable of further improvement regarding the process parameters.

  9. Use of structural parameters of Canadian coals to follow coalification process

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Charland, J.-P.; Dureau, R.; Kalkreuth, W.; Wieschenkaemper, I. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-06-01

    A series of Canadian coals was used to evaluate the structural parameters determined by the FTIR spectroscopy and the apparent aromaticity determined by solid state {sup 13}C NMR spectroscopy as coalification indicators. The results support the existence of two main coalification regions, i.e. the first involving lignite-subbituminous-high volatile bituminous stages and the second which begins with high volatile bituminous coals and ends with anthracite. The deoxygenation is the main reaction in the first region whereas the steady increase in apparent aromaticity is the most evident process in the second. The hydroxylic oxygen is a good indicator to distinguish between different coalification stages in the first region. The amount of three and more hydrogens attached to aromatic units exhibited a linear trend with both apparent aromaticity and mean reflectance for the coalification range from lignite to anthracite. 15 refs., 10 figs.

  10. ACR coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This publication is a comprehensive reference document on production, exports, prices and demand of coal in world markets. A forecast of demand by coal type and country up to the year 2000 is provided. Statistics of the Australian export industry are complemented by those of South Africa, USA, Canada, Indonesia, China, C.I.S. and Colombia. A very comprehensive coal quality specification for nearly all the coal brands exported from Australia, as well as leading non-Australian coal brands, is included.

  11. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  12. Reclamation technology development for western Arkansas coal refuse waste materials

    International Nuclear Information System (INIS)

    King, J.R.; Veith, D.L.

    1994-01-01

    Coal mining has been an important industry in the Arkansas River Valley Major Land Resource Area (MLRA) of western Arkansas for more than 100 yr., most of it with little regard for environmental concerns. Almost 3,640 ha. of land affected by surface coal mines cover the seven-county area, with less than 1,200 ha. currently in various stages of operation or reclamation. Since only the active mining sites must now be reclaimed by law, the remaining 2,440 ha. of abandoned land remains at the mercy of natural forces. Little topsoil exists on these sites and the coal wastes are generally acidic with a pH in the 4.0-5.5 range. Revegetation attempts under these conditions generally require continued maintenance and retreatment until an acceptable cover is achieved. If and when an acceptable vegetative cover is established, the cost frequently approaches $7,400/ha. ($3,000/acre). In an effort to resolve these issues and provide some direction for stabilizing coal waste lands, the US Department of Agriculture through its Soil Conservation Service Plant Materials Center at Boonville, Arkansas, received a Congressional Pass through administered by the US Bureau of Mines, to support a 5-yr. revegetation study on the coal mine spoils of western Arkansas. This paper reports the results through the spring of 1994 on that portion of the study dealing with the establishment of blackberries as a cash crop on coal mine spoils

  13. Single Stage Contactor Testing Of The Next Generation Solvent Blend

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D. T.; Peters, T. B.; Duignan, M. R.; Williams, M. R.; Poirier, M. R.; Brass, E. A.; Garrison, A. G.; Ketusky, E. T.

    2014-01-06

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility at the Savannah River Site (SRS) is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent to increase the cesium decontamination factor. To support this integration of NGS into the MCU facility the Savannah River National Laboratory (SRNL) performed testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing utilized a blend of BOBCalixC6 based solvent and the NGS with the new extractant, MaxCalix, as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 liquid-to-liquid centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. The results indicate that hydraulically, the NGS solvent performed hydraulically similar to the current solvent which was expected. For the organic carryover 93% of the solvent is predicted to be recovered from the stripping operation and 96% from the extraction operation. As for the mass transfer, the NGS solvent significantly improved the cesium DF by at least an order of magnitude when extrapolating the One-stage results to actual Seven-stage extraction operation with a stage efficiency of 95%.

  14. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E.Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  15. Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines

    Science.gov (United States)

    Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.

    2017-11-01

    The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.

  16. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  17. Ecofriendly bricks elaborated from coal waste of Moroccan Jerrada Mining

    Directory of Open Access Journals (Sweden)

    Ez-zaki H.

    2018-01-01

    Full Text Available Solid waste generated during mining is one of the major environmental problems associated with this industrial activity. The best solution to overcome the environmental impact of this waste is to find recycling facilities in mass-produced products that can absorb the large quantities of these available byproducts. The present study shows the feasibility of using the coal waste of Moroccan Jerrada mining in the production of ecological brick. The first step consists of consecutive stages of crushing, grinding and heating at 650°C of the coal waste with a small amount of lime in order to promote the reactive products of elaborated binders. The second step of the process consists of mixing treated coal waste with a small amount of marble dust, sand, gravel, and water, then pressed and dried at room temperature to manufacture a laboratory ecofriendly bricks. The mechanical strength and thermal conductivity are investigated.

  18. Single Ion transient-IBIC analyses of semiconductor devices using a cryogenic temperature stage

    International Nuclear Information System (INIS)

    Laird, J.S.; Bardos, R.; Legge, G.J.F.; Jagadish, C.

    1998-01-01

    A new Transient - IBIC data acquisition and analysis system at MARC is described. A discussion on the need for single ion control and temperature control is also given. The recorded signal is used as the trigger for beam pulsing. The new cryostatic temperature control stage is introduced. Data is presented on line profiles across the edge of a Au-Si junction collected over the temperature range of 25-300K using a developed C-V and I-V variable temperature stage incorporating a liquid helium cryostat. It demonstrates the potential improvements in spatial resolution in materials of long lifetime by mapping on timing windows around the prompt charge component in the charge transient

  19. Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong [Inha Univ., Incheon (Korea, Republic of)

    2017-01-15

    In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

  20. Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor

    International Nuclear Information System (INIS)

    Dinh, Cong-Truong; Ma, Sang-Bum; Kim, Kwang Yong

    2017-01-01

    In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

  1. Coal-to-liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.W.

    2006-03-15

    With crude oil prices rocketing, many of the oil poor, but coal rich countries are looking at coal-to-liquid as an alternative fuel stock. The article outlines the two main types of coal liquefaction technology: direct coal liquefaction and indirect coal liquefaction. The latter may form part of a co-production (or 'poly-generation') project, being developed in conjunction with IGCC generation projects, plus the production of other chemical feedstocks and hydrogen. The main part of the article, based on a 'survey by Energy Intelligence and Marketing Research' reviews coal-to-liquids projects in progress in the following countries: Australia, China, India, New Zealand, the Philippines, Qatar and the US. 2 photos.

  2. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  3. Single-stage-to-orbit: Meeting the challenge

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, Robert Eugene

    1995-10-01

    There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, and X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.

  4. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  5. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  6. Material balance in coal. 2. Oxygen determination and stoichiometry of 33 coals

    International Nuclear Information System (INIS)

    Volborth, A.; Miller, G.E.; Garner, C.K.; Jerabek, P.A.

    1977-01-01

    The chemical analysis of coal can be supplemented by the determination of oxygen in high and low temperature ash, in coal as received and in coal dried at 105 0 C. The rapid method utilizes fast-neutron activation. The reaction 16 O(n,p) 16 N and counting of the 6.1 and 7.1 MeV gammas of 7.3 second half-life are used. A specially designed dual transfer and simultaneous counting system gives very accurate results. Oxygen in 33 coals ranging from lignite to low volatile bituminous coal is determined and compared with ''oxygen by difference.'' Considerable discrepancies are observed. Better stoichiometric results are obtained if oxygen in coal ash, in wet coal and in the dried coal is determined. This permits the estimation of the true material balances using data of the ultimate and the proximate coal analysis. The oxygen determination provides the coal chemist with an accurate basis and can be used to rank coal. The summation of the percent of carbon, nitrogen, hydrogen, sulfur, and oxygen becomes more meaningful and some errors can be detected and the state of completeness of coal analysis thus evaluated. Total sulfur can be estimated and oxidation effects during drying can be detected. These affect the moisture determination. It appears that after more data are collected, the interpretation of solid fuel analyses may be facilitated and will be stoichiometrically more meaningful. It is shown that it may be possible to simplify the present time-consuming methods of coal analysis

  7. Australian black coal statistics 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This second edition of Australian black coal statistics replaces the Joint Coal Board's publication 'Black coal in Australia'. It includes an expanded international coal trade supplement. Sections cover resources of black coal, coal supply and demand, coal production, employment and productivity of mines, export data, coal consumption and a directory of producers.

  8. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Tara J.; Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, Alberta (Canada); Budwill, Karen [Carbon and Energy Management, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, Alberta (Canada)

    2010-05-01

    Coalbed methane is an unconventional fuel source associated with certain coal seams. Biogenic methane can comprise a significant portion of the gas found in coal seams, yet the role of microbes in methanogenesis in situ is uncertain. The purpose of this study was to detect and identify major bacterial and archaeal species associated with coal sampled from sub-bituminous methane-producing coal beds in western Canada, and to examine the potential for methane biogenesis from coal. Enrichment cultures of coal samples were established to determine how nutrient amendment influenced the microbial community and methane production in the laboratory. 16S rRNA gene clone libraries were constructed using DNA extracted and amplified from uncultured coal samples and from methanogenic coal enrichment cultures. Libraries were screened using restriction fragment length polymorphism, and representative clones were sequenced. Most (> 50%) of the bacterial sequences amplified from uncultured coal samples were affiliated with Proteobacteria that exhibit nitrate reduction, nitrogen fixation and/or hydrogen utilization activities, including Pseudomonas, Thauera and Acidovorax spp., whereas enrichment cultures were dominated by Bacteroidetes, Clostridia and/or Lactobacillales. Archaeal 16S rRNA genes could not be amplified from uncultured coal, suggesting that methanogens are present in coal below the detection levels of our methods. However, enrichment cultures established with coal inocula produced significant volumes of methane and the archaeal clone libraries were dominated by sequences closely affiliated with Methanosarcina spp. Enrichment cultures incubated with coal plus organic nutrients produced more methane than either nutrient or coal supplements alone, implying that competent methanogenic consortia exist in coal beds but that nutrient limitations restrict their activity in situ. This report adds to the scant literature on coal bed microbiology and suggests how microbes may be

  9. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  10. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  11. Venezuelan coal

    International Nuclear Information System (INIS)

    Vazquez, L.U.

    1991-01-01

    The existence of coal deposits in Venezuela has been known since the early nineteenth century, when the Naricual Mines were discovered in the State of Anzoategui Eastern Venezuela. Through the years the Venezuelan coal business had its ups and downs, but it was not until 1988 that we could properly say that our coal began to play a role in the international market. This paper reports that it is only now, in the nineties, that Venezuelan coal projects have come under a planning, promotional and developmental policy preparing the ground for the great projects Venezuela will have in the not-too-distant future

  12. Lithofacies palaeogeography of the Upper Permian Changxing Stage in the Middle and Upper Yangtze Region, China

    Directory of Open Access Journals (Sweden)

    He Youbin

    2013-04-01

    Full Text Available Based on the petrological study, according to single factor analysis and multifactor comprehensive mapping method, the quantitative lithofacies palaeogeography of the Upper Permian Changxing Stage of the Middle and Upper Yangtze Region was studied. The Changxing Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks; in addition, clastic and siliceous rocks occur with rare coals and pyroclastic rocks. Lithofacies can be divided into five types, including clastic rock assemblage, clastic rock–limestone assemblage, limestone assemblage, limestone–siliceous rock assemblage, and siliceous rock–clastic rock assemblage. Four fundamental ecological types and five fossil assemblages were recognized in the Changxing Stage. On the basis of the petrological and palaeoecological study, eight single factors were chosen including thickness, content of marine rocks, content of shallow water carbonate rocks, content of bioclasts with limemud matrix, content of bioclasts with sparry cement, distribution of reefs, content of thin bedded siliceous rocks and content of deep water sedimentary rocks. And eight single factor maps and one lithofacies paleogeographic map of the Changxing Stage were compiled. Paleoenvironments from west to east include an erosional area, fluvial plain, clastic platform, carbonate platform and reefs that developed there, slope and basin, low energy organic banks, and high energy organic banks. Sedimentary environments have an obvious control on the development of the source rocks, and the excellent source rocks are developed in the Dalong Formation. Changxing Stage reservoirs should be dominated by the reef and platform surrounding the Guangyuan–Liangping Basin rim area, and is the most favorable exploration area of the reef petroleum reservoirs of the Changxing Formation.

  13. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  14. Residual coal exploitation and its impact on sustainable development of the coal industry in China

    International Nuclear Information System (INIS)

    Zhang, Yujiang; Feng, Guorui; Zhang, Min; Ren, Hongrui; Bai, Jinwen; Guo, Yuxia; Jiang, Haina; Kang, Lixun

    2016-01-01

    Although China owns large coal reserves, it now faces the problem of depletion of its coal resources in advance. The coal-based energy mix in China will not change in the short term, and a means of delaying the coal resources depletion is therefore urgently required. The residual coal was exploited first with a lower recovery percentage and was evaluated as commercially valuable damaged coal. This approach is in comparison to past evaluations when the residual coal was allocated as exploitation losses. Coal recovery rates, the calculation method of residual coal reserves and statistics of its mines in China were given. On this basis, a discussion concerning the impacts on the delay of China's coal depletion, development of coal exploitation and sustainable developments, as well as technologies and relevant policies, were presented. It is considered that the exploitation of residual coal can effectively delay China's coal depletion, inhibit the construction of new mines, redress the imbalance between supply and demand of coal in eastern China, improve the mining area environment and guarantee social stability. The Chinese government supports the exploitation technologies of residual coal. Hence, exploiting residual coal is of considerable importance in sustainable development of the coal industry in China. - Highlights: •Pay attention to residual coal under changing energy-mix environment in China. •Estimate residual coal reserves and investigate its exploitation mines. •Discuss impacts of residual coal exploitation on delay of coal depletion in China. •Discuss impacts on coal mining industry and residual coal exploitation technology. •Give corresponding policy prescriptions.

  15. Similar simulation study on the characteristics of the electric potential response to coal mining

    Science.gov (United States)

    Niu, Yue; Li, Zhonghui; Kong, Biao; Wang, Enyuan; Lou, Quan; Qiu, Liming; Kong, Xiangguo; Wang, Jiali; Dong, Mingfu; Li, Baolin

    2018-02-01

    An electric potential (EP) can be generated during the failure process of coal and rock. In this article, a similar physical model of coal rock was built and the characteristics of the EP responding to the process of coal mining were studied. The results showed that, at the early mining stage, the structure of coal rock strata were stable in the simulation model, the support stress of overlying coal rock strata was low and the maximum subsidence was little, while the EP change was less. With the advancement of the working face, the support stress of the overlying coal rock strata in the mined-out area changed dramatically, the maximum subsidence increased constantly, the deformation and destruction were aggravated, and cracks expanded continuously. Meanwhile, the EP response was significant with fluctuation. When significant macro damage appeared in coal rock strata, the EP signal fluctuation was violent. The overlying coal rock strata were influenced by gravity and mining activity. During the mining process, the crack growth and the friction, together with slip between coal and rock particles, resulted in the response of EP. The change in EP was closely related to the damage state and stress distribution of the coal rock strata. EP monitoring has the advantages of accurate reflection and strong anti-interference in the field. Therefore, with further study, an EP monitoring method could be applied for monitoring and early warning of coal and rock dynamic disaster, and risk evaluation in the future. The strength of the EP and its fluctuation degree could serve as the key discrimination indexes.

  16. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  17. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  18. Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO(sub x) Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable

  19. Advances in single- and multi-stage Stirling-type pulse tube cryocoolers for space applications in NLIP/SITP/CAS

    Science.gov (United States)

    Dang, Haizheng; Tan, Jun; Zha, Rui; Li, Jiaqi; Zhang, Lei; Zhao, Yibo; Gao, Zhiqian; Bao, Dingli; Li, Ning; Zhang, Tao; Zhao, Yongjiang; Zhao, Bangjian

    2017-12-01

    This paper presents a review of recent advances in single- and multi-stage Stirling-type pulse tube cryocoolers (SPTCs) for space applications developed at the National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (NLIP/SITP/CAS). A variety of single-stage SPTCs operating at 25-150 K have been developed, including several mid-sized ones operating at 80-110 K. Significant progress has been achieved in coolers operating at 30-40 K which use common stainless steel meshes as regenerator matrices. Another important advance is the micro SPTCs with an overall mass of 300-800 g operating at high frequencies varying from 100 Hz to 400 Hz. The main purpose of developing two-stage SPTCs is to simultaneously acquire cooling capacities at both stages, obviating the need for auxiliary precooling in various applications. The three-stage SPTCs are developed mainly for applications at around 10 K, which are also used for precooling the J-T coolers to achieve further lower temperatures. The four-stage SPTCs are developed to directly achieve the liquid helium temperature for cooling space low-Tc superconducting devices and for the deep space exploration as well. Several typical development programs are described and an overview of the cooler performances is presented.

  20. China’s farewell to coal: A forecast of coal consumption through 2020

    International Nuclear Information System (INIS)

    Hao, Yu; Zhang, Zong-Yong; Liao, Hua; Wei, Yi-Ming

    2015-01-01

    In recent decades, China has encountered serious environmental problem, especially severe air pollution that has affected eastern and northern China frequently. Because most air pollutants in China are closely related to coal combustion, the restriction of coal consumption is critical to the improvement of the environment in China. In this study, a panel of 29 Chinese provinces from 1995 to 2012 is utilized to predict China’s coal consumption through 2020. After controlling for the spatial correlation of coal consumption among neighboring provinces, an inverted U-shaped Environmental Kuznets Curve (EKC) between coal consumption per capita and GDP per capita in China is detected. Furthermore, based on the estimation results and reasonable predictions of key control variables, China’s provincial and national coal consumption through 2020 is forecasted. Specifically, under the benchmark scenario, consumption is expected to continue growing at a decreasing rate until 2020, when China’s coal consumption would be approximately 4.43 billion tons. However, if China can maintain relatively high growth rate (an annual growth rate of 7.8 percent), the turning point in total coal consumption would occur in 2019, with projected consumption peaking at 4.16 billion tons. - Highlights: • Provincial panel data is used to investigate the influential factors of coal consumption in China. • The spatial correlations of coal consumption in neighboring provinces are fully considered. • An inverted-U shaped Environmental Kuznets Curve for coal consumption in China has been found. • Based on the estimation results, China’s national coal consumption before 2020 is forecasted. • Under the basic scenario, China’s national coal consumption will grow at a decreasing speed till 2020.

  1. Coal in competition

    Energy Technology Data Exchange (ETDEWEB)

    Manners, G

    1985-06-01

    During the past decade world coal consumption has expanded by about 26% whilst energy demands overall have grown by only 17%. This is because of the increased price of oil products, plus a period during which the costs of mining coal in many parts of the world have been moderately well contained. Over-ambitious forecasts of coal demand have encouraged the considerable over-investment in coalmining capacity that exists today. Costs of winning coal and transporting it are low, but sales depend on the rate of growth of a country's demand for energy. Some countries are more successful at marketing coal than others. Amongst the major factors that influence the rate of substitution of one source of energy for another is the nature and age of the boiler stock. The outcome of the developing environmental debate and calls for reduction in SO/sub 2/ and NO/sub x/ emissions from coal-fired boilers is going to affect coal's fortunes in the 1990's.

  2. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame

    International Nuclear Information System (INIS)

    Shimoda, M.; Sugano, A.; Kimura, T.; Watanabe, Y.; Ishiyama, K.

    1990-01-01

    This paper reports on a method predicting unburnt carbon in a coal fired utility boiler developed using an image processing technique. The method consists of an image processing unit and a furnace model unit. temperature distribution of combustion flames can be obtained through the former unit. The later calculates dynamics of the carbon reduction from the burner stages to the furnace outlet using coal feed rate, air flow rate, chemical and ash content of coal. An experimental study shows that the prediction error of the unburnt carbon can be reduced to 10%

  3. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    Science.gov (United States)

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  4. Experimental investigation on variation of physical properties of coal samples subjected to microwave irradiation

    Science.gov (United States)

    Hu, Guozhong; Yang, Nan; Xu, Guang; Xu, Jialin

    2018-03-01

    The gas drainage rate of low-permeability coal seam is generally less than satisfactory. This leads to the gas disaster of coal mine, and largely restricts the extraction of coalbed methane (CBM), and increases the emission of greenhouse gases in the mining area. Consequently, enhancing the gas drainage rate is an urgent challenge. To solve this problem, a new approach of using microwave irradiation (MWR) as a non-contact physical field excitation method to enhance gas drainage has been attempted. In order to evaluate the feasibility of this method, the methane adsorption, diffusion and penetrability of coal subjected to MWR were experimentally investigated. The variation of methane adsorbed amount, methane diffusion speed and absorption loop for the coal sample before and after MWR were obtained. The findings show that the MWR can change the adsorption property and reduce the methane adsorption capacity of coal. Moreover, the methane diffusion characteristic curves for both the irradiated coal samples and theoriginal coal samples present the same trend. The irradiated coal samples have better methane diffusion ability than the original ones. As the adsorbed methane decreases, the methane diffusion speed increases or remain the same for the sample subjected to MWR. Furthermore, compared to the original coal samples, the area of the absorption loop for irradiated samples increases, especially for the micro-pore and medium-pore stage. This leads to the increase of open pores in the coal, thus improving the gas penetrability of coal. This study provides supports for positive MWR effects on changing the methane adsorption and improving the methane diffusion and the gas penetrability properties of coal samples.

  5. Report on evaluation/selection surveys on coal species, processes and others. Appendix; Tanshu process nado hyoka sentei chosa hokokusho. Furoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report, consisting of 7 chapters, summarizes literature related to liquefaction of coal. Chapter 1 describes the results of the (Project Lignite), i.e., development of the concept of two-stage liquefaction of lignite. Chapter 2 describes the COSTEAM process, which uses synthesis gas (CO-H{sub 2}) as the reducing agent and coal moisture as the hydrogen source for liquefaction of coal of low degree of carbonization, e.g., brown coal. Chapter 3 describes solubilization of coal with alcohol, where coal is reacted with ethanol and NaOH at 300 to 420 degrees C. Chapter 4 describes liquefaction of coal and production of lighter products with tetrahydroquinoline as the hydrogen donor. Chapter 5 describes low-temperature carbonization as the process for liquefying coal, in particular brown coal. Chapter 6 describes possibility of development of new liquefaction techniques for brown coal, including solvolysis for liquefaction, role, recovery and reuse of catalysts, short contact time processes, and coal pretreatment. Chapter 7 describes economic viability of the secondary hydrogenation. (NEDO)

  6. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  7. 60 years of representation of the interests of coal in Europe; 60 Jahre Interessenvertretung der Kohle in Europa

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, Thorsten [Vereinigung Rohstoffe und Bergbau e.V. (VRB), Berlin (Germany); Bogalla, Bernd [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany); Janssens, Leopold

    2011-06-15

    The European coal producers can look back on a long period of cooperation. Numerous discussions which not only dealt with the reconstruction of the European economy, but also with the coal shortage prevailing at the time in Western Europe, already took place at the League of Nations in Geneva after the First World War. The contribution describes stages in the establishment of representation of the interests of the coal mining industry in Europe in the last 60 years and gives an insight into future developments. It is based on the EURACOAL publication ''60 years of voicing coal interests in Europe''. (orig.)

  8. NASA Glenn's Single-Stage Axial Compressor Facility Upgraded

    Science.gov (United States)

    Brokopp, Richard A.

    2004-01-01

    NASA Glenn Research Center's Single-Stage Axial Compressor Facility was upgraded in fiscal year 2003 to expand and improve its research capabilities for testing high-speed fans and compressors. The old 3000-hp drive motor and gearbox were removed and replaced with a refurbished 7000-hp drive motor and gearbox, with a maximum output speed of 21,240 rpm. The higher horsepower rating permits testing of fans and compressors with higher pressure ratio or higher flow. A new inline torquemeter was installed to provide an alternate measurement of fan and compressor efficiency, along with the standard pressure and temperature measurements. A refurbished compressor bearing housing was also installed with bidirectional rotation capability, so that a variety of existing hardware could be tested. Four new lubrication modules with backup capability were installed for the motor, gearbox, torquemeter, and compressor bearing housing, so that in case the primary pump fails, the backup will prevent damage to the rotating hardware. The combustion air supply line for the facility inlet air system was activated to provide dry air for repeatable inlet conditions. New flow conditioning hardware was installed in the facility inlet plenum tank, which greatly reduced the inlet turbulence. The new inlet can also be easily modified to accommodate 20- or 22-in.-diameter fans and compressors, so a variety of existing hardware from other facilities (such as Glenn's 9- by 15-Foot Low-Speed Wind Tunnel) can be tested in the Single-Stage Axial Compressor Facility. An exhaust line was also installed to provide bleed capability to remove the inlet boundary layer. To improve the operation and control of the facility, a new programmable logic controller (PLC) was installed to upgrade from hardwired relay logic to software logic. The PLC also enabled the usage of human-machine interface software to allow for easier operation of the facility and easier reconfiguration of the facility controls when

  9. Development and testing of a two stage granular filter to improve collection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rangan, R.S.; Prakash, S.G.; Chakravarti, S.; Rao, S.R.

    1999-07-01

    A circulating bed granular filter (CBGF) with a single filtration stage was tested with a PFB combustor in the Coal Research Facility of BHEL R and D in Hyderabad during the years 1993--95. Filter outlet dust loading varied between 20--50 mg/Nm{sup 3} for an inlet dust loading of 5--8 gms/Nm{sup 3}. The results were reported in Fluidized Bed Combustion-Volume 2, ASME 1995. Though the outlet consists of predominantly fine particulates below 2 microns, it is still beyond present day gas turbine specifications for particulate concentration. In order to enhance the collection efficiency, a two-stage granular filtration concept was evolved, wherein the filter depth is divided between two stages, accommodated in two separate vertically mounted units. The design also incorporates BHEL's scale-up concept of multiple parallel stages. The two-stage concept minimizes reentrainment of captured dust by providing clean granules in the upper stage, from where gases finally exit the filter. The design ensures that dusty gases come in contact with granules having a higher dust concentration at the bottom of the two-stage unit, where most of the cleaning is completed. A second filtration stage of cleaned granules is provided in the top unit (where the granules are returned to the system after dedusting) minimizing reentrainment. Tests were conducted to determine the optimum granule to dust ratio (G/D ratio) which decides the granule circulation rate required for the desired collection efficiency. The data brings out the importance of pre-separation and the limitation on inlet dust loading for any continuous system of granular filtration. Collection efficiencies obtained were much higher (outlet dust being 3--9 mg/Nm{sub 3}) than in the single stage filter tested earlier for similar dust loading at the inlet. The results indicate that two-stage granular filtration has a high potential for HTHT application with fewer risks as compared to other systems under development.

  10. Australia's export coal industry: a project of the Coal Australia Promotion Program. 2. ed.

    International Nuclear Information System (INIS)

    1995-01-01

    This booklet presents an overview of the Australian coal industry, emphasises the advantages of using Australian coal and outlines government policies, both Commonwealth and State, which impact on coal mine development, mine ownership and coal exports. It also provides information on the operations and products of each producer supplying coal and coke to export markets and gives contact details for each. The emphasis is on black coal, but information on coal briquettes and coke is also provided. Basic information on the rail networks used for the haulage of export coal and on each of the bulk coal loading terminals is also included.(Author). 3 figs., photos

  11. King coal: miners, coal, and Britain's industrial future

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T.

    1981-01-01

    The coal industry in the United Kingdom and the history of the mineworkers, from their attempts at unionization until the present day, are described. Reasons for the policy of closing pits and dismantling the coal industry, and for importing coal are discussed and analyzed.

  12. The European Coal Market: Will Coal Survive the EC's Energy and Climate Policies?

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2012-01-01

    The European coal industry is at a crossroads. The European Commission (EC) Energy Policy by 2020, the 20/20/20 targets, is not favourable to coal: a 20% decrease in CO 2 emissions does not favour coal compared with natural gas, its main competitor in electricity generation; a 20% increase in energy efficiency will lead to a decrease in energy/coal consumption; a 20% increase in renewables will displace other energy sources, including coal. The recent EC Energy road-map to 2050 targets a cut in GHG emissions by 80-95%. Under such a tough emissions reduction target, the future use of coal is tied with CCS technologies for which public acceptance and an adequate CO 2 price are crucial. The Large Combustion Plants Directive has already had a huge impact on EU coal-fired electricity generation. In UK, a third of coal-fired power capacity will be closed by the end of 2015 at the latest. Phase III of the EU Emissions Trading Scheme requires CO 2 allowances to be auctioned from January 2013, adding a new burden on fossil fuel power plants. The end of state aid to European hard coal production by 2018, in line with EC Council Decision 2010/787/EU, means that domestic production is going to decrease. Does this mean the end of coal in Europe? Maybe not, and certainly not by 2020, although its future after that date is quite uncertain. Coal provides 17% of the EU s primary energy supply, and represents 25% of electricity generation. With the phasing out of nuclear energy in some countries (mainly Germany), coal has gained a period of grace before the transition to a less-carbonised economy. Its consumption by European power utilities increased by 7% in the first half of 2012, boosted by low CO 2 prices and relatively high gas prices. European production still accounts for 60% of the total coal supply in the EU. Coal therefore gives the EU a certain degree of independence and contributes to its security of supply. Hard coal and lignite represent approximately 80% of EU

  13. Clean coal technology: coal's link to the future

    International Nuclear Information System (INIS)

    Siegel, J.S.

    1992-01-01

    Coal, the world's most abundant fossil fuel, is very important to the world's economy. It represents about 70% of the world's fossil energy reserves. It produces about 27% of the world's primary energy, 33% of the world's electricity, and it is responsible for about $21 billion in coal trade - in 1990, 424 million tons were traded on the international market. And, most importantly, because of its wide and even distribution throughout the world, and because of its availability, coal is not subject to the monopolistic practices of other energy options. How coal can meet future fuel demand in an economical, efficient and environmentally responsive fashion, with particular reference to the new technologies and their US applications is discussed. (author). 6 figs

  14. Water effects of the use of western coal for electrical production

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, E.A.

    1980-02-01

    Water may be a constraint on the expanded development of coal resources in the semi-arid western United States. Water allocation in the West has been determined by the appropriative rights doctrine which allows perpetual use of water sources by those who first claim it for beneficial purposes. This has had the effect of placing a dominative interest in water allocation in one economic sector: agriculture. New water sources are available to coal producers but political and economic problems must be overcome. Water is required by every phase of coal development. Mines use water for dust control and land reclamation. Coal slurry pipelines would use water as a transport medium. Steam electric power plants use water for cooling, cleaning, and in the boiler. Coal gasification plants would use water for cooling, cleaning, and as a material input. In addition to these direct uses of water by coal development, the people who build and operate the development demand water for domestic and recreational purposes. The quantity of water required for a given element of a coal development is site specific and dependent on many factors. The available literature cites a range of estimates of the amount of water required for each type of development. The width of this range seems related to the stage of development of the particular technology. Estimates of water requirements for various schemes to provide an average electrical load of 9 GWe to a load center 1000 miles from western mines are shown in Table 5.

  15. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    Energy Technology Data Exchange (ETDEWEB)

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour [US Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  16. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst.

    Science.gov (United States)

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types.

  17. Technical review of coal gasifiers for production of synthetic natural gas

    International Nuclear Information System (INIS)

    Lee, Geun Woo; Shin, Yong Seung

    2012-01-01

    Because of the increasing cost of oil and natural gas, energy production technologies using coal, including synthetic natural gas (SNG) and integrated gasification combined cycle (IGCC), have attracted attention because of the relatively low cost of coal. During the early stage of a project, the developer or project owner has many options with regard to the selection of a gasifier. In particular, from the viewpoint of feasibility, the gasifier is a key factor in the economic evaluation. This study compares the technical aspects of gasifiers for a real SNG production project in an early stage. A fixed bed slagging gasifier, wet type entrained gasifier, and dry type entrained gasifier, all of which have specific advantages, can be used for the SNG production project. Base on a comparison of the process descriptions and performances of each gasifier, this study presents a selection guideline for a gasifier for an SNG production project that will be beneficial to project developers and EPC (Engineering, Procurement, Construction) contractors

  18. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  19. Problems in modernization of automation systems at coal preparation plants

    Science.gov (United States)

    Myshlyaev, L. P.; Lyakhovets, M. V.; Venger, K. G.; Leontiev, I. A.; Makarov, G. V.; Salamatin, A. S.

    2018-05-01

    The factors influencing the process of modernization (reconstruction) of the automation systems at coal preparation plants are described. Problems such as heterogeneity of existing and developed systems, planning of reconstruction of a technological complex without taking into account modernization of automated systems, commissioning without stopping the existing technological complex, as well as problems of conducting procurement procedures are discussed. The option of stage-by-stage start-up and adjustment works in the conditions of modernization of systems without long stops of the process equipment is offered.

  20. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    Wang Mingshi; Zheng Baoshan; Wang Binbin; Li Shehong; Wu Daishe; Hu Jun

    2006-01-01

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  1. Effect of Single and Double Stage Chemically Treated Kenaf Fibers on Mechanical Properties of Polyvinyl Alcohol Film

    Directory of Open Access Journals (Sweden)

    Md Ershad Ali

    2014-12-01

    Full Text Available The physico-mechanical properties of lignocellulosic kenaf fiber reinforced polyvinyl alcohol (PVA biocomposite films were investigated. To improve the properties of the biocomposite, kenaf fibers were chemically treated separately in a single stage (with Cr2(SO4312(H2O and double stages (with CrSO4 and NaHCO3 to improve the adhesion and compatibility between the kenaf fiber and PVA matrix. PVA was reinforced with various compositions of chemically treated kenaf fiber by using a solution casting technique. Microstructural analyses and mechanical tests were subsequently conducted. Scanning electron microscopic analysis indicated that chemical treatment improved the uniformity distribution of kenaf fiber within the PVA matrix. FTIR and XRD analyses confirmed the presence of chromium on the fiber surface. The tensile strength of PVA reinforced with chemical treated kenaf fiber was found to be higher than those reinforced with untreated kenaf. The Young’s modulus, flexural strength, and flexural modulus increased with fiber loading for both untreated and treated kenaf fiber reinforced PVA films. The double stage treated kenaf fiber showed better mechanical properties and lower moisture uptake than the single stage treated kenaf fiber.

  2. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  3. Concerning coal: an anthology

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.; Hawse, M.L.; Maloney, P.J. [eds.

    1997-12-31

    The anthology takes a humanistic look at coal mining in Illinois. One of its goals is to increase public awareness of coal in American society; it also seeks to enhance understanding of the historical aspects of coal and to study the impact of coal on mining families. Many of the 25 selections in the anthology come from Coal Research Center publications, `Concerning coal` and `Mineral matters`. Articles are arranged in three parts entitled: life in the mining community; mining in folklore, story telling, literature, art and music; and technology as it affected the people of the coal fields. 117 refs., 25 photos. 1 map.

  4. State coal profiles, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  5. Single-stage three-phase AC to DC conversion with isolation and Bi-directional power flow

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Duarte, J.L.; Wijnands, C.G.E.; Lomonova, E.A.

    2014-01-01

    An approach for three-phase AC to DC conversion is proposed, which consists of a single-stage while offering galvanic isolation, soft-switching, bi-directional power flow and a significant reduction of inductive and capacitive energy storage. Two elements enable this approach, namely a neutral

  6. Study on infrasonic characteristics of coal samples in failure process under uniaxial loading

    Directory of Open Access Journals (Sweden)

    Bing Jia

    Full Text Available To study the precursory failure infrasonic characteristics of coal samples, coal rock stress loading system and infrasonic wave acquisition system were adopted, and infrasonic tests in uniaxial loading process were made for the coal samples in the studied area. Wavelet filtering, fast Fourier transform, and relative infrasonic energy methods were used to analyze the characteristics of the infrasonic waves in the loading process, including time domain characteristics, and relative energy. The analysis results demonstrated that the frequencies of the infrasonic signals in the loading process mainly distribute within 5–10 Hz, which are significantly different from noise signals. The changes of the infrasonic signals show clear periodic characters in time domain. Meanwhile, the relative energy changes of the infrasonic wave also show periodic characters, which are divided into two stages by the yield limit of coal samples, and are clear and easy to be recognized, so that they can be used as the precursory characteristics for recognizing coal sample failures. Moreover, the infrasonic waves generated by coal samples have low frequency and low attenuation, which can be collected without coupling and transmitted in long distance. This study provides an important support for the further in-situ prediction of coal rock failures. Keywords: Infrasound, Relative energy, Time-frequency analysis, Failure prediction, Identification feature

  7. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability

    Energy Technology Data Exchange (ETDEWEB)

    Seiji Nomura; Merrick Mahoney; Koichi Fukuda; Kenji Kato; Anthony Le Bas; Sid McGuire [Nippon Steel Corporation, Chiba (Japan). Environment and Process Technology Center

    2010-07-15

    One of the most important aspects of the cokemaking process is to control and restrain the coking pressure since excessive coking pressure tends to lead to operational problems and oven wall damage. Therefore, in order to understand the mechanism of coking pressure generation, the permeability of the plastic coal layer and the coking pressure for the same single coal and the same blended coal were measured and the relationship between them was investigated. Then the 'inert' (pressure modifier) effect of organic additives such as high volatile matter coking coal, semi-anthracite and coke breeze was studied. The coking pressure peak for box charging with more uniform bulk density distribution was higher than that for top charging. It was found that the coking pressure peaks measured at different institutions (NSC and BHPBilliton) by box charging are nearly the same. The addition of high volatile matter coking coal, semi-anthracite and coke breeze to a low volatile matter, high coking pressure coal greatly increased the plastic layer permeability in laboratory experiments and correspondingly decreased the coking pressure. It was found that, high volatile matter coking coal decreases the coking pressure more than semi-anthracite at the same plastic coal layer permeability, which indicates that the coking pressure depends not only on plastic coal layer permeability but also on other factors. Coking pressure is also affected by the contraction behavior of the coke layer near the oven walls and a large contraction decreases the coal bulk density in the oven center and hence the internal gas pressure in the plastic layer. The effect of contraction on coking pressure needs to be investigated further. 33 refs., 18 figs., 5 tabs.

  8. Process for hydrogenating coal and coal solvents

    Science.gov (United States)

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  9. Trends in Japanese coal trade

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, S

    1986-01-01

    The author discusses 1) the latest forecast for coal demand in Japan; 2) trends in Japanese steam coal demand, with breakdown by industry; 3) the organization of steam coal supply, with details of the distribution network and of the new coal cartridge system; 4) the demand for metallurgical coal. Other topics outlined include the current status of Japanese coal production, Japanese coal trade, and the development of overseas coal resources. 1 figure, 5 tables.

  10. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  11. Electrical and gamma-ray logging in Gondwana and Tertiary coal fields of India

    International Nuclear Information System (INIS)

    Kayal, J.R.

    1979-01-01

    Electrical and gamma-ray logging have been very useful for identification and accurate determination of depth and thickness of coal seams in Gondwana and Tertiary coal fields of India. The characteristic resistance/resistivity peaks of coal seams in a particular area have been correlated, thus providing a picture of the subsurface structure. Physico-chemical properties of layers or sections of coal seams are responsive to electrical logs. Gamma-ray logs are found to be very useful for correlation and have sometimes been the only logs used in cased and dry boreholes for detection of coal seams. Under favourable conditions a single-point resistance log reveals a detailed picture of the formations and picks up thin coal seams as well as thin shale bands within the coal seam. But in some cases it fails to differentiate between coal and sandstone beds in spite of high contrast in true resistivities. Multi-electrode long-normal and lateral logs are found to be more useful in differentiating such formations because of higher penetration in this system. Long-normal and lateral curves can also be used to determine true resisvity of the formation. But long normal logs cannot pick up thin coal bands and/or thin shale partings within the coal seam because of the 'adjacent bed effect'. Gamma-ray logging can be done in both cased and uncased bore-holes or even in a dry borehole but its resolution for shaly coal or thin coal is not sufficient. Combined study has been found to yield the best results. (Auth.)

  12. Coal statistics 1977

    Energy Technology Data Exchange (ETDEWEB)

    Statistical Office of the European Communities

    1978-01-01

    Presents tables of data relating to the coal market in the European Community in 1977. The tables cover hard coal production, supply and trade; briquettes; cokes; lignite, brown coal briquettes and peat; and mines and coke ovens.

  13. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    Science.gov (United States)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  14. Reactivity of North Bohemian coals in coprocessing of coal/oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sebor, G.; Cerny, J.; Maxa, D.; Blazek, J. [Inst. of Chemical Technology, Prague (Czechoslovakia); Sykorova, I. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    Autoclave experiments with North Bohemian coal were done in order to evaluate their reactivity in coprocessing with petroleum vacuum residue, Selected coals were comprehensively characterized by using a number of analytical methods. While the coals were of similar geological origin, some of their characteristics differed largely from one coal to another. Despite the differences in physical and chemical structure, the coals provided very similar yields of desired reaction products. The yields of a heavy non- distillable fraction and/or an insoluble solid residue were, under experimental conditions, largely affected by retrogressive reactions (coking). The insoluble solid fractions were examined microscopically under polarized light.

  15. Wet treatment of low-quality coal. II stage. Pilot Plant; Tratamiento en fase humeda de carbones de baja calidad 2 fase: planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    At this second stage, the project was aimed at determining the appropriate operating conditions which permit the use of slack with a high ratio of inert materials after a treatment by means of wet oxidation at thigh pressure as well as carrying out an economic feasibility study. Based on the conclusions of the first stage, four representative samples were selected and the pilot plant for testing the influence of different process variables was designed. Continuous tests were conducted and the basic engineering was determined (process diagram, material, energy and equipment balances). An economic analysis for the erecting of an industrial plant for the treatment of low-quality coal using this technology was also carried out in order to establish whether a short-term or medium-term profitability of the required investment for the erecting could be achieved. It can be deduced from both the theoretical and experimental studies carried out that the technology of wet oxidation can be applied to the treatment of slacks, but the energetic efficiency of the reaction is so low that its use is not advisable for the proposed purposes. (Author)

  16. Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, August 1981-October 1981. [Using model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A. R.; Guin, J. A.; Curtis, C. W.

    1981-01-01

    Model compound reactions were studied to evaluate the effects of mass transfer, solvent type, solvent blending, hydrogen partial pressure, temperature, reactant concentration, additive loading and its preparation, etc. Naphthalene hydrogenation and benzothiophene hydrodesulfurization were investigated under the conditions comparable to commercial coal liquefaction and related processes. Both of these reaction systems were observed to be surface reaction controlled under the reaction conditions used in this work. Certain aromatic compounds were observed to cause a reduction in the reaction rates of naphthalene and benzothiophene. Single stage coal dissolution was investigated using tetralin as a hydrogen donor solvent and a commercial cobalt-molybdate catalyst. A spinning basket system was developed to allow injection of the catalyst at a desired time in the reaction cycle. This catalyst injection technique proved to be reliable for the exploratory work done here. The degree of catalyst deactivation was rated by comparing the activities of the spent catalyst for model compound (naphthalene and cumene) reactivities relative to those of the fresh catalyst. No substantial reduction in deactivation was observed to result with delayed contacting of the catalyst with the coal-tetralin reaction mixture. The effect of reaction temperature on the initial rate of catalyst deactivation was also studied.

  17. Coal Transition in the United States. An historical case study for the project 'Coal Transitions: Research and Dialogue on the Future of Coal'

    International Nuclear Information System (INIS)

    Kok, Irem

    2017-01-01

    This is one of the 6 country case-studies commissioned to collect experience on past coal transitions. The 6 countries are: Czech Republic, the Netherlands, Poland, Spain, UK, USA. Their role in the Coal Transitions project was to provide background information for a Synthesis Report for decision makers, and provide general lessons for national project teams to take into account in developing their coal transitions pathways for the future. Over the past decade, the US started to cut down the production and the use of coal, which was affected by unfavorable market dynamics and changing federal regulatory environment. Even before the shale gas revolution and uptake of renewables diminish the use of coal in power generation, coal communities were struggling to meet ends. The regional cost differences between producing states, such as the Appalachian and the Powder River Basins, indicates that coal-impacted communities and workers have lived through the impacts of coal transition at varying magnitudes and time periods. In the period between 2014 and 2016, we have seen the crash of major US coal companies due to declining demand for US coal domestically and internationally. Furthermore, Obama administration's climate change policies negatively impacted coal-fired power plants with additional GHG emission requirements, contributing to declining domestic demand for coal. Combined with market downturn, US coal producers already struggle to pay for high operational costs and legal liabilities under bankruptcy conditions. With under-funded state budgets, coal states are also grappling with financial exposure resulting from pension, health care and reclamation liabilities of bankrupt coal companies. In 2016, former President Obama announced the Power Plus Plan to aid coal-impacted communities and workers to prepare for a low carbon future. The federal budget plan targeted diversification of local economies, funding of health and pension funds of miners and retraining for

  18. Single-stage MPPT control realization for Aalborg inverter in photovoltaic system

    DEFF Research Database (Denmark)

    Zhang, Shuai; Wu, Weimin; Wang, Houqing

    2017-01-01

    In this paper, the single-stage Maximum Power Point Tracking (MPPT) control strategy for the Aalborg photovoltaic inverter is presented. Aalborg inverter has many advantages, such as high efficiency, wide range of input voltage, minimum voltage drop of the filtering inductors, etc. Nevertheless......, it is essentially a “half-bridge” inverter with two input sources, where one source works in MPPT mode, the other is out of control. If without the reasonable parameter design and the proper control, the bus-voltage of this inverter may change greatly, resulting in the serious power oscillation around maximum power...

  19. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  20. Report on evaluation/selection surveys on coal species, processes and others; Tanshu process nado hyoka sentei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This program analyzes the applicable coal species centered by Australia's Victoria brown coal and Chinese coal, which are promising alternative fuel sources for Japan for their reserves, prices, availability, suitability for liquefaction, etc, in order to clarify the possible problems, and commercialize the liquefaction techniques in the early stage. This report consists of 6 chapters. Chapter 1 describes development situations of brown coal, specifically for Australia's Victoria brown coal and Chinese coal. Chapter 2 describes characteristics of the reactions involved in the brown coal liquefaction. Chapter 3 describes current status of various liquefaction processes (solvolysis, solvent extraction, direct hydrogenation and C-SRC) under development in Japan, and problems involved in their future developments. Chapter 4 describes current status of the elementary techniques, e.g., those for slurry pretreatment (e.g., dehydration and crushing), solid/liquid separation, secondary hydrogenation, product upgrading and gasification. Chapter 5 describes the related techniques, and Chapter 6 discusses the demonstration survey results of de-ashing, primary/secondary hydrogenation, and dehydration of brown coal. (NEDO)

  1. Report on evaluation/selection surveys on coal species, processes and others; Tanshu process nado hyoka sentei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This program analyzes the applicable coal species centered by Australia's Victoria brown coal and Chinese coal, which are promising alternative fuel sources for Japan for their reserves, prices, availability, suitability for liquefaction, etc, in order to clarify the possible problems, and commercialize the liquefaction techniques in the early stage. This report consists of 6 chapters. Chapter 1 describes development situations of brown coal, specifically for Australia's Victoria brown coal and Chinese coal. Chapter 2 describes characteristics of the reactions involved in the brown coal liquefaction. Chapter 3 describes current status of various liquefaction processes (solvolysis, solvent extraction, direct hydrogenation and C-SRC) under development in Japan, and problems involved in their future developments. Chapter 4 describes current status of the elementary techniques, e.g., those for slurry pretreatment (e.g., dehydration and crushing), solid/liquid separation, secondary hydrogenation, product upgrading and gasification. Chapter 5 describes the related techniques, and Chapter 6 discusses the demonstration survey results of de-ashing, primary/secondary hydrogenation, and dehydration of brown coal. (NEDO)

  2. Studies on classifying Indian coals. Part II. A new system for grading and pricing

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluri, S.G.; Shrikhande, S.K.; Rao, S.K.; Haque, R.

    1985-07-01

    The new system is self-complete through grading to pricing. It grades non-coking coal by moisture and ash contents. Coking coal is graded by GKLT coke type and ash content. Volatile matter content is used as a supporting indexer, where necessary. Through the grade data, a coal is evaluated into a single numeral which depicts the coaly matter content and its nature or effectiveness. This value, called effective coaly matter, is converted to a relative rupee value or price index/price. Pragmatics and versatility of the system are discussed.

  3. Coal - 97

    International Nuclear Information System (INIS)

    Sparre, C.

    1997-01-01

    The report deals with the use of coal and coke during 1996. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1996 was 1,2 mill tons and 50% higher than in 1995. The increase is probably temporary and due to high prices of electricity because of lack of water power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generation plants. During the top year 1987 coal was used in 18 hotwater plants and 11 co-generation plants. 1996 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1996 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. The coke consumption in the industry was 1,5 mill tons. 0,3 mill tons of coke were imported. The average price of steam coal imported in Sweden in 1996 was 340 SEK/ton or 2% higher than in 1995. For the world, the average import price was 51,5 USD/ton, nearly the same as the year before. The contract prices for delivery during 1997 are about equal as the end of 1996. All Swedish plants meet their emission limits of dust, SO 2 and NO x given by county administrations or concession boards

  4. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab. of Coal Conversion, Inst. of Coal Chemistry

    2000-10-01

    The thermal behaviour of pure pyrite was studied under nitrogen and hydrogen atmospheres in a pressurized thermal balance. The transfer of pyrite in coal during pyrolysis and hydropyrolysis was investigated in a fixed-bed reactor. The results suggest that the indigenous hydro-carbon with hydrogen donor ability in coal can promote the reduction of pyrite in pyrolysis. At low temperatures, organic sulfur removal is almost the same in pyrolysis and hydropyrolysis of two coals. It is likely that indigenous hydrogen in coal is the dominant factor in organic sulfur elimination in the low-temperature stage. An increase of organic sulfur in pyrolysis of Hongmiao coal indicates that the lack of the indigenous hydrogen may be the key factor determining the transformation of pyritic sulfur into organic sulfur. Oxygen affects the conversion of pyrite into organic sulfur through the competitive consumption of hydrogen. 12 refs., 5 figs., 1 tab.

  5. Coal sector model: Source data on coal for the energy and power evaluation program (ENPEP)

    International Nuclear Information System (INIS)

    Suwala, W.

    1997-01-01

    Coal is the major primary energy source in Poland and this circumstances requires that the data on coal supply for use in energy planning models should be prepared properly. Economic sectors' development depends on many factors which are usually considered in energy planning models. Thus, data on the development of such sectors as coal mining should be consistent with the economic assumptions made in the energy planning model. Otherwise, coal data could bias the results of the energy planning model. The coal mining and coal distribution models which have been developed at the Polish Academy of Sciences could provide proper coal data of use in ENPEP and other energy planning models. The coal mining model optimizes the most important decisions related to coal productions, such as coal mines development, retirement of non-profitable mines, and construction of new mines. The model uses basic data forecasts of coal mine costs and coal production. Other factors such as demand for coal, world coal prices, etc., are parameters which constitute constraints and requirements for the coal mining development. The output of the model is the amount of coal produced and supply curves for different coal types. Such data are necessary for the coal distribution model and could also be used by ENPEP. This paper describes the model, its structure and how the results of the model could serve as coal-related data for ENPEP. Improvement of some input data forms of the BALANCE module of ENPEP are also suggested in order to facilitate data preparation. (author). 7 figs

  6. Coal sector model: Source data on coal for the energy and power evaluation program (ENPEP)

    Energy Technology Data Exchange (ETDEWEB)

    Suwala, W [Mineral and Energy Economy Research Centre, Polish Academy of Sciences, Cracow (Poland)

    1997-09-01

    Coal is the major primary energy source in Poland and this circumstances requires that the data on coal supply for use in energy planning models should be prepared properly. Economic sectors` development depends on many factors which are usually considered in energy planning models. Thus, data on the development of such sectors as coal mining should be consistent with the economic assumptions made in the energy planning model. Otherwise, coal data could bias the results of the energy planning model. The coal mining and coal distribution models which have been developed at the Polish Academy of Sciences could provide proper coal data of use in ENPEP and other energy planning models. The coal mining model optimizes the most important decisions related to coal productions, such as coal mines development, retirement of non-profitable mines, and construction of new mines. The model uses basic data forecasts of coal mine costs and coal production. Other factors such as demand for coal, world coal prices, etc., are parameters which constitute constraints and requirements for the coal mining development. The output of the model is the amount of coal produced and supply curves for different coal types. Such data are necessary for the coal distribution model and could also be used by ENPEP. This paper describes the model, its structure and how the results of the model could serve as coal-related data for ENPEP. Improvement of some input data forms of the BALANCE module of ENPEP are also suggested in order to facilitate data preparation. (author). 7 figs.

  7. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  8. Clean coal technology. Coal utilisation by-products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  9. One coal miner's perspective on the present United States coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.E. [Murray Energy Corp., Pepper Pike, OH (United States)

    2002-07-01

    The President and CEO of the Murray Energy Corporation presented his observations on and concerns about the coal and energy industries in the USA, as a coal miner and an energy trader. He outlines the coal mining operations of the Murray Energy Corporation. He offers critical comments about, for example, some unscrupulous energy trading activities, the future of Powder River Basin coal (which he believes may be curtailed by the introduction of clean coal technologies), the lack of expertise in coal mining, the need to revise the law concerning coal company bankruptcies, the need for the government to provide a means to secure bonds, the need to liberalize black lung disease benefits, and the factors deterring improvement of the performance of the eastern coal industry. He criticises current policy and puts forward some recommendations.

  10. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  11. Coal Transition in the Czech Republic. An historical case study for the project 'Coal Transitions: Research and Dialogue on the Future of Coal'

    International Nuclear Information System (INIS)

    Reckova, Dominika; Recka, Lukacs; Scasny, Milan

    2017-01-01

    This is one of the 6 country case-studies commissioned to collect experience on past coal transitions. The 6 countries are: Czech Republic, the Netherlands, Poland, Spain, UK, USA. Their role in the Coal Transitions project was to provide background information for a Synthesis Report for decision makers, and provide general lessons for national project teams to take into account in developing their coal transitions pathways for the future. Content: History of coal production and coal reserves; Key features of the Czech economy; Fuel mix in the Czech Republic 1990 - 2014; Key features of coal sector in the Czech Republic after 1990; The use of coal in the Czech Republic and its possible replacement: A. Coal as source of Electricity, B. Coal as Heating source, C. Non - energy coal use; The state role in the coal sector after 1990 - mining limits; Measures to ease transition: Phasing-out of mining activities, Rehabilitation of environmentally damaged land, Programmes financing the remediation of ecological damage, Remediation of environmental damage caused by mining; Future outlook; Lessons learned; References; Annex

  12. Coal-water fuels - a clean coal solution for Eastern Europe

    International Nuclear Information System (INIS)

    Ljubicic, B.; Willson, W.; Bukurov, Z.; Cvijanovic, P.; Stajner, K.; Popovic, R.

    1993-01-01

    Eastern Europe currently faces great economic and environmental problems. Among these problems is energy provision. Coal reserves are large but cause pollution while oil and gas need to be used for export. Formal 'clean coal technologies' are simply too expensive to be implemented on a large scale in the current economic crisis. The promised western investment and technological help has simply not taken place, western Europe must help eastern Europe with coal technology. The cheapest such technology is coal-water fuel slurry. It can substitute for oil, but research has not been carried out because of low oil prices. Coal-water fuel is one of the best methods of exploiting low rank coal. Many eastern European low rank coals have a low sulfur content, and thus make a good basis for a clean fuel. Italy and Russia are involved in such a venture, the slurry being transported in a pipeline. This technology would enable Russia to exploit Arctic coal reserves, thus freeing oil and gas for export. In Serbia the exploitation of sub-Danube lignite deposits with dredging mining produced a slurry. This led to the use and development of hot water drying, which enabled the removal of many of the salts which cause problems in pulverized fuel combustion. The system is economic, the fuel safer to transport then oil, either by rail or in pipelines. Many eastern European oil facilities could switch. 24 refs

  13. Beneficiation of power grade coals: its relevance to future coal use in India

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1992-01-01

    With consumption increasing from the current level of 220 mt. to over 600 mt. by the year 2010 A.D., coal will continue to enjoy a prime position in the overall energy scene in India. India being endowed with coal resources of high ash content, the major coal consuming industries have, by and large, adjusted the combustion techniques to suit the quality of coal available. However, wide fluctuations in the quality of coal supplies adversely affect their plant performance. With the coal deposits being localised in the eastern and central parts of peninsular India, the load on railway network in carrying coal to other parts of the country will continue to increase and this will emerge as a major constraint in managing the coal supply to the consuming centres located away from the coal fields. It is in this context, the author has discussed the need of setting up of coal cleaning facilities at the pit heads. The extent to which the transport network will be relieved of carrying avoidable muck in coal has been quantified along with the benefits that will accrue in the form of extra transport capacity, better power plant performance and reduced air pollution and solid waste at consumer end. (author). 5 refs., 6 tabs., 8 figs

  14. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  15. Australian coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    Total export shipments of coal in Australia in the year ending June 30 1985 reached a record of 83.8 Mt. The export trade is expected to bring in an income of 4 billion Australian dollars in the current year making coal Australia's biggest revenue-earning export commodity. This article presents a brief overview of the Australian coal industry with production and export statistics and information on major open pit and underground mines.

  16. Numerical Assessment of the Influences of Gas Pressure on Coal Burst Liability

    Directory of Open Access Journals (Sweden)

    Haochen Zhao

    2018-01-01

    Full Text Available When coal mines exploit deep seams with high-gas content, risks are encountered due to the additional high likelihood of rock bursting potential problems. The bursts of coal pillars usually lead to severe fatalities, injuries, and destruction of property, including impeding access to active mine workings underground. The danger exists given that conditions in the already highly brittle coal material can be exacerbated by high stress and high gas pressure conditions. It is thus critical to develop methods that improve current understanding about bursting liability, and techniques to forecast or prevent coal bursting in underground coal mines. This study uses field data from a deep coal mine, and numerical modeling to investigate the effects of gas pressure and mechanical compressive stresses on coal bursting liability in high gas content coal seams. The bursting energy index is adopted to determine the coal bursting liability under high gas pressure conditions. The adopted methodology uses a two-staged approach comprising investigating the influence of gas pressure on the bursting liability of coal pillar, and the influence of the gas pressure on the resulting pillar failure mode. Based on numerical simulations of coal pillars, correlations are observed between the magnitudes of gas pressures and the bursting energy index. Irrespective of pillar size, failure time is shortest when the gas pressure achieves a threshold value between 50 kPa to 70 kPa. At 50 kPa, the value of the BEI increases by 50% going from the 4 m pillar to the 6 m pillar. The value of the BEI increases by 43% going from the 6 m high pillar to the 8 m high pillar at 50 kPa. When pillars fail there is a degree of stress relief leading to a reduction in bursting liability. The results suggest that before 50 kPa, pillar failure is largely due to mechanical loading. After 50 kPa, pillar failure is largely due to excessive gas pressures.

  17. Coal supplier perspective on the future of the utility-coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, G.J. [Kennecott Energy Company, Gillette, WY (United States)

    2000-07-01

    Kennecott Energy is the largest producer within Rio Tinto Energy, in turn owned by Rio Tinto, and has grown by 260% since 1993. However, coal's performance in the world trade market is currently suffering for reasons such as regulatory uncertainty. The presentation looked at how the company is striving to improve coal's future, for example by enhancing coal's value through beneficiation like K-fuels, enhancing pollution control through research efforts like Zero Emissions Coal Alliance and by supporting public outreach and legislation efforts. Coal's future is summed up under headings: earnings, efficiency, environment, education and e-commerce. 17 overheads/viewgraphs outline the presentation.

  18. Prospects for coal and clean coal technologies in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Baruya, P. [IEA Clean Coal Centre, London (United Kingdom)

    2010-02-15

    Vietnam's energy economy is largely served by traditional biofuels and oil products. Within the power generating sector, hydropower and gas-fired power dominate. However, Vietnam still maintains a 40 Mt/y coal industry, parts of which have recently undergone a long overdue programme of renovation and expansion. Vietnam has been a successful exporter of anthracite, with more than half of the country's production being shipped or barged to steel mills in Japan or power stations in southern China, as well as most other Far Eastern coal importers. The industry is due to take a different form. Opencast mining has recently accounted for around 60% of production but this mining method could be phased out as reserves become more difficult and costly to extract. A shift to underground mining is expected, with a greater emphasis on more modern and mechanised production techniques. Coal is located mainly in the coalfields in Quang Ninh in the north easternmost province of Vietnam. The lower rank reserves located within the Red River coalfields, close to the existing anthracite operations, may yield many more millions of tonnes of coal for exploitation. Underground coal gasification could possibly be exploited in the deeper reserves of the Red River Basin. While coal production could rapidly change in future years, the power generation sector is also transforming with the country's 12,000 MWe development programme for new coal-fired power capacity. The economy suffers from a threat of power shortages due to a lack of generating and transmission capacity, while inefficiencies blight both energy production and end-users. Delivering power to the regions of growth remains difficult as the economy and the demand for power outpaces power generation. While hydroelectric power is being pursued, coal is therefore becoming a growing factor in the future prosperity of the Vietnamese economy. 111 refs., 33 figs., 11 tabs.

  19. Coal comes clean

    International Nuclear Information System (INIS)

    Minchener, A.

    1991-01-01

    Coal's status as the dominant fuel for electricity generation is under threat because of concern over the environmental impacts of acid rain and the greenhouse effect. Sulphur dioxide and nitrogen oxides cause acid rain and carbon dioxide is the main greenhouse gas. All are produced when coal is burnt. Governments are therefore tightening the emission limits for fossil-fuel power plants. In the United Kingdom phased reductions of sulphur dioxide and nitrogen oxides emissions are planned. It will be the responsibility of the power generator to take the necessary steps to reduce the emissions. This will be done using a number of technologies which are explained and outlined briefly - flue gas desulfurization, separation of coal into high and low-sulphur coal, direct desulfurization of coal, circulating fluidised bed combustion, integrated-gasification combined cycle systems and topping cycles. All these technologies are aiming at cleaner, more efficient combustion of coal. (UK)

  20. Cuttability of coal

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1978-01-01

    The process of cutting dull M, dull bright MB, bright dull BM, and bright B coal under various compressive stress conditions was studied in laboratory tests. The efficiency of ploughs depends much more on the natural mining conditions than does that of shearer-loaders. For seams of medium workability, it is difficult to forecast whether ploughs will be successful. Cuttability tests are a good way of determining whether ploughs can be used. The effort necessary to cut coal in a stressed condition depends not only on such properties as the workability defined by the Protodyakonov index or compressive strength, but also, and mainly, on the petrographic structure and elastic properties of the coal. In bright coals with high elastic strain, and with BM and MB coals, a much greater increment of effort is necessary with increase in compressive stresses. The cuttability of dull coals from difficult mines was not very different.